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Abstract

Non-Hermitian (NH) lattice Hamiltonians display a unique kind of energy gap and ex-
treme sensitivity to boundary conditions. Due to the NH skin effect, the separation
between edge and bulk states is blurred and the (conventional) bulk-boundary corre-
spondence is lost. Here, we restore the bulk-boundary correspondence for the most
paradigmatic class of NH Hamiltonians, namely those with one complex band and with-
out symmetries. We obtain the desired NH Hamiltonian from the mean-field evolution
of driven-dissipative cavity arrays, in which NH terms—in the form of non-reciprocal
hopping amplitudes, gain and loss—are explicitly modeled via coupling to (engineered
and non-engineered) reservoirs. This approach removes the arbitrariness in the defini-
tion of the topological invariant, as point-gapped spectra differing by a complex-energy
shift are not treated as equivalent; the origin of the complex plane provides a common
reference (base point) for the evaluation of the topological invariant. This implies that
topologically non-trivial Hamiltonians are only a strict subset of those with a point gap
and that the NH skin effect does not have a topological origin. We analyze the NH Hamil-
tonians so obtained via the singular value decomposition, which allows to express the
NH bulk-boundary correspondence in the following simple form: an integer value ν of
the topological invariant defined in the bulk corresponds to |ν| singular vectors exponen-
tially localized at the system edge under open boundary conditions, in which the sign of
ν determines which edge. Non-trivial topology manifests as directional amplification of
a coherent input with gain exponential in system size. Our work solves an outstanding
problem in the theory of NH topological phases and opens up new avenues in topological
photonics.
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1 Introduction

A universal feature of topological phases is the presence of states localized at the boundaries,
as a result of the non-trivial topology of the bulk. This argument is formalized in the cele-
brated bulk-boundary correspondence (BBC), which expresses a one-to-one correspondence
between the values of a topological invariant constructed from the Bloch states of an infinite
periodic system and the number of edge modes in a finite system [1,2]. The BBC provides the
foundations of our understanding of topological states of matter in systems described by Her-
mitian Hamiltonians [3]. Recently, a new and exciting line of inquiry has emerged, which is
concerned with extending these considerations to systems described by non-Hermitian (NH)
Hamiltonians [4–6]. NH Hamiltonians are a powerful tool to model the evolution of open
systems in contact with an environment [7].

Lattice models described by NH Hamiltonians display novel and often exotic phenom-
ena with no Hermitian counterpart. Among those is a unique kind of energy gap, known
as point gap [5, 8], which occurs when the spectrum winds in the complex energy plane as
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Figure 1: Overview of the non-Hermitian bulk-boundary correspondence. The
non-Hermitian (NH) Hamiltonian is a realization of the Hatano-Nelson model in a
driven-dissipative cavity array [see Eqs. (10) and (11) for L = 1]. From the com-
plex spectrum of the associated Bloch Hamiltonian Eq. (1), we can distinguish three
distinct regimes, i.e., those with no point gap (degenerate spectrum), point-gapped
trivial, and point-gapped non-trivial. These form nested sets, as shown in the Venn
diagram on the left. For each of these three regimes we compare several quantities,
arranged in different columns. From left to right: the complex spectrum under pe-
riodic boundary conditions (PBC, solid line) and open boundary conditions (OBC,
dots); the spectrum of singular values under PBC (solid line) and OBC (dots); some
representatives of the left singular vectors (in absolute value) including the localized
zero singular vector in the topologically non-trivial regime (red thick curve); some
representatives of the left eigenvectors (in absolute value); the susceptibility matri-
ces characterizing the response of each site to a weak coherent probe, which describe
the photon transmission under OBC (the magnitude of the response is indicated by
the color bar on the right; note the presence of amplification in the topologically non-
trivial case). The expressions of the coefficients in Eq. (1) are given by µ0/γeff = −i,
µ±1/γeff =

1
2

�

Λ− iCe∓iθ
�

[see Eqs. (15) and (16)] with the following values of the
parameters. Top row: (θ , Λ, C) = (0,2, 0.5); middle row: (θ , Λ, C) = (π/2,2, 0.5);
bottom row: (θ , Λ, C) = (π/2, 2,1.8). In all panels, the OBC quantities are com-
puted for a finite-size system with N = 50.

the quasi-momentum is scanned across the Brillouin zone (BZ), and an extreme sensitivity
to changes of boundary conditions [9–12]. In fact, NH Hamiltonians can display a striking
discrepancy in their spectrum under periodic boundary conditions (PBC) and open boundary
conditions (OBC), accompanied by an extensive number of eigenvectors that localize at the
system edges under OBC, a phenomenon known as non-Hermitian skin effect (NHSE) [9,13].
For instance, in the celebrated Hatano-Nelson model (without disorder) [14, 15], all right
eigenvectors are exponentially localized at one edge of the system and all left eigenvectors at
the other edge. More generally, it has been established that one-dimensional NH Hamiltonians
featuring a point gap in their spectrum—or point-gapped Hamiltonians for short—show the
NHSE [16,17]. The fact that an extensive number of bulk modes localize at the system bound-
ary undermines the BBC, leading to what is known as the breakdown of the (conventional)
BBC in NH systems.

Major efforts have been made to modify the BBC in order to accommodate the unconven-
tional features brought about by the NHSE. Notable attempts to restore the BBC include the
introduction of a generalized Brillouin zone and non-Bloch band theory [13, 18–21] and an
approach based on bi-orthogonal quantum mechanics [10,22,23]. These approaches provide
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deep insights into several aspects of the topology of NH Hamiltonians but at the same time
require revisiting the cornerstones of modern solid-state physics, such as the Bloch theorem.
Moreover, the nature of the BBC for point-gapped Hamiltonians, which cannot be reduced to
(or deduced from) a limiting case in which the conventional BBC holds [4], still remains an
open question.

In this work we reinstate the BBC for the most paradigmatic class of NH lattice models,
namely those featuring a single band with a point gap and no symmetry. We show that, akin
to Hermitian systems, a one-to-one correspondence between the bulk and the boundary holds
also for NH topological systems, which is expressed as follows:

An integer value ν ∈ Z of the winding number defined on the complex spectrum of the system under
periodic boundary conditions corresponds to |ν| exponentially small singular values associated
with singular vectors that are exponentially localized at the system edge under open boundary
conditions and vice versa; the sign of ν determines at which edge the vectors localize.

Each of these singular vectors is endowed with the following properties: (i) it corresponds
to a vanishing (exponentially in system size) singular value, i.e., it is a zero mode; we hence
refer to it as a zero singular mode. (ii) It is exponentially localized at the boundary (with left and
right singular vectors being localized at opposite ends), i.e., it is an edge mode. (iii) The pair
of left and right singular vectors possess a well-defined chirality, dictated by the sign of ν. We
then see that the zero singular modes possess all the defining properties of edge states. Unlike
eigenvectors, however, they do not experience the NHSE and are counted correctly by the
winding number, i.e., their number coincides with the value predicted by the bulk topological
invariant. This is the essence of the BBC for NH systems.

Our formulation of the BBC relies on two key ingredients. The first one is the singular
value decomposition (SVD), which is instrumental to recover the correspondence. Whenever
dealing with point-gapped Hamiltonians, we will show that it is the SVD, rather than the
standard eigendecomposition, to faithfully describe their properties. Ref. [24] employed the
SVD to determine the topological properties of the Hatano-Nelson model via a mapping to
the Hermitian Su-Schrieffer-Heeger (SSH) model, provided analytical expressions for singular
values and vectors, and studied dynamical stability analytically and robustness to disorder
numerically. However, no connection to BBC was drawn. The SVD was applied to the topology
of a NH Su-Schrieffer-Heeger (SSH) model and a NH Chern insulator in Ref. [25], where a
connection to the BBC was made. Since the NH Hamiltonians we are interested in here are
non-normal, for which the eigendecomposition may become inadequate, pseudospectra have
also been considered alongside the SVD [5,26,27].

The second ingredient concerns the specification of the Hamiltonians entering the cor-
respondence. Indeed, the NH Hamiltonians that reveal the BBC are those encoded in the
mean-field evolution of driven-dissipative cavity arrays [24,28,29]. We start from the descrip-
tion of the underlying open quantum system (in order to model explicitly both engineered and
non-engineered dissipative processes) and study the dynamics of the classical amplitudes. In
particular, non-reciprocal photon hopping is implemented by means of a reservoir engineer-
ing approach [30, 31]. Moreover, in our approach, NH topology is revealed by the system’s
response to an external probe, which naturally introduces a frequency reference. This directly
impacts the topological properties of the system. In fact, we find that the complex spectra are
not invariant under complex-energy shifts: the origin, which separates decaying from ampli-
fying dynamics and detuned from resonant probes, provides a fixed reference (base point) for
the evaluation of the topological invariant.

Although our formulation of the BBC has the same formal structure as that of Hermitian
topological insulators, the nature of NH topological phases is completely different. NH topol-
ogy manifests as |ν| channels of directional amplification, each characterized by a gain that
increases exponentially with system size. This behavior is unique to the edge states under

4

https://scipost.org
https://scipost.org/SciPostPhys.15.4.173


SciPost Phys. 15, 173 (2023)

OBC and we refer to it as NH topological amplification. This is not to be confused with lasing,
which has also been investigated in several topological systems [32–34], the key difference be-
ing that topological amplification relies on linear equations of motion. Remarkably, despite the
presence of amplification in non-trivial regimes, moving to OBC can render the system stable.
NH topological phases correspond to stable stationary regimes under OBC and NH topological
phase transitions are transitions between steady states [24,28]. Ref. [24] studied topological
amplification in photonic lattices with nearest-neighbor coupling and used the SVD to obtain a
mapping between the NH Hamiltonian and the eigensystem of a doubled Hermitian Hamilto-
nian. In this way, they established a connection between amplification in the system response
and the standard theory of topological insulators and predicted zero singular modes in topo-
logical non-trivial regimes. In Ref. [28] we unveiled a one-to-one correspondence between
non-trivial NH topology and directional amplification. Directional amplification in NH lattices
has also been studied in the context of non-Bloch band theory [35] and in the topologically
non-trivial regime a novel kind of metastability has been predicted [27].

Different from previous studies, here we consider one-dimensional lattices with arbitrary
long-range coupling, which is key to formulate the BBC for arbitrary integer values, clarify the
connection with point-gap topology, and disentangle the role of the non-Hermitian skin effect
(NHSE) both from amplification and nontrivial NH topology.

Our ideas are directly relevant for applications to driven-dissipative lattice systems where
aspects of NH physics (topology, nonreciprocal couplings, NHSE) have already been demon-
strated, e.g. in photonic systems [36–39], topolectric circuits [40–44], exciton polariton lat-
tices [45, 46], mechanical [47, 48] and robotic [49] metamaterials. Especially suitable for
implementing our ideas are nano-optomechanical lattices [50, 51] and superconducting cir-
cuit optomechanics [52], where non-reciprocal couplings, gain and loss can be engineered to
a high degree. We also expect our approach to be applicable to more general NH systems,
e.g. with symmetries, multiple bands or higher dimensions, and to provide an ideal starting
point for investigating NH topology in open quantum systems [53–56]. Finally, our framework
is directly relevant for sensing applications in NH lattices [57–59] and for designing novel di-
rectional amplifiers [60–63].

