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Abstract

Interacting N-component fermions spatially confined in ring-shaped potentials display
specific coherence properties. The orbital angular momentum per particle of such sys-
tems can be quantized to fractional values specifically depending on the particle-particle
interaction. Here we demonstrate how to monitor the state of the system through homo-
dyne (momentum distribution) and self-heterodyne system’s expansion. For homodyne
protocols, the momentum distribution is affected by the particle statistics in two distinc-
tive ways. The first effect is a purely statistical one: at zero interactions, the characteris-
tic hole in the momentum distribution around the momentum k=0 opens up once half of
the SU(N) Fermi sphere is displaced. The second effect originates from the interaction:
The fractionalization in the interacting system manifests itself by an additional ‘delay’ in
the flux for the occurrence of the hole, that now becomes a characteristic minimum at
k=0. We demonstrate that the angular momentum fractional quantization is reflected in
the self-heterodyne interference as specific dislocations in interferograms. Our analysis
demonstrates how the study of the interference fringes grants us access to both number
of particles and number of components of SU(N) fermions.
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1 Introduction

Placed in the vacuum and spatially confined with suitable electromagnetic fields, ultracold
atoms [1] feature robust coherence properties in the absence of cryostats. They can be real-
ized in different physical conditions, like with a tunable atom-atom interaction or with funda-
mentally different quantum statistics of the gas constituents. Due to the remarkable progress
in micro-optics technology, they can be trapped in a wide variety of potentials, shapes and
intensities [2].

These are some relevant features as to why ultracold atoms provide an important instance
of artificial quantum matter that can be used as ‘hardware’ both for quantum simulations and
to advance the fabrication of quantum devices [3–5]. Atomtronics is the quantum technology
of guided ultracold atoms: while the defining goal of the field is to fabricate quantum de-
vices and sensors with enhanced performances, atomtronic circuits can define current-based
quantum simulators probing quantum correlations in many-body systems [6, 7]. A natural
venue for this research activity has been constructing analogs of electronic devices [8–11].
Atomtronics, though, has the potential to realize devices and simulators with new capabilities,
relying on different physical properties compared with electronics. In the last decade, an in-
tense activity has been devoted to bosonic matter-waves guided in circuits of a wide variety of
shapes [6, 12–14]. Angular momentum quantization in 87Rb atomtronic ring-shaped circuits
has been studied both theoretically and experimentally [15, 16]. Such studies have been in-
strumental in defining the atomic counterpart of SQUIDs [15–18], that are believed to be of
paramount importance for guided interferometers [12,19–22]. Recently, it has been predicted
that attracting bosons can lead to an enhanced performance in rotation sensing [23,24].

Recent advances in cold atoms experiments have re-kindled the interest in SU(N) fermionic
systems [25–29]. These strongly interacting N -component systems, as provided by alkaline
earth and ytterbium atoms, have an enlarged symmetry compared to SU(2) fermionic sys-
tems resulting in unique and and exotic physics [30, 31]. SU(N) fermions play a vital role in
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a wide variety of contexts ranging from high precision measurement [32, 33] and quantum
simulation [27,28,34] of many-body systems, to studying lattice confinement in high energy
physics [35].

Here, we focus on the simple case of an atomtronic circuit provided by a ring-shaped quan-
tum gas of SU(N) fermions. In such circuits, a guided matter-wave, specifically a persistent
current, can be generated by the application of an effective magnetic field [36–40]. Per-
sistent currents in two-component ultracold fermions have been experimentally studied very
recently [41, 42]. For N -component fermions confined in ring potentials, the theory predicts
a fractional quantization of the orbital angular momentum per particle (henceforth referred
to as angular momentum), with important differences arising on whether the atoms are sub-
ject to repulsive or attractive interaction [43,44]. Such specific properties of quantization are
expected to provide the core to fabricate quantum devices with enhanced sensitivity [23]. At
the same time, these results re-affirm the notion that persistent currents can be used to de-
fine an instance of the aforementioned current-based quantum simulators for the diagnostic
of interacting quantum many-particle system [6,7,45–47].

In this paper, we investigate the fractionalization of the persistent current flowing in an
SU(N) fermionic circuit through interference dynamics. Both homodyne and heterodyne pro-
tocols have been carried out so far. In homodyne protocols, the system of interest interferes
with itself. Such logic has been widely employed in ultracold atoms experiments through time-
of-flight (TOF) images of the atoms density for both bosons and fermions [6, 7, 17, 48–50].
Through this measurement technique, the angular momentum quantization of the circulat-
ing current state can be monitored [39, 51]. With heterodyne phase detection protocols, the
phase portrait of the system flowing along the ring is obtained through its additional interfer-
ence with a non-rotating quantum degenerate system placed at the center of the ring. This
type of protocol has been experimentally realized both for bosons [52–54] and very recently
for fermions [42]. The fringe pattern that arises is a spiral interferogram whose topologi-
cal features (number of arms and dislocations) reflect the properties of a circulating current
state [22,42,54,55]. We employ both the homodyne and heterodyne protocols to analyze the
interference dynamics of matter-waves of SU(N) fermions. We demonstrate how the resulting
interference patterns reflect important features of the system, including the specific angu-
lar momentum fractionalization and parity effects characterizing the system. Particularly, we
highlight how our approach may be utilized to detect the number of particles Np and compo-
nents N , both of which are notoriously hard to extract from an experimental setting [56].

The article is structured as follows. In Sec. 2 we introduce the physical system and the
model. In Sec. 3 and Sec. 4, we present the results achieved for the momentum distribution
and interferograms respectively. Conclusions and outlooks are presented in closing Sec. 5.

2 Methods

Consider Np SU(N)-symmetric fermions, in a ring-shaped lattice composed of L sites, pierced
by an artificial magnetic flux φ. The relevant physics of the model is captured by the SU(N)
Hubbard model [30,31], which reads

HSU(N) = −t
L
∑

j

N
∑

α

�

eı 2πφ
L c†

j,αc j+1,α + h.c.
�

+ U
L
∑

j

n jn j , (1)

where c†
j,α creates a fermion with colour α on site j, and n j =

∑

α c†
j,αc j,α is the local particle

number operator. The hopping amplitude and on-site interaction are denoted by t and U re-

spectively. The presence of the flux is accounted for through the Peierls substitution t → teı 2πφ
L .
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The physics of the Hubbard model arises from the competition between the kinetic (hop-
ping) and potential (interacting) terms. As such, the ratio between the hopping and interaction
parameters dictates the physics that we observe in our system. For strong attractive interac-
tions (|U | ≫ t), SU(N) fermions are able to form bound states of different types and nature,
which in turn causes part of the particles to localize together, while still adhering to the Pauli
exclusion principle [44, 57–59]. On the other hand, strong repulsive interactions (U ≫ t)
causes the fermions to be restricted in place in different lattice sites. This is evidently visible
for fillings Np/L = 1, where in the case of SU(N > 2) fermions a phase transition occurs at
a critical value of U from a superfluid to a Mott phase [31, 43]. Recently, the physics of the
SU(N) Hubbard model was explored for both attractive [44] and repulsive [43] interactions
by utilizing the persistent current, the response of the system to the applied field in model (1),
as a diagnostic tool. The persistent current is a matter-wave current defined as I = −∂ E0/∂ φ

with E0 being the ground-state energy. According to Leggett’s theorem, the ground-state en-
ergy and consequently its derivative, the persistent current, display periodic oscillations in the
flux, with a period fixed by the elementary flux quantum φ0 = ħh/mR2 with m and R denot-
ing the atoms’ mass and ring radius respectively [60]. Therefore, a change in the period φ0
gives crucial information about the physical nature of the system, in the same spirit as current-
voltage characteristics in solid state physics (see [23,43–46,61] for the persistent current as a
probe for bosonic and fermionic systems).

