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Abstract

We study the interplay of vortices and disorder in a two-dimensional disordered su-
perconductor at zero temperature described by the Bogoliubov-de Gennes (BdG) self-
consistent formalism for lattices of sizes up to 100 × 100 where the magnetic flux is
introduced by the Peierls substitution. We model substantially larger lattice size than in
previous approaches (≤ 36×36) which has allowed us to identify a rich phase diagram as
a function of the magnetic flux and the disorder strength. For sufficiently weak disorder,
and not too strong magnetic flux, we observe a slightly distorted Abrikosov triangular
vortex lattice. An increase in the magnetic flux leads to an unexpected rectangular vortex
lattice. A further increase in disorder, or flux, gradually destroys the lattice symmetry
though strong vortex repulsion persists. An even stronger disorder leads to deformed
single vortices with an inhomogeneous core. As the number of vortices increases, vor-
tex overlap becomes more frequent. Finally, we show that global phase coherence is a
feature of all these phases and that disorder enhances substantially the critical magnetic
flux with respect to the clean limit with a maximum on the metallic side of the insulating
transition.
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1 Introduction

The application of a perpendicular magnetic field to a superconducting thin film leads to a
very rich phenomenology. For type II superconductors at zero temperature, an Abrikosov
lattice [1, 2] of vortices forms for intermediate fields. As temperature increases, topologi-
cal defects, thermal vortices, starts to proliferate and eventually the lattice is melted through a
Berezinskii-Kosterlitz-Thouless transition [3,4]. For lower temperatures, it has been identified
theoretically, and later confirmed experimentally, an intermediate phase, termed an hexatic
fluid [5–7] for lattices with hexagonal symmetry, that combines short-range positional order,
like in a liquid, with a quasi-long-range orientational order as in the low temperature Abrikosov
lattice phase.

The presence of disorder brings new interesting phenomena. A vortex tends to occupy
regions where the order parameter is suppressed as a result of the disordered potential. At the
same time, disorder pins vortices which prevents, or slows down, a dissipative response to a
current, and therefore a finite resistivity. Deformations of a lattice of vortices, due to disorder,
leads to the so called Bragg’s glass [8–12] characterized by a power-law decay of the crystalline
order so that some weakened form of diffraction peaks, and therefore discrete translational
symmetry, coexists with glassy features. For a stronger disorder or field, a transition to a
vortex glass [13–15] occurs characterized by both a relatively homogeneous repulsion among
vortices in real space and, in Fourier space, a circular pattern [16] instead of sharp diffraction
peaks that signal the complete loss of any discrete translational symmetry. A further increase
in the disorder strength, or field, leads to either the loss of superconductivity or a fully disorder
vortex phase where vortices repulsion is strongly suppressed.

A detailed experimental study [17], supported by numerical results based on the solution
of the Bogoliubov-de Gennes (BdG) equation for small disordered lattices, revealed that vor-
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tices occupy regions between superconducting islands which enhances phase fluctuations and
eventually leads to a transition to a state formed by incoherent Cooper pairs. Translational
symmetry of the vortex lattice seems to be lost even for a relatively weak disorder strength.

Transport properties in the presence of both disorder and magnetic field show rather
unusual features. Experimentally, it has been observed an enormous increase of resistiv-
ity [18–20] for fields slightly above the one at which the insulating transition occurs. Sur-
prisingly, a further increase of the magnetic field reduces the resistivity to values closer to the
normal metal limit. The origin of these unexpected features is still under debate [21] though it
is believed to be somehow related to residual correlations of the superconducting state [22–26]
in the form, for instance, of localized phase-incoherent Cooper’s pairs.

A more recent explanation of this phenomenon [27], based on an explicit numerical solu-
tion of the BdG equations in small lattices, is that there exists a region of magnetic flux strength
where the conductivity still has a gap-like form for low frequencies but the superfluidity den-
sity vanishes. As a result, the resistivity becomes very large until larger magnetic fluxes close
the gap completely.

Although disorder, temperature or magnetic field tend in general to suppress superconduc-
tivity, their combined effect can have a more complex behavior. For instance, as mentioned ear-
lier, disorder hampers the motion of vortices, especially at low temperature, which suppresses
dissipation and therefore potentially enhances superconductivity. Indeed, a recent study [28]
of the XY model with a non-zero flux using Monte Carlo techniques [29–31] has found that dis-
order makes the superconducting state more robust against thermal effects. Similarly, disorder
in certain circumstances can also enhance the superconducting critical temperature [32–39].

It is important to stress that, with a few exceptions Refs. [17, 27, 40–43] to be discussed
later, theoretical research about vortices in disordered superconductors does not employ the
microscopic and self-consistent BdG approach where the random potential is the one felt by
the electrons that form the Cooper’s pair. For instance, in the XY model, describing the phase
dynamics, the Josephson couplings are random but they are not directly related to the ran-
dom potential that model impurities in materials. Likewise, in stability studies of vortex lat-
tices [8, 10–12, 44], disorder is just a random deviation of the vortex position from the one
corresponding to a perfect Abrikosov lattice. In practical terms, this is qualitatively similar to
the assumption that the disorder distribution of the impurities of the sample, typically Gaus-
sian or box distributed, is also the one observed in the order parameter or other relevant
observables of the superconducting state. However, this is not always the case.

There are substantial experimental [45,46] and theoretical [32,34,37,39,47–57] evidence
indicating that a microscopic approach is necessary to model quantum coherence effects, such
as Anderson localization [58], induced by disorder that control the physics in certain region
of parameters. This is especially true in two dimensions [59, 60] where even a weak disor-
der strength can trigger important localization [58] effects in the superconducting state. For
instance, the amplitude of the order parameter becomes highly inhomogeneous [47, 48] in
space with an emergent granular structure even on the metallic side of the superconductor-
insulator transition. Close to the transition, the probability distribution of the order parameter
amplitude is well described not by a Gaussian but by a broad log-normal distribution [49]
and a parabolic f (α) spectrum [34, 37, 45, 46] typical of systems with multifractal-like fea-
tures [51,61,62]. As mentioned earlier, a range of parameters has been identified where, due
to this intricate spatial structure, the average order parameter and the critical temperature
is enhanced by disorder [32, 35, 49]. The physical reason for this counterintuitive behavior
is that although in many sites the order parameter is suppressed, in others it is substantially
enhanced. We note that superconductivity does not require all sites to have phase coherence
but only that a supercurrent can go through the sample. Recent experimental results [45,46]
are fully consistent with this theoretical picture.
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Figure 1: Vortex phase diagram. The cartoon summarizes the vortex distribution as a
function of magnetic fluxφ and disorder V . The red (green) line stands forφc2 (φc1)
the upper (lower) critical magnetic flux as a function of the disorder strength V . In
the region below the dashed green line, our results are not conclusive regarding the
existence of a vortex lattice. Between the green and the sky blue line, we observe the
expected Abrikosov triangular lattice. Upon increasing the magnetic flux, the lattice
of vortices becomes rectangular when the average distance between vortices Lv is
smaller than the superconducting coherence length ξ0. In the figure, we depict the
Bragg lattice, the structure factor of the position of vortices. For larger fields, the
circular pattern signals the vortex repulsion phase characterized by a loss of vortex
translation symmetry, strong vortex repulsion and, on average, rotational symmetry
of the position of vortices. In the phase termed vortex attraction, vortex repulsion
is strongly suppressed and we observe strong vortex overlap in many cases. The
question mark refers to the fact that we do not have a fully quantitative description
of this phase. The phase termed vortex deformation is characterized by vortices with
a vortex core that becomes spatially inhomogeneous and a highly deformed vortex
profile. By no superconductivity, we refer to a region of vanishing superfluid density
independently of its origin. We note that in the rest of regions, phase coherence
holds. Indeed, disorder enhances the critical flux φc2.

In view of that, a natural question to ask is to what extent the current picture of the effect
of disorder in superconducting vortices, largely based on a phenomenological description of
disorder, is modified if disorder is introduced microscopically and the calculation is carried out
self-consistently.