The rest of this work is structured as follows. In Sec. 2 we give an overview of the key steps
using the Hatano-Nelson model as a case study. In Sec. 3 we introduce the class of systems
studied in this work, which are driven-dissipative cavity arrays coupled to engineered and non-
engineered reservoirs. In Sec. 4 we show how the desired unconditional NH Hamiltonian can
be derived from the master equation of the driven-dissipative system. In Sec. 5 we address the
implications of our NH Hamiltonian for the classification of NH topological phases. In Sec. 6 we
investigate the properties underpinning the opening of a point gap in the complex spectrum,
establishing a connection with non-normality and non-reciprocity under OBC. In Sec. 7 we
introduce the SVD and show how it leads to a notion of gap closure and reopening, signaling a
topological phase transition for point-gapped spectra. In Sec. 8 we show, for the concrete case
of the Hatano-Nelson model, how the SVD correctly counts the number of boundary modes
under OBC. In Sec. 9 we prove the BBC for NH systems in a general way, by establishing a
mapping to a generalized Hermitian SSH model. In Sec. 10 we show how bulk non-trivial
topology manifests itself as NH topological amplification under OBC. In Sec. 11 we discuss
the robustness against disorder of NH topological phases. In Sec. 12 we show how, within
our framework, the NHSE is not tied to a topological origin. Finally, Sec. 13 contains our
conclusions and some perspectives for future investigations.
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2 Overview of the non-hermitian bulk-boundary correspondence:
The Hatano-Nelson model

We start by providing an overview of the key steps leading to the BBC, illustrated in Fig. 1
in terms of the simplest non-trivial model, namely an implementation of the Hatano-Nelson
model in an array of coupled cavities [24,28]. As shown in Sec. 3, we engineer the system in
such a way that the mean field amplitudes (here in quasi-momentum space) evolve according
to the NH Bloch Hamiltonian

H(k) = µ0 +µ−1e−ik +µ1eik . (1)

The expressions of the complex coefficients µ0, µ±1 depend on the details of both the Hamil-
tonian and the reservoirs, see Eqs. (15) and (16). The presence of the constant term µ0
is the main difference with the standard Hatano-Nelson model of non-reciprocal hopping
HHN = H(k)−µ0, commonly employed in the literature [5]. The model in Eq. (1) displays the
following relevant features:
1. Three distinct regimes: Unlike HHN, it has three distinct regimes, highlighted in the three
rows of Fig. 1. For |µ−1| = |µ1| (top row), the hopping is reciprocal and there is no point gap
in the spectrum. For |µ−1| ≠ |µ1|, the hopping becomes non-reciprocal, which determines the
opening of a point gap, i.e., H(k) describes a curve in the complex plane with an interior as k is
scanned across the BZ. A point-gapped spectrum can be further characterized as topologically
trivial (ν = 0, middle row) or non-trivial (ν = ±1, bottom row), depending on the value of
the winding number ν, see Eq. (19); we see that the latter condition is achieved when H(k)
encircles the origin [24,27,28].
2. Inequivalence between point gap and non-trivial topology: The key difference with re-
spect to HHN is that, for a point-gapped spectrum, Eq. (1) allows for both topologically trivial
and non-trivial states. In our framework, the set of topological Hamiltonians is a strict subset
of those with a point gap, as shown in the Venn diagram. This is due to the fact that µ0 removes
the invariance of H(k) under complex shifts. This fixes the value of the topological invariant,
which is computed with respect to the origin, rather than to an arbitrary base point.
3. From complex spectrum to singular value spectrum: With the origin providing a com-
mon reference, the distance of the complex spectrum to the origin |H(k)| ≡ σ(k) defines a
legitimate bandstructure, in terms of the singular values σ(k), which we call singular value
spectrum, see Eq. (27). For a point-gapped spectrum, a transition from/to a NH topologi-
cal phase (ν = ±1) is accompanied by the closure and reopening of a real-valued gap in
σ(k) [25], which we call non-Hermitian gap, see Eq. (28). Under OBC, a non-trivial phase
(here ν = −1) is signaled by the appearance of a single zero singular value (exponentially
small in system size) in the BZ, while the rest of the spectrum does not deviate from σ(k)
and remains gapped [24, 25]. Therefore, the number of zero singular values coincides with
the absolute value of the winding number and this is the signature of the restored BBC on the
level of the singular value spectrum.
4. The non-Hermitian skin effect is not topological: By inspecting the singular vectors (we
plot the left ones) under OBC, we see that almost all of them remain delocalized across all
three regimes, and thus the bulk is left intact. Only in the non-trivial regime (here ν = −1),
we find a single zero singular mode, corresponding to the zero singular value, which is expo-
nentially localized at the left boundary of the finite-size system, see Eqs. (31) and (32). This
is the signature of the restored BBC at the level of the singular vectors. In contrast, the left
eigenvectors display NHSE, both for trivial and non-trivial configurations alike.
5. NH topology corresponds to directional amplification: Each regime reveals dis-
tinct transport properties, shown in the rightmost column in terms of the OBC system’s re-
sponse to a input coherent probe, and quantified by the on-resonance susceptibility matrix
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|χ(0)| = |H−1|. From the matrix plots, we see that the regime |µ−1| = |µ1| leads to recip-
rocal transport, |µ−1| ̸= |µ1|, ν = 0 to directional (non-reciprocal) transport with near-unit
gain, while |µ−1| ̸= |µ1|, ν ̸= 0 leads to directional transport with exponential gain (in system
size) [24,28]. Physically, ν ̸= 0 is achieved by introducing gain via the term µ0. The absence
of positive imaginary parts of the spectrum under OBC allows to characterize NH topology as
steady-state directional amplification [24,28].

3 Model

The system we consider is a one-dimensional array of N cavity modes âm, in which the coupling
among different sites is mediated by both Hamiltonian processes and dissipative processes.
The evolution of the system is formally described by the Lindblad master equation (ħh= 1)

˙̂ϱ = −i
�

Ĥ, ϱ̂
�

+
∑

m,n

Lmn

�

âmϱ̂â†
n −

1
2{â

†
nâm, ϱ̂}
�

+
∑

m,n

Gmn

�

â†
mϱ̂ân −

1
2{ânâ†

m, ϱ̂}
�

, (2)

where Ĥ is the Hamiltonian of the system and the second (third) term on the right-hand
side describes loss (gain) processes due to coupling to reservoirs, with coupling matrix L (G);
the correlated emission (absorption) of photons from different cavities, with [âm, â†

n] = δmn,
mediates a dissipative coupling among them. We will be interested in the evolution of the
mean cavity amplitudes 〈âm〉 ≡ αm, which is given by

α̇m = i

�

Ĥ, âm

��

−
∑

n

�

L∗mn − Gmn

2

�

αn , (3)

where the expectation value is taken over the state of the system ϱ̂.
The Hamiltonian of the system Ĥ = Ĥ0 + ĤJ + Ĥd consists of the following terms

Ĥ0 =
N
∑

m=1

ωcâ†
mâm , (4)

ĤJ =
L
∑

ℓ=1

N−ℓ
∑

m=1

�

Jℓâ
†
mâm+ℓ +H.c.
�

, (5)

Ĥd = −i
N
∑

m=1

�

Ωm(t)â
†
m −H.c.
�

. (6)

The first term describes free oscillations of each cavity with frequencyωc, which we assume to
be the same for all the cavities. The second describes photon hopping between cavities with
range up to L sites and real amplitudes {Jℓ}Lℓ=1. The third describes probing of the cavities by
a weak drive, each cavity being coupled to an input-output waveguide at a rate γ and probed
via the input field 〈âin,m(t)〉, and hence displaced by Ωm(t) =

p
γ〈âin,m(t)〉 [64]. The coupling

matrices characterizing the dissipative part are given by

Lmn =

�

γ+ 2
L
∑

ℓ=1

Γℓ

�

δmn +
L
∑

ℓ=1

Γℓ
�

eiθℓδm,n−ℓ + e−iθℓδm−ℓ,n
�

, (7)

Gmn = κδmn . (8)

In Eq. (7) we can distinguish between two contributions: the non-engineered photon decay
to input-output waveguide at each site, occurring at a rate γ, and the decay to engineered
reservoirs with rates {Γℓ}Lℓ=1 and range up to L sites. The latter terms correspond to non-local
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dissipators with jump operators {âm + e−iθℓ âm+ℓ}Lℓ=1 and relative phases {θℓ}Lℓ=1; they realize
a dissipative analogue of ĤJ and their range is intended to match the hopping term in Eq. (5).
The L distinct engineered reservoirs can be implemented as indirect hopping via an auxiliary,
fast decaying, mode or coupling to a transmission line [30]. The gain processes (8), on the
other hand, are simply local incoherent pumps with rate κ, which is assumed to be the same for
all cavities; these pumps can be implemented in various ways, e.g. via parametrically coupled
auxiliary modes which are then adiabatically eliminated [28].

Since any two cavities which are less than L sites apart are coupled via both photon tunnel-
ing and dissipative coupling, interference can build up between these two ‘paths’, as witnessed
by the relative phases {θℓ}Lℓ=1. These phases are gauge invariant and act like an effective
magnetic flux for the photons. They can been implemented in various platforms, e.g. in time-
modulated optomechanical systems [65, 66]. In the present model we set all amplitudes Jℓ
to be real. One could consider a more general model comprising complex Jℓ ∈ C as gauge
invariant phases could develop between terms with ℓ ̸= ℓ′, without invoking a paired dissipa-
tive coupling. We treat this extension in Appendix B, where we show that this case allows for
non-reciprocity without opening a point gap in the corresponding spectrum under PBC.

