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Abstract

We propose swampland criteria for braneworlds viewed as effective field theories of
defects coupled to semiclassical gravity. We do this by exploiting their holographic in-
terpretation. We focus on general features of entanglement entropies and their holo-
graphic calculations. Entropies have to be positive. Furthermore, causality imposes
certain constraints on the surfaces that are used holographically to compute them, most
notably a property known as causal wedge inclusion. As a test case, we explicitly con-
strain the Dvali–Gabadadze–Porrati term as a second-order-in-derivatives correction to
the Randall–Sundrum action. We conclude by discussing the implications of these crite-
ria for the question on whether entanglement islands in theories with massless gravitons
are possible in Karch–Randall braneworlds.
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1 Introduction

Braneworld models of the universe as being embedded in a higher-dimensional spacetime
have led to a plethora of insights into particle physics and quantum gravity [1]. The original
scenario of Randall and Sundrum [2] considers (d + 1)-dimensional1 “bulk” Einstein gravity
with Newton constant Gd+1, cosmological constant Λ = − d(d−1)

2L2 (with L a length scale), and
two d-dimensional branes, both with action proportional to their worldvolumes. The Randall–
Sundrum (RS) brane actions take the schematic form

IRS = −T

∫

brane

p

− g̃ . (1)

T is a tension parameter for the brane with induced metric g̃. Furthermore, one may instead
consider only one brane [3], which results in an infinite anti-de Sitter (AdS) bulk. While the
action (1) does not directly arise in string theory, it can be thought of as a low-energy effective
action for any brane-like object.2 For a brane whose only degree of freedom is its geometric
embedding, the action (1) is the only zero-derivative term consistent with symmetries, in
particular reparameterization invariance.

Among its many phenomenological aspects (see for example [4–8]), the braneworld pro-
gram provides a framework for studying quantum features of gravity on the branes [9, 10].
Furthermore, if the branes themselves have AdS geometry—in which case we call them Karch–
Randall (KR) branes [11,12]—then we can apply the AdS/CFT correspondence [13] to estab-
lish a “doubly holographic” principle under which the braneworld has an additional third de-
scription as a non-gravitating, strongly-coupled conformal field theory. Thus, we can apply the
usual tools of holography relating the classical bulk to the CFT in order to study semiclassical
gravity on the branes indirectly while circumventing several, more complicated calculations.
As discussed below, one recent application of double holography has been to tackle the black-
hole information problem beyond 2d gravity (as in [14]).

We can go beyond the RS term. In principle, the branes are coarse descriptions of warped
compactifications in string theory, since, as mentioned above, the RS Lagrangian (1) is only
the leading-order possible term in a derivative expansion [15, 16].3 The action could have
higher order corrections that go beyond the RS term to include higher-derivative interactions.

1Technically, [2] takes d = 4 to reflect our universe, but we keep d general for now, only requiring d > 2.
2By “brane-like object,” we mean any (d + 1)-dimensional source of energy density in the bulk whose size in

one spatial direction is much smaller than the AdS scale L and in other directions is of O(L). For such an object,
we can use the low-energy effective action in its derivative expansion to describe its dynamics.

3We should be clear that not all holographic boundary conditions are described by brane-like objects, as dis-
cussed by [17, 18]. For example, the Janus solutions to type IIB supergravity [19–23] describe a class of smooth
geometries dual to conformal defect systems. These situations are simply not described by what we referred to as
a brane-like object above and so are not a part of our analysis.
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One such example is the Dvali-Gabadadze-Porrati (DGP) [24,25] term

IDGP =
1

16πGb

∫

brane

p

− g̃R̃ , (2)

where R̃ is the Ricci scalar computed from g̃ and Gb is a new coupling. This is one of several
two-derivative terms one can include as a correction to the RS action, following the standard
logic of effective field theory (EFT) [26]—we expect “effective terms” in the Lagrangian that
are higher order in the derivatives and come from the (assumed) UV completion. Furthermore,
features of the UV completion in turn put constraints on what the coupling coefficients of these
terms may be. Any choice of couplings in the EFT inconsistent with the existence of some UV
completion describes a theory in the swampland [27–29].

Holography is intrinsic to the underlying string (or UV-complete) theory. Nonetheless, it
is often assumed to persist to semiclassical regimes of quantum gravity [30]. If this is true
then we may use the tools of holography to put swampland constraints on EFTs of gravity
(cf. [31–35]). This observation has been used to constrain two-dimensional branes equipped
with RS and Jackiw–Teitelboim terms [35]. In the same spirit, we apply this idea to the anal-
ogous brane-localized couplings [(1) and (2)] in higher (d > 2) dimensions by specifically fo-
cusing on aspects of “entanglement structures” (particularly Ryu–Takayanagi surfaces [36,37])
constructed in the bulk spacetime and from some subregion of the dual CFT. Our goal is to put
physical limitations on doubly holographic braneworlds using two criteria [38] based on the
following considerations.

Entanglement structures are built from minimal, extremal codimension-2 bulk surfaces
whose areas—including possible codimension-3 boundary terms—compute von Neumann en-
tropies of CFT subregions. On quantum-theoretic grounds, such entropies must be positive.
However, certain ranges of brane-localized couplings induce negative entropies through the
codimension-3 boundary terms. Such couplings are in the swampland.