In this paper, we employ the self-consistent BdG formalism [63,64] to address this problem
in a two dimensional disordered superconductor in the presence of a magnetic flux, introduced
by the so-called Peierls substitution. More specifically, we study quantitatively the vortex dis-
tribution as a function of disorder and flux strength, and also the spatial structure of a single
vortex when the order parameter is sufficiently inhomogeneous. Moreover, we address the
impact of disorder on global phase coherence and also in superconducting properties such as
the average order parameter and the critical flux corresponding to the breaking of supercon-
ductivity.

The main results of this study are summarized in Fig. 1. For weak disorder, the most salient
feature is an intermediate, in flux, rectangular vortex lattice phase in Fourier space between the
expected triangular Abrikosov lattice at no or very weak disorder, and a phase characterized by
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vortex repulsion but no translational order. When the magnetic flux is large enough, the vortex
overlaps and there are signs of incipient frustration in the phase of the superconductor, see
Fig. 18 in Appendix B. For sufficiently strong disorder, this phase melts into a disordered vortex
phase, termed vortex deformation in Fig. 1, where the vortex core is spatially inhomogeneous
with a highly deformed external profile, see Figs. 10 and 11. Another intriguing finding is
that all of the above vortex distributions coexist with phase coherence. Even more, disorder
enhances the critical magnetic field, see Fig. 14, especially on the metallic side of the transition
where the average order parameter is enhanced, see Fig. 15(b), as well. The latter features
are potentially relevant for design optimizations of superconducting devices for technological
applications.

As was mentioned previously, the interplay of vortices and disorder using the BdG formal-
ism has already been investigated in Refs. [17, 27, 40–43] but for substantially smaller sizes:
at most 36 × 36 in those papers versus 100 × 100 in our paper. Moreover, these works do
not address the two main problems studied in this paper: the change in the vortex lattice
distribution as a function of disorder and magnetic flux and the spatial deformation and in-
homogeneity of single vortices for strong disorder on the metallic side of the transition. The
reason for that is of technical nature, the study of vortex lattices requires larger lattice size.
Likewise, the convergence of the code slows down substantially in the strong disorder region
which therefore requires both substantial computational resources together with the use of
state of art numerical techniques.

Finally, we would also like to mention a recent study [28], see also Ref. [65], that consid-
ered the interplay of disorder, magnetic field and temperature by using an effective XY model
for the phase of the order parameter. It was found that disorder enhances the robustness of
the superconducting state against magnetic effects at finite temperature. However, the de-
pendence of the vortex lattice with the disorder strength, the main focus of this paper, is not
addressed. Moreover, quantum coherence effects are lost in this type of phenomenological
approach. Therefore, there is no sizable overlap between our results and previous literature
on this problem.

We start our study with an introduction of the model and the employed numerical tech-
niques.

2 Model and method

The disordered superconductor is modeled by an attractive Hubbard model,

H =
∑

i jσ

−tc†
iσc jσ + U
∑

i

ni↑ni↓ +
∑

iσ

Viniσ . (1)

The effect of a perpendicular magnetic field B(r, t) =∇×A(r, t) is introduced by the so called
Peierls’ substitution t → t i j = t exp(iφi j) where φi j =

π
φ0

∫ ri

r j
A(r)dr and φ0 = hc/2e is the

superconducting quantum flux. The magnetic field B is then given in terms of the flux φ in
units of φ0.

We note that when U = 0 and Vi = 0, and for certain values of the magnetic field and
the lattice size, so the flux becomes increasingly incommensurate, the Hamiltonian reduces
to the celebrated Harper-Hofstadter model [66,67] which displays an intricate band structure
that becomes multifractal at the transition. In this study, since we are interested on vortex
physics, we only focus on integer fluxes that are far from the Harper-Hofstadter limit even for
no disorder. Likewise, recent reports [68, 69] on Hofstadter superconductivity are for clean
systems and for a strength of the magnetic field much larger than the one considered in the
paper. Therefore, there is no overlap with our results.
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Returning to Eq. (1), in order to simplify the numerical calculation, the perpendicular
magnetic field is chosen to be a time independent uniform field B = (0,0, B0). We can use
the vector potential A = (−B0 y, 0, 0) in the Landau gauge. We neglect the coupling of the
magnetic field to the spin, the Zeeman term, as the field strength in our problem is relatively
weak so the spin-splitting is too small to cause any substantial effect in the vortex physics in
superconductors we are interesting in.

By performing a Bogoliubov transformation ciσ =
∑

n

�

un(i)γnσ −σv∗n(i)γ
†
nσ̄

�

, where γnσ

and γ†
nσ are fermion operators, we obtain the two dimensional Bogoliubov de-Gennes equa-

tions [48,63,64,70] in the presence of a magnetic flux,
�

K̂ ∆̂

∆̂∗ −K̂∗

��

un(ri)
vn(ri)

�

= En

�

un(ri)
vn(ri)

�

, (2)

where
K̂un(ri) = −t i j

∑

δ

un(ri +δ) + (Vi −µi)un(ri) , (3)

and the sum δ is restricted to the four nearest neighboring sites. In our calculation, for sim-
plicity, we use t = 1 as the unit of energy, and the superconducting flux quantum is φ0 = π.
Vi are random variables from an uniform distribution between [−V, V ]. The local chemical
potential including the Hartree shift is µi = µ + |U |n(ri)/2, ∆̂un(ri) = ∆(ri)un(ri), and the
same definition applies to vn(ri). The BdG equations are completed by the self-consistency
conditions for the site dependent order parameter∆(ri) = |U |

∑

n un(ri)v∗n(ri) and the density
n(ri) = 2
∑

n |vn(ri)|2. The order parameter can be written as ∆(ri) = |∆(ri)|eiθi where the
non trivial phase θi in this mean field formalism is a direct consequence of the existence of a
magnetic flux. The averaged charge density 〈n〉 =

∑

i n(ri)/N is fixed by tuning the chemical
potential µ at each iteration step.

Imposing the self-consistent condition, we solve eq. (2) numerically on a square lattice
(N = L × L). In order to minimize finite size effects, it is important to employ periodic
boundary conditions at zero temperature. However, this is challenging due to the presence
of the flux leading to a vortex lattice and the requirement of magnetic translation symme-
try [71,72]. Following previous literature [43,71,72], we have found that the optimal choice
that minimizes finite size effects and respects magnetic translation symmetry, is the so called
twisted boundary condition along y-direction un(rx , ry + L) = exp(iπrx Lφ/φ0)un(rx , ry) and
vn(rx , ry + L) = exp(−iπrx Lφ/φ0)vn(rx , ry), where rx and ry are the lattice sites along x and
y directions respectively.

It is important to stress that exact periodic boundary conditions can be imposed in the limit
of no disorder where the amplitude of the order parameter is constant except in the vortex core
where it vanishes. This is achieved by performing a singular gauge transformation [40, 73]
so that the phase factor of the order parameter vanishes but a new phase factor appears in
the hopping terms which makes possible to impose strictly periodic boundary conditions re-
specting at the same time magnetic translation symmetry. However, it assumes a constant
order parameter amplitude so the solution is not self-consistent. In the very weak disordered
regime, it can still be a good approximation because deviations from an Abrikosov lattice are
small and can be accounted phenomenologically [73] by assuming a small random displace-
ment of the vortex position. However, this approach completely breaks down for stronger
disorder, especially around the insulating transition. Since we are mostly interested in the
impact of disorder on vortices for a broad range of disorder strengths, we cannot adopt this
exact periodic boundary condition scheme.

As a consequence, we could not find a way to exactly impose periodic boundary conditions
because, unlike previous studies in the literature, we aim to keep the treatment of the am-
plitude and the phase of superconducting order parameter on equal footing which requires a
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self-consistent treatment of the former so that we can study changes in the vortex profile due
to disorder. At the same time, sizes must be as large as possible in order to do any quantita-
tive analysis of the vortex lattice which prevent us using Dirichlet boundary condition. This
constraints led us to choose the mentioned twisted boundary conditions along one direction.
Additional technical details about the choice and implementation of boundary conditions in
the presence of a magnetic flux are found in Appendix. A.