4 Non-Hermitian Hamiltonian

Starting from the open quantum system illustrated above, we can obtain a NH Hamiltonian
ruling the dynamics of the cavity amplitudes. Using the explicit expressions of Hamiltonian,
loss and gain terms, described in Eqs. (4) to (8), the evolution of the mean cavity ampli-
tudes Eq. (3) takes the form

α̇m = −i
∑

n

Hmnαn −
p
γαin,m , (9)

where we introduced the non-Hermitian Hamiltonian H =
∑

mn Hmn|m〉〈n| (here we use the
Dirac notation {|m〉} for the site basis), whose real and imaginary part are given by

ReHmn =ωcδmn +
L
∑

ℓ=1

��

Jℓ −
Γℓ
2

sinθℓ

�

δm,n−ℓ +
�

Jℓ +
Γℓ
2

sinθℓ

�

δm−ℓ,n

�

, (10)

ImHmn = −γeffδmn −
L
∑

ℓ=1

Γℓ
2

cosθℓ
�

δm,n−ℓ +δm−ℓ,n
�

. (11)

In Eq. (11) we introduced the total on-site rate of dissipation

γeff =
1
2

�

γ− κ+ 2
L
∑

ℓ=1

Γℓ

�

, (12)

which will play an important role in our analysis. If we further move to Fourier space

αm(ω) =

∫ +∞

−∞
dt exp(−iωt)αm(t), Eq. (9) takes the simple expression α(ω) = −pγχ(ω)αin(ω),

where we grouped the cavity amplitudes and the input fields in the vectors α= (α1, . . . ,αN )T

and αin = (αin,1, . . . ,αin,N )T , respectively. The susceptibility matrix (or Green’s function) χ(ω)
describes the spectral response of the system to a given frequency component of the input field,
and is given by

χ(ω) = −i(ω1−H)−1 . (13)

8

https://scipost.org
https://scipost.org/SciPostPhys.15.4.173


SciPost Phys. 15, 173 (2023)

In this way, the properties of NH Hamiltonians can be directly probed in scattering-type exper-
iments. This is made even more explicit by relating the input field to the output field via the
input-output relation âout,m(ω) = âin,m(ω) +

p
γαm(ω) [67], to get αout(ω) = S(ω)αin(ω),

where we introduced the matrix S(ω) = 1+ γχ(ω), which is called the scattering matrix of
the system [64]. When we probe the system, we drive one site and measure the outgoing
amplitude at any of the N output ports. This is the information contained in the scattering
matrix, see rightmost column of Fig. 1.

A key feature that can be accessed via χ(ω) is non-reciprocity, which occurs whenever
|χ(ω)| ̸= |χ(ω)|T (or equivalently |S(ω)| ≠ |S(ω)|T) [68, 69]; here the modulus of the ma-
trix is understood as the absolute value of each element. Non-reciprocity entails that the
system’s response is not invariant upon exchanging the input and the output. In our model,
non-reciprocity originates from interference between coherent and dissipative couplings [30].
This is maximal for θℓ =

π
2 (θℓ =

3π
2 ), giving a total rightward hopping amplitude Jℓ +

1
2Γℓ

(Jℓ−
1
2Γℓ) and vice versa for the leftward hopping amplitude Jℓ−

1
2Γℓ (Jℓ+

1
2Γℓ). Upon further

tuning the coupling to the value Jℓ = ±
1
2Γℓ one can achieve complete suppression of photons

travelling in one direction, i.e., unidirectional photon transport [70,71]. Remarkably, this con-
dition corresponds to an exceptional point (EP) of H of order N [28]; higher-order EPs have
recently been at the center of great interest [72,73]. The opposite case of complete destructive
interference corresponds to θℓ = nπ, for which we have fully reciprocal transport.

4.1 Open boundary conditions vs. periodic boundary conditions

In Hermitian lattice models the change from OBC to PBC is not abrupt. This reflects the
intuition that, for a large enough system, what happens at the boundaries does not affect
the bulk properties [3]. In contrast, a change of boundary conditions in a one-dimensional
NH lattice with asymmetric hopping is accompanied by the NHSE [13]. In view of this high
sensitivity, we need to put special care in the distinction between OBC and PBC. We make this
distinction clear below, where we also introduce a convenient re-parametrization of our model
in terms of the rescaled hopping constant Λℓ = 2Jℓ/γeff and dissipative coupling Cℓ = Γℓ/γeff.

The finite-size system of N cavities describes the state of the array under OBC. The NH
Hamiltonian in the site basis, given in Eqs. (10) and (11), can be compactly expressed as a
Toeplitz matrix

Hmn =
L
∑

ℓ=−L

µℓδm,n−ℓ , (14)

with coefficients given by

µ0 = −δ− iγeff , (15)

µℓ =
γeff

2

�

Λ|ℓ| − iC|ℓ|e−i sgn(ℓ)θ|ℓ|
�

. (16)

For future convenience, we moved to a rotating frame with respect to the frequency ωd of
the drives (chosen to be monochromatic and with the same frequency) and introduced the
detuning δ =ωd −ωc.

To model the periodic system, we assume PBC, which corresponds to setting âN+ℓ = âℓ
for ℓ = 1, . . . , L. Since H describes a translational invariant system, we introduce the
plane-wave basis |k〉 = 1p

N

∑N
m=1 eimk|m〉, where the quasi-momentum k takes the values

k = 0, 2π
N , 22π

N , ..., 2π − 2π
N . In this way we obtain a diagonal matrix Hkk′ = H(k)δkk′ , with

eigenvalues

H(k) =
L
∑

ℓ=−L

µℓe
ikℓ . (17)
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The spectrum H(k) describes a single complex-valued energy band [4]. For the case of
nearest-neighbor coupling, L = 1, we recover the implementation of the Hatano-Nelson model
of Eq. (1). In this work, unless stated otherwise, we use H and H(k) to refer to the NH Hamil-
tonian under OBC and PBC, respectively.

5 The quest for trivial topology

The most peculiar feature of the complex spectrum (17) is that H(k) can wind up to L times
(both clockwise and counter-clockwise) around the origin. Due to this feature, it is possible
to assign a topology directly to the spectrum [5]. To see how this happens, let us first recall
the definition of point gap. To avoid confusion, we denote with eH(k) a generic single-band
NH Bloch Hamiltonian, not necessarily obtained via the prescription of Sec. 4. eH(k) is said to
have a point gap if it describes a curve in the complex plane with an interior. In that case, one
can choose a reference point in the interior, called base point, which is gapped from the band,
i.e., which does not belong to spectrum [8]. The topology is then assigned to a point-gapped
eH(k) via the winding number

νEb
=

1
2πi

∫ 2π

0

dk

�

eH ′(k)
eH(k)− Eb

�

, (18)

which is defined with respect to the base point Eb ∈ C. According to this characterization,
any point-gapped Hamiltonian is topologically non-trivial [5]. This is because the base point
can be chosen arbitrarily, so that it is always possible to take Eb in the interior of the curve.
Equivalently, one can describe the situation as the base point being kept fixed and the NH
Hamiltonian defined only up to constant complex-energy shifts.

In our framework the situation is strikingly different. In fact, due to the presence of the
constant term µ0, we find that the NH spectrum H(k) is no longer invariant under complex-
energy shifts. In particular, a shift along the real axis [see Eq. (10)] corresponds to the off-
resonant probing of the system, as set by the detuning δ (settingω= 0 in Eq. (13) corresponds
to probing on resonance), while a purely imaginary shift [see Eq. (11)] is determined by the
total on-site dissipation rate (12) entering the evolution Eq. (9).

In this way, any arbitrariness in the evaluation of the topological invariant is removed.
The constant term µ0 allows to assign a unique value of the winding number to H(k), which
is always evaluated with respect to the origin. Equivalently, one could remove µ0 from the
complex spectrum (17) and absorb it in the choice of the base point Eb = −µ0 ∈ C, which is
then uniquely determined. In the following, we will consider the base point to be the origin
and the complex band to retain µ0. This leads us to the following expression for the NH
topological invariant [24,27,28]

ν0 =
1

2πi

∫ 2π

0

dk
�

H ′(k)
H(k)

�

≡ ν , (19)

with the NH Hamiltonian given by Eq. (17) and the coefficients by Eqs. (15) and (16).
A major consequence of our framework is that the properties of H(k) featuring a point

gap and H(k) having a non-zero value of the topological invariant are not equivalent; the
first is only necessary for non-trivial topology, since clearly there can be point-gapped spectra
which do not encircle the origin, see Fig. 1. This has a fundamental implication, which will
be explored in Sec. 7: while, according to the topological characterization of effective NH
Hamiltonians, non-trivial topology is inescapable for point-gapped spectra, in our framework
there is room for point-gapped spectra with trivial topology. This represents a distinctive trait
of our framework.
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Finally, we comment on the different (but equivalent) characterization of the non-
invariance of H(k) under complex shifts given by the parametrization in Eqs. (15) and (16).
Consider for simplicity the resonant case δ = 0, i.e., a purely imaginary shift of H(k). In
Eqs. (15) and (16), the imaginary shift is effectively reabsorbed by rescaling both the on-site
term and the coupling terms by the overall local dissipation rate γeff. In units of γeff, the com-
plex band H(k) is then pinned to −i and the effect of the losses and gains (entering via the
rescaled couplings Λℓ and Cℓ) is to change the curvature of H(k), rather than shifting it along
the imaginary axis. This is the convention that we will use in all the plots of this work. An
example can be seen in Fig. 1, where we show the complex spectrum of our Hatano-Nelson
model Eq. (1). In all the plots, unless explicitly mentioned, we will also consider the reso-
nant case δ = 0. We discuss the dependence of the topology on detuning in more detail in
Appendix C.

6 The opening of a point gap: Non-reciprocity and non-normality

Given that featuring a point gap in the spectrum is a prerequisite for assigning the topology
via the winding number, it is natural to ask: what causes H(k) to have a point gap in the first
place? Indeed, not all NH spectra of the form (17) display a point gap. We will call degenerate
spectrum a complex spectrum with no point gap, i.e., a periodic—in general complex-valued—
function with no interior, and refer to the transition from a degenerate spectrum to a point-
gapped one as the opening of a point gap. Note that, according to this definition, a Hermitian
Bloch Hamiltonian is a particular case of a degenerate spectrum. Employing the same logic
that will be used in Sec. 9 to discuss the BBC, we now show how the opening of a point gap in
H(k) affects the corresponding system under OBC. In this way, we are able to link the opening
of a point gap with the two following properties: non-reciprocity and non-normality.

For the sake of concreteness, we start with the case L = 1. By setting µ±1 = |µ±1|eiφ±1 , we
can rewrite Eq. (1) as

H(k) = µ0 + eiφ+
�

|µ−1|e−i(k+φ−) + |µ1|ei(k+φ−)
�

, (20)

where we introduced the quantities φ± = φ1±φ−1
2 . From this expression it is clear that for

|µ1| ≠ |µ−1|, the point gap is open; and conversely, for |µ1|= |µ−1| ≡ µ, we get the degenerate
spectrum

H(k) = µ0 + 2µeiφ+ cos
�

k+φ−
�

, (21)

which describes a straight line tilted by φ+ and offset by µ0. Furthermore, if we look at the
explicit expression of the coefficients (16) (from now on for the case L = 1 we set C1 ≡ C,
Λ1 ≡ Λ, θ1 ≡ θ), we see that |µ±1|=

γeff
2 (Λ

2 + C2 ∓ΛC sinθ )1/2, from which it follows that
|µ1| = |µ−1| is satisfied when either C = 0 or Λ = 0, i.e., one of the two coupling vanishes
and no interference can build up, or θ = nπ, with n integer. For a point gap to open, we
then need both C and Λ to be non-zero and the flux to be θ ̸= nπ. But this is precisely the
condition for non-reciprocal transport that we discussed in Sec. 4. We can arrive at the same
conclusion by inspecting directly the definition of non-reciprocity based on the susceptibility
matrix, Eq. (13). Indeed, it is clear that |χ(ω)| ≠ |χ(ω)|T as long as H under OBC is such
that |µ1| ̸= |µ−1|. Therefore, non-reciprocity is the physical mechanism responsible for the
opening of a point gap: point-gapped spectra arise from enforcing PBC on non-equilibrium
non-reciprocal systems.

