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Abstract

Recent advances in programmable quantum devices brought to the fore the intrigu-
ing possibility of using them to realise and investigate topological quantum spin liquid
phases. This new and exciting direction brings about important research questions on
how to probe and determine the presence of such exotic, highly entangled phases in a
noisy quantum environment. One of the most promising tools is investigating the be-
haviour of the topological excitations, and in particular their fractional statistics. In this
work we put forward a generic route to achieve this, and we illustrate it in the specific
case of Z2 topological spin liquids implemented with the aid of combinatorial gauge sym-
metry. We design a convenient architecture to study signatures of fractional statistics via
quasiparticle interferometry, and we assess its robustness to diagonal and off-diagonal
disorder, as well as to dephasing – effects that are generally pervasive in current quan-
tum programmable devices. Interestingly, when turned on its head, our scheme provides
a remarkably clear test of the ‘quantumness’ of these devices, with robust signatures that
crucially hinge on quantum coherence and quantum interference effects, and cannot be
mimicked by classical stochastic processes.
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1 Introduction

A distinctive feature of topologically ordered quantum fluids [1] is the fact that they host
excitations with fractional exchange statistics [2, 3]: when two identical quasiparticles trade
positions, the many-body wavefunction can acquire a phase other than 0 (as for bosons) or
π (as for fermions). Quantum Hall liquids are examples of topologically ordered charged
fluids with anyonic excitations [4, 5]. Experimental validation of fractional statistics in the
quantum Hall effect was only recently accomplished [6, 7]; in particular, nontrivial exchange
statistics were observed in Ref. [7] using an interferometric approach [8]. Excitations with
fractional statistics are also predicted in quantum spin liquids – systems with topological but
not conventional magnetic order [9, 10]. While efforts to unambiguously identify gapped
spin liquids in naturally occurring materials are ongoing [11], the individual manipulation of
quasiparticles needed to detect fractional statistics – as achieved in electronic quantum Hall
systems – is not, in any evident way, within reach of being attained in magnetic materials,
although recent theoretical efforts have advanced proposals of possible probes [12,13].

Here instead, we present ways of realising and experimenting with quantum spin liq-
uid states using time-independent Hamiltonians that are programmable in quantum devices,
specifically focusing on devising ways to probe the exchange statistics of the quasiparticles. As
we shall demonstrate, an interesting byproduct of this research direction is the identification
of novel avenues to critically test quantum coherence in such programmable quantum devices.
Moreover, since these devices – as much perhaps as real materials – necessarily operate at fi-
nite temperature and in presence of noise and disorder, in our work we will set the stage and
provide at least initial answers to important questions such as: How much coherence (i.e., on
what length and time scales) is needed to observe effects of anyonic statistics in noisy topo-
logical quantum environments? And how do signatures of fractionalisation fare in presence
of disorder, noise and dissipation?

To carry out this scheme, one must first design topological spin liquid Hamiltonians with
realistic (1- and 2-body) interactions that could be programmed in existing quantum devices.
(For instance, programmable Z Z couplings and uniform transverse fields are available in D-
Wave annealers [14].) A key element of our work is the notion of combinatorial gauge symme-
try (CGS), which allows us to attain such quantum Hamiltonians while preserving exact gauge
symmetries, present for example in solvable quantum spin liquid models, like Kitaev’s Z2 toric
code.
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There are two types of excitations in a Z2 quantum spin liquid: spinons and visons;
and their excitation gaps differ substantially in the case of Hamiltonians programmed as in
Ref. [15]. The reason is that the vison gap is only perturbatively generated in powers of the
ratio of the transverse field Γ over the Z Z interaction J (and Γ < J is strictly required to realise
a Z2 spin liquid phase). The spinon gap, on the other hand, is of order J and on its own it
lands the system on a classical Z2 spin liquid state in which one can directly observe the loop
structure of the 8-vertex model [15]. This wide separation of scales between the spinon and
vison gaps is common whenever one relies on a perturbative expansion to obtain the local
gauge generators in an effective theory.

Refs. [16, 17] identified signatures of the mutual statistics of the spinons and visons that
could be observed in the regime where temperature is larger than the vison gap but smaller
than the spinon gap. In this regime the visons stochastically appear on random plaquettes
because their energy of formation is much smaller than temperature. In the presence of quan-
tum kinetic terms (such as a transverse field not weak compared to thermal noise), the spinons
acquire dynamics at a scale much faster than that of the visons, and they effectively quantum
diffuse in a background of randomly placed visons. Because of the mutual sermionic statistics
between the two types of quasiparticles, the quasi-static visons serve as sources of random π
fluxes, which lead to quantum interference corrections to the diffusion of the spinons in 2D. In
principle these corrections could be detectable, but an actual implementation of these ideas in
a programmable quantum device must incorporate other complications that may make com-
parison of the theory to the data difficult, such as sources of decoherence and disorder in the
couplings, and embedding complexities.

Here we present a scheme to detect the mutual statistics of spinons and visons interfero-
metrically. This proposal takes into account the aforementioned practical complications. The
main idea is not to work on a 2D geometry, but in a quasi-1D one, in which case the effect of
the π fluxes is magnified, leading to a sharper signature of the mutual statistics.

Because many programmable quantum devices are ‘black boxes’ to users, it is imperative
that we develop benchmarks and tests with the purpose of building confidence that what is
programmed reflects the physical system we intend to probe. One such test is to study the
effect of disorder and dephasing on the observables of these experiments, and to benchmark
quantum against classical behaviour. Such analysis allows us to have a comparative reference
to better understand also the degree of disorder and decoherence in the device.

It is important to note that, if successful, these experiments would constitute a direct ob-
servation of the statistics of visons and spinons in a static Hamiltonian setting. They would
therefore be complementary to those carried out in Ref. [18], using a 219-atom programmable
quantum simulator using Rydberg atoms, and in Ref. [19], through the evolution via a quantum
circuit running on Google’s lattice of superconducting qubits. In these systems the topological
state is prepared dynamically, either by quasi-adiabatic state preparation [18] or by applica-
tion of quantum gates [19]. Both are truly remarkable experiments that achieve the dynamical
preparation of a quantum spin liquid state. The goal of our work is to instead design these
same phases as the ground state of static Hamiltonians. Along this path, theoretical principles
such as combinatorial gauge symmetry are developed, and deployed.

In Sec. 2, we present a quasi-1D ladder model with the combinatorial gauge symmetry
and its effective mapping to a quasi-1D Z2 ladder by explicitly showing their local Z2 gauge
symmetry generators. We then discuss how the mutual sermionic statistics between spinons
and visons – two types of quasiparticle excitations of both models leads to the fragmentation
of spinon dynamics. In Sec. 3, we numerically simulate the spinon dynamics in the absence
and presence of visons by mapping it to a tight-binding model in a 1D chain where a single
spinon hops between sites and the quasi-static visons locate on the bonds. We further show the
robustness of spinon dynamics against dephasing and disorders – effects that are prevailing in
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current noisy intermediate-scale quantum (NISQ) devices, and compare it with classical par-
ticle diffusion with disorders. We then include a study on how mobile visons affect the spinon
dynamics. In Sec. 4, we detail the mapping between the CGS ladder and the Z2 ladder. We
study their low energy spectrum and find a one-to-one correspondence between the couplings
from the two models, and examine how the mutual semionic statistics in the Z2 ladder arise
in the CGS model. In Sec. 5, we elaborate on how probing the mutual statistic of a quasi-1D
Z2 ladder can be used to test the quantumness. Finally, we conclude in Sec. 6.

In Appendix A we further offer an example of how our scheme can be used to embed a
Hamiltonian with an exact Z2 gauge symmetry on a commercial D-wave device [15]. Our
results suggest that the operating temperatures and time scales in DW-2000Q are just outside
the range needed to observe coherent quasiparticle propagation in the Z2 quantum spin liquid
phase. Future developments of this architecture, as well as possibly current versions of other
architectures may however be suitable to observe the phenomena discussed in this work.