Another important technical issue that also requires a detailed description is the method
to determine the position of the vortex. A vortex occurs in a certain region of the sample if the
sum of the phase difference between two neighboring sites (θi+δ − θi) in a closed path L is
2π, namely,
∑

L(θi+δ − θi) = ±2π. The vortex core is then located at the center of the closed
path. The inset of Fig. 6(b) shows the precise relation of the phase θi (red arrow) and the
vortex core (red circle). Further details on the definition of a closed path and a vortex core
are found in Appendix. B. Moreover, in order for the phase θi of the superconducting order
parameter to be single-valued everywhere, φ/φ0 must be an even number [40, 74], so that
the accumulated phase difference

∑

L(θi+δ − θi) along any closed path that contains a set of
vortices is 2nvπ, where nv = ±1,±2, · · · . The findings of Section. 5 and Appendix. E confirm
that for a satisfactory description of the vortex profile, especially in the strong disorder region,
it is necessary the self-consistent calculation of the amplitude of the order parameter.

Finally, we comment on the choice of parameters in this study. We adjust the chemical
potential so that the charge density is fixed at 〈n〉 = 0.875 which is commonly used in the
study of disordered superconductors [27, 37, 47, 48]. For the study of the vortex lattice, we
set N = 60 × 60 and coupling constant |U | = 1.25. With these parameters, the coherence
length ξ0 ∼ 12 so the radius of the vortex r0 ∼ 12 will be similar which allows us to reproduce
the Abrikosov lattice even in the clean limit. In some cases, we also study larger system size
N = 100× 100 to confirm the results. When we study the vortex profile and spatial inhomo-
geneity within the vortex region, our focus shifts to a system with weaker coupling |U | = 1,
leading to larger vortex, r0 ∼ 15, which helps us investigate in more detail the spatial structure
inside the vortex. In order to get rid of the interactions between vortices, which might cause
unexpected effects, we study only two vortices in such system with size N = 60×120. In sum-
mary, with this choice of parameters, we are able to explore vortex physics, both for a single
vortex and for a lattice of vortices, in the presence of disorder approaching the experimental
region of weakly coupled conventional metallic superconductors.

3 Distribution of vortices in clean BdG superconductors:
Abrikosov triangular lattice

In this section, we study the distribution of vortices as a function of the magnetic flux strength
in the limit of no disorder where we expect to recover the Abrikosov triangular lattice solution
originally obtained [1] from the phenomenological Ginzburg-Landau formalism.

In the clean limit, V = 0, the application of a sufficiently strong magnetic flux results in the
creation of the Abrikosov lattice [1], a triangular lattice of vortices. The vortex distribution
depicted in Fig. 2, for a 100×100 lattice, shows excellent agreement with an Abrikosov lattice
in both real space and Fourier space.

We subsequently study the sample with different aspect ratios. Results depicted in Fig. 3
show that the triangular Abrikosov lattice is well reproduced, although in some cases, the
Abrikosov lattice is stretched or compressed due to the shape. In Fourier space, we observed
the expected sharp hexagonal Bragg pattern related to the triangular lattice in real space.
Results for different sizes and aspect ratio, confirm the triangular Abrikosov lattice in the limit
of no disorder.
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Figure 2: Left: The spatial distribution of the order parameter |∆(r)| normalized by
∆0 = 0.0894t, which is the superconducting gap in the absence of disorder and mag-
netic flux. The position of vortices is marked by red circles. The Abrikosov triangular
lattice is clearly observed. Right: The corresponding structure factor of the position
of vortices. We obtain sharp Bragg peaks, marked by white circles in the figure, that
correspond to the expected triangular Abrikosov lattice. This is consistent with the
distribution of vortices in real space. The system size is N = 100 × 100, and the
magnetic flux φ/φ0 = 16. The other parameters are |U |= 1.25, 〈n〉= 0.875.

4 Distribution of vortices in disordered superconductors

We now turn to the role of disorder in the vortex distribution at zero temperature. In Fig. 4, we
depict the spatial dependence of the order parameter, resulting from the solution of the BdG
equations, for different disorder strengths V and magnetic fluxes φ/φ0. Red circles stand for
the vortex position. For no magnetic field, the order parameter clearly develops an intricate
spatial structure as disorder increases which is starkly different from the box distribution of the
disordered potential. Indeed, for 1 ≳ V ≳ 2, rather conclusive analytic [33], numerical [37]
and experimental [46] evidence indicates that the spatial distribution of the order parameter
follows a broad log-normal distribution. Therefore, phenomenological approaches to the study
of vortices in disordered superconductors that assume that implicitly assumes that the order
parameter spatial distribution is that of the disordered potential can only be quantitatively
correct in the very week disorder limit V ≤ 0.5 where quantum coherence effects induced by
disorder are not important.

4.1 Weak disorder region

In the weak disorder region V = 0.5, the distribution of vortices is rather sensitive to φ/φ0.
For 10 ≤ φ/φ0 ≤ 16, we still observe clear regularities that points to a deformed triangular
Abrikosov lattice. However, a larger φ/φ0 induces larger spatial inhomogeneities in the order
parameter that translates into a more complicated vortex pattern. It seems that it becomes
energetically favorable that vortices occupy regions where the order parameter is suppressed.
We note that, in two dimensions, the effect of sufficiently strong disorder induces incipient
quantum localization effects such a log-normal spatial distribution of the order parameter
[33,34]. However, a disorder strength V = 0.5 is too weak to cause any significant localization
effect. The distribution of probability is indeed still close to Gaussian, see appendix G, though
with a comparatively larger standard deviation.

For a larger field φ/φ0 = 24, the vortex positions do not seem to follow any pattern. For
larger field φ/φ0 = 36 and 64, we cannot discern vortices clearly because strong overlap in
some cases which we think indicates that this must be close or above the critical field at which
the loss of superconductivity takes place.
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Figure 3: Top panel: The spatial distribution of the order parameter |∆(r)| normal-
ized by ∆0 = 0.0894t, and the vortices core (red circles). The height of the sample
is fixed at 60, while the length of the sample are 60, 80, 90 and 110 from left to
right. The Abrikosov triangular lattice is clearly observed though for 60 is slightly
compressed. The magnetic flux is φ/φ0 = 12 for 60,80, 90, and φ/φ0 = 18 for 110.
Below is the corresponding structure factor. We obtain sharp Bragg peaks, marked
by white circles in the figure, that correspond to the expected triangular Abrikosov
lattice. The other parameters are |U |= 1.25, 〈n〉= 0.875.

In any case, the spatial distribution of the order parameter is not enough for a quantitative
description of the vortex distribution. For that purpose, we compute next the structure factor
with respect to the position of the vortices [7,16,75]. We note that lattice symmetries in real
space can be characterized by the pattern of Bragg peaks in the first Brillouin zone.

4.1.1 From triangular to rectangular vortex lattice in Fourier space

We now provide a more quantitative analysis of the nature for the vortex lattice as a function
of disorder and magnetic flux by the Fourier transform with respect to the vortex positions.
For V = 0.5 and φ/φ0 ≤ 18, we observe, see Fig. 5, an hexagonal structure in Fourier space
which is a signature of the triangular Abrikosov lattice. Unexpectedly, around φ/φ0 ∼ 20, the
hexagonal lattice in Fourier space transforms into a rectangular lattice.

We first analyze the difference of the maximum angle θx and minimum angle θn of the
triangle formed by three neighboring vortices, and the distance between two vortices, as a
function of the magnetic flux. The results are shown in Fig. 6. In the triangular Abrikosov
lattice, θx = θn = π/3, which leads to cos(θx − θn) = 1. For a right triangle, θx = π/2 and
θn = π/4, which leads to cos(θx − θn) =

p
2/2 ∼ 0.7. Those features are well captured in

Fig. 6(a) that shows the transformation of the vortex distribution from a triangular lattice to
a rectangular lattice.