In cold atoms platforms, several features of the persistent current can be readily observed
through time-of-flight imaging of the density distributions of the gas at large times, after it is
released from its trap confinement and allowed to expand [6, 7, 17, 39, 62]. Such an image
corresponds to the momentum distribution of the system at the moment in which it is released
from the trap. For the different SU(N) species, the latter quantity reads

nα(k) = |w(k)|2
∑

j,l

eık(rl−r j)〈c†
l,αc j,α〉 , (2)

with w(k) being the Fourier transform of the Wannier functions and r j denotes the position
of the lattice sites in the ring’s plane (see Sec. A.1for the derivation). Also important for our
analysis is the variance of the momentum distribution σ(α)nk

, given by σ(α)nk
=
Æ

〈n2
α〉 − 〈nα〉2.

For bosons [22] and quite recently for fermions [55], it has been shown that interference
effects can be observed by considering higher order density-density correlations. In this setup,
one starts with an annular ring under study and a central degenerate system at rest, both of
which are uncoupled initially. Due to this, as both ring and center are released from their
confinement and start to interfere, eventually there is an uncertainty when measuring two or
more particles, about whether these particles originated from the center or the ring. As the
uncertainty about the particles’ origin increases, one gains more certainty about the phase [22,
63]. Therefore, inline with the previous protocols for bosons and fermions, we focus on the
density-density correlator

G(r, r′, t) =
N
∑

α,β

〈nα(r, t)nβ(r
′, t)〉 , (3)

to observe interference patterns in SU(N) fermions. Seeing as the interference that arises is
provided by the cross-terms involving contributions from both the center and the ring [55],
we calculate and focus on the center-ring correlations whose expression reads

GR,C =
∑

α

∑

j,l

I jl(r, r′, t)〈c†
l,αc j,α〉 , (4)

where I jl(r, r′, t) = −wc(r′, t)w∗c(r, t)w∗l (r
′ − r′l , t)w j(r− r j , t).
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Our approach utilizes exact diagonalization and DMRG [64, 65], whenever possible, to
evaluate and analyze the correlators. Here, the energy scale is given by fixing t = 1 and
φ0 = 1. In our analysis, we only consider systems with an equal number of particles per
colour.

3 Momentum distribution of SU(N) fermions

The momentum distribution of particles on a ring is one of the few observables of the mo-
menta that can be experimentally probed [17,37,39]. This homodyne protocol is of particular
interest in the field of atomtronics, since the persistent current is visible in experiments by
studying the particles’ momentum distribution [6,7,51]. In the case of coherent neutral mat-
ter circulating in a ring with a given angular momentum quantization, a characteristic hole is
observed in the momentum distribution [51,66]. On the other hand, no hole is observed at the
same flux when there is a reduced coherence, e.g. for attractive interactions [23, 44, 55, 61].
Nonetheless, looking at the variance of the momentum distribution, one is still able to observe
the corresponding angular momentum quantization. Here, we make an in-depth analysis of
the momentum distribution of SU(N) fermions for both attractive and repulsive regimes. As
we will see, the distinct physical features and characteristics of these two regimes can be aptly
captured through homodyne interference images.

3.1 Free particles

The momentum distribution of spinless fermions at zero interactions is a sum of discrete Bessel
functions
∑

{n} Jn(k) of order n, with k denoting the momentum and n being the quantum
numbers of the levels the particles occupy [18, 55]. From this expression, it is clear that the
momentum distribution is dependent on the sets of n, with the ground-state configuration
being such that they are distributed symmetrically around zero (see Sec. A.2). These quantum
numbers are related to the angular momentum per particle ℓ [67,68].

Figure 1: Energy as a function of the effective magnetic flux φ, denoted by E and
φ respectively. As one crosses from one parabola to the next with increasing φ, the
angular momentum quantum number ℓ increases.

Apart from the zeroth order Bessel function, all other orders are zero-valued at k= 0 –see
Fig. 2. Consequently, when the particles inhabit the n = 0 level, corresponding to the zeroth
order Bessel function, the momentum distribution is always peaked at the origin. Such is the
case for ℓ = 0 in Fig. 2. When threaded by an effective magnetic flux, the ground-state en-
ergy displays periodic oscillations characterized by a given angular momentum ℓ. As the flux
increases and we move from one energy parabola with a given ℓ to the next, the quantum
numbers n need to be changed to counteract the increase in flux and minimize the energy (see
Sec. A.2). Eventually, the set of {n} is such that no spinless particles inhabit the n = 0 level
at a given value of ℓ. Being a sum of discrete Bessel functions, the momentum distribution
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becomes zero-valued at the origin and a hole opens up [55]. The value of the angular mo-
mentum ℓ needs to be such that Fermi sphere is displaced by the ceiling function ⌈Np

2 ⌉ [51,55]
(see Sec. A.2 for a schematic figure). Therefore, there is a ‘delay’ in observing the hole with
increasing Np. This needs to be contrasted with bosons in a Bose-Einstein condensate, which
due to the different statistics all reside in the n = 0 level at ℓ = 0. In turn, there is no ‘delay’
for the characteristic hole, which opens up at ℓ= 1 irregardless of Np.

Figure 2: Main figure depicts the momentum distribution
∑

{n} |Jn(k)|2 re-scaled by
the number of components N against kx . For the ℓ= 0 configuration, the momentum
distribution has a finite value at the origin. However for ℓ > 0, the function collapses
to zero at the origin. Insets depict the ground-state configuration ℓ = 0 for spinless,
SU(2) and SU(3) fermions containing 2,4,6 particles respectively at U = 0.

The same logic used for spinless fermions applies when one considers SU(N) fermions. On
increasing N , the restriction imposed on the system by the Pauli exclusion principle relaxes:
N particles can occupy a given level –see Fig. 2. Accordingly, the Fermi sphere needs to be
displaced less with increasing N . We find that for a system with Np SU(N)-symmetric fermions,

a hole in the momentum distribution opens up when we displace by ⌈ Np
2N ⌉. In other words, the

angular momentum required for a hole to open up is ℓH = ⌈
Np
2N ⌉ andφH is the flux at which one

transitions to the energy parabola with this corresponding angular momentum. For Np < N ,
all particles will reside in the n = 0 level. Indeed, as N → ∞, SU(N) fermions behave as
bosons with regards to the level occupation.

Systems with an equal and commensurate value of W =
Np
N display similar features. The

persistent current’s parity is one such feature whereby it is diamagnetic [paramagnetic] if
Np = (2m+ 1)N [Np = (2m)N] with m being an integer [43, 60]. Likewise, we have that the
momentum distribution scaled by 1/N is the same for equal and commensurate W –Fig. 2.
Clearly, this is not the case when W is commensurate but not equal for different SU(N), such
as systems of Np = 6 fermions with SU(2) and SU(3) symmetry for example. Owing to the
different particle occupations, the momentum distribution and consequently the shifts in the
sets of {n} and angular momentum ℓH for a hole to appear is different.

3.2 Interacting particles

Having established the basis for the momentum distribution for SU(N) fermions at zero inter-
actions, we now turn our attention to systems with repulsive and attractive interactions. At
small values of the interaction, one observes the same features as in the free fermion cases
described above (see also [55] for SU(2)). Here, we focus on the regimes of intermediate and
infinite interactions.
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3.2.1 Repulsive interactions

In the case of fermionic systems with repulsive interactions, the persistent current displays
fractionalization with a reduced period dependent on the number of particles Np irrespective
of the number of components N [43, 69]. The fractionalization originates from energy level
crossings between the ground and excited states that create spin excitations to counterbalance
the increase in the effective magnetic flux. In other words, we go from the initial parabola
observed at U = 0 with a period φ0, to Np piece-wise parabolas/peaks with a reduced period
of φ0/Np (see Sec. A.2). This effect results in a momentum distribution depression at infinite
repulsion. In contrast with the characteristic hole, the depression is not zero-valued at the
origin but is a local minimum, i.e. a dip in the momentum distribution –Fig. 3 (a). Apart from
cases like the one depicted in Fig. 3 (a), we generally find a non-monotonous behaviour in the
peak of the momentum distribution (see Sec. A.2).
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U

φ/φ0

0.0

−0.6

−0.4

−0.2

0.2
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Figure 3: (a) Cross-section of the momentum distribution n(kx , 0) at strong repulsive
interactions U = 10, 000 for various values of the effective magnetic fluxφ. When the
threshold imposed by the fractionalization is surpassed, the momentum distribution
collapses at kx = 0 and a depression is observed. For larger values of φ, the depth
of the depression increases. (b) Second derivative of the momentum distribution

n(kx , ky) evaluated at kx = ky = 0, defined as ∂ 2n(kx ,0)
∂ k2

x

�

�

kx=0, as a function of φ
and U . A change in the sign of the second derivative denotes going from a peak
(negative) to a depression (positive) that corresponds to a change in colour from
blue to green respectively. At U = 0 the hole opens up at φ = 0.5. On increasing the
interaction, the depression appears at largerφ thereby reflecting the fractionalization
in the system. As U →∞, the system achieves complete fractionalization and the
flux at which a depression is displayed corresponds to φD. Note that the y-axis is not
linear in values of the interaction. Results were obtained with exact diagonalization
for Np = 3 SU(3) symmetric in L = 15 sites.