2 Probing mutual statistics of visons and spinons on a CGS ladder

The system we focus on is the 2-leg ladder in Fig. 1(a), with a gauge spin σ on each link ℓ, and
four matter spins µ on each site s. The matter spins are coupled to their four neighbouring
gauge spins according to the Hamiltonian

H =−
∑

s



J
∑

a∈s
ℓ∈s

Waℓ µ
z
aσ

z
ℓ + Γ0
∑

a∈s

µx
a



− Γ0
∑

ℓ

σx
ℓ , (1a)

where a ∈ s labels the four matter spins on site s, ℓ ∈ s labels the four bonds connected to site
s, and W is the 4× 4 Hadamard matrix

W =







−1 +1 +1 +1
+1 −1 +1 +1
+1 +1 −1 +1
+1 +1 +1 −1






. (1b)

We shall henceforth refer to this system as as a ‘CGS ladder’ (where CGS stands for combina-
torial gauge symmetry [20]).

This Hamiltonian has a local Z2 symmetry, generated by an operator Gp at plaquette p, see
Fig. 1(a), that both flips the two gauge spins around the plaquette, and flips and permutes the
states of the matter spins on the two stars neighbouring the plaquette:

Gp = F L
p Bp FR

p . (2)

Here Bp is the product of the x-components of the two gauge spins on the top and bottom
links of the plaquette p. The operators F L

p and FR
p flip and permute matter spins on the two

stars to the left and right (L and R, respectively) of the plaquette. Specifically, F L
p permutes

matter spins µ1↔ µ2 and µ3↔ µ4, and flips µ1 and µ2; FR
p permutes matter spins µ1↔ µ2

and µ3↔ µ4, and flips µ3 and µ4, as illustrated in Fig. 1(a). Explicitly, these operators can
be written in terms of SWAP gates and spin-flip operators:

F L
p =

1
2(1+µ1 ·µ2) µ

x
1 µ

x
2

1
2(1+µ3 ·µ4) ,

FR
p =

1
2(1+µ1 ·µ2) µ

x
3 µ

x
4

1
2(1+µ3 ·µ4) .
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Figure 1: (a) Geometry of the CGS ladder. Each vertex s has four on-site matter
spins (coloured in white) and four gauge spins (coloured in orange) on the links ℓ,
and they interact according to Eq. (1). Neighbouring sites share two gauge spins to
form a quasi-1D ladder. Local gauge symmetry operators Gp = Bp F L

p FR
p of Eq. (2)

act on plaquettes, labelled by p. The operators F L
p and FR

p permute (according to
the doubled-headed arrows in red) and flip matter spins (coloured in green) on the
two stars to the left and right [L and R] of Gp. (b) Geometry of the Z2 ladder. It
has the same symmetry as the CGS ladder in (a). The products of the x-component
of the two spins on the top and bottom branches define the generators of gauge
transformations, Bp. We refer to this model, with Hamiltonian Eq. (3), as a Z2 ladder.
(c) Geometry of two coupled CGS stars used to extract, by exact diagonalisation, the
effective Z2 ladder couplings from the CGS model, thus relating models (a) and (b).
The effective spinon hopping amplitude can be obtained from the energy splittings in
the spectrum of this small system with the boundary spins pinned to be in odd parity
with 3+ (black) and 1− (red) gauge spins (see Sec. 4).

One can verify that B2
p =
�

F L
p

�2
=
�

FR
p

�2
= 1, and thus G2

p = 1, and that [Gp, Gp′] = 0.
Correspondingly, the combinatorial gauge symmetry that gives rise to the Z2 symmetry of the
quantum spin liquid system proposed in Ref. [20] is also present in this quasi-1D model.

The operators Gp have eigenvalues ±1, which serve as conserved quantities of H. A vison
excitation is said to exist at plaquette p when Gp has eigenvalue −1. A spinon excitation is a
direct violation of the low energy conditions that minimise the dominant J term in a star s in the
Hamiltonian Eq. (1). Both excitations are gapped. (The vison gap appears only perturbatively,
once the transverse field is turned on.)

The CGS ladder depicted in Fig. 1(a) can be effectively mapped onto a quasi-1D Z2 lattice
gauge model (a Z2 ladder), depicted in Fig. 1(b). Only the gauge spins σ on the links ℓ are
retained as degrees of freedom, and the first term in the Hamiltonian can then be written
in terms of the usual toric code star operators involving the four bonds connected at a given
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(a)

(b)
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⋅ ⋅ ⋅⋅ ⋅ ⋅ π
(c)

Figure 2: Schematics of spinon propagation along the quasi-1D Z2 ladder in the
absence/presence of visons (labeled as a 0/π flux in blue at the centre of the plaquette
shown in the figure). (a) A single spinon (labelled as a red dot) initialised on the left
site, and a 0 flux state for the plaquette immediately on its right, allow it to hop
constructively across the top and bottom paths of the ladder, shown by the green
arrows, to the right neighbouring site, depicted as a red dashed circle. (b) A vison is
now located on the central plaquette, equivalent to a π flux threading it. Its presence
gives rise to destructive interference (opposite phases) of the two paths (top shown
in green with +1 phase and bottom shown in pink with −1 phase) due to the mutual
statistics of spinons and visons, and consequently the spinon cannot hop to the site
on the right. Namely, the presence of visons blocks the propagation of spinons, and
cuts the ladder into disconnected segments. (c) The gauge spins on the bottom legs
of the ladder are frozen (illustrated by grey dashed lines), e.g., pinned by an applied
field that is large compared to the other scales in the problem. The pinning field
on the bottom leg forces spinons to propagate only along the top leg of the ladder,
effectively removing any interference and therefore any interplay between spinons
and visons. In this case, spinons can hop freely along the chain.

site [21],

H = −λ
∑

s

∏

ℓ∈s

σz
ℓ −
Γ

2

∑

ℓ

σx
ℓ , (3)

where λ and Γ are appropriate energy scales [the choice of a factor of 1/2 in front of Γ is ex-
plained below Eq. (5)]. This Z2 ladder shares the same local gauge symmetry (here generated
by Bp) and quasiparticle excitations – spinons (violations of the low energy conditions that
minimise the dominant λ term in a star s) and visons (corresponding to eigenvalues Bp = −1)
– of the CGS ladder. The correspondence is investigated quantitatively in Sec. 4, where the
couplings of the effective Z2 ladder, λ and Γ/2, are obtained from the microscopic couplings J
and Γ0 of Eq. (1) through a numerical comparison of the spinon gap and hopping amplitudes.
In Sec. 4 we also discuss the emergence of semionic statistics between spinons and visons in
the CGS ladder.
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Consider the regime T ≲ Γ ≪ λ, where temperature is much smaller than the spinon gap
(∼ λ) and generally smaller than the transverse field, but much larger than the vison gap
(∼ Γ 2/λ); and consider an initial state with a single spinon localised on a given site. The
spinon number is effectively conserved in this regime,1 and therefore the spinon behaves as
a tight-binding particle evolving in time due to the transverse field Γ , propagating through a
background of thermally distributed visons. Because of the small matrix elements associated
to vison dynamics, the visons are quasi-static on the time scale of spinon hopping. This is the
same physical regime considered in Refs. [16,17] for 2D, but now in quasi-1D.

The virtue of the quasi-1D geometry proposed here is that the presence of visons halts the
spinon propagation altogether. Indeed, there are two paths for the spinon to move between
adjacent sites, as shown in Fig. 2(a): along the top or the bottom link of a plaquette (akin
to the two arms of an interferometer). The presence of a vison on a plaquette gives rise to
perfect destructive interference of the two paths, because of the π phase shift due to mutual
semionic statistics.2 Therefore the presence of visons cuts the quasi-1D system into finite
disconnected subsystems: spinons can only propagate along segments containing no visons.
Since the density of visons is close to a half in the limit of large temperature compared to the
vison gap, the mean free path of the spinons should be of the order of one lattice spacing.

This fragmentation of the spinon propagation, which trivially leads to a localised wave
function, can be comparatively tested against the scenario where a large longitudinal field is
applied on, say, the bottom links of the 2-leg ladder, see Fig. 2(b). The presence of this field
favours the gauge spins on the bottom links to point in the Zeeman-preferred direction, thus
suppressing spinon propagation along them. This in turn reduces the destructive interference
and increases the spinon mobility along the upper links of the ladder. In the limiting case
where the spins on the bottom links are pinned and the spinon can only propagate along
the top path, there is no quantum interference at all and free tight-binding propagation is
unimpeded. This delocalisation of the spinon as the bottom leg becomes polarised provides a
distinctive signature of the semionic statistics between spinons and visons.

In any currently available NISQ devices, certain degrees of noise or disorder are unavoid-
able, due for instance to non-zero operating temperature or cross-talk between qubits [25].
Hence, in the next section, we study in detail the spinon propagation in the background of ther-
mally distributed visons with and without effects of noise and disorder, and compare them with
classical diffusion. At last, we examine how vison dynamics affects the spinon propagation.