The second characterization comes from the distinction between normal and non-normal
NH Hamiltonians [74]. Normality refers to the property [H, H†] = 0, and is equivalent to H
being diagonalizable by a unitary matrix, since for normal matrices the spectral theorem holds.
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Enforcing normality on the NH matrix, Eq. (14), under OBC, leads directly to the condition
|µ1|= |µ−1|, thus implying the degeneracy of the corresponding PBC spectrum Eq. (21). From
a mathematical point of view, point-gapped spectra arise from enforcing PBC on non-normal
Hamiltonians. Non-normal Hamiltonians form the subset of NH Hamiltonians for which eigen-
decomposition may become problematic, e.g. by displaying the NHSE; we will see that a faith-
ful description of non-normal Hamiltonians requires switching to the SVD instead. For L = 1,
we therefore established the equivalence between the following three concepts: the opening of
a point gap in the complex spectrum under PBC, non-normality of the NH Hamiltonian H un-
der OBC, and the presence of non-reciprocity, witnessed by an asymmetry in the susceptibility
matrix Eq. (13) (or equivalently in the scattering matrix).

Moving to L ≥ 2 the scenario becomes considerably richer, as the equivalence between
these three concepts is broken. For instance, for Toeplitz matrices (14), the normality condition
takes the form µ∗

ℓ
µℓ′−µ−ℓµ∗−ℓ′ = 0, with 0≤ ℓ, ℓ′ ≤ L. By setting µℓ = |µℓ|eiφℓ , we obtain two

separate conditions

|µℓ||µℓ′ |= |µ−ℓ||µ−ℓ′ | , (22)

φℓ +φ−ℓ = φℓ′ +φ−ℓ′ mod 2π . (23)

The first one contains as a special case |H| = |H|T, while the second condition states that the
total phase of any pairs of matrix bands (−ℓ,ℓ) should be the same. In Fig. 2 we show the
opening of a point gap for a model with nearest and next-nearest-neighbor couplings, L = 2.
By changing the values of the gauge invariant phases θ1,2 from zero to π/2, the spectrum
changes from degenerate (a) to non-degenerate (b), i.e., the point gap opens.

Although for L ≥ 2 the three characterizations are no longer equivalent, it is still possible to
show that a point-gapped spectrum under PBC implies both non-reciprocity and non-normality
of the corresponding OBC Hamiltonian. We prove both implications in Appendix A. While the
connection between asymmetric hopping and point-gapped spectra has been known for certain
models [4], and in fact has been used to provide an explanation of the NHSE [17], a complete
understanding of the relationship between point-gapped Hamiltonians and the notion of non-
reciprocity has been lacking.

The fact that non-normality and non-reciprocity of H are only necessary for opening a point
gap in H(k) implies that: (i) there exist non-reciprocal Hamiltonians under OBC which have a
degenerate PBC spectrum. In fact, unlike L = 1, for longer range-couplings non-reciprocity can
be achieved without opening a point gap. For instance, for complexΛℓ, a gauge invariant phase
can be present even in the absence of dissipative couplings, i.e., for all Cℓ = 0, which leads to
non-reciprocity without a point gap, see Appendix B. (ii) There exist NH Hamiltonians which
are non-normal and yet have a degenerate PBC spectrum. These Hamiltonians feature a kind
of non-normality which is not strong enough to lift the degeneracy of H(k), see Appendix B.

7 The singular value decomposition and the non-Hermitian gap

After discussing the opening of a point gap, we now want to identify a suitable notion of gap
closure for point-gapped spectra. We do this by introducing a new quantity, which we call
the non-Hermitian gap. We first illustrate the intuitive idea behind it in the top row of Fig. 2,
where we show a NH spectrum with L = 2, for different values of the dissipative coupling C2.
Starting from a point-gapped spectrum (b) and increasing C2, H(k) crosses the origin twice,
as shown in panels (c) and (d); both crossing events coincide with a change of the winding
number, which goes from the initial value ν = 0 to the final value ν = 2. These plots make it
clear that the relevant feature that we want to associate with the closure of a gap is captured
by the shortest distance from the origin to the spectrum, which vanishes when the complex
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Figure 2: PBC complex spectrum, singular values and phase. Plots of the com-
plex spectrum H(k) (a)-(d) and its decomposition, Eq. (27), in terms of singular
values spectrum σ(k) (e)-(h), and phase φ(k) (i)-(l), for a model with nearest- and
next-nearest-neighbor couplings, L = 2. The first column [panels (a), (e) (i)] is
for θ1 = θ2 = 0, C2 = 1, and illustrates a degenerate spectrum; reciprocity is sig-
naled by symmetric σ(k) and φ(k). The other panels illustrate point-gapped (i.e.,
non-degenerate) spectra for θ1 = θ2 =

π
2 and increasing values of C2: C2 = 0.5

[panels (b), (f), (j)], C2 = 0.9 [panels (c), (g), (k)], C2 = 1.8 [panels (d), (h), (l)].
The change of the winding is associated to a topological phase transition, to which
corresponds the closing and re-opening of the NH gap, Eq. (28), as indicated by the
direction of the arrows in (f)-(h). For all point-gapped spectra, non-reciprocity is
witnessed by the asymmetry of σ(k) and φ(k), while a non-trivial winding num-
ber, Eq. (19), is accounted for by the number of windings of the phase φ(k) [panels
(k), (l)]. In all panels we set C1 = Λ1 = 0.3 and Λ2 = 2.

spectrum touches the origin. Notice that this happens while the point gap stays open, i.e., the
spectrum in panels (b), (c) and (d) always encloses a finite area.1

The presence of a gain source is instrumental for observing this behavior. In fact, we have
seen that opening a point gap necessarily comes with an extra on-site dissipation

∑L
ℓ=1 Γℓ

[see Eq. (12)], coming from the engineered reservoirs. Probing the system further contributes
to the on-site loss by an additive factor γ/2. The reason for introducing a source of gain (8),
is precisely to counteract these losses. In terms of the rescaled units employed in Fig. 2, in-
creasing the rate κ of gain processes (while keeping the value of all other parameters fixed)
corresponds to increasing C2. The effect of the gain is then to ‘inflate’ the spectrum, allowing
for it to cross the origin. Without gain, the spectrum would be restricted to the lower half of
the complex plane, thus preventing any winding around the origin.

We now proceed to formalize the idea illustrated above. To do that, we will use the singular
value decomposition (SVD), first introduced in this context in Ref. [24,25]. For a generic NH

1Note that our convention differs from that of other works, e.g. Ref. [8], which associate a complex spectrum
touching the base point to the point gap closing. In our framework, due to the non-invariance under complex
shifts, the distance from the origin naturally defines a gap-closing transition without the need for the spectrum to
become degenerate.
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Figure 3: NH bulk-boundary correspondence and singular values. Singular value
spectrum under PBC (a) and OBC (b) as a function of cooperativity C2, for a model
with nearest- and next-nearest-neighbor couplings, L = 2 (same as in Fig. 2). In
(a) the non-Hermitian gap, Eq. (28), is shown in red, while in (b) the vanishing
singular values in the topological phases are highlighted in red and orange. (c)-
(e) PBC and OBC singular value spectra as a function of quasi-momentum in each of
the three regimes ν= 0, 1,2. A non-trivial winding number ν, Eq. (19), leads to the
appearance of |ν| zero singular values under OBC. Here, C1 = Λ1 = 0.3, θ1 = θ2 =

π
2 ,

Λ2 = 2, N = 200.

Hamiltonian H, we define the SVD as follows [75]

H = UΣV † =
∑

j

σ j|u j〉〈v j| , (24)

which decomposes H into the product of a diagonal matrixΣ≡ diag(σ1, . . . ,σN )with singular
values σ j ≥ 0 and unitary matrices U ≡ (|u1〉, . . . , |uN 〉), containing the left singular vectors
|u j〉, and V ≡ (|v1〉, . . . , |vN 〉), containing the right singular vectors |v j〉 of H. We refer to the
set of all singular values as the singular value spectrum. The left (right) singular vectors are
eigenvectors of the Hermitian product HH† (H†H) with real and positive eigenvalues σ2

j , i.e.,
they satisfy the following equations

HH†|u j〉= σ2
j |u j〉 , H†H|v j〉= σ2

j |v j〉 . (25)

From the definition of the SVD, Eq. (24), it also follows that right and left singular vectors are
related to each other in the following way

H|v j〉= σ j|u j〉 , H†|u j〉= σ j|v j〉 . (26)

Under PBC, we can express H(k) as product of the distance |H(k)| times the phase
φ(k)≡ Arg H(k), namely,

H(k) = |H(k)|eiφ(k) . (27)

Since we have HPBC =
∑

k H(k)|k〉〈k|, we readily obtain σ(k)≡ |H(k)|, i.e., the singular value
spectrum under PBC coincides with the distance of the complex spectrum from the origin.
Notice that the identification of these two quantities here is made possible thanks to the fact
that the origin provides a fixed reference. For any point-gapped spectrum H(k), we can then
define the non-Hermitian gap as

∆= min
k∈BZ

σ(k) , (28)
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which indeed expresses the minimal distance from the complex energy band to the origin.
In the central row of Fig. 2, we show the singular value spectrum and the associated NH

gap. We see that σ(k) and∆ closely resemble a single Bloch band and a standard energy gap,
respectively. Indeed, when H is Hermitian, σ(k) = |E(k)|, with sgn E(k) contained in the sin-
gular vectors, and∆=mink∈BZ|E(k)|, so the two decompositions coincide. From Fig. 2 (f), (g)
and (h) we see that the singular value spectrum σ(k) is always gapped, except when the topo-
logical winding number (19) changes, in which case the NH gap vanishes. This confirms that
∆ properly captures the notion of gap closure and reopening for point-gapped spectra [25],
which we take as an evidence of a NH topological phase transition. If we look at the bottom row
of Fig. 2, we see that the number of windings is accounted for by the phase φ(k). We stress
that, while σ(k) can be evaluated for degenerate and point-gapped spectra alike, when defin-
ing the NH gap, we restrict ourselves to non-degenerate spectra, i.e., a degenerate spectrum
touching the origin should not be associated with the NH gap closing.

Given the insight provided by the singular value spectrum for the case of PBC, we now look
at the case of OBC. In Fig. 3, we compare the singular value spectrum under PBC (a) to that
under OBC (b), obtained via numerical diagonalization of a finite chain of size N = 200. We
see that the singular values σ(k), plotted as a function of C2, are arranged in a band, where
the envelope formed by the smallest singular values determines the NH gap Eq. (28); the NH
gap is highlighted in panel (a). Fig. 3 illustrates in a nutshell how, thanks to the SVD, the BBC
for NH systems is restored. Indeed, unlike the eigenvalues, the singular values do not suffer
any abrupt changes when moving from PBC to OBC: the only difference between the two cases
is the emergence of zero singular values (ZSVs) [24,25]—two in the case shown here—under
OBC, while the bulk is preserved, see panels (c)-(e). These zero values appear after the closure
and reopening of the NH gap, when the system enters a non-trivial phase. The topological
invariant constructed from the bulk states correctly counts the number |ν| of boundary states.
To obtain the OBC spectrum in (c)-(e), we write the NH Hamiltonian Eqs. (10) and (11) as
the PBC Hamiltonian minus the matrix boundary terms, and express it in the plane-wave basis
|k〉 where the PBC Hamiltonian is diagonal. We then diagonalize the Hamiltonian 〈k|HOBC |k′〉
and label the eigenstates with k. The same approach is used for computing the singular value
spectrum in Fig. 1 (third column from the left).