Interestingly enough, when the persistent current is fractionalized, the depression appears at
fluxes φD that are found to be significantly larger than the flux values corresponding to the
cases in which the angular momentum is quantized to integer values. In other words, the frac-
tionalization in the system causes a specific ‘delay’ in observing the momentum distribution
depression –see Fig. 3. We remark that this ‘delay’ is an add-on to the one observed at zero
interactions. It is solely dependent on Np and independent of N due to the nature of the frac-

tionalization. The depression in the momentum distribution occurs at φD = φH +
Np−1
2Np

where
φH is the flux at which a hole appears at zero interaction (see Sec. A.2). For intermediate
interactions, where the persistent current is partially fractionalized, we track the depression
by calculating the second derivative of the momentum distribution as a function of φ and U–
Fig. 3 (b).
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3.2.2 Attractive interactions

Just like in its repulsive counterpart, the persistent current also fractionalizes for attractive in-
teractions. For strong attractive interactions, the formation of bound states is reflected by a re-
duced period of the current φ0/r with r being the number of particles in the bound state [44].
Even though the state does acquire current, the formation of bound states with reduced coher-
ence, drastically reduces the visibility of the hole in the momentum distribution –Fig. 4 (a).
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Figure 4: (a) Cross-section of the momentum distribution n(kx , 0) for Np = 6
fermions with SU(3) symmetry for various values of the effective magnetic flux φ at
U = −5. The momentum distribution is always peaked for any value of φ due to the
reduced coherence in the system. As φ increases, the height of the peak decreases
in a monotonous behaviour. (b) Second derivative of the momentum distribution
n(kx , ky) evaluated at kx = ky = 0, defined as ∂

2n(kx ,0)
∂ k2

x

�

�

kx=0, as a function of φ and
U for Np = 4 SU(2) symmetric fermions. A change in the sign of the second derivative
denotes going from a peak (negative) to a depression (positive) that corresponds to
a change in colour from blue to green respectively. In addition to the delay observed
for strong interactions as in the repulsive case, one observes that the depression is
smoothed out with increasing interactions. Results were obtained with exact diago-
nalization for L = 15.

Nevertheless, the variance of the width of the momentum distributionσnk has been demon-
strated to be a figure of merit for fractional currents [23,44] –Fig. 5. We find that the variance
is not a good measure when it comes to the repulsive case since the peak does not display
monotonous behaviour (see Sec. A.2). The partial fractionalization of the persistent current
at intermediate interactions can also be tracked through the second derivative of the momen-
tum distribution – Fig. 4 (b). It should be noted that upon formation of the bound state, the
depression is washed out.

4 Self-heterodyne interferograms of SU(N) fermions

Properties of circulating current states can be detected through self-heterodyne phase detec-
tion protocols [53, 54, 70]. In these protocols, the ring is made to interfere with a quantum
degenerate system at its center. During TOF expansion, the combined wavefunction (ring
and center) evolves in time and interferes with itself giving rise to characteristic spiral inter-
ferograms [22, 53, 55]. Topological features of the spiral pattern reveal information on the
current’s orientation and intensity. Furthermore, the angular momentum quantization of the
current (quanta of rotations) is given by the number (or the order) of spirals and their orien-
tation.
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(φ
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)
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Np = 6, SU(3)
Np = 8, SU(4)

Figure 5: Variance of the momentum distribution, σnk
(φ), against the effective mag-

netic flux φ for Np = 4 (blue), Np = 6 (red) and Np = 8 (green) fermions with
SU(2), SU(3) and SU(4) symmetry respectively for attractive interactions. On going
to infinite attraction the persistent current fractionalization depends on the number
of components, which is reflected in the variance of the width of the momentum
distribution. For SU(2) fermions, the variance has two steps in one flux quantum
(φ/φ0 = 1). Going to SU(3) (SU(4)) fermions, we have that the period is reduced
by 1/3 (1/4) upon fractionalization, which is reflected by the variance having 3 (4)
steps. Results for SU(2) and SU(3) cases were obtained with exact diagonalization,
with DMRG being employed for the SU(4) case. The parameters used were U = −5
and L = 15, with U = −3 for the SU(4) case.

Just like in the momentum distribution, the particles’ statistics are reflected in the interference
patterns. Due to the Pauli exclusion principle, fermionic particles occupy distinct levels having
different momenta associated to them. Hence, when the fermions start to circulate, the im-
parted phase gradient of the wavefunction couples to the various momenta. These different
phases recombine giving rise to the spiral-like interference. The multiple momenta contribut-
ing to the interference pattern as well as the particle’s statistics results in dislocations (radially
segmenting lines) [55] (see Fig. 6). Previously, we highlighted how the momentum distribu-
tion at zero interaction displays similarities for systems with equal W = Np/N . Seeing as the
features of the interferogram depend on the particle distribution, then one would expect that
systems with commensurate and equal W , display interferograms with the same characteris-
tics. In the following, we build up on the recent work on interferograms of SU(2) fermions at
zero and weak interactions [55], by generalizing to SU(N) fermions and extending the anal-
ysis to the intermediate and strongly interacting regimes. We remark that DMRG cannot be
applied to large interactions. Indeed, it is widely known that it has issues with convergence
in this regime. Furthermore, the problem is exacerbated by multi-degenerate ground-states of
SU(N >2) [43]. Consequently, we opted to carry out the self-heterodyne analysis by consid-
ering SU(2) systems that can be addressed by exact diagonalization. Nonetheless, this does
not hinder our analysis since as we shall see, interferograms with equal W display similar
characteristics.

4.1 Free particles

At zero interaction and short time expansion one observes spiral-like patterns, along with
dislocations in these interferograms [55]. These dislocations arise from the various momenta
components contributing to the expansion and indicate the suppression of the particle density
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Figure 6: The interference GR,C between ring and center for Np = 2,4, 6 SU(2) sym-
metric fermions, is shown as a function of the effective magnetic flux φ at zero inter-
action and short time t = 0.033. For Np = 2 (top) and Np = 4 (middle), the number
of spirals is an indication of the angular momentum quantization ℓ. Note that at
φ = 1.58, the difference in spirals between the two cases arises due to the different
parity of the two systems, that correspond to a degeneracy point of φ = s+ 1/2 and
φ = s respectively, with s being an integer. In contrast to the Np = 2 case, we observe
dislocations (segmenting lines) in the interference patterns for Np = 4,6. Lastly, by
comparing Np = 2 and Np = 6 at φ = 1.58 we observe that the latter displays only
one spiral instead of two like its counterpart. The reason being that at U = 0 for
Np = 6, the hole opens up at φ = 1.5. All correlators are evaluated with exact di-
agonalization for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is
non-linear by setting sgn(GR,C)

Æ

|GR,C|.

at these positions in space. The number of dislocations corresponds to W−1 –see Figs. 6 and 7.
These dislocations do not depend on the flux threading the system.