3 Study of the Z2 ladder

In order to account for the effects of a noisy environment, we focus for simplicity on the
limit where the CGS ladder is well approximated by the Z2 ladder model (i.e., a toric-code-
like Hamiltonian), which in turn can be described as a model of tight-binding spinons (with
hopping amplitude Γ ) on the sites of a 1D chain, with quasi-static stochastic visons on the
bonds. The vison energy scale is taken to be negligibly small, and their density is ρv = 1/2
throughout our work.

We focus mainly on the single spinon behaviour in a fixed vison background, therefore ne-
glecting dissipative processes corresponding to quasiparticle creation and annihilation events.
These are only accounted for, in an effective way in the form of classical stochastic vison cre-
ation and annihilation events, in Sec. 3.4.

1The long spinon lifetime in the limit of small Γ/λ is analogous to the exponentially long lifetime of doublons
in the Hubbard model in the large-U limit [22–24].

2Notice that moving a spinon around a vison corresponds to exchanging the two quasiparticles twice. The
semionic statistical angle upon exchanging them is π/2.
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Dephasing in the spinon dynamics can be thought of having two effects: on the one hand,
phase coherence is lost as a function of time as the spinon propagates along the ladder; on
the other hand, dephasing introduces a small random phase mismatch as the spinon hops to
an adjacent site along the top and bottom links of the ladder. For computational convenience,
we separate these two effects and treat them as if they were independent of one another.
We implement the first effect by including a dephasing Lindblad term, of strength γ, in our
spinon tight-binding model. Since we are not interested in straightforward quantum oscillatory
behaviour of the wavefunction (see the discussion in Sec. 5), we set for convenience γ= Γ/2.
Different values of γ could easily be studied but we do not expect them to qualitatively alter
the conclusions of our work with respect to the long time behaviour.

As discussed in Sec. 2, visons disconnect an ideal 1D chain into separate segments. This
distinctive effect due to mutual semionic statistics is a promising experimentally viable route
to a signature of quantum spin liquid behaviour, as well as a test of quantum mechanical coher-
ence in the system. The second effect of dephasing however introduces a phase mismatch that
alters the otherwise perfect destructive/constructive interference in the presence/absence of
visons. We mimic this effect in an approximate way by introducing static random off-diagonal
disorder in the spinon tight-binding model. (Incidentally, the fact that signatures of the pres-
ence of visons survive up to off-diagonal disorder as strong as ∼ Γ/2, as illustrated in Fig. 4,
is a justification a posteriori of the choice of Lindblad dephasing γ= Γ/2.)

For completeness, we also include in this section a study of the effects of a static random
onsite potential (diagonal disorder) for the spinons, as well as the effects of (stroboscopic)
stochastic dynamics of the visons background. Finally, it will be important to contrast the
behaviour of the quantum system to that of a classical particle performing diffusive random
walk on a disordered 1D chain – if we are indeed to devise reliable signatures of quantum
interference effects.

One final note is in order. Given that our tight-binding particles are in fact emergent
quasiparticles in a spin system, one ought to account for noise coupling to the spins. This
leads to what was dubbed ‘dephasing with strings attached’ [26]. In the parameter range of
interest in our work however (namely, for γ= Γ/2 and for the size and time scales considered
here) we find that the strings only lead to minimal quantitative differences that can be safely
ignored.

3.1 Base model

Our effective clean reference model is a spinon hopping on a 1D chain, with amplitude Γ = 1
and Lindblad dephasing γ= Γ/2, governed by the dynamical equation

ρ̇ss′ = −i [H,ρ]ss′ − γ(1−δss′)ρss′ , (4)

where s, s′ label the position of the spinon, and its Hamiltonian reads

H = −Γ
L−1
∑

s=1

�

b̂†
s b̂s+1 + h.c
�

, (5)

with Γ being the hopping amplitude and b̂†
s , b̂s the bosonic operators creating and annihilating

a spinon on site s. Notice that the hopping amplitude Γ of a spinon hopping in a single chain
is twice the strength of a spinon hopping on a ladder with two legs in Eq. (3). In the clean
limit considered here, the presence of a vison on a bond switches the corresponding hopping
term Γ to zero.

We simulate a chain of length L = 25 with open boundary conditions, governed by Eq. (4).
We implement a vectorized form of the density matrix [27] leading to ordinary differential
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Figure 3: Histograms of the spinon wavefunction |Ψ(x , t)|2 as a function of position
x (in units of lattice spacing) at different times, for our base model Eq. (4) on a
chain of length L = 25, after the spinon is initially localised in the middle of the
system. Top panels: time t1 = 1 in units of 1/Γ . Bottom panels: time t2 = 100.
The right vs left panels illustrate the remarkable effect of the presence vs absence of
mutual semionic statistics, respectively. The wavefunction profile |Ψ(x , t)|2 has been
averaged over 10 · 210 infinite temperature vison configurations with average vison
density ρv = 1/2.

equations, which we then solve numerically to obtain the spinon wavefunction Ψ(x , t). When
visons are present in the system (equivalently, in presence of mutual semionic statistics) we
average our results over 10 · 210 infinite temperature vison configurations with average vison
density ρv = 1/2. The resulting behaviour of |Ψ(x , t)|2 is illustrated in Fig. 3.

The effect of mutual statistics between spinons and visons is dramatic. For example, a
spinon initially localised on a given site along the chain can only relax to a wave function with
finite support (Fig. 3), that can be computed exactly (see App. B). This is in stark contrast with
the case where mutual statistics is switched off (equivalently, the visons are removed from the
system), and the wave function can relax and become uniformly delocalised across the chain.

3.2 Disorder

We next investigate how robust this signature of mutual semionic statistics and quantum spin
liquid behaviour is to the presence of both diagonal and off-diagonal disorder. Diagonal dis-
order is expected to lead to localisation of the spinon, possibly inducing a behaviour similar
to disconnecting the chain into segments due to the presence of visons. (This same point has
already been investigated in higher dimensions [17,28], where it was shown that the effect of
disorder is significantly different, and weaker, than the effect of visons and mutual statistics.)
Off-diagonal disorder also generically leads to localisation in 1D systems; moreover, it can al-
low hopping across bonds that would otherwise be disconnected because of perfect destructive
interference in presence of visons.

We discuss here the effects of diagonal and off-diagonal disorder on the spinons, whilst
keeping the visons randomly distributed and static. However, one should note that what we
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Figure 4: Comparison of the effects of random onsite disorder (zero mean and stan-
dard deviation σ0), top panel, and random hopping amplitudes (zero mean and
standard deviation σ1), bottom panel. In all cases the behaviour of 〈x2〉 (in units
of lattice spacing) vs time t (in units of 1/Γ ) was computed with dephasing γ= Γ/2,
hopping Γ = 1, and averaged over 210 disorder realisations for system size L = 25;
the blue-palette curves correspond to propagation in the absence of visons, and the
orange-palette ones to the presence of visons (in which case, the random vison con-
figuration was also changed with each disorder realisation). In the top panel we also
show the semi-analytical solution of the case without disorder (dash-dotted black
line), detailed in App. B.

refer to here as off-diagonal terms correspond to onsite energies for the visons, whereas di-
agonal terms correspond to vison hopping amplitudes, whose effects we do not model. The
former are unlikely to affect our conclusions, as random pinning energies do not introduce vi-
son correlations. The latter on the other hand introduce random quantum fluctuations in the
vison configuration; we refer the reader to Sec. 3.4 for an approximate study of their effect.

Fig. 4 shows the results in presence of random disorder in the onsite energy (diagonal
disorder, w(d)s , Gaussian distributed with zero mean and standard deviation σ0) and random

hopping amplitudes (off-diagonal disorder, w(o)s,s′ , again Gaussian distributed with zero mean
and standard deviation σ1),

Hdis =
L−1
∑

s=1

w(o)s,s′
�

b̂†
s b̂s+1 + h.c
�

+
L
∑

s=1

w(d)s b̂†
s b̂s . (6)

We then proceed to solve Eq. (4) as before, but this time we add Eq. (6) to the Hamiltonian in
Eq. (5). We compute the average squared displacement 〈x2〉 (where position is measured in
units of lattice spacing) as a function of time (in units of 1/Γ ), after the spinon is initialised at
the centre of the chain, contrasting the behaviour with and without visons (which is equivalent
to switching on or off the mutual semionic statistics). The results are then averaged over 210

disorder realizations in which visons are randomly distributed with density ρv = 1/2 on the
bonds of the chain.