7.1 The singular value decomposition and non-reciprocity

We close this section by showing that, beyond witnessing topological transitions, the decom-
position (27) encodes extra useful information, as σ(k) and φ(k) allow to diagnose non-
reciprocity in full generality. Under PBC, a system is reciprocal if and only if there exists a
k0 such that H(k0 + k) = H(k0 − k), i.e., up to a constant shift, the PBC spectrum is an even
function of k. When this condition is fulfilled, the corresponding OBC system is also recipro-
cal, see Appendix A. Thanks to Eq. (27), this symmetry extends to the singular values σ(k)
and the phase φ(k). In Figs. 2 (a), (e), (i) we show the case of a degenerate spectrum that
satisfies both σ(π+ k) = σ(π− k) and φ(π+ k) = φ(π− k), and hence is characterized by
reciprocal photon transport, also under OBC. In contrast, in Figs. 2 (b), (f), (j) we see that
this symmetry is broken for point-gapped spectra. In particular, we note that for topologically
non-trivial bands, the phase φ(k) is always asymmetric due to the winding, see Figs. 2 (k),
(l), i.e., non-reciprocity underpins all NH topological phases. In light of the inequivalence be-
tween non-reciprocity and point-gapped spectra for L ≥ 1, see Sec. 6, a degenerate complex
spectrum can lead to either reciprocal or non-reciprocal transport under OBC, as shown in Ap-
pendix A. In this case, by resolving σ(k) and φ(k) we are still able to detect non-reciprocity,
while the same information would not be accessible by inspecting the complex spectrum alone
as, for instance, Fig. 2 (a) does not reveal the full dependence of H(k) on k.
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Figure 4: Bulk-boundary correspondence and the singular vectors for the
Hatano-Nelson model. (a) Topological phase diagram of the Hatano-Nelson model,
showing the regions characterized by different values of the topological invariant;
the shaded area indicates instability under OBC (cf. Sec. 10) and the path taken in
(b) is indicated by the red line. (b) OBC singular values for θ = π

2 and at the excep-
tional point, i.e., C = Λ. (c), (e) left and (d), (f) right singular vectors corresponding
to the four smallest singular values are shown. The non-trivial phase features a single
localized left/right singular vector, corresponding to an exponentially small singular
value. We set θ = π

2 , N = 100, (c)-(d) C = Λ= 0.5, (e)-(f) C = Λ= 1.5.

8 Explicit calculation of the zero singular modes

Our results so far suggest that the description of topological phases of NH Hamiltonians (14),
once looked through the glass of the SVD, formally resembles that of Hermitian topological
insulators: bulk modes are always gapped and ZSVs appear in the NH gap under OBC for
non-trivial windings [24,25]. To further corroborate this picture, we study the behavior of the
singular vectors associated with the ZSVs, which we refer to as zero singular modes (ZSMs),
in analogy to the zero modes of Hermitian systems. Before addressing the general case in the
next section, it is instructive to illustrate their properties with a concrete example. Following
Ref. [24], we compute explicitly the left and right ZSMs for the case of the Hatano-Nelson
model.

We consider the NH Hamiltonian of the Hatano-Nelson model Eq. (1) and we further as-
sume to be at the EP, i.e., µ+1 = 0 (the case µ−1 = 0 follows analogously). As we discussed
in Sec. 4, the EP entails perfect uni-directionality, e.g. only rightward hopping in the case
µ+1 = 0. The choice of the EP here has the purpose of simplifying the calculations, but simi-
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lar conclusions hold also away from the EP. Under PBC, the model has only two regimes: for
|η| ≡ |µ−1/µ0|> 1 the system is topologically non-trivial with winding number ν= −1, while
for |η| < 1 the system is trivial, i.e., ν = 0 [28]. We are interested in the left and right ZSMs
|u0〉, |v0〉, associated with the ZSV σ0 = 0, that appear under OBC. By setting σ0 = 0 in (26),
the two equations decouple and we obtain two independent recurrence relations

µ−1v(m)0 +µ0v(m+1)
0 = 0 , µ∗0u(m)0 +µ∗−1u(m+1)

0 = 0 ,

in which v(m)0 ≡ 〈m|v0〉 (u(m)0 ≡ 〈m|u0〉) denotes the mth component of the right (left) ZSM,
together with the boundary conditions

v(1)0 = 0 , u(N)0 = 0 , (29)

which state that the right (left) ZSM should identically vanish at the left (right) boundary.
From these relations we find

v(m+1)
0

v(1)0

=

�

u(1)0

u(m+1)
0

�∗

=
�

−
µ−1

µ0

�m

≡ (−η)m. (30)

We see that, for |η| > 1, v(m)0 increases exponentially with m, while u(m)0 decreases and vice
versa for |η|< 1. It follows that the normalized right (left) singular vectors satisfying Eqs. (29)
are given by

|v0〉=N
N
∑

m=1

(−η)m−1|m〉 , (31)

|u0〉=N
N
∑

m=1

(−η∗)N−m|m〉 , (32)

with N ≡
�

1−|η|2
1−|η|2N

�1/2
. For finite N , these solutions do not satisfy the boundary conditions laid

out in Eqs. (29). This should not surprise us, as we are demanding that the smallest singular
value σ0 is exactly zero. The boundary conditions can still be satisfied in the thermodynamic
limit, N →∞, for whichσ0 exponentially approaches zero. In particular, v(1)0 = u(N)0 =N → 0
for N →∞ only when |η| > 1. Since the condition |η| > 1 is also the requirement for a non-
trivial winding number, the ZSM only exists in the case of non-trivial NH topology.

This calculation explicitly shows the restored BBC: when ν= −1, there is exactly one right
(left) ZSM exponentially localized at the right (left) boundary of the system. On the other
hand, for ν= 0, there are no localized states under OBC.

We display the behavior of the (absolute value of the) singular vectors in Fig. 4. Moving
through the topological phase diagram (a) of the Hatano-Nelson model at the EP (C = Λ), the
singular value spectrum under OBC changes, as shown in Fig. 4 (b). In the topologically trivial
phase (ν= 0), which corresponds to C < 1 [28], both the left (c) and right (d) singular vectors
are extended plane-wave modes. As the NH gap closes (C = 1) and we enter the non-trivial
phase for C > 1, an exponentially small singular value appears under OBC that corresponds
to a pair of exponentially localized right and left singular vectors, Eqs. (31) and (32), while
all other singular vectors remain plane waves, i.e., the bulk is left intact by the change in the
boundary term. Left (e) and right (f) singular vectors localize at opposite ends.

9 Mapping to the generalized SSH model

The example above illustrates the BBC for the Hatano-Nelson model by finding explicit solu-
tions for both PBC and OBC and putting the two in correspondence. We now show that the
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A

B

(a) (b) (c)

Figure 5: Mapping between a generalized SSH model and non-Hermitian model
for L = 1. A generalized SSH (GSSH) model (a) with sub-lattices A and B, intra-
cellular hopping amplitude µ0 and two inter-cellular hopping amplitudes µ1, µ−1
is equivalent to two copies of the Hatano-Nelson model (b), one with rightward
(leftward) hopping µ−1 (µ+1) and the other with rightward (leftward) hopping µ∗+1
(µ∗−1). The two copies are characterized by opposite chirality. (c) Each of the two
bands in the spectrum E (k) of the GSSH corresponds to the singular value spectrum
±σ(k) of the Hatano-Nelson models. The mapping also holds for L > 1.

same correspondence holds in general for single-band NH models without symmetry. We do
so by means of a mapping between the SVD of a NH lattice and the eigendecomposition of a
generalized Su-Schrieffer-Heeger (GSSH) model in a doubled space.

From Eq. (26) it is easy to see that the SVD (25) can be equivalently obtained from the
eigenvalues and eigenvectors of the doubled matrixH [5]

H ≡
�

0 H†

H 0

�

= |B〉〈A| ⊗H + |A〉〈B| ⊗H† , (33)

in which we introduced basis vectors labelled A and B. The same construction appeared in
Refs. [5, 24, 25, 76]. In particular, for the special case L = 1, Ref. [24] made use of the same
mapping to address the link between Hermitian topological insulator theory and amplification
in driven-dissipative arrays. To prove the BBC for arbitrary integer values below, it is essential
that we use the generalized Hatano-Nelson model with L > 1 and map it to the generalized
SSH model. H is Hermitian by construction and is endowed with a sub-lattice structure.
This readily reveals the connection with the Hermitian SSH model [77, 78]. In fact, H is
mathematically equivalent to the Hamiltonian of a GSSH model, i.e., a Hermitian bipartite
lattice with long-range hopping between different sub-lattices up to a range L [79,80]. Under
OBC, we can rewrite Eq. (33) explicitly as

H =
N
∑

j=1

µ0|B, j〉〈A, j|+
L
∑

ℓ=1

N−ℓ
∑

j=1

µℓ|B, j〉〈A, j + ℓ|+
L
∑

ℓ=1

N
∑

j=ℓ+1

µ−ℓ|B, j〉〈A, j − ℓ|+H.c. (34)

From the above expression we identify µ0 as the intra-cellular hopping amplitude between sub-
lattices A and B, and µℓ, µ−ℓ as the inter-cellular hopping amplitudes [78], as we show in Fig. 5
for the case L = 1. In particular, µℓ<0 couples sub-lattice A to sub-lattice B of the ℓth neighbor
to the right, while µℓ>0 couples sub-lattice B to sub-lattice A of the ℓth neighbor to the left.
The GSSH model differs from the standard SSH model by the presence of these two different
types of inter-cellular hopping amplitudes. Remarkably, the term µ0, which was originally
derived [see Eq. (15)] to keep track of the real (imaginary) shift of H(k) due to the probe
frequency (fluctuation-dissipation processes), now plays the role of intra-cellular hopping.
The nonequivalence between shifted complex spectra, which characterizes our framework, is
then essential to establish the mapping to the GSSH model.
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Under PBC, the GSSH Hamiltonian takes the form

H (k)≡
�

0 H∗(k)
H(k) 0

�

=

�

0
∑L
ℓ=−L µ

∗
ℓ
e−ikℓ

∑L
ℓ=−L µℓe

ikℓ 0

�

, (35)

from which we can make the following observations. First, the winding number of the GSSH
model coincides with the NH winding number of H(k), Eq. (19). Second, the eigenvalues
of H (k), which define the energy bands of the GSSH model, are given by E (k) = ±σ(k),
i.e., correspond to the singular value spectrum of H(k), Fig. 5 (c). From this it also follows
that (i) gap closing transitions of the GSSH model coincide with the closing of the NH gap,
(ii) ZSMs are zero-energy (mid-gap) modes of the GSSH model.