Additionally, we can look to the relationship between entanglement structures and causal
structures. Both entanglement and causality can be used to devise proposals for a bulk region
associated with the degrees of freedom on a CFT subregion R [39–43]. Fundamental causality
conditions in the field theory imply that the resulting bulk “causal wedge” associated with R
must always be included in the analogous “entanglement wedge” of R—a property called
causal wedge inclusion (CWI). And so, we employ CWI as a swampland criterion on brane-
localized couplings in braneworld theories.

We should say that using CWI as a swampland condition (but without branes) is not new.
It has also been used to constrain Gauss–Bonnet gravity [33] and explored in Einstein cubic
gravity [44]. However, causality in these “higher-derivative” theories need not be the same as
in Einstein gravity, in that the fastest causal modes may not be lightlike but rather superluminal
[45,46], so causal structures often need to be reformulated. Fortunately, this is not a problem
if we only have higher-derivative terms localized to the brane [47,48].

1.1 Relevance to black-hole information

In recent years, doubly holographic braneworld models like those studied in this paper have
served as tools by which to probe the problem of black-hole information in d > 2 dimen-
sions [14,49]. Indeed, one of our motivations for constraining such models is to rein in their
application, so that we are not led to artificial conclusions by unphysical setups.

Let us review the recent progress of black-hole information in AdS. The basic setup of
[50, 51] is to couple a gravitating black hole to a non-gravitating thermal bath. We work in
a semiclassical regime with quantum fields turned on but not backreacting onto the metric.
Hawking radiation is collected in a subregion R on some Cauchy slice of the bath. As we want
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to include quantum effects, the entropy of this Hawking radiation S[R] is computed by the
quantum extremal surface prescription [52], which yields the “island rule” [53]:

S[R] =min ext
I

�

Sscl[R∪ I] +
A[∂ I]
4GN

�

. (3)

I is a bulk region that is disconnected fromR, and so we call it an “island.” Sscl[R∪I] is the en-
tropy of matter fields in R∪I, and A[∂ I] is the area of the boundary of the island. We need to
find I such that the expression in parentheses, which is a “generalized entropy,” is minimized.
For both evaporating [50, 51] and eternal [54] 2d black holes, S[R] was found to follow the
usual time-dependent Page curve [55]—thereby preventing an information paradox—thanks
to the emergence of an island (i.e. a transition from I =∅ to I ̸=∅).

The higher-dimensional setup of [14] relies on treating the matter as holographic so that
Sscl can be computed using bulk geometry [56]. This is accomplished by embedding a single
d-dimensional KR brane in a (d + 1)-dimensional AdS black geometry. However, [57] shortly
after claimed that the existence of a time-dependent Page curve and an island may be due to
the semiclassical theory on the brane being one of massive gravity, a feature long attributed to
the presence of a non-gravitating bath [58,59].

This aspect of the one-brane setup motivated the study of a two-brane setup embedded
in bulk AdS spacetime [60]. Here, one of the branes acts as a gravitating bath, and so the
semiclassical theory on the branes maintains a massless graviton in its spectrum [61]. To be
concrete, we introduce the following terminology for the three different perspectives of the
(two-KR-brane) braneworld afforded by double holography:

(I) the bulk, which is classical (d + 1)-dimensional Einstein gravity on a “wedge” [62, 63]
with d-dimensional KR branes (i.e. with AdS geometry);

(II) the intermediate picture, which is the effective field theory describing semiclassical d-
dimensional (and notably, massless [61]) gravity on AdS; and

(III) the defect system, i.e. the (d − 1)-dimensional CFT on the tip of the bulk wedge.

Any version of the black hole information problem must be posed in the intermediate picture,
in which we must explicitly account for quantum corrections. However, if there is a known bulk
picture, then we can map the problem to an easier one of classical geometry in the bulk [56].
This is the power of double holography, as we will see in Section 2.

In [60], we studied two d > 2 dimensional, single-sided AdS-Schwarzschild black holes
in the intermediate picture coupled to one another at infinity. However, unlike with a non-
gravitating bath, the radiation region R (assumed to not be anchored to the defect) must be
dynamically determined to protect diffeomorphism invariance, i.e. we minimize over both I
and R in the island rule (3) to compute the entropy S.

With that in mind, one can consider several scenarios of how to divide the system in order
to define an entanglement entropy. The most suitable for our purposes is to study in the
fully quantum defect system (III) the von Neumann entropy of the defect in the thermofield
double state (TFD). That is, we trace out the degrees of freedom of the double to obtain a
density matrix for the CFT on the defect and calculate the associated entropy. In prescriptions
(II) and (I) we are respectively looking either for a quantum extremal surface on the brane or,
equivalently, a classical RT surface in the bulk that separates the two defects of the thermofield
double state from each other.

In [60], we solved this particular problem using a bulk geometry with two d-dimensional
KR branes [with the RS action (1)] embedded in a (d + 1)-dimensional AdS black string. We
found that the entropy is computed by the bulk black string’s horizon area, thus following a
“trivial” (time-independent) Page curve rather than a “nontrivial” (time-dependent) one. The
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Page curve’s triviality in theories of massless gravity was earlier suggested by [57, 64] and
asserted in [65,66]. Furthermore unlike in the case with a non-gravitating bath, no entangle-
ment island (in the sense of a disconnected bulk region) is formed.