A distinct feature of the rectangular lattice is that the distance between vortices is smaller
than the typical vortex separation Lv , which is determined by the coherence length ξ0 = 12,
obtained in the clean limit, so vortex overlap. This overlap is energetically unfavorable in the
clean case. However, disorder may make it possible because vortices gain energy in locations
where the order parameter is suppressed. Therefore, the observed rectangular distribution
is a compromise between disorder that tend to group vortices with no spatial symmetry and
magnetic flux that tend to a more symmetric triangular vortex distribution.
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Figure 4: The spatial distribution of the order parameter |∆(r)| normalized by
∆0 = 0.0894t with |U | = 1.25, 〈n〉 = 0.875. The position of vortices is represented
by red circles. Disorder strength is V = 0.5,1.0, 1.5 and 2.25 in units of the hop-
ping energy from top to bottom. The magnetic flux strength is, from left to right,
φ/φ0 = 0,10, 16,20, 24,36 and 64. By increasing disorder, the spatial distribution
of the order parameter becomes strongly inhomogeneous. As expected, an increas-
ing magnetic flux, suppresses the order parameter which effectively becomes more
inhomogeneous. In the region of strong magnetic flux (φ/φ0 ≥ 36), close or at
the transition, we do not mark the vortex position because, see section 5 and Ap-
pendix. A, vortex overlap and single vortices are deformed especially in the strong
disorder region which makes difficult to determine its location.

More specifically, the differences between the non-overlapping vortices and the overlap-
ping vortices are illustrated in the inset of Fig. 6(b) where a clear deformation is observed of
the vortex arrow, with respect to that of a single isolated vortex, in the region between the two
vortices.

These results further support that vortex overlap plays an important role in the triangu-
lar to rectangular lattice transition. In order to fully confirm the existence of this intriguing
rectangular phase, we repeat the analysis for a larger sample size L = 100 in Appendix. F. A
larger size leads to a larger number of vortices which makes the Fourier analysis much more
accurate. The observation of a sharp rectangular pattern in Fourier space for L = 100, see
Appendix. F, provides strong evidence of the existence of a rectangular vortex lattice in real
space and sufficiently weak disorder far from the critical region.

We note that a similar transition from a hexagonal vortex lattice to a rectangular vortex
lattice in Fourier space is also observed in FeSe [75] and LiFeSe [16]. In these experiments,
the transformation is attributed to vortex overlap. A direct comparison with our results is
not possible because these iron-based materials are multi-band superconductors. The order
parameter is thus expected to have a non trivial angular dependence. By contrast, our model
is disordered, single-band and the order parameter has s-wave symmetry and therefore no
angular dependence.
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Figure 5: Structure factor of the position of vortices in the weak disorder region
V = 0.5. The magnetic flux is φ/φ0 is 16,18, 20,22 and 24 from left to right. For
φ/φ0 = 16, 18, the pattern is consistent with a triangular lattice in real space. How-
ever, a small increase, φ/φ0 = 20, leads to a transition to a rectangular lattice. An
increase in the flux ( φ/φ0 = 22) results in a close to circular pattern signaling the
absence of translational symmetry. Physically, a circular pattern indicates a combina-
tion of vortices repulsion and the restoration of rotational symmetry [65, 76]. This
circular pattern eventually disappears forφ/φ0 ≥ 24 which signals a fully disordered
phase with no clear vortex repulsion. To make the pattern more evident, we have set
some cut-off value, referred by High in the plot.

4.1.2 From rectangular vortex lattice to vortex repulsion and beyond

By a further increase of the magnetic flux φ/φ0 ≥ 22, the peaks that characterize the rectan-
gular lattice phase become gradually smeared out. Some structure, closer to a circle, remains
which signals vortex repulsion but loss of any discrete translational symmetry and the on
average restoration of rotational symmetry of the position of vortices. Therefore, although
the inhomogeneity of the order parameter destroys any lattice structure in Fourier space, the
magnetic flux still maintain vortices well separated. This gradual destruction of discrete trans-
lational symmetry has been observed [76] experimentally.

For φ/φ0 ≥ 24, no clear structure can be discerned in Fourier space which is typically
associated with a vortex disordered phase where vortex repulsion is gradually weakened. In
this weak disorder region, with no multifractal effects, we expect rotational symmetry to still
continue in the region close to the transition. However, larger lattices, with a larger number of
vortices, leading to a sharper pattern in Fourier space, are necessary for a full characterization
of this phase. More specifically, it would be interesting to determine whether a clear diffraction
disk, characteristic of rotational symmetry in the position of vortices, is observed.

4.2 Strong disorder region

For stronger disorder (V ∼ 1.5), see Fig. 4, and not too strong fields, the system is still super-
conducting, see next section, but the order parameter has large spatial inhomogeneities and
vortices tend to be located in regions where the order parameter is heavily suppressed. More-
over, vortices become spatially inhomogeneous. After averaging over different vortex cores,
which smooths out inhomogeneities, the averaged vortex profile is still quite sensitive to the
disorder strength, see Fig. 10 and Appendix E for more details. A Fourier analysis, see Fig. 7,
confirms this point. The observed circular pattern for φ/φ0 ≤ 24, suggest, as in the weak
disordered region, the restoration, on average, of the rotational symmetry, the breaking of any
remnants of discrete translational invariance, and the persistence of strong vortex repulsion.

The circular pattern finally disappears for φ/φ0 ≥ 28. In this region of stronger fields, it
is unclear whether rotational symmetry is restored because multifractal-like properties of the
order parameter distribution may control completely the position of vortices. In any case, the
system size is not large enough to provide a more quantitative characterization.
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Figure 6: (a) The cosine of the differences of the maximum angle θx and the mini-
mum angle θn in the triangle formed by three vortices. By increasing the magnetic
flux, there is a transition from equilateral triangle to right triangle. (b) The vortex
lattice spacing Lv as a function of the magnetic flux. Inset: spatial distribution of the
order parameter (color code of Fig. 4) for two different magnetic fluxes including
the extra phase (red arrow) due to the magnetic flux and the vortex core (red cir-
cle). The size of the vortex lattice spacing in the clean limit is close to the coherence
length, ξ0 ∼ 12, so we expect that smaller spacing will lead to vortex overlap.

For V ≳ 1.5, which is close to the transition, we find no trace of vortex lattice or glass
structure. The position of vortices seem to be dictated by the sample regions where the order
parameter has an especially small value. Therefore, no vortex repulsion is observed. Moreover,
the inhomogeneities inside the vortex core becomes even stronger, see Fig. 11. For these
reasons, in many cases, it becomes increasing difficult to precisely determine the position of
isolated vortices.

For a sufficiently strong field, we expect that the vortex positions are ultimately controlled
by the multifractal-like properties of the order parameter. However, as mentioned above, we
could not find a precise characterization that would allow a more quantitative description of
the vortex distribution. Larger sizes and more vortices would be necessary for that purpose.

A general feature of the strong disorder region is the relative insensitivity of the order
parameter to the increase of the magnetic flux. In part, this is due to the fact that we model
the magnetic flux in the so called Peierls substitution that neglects the coupling of the spin
to the magnetic field. However, it also contributes that vortices occur in regions where the
superconducting order parameter is already heavily suppressed by disorder, which is amplified
by coherence effects, so they barely induce a further suppression. We shall see in Section 6 that
this feature has important consequences in observables such as the critical magnetic flux or the
spatial average of the order parameter. Finally, we note that in this section we have employed
a 60× 60 lattice. The reason for that is twofold, on the one hand numerical convergence is
much slower as disorder increases. On the other hand, finite size effects are suppressed by
disorder so, at least in the region where disorder destroys the vortex lattice. We do not think
larger sizes > 60 × 60 will change the results qualitatively. However, as mentioned earlier,
larger lattices will be necessary for a more quantitatively description of the vortex distribution
in this region.
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Figure 7: Structure factor of the position of vortices in the strong disorder region
V = 1.5. The magnetic flux is φ/φ0 = 10,16, 20,24, 28 from left to right and the
lattice size is 60× 60. Unlike the weak disorder V ∼ 0.5 region, we do not observe
the triangular or rectangular lattice phases. The spatial distribution of the order
parameter is too inhomogeneous for the formation of any form of vortex lattice. For
φ/φ0 ≤ 24, the system is characterized by vortices that still repel each other but
have lost discrete lattice symmetry. For larger fields, vortex repulsion is strongly
weakened. The vortex distribution approaches the fully disordered phase.
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Figure 8: Left: The spatial distribution of the order parameter and its phase in the
clean limit when there are four vortices. Right: The profile of the order parameter
for the vortex. The red solid line is the fit to the Ginzburg-Landau prediction Eq. 4.
The other parameters are |U |= 1.0, 〈n〉= 0.875.