The eigenvectors ofH (k) are given by

|ψ−(k)〉=
1
p

2

�

−e−iφ(k)

1

�

, |ψ+(k)〉=
1
p

2

�

e−iφ(k)

1

�

, (36)

with the phase φ(k) ≡ ArgH(k) of Eq. (27) and + (−) stands for the positive (negative)
eigenvalue of H (k). The singular vectors of H(k) corresponding to the singular values σ(k)
can then be expressed as

|A, v(k)〉=
|ψ+(k)〉+ |ψ−(k)〉p

2
, (37)

|B, u(k)〉=
|ψ+(k)〉 − |ψ−(k)〉p

2
. (38)

The singular vectors also encode the topological invariant which we obtain as difference be-
tween the Zak phases of right and left singular vector [78,81]

ψ±Zak = −i

∫ 2π

0

dk (〈ψ+(k)|∂kψ+(k)〉 − 〈ψ−(k)|∂kψ−(k)〉)

= −i

∫ 2π

0

dk (〈v(k)|∂kv(k)〉 − 〈u(k)|∂ku(k)〉) = πν . (39)

This corresponds to taking the difference between Zak phases of different bands in the Hermi-
tian SSH model which is gauge invariant.

Moving to OBC, we obtain the singular vectors as eigenvectors of Eq. (34). The mapping
from a one-band non-Hermitian model to a Hermitian SSH model in a doubled space allows
us to import the Hermitian BBC for the GSSH model; for a rigorous proof see Ref. [79]. In
turn, thanks to the equivalence between the topological invariants of the two models and to
the SVD, this mapping restores the BBC for NH systems. The winding number ν as defined
on H(k) corresponds to |ν| localized eigenvectors of H under OBCs which, via the SVD, im-
plies |ν| localized singular vectors of H. The corresponding singular values are zero in the
thermodynamic limit N →∞ (exponentially small singular values logσ∝−N). Left (right)
singular vectors correspond to the eigenvector contributions on the B (A) sub-lattices of the
GSSH model so the left and right singular vectors localize at opposite ends. This proves the
statement of the NH BBC made in the introduction.

10 Non-Hermitian topological amplification

We are now ready to explore more in depth the physical consequences of the re-established
BBC. Due to the driven-dissipative nature of the systems involved, we expect the properties

19

https://scipost.org
https://scipost.org/SciPostPhys.15.4.173


SciPost Phys. 15, 173 (2023)

in

0
0.25

0.5

1 10 20 30
0

0.25

0.5

1 10 20 30
1

10

20

30
0

107

(a)
le

ft
 s

in
gu

la
r

ve
ct

or
s

ri
gh

t 
si
ng

ul
ar

ve
ct

or
s

(b)

(c)
site j

Figure 6: Zero singular modes and topological amplification. (a) A winding num-
ber of ν = −2 leads to a pair of two singular zero modes which (b) dominate the
susceptibility matrix (41). Note that the diagonal entries are of order 1, although
not discernible from the plot. (c) This corresponds to two channels of directional
amplification as can be seen from the steady-state amplitudes. Here, driving site one
yields the highest gain at site (N − 1) and driving site two yields the highest gain at
site N while the reverse gain is strongly suppressed. Here, N = 30, C1 = Λ1 = 0.05,
θ1 = θ2 =

π
2 , C2 = 1.9, Λ2 = 2.

of NH topological phases to be completely different with respect to those of standard (Her-
mitian) topological phases. In particular, we draw a connection to the physical interpretation
of the ZSMs [24, 28], which are the relevant edge modes entering the correspondence. Due
to the lack of a BBC for point-gapped spectra, the physical properties of NH topological edge
states under OBC have remained elusive, with investigations mostly focusing on semi-infinite
boundary conditions [5,16,17,56].

We have already established that behind any point-gapped spectrum lies non-reciprocity,
and that transitions to a non-trivial topological phase further require the presence of (suffi-
ciently large) gain. We therefore anticipate that the transport properties of the system will
be related to these two ingredients. Some works on bosonic implementations of NH lattices
have also revealed the presence of directional transport together with an amplification mech-
anism [24, 28, 57, 82–84]. In particular, Ref. [24] first employed the decomposition of the
susceptibility matrix in terms of the SDV to study topological amplification (for L = 1) at the
level of H , while in Ref. [28] we provided (for L = 1) a precise correspondence between
non-trivial NH topology and directional amplification, which motivates the present work.
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We now look at the system under OBC and relate the results of the BBC to the system’s
transport properties. We do so by expressing the susceptibility matrix under OBC, Eq. (13), in
terms of the SVD, Eq. (24). We expand the susceptibility matrix χ(ω), Eq. (13), for finite N
in terms of the singular values and vectors of (ω1− H) =

∑

j σ j|u j〉〈v j| [24] (for brevity, we
omit the argument ω from the singular values and vectors)

χ(ω)≡ −i(ω1−H)−1 = −i
∑

j

1
σ j
|v j〉〈u j| . (40)

From the BBC, we know that, when the topology is non-trivial (ν ̸= 0), there are |ν| exponen-
tially small singular values σ j , approximately separated from the bulk by the NH gap (28), to
which correspond |ν| ZSMs. In this case, the main contribution to χ(ω) comes from the ZSMs
and the bulk modes can be neglected, namely [24],

χ(ω)∼= −i
∑

j∈ZSMs

1
σ j
|v j〉〈u j| (ν ̸= 0) . (41)

This expression provides a direct insight into the physical meaning of nontrivial topology by
noting the following. First, since the σ j are exponentially small, the contribution 1/σ j leads
to an exponentially large multiplication factor, which characterizes the response of the system
to an input probe, see Sec. 3; the element |χ(ω)|2m,n > 1 can in fact be associated with a gain
factor [24,28]. Second, the left and right ZSMs |u j〉, |v j〉 are exponentially localized at oppo-
site ends, which leads to end-to-end non-reciprocal transport. The left singular vectors select
the input site and the right singular vectors the output site with the largest gain. We can see
this explicitly by inspecting the case of L = 1, where we have χ(ω)m,n∝ σ−1

0 v(m)0

�

u(n)0

�∗
with

the analytic expressions of the exponentially localized right and left ZSMs given in Eqs. (31)
and (32) [24]. Taken together, these two features imply that the off-diagonal corners dominate
the matrix (41). Physically, this corresponds to exponential amplification of a weak coherent
signal in one direction and exponential attenuation in the reverse direction. This unique scal-
ing of the gain accompanying directional amplification is the hallmark of NH topological phases
under OBC, which we refer to as non-Hermitian topological amplification [24, 28]. In a topo-
logically non-trivial phase, thanks to Eq. (41), the response to a probe field is proportional to
the right ZSM α(ω) = −pγχ(ω)αin(ω)∝ v0, which provides a clear physical interpretation
of the ZSM.

For higher winding numbers, |ν| > 1, we obtain multiple linearly independent ZSMs, and
hence |ν| channels for directional amplification, as we show in Fig. 6 for L = 2, with the sign
of ν selecting the direction of the amplification. NH topological amplification entails that the
ZSMs are directly measurable in a simple transmission experiment and the topological wind-
ing number Eq. (19) can be extracted by counting the number and direction of amplified edge
modes, without having to measure the momentum-resolved complex energy band [85]. Fur-
thermore, amplification is only possible thanks to the bosonic nature of our implementation,
as for fermionic systems the pile-up of excitations at the boundary would be forbidden by the
exclusion principle.

The susceptibility matrix is only meaningful if the system converges to a well-defined
steady state, i.e., if the system is dynamically stable, in which case the steady-state cavity am-
plitudes can be expressed in terms of the susceptibility matrix αss = i

p
γH−1αin =

p
γχ(0)αin.

Dynamical stability is governed by the imaginary parts of the eigenvalues λm, with Imλm < 0
for all m indicating decay to a steady state [24,28]. For point-gapped Hamiltonians, the OBC
spectrum differs drastically from the PBC spectrum—another feature typically associated with
the NHSE (see Fig. 1). Therefore, the eigendecomposition, rather than revealing the BBC,
plays the key role of determining the dynamical stability of the OBC system. While non-trivial
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topology under PBC requires negative and positive imaginary parts (instability) of the eigen-
values so that H(k) encircles the origin, the OBC spectrum can lead to dynamical stability (see
Fig. 1). Under PBC, non-trivial topology requires non-reciprocity to open the point gap, and
unavoidably instability for some k. This implies directionally propagating cavity fields that
grow exponentially in time as they revolve around the cavity ring. Moving to OBC interrupts
this motion, which can make the system stable, and leads to the directional pile-up of exci-
tations at one end of the chain which can be extracted as directional amplification. This is
reflected in the system response to a resonant probe as encoded in the susceptibility matrix,
Eq. (41). In the literature e.g. on non-equilibrium pattern formation [86], solitons [87], and
lasing [88], this situation is called a convective instability and is distinguished from an absolute
instability which in our system corresponds to the case maxm Imλm > 0. Such convective type
of instability is the physical mechanism through which excitations can leave the system under
open boundary conditions, which can stabilize the NH topological phase. In the future, we
will explore consequences of our results presented here in the presence of interactions, e.g. in
arrays of nonlinear resonators, which allow for a richer hydrodynamic description [89]. To be
explicit, dynamic stability always at the very least requires local decay, i.e. Imµ0 < 0, although
the requirement typically has to be even stricter. For instance, for L = 1, the mth eigenvalue,
is given by [24,28]

λm = −δ− i
γeff

2

h

1−
p

C2 −Λ2 + 2iCΛ cosθ cos
� mπ

N + 1

�i

, (42)

so here dynamic stability further requires the real part of the square-root term to be smaller
than one.

11 Robustness against disorder

Among the defining properties of topology is robustness against disorder. Given that NH topol-
ogy exists in the absence of symmetries, it is not immediately clear whether NH topological
phases enjoy such robustness, and, if so, where it stems from. As we show here, the fact that
the susceptibility matrix χ(ω) is dominated by the ZSMs, Eq. (41), separated from the bulk
modes by the gap∆, guarantees the robustness of NH topological phases against disorder [90].

For concreteness, we consider both a non-trivial and trivial NH Hamiltonian (14) for L = 1
(with the same parameters as in Fig. 1) to which we add a local, disordered, complex po-
tential ξ j , such that the new NH Hamiltonian is given by H − i diag (ξ1, . . . ,ξN ). We numeri-
cally sample multiple realizations assuming disorder of the decay rates with compact support,
i.e., ξ j ∈ [−w, w], and compute a histogram of the singular values under OBC as a function of
k as well as the (left) singular vectors of a few representative realizations. We show the results
for moderate disorder in Fig. 7.