We consider the two types of disorders separately for convenience, and we checked that
indeed their simultaneous presence does not lead to any significantly different cooperative
behaviour. We include for comparison the semi-analytical solution of the case without disorder
(see App. B).

The offset (notable at short times) between the case with and without visons is due to
the destructive interference which takes place on a site immediately next to the initial posi-
tion, i.e., the presence of a vison in a plaquette adjacent to the initial position cuts the chain
and thus locks the spinon on the initial site. Correspondingly, we see that the offset van-
ishes for w(o)s,s′ → 1.
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Figure 5: Squared displacement 〈x2〉 vs time t for a spinon moving along a Z2 gauge
chain (initialised in the middle of an L = 25 chain), for intermediate dephasing
γ= Γ/2 where Γ = 1 is the hopping. This is contrasted to the behaviour of a classical
1D RW in presence of random onsite pinning energies, Gaussian distributed with zero
mean and standard deviation σ = 0, 1,2, 5,10, at finite temperature T = 1. The data
for the Z2 gauge chain are averaged over 10 · 210 random vison configurations, and
those for the RW process are averaged over 104 histories.

For weak disorder, we see a clear difference between the motion of a spinon in the presence
or absence of visons. In the latter case, the spinon ballistically reaches the edges of the system
(〈x2〉 ≃ 50 in our case). In the former, it saturates at a displacement of the order of one lattice
spacing. The distinction survives up to very strong diagonal disorder. On the contrary, we see
it becoming weaker and weaker as off-diagonal disorder becomes comparable to the spinon
hopping energy scale, w(o)s,s′ ∼ Γ ∼ 1. This is to be expected, and it will be a caveat to keep in
mind when thinking about possible implementations on quantum simulator platforms.

We conclude that (at least up to off-diagonal disorder strengths of the order of half the
hopping amplitude) the striking difference between the behaviour of spinons in presence or
absence of visons can clearly be used as signature of quantum coherence, mutual semionic
statistics and quantum spin liquid behaviour.

3.3 Classical diffusion

When attempting to find witnesses of any effects due to quantum coherence and interference,
it is important to rule out possible competing classical (i.e., incoherent) processes that may
lead to the same behaviour. In this case, one may be concerned about the limiting case where
the spinons behave as incoherent stochastic particles random-walking (RW) on a strongly dis-
ordered 1D chain. The latter can in fact result in what looks like sub-diffusive or even ‘localised’
behaviour at intermediate times (whilst being a purely classical pheonmenon, devoid of any
quantum coherence).

We compare the behaviour of our base system in presence of visons to a RW particle in 1D
in presence of pinning disorder Gaussian distributed with zero mean and standard deviation
σ = 0,1, 2,5, 10, where stochastic hopping is assumed to satisfy detailed balance with respect
to the disorder and a reference temperature T = 1. The customary interpretation of Monte
Carlo time as real time is assumed.

The results are shown in Fig. 5 and Fig. 6. The two behaviours are potentially distinguished
by their short time regime t ≲ 1 (in units of 1/Γ for the quantum chain, and in units of the
Monte Carlo hopping time for the RW particle), which ought to be 〈x2〉 ∼ t2 vs 〈x2〉 ∼ t
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Figure 6: Probability distribution for a classical RW particle on a disordered 1D chain
(left panels) in presence of strong disorder (Gaussian distributed with standard de-
viation σ = 10, T = 1), and |Ψ(x , t)|2 for the spinon in our Z2 ladder (right panels),
after initialising the particle/spinon in the centre of the system of size L = 25. Top
panels: time t1 = 1. Bottom panels: time t2 = 100. (Here we make the working
assumption that the characteristic inverse hopping time scale in the dissipative quan-
tum system corresponds to the conventional unit time in Monte Carlo simulations of
a particle performing a RW.) The RW probability distribution profile is averaged over
104 histories and the spinon wavefunction |Ψ(x , t)|2 for the Z2 ladder is averaged
over 10 · 210 random vison configurations.

(quantum ballistic vs classical diffusive behaviour). However, accessing short times and short
distances is often challenging and sometimes unreliable in quantum simulators and experi-
ments; this is indeed the case in D-wave machines (see Sec. A).

At late times, it would be difficult to discern the two cases for, say, σ ≃ 10. However,
one can elegantly resolve this dilemma by comparing the behaviour of the Z2 ladder with a
modification thereof where the spins on the bottom leg are pinned by a large magnetic field.
With these spins fixed, the system reduces to a 1D ferromagnetic Ising chain, and the spinon
becomes a trivial domain wall (kink) therein. The toric code physics and the visons are killed
in the process, and the behaviour in the base model reverts effectively to that of the Z2 ladder
without visons, see the left panels in Fig. 3 and the blue curves for σ0,1 = 0 in Fig. 4. On the
contrary, this change makes little difference to the RW particle on a disordered ladder; even if
it is no longer able to hop onto the bottom sites of each plaquette, it will behave in a similar
way. In summary, the difference between the behaviour of the Z2 ladder with and without a
strong uniform pinning magnetic field on the bottom leg spins (see panel (b) in Fig. 1) provides
a stark and reliable signature of quantum coherence and semionic statistics over classical RW
motion.
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3.4 Stroboscopic vison dynamics

So far we assumed the visons to be quasistatic on the time scales of the spinon motion. This
is reasonable so long as transverse terms for the visons are negligibly small compared to the
spinon hopping.3

Vison dynamics is however expected to play an important role at long times, when it is
capable of (re)moving the cuts to spinon motion due to destructive mutual statistics interfer-
ence. This allows spinons to travel to larger and larger distances, and the initially localised
wave function will gradually spread out in a likely diffusive way (at least if the vison dynamics
is stochastic).

It would therefore be interesting to see what effect vison motion might have on our results.
Unfortunately, solving the full quantum mechanical system at finite temperature, including
both spinon and vison dynamics, is beyond reach even for the relatively small systems and
short time scales studied here.

In order to investigate this crossover from the initial localised behaviour (which we aim to
use in order to probe Z2 quasiparticle behaviour and quantum phase coherence in the system)
to the late time spreading due to vison motion, we devised the following toy model of strobo-
scopic evolution. We run simulations that alternate the quantum evolution of the spinon wave
function for a time interval δt with stochastic attempts to update the vison configuration at a
single lattice site (i.e., updating the two adjacent bonds, as required by their emergent quasi-
particle nature). Note that vison updates include both vison motion as well as (dissipative)
pair creation and annihilation events.

For convenience, instead of performing the vison updates at regular time intervals δt, we
perform them at random times drawn from a Poissonian distribution of characteristic time scale
δt. The two approaches are equivalent at long times, and the latter avoids aliasing effects at
short times caused by a regular stroboscopic pattern. We compute the spinon displacement
after initialising it in the middle of a chain of length L = 25 by averaging over 210 histories for
the given δt (starting from a random vison configuration of density ρv = 1/2).

For δt ≫ 1 (recall that time is measured in units of 1/Γ , with Γ = 1), we expect to recover
the quasistatic limit used in the main text, and thence the results obtained so far; for δt ≪ 1,
we expect instead the vison configuration to thermalise well within the spinon dynamics time
scales of interest in this work, and quantum diffusive behaviour ensues. The results of the
stroboscopic vison dynamics model are illustrated in Fig. 7. As usual, we set the hopping
amplitude Γ = 1, and correspondingly we set the unit of time (∼ 1/Γ ). Within the remit of
validity of this toy model, we see that the results in the main text hold for sufficiently slow
stochastic vison dynamics (δt ≳ 1) – namely, so long as an intermediate-time localisation
plateau around 〈x2〉 ∼ 1 is sufficiently prominent.

4 Connection between the microscopic CGS ladder and the effec-
tive Z2 ladder

In this section we connect the microscopic model, Hamiltonian Eq. (1), to the effective model,
described by Eq. (3). Both models, depicted in Fig. 1(a) and 1(b), admit exact local Z2 gauge
symmetries, the former via plaquette operators Gp of Eq. (2) (as described in Ref. [20]), and
the latter by operators Bp that are the products σx

ℓ
σx
ℓ′

of spin operators on the links ℓ and
ℓ′ bounding plaquette p. We also discuss the limit in which we can identify the low-energy

3As a matter of fact, they ought to be smaller than the vison energy cost, otherwise they can induce a phase
transition out of the topological spin liquid phase where visons and spinons are well-defined quasiparticles with
mutual semionic statistics.
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quasiparticle excitations, spinons and visons, in the two models, and their mutual semionic
statistics.