5 The vortex profile

In the previous section, we showed that vortices occur in regions with heavily suppressed
superconductivity. One natural question to ask is whether the vortex shape is sensitive to the
spatial distribution of the superconducting order parameter. It is also important to explore the
profile of single vortices in the presence of disorder, so that we can have a better understanding
of the interplay of disorder and magnetic flux.

According to the Ginzburg-Landau (GL) theory [77,78], the profile of the order parameter
inside a vortex neglecting disorder effects is:

∆(r)
∆0

= as tanh(r/r0) , (4)

where as∆0 is the spatial average of the order parameter in the absence of magnetic field and r0
characterizes the vortex size. In the clean limit, r0 is similar to the superconducting coherence
length ξ0. In the inhomogeneous case, to have smoother results, we obtain the ∆(r)/∆0 by
averaging over points in the vortex core at the same distance of the center. The results with
only two vortices are illustrated in Fig. 8 ∼ 11. In the clean and weak disorder limit, the
results fit well with the GL prediction. Additional results are presented in Appendix E. The
best fitting for r0 in the weak disorder region V = 0.5 is 10≤ r0 ≤ 14, which is slightly smaller
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Figure 9: Upper: The spatial distribution of the order parameter amplitude and phase
in the presence of a weak disorder strength V = 0.5. Lower: the corresponding
vortex profile. The red solid line is the fit to the Ginzburg-Landau Eq. 4 prediction.
Vortex 1 (2) stands for the left (right) vortex of the upper plot. Other parameters are
〈n〉 = 0.875 and a lattice size 60× 120. We employ a weaker coupling |U | = 1.0 so
that the vortex is larger which facilitates the study of its core and profile.

than r0 = 14.73 in the clean limit. However, when the disorder is stronger, the fittings become
much worse, and the fitted parameter r0 varies in a much larger region because the vortex
profile is no longer circular. This is directly related to the fact that the spatial distribution of
the order parameter is dominated by disorder which in this region is highly inhomogeneous.

More specifically, if we define the vortex profile by the spatial distribution of the phase in
the vortices region, shown in Fig. 10 and 11, the vortices have the shape of heavily suppressed
superconducting order parameter region which is far from circular but rather elongated and
with no apparent symmetry. We are not aware of any previous research about this intriguing
phase characterized by deformed vortices with inhomogeneous vortex cores.

Moreover, these results in the intermediate and strong disorder hint that in the weak
|U | ≤ 1 coupling limit, it may be possible to observe multifractal vortices [33, 37, 45, 46],
namely, vortices whose shape is directly influenced by the multifractal-like features of the spa-
tial distribution of the order parameter.

Finally, we note that by averaging over different vortices we recover an approximate circu-
lar shape, as is shown in Fig. 23 of Appendix E. In the presence of a stronger disorder V = 2.25,
even identifying the vortex core is problematic and therefore we can not perform an average
over the vortex cores. In this limit, which is around the superconductor-insulator transition,
as expected, the vortex core deviate strongly from the GL prediction and the spatial structure
is highly inhomogeneous, the outer profile seems to be very sensitive to the details of the dis-
order potential but highly elongated in general. Intriguingly, the phase of the order parameter
seems to form the so-called Josephson vortex [27] that needs to be defined over a rather long
and non-circular path.

14

https://scipost.org
https://scipost.org/SciPostPhys.15.5.196


SciPost Phys. 15, 196 (2023)

0 20 40 60 80 100 120
0

20

40

60

0

0.2

0.4

0.6

0.8

1

0 10 20
0

0.2

0.4

0.6

0 10 20
0

0.2

0.4

0.6

Figure 10: Upper: The spatial distribution of the order parameter and its phase in the
intermediate disorder region V = 1.5. Lower: Vortex profile compared (red lines)
with the Ginzburg-Landau prediction Eq. 4. Vortex 1 stands for the left vortex, and
the right vortex is Vortex 2. The other parameters are 〈n〉 = 0.875 and a lattice size
60× 120. We employ a weaker coupling |U |= 1.0 so that the vortex is larger which
facilitates the study of its core and highly deformed profile.

6 Characterization of the superconducting state in the presence
of vortices and disorder

The results of previous sections suggest that while for weak disorder a vortex lattice is still
formed, though with a different symmetry depending on the magnetic flux, the effect for
stronger disorder is more drastic. No lattice structure or even short range position correla-
tion can be discerned. It seems that vortices are located in regions with a very small value
of the order parameter. Therefore, it is ultimately controlled by disorder, more specifically by
the spatial inhomogeneities of the order parameter, and therefore not much influenced by the
magnetic flux. In this section, we aim to understand in more detail to what extent disorder
weakens the effects of the magnetic flux. We shall see that in certain cases it may even enhance
superconductivity. We split the analysis of the interplay between disorder and magnetic flux
in two parts. We first compute the covariance of the order parameter and the order parame-
ter amplitude two-point correlation for a more quantitative assessment of the suppression of
magnetic effects by disorder. In the second part, we show that in certain region of parame-
ters, disorder increases experimental observables like the critical magnetic field and the spatial
average of the order parameter.

6.1 Covariance and two-point correlation function of the order parameter am-
plitude

We compute the covariance of the order parameter with and without magnetic flux,

cov(φ) = 〈(∆(0)− ∆̄(0))(∆(φ)− ∆̄(φ))〉/σ(0)σ(φ) , (5)
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Figure 11: Upper: The spatial distribution of the order parameter and its phase
in the stronger disorder region V = 2.25. Lower: spatial vortex profile compared
with the Ginzburg-Landau prediction Eq. 4 in the clean case (red lines). Vortex 1
(2) stands for the left (right) vortex in the upper plot. The other parameters are
|U | = 1.0, 〈n〉 = 0.875 and a lattice size 60 × 120. Deviations from the theoretical
prediction illustrate the important effect of disorder.

where σ2(0) is the variance of the order parameter without magnetic flux ∆(0), and σ2(φ) is
the variance of the order parameter in the presence of a magnetic flux φ.

From previous results, we expect that for weak disorder cov(φ) is sensitive to φ because
we observe different transitions in the vortex distribution. For strong disorder, the position of
vortices does not change much with disorder, so we expect cov(φ) is only weakly dependent
on φ. Numerical results, depicted in Fig. 12, fully support these qualitative considerations.
Even for V = 0.5, cov(φ) is relatively close to the one for weak fields φ/φ0 < 10 because a
vortex lattice is not yet formed so a flux has little effect. However, the formation of vortex
lattice at φ/φ0 ∼ 16 reduces drastically the covariance. Disorder does not play an important
role in this region. A further increase in the magnetic flux leads to changes in the vortex
lattice structure and a further weakening of the correlations described by the covariance. The
decrease rate of cov(φ) is reduced sharply around φ/φ0 ≥ 24 which is precisely the region
where we stop observing any positional and orientational order in the vortex distribution. A
magnetic flux above the critical one will eventually break down superconductivity. For stronger
disorder, V ≥ 1.0, the covariance decreases slowly with φ/φ0 even for relatively large fields.
Already for V = 1.5, which is still on the metallic side of the transition, the covariance is
largely insensitive to φ/φ0. This confirms that, in this region, vortex positions and the spatial
distribution of the vortex core are closely related to the distribution of the superconducting
order parameter and not to the strength of the magnetic flux, namely, the vortex is controlled
by disorder and therefore the covariance does not change much.

We turn now to the two-point correlation function of the order parameter amplitude
〈|∆(r)||∆(0)|〉 which provides valuable information about the impact of a magnetic flux in
a disordered superconductor. We note that we are not including phase fluctuations in our for-
malism so this observable provides only an upper bound for the loss of phase coherence. Since
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Figure 12: The dependence of the covariance cov(φ) Eq. (5) on the flux φ offers
strong evidence that when disorder is weak V = 0.5, the impact of the magnetic
flux is strong which is consistent with the observed different lattice distributions.
However, for strong disorder, the effect of the flux is limited as vortices are located
in regions where the order parameter is strongly suppressed by disorder effects. The
flattening for large φ and weak disorder V = 0.5 signals the transition.

the disorder is not periodic in this study, we do not consider the periodicity when we calculate
the correlation function, namely, we specifically consider only the sites that are at a specific
distance, denoted as “r”, from the chosen site “0”, and then perform an average over all sites.