In both the initially non-trivial (a) and trivial (c) case, the singular values distribute around
the disorderless σ(k) (dashed black curve) and their distribution is only slightly deformed at
the extrema. The main feature is that the ZSM present in the disorderless non-trivial case per-
sists in all disordered realizations, see Fig. 7 (a), so the susceptibility matrix is still dominated
by the ZSM, which remains localized and is hardly affected by the disorder, see (b). The bulk
modes, on the other hand, start to localize, as we would expect for a one-dimensional model
due to Anderson localization [91]. However, since these are separated from the ZSM by the
NH gap, their contribution is negligible. We therefore conclude that NH topological amplifica-
tion is robust against disorder as long as the NH gap does not close, i.e. the tolerable disorder
strength is set by the NH gap. For the standard case of disorder with compact support, i.e.,
|ξ j| ≤ w, we obtain a simple sufficient criterion for robustness: the non-trivial phase is robust
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to the presence of disorder whenever

∆> γeffw . (43)

As shown by the shaded area in the inset of Fig. 7 (a), the effect of disorder on the PBC
spectrum is at most a shift by γeffw eiζ with some phase ζ ∈ (−π,π], which is achieved when
all sites independently saturate the bound, i.e., |ξ j| = w for all j = 1, . . . , N . As long as the
inner bound imposed on the PBC spectrum by this maximally disordered configuration does
not cross the origin, robustness is guaranteed [90]. On the other hand, when Eq. (43) is not
fulfilled, the disorder may induce a transition to a topological trivial phase (depending on
the specific realization at hand) and robustness is no longer guaranteed. In contrast, in the
initially trivial case, there is no ZSM so the susceptibility matrix is fully determined by the bulk
modes, which we observe to localize, see Fig. 7 (d). We expect our results to extend also to
more general types of disorder [90].

Finally, we notice that topological robustness can also be addressed by exploiting the map-
ping to the GSSH of Sec. 9. The GSSH enjoys chiral symmetry (σz ⊗ 1N )H (σz ⊗ 1N ) = −H
which ensures the presence of the gap and then ensures that (Hermitian) topology is robust
to perturbations that do not break this symmetry [78]. Disordered NH models still map to
the GSSH model for any type of disorder so the chiral symmetry of the associated Hermitian
model is always preserved. This allows to infer the robustness of NH topological phases for
each of the two NH copies. Here, to highlight the self-consistency of our framework and the
role of the NH gap, we discussed the robustness to disorder fully at the NH level.

12 The non-Hermitian skin effect is not topological

Since we saw that the SVD allows to restore the BBC, we can now turn our attention to the
eigenvectors. In point-gapped systems, a macroscopic number of the eigenvectors localizes at
one edge of the system due to the NHSE [9, 13]. We established that the set of topologically
non-trivial systems presents only a sub-set of those with point gap and NHSE (see Fig. 1),
which rules out the topological origin of the NHSE [16, 17]. This result relies on (i) the non-
equivalence of point-gapped spectra under complex shifts and (ii) working with the SVD. These
ingredients go hand in hand since the SVD, unlike the eigendecomposition, is not invariant
under shifts. In fact, for non-normal matrices, singular values and vectors can change non-
trivially due to a diagonal shift. Relinquishing one of the two points, as in Ref. [25] for (i), does
not reveal the full extent of the BBC for point gapped Hamiltonians. Relinquishing both points,
i.e., assuming arbitrary base points and using the eigendecomposition, in general obscures the
nature of the BBC for point-gapped spectra due to the NHSE.

Aside from NH topology, we can still ask what physical role is played by the NHSE. For
L = 1, an open point gap under PBC coincides with non-reciprocity and non-normality under
OBC, see Sec. 6. In this case, the ensuing NHSE can be given a clear physical interpretation, as
it is put in one-to-one correspondence with non-reciprocal photon transport without gain. This
is clearly visible in Fig. 1, by comparing the behavior of the eigenvectors and the susceptibility
matrix.

For L ≥ 2, the point gap opens through the interplay of non-normality [Eqs. (22)-(23)] and
non-reciprocity, with neither of them alone providing a sufficient condition for the NHSE, as
we show in Appendix A. Non-normality implies that the eigenvectors become linearly depen-
dent and left and right eigenvectors differ, such that H can no longer be unitarily diagonalized.
Since the localized eigenvectors are clearly not linearly independent, non-normality is a nec-
essary (but not sufficient) condition for the NHSE [4]. In Appendix B, we provide examples
of both non-normal but reciprocal, and non-reciprocal but normal NH Hamiltonians, which
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Figure 7: Robustness of topological amplification against disorder in the Hatano-
Nelson model. (a), (c) Histogram of the singular values under OBC as a function
of k and (inset) theoretical bounds of the PBC spectrum according to Ref. [90]. The
dashed black curve indicates the singular value spectrum in the absence of disorder.
(b), (d) Some (left) singular vectors of a representative realization which localize
due to disorder and (inset) corresponding disorderless right singular vectors. Here,
Λ= 2, θ = π

2 , w/γeff = 0.25, (a)-(b) C = 1.8, (c)-(d) C = 0.5.

do not show exponentially localized eigenvectors. We therefore conclude that the NHSE is
the result, visible under OBC, of non-normality and non-reciprocity acting jointly. Only if we
restrict to point-gapped Hamiltonians the NHSE becomes a proxy for non-reciprocal transport,
thus acquiring a clear physical interpretation.

In conclusion, the NHSE detects interesting matrix anomalies, but their dramatic effects
are not necessarily linked to physically observable consequences. This is further supported by
the fact that the NHSE is neither directly observable in the scattering matrix nor is present in
the steady-state fluctuations [29]. We suggest to use the singular value decomposition (SVD)
for point-gapped Hamiltonians instead, which is the appropriate tool to analyze steady states
and scattering matrices or Green’s functions.

13 Conclusion and Outlook

Our study provides an alternative route to the classification of non-Hermitian (NH) topolog-
ical phases, where the focus is shifted from effective NH Hamiltonians to NH models imple-
mented in driven-dissipative arrays of cavities and probed via standard transmission measure-
ments [24,28]. This pragmatic approach results in the fact that point-gapped spectra differing
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by a complex-energy shift are not equivalent or, in other words, fixes the origin of the complex
plane as the common reference (base point) for the evaluation of the topological winding num-
ber. We showed that this seemingly innocuous change has in fact deep consequences for the
topological characterization of NH Hamiltonians. By means of the singular value decomposi-
tion [24,25], we introduced alternative quantities (listed in parenthesis) to respectively char-
acterize the bandstructure (singular value spectrum), gapped phases and gap-closing topo-
logical phase transitions (NH gap) and topological zero modes (zero singular modes) of NH
Hamiltonians. In terms of these quantities, we formulated and proved a bulk-boundary corre-
spondence (BBC) for NH point-gapped systems, which is one of the outstanding problems in
the field of non-Hermitian topology [4]. The framework we presented is self-contained and
our main results can be found summarized in Fig. 1, for the realization of the Hatano-Nelson
model [14].

Our results should be regarded as alternative to—and not in conflict with—the current
topological characterization of effective NH Hamiltonians [4,5], since the two approaches are
built on different assumptions. However, some conceptual aspects that appear challenging—or
even paradoxical—within the current approach based on effective NH Hamiltonians, become
instead particularly simple in our framework. Here we stress three such aspects: first, changes
from periodic to open boundary conditions need not to be associated with a topological phase
transition [16], i.e., there is no need to extend the notion of point-gap topology to finite-
size systems; as in standard topological band theory, topology pertains the bulk system and
the BBC provides a bridge to observable effects at the boundaries [1]. Second, by replacing
the eigendecomposition with the singular value decomposition, we avoid to introduce any
modifications to the Bloch band theory [13,18–20]. Third, NH topological phases correspond
to steady-state phenomena directly observable in finite-size systems, in contrast to the transient
dynamics of semi-infinite systems [5,56] or to non-unitary quantum dynamics relying on post-
selection [92], and without the need for bulk probes [93].

Our framework is by design especially suited for photonic implementations. In particular,
the neat connection between NH topology and the system’s scattering response enables the
experimental validation of the NH BBC. In this respect, optomechanical and photonic plat-
forms are ideal candidates to implement NH topological amplification. Specifically, in super-
conducting circuit optomechanics, directional amplification has been realized in few-mode
systems [63, 94] and the control of multi-mode arrays recently demonstrated [52]. Nano-
optomechanical systems [50,95] as well as multiscale optomechanical crystal structures [51]
are also ideal platforms where to implement NH lattice dynamics. Other systems, such as cou-
pled waveguide arrays [37, 96, 97], exciton-polariton microcavities [45, 46] and topolectric
circuits [98,99] are also excellent candidate platforms. Our work naturally opens the door to
the study of other sources of gain, such as parametric processes [100,101], with applications
to the design of novel lattice amplifiers and sensors [57–59].

On the theoretical side, exciting lines for future enquiries include extending our approach
to NH models with multiple bands and in higher dimensions. Multi-band models can endow
the NH Bloch Hamiltonian with symmetries, for which a classification in terms of 38 symmetry
classes was recently proposed [5,8]. The impact of these symmetries on the system’s transport
properties has been unexplored so far, which would be an ideal task for our framework. Multi-
band, one-dimensional lattices are also the simplest setting in which both non-trivial Hermitian
and NH topology can co-exist as well as point and a line gaps, thus allowing to study their
interplay. Furthermore, it is worthwhile exploring whether a BBC based on the singular value
decomposition generalizes to higher dimensions. Higher dimensions bring up new questions,
such as the definition of meaningful topological invariants [8,102] and new possibilities, such
as a non-Hermitian topological insulator embedded in a three dimensional system [103] and
a reciprocal skin effect [104].
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A Relation between non-reciprocity, non-normality and the singu-
lar value decomposition

In this Appendix we show that, for L ≥ 2, the concepts of point-gapped spectrum under PBC,
non-normality, and non-reciprocity under OBC are no longer equivalent, see Fig. 8. As ex-
plained in Sec. 7.1, the asymmetry of the SVD under PBC is equivalent to non-reciprocity
under OBC. We first prove this statement, and then show that the opening of a point gap
implies both non-normality and non-reciprocity.

A.1 The singular value decomposition and non-reciprocity

First, we prove the claim of Sec. 7.1, namely that non-reciprocity under OBC corresponds to
at least one of the two real-valued functions σ(k), φ(k) in Eq. (27) not being an even function
in quasi-momentum space. This means that for any k0 in the Brillouin zone, we have

φ(k0 + k) ̸= φ(k0 − k) ,

or σ(k0 + k) ̸= σ(k0 − k) .
(A.1)

As an illustrative case, consider the Hatano-Nelson model at the EP, for which the PBC spectrum
reads H(k) = µ0+µ1eik; this violates the second condition in (A.1) and exhibits pure leftward
hopping under OBC. For the sake of clarity, in this Appendix we will explicitly refer to the NH
Hamiltonian under OBC (PBC) as Hobc (Hpbc).