4.1 Derivation of the effective Z2 ladder Hamiltonian from the CGS ladder
Hamiltonian

We begin by considering a single star of the CGS ladder, corresponding to a term labelled by s
in the first line of Eq. (1a). The spectrum of these isolated stars can be obtained exactly. The
ground state has energy E0 = −4

q

(2J)2 + Γ 2
0 and it is 8-fold degenerate. These states have

positive parity, i.e., the product of the four gauge spins on the legs of the star equals P = +1.
The first excited state has energy E1 = −

q

(4J)2 + Γ 2
0 − 3|Γ0| and it is also 8-fold degenerate,

but with negative parity, P = −1. The second excited state is 32-fold degenerate, has P = +1,
and energy E2 = −

q

(4J)2 + Γ 2
0 − |Γ0|. (Notice that for Γ0 = 0 the first and second excited

states become degenerate.)
Next we consider two coupled stars, as depicted in Fig. 1(c). We are particularly interested

in the spinon gap and the spinon hopping amplitude. We pin the outer gauge spins to analyse
separately the cases with even (0 or 2) and odd (1) number of spinons on the two-star system.
For the even case, we pin all four gauge spins on the boundaries to σz = +1. For the odd case,
we pin three to σz = +1 and the remaining one oppositely, σz = −1, as depicted in Fig. 1(c).
We then diagonalise the system of 8 matter spins (4 in each star) and 4 gauge spins (2 on each
of the upper and lower legs).

10-1 100 101 102 103

t

10-1

100

101

102

〈 x2〉

no visons
δt= 0.1
δt= 1
δt= 10
static visons

no visons
δt= 0.1
δt= 1
δt= 10
static visons

Figure 7: Behaviour of the spinon in our Z2 ladder in presence of stroboscopic
stochastic vison dynamics with characteristic time scale δt (as discussed in the main
text). These results were obtained for chains of size L = 25, and time is expressed in
units of 1/Γ (Γ = 1). The limit δt ≫ 1 reproduces the earlier result for static visons
(black curve). The case without mutual semionic statistics (equivalently, no visons
in the system) is also shown for reference (yellow curve). The system crosses over to
trivially diffusive behavior as δt is reduced (shown by curves in progressively lighter
shades of red). One can approximately identify a threshold around δt ∼ 1 below
which our proposed signature of the mutual semionic statistics becomes no longer
viable (middle curve in the figure). The results for dynamical visons are averaged
over 210 histories with characteristic timescale δt (starting from a random vison con-
figuration of density ρv = 1/2). For the static visons, the data are averaged over 210

random vison configurations of density ρv = 1/2.
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In Fig. 8 we show the spectrum for the two-star assembly for the CGS ladder case (left) and
compare it to the equivalent two-star assembly for the Z2 ladder case (right). We show the
first 8 low energy states for each case. We fix the couplings J = 1 in the CGS ladder. The top
panel shows the spectrum for Γ0 = 0. (Notice that the first and second excited states become
degenerate in the CGS system when the transverse field Γ0 is switched off, as discussed above.)
The labels on the levels correspond to the signs of σz for the mobile gauge spins on the upper
and lower links [coloured in orange in Fig. 1(c)]. In the region labeled as even (P = +1),
there are no spinon defects in the case of the lower energy levels, and there are two spinons –
one on each of the two stars – in the case of the higher energy levels. The two-fold degeneracy
of these states corresponds to the choices of signs of the gauge spins on the upper and lower
links. In the region labeled as odd, there is only one spinon, which can sit in one star or the

2λ

CGS ℤ2

WITHOUT K

2Γ

Figure 8: Energy spectrum of two coupled stars of the CGS and Z2 ladder, with
fixed couplings J = 1 for the CGS and λ = 1 for the Z2 ladder. Only the lowest 8
energies are shown for each panel, and the vertical dashed lines separate the cases
of even (blue) and odd (red) number of spinons. In top two panels, the transverse
fields are set to zero, Γ0 = 0 = Γ/2. The ground states for both ladders are 2-fold
degenerate, with no spinons and the two coupled stars in their lowest energy state,
ECGS

star = −8 and EZ2
star = −1. The first and second excited states correspond to single

spinon excitation on either of the stars and two-spinon configuration respectively.
Notice that the first and second excited states of CGS ladder are exactly degenerate
when Γ0 = 0 as described in the main text. Transverse fields are turned on in the
bottom two panels, Γ0 = 0.6 for the CGS case and Γ/2 = 0.1525 for the Z2 case.
In the odd case (PB = −1), the four degenerate first excited states split into three
different energies, and the difference between the lowest and the highest, associated
to the spinon hopping, is exactly 2Γ in the Z2 ladder, labelled in the inset. The inset
shows that the hopping energy scales are the same for CGS and Z2 ladders when
Γ0 = 0.6 and Γ/2 = 0.1525 respectively. The spinon gap, defined as the difference
between the ground state energy and first excited state (specifically the gap to the
2 middle degenerate states), is exactly 2λ in the Z2 case, labelled in the lower left
panel.
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Figure 9: Effective couplings λ (orange) and Γ/2 (blue) of the Z2 ladder as a function
of Γ0 of CGS ladder when J = 1. The transverse field parameter Γ/2 defines the
spinon hopping energy scale, λ sets the spinon gap in Z2 ladder, and both can be
obtained from analysing the energy spectrum of CGS ladder, as shown in Fig. 8. As
Γ0 increases, Γ/2 increases and λ decreases, and the two cross around the point when
Γ0 = 1.4.

other. There are four such states, again labeled by the signs of σz for the gauge spins on the
upper and lower links. The spectrum for the Z2 ladder case is shown on the right panel for
comparison.

The lower panel of Fig. 8 shows the spectrum once the transverse field Γ0 is turned on
(Γ0 = 0.6) in the CGS system. On the right we show the spectrum for the equivalent two-star
segment of the Z2 ladder system for λ = 1 and Γ/2 = 0.1525. In both the CGS ladder and
the Z2 ladder cases, the spinons can hop between the two stars due to the transverse fields,
which results in the energy level splitting shown on the side labeled odd, for both cases. We
show in the inset a magnified window in which the splittings can be better observed. Notice
that the four states in the odd case (which are degenerate when Γ0 = 0= Γ/2) split into three
different energies with degeneracies 1, 2, and 1, respectively. These states (and degeneracies)
are understood as follows. The operators Gp in the case of the CGS ladder and Bp in that of the
Z2 ladder commute with the Hamiltonians Eq. (1a) and Eq. (3), respectively. The eigenvalues
of these operators relate to the presence or absence of a vison within the plaquette. In the
absence of a vison, the spinon can hop between the two stars, leading to a symmetric and anti-
symmetric splitting. In the presence of a vison, the hopping is switched off (due to perfect
destructive interference), and the two levels remain exactly degenerate. The energy splittings
among these four states, homologous in the CGS ladder and in the Z2 ladder, allow us to read
off the effective couplings.

Explicitly, the couplings λ and Γ/2 of Eq. 3 can be directly extracted from the CGS energy
spectrum, where the energy difference between the lowest and the highest of the splittings of
first excited states is 2Γ , and the spinon gap, defined as the difference between the ground
state energy and first excited state (specifically the gap to the 2 middle degenerate states), is
exactly 2λ in the Z2 case, shown in Fig, 8. Fig. 9 shows the dependence of the couplings λ
and Γ/2 on the applied transverse field Γ0 in the CGS ladder. Near Γ0 = 1.4, λ and Γ/2 become
comparable. (We remark that when λ < Γ/2 the state with a spinon becomes the ground state,
signalling the onset of spinon condensation; the precise ratio Γ/2λ for the phase transition,
however, cannot be extracted from the simple two-star calculation.)
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4.2 Analytic connection between CGS and Z2 ladders in a perturbative limit

In Sec. 4.1, we provided a mapping between the parameters of the CGS andZ2 ladders in Fig. 9.
Here, we provide an exact correspondence between the two models in the limit where the “Z Z”
coupling between gauge and matter spins is the dominant energy scale. While the arguments
presented in this section are perturbative in nature, the correspondence is expected to hold
at a qualitative level in parameter regimes where perturbation theory is not quantitatively
accurate.