Recent work [67–69] has claimed that one may get nontrivial Page curves and islands even
with a gravitating bath (and thus, massless gravity) by turning on brane-localized couplings—
particularly DGP terms (2)—treated as higher-derivative corrections to RS terms (1). Such a
result requires that the coupling Gb in (2) be negative on at least one of the branes, but this
alone is not necessarily an unphysical assumption for AdS branes. However, in such theories,
one may get entropies that are smaller than Bekenstein–Hawking or even time-dependent.
Such answers violate bulk causal wedge inclusion, putting such scenarios in the swampland.
In other words, the radiation entropy for UV-consistent couplings must be the bulk Bekenstein–
Hawking value at all times.

1.2 Outline

In Section 2, we will set the stage by reviewing the holography of the two-brane setup, in
particular discussing how the branes modify the usual entanglement entropy prescriptions
[36, 37]. We will also justify both the positivity of entropy computed by the codimension-2
entanglement surfaces and the rationale for CWI.

In Section 3, we will scrutinize RS + DGP gravity [(1) + (2)] through both analytic and
numerical methods. Instead of using T and Gb as our brane parameters, we find it more
convenient to use the Euclidean angle of the AdS brane with the conformal boundary (the
“brane angle” θ) and a particular dimensionless combination of Gb with the bulk Newton
constant and curvature radius (the “DGP coupling” λ). The formulas that switch between these
pairs of parameters are written in Section 3.1. The parameter space for two-brane systems
is four-dimensional, so we explore how our swampland criteria exclude ranges of the DGP
couplings for particular brane angles. See Figure 5 for the analytic constraints from entropy
positivity and Figure 6 for the numerical points excluded by CWI.

In Section 4, we discuss the consequences of our exclusion criteria on the physics of two-
brane braneworld models in the intermediate picture. In particular, we describe the implica-
tions for black-hole information in higher-dimensional (d > 2) KR branes with massless grav-
ity. Essentially, our criteria—particularly CWI—mandate that UV-consistent two-brane setups
furnish a trivial semiclassical Page curve for the entropy of Hawking radiation on the brane,
in accordance with the ideas of [60, 64, 66], with the entropy always given by the horizon
area. Thus, braneworld theories with massless gravity on the brane and whose entanglement
structures yield nontrivial Page curves [67–69] contradict CWI and should be considered in
the swampland.

2 The holography of two-brane models

We first review the holographic interpretations of the two-KR-brane setups with just RS terms
so as to lay the groundwork for applying the tools of holography to more exotic braneworld
constructions.

We start by recalling the setup in question. It consists a bulk spacetime M with two
codimension-1 boundaries Q1 and Q2. The action (including Gibbons–Hawking terms) is

IRS1 =
1

16πGd+1

∫

M

p

−g
�

R+
d(d − 1)

L2

�

+
2
∑

i=1

1
8πGd+1

∫

Qi

p

− g̃i(Ki − 8πGd+1Ti) , (4)

where g̃i is the metric of Qi and Ki is the trace of the extrinsic curvature Ki,µν = ∇µni,ν of
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(a) (d + 1)-dimensional bulk (b) d-dimensional branes

Figure 1: A schematic representation of the two-brane setup of interest in this paper.
(a) is the classical bulk configuration consisting of two KR branes (in red) embedded
in an ambient AdSd+1 spacetime. (b) is the brane-localized “intermediate picture” of
two interacting AdSd universes coupled together along a (d − 1)-dimensional inter-
face (the “defect”). Both pictures can be seen as dual to a (d − 1)-dimensional CFT
on this defect.

Qi (with ni,ν being the unit normal and the µ,ν indices projected onto g̃i). For now, we have
suppressed the coordinate dependence to simplify the notation. Additionally, i = 1,2 labels
the two branes while Greek letters are spacetime indices. The equations of motion of this
action are

Gµν =
d(d − 1)

2L2
gµν , (5)

Ki,µν = (Ki − 8πGd+1Ti) g̃i,µν . (6)

(5) implies that the bulk geometry is locally AdSd+1. (6) contracted with g̃i yields

Ki =
8πGd+1d

d − 1
Ti . (7)

In other words, solutions to (6) are constant-curvature boundaries in AdSd+1.
We are interested in branes that have timelike boundary and thus extend eternally in the

bulk. This is only the case when the tensions are “subcritical” [11,70] or

|Ti|<
d − 1

8πGd+1 L
. (8)

For such tensions, the resulting brane has AdSd geometry [11] and is thus deemed a Karch–
Randall (KR) brane. Critical tensions saturating this bound yield Minkowski spacetime instead,
and so the near-critical limit is the regime in which the brane’s cosmological constant is small.
This is often the limit of interest because it is the regime where the lowest-mass Kaluza–Klein
(KK) mode of linearized fluctuations of the brane “localizes,” yielding a bound graviton on the
brane coupled to parametrically heavier CFT modes [11]. However, we will generally allow
any subcritical tension and assume that there is some holographic description of the (d + 1)-
dimensional bulk theory as d-dimensional semiclassical gravity on the brane4 and coupled to
CFT fields [71]. We call this lower-dimensional theory the “intermediate picture” due to its
role in double holography [56].