For bosons, the number of spirals gives an indication on the number of rotations, or rather
the angular momentum quantization ℓ of the current [22, 54]. However, it is not as straight-
forward when it comes to fermions. Owing to their different statistics, the level occupation
of fermions is broader than that of bosons. In order for spirals to emerge in the interference
patterns, the given system of fermions needs to displace its Fermi sphere by ⌈ Np

2N ⌉, which cor-
responds to the characteristic hole in the momentum distribution. After this, the number of
spirals grows with increasing angular momentum.

When W = 1,2, the number of spirals reflect the angular momentum quantization (since
these cases only require one Fermi sphere ‘shift’ like in bosons) –see upper and middle panels
of Fig. 6. For W > 2, the number of observed spirals is not indicative of the angular momen-
tum quantization –see lower panel in Fig. 6. By keeping the number of particles fixed and
increasing the number of components, enables more particles to inhabit a given level. Finally
for N > Np, SU(N) fermions behave as bosons with regards to level occupations –Fig. 7. Addi-
tionally, we have that for equal and commensurate W , interferograms display similar features
–see Figs. 6 and 7.
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Figure 7: The interference GR,C between ring and center for Np = 6 particles with
N = 2, 3,6, as a function of the effective magnetic flux φ at U = 1 and short time
t = 0.025. In the top panel, the number of dislocations in the interferograms is
2,1,0 for N = 2 (left), N = 3 (middle) and N = 6 (right) respectively. The bottom
panel depicts the value of φ where a spiral is observed. On increasing N , the spiral
appears at a lower value of φ since the displacement of the Fermi sphere is inversely
proportional to N . All correlators are evaluated with DMRG for L = 15 by setting
r′ = (0, R) and radius R= 1. The color bar is non-linear by setting sgn(GR,C)

Æ

|GR,C|.

4.2 Interacting particles

4.2.1 Repulsive interactions

For a system with infinite repulsive interactions, one is able to not only track but also ob-
serve the fractionalization through the self-heterodyne phase portrait. Remarkably, the frac-
tional angular momentum, which corresponds to different spin excitations [43,69], is explicitly
captured in the interferogram through the dislocations that are now dependent on the flux.
Indeed, the dislocations are able to characterize the Np fractionalized parabolas due to the
different types of spin excitations through the number and orientations of the dislocations –
Fig. 8. Specifically, there are ⌈Np

2 ⌉ + 1 different types of interference patterns (i.e. different
number and orientation of the dislocations). The characteristic spirals are also observed in
interferograms at infinite repulsion. However, we remark that due to the dislocations, it is
very hard to deduce the order of the spirals. We find that in order for a persisting spiral to
emerge, the magnetic flux φ needs to exceed φS+ = φH +

Np−1
2Np

(see Sec. B.1). This is in line
with the appearance of the depression in the momentum distribution.

In the intermediate case, the interference patterns capture the partial fractionalization in
the system. Indeed, on going from zero to infinite interactions as in Fig. 9, we observe the
change in the orientation and number of dislocations as the system undergoes fractionaliza-
tion.

4.2.2 Attractive interactions

In contrast to the homodyne protocol, the self-heterodyne one provides direct information on
the fractionalization of the persistent current. Firstly, the N parabolas that originate due to
the fractionalization are characterized by different dislocations, both in number and orien-
tation. Additionally, spirals emerge in the interferogram. Interestingly enough for N -body
bound states, the observation of the spiral occurs at φS− = φH+

N−1
2N , which would correspond

to when one would expect the momentum distribution depression (see Sec. B.2). Just like
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Figure 8: The interference GR,C between ring and center for Np = 6 particles with
SU(2) symmetry against the effective magnetic flux φ at U = 1000 and short time
t = 0.025. Middle right panel is the schematic for the fractionalized energy parabolas
at infinite repulsive interactions for the corresponding system (numbers on parabola
correspond to the spin quantum numbers in the Bethe Ansatz solution [43]). The
interference pattern corresponding to the first parabola (orange), displays two dislo-
cations as in the zero interaction case. Moving to the next parabola (green), where
we have the generation of a spin excitation, there are three dislocations. Travers-
ing the other parabolas, we observe that apart from the number of dislocations, the
orientation changes as well –see upper left and right panels where we observe an
downward and upward V-shape respectively. By comparing each interference pat-
tern to each energy parabola, we see that there is a symmetry around φ = 0.5 that
reflects the fact the the energy E is symmetric around this point. Indeed, the number
of different interference patterns corresponds to ⌈Np

2 ⌉+1. Note that there is no spiral
in the bottom right intereferogram since no hole has opened up. All correlators are
evaluated with exact diagonalization for L = 15 by setting r′ = (0, R) and radius
R= 1. The color bar is non-linear by setting sgn(GR,C)

Æ

|GR,C| .

in the repulsive case, there is a ‘delay’ in visualizing the spirals. However, in this case the
fractionalization is dependent only on N and as such the ‘delay’ associated to it is uniform,
irrespective Np.

We remark that the mentioned results pertain only to SU(2) fermions. For SU(N >2), an
interferogram is not adequate to capture any information about the attractive system. The self-
homodyne interference patterns rely on the use of a two-body correlator, which is an accurate
measure when one has bound pairs as in SU(2) fermionic systems. However, bound states
consisting of a larger number of particles, such as trions in the SU(3) case, probably require
an N -body correlator to adequately describe the system.
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Figure 9: The interference GR,C between ring and center for Np = 4 particles with
SU(2) symmetry against the effective magnetic flux φ at short time t = 0.026 as
a function of the interaction U . In this figure, one can clearly see how the num-
ber and orientation of the dislocations change as one increases the interaction.
All correlators are evaluated with exact diagonalization for L = 15 and repulsive
U = {0,10, 20,50, 5000} (panels are in descending order) by setting r′ = (0, R) and
radius R= 1. The color bar is non-linear by setting sgn(GR,C)

Æ

|GR,C|.

5 Discussions and Conclusions

In this work, we utilize the persistent current to analyze and characterize different SU(N)
fermionic systems. To this end, we investigate the interference dynamics via both homodyne
(momentum distribution) and heterodyne (co-expansion of two concentric condensates) pro-
tocols by applying a combination of exact diagonalization and whenever possible DMRG and
Bethe Ansatz. Both of them can be experimentally probed within the cold atoms infrastructure
and current know-how.

Free particle regime – For spinless fermions, the characteristic hole in the momentum dis-
tribution, reflecting coherent matter-wave flow, opens up when the effective magnetic flux
displaces half of the Fermi sphere [55]. In the following, we will refer to such a feature as a
‘delay’ in the value of the flux at which a hole occurs. For N -component fermions, the Pauli
exclusion principle relaxes and allows more particles to inhabit a given level –see Fig. 2. Ac-
cordingly, we find that a hole in the momentum distribution appears if the Fermi sphere is
displaced less, precisely by the ceiling function ⌈ Np

2N ⌉. This is consistent with the fact that
SU(N) fermions (with Np<N) resemble bosons for N→∞. We find that the features of the
momentum distribution are consistent with the heterodyne interference images. In particular,
holes in the momentum distribution correspond to spirals in the interferograms. Note that, in
contrast with the bosonic case [22,52–54], we find that the order of the spirals does not reflect
the angular momentum quantization of the system. Furthermore when the number of com-
ponents N divides the number of particles Np,

Np
N − 1 dislocations (radially segmenting lines)
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appear in the interferograms giving information about the number of particles present in the
system –see Fig. 6. These observations still hold true in the case of small attractive or repulsive
interactions [55]. Moreover, we note that at zero interactions the properties displayed by the
homodyne and self-heterodyne phase portraits depend solely on

Np
N –see Figs. 6 and 7.