For weak disorder V = 0.5, see left plot of Fig. 13, we distinguish three different regions as
φ/φ0 increases: for φ/φ0 ≤ 10 the effect of the magnetic flux is small. We do not observe a
decay of correlations. For φ/φ0 = 16,20, there exists a drop of correlations for long distances
consistent with the formation of the vortex lattice. A further increase of the field results in a
sharper drop of correlations consistent with the destruction of the vortex lattice. For stronger
disorder V ≥ 1.5, central and right plot of Fig. 13, the effect of the magnetic flux is relatively
small which reinforces the idea that strong disorder suppresses the impact of the magnetic flux
without necessarily breaking phase coherence.

6.2 Enhancement of the critical magnetic flux and the order parameter by dis-
order

An intriguing feature that we have observed is that the critical magnetic flux is enhanced
by disorder. Results depicted in Appendix. C indicate that in the clean limit the maximum
magnetic flux is φ/φ0 = 12 for size N = 60× 60. However, see Fig. 4, even a weak disorder
V = 0.5, enhances the critical maximum magnetic flux to φ/φ0 ∼ 24. In order to reach a
more quantitative conclusion about whether the critical magnetic flux is enhanced by disorder,
we determine this critical flux by both the study of the superfluid stiffness and a percolation
analysis of the order parameter spatial distribution.

The superfluid stiffness Ds
π presented in Fig. 14(a) is given by Ds

π = 〈−kx〉−Λx x(q, iω→ 0)
[79], see Appendix. H for more details. In the weak disorder region, Ds/π decreases sharply
as the magnetic flux increases. In the intermediate disorder region, the superfluid stiffness
decreases more slowly. Ds/π is still finite even forφ/φ0 = 36. This enhancement of the critical
field is not monotonic. For a sufficiently strong disorder, Anderson localization effects trigger
a transition even without a magnetic flux. This is illustrated for V = 2.25, at or very close to
the transition, where the superfluid stiffness becomes compatible with zero for a much smaller
field strength φ/φ0 = 16. By compatible with zero we mean though the superfluid density
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Figure 13: Two-point spatial correlation function of the order parameter. From left
to right: V = 0.5,1.5 and 2.25. (a) The correlation is very sensitive to the mag-
netic flux strength. As a consequence, we observe substantial changes around the
formation of the vortex lattice φ/φ0 = 16 and its destruction φ/φ0 = 22. (b) The
breaking of positional order is signaled by the insensitivity of the correlation function
to changes in the field around φ/φ0 ∼ 20. (c) Correlation function around the insu-
lating transition. The dependence on the magnetic flux is rather weak in this region.
Note the different range of fields in the left and right plots. The other parameters are
|U |= 1.25, 〈n〉= 0.875 and the system size N = 60× 60.

is not zero its value is already very small so it is probably zero once quantum fluctuations,
neglected in our mean field analysis, are considered.

We now proceed with another estimation of the critical field based on a percolation analysis
of the order parameter spatial distribution. The percolation threshold for a 2D square lattice
is pc = 0.59 [80]. Results, depicted in Fig. 14(b), show that the critical flux for the breaking
of superconductivity, within the metallic region, is enhanced by disorder. This is consistent
with the previous superfluid stiffness analysis. Strictly speaking, the location of the transition
depends on the cut-off value∆c . Therefore, the percolation analysis gives only a rough estima-
tion rather than a precise determination of the critical magnetic flux. However, in combination
with the previous superfluid density results, it provides a consistent, albeit qualitative, picture
of the role of disorder: up to intermediate strengths V = 1.5, disorder enhances the critical
magnetic flux. A further increase of V , at or close to the insulating transition, leads to a sup-
pression of the critical magnetic flux. The maximum enhancement occurs for intermediate
values of the disorder strength V ∼ 1.5.

We investigate now the effect of disorder on the spatial average of the order parameter
and the spectral gap in the presence of a magnetic flux. For a fixed value of the disorder
strength, see Fig. 15(b), the spatial average of the order parameter decreases as magnetic flux
increases. However, the decrease is much slower as disorder is increased. Interestingly, we
identify a region in the magnetic flux φ/φ0 ∼ 20 strength, close to the transition, where, for a
fixedφ/φ0, the spatial average of the order parameter is enhanced by disorder though it is still
smaller than in the no disorder, no field limit. This is another example where disorder protects
the superconducting state against magnetic effects that tend to weaken it. The average spectral
gap, depicted in Fig. 15(a), shows qualitatively similar features though we could not clearly
identify a region where disorder enhances it for a fixed magnetic flux.

In conclusion, even weak disorder debilitates magnetic effects in two dimensional super-
conductors. Ultimately, this is due to the fact that disorder makes the order parameter inhomo-
geneous in space. Quantum coherence effects, such as incipient localization or multifractality,
tend to amplify this suppressing effect due to the enhancing of spatial inhomogeneities. We
note that a microscopic model, as the one we employ, is necessary for a quantitative descrip-
tions of this phenomenon.
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Figure 14: (a) The superfluid stiffness as a function of the magnetic flux. (b) The
probability that |∆(r)| ≥ ∆c , where ∆c = 0.1∆0, and ∆0 = 0.0897. The crossing
with pc = 0.59 is the percolation prediction for the transition. The parameters are
N = 60× 60, |U |= 1.25 and 〈n〉= 0.875.

7 Conclusion and Outlook

We have investigated the distribution of vortices in a two dimensional disordered supercon-
ductor by a completely microscopic approach based on the solution of BdG equations in the
presence of a random potential and a magnetic flux introduced in the Peierls approximation.
This is in contrast with most of previous calculations in the literature where the starting point is
the semi-phenomenological Ginzburg Landau equations or by using the XY model and Monte-
Carlo techniques. Until recently, our approach was not practically feasible because of limita-
tions in the lattice size and therefore in the number of vortices that can be produced. Although
limitations still exist, the rapid development of computational resources, and the use of state
of the art numerical techniques, has made possible to obtain results for a range of parame-
ters not far from the ones corresponding to weakly coupled metallic superconductors and to
simulate a sufficient number of vortices to investigate different lattice configurations.

One of main results of this research is the observation, for a disorder strength not too
strong, of different transitions in the vortex lattice as the flux strength increases. As was
expected, for sufficiently weak disorder, a perturbed Abrikosov lattice is the configuration with
lower energy. For a slightly stronger magnetic flux, the dominant configuration is instead a
rectangular lattice. A further increase in the field strength leads to a phase characterized by
short-range vortex repulsion but no clear evidence of Bragg’s peaks which indicates loss of any
discrete translation symmetry.

A further increase of disorder, or magnetic flux, still inside the superconducting side where
global phase coherence holds, leads to the strong suppression of vortex repulsion. Indeed, the
absence of vortex repulsion makes it at times difficult to distinguish individual vortices.

Another intriguing finding in this region is that the profile of single vortices is strongly
deformed from the standard circular shape. Moreover, the vortex core becomes spatially in-
homogeneous. It is plausible to expect that the vortex position and profile is mostly dictated
by the spatial distribution of the order parameter rather than by the strength of the magnetic
flux. As a result, the vortex distribution must be influenced by the multifractal-like properties
of the spatial distribution of the order parameter [34,37,45,46]. However, larger sizes accom-
modating more vortices would be necessary to provide a more quantitative characterization.
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Figure 15: The spectral gap 〈Eg〉 (left) and the spatial average of the order parameter
〈∆(r)〉 (right) for |U | = 1.25 and 〈n〉 = 0.875. While the spectral gap decreases
monotonously with disorder and magnetic flux, we identify a region φ/φ0 ∼ 20
where 〈∆(r)〉 increases with disorder though its value is still smaller than ∆0, the
order parameter in the absence of disorder and at zero field.

We also study the robustness of the superconducting state to the presence of vortices and
disorder. A major result of this investigation is the observation of global phase coherence
signaling a zero resistance state not only in the Abrikosov and rectangular lattice phase but
also in the vortex repulsion phase provided that disorder or magnetic flux strength are not
too strong. We have also identified a region of disorder close to the transition where the
critical magnetic flux is substantially enhanced with respect to the clean limit. Likewise, for a
fixed, and sufficiently strong field, φ/φ0 ∼ 20, we found that the spatial average of the order
parameter is enhanced by disorder. However, it is still smaller than in the limit of no disorder
and no magnetic flux.