KR branes can be engineered by foliating AdSd+1 into AdSd slices (cf. [72]). The individual
foliates in such a slicing reach the conformal boundary. Taking just one of these slices as a KR
brane yields a setup in which the intermediate picture describes a gravitating universe on AdSd
coupled at infinity to a non-gravitating CFT. When we instead construct a setup using two KR
branes, they intersect along a (d − 1)-dimensional surface (called the defect) at the conformal

4In this interpretation of the universe on the brane, the lowest-mass KK mode is still the graviton, but it has
finite mass and is no longer parametrically lighter than the higher KK modes constituting the CFT.
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boundary. In the intermediate picture, this defect is viewed as an interface between the two
gravitating AdSd universes, and the full system has a massless graviton.5 See Figure 1 for
schematic representations of these dual setups.

So far, we have discussed the bulk perspective and the intermediate picture. However, the
AdS/CFT correspondence [13] suggests that there is a third description—a conformal field
theory on the defect (since it is the boundary of the bulk spacetime) [12]. The correspondence
between the bulk and defect systems has more recently been dubbed “wedge holography”
[62, 63]6 and falls under the broader umbrella of “double holography” equating the (d + 1)-
dimensional bulk, d-dimensional intermediate, and (d − 1)-dimensional defect systems. The
upshot is that physical quantities of the (d−1)-dimensional CFT are dual to various geometric
data in the (d +1)-dimensional bulk theory, and the dictionary translating between these two
pictures can be used to further understand semiclassical physics in the intermediate picture
without explicitly accounting for its quantum effects.

2.1 Entanglement entropy

The main entry of the holographic dictionary of relevance to our paper is the classical prescrip-
tion for computing entanglement entropies of CFT subsystems. In AdS/CFT with no branes,
the formula is given by the Ryu–Takayanagi (RT) prescription [36] (or its covariant exten-
sion of Hubeny–Rangamani–Takayanagi [37]); for a subregion R of the boundary CFT, the
entanglement entropy to leading order in the limit Gd+1≪ Ld−1 is

S[R] = 1
4Gd+1

min ext
γR∼R

A[γR] . (9)

Here, γR is a (d − 1)-dimensional surface that is homologous to the CFT subregion R, where
“homology” means that there exists some codimension-1 bulk region Σ such that

∂Σ= γR ∪R , ∂ γR = ∂R , (10)

and A[γR] is the area functional for such surfaces. Essentially, this formula equates entangle-
ment entropy with the area of the smallest extremal surface “anchored” to the CFT subregion
R (Figure 2a). However, note that this does not include contributions from quantum fields in
the bulk.

We can ask how this prescription is modified with two KR branes. The proposal [14, 60,
62,63] is to equate the von Neumann entropy of the defect at some fixed time with a minimal
extremal surface in the bulk via a modification of (9). Essentially, the homology condition
(10) is modified such that the surface is anchored to the branes, rather than to the conformal
boundary (Figure 2b). This generically introduces boundary terms in the entropy functional,
and the extremization procedure also requires us to choose boundary conditions (dynamical
or fixed) for the intersection of the surface with the branes. While a fixed boundary condition
like Dirichlet is technically a mathematically consistent choice [77], imposing it amounts to
partitioning degrees of freedom on the brane by hand, a procedure that we assert is physi-
cally incompatible with diffeomorphism invariance [60]. And so, we impose dynamical (e.g.
Neumann) conditions on the RT surface as in [75].7

In the intermediate picture, this same entropy is interpreted as a generalized entropy that
accounts not just for a leading-order semiclassical entropy, but also for quantum fields on

5Technically, the massless graviton exists in tandem with massive modes. This is called “bigravity” [61].
6It behooves us to mention that this logic also goes through for the configuration consisting of just one brane.

There, the dual field theory is a BCFT [73,74]. The relationship between this BCFT and the bulk theory has been
dubbed the “AdS/BCFT correspondence” [75,76].

7We should be clear that there is no proof in the sense of Lewkowycz–Maldacena [78,79] for this prescription.
However, there is evidence in the literature for this approach, e.g. in [25,80].
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γR

R
• •◦ ◦

(a) No branes

•◦

γR

•
•

◦
◦

R
(b) With two KR branes

Figure 2: Schematic representations of the Ryu–Takayanagi surfaces for a fixed-time
CFT subregion R in (a) AdS with no branes and (b) AdS with two KR branes. In (a),
the surface is anchored to the boundary of R (i.e. ∂ γR = ∂R); this is a Dirichlet
condition on γR. In (b), the CFT subregion is the (d−1)-dimensional defect at fixed
time, and γR is anchored to the branes via a Neumann condition. We use Neumann
for physical reasons; a Dirichlet condition would break diffeomorphism invariance
on the brane.

the brane. Typically, the generalized entropy is calculated by a quantum extremal surface
(QES) [52] rather than an RT surface, and the QES may even be the boundary of disconnected
pieces of the entanglement wedge called “entanglement islands” [50, 51]. By the power of
double holography, the generalized entropy in the intermediate picture can be computed by
the area of a classical RT surface in the (d + 1)-dimensional bulk [56]. This is the key feature
of double holography that we will exploit in this paper.

In other words, the semiclassical entropy on the brane, which might normally be computed
by employing the quantum extremal surface prescription, is encoded by a classical surface in
the bulk. As classical surfaces are rather tractable to compute, double holography has allowed
the use of one-brane setups to study the entropy of quantum fields in the presence of a grav-
itating black hole coupled to a non-gravitating thermal bath. Indeed, this has been the main
approach to study higher-dimensional (d > 2) semiclassical gravity, starting with [14] and
extended by [25,57,81] and many others as part of the entanglement island program.