First, we show that under PBC condition (A.1) is equivalent to |H−1
pbc| ̸= |H

−1
pbc|

T and then

we prove that the equivalence extends to OBC, namely |H−1
obc| ̸= |H

−1
obc|

T; we recall that the
modulus is here understood to be taken element-wise. The asymmetry of |H−1

obc| then directly
transfers to the susceptibility matrix (13), providing the desired link with non-reciprocity as
defined in Sec. 4.
PBC: We express H−1

pbc in terms of the singular values decomposition and re-express the result
in the site basis, obtaining

H−1
pbc =
∑

k

1
σ(k)

e−iφ(k)|k〉〈k|

=
∑

j,ℓ

1
N

∑

k

1
σ(k)

e−iφ(k)eik( j−ℓ)| j〉〈ℓ| . (A.2)

By enforcing |H−1
pbc| to be symmetric, we find

|(H−1
pbc) j,ℓ|=

�

�

�

�

�

1
N

∑

k

1
σ(k)

e−iφ(k)eik( j−ℓ)

�

�

�

�

�

!
= |(H−1

pbc)ℓ, j|=

�

�

�

�

�

1
N

∑

k̃

1

σ(k0 − k̃)
eiφ(k0−k̃)eik̃( j−ℓ)

�

�

�

�

�

.

(A.3)
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point-gapped

NHSE

Figure 8: Relation between non-normality, non-reciprocity and point gap. The
set of non-normal Hamiltonians under OBC and the set of NH Hamiltonians leading
to non-reciprocal transport under OBC are two non-empty subsets of the class of NH
Hamiltonians. Their intersection is given by the set of point-gapped Hamiltonians,
i.e., those NH Hamiltonians featuring a point gap in the PBC spectrum, which co-
incide with the set of Hamiltonians displaying the NHSE under OBC. Topologically
non-trivial Hamiltonians are a strict subset of point-gapped Hamiltonians.

This equality is satisfied if there exists a k0 such that σ(k + k0) = σ(k0 − k) and
φ(k+ k0) = φ(k0− k) for all k ∈ [0, 2π). Equivalently, the converse condition |H−1

obc| ≠ |H
−1
obc|

T

corresponds to either σ(k+ k0) ̸= σ(k0 − k) or φ(k+ k0) ̸= φ(k0 − k) for any k0.
OBC: Moving to OBC, we can focus on the topologically trivial case, since we know that in
the case of non-trivial topology the localization of the zero singular modes at opposite ends
automatically implies non-reciprocity.

In the topologically trivial case, only the bulk contributes to χ(ω), see Eq. (40). Under
OBC, the bulk singular modes hardly change (N ≫ 1). At most, plane waves belonging to
the same singular value superimpose, with prefactors β(k) that satisfy the boundary condi-
tions; note that each singular value appears at least twice, since H(k) forms a closed loop,
i.e., σ(k) = σ(k′) for some k ̸= k′. Therefore, we can write (for N ≫ 1)

H−1
obc
∼=
∑

j,ℓ

1
N

∑

k

β(k)
σ(k)

eiφ(k)eik( j−ℓ)| j〉〈ℓ| . (A.4)

In order to satisfy the boundary conditions, β(k) takes values ±1 to form anti-symmetric su-
perpositions of singular vectors belonging to the same σ(k) = σ(k′), i.e. β(k) = ±1 and
β(k′) = ∓1. With this condition, the singular vectors have zeros at the edges (this require-
ment on β(k) can be made more rigorous solving the recursion relation under OBC). Since
β(k) has this simple structure, we can conclude that |H−1

obc| is asymmetric under the same
condition (A.1) as |H−1

pbc|.

A.2 The opening of a point gap implies non-normality

Here, we show that the opening of a point gap implies non-normality, namely [H, H†] ̸= 0. We
recall that an open point gap is defined as a curve in the complex plane that has an interior, see
Sec. 6. Here, it is more convenient to use the following equivalent criterion: H(k) has an open
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Figure 9: Condition for the opening of a point gap. The opening of a point gap
can be diagnosed by examining whether the curvature of H(k) is finite for all k.
The curvature remains finite if ∂ H(k)/∂ k does not pass through zero. Zeros as in
(a) can be avoided if a phase difference between terms of different ℓ in Eq. (A.7)
is introduced, as in (b), which ensures that zeros in real and imaginary part do not
occur at the same value of k.

point gap as long as its curvature remains finite. The intuition behind this criterion is that,
since H(k) is a sum of analytic functions and periodic, H(k) = H(k+ 2π), the only possibility
for a diverging curvature is when H(k) has to turn on the spot. This kink only develops in the
case of a degenerate spectrum, i.e., when the point gap is not open.

The curvature of H(k) is proportional to (∂ H(k)/∂ k)−1, so it diverges when ∂ H(k)/∂ k = 0.
Examining the derivative, we obtain

∂ H(k)
∂ k

= i
L
∑

ℓ=1

ℓ(|µℓ|eiφℓeikℓ − |µ−ℓ|eiφ−ℓe−ikℓ) . (A.5)

We readily see that if the condition

|µℓ| ≠ |µ−ℓ| , (A.6)

is satisfied, the expression is always different from zero, i.e., the point gap is always open.
By looking at Eq. (22), the condition we obtained tells us that H is non-normal. If we then
examining the case |µℓ|= |µ−ℓ|, the expression for the curvature becomes

∂ H(k)
∂ k

=
L
∑

ℓ=1

ℓ|µℓ|ei(φℓ+φ−ℓ)/2 sin
�

kℓ+
φℓ −φ−ℓ

2

�

. (A.7)

Since the sine term passes through zero for some k ∈ [0,2π), independent of the values
of φℓ and φ−ℓ, the only way to prevent ∂ H(k)/∂ k = 0 is to have a complex prefactor, since
this allows the real and imaginary part of ∂ H(k)/∂ k to pass through zero at different k, see
Fig. 9 (a) and (b). In particular, we have to multiply the contributions of at least two different
values of ℓ by different phase factors ei(φℓ+φ−ℓ)/2. Hence, for L ≥ 2, we find as second possibility
for the opening of a point gap

φℓ +φ−ℓ ̸= φℓ′ +φ−ℓ′ , (A.8)

which implies non-normality according to Eq. (23) under OBC.

A.3 The opening of a point gap implies non-reciprocity

Finally, we complete our argument on the basis of the previous proofs. Since an open point
gap always implies that the phase φ(k) ≡ Arg H(k) is asymmetric with respect some k0, we
conclude that the opening of a point gap implies non-reciprocity.
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Figure 10: Counterexamples: non-reciprocity without non-normality and non-
normality without non-reciprocity. (a)-(e) Non-reciprocal but normal system, and
(f)-(j) reciprocal but non-normal system. Non-reciprocity, i.e. |χ| ≠ |χ|T, can be
diagnosed from the asymmetry of σ(k) and φ(k) but not from the spectrum which is
degenerate in both cases. While the (right) eigenvectors localize weakly in the case
of (d) non-reciprocity, they do not localize at all in the reciprocal but non-normal case
(i). Only when non-normality and non-reciprocity coincide, see Fig. 8, a point gap
opens and the NH skin effect (NHSE) occurs. However, as this comparison shows,
non-reciprocity is not always associated with a NHSE. Here, L = 2, (a)-(e) Λ1 = 2,
Λ2 = 1, ArgΛ2 = π/2, C1 = C2 = 0; (f)-(j) Λ1 = 0.6, C1 = 0, θ1 = 0, Λ2 = 0,
C2 = 0.8, θ2 = π.

B Examples for normal but non-reciprocal and non-normal but re-
ciprocal systems

Here, we give examples of systems with a closed point gap which are either (i) non-reciprocal
but normal, or (ii) non-normal but reciprocal.

We start from (i), illustrating a normal but non-reciprocal system with L = 2. Eq. (5) in
full generality admits complex coupling constants Jℓ ̸= J∗

ℓ
, since gauge freedom only allows us

to choose one of the Jℓ real. In our example, we choose C1 = C2 = 0 and Λ1 ̸= 0, Λ2 ̸= 0 with
ArgΛ2 = 0 and ArgΛ2 =

π
2 . The phase difference between the coherent hoppings of different

range gives rise to constructive and destructive interference, leading to non-reciprocity that
is accompanied by an asymmetry in σ(k) and φ(k), while the complex spectrum remains
degenerate, see Figs. 10 (a)-(e). Note that this asymmetry cannot be uncovered by looking at
the complex spectrum Fig. 10 (a) and only becomes manifest in Figs. 10 (b)-(c). We note that,
unlike the exponential localization at a single edge of the NHSE, the eigenvectors only weakly
localize and each vector localizes at both ends.

In the second case, we examine a symmetric, but non-normal matrix with µ−1 = µ+1 and
µ−2 = µ+2. We obtain this by setting Λ2 = C1 = 0 but Λ1 ̸= 0 and C2 ̸= 0 with θ2 = π.
Even though H is non-normal according to Eq. (23), the complex spectrum is degenerate, the
singular value spectrum and the phase are symmetric, the eigenvectors do not localize at all
and the susceptibility matrix is reciprocal, see Figs. 10 (f)-(j).

C Non-Hermitian topology for non-zero detuning

In this Appendix, we address the dependence of both the topology and ZSMs on the frequency
of the probe. In the main text we focused on the case of resonant probe, i.e. δ = 0 in Eq. (15),
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Figure 11: Frequency dependence of non-Hermitian topology. (a) For sufficiently
small detuning, the winding number remains non-trivial corresponding to gain that
grows exponentially with the number of sites; for larger detuning, the winding num-
ber becomes trivial and the gain decreases exponentially with system size. (b) Non-
trivial topology is associated with a ZSM which appears as we tune the detuning ∆
from strongly off-resonant to resonant. (c) The singular vector corresponding to the
ZSM is exponentially localized at the system edge while all other singular vectors
remain extended. (d) The trivial phase is characterised by the absence of such ZSMs.

or equivalently ω = 0 in Eq. (13). As explained in the main text, the NH topological invari-
ant (19) depends on the cavity-probe detuning through µ0, Eq. (15); for clarity, here we con-
sider the case of equal on-site frequencies. Therefore, unlike standard (Hermitian) topology,
the notion of NH topology is frequency-dependent, i.e., the frequency at which the system is
probed affects its topology. In Fig. 11 we plot the gain and the singular value spectrum Eq. (24)
under OBC as a function of cavity-probe detuningδ. From panel (a), we see that the gain grows
exponentially with system size in the topologically nontrivial regime, as indicated by the red
shaded region, while it is exponentially suppressed in the topologically trivial regime. Indeed,
for sufficiently small values of the detuning, we find non-trivial topology under PBC, which
coincides with the OBC regime of exponentially growing gain and the presence of one ZSM
under OBC, see panel (b); this ZSM is exponentially localized, panel (c). Conversely, for large
detuning, we find trivial non-Hermitian topology (ν = 0) under PBC, which corresponds to
the absence of ZSMs, i.e., no amplified response; all singular vectors are extended, panel (d).
Physically, this means that if a probe signal is too far off resonant, it will not be amplified; a
non-amplified response corresponds in turn to a topologically trivial regime. This frequency
dependent notion of topology is consistent with our previous work on the topic [28, 90] as
well as other works [24,83,84].
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