For concreteness, consider Eq. (1a) with separate magnetic field strengths for the matter
and gauge spins, Γm and Γg , respectively:

H = −
∑

s



J
∑

a∈s
ℓ∈s

Waℓ µ
z
aσ

z
ℓ + Γm
∑

a∈s

µx
a



− Γg
∑

ℓ

σx
ℓ .

We will be concerned with the regime in which |J | ≫ |Γm| ≫
�

�Γg
�

�. To analyze the behavior
of the model in this regime, let us first forget about the separation of scales between Γm and
Γg , and just perform (degenerate) perturbation theory assuming that J is positive and large
compared to both transverse fields.

First, let us consider a single star consisting of both matter and gauge spins in the absence
of any transverse fields, Γm = Γg = 0, i.e., the Hamiltonian is entirely commuting and consists
of the Hadamard matrix (1b) coupling the z components of the gauge and matter spins. For a
given configuration of gauge spins, the matter spins can either be aligned or antialigned with
the effective local (gauge) field acting on them. If all matter spins are aligned with their local
fields, the ground state energy of star satisfies

E0 = −2J(3+ As) . (7)

Hence, parity-even gauge-spin configurations (As = 1) minimize the energy of the star:
E0 = −8J . For such-parity even configuration, there exists a unique matter-spin configura-
tion (i.e., none of the local fields acting on the matter spins vanish). Hence, the star has eight
degenerate ground state configurations corresponding to parity-even configurations of gauge
spins.

Next, consider the excited states of the star. There are two possibilities: (i) the gauge spins
are parity odd, As = −1, or (ii) the gauge spins are parity even, but at least one matter spin
is not aligned with its local field. These two types of defects happen to be degenerate with
E = −4J . Case (i), corresponding to ‘defective’ gauge spins, will be referred to as a ‘spinon’
excitation. Since there does not exist a local operator that can globally fix the parity of an
isolated parity-odd star, there will not exist matrix elements connecting the two species of
excitations in (i) and (ii); the decay of a spinon into a defective matter spin will therefore not
occur within our perturbative expansion. For each parity-odd gauge spin configuration, there
are eight degenerate matter spin configurations, since the local field vanishes on three of the
four matter spins. This can be illustrated schematically in the following example:

+ +

+

−

? ?
?
+

where the red (gauge) spins form an As = −1 configuration, and the blue (matter) spins are
in the corresponding lowest-energy configuration, which is not uniquely specified (the matter
spins represented by question marks can either take the value + or −, without changing the
energy of the system).
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We now consider connecting the stars together in the manner shown in Fig. 1. Further-
more, we turn on the magnetic fields acting on both gauge and matter spins. The combinatorial
gauge symmetry (2) remains exact in the presence of such magnetic fields; we therefore work
with a set of states that diagonalize the Gp operators. The eigenvalues Gp = ±1 determine
the locations of the ‘vison’ excitations. The magnetic field Γm induces transitions between the
eight degenerate matter spin configurations on each star, while Γg introduces matrix elements
between adjacent star configurations. To make connections with the results presented in the
main text, let us first construct the effective Hamiltonian for the two-star system from Sec. 4.1,
within first-order degenerate perturbation theory. One finds that the spinon (whose presence
can be enforced with appropriate boundary conditions, as discussed in Sec. 4.1) hops on the
following effective lattice:

−Γm−Γm −Γg

φ (8)

Each vertex in the graph represents a symmetrized state∝ (1± Gp) |σ,µ〉, where the sign ±
determines the absence or presence of a vison, while each edge corresponds to a connection
between these states induced by a transverse field. The dashed gray boxes indicate the ‘inter-
nal’ sites belonging to each star. The Γm transverse field induces intra-star hopping, while Γg
leads to inter-star hopping. If Gp = 1, the spinon hops on the effective lattice with vanishing
flux threading the central loop, φ = 0. Conversely, in the Gp = −1 sector, the presence of the
vison leads to φ = π threading the central loop.

If Γg = 0, the two stars remain completely decoupled, and there exist eight ‘internal’ states
associated to each star. Let the ground and first-excited states supported on star s be denoted
by |ϕ0(s)〉 and |ϕ1(s)〉, with energies ε0 and ε1, respectively. If Γg is turned on, and

�

�Γg
�

� is
much smaller than the gap between the ground and first-excited internal state of an isolated
star, ε1−ε0 (equal to 2Γm), then we can project the dynamics into the lowest band. This results
in the effective Hamiltonian

Heff = −Γg |M |
2[1+ eiφ](|ϕ0(s)〉 〈ϕ0(s+ 1)|+ h.c.) , (9)

where |M |= |〈0|ϕ0〉| is the projection of the local ground state onto one of the outermost sites.
In our system, φ = π and we obtain perfect destructive interference: the spinon is unable to
hop and remains exactly localized on one of the two stars. Extending the above Hamiltonian
to a one-dimensional chain of stars by including a summation over s justifies quantitatively the
hopping Hamiltonian presented in Eq. (5) in Sec. 3.1.

If higher-order contributions in Γg are taken into account, perfect destructive interference is
lost, but the spinon remains approximately localized on one site or the other, since the residual
hopping terms between the two stars are second order in Γg , namely O(Γ 2

g ). Numerically,
we find that this behavior actually persists all the way up to equal transverse fields Γg = Γm,
where, for the most localized eigenstates,4 there is only approximately a 4% chance of finding
the spinon on the other star. The quantitative effect of residual hopping between adjacent stars
– removing perfect destructive interference – was studied in Sec. 3.2 by adding off-diagonal
disorder to the effective hopping Hamiltonian.

Finally, we note that this perturbative mapping also quantitatively explains the small-Γ
behavior of Fig. 9. Diagonalizing the 16-dimensional Hamiltonian corresponding to the lattice

4When the vison is present, the ground state is two-fold degenerate. Hence, we find the “most localized” linear
combination of ground states by extremizing the probability of finding the spinon on the left vs the right star.
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in (8), we find that the parameters λ and Γ/2, which set the spinon gap and the spinon hopping
energy scale, respectively, are given by

λ= 2J −
3.098

2
Γ0 +O(Γ 2

0 ) , (10a)

1
2
Γ =

0.515
4
Γ0 +O(Γ 2

0 ) , (10b)

where Γ0 = Γg = Γm.
To conclude, we have shown that, for sufficiently small magnetic fields, the CGS ladder (1)

can be understood as a tight-binding model for spinons. The lattice geometry derives from
the Hadamard matrix (1b), which couples matter and gauge spins, and involves eight states
per star. The exact combinatorial gauge symmetry implies that visons (Gp = −1) remain
exactly static, and are equivalent to π fluxes threading the lattice on which the spinons hop.
This perturbative mapping is valid irrespective of the relative strengths of the two magnetic
fields. However, to obtain perfect destructive interference, leading to compact-localized spinon
eigenstates, it is necessary to consider the case where the transverse field on gauge spins is
much weaker than the transverse field for matter spins, see Eq. (9). In this case, projecting
the dynamics into the lowest band is well-controlled and we obtain an effective tight-binding
model with one state per site. This is the model (5) we considered in Sec. 3.1.

5 Testing quantumness

In this manuscript, we referred several times to the possibility of using our results to test the
quantum coherence present in a programmable platform or Z2 quantum spin liquid candidate
system. Before closing, it is worth summarising our thoughts in a dedicated section.

Detecting quantum coherence in systems where this is present over long time and length
scales is generally not a challenge. For instance, the time evolution of a particle in 1D exhibits
characteristic quantum oscillatory behaviour; and the energy eigenfunctions of a particle in a
box easily betray their wave-like nature by looking at the probability density [29].

This is however not the case we were referring to in our work. What we had in mind are for
example quantum spin liquid candidate materials at temperatures where coherence operates
at most over few lattice spacings; or, similarly, quantum simulators where some coherence is
expected, but of limited range and unclear relevance. In such settings, one would like to ask:
What is the ‘least amount’ of phase coherence that can be meaningfully detected? Namely, the
least quantum coherence that leads to a distinct and measurable change in behaviour of the
system, which would disappear if this coherence is reduced any further?