While we will briefly discuss black-hole information and islands, our primary focus is on
how the bulk entropy prescription can be used to constrain brane-localized couplings added
by hand to the theory. In other words, we are assuming the holographic dictionary to be a
fundamental aspect of UV physics that is capable of providing swampland criteria on effective
field theories of gravity (cf. [31–34]).

We now briefly justify the two main swampland criteria rooted in entanglement. We will
later explain how we concretely use them in Section 2.2.

Positivity of entropy One immediate swampland criterion is the positivity of entropy. Gen-
erally, microcanonical entropy is a logarithmic count of the microstates Ω in a system,

S ∼ logΩ , Ω≥ 1 . (11)

Entanglement entropy (i.e. the von Neumann entropy of a reduced density matrix) can also
be written as (11), albeit with Ω being real rather than an integer. By employing a Schmidt
decomposition of the initial state, we can identify Ω with a function of Schmidt coefficients
that is necessarily greater than 1,8 and this crucially lets us insist that entanglement entropy
be positive.

8To be concrete, suppose that we have a normalized state |Ψ〉 ∈HA⊗HB . For simplicity, if we take these Hilbert
spaces to be finite-dimensional, we can define a finite n ≡ min(dimHA, dimHB). We then Schmidt-decompose
|Ψ〉 =
∑n

i=1 αi |ai〉 ⊗ |bi〉, where {|ai〉} ⊂HA and {|bi〉} ⊂HB are orthonormal sets and each αi lies between 0 and

1 (and
∑n

i=1 α
2
i = 1). Pushing through the von Neumann entropy formula yields Ω ≡

∏n
i=1 α

−2α2
i

i , which is easily
seen to be ≥ 1.
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However, the entanglement entropy of a subregion formed by splitting a connected in-
terval is typically UV-divergent in QFT [82]. This is reflected in the RT prescription with no
branes present through the fact that RT surfaces reach the conformal boundary, thus formally
being infinite in area. Nonetheless, these “absolute” entropies are still positive. While we can
subtract away the infinity through some renormalization scheme and get a negative answer,
such a result does not contradict the positivity of the “bare” entropy.

But in two-brane configurations, we no longer have this positive divergence in the area.
This is because we are not splitting any CFT regions. Furthermore, the full entropy functional
picks up “boundary-term” contributions from the couplings on the branes, and so it is a priori
possible to have a functional with negative values. However, a negative-entropy UV-finite RT
surface contradicts (11), and so couplings giving such a result would be in the swampland.

The basis of CWI Another swampland condition coming from AdS/CFT is causal wedge in-
clusion (CWI)—the property that the entanglement wedge always contains the causal wedge.
Let us discuss why such a criterion is fundamental.

First, we recall the motivations and definitions of the causal and entanglement wedges.
Both ideas came out of attempts [39–43] to answer to the question, “What is the holographic
dual of the reduced density matrix ρR on the CFT subregion R?” Recall that this reduced
density matrix is defined by tracing out complementary degrees of freedom Rc and encodes
the degrees of freedom of R:

ρR ≡ TrRc (ρ) , S[R]≡ −TrR (ρR logρR) . (12)

Starting with R, we define its future domain of dependence D+[R] as the points p for which all
past-directed causal curves starting at p intersect R. We analogously define the past domain of
dependence D−[R] as the points from which all future-directed causal curves intersect R. The
union D[R] = D+[R]∪D−[R] is the full domain of dependence and is shaped like a diamond.

The causal wedge CW[R] is defined in terms of the domain of dependence in the boundary
system D[R]. Basically, we take all bulk causal curves which start in D−[R] and end in D+[R]
[40]. If R is a fixed-time subregion (say at t = 0), this comes with a codimension-2 surface
ξR that is anchored to R and bounds the t = 0 cross-section of the causal wedge.

Meanwhile, the entanglement wedge EW[R] is defined in terms of the RT surface γR
of R. Suppose that R is spacelike. We then take the bulk codimension-1 “homology sur-
face” bounded by R and γR within the Cauchy slice containing R [i.e. Σ in (10)] and define
EW[R] as the domain of dependence of this homology surface [43]. Just like CW[R], the en-
tanglement wedge asymptotes to D[R].9 However, EW[R] is constructed from entanglement
structure and is generally distinct from CW[R]. In particular, for R at t = 0, the corresponding
RT surface γR need not be the same as ξR.

In fact, one can argue that the entanglement wedge is generally supposed to reach further
into the bulk than the causal wedge [43]. This is precisely the statement of CWI and is depicted
in Figure 3. Furthermore, for a boundary subregion R at t = 0, CWI implies a condition on
the codimension-2 surfaces ξR and γR residing on the bulk t = 0 Cauchy slice—the region
bounded by γR must contain the region bounded by ξR. Physically, CWI states that the RT
surface of R is generally causally disconnected from the domain of dependence D[R], at best
only being accessible via null signals, and the argument relies on causality in the boundary
theory.