Repulsive regime – The persistent current fractionalizes with the bare flux quantum φ0 re-
duced by Np (implying that the energy is periodic with a period of φ0/Np). Fractionalization
originates through level crossings between the ground and excited states that result in the
creation of spin excitations in the ground-state [43]. Interestingly enough, we find that the
fractional values of the angular momentum are not displayed as holes in the momentum distri-
bution as in the non-interacting case. In addition, as soon as the correlations depart from the
non-interacting case, the characteristic hole becomes a small depression (finite valued local
minimum) in the momentum distribution at momentum k= 0 –Fig. 3 (a). Moreover, an addi-
tional ‘delay’ characterising the specific fractionalization of the angular momentum is found.
In other words, the depression occurs at a larger flux value than the one where the hole opens
up –Fig. 3 (b). Specifically, for a given system with Np particles, a momentum distribution

depression appears at φD = φH +
Np−1
2Np

, where φH is the flux at which the hole opens up at
zero interactions and the second term accounting for the fractionalization ‘delay’. Therefore,
such a property makes Np accessible by monitoring the actual value of the flux at which the
depression occurs. At intermediate interactions, the system experiences only partial fraction-
alization. Nonetheless, this is captured by the homodyne protocol, by tracking the momentum
distribution depression at zero momenta.

Heterodyne interferograms embody the features of the fractionalization. Apart from ob-
serving the ‘delay’ through the emergence of the spiral as in the zero interaction case, the
angular momentum fractionalization can be tracked by monitoring the number and orienta-
tion of the dislocations: The presence of the spin excitations modifies the dislocations that
are observed at zero interaction –see Figs. 8 and 9. In contrast with the zero interaction case
where the dislocations are not flux dependent, here the dislocations are dependent on the flux,
enabling us to monitor the spin excitations in the system through interference patterns.

Attractive regime – Like its repulsive counterpart, a system with attractive interactions also
experiences fractionalization, dependent on the number of components N . However, the frac-
tionalization is not readily observed in the momentum distribution, at least not directly. Due
to the reduced coherence that transpires from the formation of bound states, no depression is
observed –Fig. 4. As such, one cannot monitor the ‘delay’ in the occurrence of the aforemen-
tioned depression. Nonetheless, by measuring the variance of the width of the momentum
distribution one can deduce the SU(N) nature of the system through the number of steps de-
picted, but no information regarding the number of particles can be obtained –Fig. 5. In the
intermediate regime of interaction, we observe that the characteristic depression gets ‘delayed’
to larger values of the effective magnetic flux as the current gets fractionalized. Eventually, as
the interaction strength increases, the depression is smoothed out.

For SU(N>2) systems self-heterodyne interference patterns calculated via density-density
correlators are found to be incapable of providing observables to monitor the persistent current
pattern. In fact, a higher order correlator may be required in order to capture the features
of N -body bound states. In the case of SU(2) systems, we find that the fractionalization is
characterized by a change in the number of dislocations in the interferograms. Remarkably, the
flux values where a spiral emerges corresponds to the ones that would result in a depression
(that is suppressed in this regime) in the momentum distribution. Just like in its repulsive
counterpart, the spirals experience a two-fold ‘delay’ originating from the combined effect of
displacement of the Fermi sphere and the fractionalization.
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Self-heterodyne interference patterns for SU(2) attractive fermions were recently observed
experimentally in the context of the BCS-BEC crossover [42]. Specifically, the interference
fringes they observe correspond to BEC side of the crossover. Our analysis, instead, pertains to
the BCS regime, where our results predict a characteristic ‘delay’ that provides information on
the structure of the Fermi surface and the number of components involved in the bound state.
The interference patterns within the BCS regime still remain to be analysed experimentally,
with the main challenge lying in the fast expansion stemming from the large momenta occu-
pations of the fermions. One route to address present limitations involves using dilute density
systems such that the particles do not occupy levels with high momentum. Another option
would be to selectively address particles close to the Fermi surface and perform the expansion.

Lastly, we point out that a generalized version of the BCS-BEC crossover for SU(N > 2)
fermions can be addressed through persistent currents. Essentially, one can treat an N -body
bound state of attractive multicomponent fermions as composite fermions or bosons, described
by spinless fermions with p-wave interactions or super Tonks Girardeau phase of attracting
bosons for odd and even N respectively [71]. The parity of the persistent current flowing in
such systems (retains) loses its parity, i.e. be it diamagnetic or paramagnetic, if the wavefunc-
tion is (anti-)symmetric [44]. In the case of SU(2) fermions such an analysis was carried out
in [61] with self-heterodyne interference patterns. Naturally, for SU(N>2) fermions such in-
terferograms prove to not be a good measure as explained above. Another interesting avenue
to explore is the study of the phase diagrams of SU(N) attractive fermions. The capability
of SU(N) fermions to form bound states of different types and natures, gives rise to rich and
exotic phases [59]. This issue will be addressed in an upcoming work.

We note that, by monitoring the number of dislocations at weak interactions (repulsive or
attractive), we can gain knowledge on Np/N –Figs. 6 and 7 - this feature provides the gen-
eralization of [55] to N -component fermions. Going to the strongly interacting regimes, the
number and configuration of the dislocations changes, reflecting the persistent current frac-
tionalization –Figs. 8 and 9. To be specific, there are ⌈Np

2 ⌉+1 interference patterns with various
dislocation numbers and orientation. This feature implies that, for repulsive interactions, we
can access the number of particles Np; for attractive interaction we can access on the number
of components N (see [56] for characterization of SU(N) systems through neural networks).

In summary, we have shown how one can characterize SU(N) correlated matter-wave
through homodyne and self-heterodyne interference patterns. We believe that our findings
are well within the current state-of-the-art of the field and can be experimentally traced. For
the repulsive case, the experimental analysis could be carried out through the quantum gas
microscopy [72–75].
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A Homodyne detection protocol

A.1 Analytical derivation of the momentum distribution at zero interactions

In cold atoms systems, the persistent current is experimentally observed through time-of-flight
(TOF) imaging. This entails looking at the momentum distribution of the gas, which is one of
the few observables that can be experimentally probed [76]. Here, we will give the derivation
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for the momentum distribution.

Starting from the expression for the one-body correlator n(r, r′, t) defined as

〈n(r, r′)〉= 〈Ψ†(r)Ψ(r′)〉 , (A.1)

where r is position, and Ψ†(r) and Ψ(r) are the fermionic creation and annihilation field op-
erators. Expanding the field operators in the basis set of the single-band Wannier functions
w j(r) such that Ψ(r) =

∑L
j w j(r− r j)c j , the two-point correlator has the following expression

〈n(r, r′)〉=
L
∑

j,l

w∗l (r− rl)w j(r
′ − r′j)〈c

†
l c j〉 , (A.2)

with w j(r − r j) being the Wannier function localised at site j with position r j and L being
the number of lattice sites. If we consider the free expansion in time t of the particle density
n(r, r′, t), it is still defined as in Equation (A.2), but the time dependence is encoded in the
expansion of the Wannier function w j(r, t) that reads

w j(r− r j , t) =
1
p
π

η j

η2
j + ıω0 t

exp
§

−
(r− r j)2

2(η2
j + ıω0 t)

ª

, (A.3)

where η j is the width of the center at the j-th site andω0 =
ħh
m with ħh and m denoting Planck’s

constant and the particles’ mass respectively, both of which are set to 1 in this calculation.
Note that we have taken the zeroth order approximation of the Wannier function and the
harmonic approximation. By letting the density distribution to expand for large values of
time, one obtains the momentum distribution n(k). The momentum distribution is defined as
the Fourier transform of the one-body correlator n(r, r′),

〈n(k)〉=
∫

eık(r−r′)〈Ψ†(r)Ψ(r′)〉drdr′ , (A.4)

where k is the momentum. One can verify that limt→∞〈n(r, r′, t)〉 ≈ 〈n(k)〉, by taking the
limit t →∞ of Equation (A.3) and performing a Taylor expansion.