Natural extensions of this work include the study of finite temperature effects and a more
quantitative characterization of the vortex repulsion phase and the spatial deformation of the
vortex core and profile, especially its relation to the multifractal-like spatial distribution of
the order parameter. Another problem that deserves further attention is that of the interplay
of magnetic effects in granular materials modeled by Josephson junctions nano-arrays where
the superconducting state is also spatially inhomogeneous due to quantum coherence effects
induced by variations in the grain size. It would also be worthwhile to investigate the vortex
distribution in Hofstadter [69] superconductors and disordered multi-band topological super-
conductors where more stable vortex lattice configurations may exist.
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Figure 16: (a). The hopping term t i j at the lattice sites which are not the bottom
and top boundaries. (b). The hopping between the bottom and top boundaries.

A The boundary conditions in the presence of the magnetic flux

In this appendix, we introduce in detail how the periodic boundary conditions are modified in
the presence of magnetic flux, also see Ref [71,72]. Although the periodic boundary condition
which means that the boundaries are connected is still implemented to the lattice, it is no
doubt that in the presence of vector potential A = (−B0 y, 0, 0), where B0 = φ/(Lx × L y), the
order parameter is no longer periodic. Here, we use the subscript x and y to specify the x and
y direction for clarification.

As introduced in Section 2, the effect of a perpendicular magnetic field is introduced by
Peierls substitution, which leads to tr,r+δy

= t and tr,r+δx
= tex p(−iry B0), where δx and δy

are the nearest neighboring sites of r along the x and y direction, which is illustrated clearly
in Figure. 16(a). However, when the sites are in the bottom or top boundary, we need to
introduce the extra phase along y−direction, see Figure. 16(b), to make sure that the sum
of the phase in a minimum loop is still B0. By considering all of this, the accumulated phase
will be Lx × L y × B0 = πφ/φ0, which means there will be φ/φ0 vortices in the sample.
Moreover, in order the wavefunctions are single valued, the accumulated phase must satisfy
ex p(iπφ/φ0) = 1, which implies thatφ/φ0 must be even. When this quasi-periodic boundary
conditions are implemented properly, the magnetic translation symmetry is restored, which
means in our system, the order parameter should follow the translation property:

�

∆(rx , ry + L y) =∆(rx , ry)exp
�

i2π φφ0

rx
Lx

�

,
∆(rx + Lx , ry) =∆(rx , ry) .

(A.1)

B Definition of the closed path and the position of vortices

After solving self-consistently the BdG equations (2) in the presence of magnetic flux, we ob-
tain the on-site complex order parameter, which can be written as ∆(r) = |∆(ri)|eiθi . We can
therefore separate the amplitude |∆(ri)| and phase θi . We use the spatial distribution of the
|∆(ri)| and θi to define the position of the vortices. It is known that around the vortex re-
gion, superconductivity is suppressed. The order parameter is almost zero at the vortex core.
Therefore, it is better to first find those sites with order parameter smaller than a threshold
value 0.2∆0. When the disorder is not that strong, those sites with heavily suppressed super-
conductivity possess a higher possibility to become a vortex. We define a closed path L around
those positions. If the sum of the phase difference of two neighboring sites in this closed path
L satisfies
∑

L(θi+δ − θi) = ±2π, this position corresponds to the center of a vortex core. In
most cases, the numerical code finds easily the vortex by either considering the smallest loop,
only four neighboring sites, around the point mentioned above, marked by the red arrow in
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Figure 17: The spatial distribution of the amplitude of the order parameter |∆(ri)|
(false color) normalized by its bulk value∆0 ∼ 0.16, and its phase θi (black arrows).
The closed path is presented by the red arrows and the position of the vortex is
marked by the red circle. The results are on a smaller system size N = 18 × 36 in
the presence of magnetic flux φ/φ0 = 2, which means there have two vortices. The
coupling constant is U = −1.5 and the average density is 〈n〉 = 0.875. The disorder
strength is V = 0.0,0.5, 1.0,1.5 and 2.25 from (a) to (e).

Fig. 17(b) and 17(c) (the vortex on the right side), or the second smallest loop with eight sites,
see Figs. 17(a) and 17(d). The vortex core is then located at the center of the corresponding
closed path. However, some vortices cannot be identified by the code with the method men-
tioned above, especially in the stronger disordered region. Since we already know the number
of vortices in the sample when we define the magnetic flux, that is φ/φ0, we can find the rest
of vortices by hand, as shown in Fig. 17(e). Although it is a much larger closed path, the sum
of the phase difference along this path is still 2π, if it contains a vortex.

As shown in the main text, at even stronger disorder or higher magnetic flux, it is difficult
to identify the vortex by this simple way due to the strong spatial inhomogeneities of the
order parameter. Although we couldn’t identify vortices in some regions in the presence of
high magnetic flux, we want to stress that there might contain one or more flux in these
regions, which makes the ambiguous phase distribution, see Figure 18. More interestingly, in
some regions, the phases at neighboring sites have opposite directions. Whether it is some
kind of artifactual behavior, or novel physical mechanism still needs further studies. For that
reason, we just simply plot the spatial distribution of the order parameter without presenting
the position of the vortices to show the gradual suppression and eventual disappearance of
superconductivity.
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Figure 18: The spatial distribution of the order parameter amplitude |∆(ri)| (nor-
malized by ∆0 = 0.0894t) and phase θi (red arrows) in the presence of magnetic
flux φ/φ0 = 16 (left) and φ/φ0 = 36 (right). The red circles represent the position
of the vortices core. Although the phases don’t forms the standard vortex loop as
we introduced earlier, we still expect the regions marked by yellow rectangles might
contain one or more fluxes. The reason is that in these regions, the amplitude of the
order parameter are highly suppressed by magnetic flux, and the phase distribution
also show strange behaviors. The strength of random disorder is V = 1.0, and the
other parameters are |U |= 1.25, 〈n〉= 0.875.

C The vortices distribution in the absence of disorder

In this Appendix, we present results of the vortices distribution in a finite size clean system in
the presence of increasing magnetic fluxes, to show that how the vortices accommodate itself
below the critical magnetic field. Since the size is finite and the system is symmetric, only
configurations with a certain number of vortices respect the symmetry. Only when there are
12 vortices, a compressed Abrikosov lattice is reproduced. The order parameter also decreases
fast with increasing magnetic field. Slightly increasing the magnetic flux further toφ/φ0 = 14,
the superconductivity breaks.

D Calculation of structure factor S(q)

The structure factor is a fundamental concept in the field of condensed matter physics and
materials science, providing valuable insights into the arrangement and ordering of atoms
within a lattice. It is also a type of Fourier analysis. In this particular study, we focus on
investigating the vortex lattice and its properties. By analyzing the structure factor, we can
gain insights into the distribution of vortices and the overall symmetry of the vortex lattice.
Mathematically, the structure factor is defined as follow

S(q) =
1
∑

i j fv(ri) fv(r j)

∑

i j

fv(ri) fv(r j)ex p(iq(ri − r j)) . (D.1)

However, due to the spatial inhomogeneity of the superconducting order parameter, di-
rectly calculating the structure factor of the order parameter would introduce additional effects
that obscure the information about the vortex lattice. To address this, we extract the vortex
positions, denoting them as fv(ri), and calculate the structure factor based on these positions.
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Figure 19: The spatial distribution of the order parameter amplitude |∆(ri)| (nor-
malized by ∆0 = 0.0894t) in the presence of magnetic flux φ/φ0 = 4,8, 10,12
and 14 from left to right in the clean limit. The red circles represent the position
of the vortices core. The system size is N = 60 × 60 and the other parameters are
|U |= 1.25, 〈n〉= 0.875.

The essential steps are depicted in Figure 20. The pattern of structure factor is significantly
improved, enabling a more accurate analysis of the vortex lattice.