Let us give the intuition behind this argument; for a more thorough proof, see [43]. Again,
take R to be a CFT subregion on the t = 0 Cauchy slice. Suppose that the RT surface γR

9This is because the bulk and boundary causal structures are compatible with one another (cf. [47,48]), and so
null rays confined to the boundary can also be seen as bulk null rays “at infinity”.
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t •• ◦◦
R

CW[R]

EW[R]

=⇒

γR

ξR

R
• •◦ ◦

t = 0

Figure 3: On the left, a cartoon of causal wedge inclusion (CWI) for a CFT subregion
R at fixed boundary time t = 0. The inner (blue) wedge is the causal wedge CW[R],
while the outer (green) wedge is the entanglement wedge EW[R]. We can further
consider the cross-section of this picture with the initial bulk Cauchy slice (right),
in which γR (green, dashed) is the RT surface wrapping around EW[R] while ξR
(blue, dotted) is the codimension-2 surface wrapping around CW[R]. CWI implies
that the region on this Cauchy slice bounded by ξR must be within the analogous
region bounded by γR.

is located between ξR and R on this slice. This implies that the RT surface can be reached
causally by timelike signals sent from the domain of dependence D[R].

Such timelike signals can be realized in the field theory as small perturbations of the Hamil-
tonian that evolve the reduced state on R. The perturbed state is

ρR′ = UρRU† , (13)

where U is some unitary with support on just D[R].
If γR is in the causal wedge, there exists a perturbation which corresponds to a deformation

of the bulk metric in the vicinity of γR. Thus, applying this perturbation would alter the area
of γR and change the entropy. However, on the CFT side, we can use the invariance of the
partial trace under change of basis (since the Hilbert spaces on R and R′ are isomorphic) to
equate the nth Rényi entropy of the perturbed state to that of the original state:

Sn[ρR′] = −
1

n− 1
log TrR′[(ρR′)

n] = −
1

n− 1
logTrR[(ρR)

n] = Sn[ρR] . (14)

Recall that the entanglement entropy is the n→ 1 limit of the Rényi entropy. So, the entangle-
ment entropy should not change under the perturbation. This is a contradiction and we thus
conclude that γR cannot be strictly within the causal wedge of R, after all.

Note that the arguments of [43] and the discussion above are set in the realm of AdS/CFT
without KR branes. However, we expect CWI to also hold with branes. This is because all that
is necessary for CWI is the notion of a causal wedge and an entanglement wedge. Just having a
working proposal for both is enough. More specifically, the causal wedge in a two-brane system
can again be constructed from causal curves. Meanwhile, we consider the entanglement wedge
to be constructed from the surface found via the modified entanglement prescription outlined
in the previous exposition of Ryu–Takayanagi.

2.2 Black spacetimes as a testing ground

As one application of entropy positivity and CWI as swampland constraints on higher-
derivative corrections to the RS action, we examine two-KR-brane systems embedded in eternal
two-sided “black” spacetimes in the bulk. All of our analysis will take place on one side of the
initial-time slice. In principle, we may consider other two-brane setups in other geometries,
and doing so may yield additional nontrivial constraints on brane couplings. We focus on black
spacetimes because they have particularly useful entanglement and causal features.
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Positivity of horizon entropy The original motivation of the RT prescription was the
Bekenstein–Hawking identification of a black-hole horizon’s area with the black hole’s en-
tropy [49,83], which was also found in string theory [84]. Indeed, RT is meant to be a gener-
alization of the Bekenstein–Hawking formula. We recover the latter when we consider a CFT
in a thermal state, which is realized holographically by a one-sided black hole. When R is
taken to be the full boundary, then the associated RT surface is the horizon.

In two-brane setups embedded in black holes, the entropy functional is generically mod-
ified by boundary terms coming from brane-localized couplings. Nonetheless, the horizon is
still expected to be an extremal surface. Given this, the quantity Ah (defined as the sum of the
“bulk” horizon area with its boundary terms at the branes) must then at least upper-bound the
minimum of the entropy functional Smin, which represents entropy in the semiclassical limit
and is thus positive. Thus,

Sh ≡
Ah

4GN
> Smin > 0 . (15)

A negative value of Sh (induced by sufficiently negative boundary terms in the functional)
contradicts the positivity of entropy. However, we might mathematically get such a result
from the brane-localized couplings, but such theories live in the swampland.

CWI in black spacetimes Consider one side of a two-sided eternal black geometry at some
initial Cauchy slice t = 0. We take R to be the boundary of the chosen side at this slice. In this
case, D[R] is the full boundary, with the earliest and latest points respectively being past and
future timelike infinity. The bulk causal wedge CW[R] can then be constructed by shooting
null rays from these points. Upon doing so, we see that the t = 0 slice of CW[R] is precisely
the exterior region outside of the horizon,10 and so the t = 0 bounding surface ξR of the
causal wedge is itself the horizon.

The point is that applying the CWI criterion in black geometries simply becomes a matter
of explicitly computing the RT surface γR with R being the boundary system at t = 0. For a
general braneworld with Einstein gravity in the bulk, γR will be either the horizon (in accor-
dance with the Bekenstein–Hawking formula [49, 83]) or some other surface. The former is
consistent with CWI, so the only point of concern is the latter case.

Fortunately, non-horizon surfaces can easily be seen to contradict CWI. In the maximally
extended spacetime at t = 0, there is no interior geometry. Thus, the only conceivable non-
horizon candidates for γR are those that intersect the horizon or those that reside completely
in the exterior. In either case, there would be a part of the t = 0 slice of the exterior that is
not a part of the entanglement wedge, which then implies CW[R] ̸⊂ EW[R].