Quantum phenomena and measurements that may allow us to answer these questions are
few and far between. With little coherence in a system, its effects also become progressively
more subtle and hard to detect with certainty in a noisy environment with finite experimental
accuracy or temporal resolution. It is in this context that our results stand out as a notable ex-
ception: the presence or absence of quantum phase coherence around an elementary plaquette
of the system gives rise to the presence or absence of constructive / destructive interference
of a spinon wavefunction, depending on the vision occupation number of the plaquette due
to their mutual semionic statistics. As we have shown in our work, this semionic interference
has a remarkably large effect on the collective behaviour of the system, and the effect is ro-
bust to disorder, noise and dephasing. Moreover, we have shown how it can be distinguished
from potentially similar classical stochastic behaviour (e.g., random walk with strong pinning
disorder) by contrasting the behaviour with and without an applied field on the lower leg of
the Z2 ladder). We therefore argue that our work provides a clear and distinctive signature
of quantum mechanical behaviour in the system at the single-plaquette level – arguably the
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lowest level of coherence below which the system would be described quantitatively well by
classical statistical mechanical modelling, and arguably the least phase coherence needed to
observe any collective quantum mechanical behaviour. Hence the wording we used in the
manuscript, of our work providing a way to test quantumness in these systems.

6 Conclusion

In this work, we considered the implementation of topological quantum spin liquid phases –
specifically, Z2 spin liquids – in programmable quantum devices, using combinatorial gauge
symmetry. We focused our attention on probing such exotic, highly entangled states and on
devising smoking-gun measurements that enable us to determine their presence, using the
fractional statistics of their topological excitations. We designed and studied quasi-1D archi-
tectures where we demonstrate that quasiparticle interferometry leads to distinct signatures of
the underlying spin liquid behaviour. We tested the robustness of these effects against disor-
der and dephasing, which are expected to be present in noisy quantum programmable devices
(and in experimental settings in general).

Our results show how spinon transport along a ladder is curtailed by destructive interfer-
ence in presence of visons. Contrasting this behaviour to the motion of the spinon when one
leg of the ladder is pinned by a strong applied field – thus removing interference effects –
produces a distinct signature of the non-trivial mutual statistics.

While on the one hand our design and results can be used to establish the presence of these
exotic topological phases of matter, they can also conversely be used to test the ‘quantumness’
of the platform on which the quantum spin liquid is realised. Indeed, the signature that we
propose relies on exquisitely quantum interference effects (due to fractional statistics) that are
spoilt once enough dephasing prevents the wave function of a spinon to interfere with itself
after propagating on the lattice along different paths.

In Appendix A, we investigate the possible implementation of our scheme on a D-wave
device. Our results show that the DW-2000Q simulator lies just outside the low temperature
limit where topological phase coherence effects become observable in the form of destructive
interference due to mutual statistics. Foreseeable improvements might bring this architecture
within reach of implementing quantum spin liquid phases in the near future.

Several other platforms have been made available by recent advances in programmable
quantum devices where one could repeat our study, such as QuEra [30], a Rydberg-atom based
computing platform. Some of them may already be in the parameter regime where our non-
trivial signature of fractional statistics can be observed.

In this work we focused on quasi-1D systems as they provide some of the simplest imple-
mentations, largest systems (by embedding a meandering 1D line in 2D), and clearest signa-
tures of quantum coherence and fractional statistics. However, the topological nature of the
quasiparticle excitations in quantum spin liquids leads to important signatures also in 2D, as
already pointed out in Refs. [16,17]. Further work in this direction is ongoing but it is beyond
the scope of the present paper.

For our purpose, we considered it sufficient to model the vison dynamics as a classical
stochastic process. However, more subtle effects could derive from the interplay of quantum
vison and spinon dynamics. Their investigation is a significantly taller order and is an inter-
esting direction for future work.
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Figure 10: Diagrams of CGS ladder with additional K-couplings and its embedding
onto the D-Wave chimera architecture. (a) Geometry of the CGS ladder with two
gauge spins (orange dots) at ℓ± on each link ℓ, and four matter spins (white dots) on
each vertex (large blue discs) at site s. A strong ferromagnetic coupling of strength K
forces the alignment of the two gauge spins that occupy the same link. The local Z2
symmetry is generated by Gp, that both flips the four gauge spins around a plaquette,
and flips and permutes the states of the matter spins on the two stars neighbouring
the plaquette. (b) The embedding of the geometry in (a) to the D-Wave DW-2000Q
chimera architecture. Each unit cell (of 8 spins) embeds a star operator of the CGS
ladder in which the horizontal spins (blue dots) are the matter spins, and the vertical
spins (orange dots) are the gauge spins. Two adjacent stars are coupled by connecting
the corresponding gauge spins with strong ferromagnetic fields (green lines). (c)
Example of an isolated pair of coupled stars of the CGS ladder with the K-coupling,
used to extract the effective spinon cost and hopping amplitude from the energy
splittings in the spectrum. The boundary gauge spins are pinned to be three up
(black dots) and one down (red dot) so the ground state of this configuration has
exactly one spinon.
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A D-Wave embedding and implementation

The results presented in the main text show that: (i) it is possible to realise a CGS ladder
with an exact local Z2 gauge symmetry using Hamiltonian Eq. (1) containing only physical
1- and 2-spin interactions; and (ii) there is a window of parameters, e.g., disorder strength
and dissipation rates, within which it is possible to observe qualitative differences in behaviour
that reflect the mutual statistics of spinons and visons. In this Appendix we show our proposed
experiment can be performed in a D-Wave device – a quantum annealing machine that operates
under the following Hamiltonian,

H =
A(s)

2

∑

i

σx
i +

B(s)
2





∑

i, j

Ji jσ
z
iσ

z
j +
∑

i

hiσ
z
i



 , (A.1)

where Ji j and hi are the programmable Z Z-couplings and longitudinal fields respectively. We
argue that Hamiltonian Eq. (1) can be implemented in a DW-2000Q device with an extra
gadget,
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∑

s



J
∑

a∈s
i∈s

Wai σ
z
i µ

z
a + Γ0
∑

a∈s

µx
a



−
∑

ℓ

�

K σz
ℓ−
σz
ℓ+
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σx
i

�

, (A.2)

where a ferromagnetic term K favours the alignment of two neighbouring gauge spins ℓ− and
ℓ+ on a link ℓ, to realise a single effective gauge spin, as depicted in Fig. 10(a). This CGS
ladder with K-couplings also possesses the combinatorial gauge symmetry that gives rise to
the Z2 spin liquid phase, and it can also be mapped to the same quasi-1D toric code with
Hamiltonian Eq. (3), depicted in Fig. 1(b).

We proceed to extract the connection between the couplings of Hamiltonian Eq. (A.2) and
those of the effective model with Hamiltonian Eq. (3), similarly to the study in Section 4. We
isolate two CGS stars and couple them via the second line of Eq. (A.2), and study the low energy
spectrum of this system. The outer gauge spins are pinned in order to analyse separately the
cases of odd and even number of spinons; the odd case is depicted in Fig. 10(d).

Fig. 11 shows the lowest 8 energy states for both even (0 or 2) and odd (1) number of
spinons, separated by vertical dashed lines. The spectrum of the two-star assembly of the
CGS ladder with K-couplings is shown on the left panels, and that of the equivalent two-star
assembly of the Z2 ladder is shown on the right ones. We fix the couplings J = 1 and K = 3
in the CGS system, and λ= 1 in the Z2 ladder. The layout of energy spectrum for CGS ladder
with K-couplings is identical to that of Fig. 8 in Section 4, in which the ground states are two-
fold degenerate, and the first and second excited states are degenerate when Γ0 = 0 (Fig. 11
top left panel). Notice that there is a universal down-shift of energy levels of the CGS ladder
with K-couplings by 6 (in units of J) due to the ferromagnetic interactions of two gauge spins
on the links with coupling strength K = 3. The spinon hopping amplitude can be extracted
directly from the level splittings of the first excited states (corresponding to the single spinon
case) when the transverse field is turned on, Γ0 = 0.6 in the CGS system and Γ/2= 0.0375 for
Z2 ladder, shown in Fig. 11 lower panels. The inset shows a magnified window in which the
splittings can be better observed. (We note that the the splitting is suppressed as compared to
the case without K-couplings of Section 4.)