Substituting the expression for the field operators into Equation (A.4), the expression for n(k)
reads

〈n(k)〉=
∫

eık(r−r′)
L
∑

j,l

[w∗l (r− rl)w j(r
′ − r′j)〈c

†
l c j〉]drdr′ . (A.5)

Utilising the change of variables R= r− r j and R′ = r′ − r′l , we arrive to

〈n(k)〉=
∫

eık(R−R′)
L
∑

j,l

eık(rl−r′j)[w∗l (R)w j(R
′)〈c†

l c j〉]dRdR′ , (A.6)

which by making use of the fact that w(k) =
∫

w(R)eık·RdR, can be further simplified to give

〈n(k)〉= |w(k)|2
L
∑

j,l

eık(rl−r′j)〈c†
l c j〉 , (A.7)

with w(k) being the Fourier transform of w(R). Finally, we write our ring configuration explic-
itly as

〈n(k)〉= |w(k)|2
L
∑

j,l

eı
�

kx r
�

cos( 2πl
L )−cos
�

2π j
L

��

+ky r
�

sin( 2πl
L )−sin
�

2π j
L

���

〈c†
l c j〉 , (A.8)
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where the momentum vector can be written as k= (kx , ky) and polar coordinates were intro-
duced r = (r cosθ , r sinθ ), with θ = 2π

L l.We introduce the creation operator and its Fourier
transform

c†
l =

1
p

L

L
∑

k

e−ıkl c†
k , (A.9)

as well as the Fourier transform of its counterpart the annihilation operator

c j =
1
p

L

L
∑

k′
eık′ jck′ . (A.10)

The one-body correlator 〈c†
l c j〉 in Fourier space reads

〈c†
l c j〉=

1
L

L
∑

k,k′
e−ıkl+ık′ j〈c†

kck′〉 . (A.11)

Furthermore, at zero interactions we have that 〈c†
kck′〉 = δk,k′ . Consequently, the expression

for the momentum distribution reads

〈n(k)〉=
1
L
|w(k)|2

L
∑

j,l

eı
�

kx r
�

cos( 2πl
L )−cos
�

2π j
L

��

+ky r
�

sin( 2πl
L )−sin
�

2π j
L

���

∑

{q}

e−
2πı

L (l− j)q , (A.12)

where we made use of the fact that for free fermions k = 2π
L q with q being the quantum number

labeling the Fermi sphere levels. At this point, by setting kx = |k| sinφ and ky = |k| cosφ we
have that

〈n(k)〉 ∝
1
L

∑

{q}

�

�

�

�

L
∑

l

eır(B sinφ cosθl+B cosφ sinθl )e−
2ıπl

L q

�

�

�

�

2

, (A.13)

where B =
p

2|k|2. Using the trigonometric identity sin(A+ B) = sin Acos B + cos Asin B, the
expression is simplified even further and reads

〈n(k)〉 ∝
1
L

∑

{q}

�

�

�

�

L
∑

l

eırB sin(φ+θl )e−
2ıπl

L q

�

�

�

�

2

. (A.14)

The expression in Equation (A.14) is an q-th order Bessel function of the first kind [55]

Jq(x) =
1

2π

π
∫

−π

eı(x sinτ−qτ) , (A.15)

where x = rB and τ = 2πl
L . It is important to stress here that the replacing the sum by

an integral is only an approximation, which becomes valid in the thermodynamic limit. As a
result, by setting

Jq(B)≈
L
∑

l

eırB sin(φ+θl )e−
2ıπl

L q , (A.16)

we have that the momentum distribution reads as

〈n(k)〉 ∝
1
L

∑

{q}

|Jq(k)|2 . (A.17)
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This enables us to study the momentum distribution analytically, by considering it as a sum-
mation of different Bessel functions as was carried out in [55] and generalized to SU(N) in
the main text. It is important to note that the Equation (A.17) only holds at zero interactions.
In the case of interacting particles 〈c†

kck′〉 ̸= δk,k′ . As such, we no longer have an analyti-
cal expression for the momentum distribution and different behaviours are observed in the
interacting regimes as reported in this paper.

A.2 Emergence of a hole in the momentum distribution

Figure 10: SU(2) particle occupation energy levels for Np = 2,4, 6,8 particles and
their displacement with angular momentum quantization ℓ at zero interaction. It is
clear that with increasing Np one needs a higher value of ℓ such that the particles
do not occupy the n = 0 level. Note that there are two different parity cases corre-
sponding to Np = (2m+ 1)N and Np = (2m)N with m being an integer number.

For a hole to open, one requires that the momentum distribution collapses to zero at the ori-
gin. This can only occur when the Fermi sphere is displaced by ⌈ Np

2N ⌉ and there are no particles
occupying the n= 0 level. The distribution of the particles needs to be such that it is symmet-
rical around the n= 0 level.

Non-interacting: Let us take a look at Fig. 10 where we consider the occupation of SU(2) par-
ticles at zero interaction. In the case of Np = 2 and Np = 4, we see that as we increase the
effective magnetic flux φ and pass from the first parabola with angular momentum quantiza-
tion ℓ = 0 to the second one with ℓ = 1 (see Fig. 11), the Fermi sphere is displaced such that
there are no particles occupying the n= 0 level. In this case, ℓ= 1 corresponds to the angular
momentum ℓH for a hole to open up with φH = 0.5 (φH = 1.0) for Np = 2 (Np = 4). The value
of φH corresponds to the flux value where we traverse to the energy parabola with angular
momentum ℓH . In the case of Np = 6 and Np = 8, in contrast with the Np = 2 and Np = 4, one
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needs to go the third parabola with ℓ= 3 to clear the n= 0 level. As such, the opening of the
hole in the momentum distribution is delayed since a higher value of φ is required.

Figure 11: Energy as a function of the effective magnetic flux φ, denoted by E and
φ respectively, for systems with Np = (2m+ 1)N (left) and Np = (2m)N (right). As
one crosses from one parabola to the next with increasing φ, the angular momen-
tum quantum number ℓ increases. The difference between the left and right panels
stems from the parity of the system which is diamagnetic and paramagnetic respec-
tively depending on whether the ground-state energy increases or decreases with flux
φ [43, 60]. The degeneracy point, which is the point where two parabolas cross, is
at (half-odd) integer values for (diamagnetic) paramagnetic systems.

Figure 12: Schematic figure of the energy E against effective magnetic flux φ for
diamagnetic (left) and paramagnetic (right) cases. Top panel depicts the diamagnetic
and paramagnetic cases at zero interaction for SU(2) fermions (holds for any N). The
middle panel shows the system for 2 and 4 particles with infinite repulsive interaction
U . Comparing this panel with the one at U = 0, we see that the hole for Np = 2
(green) and Np = 4 (yellow) is delayed on going to infinite repulsion. Likewise for
Np = 6 (cyan) and Np = 8 (magenta), we also observe a delay in addition to the one
that is observed at U = 0 (see Fig. (11)).

Repulsive: Turning our attention to the infinitely repulsive case, we observe a depression in-
stead of a hole. If we consider Np = 2 with SU(2) symmetry with infinite repulsion, we see
the depression at a higher value of the flux than the non-interacting case. Indeed, we find the
depression with a ‘delay’ of 1

2Np
. Going to the four particle case, the depression is delayed by

3
2Np

(reduced period of one of the parabolas is 1/Np). Considering more cases, we find that

for a depression to appear for a given Np with infinite repulsion, φD = φH +
Np−1
2Np

.

19

https://scipost.org
https://scipost.org/SciPostPhys.15.4.181


SciPost Phys. 15, 181 (2023)

The depression is tracked through the second derivative of the momentum distribution n(kx , ky)

at kx = ky = 0, defined as ∂
2n(kx ,0)
∂ k2

x

�

�

kx=0. By noting how the derivative changes from negative
to positive, which corresponds to a peak and depression respectively, we are able to observe at
what values of the flux φ a depression appears for a given interaction U . In turn, the second
derivative gives us insight into the fractionalization of the persistent current by monitoring the
‘delay’ of the depression.
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Figure 13: Second derivative of the momentum distribution ∂ 2n(kx ,0))
∂ k2

x

�

�

kx=0 evaluated
at kx = ky = 0, as a function of the effective magnetic flux φ and interaction U . The
left and right panels correspond to the repulsive and attractive regimes respectively
for Np = 2 (top), Np = 4 (middle) and Np = 6 (bottom) SU(2) fermions. In both
regimes, we observe that (i) as the number of particles increase the depression is
delayed to higher flux values; (ii) there is an extra delay for stronger interactions.
However, a notable difference is that in the attractive case the depression is smoothed
out with increasing interactions. Results were obtained with exact diagonalization
for L = 15 sites. Note that the y-axis is not linear in the values of the interaction.