So, to summarize how to use CWI to potentially rule out a theory, we start by taking a
two-KR-brane setup embedded in a black spacetime. We then search for t = 0 non-horizon
extremal surfaces anchored to the branes. If we find one, we can compute its entropy Sext and
compare it against that of the horizon Sh. A priori we have the following possibilities:

Sext > Sh =⇒ no violation of CWI , (16)

Sh > Sext =⇒ theory violates CWI . (17)

A theory with a non-horizon extremal surface for which the latter holds is in the swampland.

Black string with RS terms A simple test is to check that both criteria are satisfied in two-
KR-brane configurations solving the equations (5)–(6). We do not expect braneworld theories
with only RS terms to reside in the swampland, since the bulk action is just Einstein gravity

10In fact, the causal wedge is the full exterior on the same side of the horizon as R. One can see this by drawing
the Penrose diagram and shooting null rays from past and future timelike infinity.
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•◦ θ1θ2

µ
u

Figure 4: A fixed-t, fixed- x⃗ slice of a planar black string in AdS consisting of two
planar KR branes (in red), each at a fixed angle θ1,θ2 ∈

�

0, π2
�

with respect to the
conformal boundary of the underlying AdSd+1 spacetime. The defect (the red point)
is at u = 0 and the horizon (the dashed line) is at u = uh. The branes have constant
extrinsic curvature, and so this geometry solves the equations of motion with the RS
action (5)–(6).

while the brane action has only the terms corresponding to zeroth and first derivatives of the
metric.11 One black solution in which we can test this claim is the following (d+1)-dimensional
planar AdS black-string geometry:

ds2 =
L2

u2 sin2µ

�

−h(u)d t2 +
du2

h(u)
+ u2dµ2 + d x⃗2

�

, h(u) = 1−
ud−1

ud−1
h

. (18)

Here, t ∈ R, u > 0, and µ ∈ (0,π) are respectively the time, radial, and angular coordinates
while x⃗ ∈ Rd−2 represents the d − 2 remaining transverse, planar directions. The defect is
located at u = 0, and u = uh is the horizon. The equation of motion (6) is solved by “planar
KR branes” parameterized as

µ= θ1 , µ= π− θ2 , (19)

for constants θ1,θ2 ∈ (0,π) with θ1 + θ2 < π, and taking µ ∈ (θ1,π− θ2). See Figure 4 for
a visual depiction. Not only do these hypersurfaces each have constant extrinsic curvature,
but the induced geometry of each is a planar AdS-Schwarzschild black hole. Both the tensions
T1, T2 and the induced curvature radii ℓ1,ℓ2 of these branes are well-defined functions of the
angles:

Ti =
(d − 1)

8πGd+1 L
cosθi , ℓi = L cscθi . (20)

In [60], we had explored the bulk entanglement surfaces in this two-KR-brane configuration.
With just RS terms, the entropy functional has no boundary terms (see [25]), so we had found
that the RT surface computing the entropy of the defect at t = 0 is always the horizon. Then,
the entropy is computed by just the bulk area of the horizon:

Sh|RS =
Ld−1

4Gd+1ud−2
h

∫

Rd−2

d x⃗

∫ π−θ2

θ1

dµ

sind−1µ
. (21)

This is always positive. Furthermore, because the horizon is the RT surface, the entanglement
wedge is precisely the causal wedge. Thus, there is no violation of CWI.

3 Constraining the DGP term

We can apply the criteria for entanglement surfaces in Section 2 to KR braneworlds beyond
those with just RS terms. We do so in an explicit simple model, finding that violations are in-

11The zeroth-derivative term is the RS term and has one free parameter—the tension. The first-derivative term
is the Gibbons–Hawking term proportional to extrinsic curvature, and its coefficient is fixed (relative to the bulk
Einstein action’s coupling) by requiring that the variational principle is well-defined.
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deed mathematically possible and can be used to rule out particular brane-localized couplings
on physical grounds.

The simplest higher-derivative term we can add to the RS action is one that is linear in
the brane’s intrinsic Ricci curvature. Following the conventions of [25, 85], we write the full
action as

I =
1

16πGd+1

∫

M

p

−g
�

R+
d(d − 1)

L2

�

+
2
∑

i=1

1
8πGd+1

∫

Qi

p

− g̃i

�

Ki − 8πGd+1Ti +
Gd+1

2Gb,i
R̃i

�

, (22)

which has an additional term—the DGP term [24]—for each brane. The DGP Lagrangian is
proportional to the Ricci scalar R̃i computed from the metric g̃i . The Gb,i couplings are new
parameters each controlling the strength of this term on the associated brane.

We should mention that the original DGP model describes flat branes living in a flat bulk
[24]. In the original model, there is no RS term and no bulk cosmological constant, and the
gravitational coupling flows from Gb at high energies to Gd+1 at low energies. However, we
are mainly interested with using the machinery of AdS/CFT to put theories in the swampland.
To learn anything about flat branes in flat space, we may take flat-space limits of our AdS
constraints. The punchline is that the the constraints from entanglement lose all power under
flat-space limits, and that the only constraint we are left with is that Gb > 0 in order to not
have a wrong-sign Euclidean action with maxima instead of minima.12 We will discuss these
points in Appendix A (specifically, A.2).