Explicitly, we obtain the couplings of Eq. (3) from the energy scales for the spinon gap,∆s,
and the spinon hopping energy scale, ∆h, labeled in Fig. 11. Fig. 12 shows the dependence
of the energy scales ∆h and ∆s on the applied transverse field Γ0 in the CGS ladder with
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WITH K

CGS ℤ2

Δs

Δh

Figure 11: Energy spectrum comparison between two coupled stars of the CGS ladder
with K-couplings and the Z2 ladder. The couplings J = 1 and K = 3 are fixed for
the CGS ladder and λ= 1 for the Z2 one. Only the 8 lowest energy levels are shown
for each panel, and the vertical dashed lines separate the cases of even (coloured
in blue and labelled as P = 1) and odd (coloured in red and labelled as P = −1)
number of spinons. In top two panels, transverse fields are zero, Γ0 = 0 = Γ/2, and
the ground state energy for the CGS case is ECGS

0 = −22, where an energy −6 comes
from two K-couplings connecting the gauge spins on the two links. Transverse fields
are turned on in the bottom two panels, Γ0 = 0.6 for the CGS with K-couplings and
Γ/2= 0.0375 for the Z2 ladder. In the odd case, the four degenerate states of the first
excited state split, and the hopping energy scale is the difference between the lowest
and highest states, labelled as∆h in the inset. The hopping energy scale is 0.15 when
Γ0 = 0.6 and Γ/2= 0.0375, where the splitting in the Z2 ladder is exactly 2Γ . Notice
that, compared to Fig. 8 in Section 4, the coupling K suppresses the splittings. The
spinon gap ∆s is defined as the difference between the ground state and the first
excited states (specifically, the 2 middle degenerate states), as shown in the lower
left panel.

K-couplings. The couplings λ and Γ/2 of the Z2 ladder can be read off from

λ=∆s/2 ,

Γ/2=∆h/4 .

In particular, near the crossing where ∆s and ∆h are comparable, at Γ0 = 1.45, we obtain
λ= 0.67 and Γ/2= 0.31.

The DW-2000Q device has 16× 16 unit cells with 8 qubits in each, in total 2048 qubits.
Its qubit-qubit connectivity allows the CGS ladder shown in Fig. 10(a), with Hamiltonian
Eq.(A.2), to be implemented via the couplings shown in Fig. 10(b). The proposed experi-
ment can be performed using the reverse annealing protocol in a D-Wave device. An initial
state with a single spinon can be realised by setting the values of relevant qubits to be ±1 such
that star operators are in their As = 1 eigenvalues on all vertices except on the vertex where
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Figure 12: Spinon energy gap ∆s (in orange) and spinon hopping gap ∆h (in blue)
of the CGS model with K-couplings as a function of Γ0 when J = 1 and K = 3.

spinon is located, on which As = −1. The hopping can be activated by switching Γ0 on for a cer-
tain amount of time, τ. Measurements in D-Wave devices can only be done at zero transverse
fields. We then quickly switch off Γ0 back to zero and measure each qubit in its z-basis. The
position to which the spinon travels can be read off the final configuration, by finding which
vertex has As = −1. The set of final configurations in such an experiment allows one to extract
the probability distribution for the final position of the spinon. Throughout this protocol one
must keep Γ0 below a threshold value so that multiple spinons are not generated, and instead
only the single spinon imprinted in the initial condition is present at all times. We can set the
boundary condition in a way to allow only odd number of spinons in the ladder to eliminate
the case where extra spinons are created during the experiment. The configurations with two
spinons are not allowed by the boundary condition and three spinons are energetically less
probable.

In D-Wave devices, quantum annealing is realised by adiabatically changing the values of
the parameters A(s) and B(s) in Eq. (A.1), controlled by the variable s. The schedule to change
A(s) and B(s) is fixed in D-Wave devices, see [31]. In Eq. (A.1), the coupling strength of the
Ising part [controlled by B(s)] increases, and the transverse field strength [controlled by A(s)]
decreases, as s increases from 0 to 1. The reverse annealing protocol allows one to start the
experiment at the s = 1 endpoint and decrease s to turn on the transverse field while the
coupling strength in the Ising part is decreased.

The proposed set of parameters for our experiment in DW-2000Q is as follows. One
can use JDWave = 1, KDWave = 3 at s = 1 limit, which corresponds to physical values
J = 2.43GHz, K = 7.27GHz.5 The transverse field should be turned on as quickly as pos-
sible to a programmable value ΓDWave, which corresponds to decrease s. The base tempera-
ture where D-Wave operates is around 13 mK, or 0.27GHz. In the reverse-annealing protocol,
when the transverse field Γ0 is increased, the physical values of J and K are simultaneously de-
creased. For instance, for ΓDWave

0 = 0.61, which corresponds to a physical value Γ0 = 0.65GHz,
J = 0.46 GHz.

These experimental parameters can be used to obtain the effective Z2 ladder coupling 2Γ ,
as discussed above. For Γ0/J ∼ 1.45 and K/J = 3, we find that Γ/2J ∼ 0.31 (this is the case
for which the spinon hopping energy scale is right below the spinon gap, see Fig. 12), corre-
sponding to Γ/2 ∼ 0.14 GHz. This value is about 50% less than the operating temperature,
posing a first limitation in carrying out the experiment in a D-Wave-2000Q device. Second,

5When K = 3J and Γ0 = 0, the energy for the spinon to reside on a link or on a star coincide.
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Figure 13: Comparison between the analytical result (blue bars) and the simulated
wave function (dashed bars) in the long time limit for the particle on the Z2 chain
coupled to a thermal bath with dephasing rate γ = Γ/2, where Γ = 1 is a transverse
field. The numerical data are averaged over 5120 vison configurations.

the associated time scale is τΓ = (Γ/2)−1 ∼ 7.14ns, a scale much smaller than the µs time
scale for the reverse-annealing protocol. We conclude that the parameter space of the DW-
2000Q device, does not allow to access the regime that we discuss in this paper. Nevertheless,
these limitations, in principle, might be mitigated by hardware alterations. The more recent
quantum annealing device, the D-Wave Pegasus, may allow for simpler wirings than those that
we propose for the implementation in the DW-2000Q. And perhaps access to features beyond
those available to the cloud users may allow for probing shorter time scales that could permit
the observation of the spinon localisation that we predict in our work.

B Analytic expression for the asymptotic long time spinon density
and semi-analytical displacement of the spinon

In the long time limit, the wave function squared of a quasiparticle on the Z2 chain can be
obtained analytically. The presence of randomly distributed static visons causes destructive
interference in the propagation of the spinon. Therefore, the visons cut the chain into dis-
connected line segments for the spinon. Random distribution of visons means that the line
segments for the spinon are sampled from the distribution

P(l, r) =
1

2l+1

1
2r+1

, (B.1)

where l and r are distances from the initial position to the left and to the right, respectively.
At long times, the thermal bath causes dephasing and thermalisation of the initial state,

resulting in a uniform spinon density across each disconnected segment. Summing over seg-
ments of appropriately distributed lengths containing the initial position of the quasiparticle,
we are then able to reconstruct the wave function squared

|Ψ(x)|2 =
∞
∑

l

∞
∑

r

1
2l+r+2

1
l + r + 1

Θ(−l ≤ x ≤ r)
︸ ︷︷ ︸

|Ψ(l,r)(x ,t)|2

,
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whereΘ(x) = 1 if x ∈ 〈−l, r〉 and zero otherwise, and
�

�Ψ(l,r)(x , t)
�

�

2
denotes the spinon density

corresponding to the disconnected segment of length l + r + 1.
In Fig. 13 we show a comparison of the long time asymptotic spinon density, (absolute

value square of its wave function) obtained from the numerics and from the analytical cal-
culation over disconnected segments, Eq. (B.1), discussed above. There are no appreciable
differences as indeed we expect the disconnected segment approximation to be asymptotically
exact in the long time limit.

In the main text we also show a semi-analytical solution for the displacement of the spinon
on the Z2 chain of length L as a function of time, see dash-dotted black line in Fig. 4. In
this case, we first calculate numerically the spinon density

�

�Ψ(l,r)(x , t)
�

�

2
over a disconnected

segment by evolving the initial wave function, and then average over the segment length
distribution discussed above,

|Ψ(x , t)|2 =
L/2
∑

l

L/2
∑

r

�

�Ψ(l,r)(x , t)
�

�

2
P(l, r) . (B.2)

The vison displacement is then readily obtained as

〈x(t)2〉=
L/2
∑

l

L/2
∑

r

r
∑
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j
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�Ψ(l,r)(x j , t)
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2
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