Fig. 13 corresponds to systems with repulsive interactions. As previously discussed, the value
at which the depression is observed (transition from blue to green) appears at a larger φ with
increasing U . As U → ∞, the system attains complete fractionalization, which is reflected
from the fixed value of the flux, corresponding to φD. A peculiar phenomenon in Fig. 13 (b)
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and (c) is the alternation between peak (blue) and depression (red) at flux values preceding
φH . We would like to point out that the red areas are small in value that would correspond to
plateaus in an experimental setting.

Attraction: For infinitely attractive interactions, the energy also fractionalizes with a reduced
period of φ0/N irrespective of the number of particles. For intermediate interactions, there
is a momentum distribution depression appearing at φD = φH +

N−1
2N –Fig. 4. Indeed, just

like in its repulsive counterpart, the depression experiences a two-fold ‘delay’. However, in
this case the ‘delay’ depends on both the particle number (through φH) and on the number of
components (second term).

Once the system fractionalizes fully, indicating the formation of the N -body bound state, the
depression appears at φD. The depression is small due to the reduced coherence. If the inter-
action keeps increasing, one will no longer find a depression atφD. Indeed, largerφ values are
required for a depression to appear. Unlike the repulsive case, there is no alternation between
depression and peak.

(a) (b)

(c) (d)

Figure 14: Left panel: Cross-section of the momentum distribution n(kx , 0) for
U = −5 (top) and U = 10, 000 (bottom) as a function of the effective magnetic flux
φ. On the right panels, there is the corresponding momentum distribution n(0, 0)
for kx = ky = 0. Results were obtained with exact diagonalization for Np = 4, N = 2
for L = 15.

The peculiar behaviour observed in Fig. 13 (b) and (c) can be understood through the cross-
section of the momentum distribution depicted in Fig. 14 (c). Indeed, we find that the height
of the momentum distribution peak/depression varies with φ. This phenomenon is more
clear if one looks at the momentum distribution n(0,0) at kx = ky = 0, which shows the non-
monotonous behaviour in the momentum distribution. On the other hand, the behaviour is
monotonic for attractive interactions –Figs. 14 (a) and (b). The non-monotonous behaviour
observed at infinite repulsion is the reason why the variance of the momentum distribution
does not give good diagnostic tool in this regime. This is in sharp contrast with its attractive
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counterpart.

A.3 Expansion of the density distribution

The momentum distribution is obtained by releasing the atoms from the trap and observing
the particle density distribution after a long expansion time. Initially at time t = 0, one ob-
serves the Wannier function localized on each site. Then on going to intermediate times, the
ring expands to a characteristic hole with protruding spirals giving rise to a peculiar shape
resembling a ‘shuriken’–Figure 15.

(a) (b)

(c) (d)

Figure 15: Density distribution n(r, t) at an intermediate time t = 3, for various
values of the flux φ. On increasing the flux, we go from a sharply peaked Gaussian
(leftmost panel) in the middle, to a characteristic hole with spirals radiating from it.
Eventually, as the size of the hole increases, the intensity from the spirals increases
(rightmost panel), resembling a ‘shuriken’. The results were calculated with exact
diagonalization for Np = 4 with N = 2 and L = 15 at U = 0 for φ/φ0 = 0,1, 2,4.

(a) (b)

Figure 16: Density distribution n(r, t) at an intermediate time t = 3 evaluated at
φ/φ0 = 4 andφ/φ0 = −4. The right (left) panel corresponds toφ = 4 (φ = −4) and
the direction of the protruding spirals is clockwise (anti-clockwise). The direction of
the rotation by the artificial gauge field is reflected in the quantum shuriken.The
results were calculated with exact diagonalization for Np = 3 with N = 3 and L = 15
at U = 0.
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The direction of the spirals, be they clockwise or anti-clockwise gives an indication about
the directional flow of the current –see Fig. 16. Eventually at longer times, one recovers the
characteristic momentum distribution.

B Self-heterodyne detection protocol

Here, we consider the density-density correlator G(r, r′, t) for an expanding ring and an addi-
tional site in the center at a fixed time t. The two-body correlator is defined in the following
way

G(r, r′, t) =
N
∑

α,β

〈nα(r, t)nβ(r
′, t)〉 . (B.1)

The density operator is defined as n(r, t) = ψ†(r, t)ψ(r, t) where ψ† = (ψ†
R +ψ

†
C) being the

field operator of the whole system of the ring and the center, denoted by R and C respectively.
Initially, the ring and the center are decoupled until they are released from their confinement
potential. Thus, at time t = 0 the ground-state can be seen as a product state |φ〉= |φ〉R⊗|φ〉C .

Assuming free expansion for t ≥ 0, the number of terms in the G(r, r′, t) can be significantly
reduced. Firstly, terms consisting of an odd number of creation or annihilation operators have a
null expectation value due to particle conservation. Likewise, terms where either both creation
or annihilation operators act on one system also vanish. As such, the only surviving terms are
those comprised of an equal number of creation-annihilation pairs, one acting on the ring and
another on the center. Consequently, the expression for the density-density correlator reads

N
∑

α,β

〈nα(r, t)nβ(r
′, t)〉=

N
∑

α,β

〈nα(r, t)nβ(r
′, t)〉R + 〈nα(r, t)nβ(r

′, t)〉C

+
N
∑

α,β

〈nα(r, t)〉R〈nβ(r′, t)〉C + 〈nβ(r, t)〉C〈nα(r′, t)〉R

+
N
∑

α,β

〈φC |ψ
†
C ,α(r)ψC ,β(r

′)|φC〉[δ(r− r′)− 〈φR|ψ
†
R,β(r

′)ψR,α(r)|φR〉]

+
N
∑

α,β

[δ(r− r′)− 〈φC |ψ
†
C ,α(r)ψC ,β(r

′)|φC〉]〈φR|ψ
†
R,β(r

′)ψR,α(r)|φR〉 .

(B.2)

The first four terms in Equation (B.2) do not give rise to any interference patterns. Indeed, it is
the cross-terms between the ring and the center (last two terms) that give rise to interference.
Therefore, taking these two terms and decomposing into the Wannier states yields

GR,C =
N
∑

α,β

L
∑

j,l=1

I jl(r, r′, t)
�

N0(δ jl − 〈φR|c
†
l,αc j,α|φR〉) + (1− N0)〈φR|c

†
l,αc j,α|φR〉
�

, (B.3)

which is the interference of the Wannier function where

I jl(r, r′, t) = wc(r
′, t)w∗c(r, t)w∗l (r

′ − r′l , t)w j(r− r j , t) ,

and N0 = 〈φC |c
†
0,β c0,β |φC〉 defines the expectation value of the number operator center, which

in the current protocol is always equal to one. Consequently, the second term in Equation (B.3)
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does not contribute to the interference pattern. Note that one of the summations over the
number of components is removed due to the Kronecker delta δαβ that arises due to the colour
conservation nature of the Hamiltonian describing the system. To enhance the visibility of the
spirals, we neglect the Kronecker delta in the first term of Equation (B.3).

B.1 Repulsive interactions

Figure 17: The interference GR,C between ring and center for Np = 4 particles with
SU(2) symmetry, is shown as a function of the effective magnetic flux φ at U = 5000
and short time t = 0.026. All correlators are evaluated with exact diagonalization
for L = 15 by setting r′ = (0, R) and radius R = 1. The color bar is non-linear by
setting sgn(GR,C)

Æ

|GR,C|.