E More results for the profile of vortices

Section 5 discusses the spatially inhomogeneous vortex core, and this appendix presents the
additional results, see Fig. 21 for weak disorder V = 0.5 and Fig. 22 for stronger disorder
V = 1.5. In the weak disorder V = 0.5, both the phase and the amplitude of the order
parameter is closed to a circle, and its profile is well described by the GL theory. When disorder
increases to V = 1.5, but still in the superconducting region, the shape of vortex core differ
significantly from each other and it is never a circle. The vortex profile also deviate noticeably
from the predictions of GL theory. However, by taking a sample average, as shown in Fig. 23,
the rotational symmetry of the vortex core is restored, resulting in a standard circular vortex
core that fits well with the GL theory. Moreover, the fitting parameter r0, which characterizes
the vortex size for the sample averaged vortex, decreases slightly with increasing disorder,
indicating that the vortex core becomes smaller.
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Figure 20: Process for obtaining the structure factor S(q). The spatial distribution of
the order parameter corresponds to the results in Figure 4. The upper panel demon-
strates the sample with weak disorder V = 0.5 and the lower panel depicts interme-
diate disorder V = 1.5. The number of fluxes are fixed at φ/φ0 = 16.
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Figure 21: The spatial distribution of the order parameter and its phase in the weak
disorder region V = 0.5, and the corresponding vortex profile with the GL fit Eq. 4.
Vortex 1 means the left vortex, and the right vortex is Vortex 2. Five different disorder
realizations are presented. The other parameters are |U |= 1.0, 〈n〉= 0.875.
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Figure 22: The spatial distribution of the order parameter and its phase in the inter-
mediate disorder region V = 1.5, and the corresponding vortex profile with GL fit.
Vortex 1 means the left vortex, and the right vortex is Vortex 2. Five different disor-
der configurations are presented. The other parameters are |U |= 1.0, 〈n〉= 0.875.
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Figure 23: The sample average of the order parameter at the vortex region in the
presence of weak disorder V = 0.5 (upper panel) and intermediate disorder V = 1.5
(lower panel), and the corresponding vortex profile with GL fit. For the weak dis-
order V = 0.5, we do sample average over 14 vortices. We calculate 24 vortices to
do sample average for stronger disorder V = 1.5, so that we could remove the sig-
nificant inhomogeneity in the order parameter amplitude. The other parameters are
|U |= 1.0, 〈n〉= 0.875.

F Confirmation of rectangular vortex lattice at a larger sample
size

In this appendix, we provide further evidence of the existence of the rectangular vortex lattice
by increasing the system size up to L = 100. Therefore, we will have more vortices in the
sample which facilitates the analysis of its spatial distribution. It is important to stress that,
in strictly two dimensions, due to localization for any disorder strength in the non-interacting
limit, a larger system sizes effectively enhances the effect of disorder. For that reason, we
will focus on this appendix on a weaker disorder strength V = 0.25 to be able to observe the
triangular phase for small magnetic flux and the rectangular phase for stronger magnetic flux.
We note that the rectangular phase is still observed for V = 0.5 which is the value chosen in
the main text.

The vortex distribution in real and Fourier space for different values of the magnetic flux
are depicted in Fig. 25 for V = 0.25 and in Fig. 26 for V = 0.5. For V = 0.25 and φ/φ0 = 20,
we observe a clear signal of a slightly deformed hexagonal lattice in Fourier space which cor-
responds with the Abrikosov triangular lattice in real space. However, for a larger magnetic
flux φ/φ0 = 30, the lattice distribution is fully consistent with a rectangular lattice. More
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Figure 24: Distribution function of the spatial distribution of the order parameter for
V = 0.5 and different values of the magnetic flux.
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Figure 25: Top row: Spatial distribution of the vortex for V = 0.25 and, from left to
right, a magnetic flux φ/φ0 is 20, 24 and 30. Bottom row: Structure factor of the
vortex distribution. The system size is N = 100× 100, and the other parameters are
those of the main text, U = −1.25 and 〈n〉= 0.875.

specifically, the distribution seems to be sensitive to the microscopic details of the disordered
potential. Depending on the disorder realization, vortices in some parts of the sample seems to
start forming a triangular lattice while in other parts no such pattern is observed. Since Ander-
son localization in two dimension occurs for any disorder strength and the sample size is larger
now L = 100, we expect stronger inhomogeneities for the same disorder strength. Stronger
spatial inhomogeneities will eventually prevent the observation of the triangular phase that
requires no or very weak disorder. It would be necessary larger sample sizes to clarify whether
the transition between triangular and rectangular is sharp or it is just a crossover as a function
of the field strength. However, we rule out any important role of multifractality or other direct
precursor of localization. The distribution of the order parameter, see Fig. 24, in this range of
parameters is Gaussian and not log-normal and level statistics, see appendix G follows closely
the prediction of random matrix theory which is a clear signature that the system is deep in
the disordered metallic phase.
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For V = 0.5, we do not observe the standard triangular lattice because disorder is already
too strong given the larger size. However, the rectangular lattice phase is clearly observed
for a wide range of parameters between 30 ≤ φ/φ0 ≤ 44. In conclusion, the results for a
larger size, L = 100 confirm the existence of the rectangular Bragg vortex lattice for weakly
disordered two-dimensional superconductors in the presence of a perpendicular magnetic flux.
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Figure 26: The spatial distribution of the vortex and its structure factor for V = 0.5
and a magnetic flux φ/φ0 = 16,22, 24,30, 36,44. The other parameters are the
same as those of Fig. 25.

G Spectral analysis at weak disorder in the presence of magnetic
flux

In this appendix, we study the level statistics of the eigenenergies of the BdG equations with the
aim to clarify whether V = 0.5 is still in the weak disorder region where multifractal effects
are expected to be negligible. For that purpose, we compare the level spacing distribution
P(s), the probability of having two eigenvalues at a distance s in units of the local mean level
spacing, with the Wigner-Dyson surmise which is a very good approximation of the random
matrix prediction.

We note that without a magnetic flux φ/φ0 = 0, the Hamiltonian is time reversal invariant
and rotational symmetric. Therefore, we should compare our results with that of the Gaussian
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orthogonal ensemble (GOE),

PGOE(s) =
π

2
s exp
�

−
π

4
s2
�

. (G.1)

However, a magnetic field breaks time reversal symmetry so in that case the comparison should
be with the Gaussian unitary ensemble (GUE),

PGU E(s) =
32
π2

s2 exp
�

−
4
π

s2
�

. (G.2)

Results depicted in Fig. 27 confirm a good agreement with the random matrix prediction. This
confirms both that localization effects are not important and that the magnetic flux breaks
time reversal symmetry.
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Figure 27: The level spacing distribution P(s) for V = 0.5 and different external mag-
netic flux is 0,16, 20,24, 36,44, 48 and 54. The GOE is described by Eq (G.1), and
GUE is Eq (G.2). The system size is N = 100×100, U = −1.25 and 〈n〉= 0.875. For
the statistical analysis, we only take 3000, 30% of the total, eigenenergies around the
band center E = 0. The observed good agreement with the random matrix prediction
precludes any important effect of multifractality in this weakly disorder region.

H Calculation of the superfluid stiffness Ds/π

In this Appendix, we present the detailed formulas to calculate the superfluid stiffness. Solv-
ing the self-consistent BdG equations, we will get the eigenvalues {En} and the correspond-
ing eigenvectors {un(i), vn(i)}. With those outputs, we can calculate the superfluid stiffness
Ds/π= 〈−kx〉−Λx x(q = 0, iω→ 0), where 〈−kx〉=

2t
N

∑

i

∑

n[vn(i)v∗n(i+x)+v∗n(i)vn(i+x)] is
the kinetic energy along the x direction. The second term Λx x(q = 0, iω→ 0) can be obtained
from the bare current-current correlation function [48,81,82], which is given by

χi j( j
x , j x , iω) = 2t2

∑

nm

u∗n(i + x̂)v∗m(i)(vm( j + x̂)un( j) + vn( j + x̂)um( j))

ω+ iη+ En + Em

−
vn(i + x̂)um(i)(u∗m( j + x̂)v∗n( j) + u∗n( j + x̂)v∗m( j))

ω+ iη− En − Em

− ( j + x̂↔ j)− (i + x̂↔ i) + (i + x̂↔ i, j + x̂↔ j) ,

(H.1)

where ( j+ x̂↔ j)means swapping the site index j+ x̂ and j in the presented expression. We
then obtain Λx x(q = 0, iω→ 0) = 1

N

∑

i j χi j( j x , j x , iω→ 0) by summing over all sites i and j.
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