The characteristic spirals are also observed in interferograms at infinite repulsion. We find
that multiple spirals appear at different values of the flux, that for the sake of simplicity we
are going to distinguish as A and B. The emergence of the multiple spirals can be clearly seen
by looking at Fig. 17, which depicts the interfergorams at infinite repulsion on going from
ℓ= 0 to ℓ= 1. At φ = 0.92, we observe spiral B that disappears on going to the next parabola
with φ = 1.22. The last panel shows the appearance of spiral A where φ exceeds φSA

. This
spiral persists on going to the next parabolas.

Indeed, their emergence is not as clear cut as the zero interaction case. The appearance of spi-
ral A coincides with the depression of the momentum distribution, occurring atφSA

=φH+
Np−1
2Np

.
Spiral A gains more arms as the angular momentum is increased, as in the zero interaction
case. However, spiral B appears when the angular momentum of the system corresponds to
ℓH , the angular momentum at which a hole opens up at U = 0. In particular, it appears at
φSB
= φH+

1
2Np
+∆ (φSB

= φH−
1

2Np
) for a diamagnetic and paramagnetic system respectively,

with ∆ = − 1
2Np

for an odd number of particles. and zero otherwise This spiral only appears

for the period of that parabola, which corresponds to 1
Np

. The additional term 1
2Np

takes into
account the change in the profile of the energy brought on by the level crossings – see Fig. 12.
In the special case of Np = 2 SU(2) particles, where the second term of φS reads as 1

2Np
, spiral

A and B are one and the same.
It is important to note that due to the large number of dislocations present in the system with
infinite repulsive interactions, it becomes harder to deduce the nature of the spiral.
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B.2 Attractive interactions

As previously mentioned, the fractionalization in attractive fermionic systems depends only
on the number of components. For of SU(2) systems, the fractionalization is such that we go
from one parabola at U = 0 to three piece-wise parabolic segments as U →−∞. In line with
what is observed for repulsive systems, the level crossings that occur during fractionalization
can be observed in the self-heterodyne interferograms.

Figure 18: The interference GR,C between ring and center for Np = 2 (top) Np = 4
(middle) and Np = 6 (bottom) particles with SU(2) symmetry, is shown as a function
of the effective magnetic flux φ at U = −3 and short time t = 0.025. All correlators
are evaluated with exact diagonalization for L = 15 by setting r′ = (0, R) and radius
R= 1. The color bar is non-linear by setting sgn(GR,C)

Æ

|GR,C|.

Such behaviour can be clearly seen in Fig. 18 that shows the interferograms for Np = 2,4, 6
SU(2) fermions with attractive interactions. In all three cases, we see the appearance of an
extra dislocation for φ corresponding to a fractionalized parabola. In the case of Np = 4,
there are left and right panels corresponding to the fractionalized parabola as opposed to the
Np = 2, 6 cases due to a different parity at U = 0.

Lastly, we have that the emergence of the spiral is delayed by N−1
2N . It is important to note that

unlike the repuslive case, here we do not observe the emergence of the second spiral (called
spiral B in Sec. B.1).
In the intermediate attractive interaction regime, we can track the partial fractionalization of
the persistent current through self-heterodyne interference patterns just like its repulsive coun-
terpart –Fig. 19. As the interaction is increased, the number and shape of dislocations changes
with the effective magnetic flux threading the system, reflecting the the reduced periodicity
of the current. Additionally, the emergence of the spiral experiences an additional delay due
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to the fractionalization of the system. However, as explained above, the delay is solely depen-
dent on the number of components and does is equivalent for systems having different particle
numbers.

Figure 19: The interference GR,C between ring and center for Np = 4 particles with
SU(2) symmetry against the effective magnetic flux φ at short time t = 0.0225 as a
function of the interaction U . In this figure, one can clearly see how the number and
orientation of the dislocations change as one increases the interaction. All correlators
are evaluated with DMRG for L = 15 and attractive |U | = {0,1, 2} (panels are in
descending order) by setting r′ = (0, R) and radius R= 1. The color bar is non-linear
by setting sgn(GR,C)|GR,C|1/4.

B.2.1 CSF configuration

In the main text, it was stated that SU(N) fermions are capable of forming bound states having
different types and natures. For instance, SU(3) symmetric fermions form two types of bound
states: trions where all three colours are bounded; and colour superfluids (CSFs) having two
of the colours in a pair with the other one remaining unpaired [59]. It has been demonstrated
in an earlier work [44], that the persistent current is able to distinguish between these two
bound states, which in turn can be read-out through the momentum distribution in the TOF
expansion. Previously, we have explained that the self-heterodyne interference patterns are
found to not be able to provide an observable to monitor the persistent current pattern, since
a higher order correlator is probably required to capture the features of an N -body bound
state. Indeed, three-body bound states of SU(3) fermions were not able to be analysed via
self-heterodyne interferences. However, we find that CSFs being two-body bound states, can
be analysed through observables obtained with the self-heterodyne protocol. In what follows,
we provide a brief explanation on how to read-out the persistent currents of CSFs through
self-heterodyne interferograms.

For CSF bound states to form in a canonical ensemble, which is the case considered here,
one needs to break the SU(3) symmetry. Here, this is carried out by choosing asymmetric in-
teractions between the colours that we denoted as A, B and C such that |UAB| ̸= |UBC | ≠ |UAC |.
For a CSF, we require that one interaction between the colours is significantly larger than the
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Figure 20: The interference GR,C between ring and center for Np = 3 three-
component fermions in a CSF configuration, is shown as a function of the effective
magnetic flux φ at short time t = 0.0225. Main panels corresponds to the CSF,
upper panel to the two-body bound state and bottom panel to the unpaired parti-
cles. All correlators are evaluated with exact DMRG for L = 15 by setting r′ = (0, R)
and radius R = 1. The CSF configurations is achieved by |UAB| = |UBC | = 0.01 and
|UAC |= 3. The color bar is non-linear by setting sgn(GR,C)|GR,C|1/4.

other two such that for example |UAC | ≫ |UAB| = |UBC |. On account of the symmetry break-
ing, our analysis can be carried out by analysing the interference patterns of fermions of a
given colour: i.e. analysis of the interferograms of the bound pair and unpaired is done sepa-
rately instead of looking at the phase portrait of the CSF as a whole. Naturally, such an analysis
relies on the capability to address fermions of different colours separately in experiments [29].

Figs. 20 depicts the interference patterns for Np = 3 particles with asymmetric interactions
such that the system is in a CSF configuration. The top row corresponds to the interference
patterns of the CSF, where we observe the emergence of a spiral after displacing half the Fermi
sphere. At a glance, it looks as if the interferograms of the CSF correspond to that of non-
interacting particles. However, looking at the phase portraits of fermions in different colours
paints a more interesting picture. For the bound pair, we observe that on going from one
parabola to the other, the number and orientation of the dislocations change to account for
the fractionalization. Additionally, the emergence of the spiral experiences an extra delay in
the value of the flux that arises from the fractionalized parabolas. For the unpaired particle, as
discussed in the main text, the interference patterns are the same as the free particle case as
the interaction it experiences is very small. An interesting point worthy of mention is the lack
of dislocations in the interference patterns of the free particle. It appears that on account of
the SU(3) symmetry breaking, the Fermi spheres of the bound and free particles are essentially
decoupled. Lastly, we point out that when considering the full interferogram, the dislocation
that appears for the bound pair is not readily visible due to its reduced coherence, which is
significantly smaller than that of the free particle. Such a statement is in line with the TOF
distribution analysis carried out in [44]. The same observations hold when considering a large
number of particles, with the added difference that there is an increased delay in the flux for
the spiral to emerge and in the number of dislocations as can be readily observed from Fig. 21.
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Figure 21: The interference GR,C between ring and center for Np = 6 three-
component fermions in a CSF configuration, is shown as a function of the effective
magnetic flux φ at short time t = 0.0225. Main panels corresponds to the CSF, upper
panel to the two-body bound state and bottom panel to the unpaired particles. All
correlators are evaluated with DMRG for L = 15 by setting r′ = (0, R) and radius
R = 1. The CSF configurations is achieved by |UAB| = |UBC | = 0.01 and |UAC | = 3.
The color bar is non-linear by setting sgn(GR,C)|GR,C|1/4.
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