In the current section, we first discuss the parameter space of two-KR-brane setups with
RS + DGP terms, as well as how the entropy functional gets modified by DGP terms. We then
compute the equations for extremal surfaces in the presence of these branes. What follows
are our main results, i.e. the constraints put on this class of braneworld models, which we
obtain via both an analytic approach and a numerical approach. Analytically, we will find that
violations of CWI require at least one DGP coupling to be negative. We find further analytic
lower-bounds on DGP couplings by requiring positivity of the horizon entropy. Last but not
least we numerically find theories violating CWI leading to even more refined bounds.

3.1 Parametrizing KR branes with RS + DGP terms

Here we consider the DGP term as a higher-derivative correction to the RS term on a KR brane
as in [25], so we are studying AdS branes in an AdS bulk. The brane-embedding equations
are modified relative to (6) by adding terms that depend on Ricci curvature:

Ki,µν = (Ki − 8πGd+1Ti) g̃i,µν −
Gd+1

Gb,i

�

R̃i,µν −
1
2

R̃i g̃i,µν

�

. (23)

However, the solutions turn out to be geometrically the same as without the DGP term, but
with the tension parameter being redefined.13 In terms of the angular parameterization (19),
the brane tension of a KR brane with RS + DGP terms (derived in Appendix A) is

Ti =
d − 1

8πGd+1 L
cosθi −

(d − 1)(d − 2)
16πGb,i L2

sin2 θi . (24)

We mention that the DGP term is one of three second-derivative terms we can add to the brane
action. We can also add an action

∫ p

− g̃i(aiK
2
i + biK

µν
i Ki,µν) whose terms are products two

12This is a very general constraint that we will also impose in AdS, but note that it is not rooted in entanglement
structure. Only minima of the action dominate the semiclassical gravitational path integral.

13Another approach taken by [25] to studying DGP is to shift the tension by some amount proportional to the
Ricci curvature of the branes. This cancels the explicit contribution of Ricci terms to the brane stress tensors and
yields the equations (6).
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first-derivative factors. Interestingly, [35] finds that the consistency of the bulk variational
principle implies aiKi g̃

µν
i + biK

µν
i = 0, and contracting this against Ki,µν reveals that the cor-

responding action vanishes on-shell. So, these terms do not alter the embedding equations
(23). However, it is not immediate if or how these terms modify the entropy functional; see
Section 4 for details. For simplicity, we only add a DGP term.

It is convenient to define a dimensionless parameter explicitly describing the relative
strength of the DGP term against the RS term. We do so in terms of each brane’s “effec-
tive” gravitational coupling, which is calculated in detail in Appendix A by integrating out the
bulk extra dimension and isolating the d-dimensional Einstein–Hilbert term in the resulting
effective action [25].14 From that analysis, this coupling (the “effective Newton constant”) on
an brane with no DGP term is just

1
GRS

=
L

(d − 2)Gd+1
. (25)

If we apply that same procedure with a DGP term with coupling Gb present, however, then we
get

1
Geff

�

�

�

�

RS+DGP
=

L
(d − 2)Gd+1

+
1
Gb
=

1
GRS

�

1+
GRS

Gb

�

. (26)

So, in (22) we define the dimensionless parameters

λ1 =
GRS

Gb,1
, λ2 =

GRS

Gb,2
, (27)

as stand-ins for the couplings. In terms of θi and λi , the tension of brane i is

Ti =
d − 1

8πGd+1 L

�

cosθi −
λi

2
sin2 θi

�

. (28)

We can and will trade the physical parameters (Ti , Gb,i) for (θi ,λi) in our analysis. The latter
will turn out to be mathematically more convenient.

The limit λ1,λ2→ 0 recovers the RS action (4). Meanwhile taking either λ < −1 yields a
negative effective Newton constant. This leads to the “wrong sign” in the Euclidean actions, in
that classical saddles would be maxima rather than minima.15 Such saddles are actually sup-
pressed in the gravitational path integral and thus ill-defined as semiclassical configurations,
and so the region

{λ1 < −1} ∪ {λ2 < −1} , (29)

is considered pathological for these branes.
While the bulk classical solutions to (22) are essentially the same as for without DGP terms,

there is a key change in applying the RT prescription that we must address. In the entropy
functional, we pick up contributions from the areas of the intersection points between γR and
the branes, in accordance with the semiclassical island rule [25,56]. Specifically, the entropy
functional (derived by [25]) is

S[R] =min ext
γR∼R

�

A[γR]
4Gd+1

+
Ã[γR ∩Q1]

4Gb,1
+

Ã[γR ∩Q2]
4Gb,2

�

=
1

4Gd+1
min ext
γR∼R

�

A[γR] +
L

d − 2

�

λ1Ã[γR ∩Q1] +λ2Ã[γR ∩Q2]
�

�

, (30)

14Note that [25] takes two copies of a bulk geometry with a brane glued together via Israel junction conditions,
whereas we consider one bulk geometry with an “end-of-the-world” brane. This changes the KR brane’s effective
Newton constant by a factor of 2 and also alters the effective cosmological constant.

15As mentioned above, this constraint—that the brane’s Geff coupling must be positive—applies to flat-space DGP
constructions, such as the original one of Dvali, Gabadadze, and Porrati [24].
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where A is a (d−1)-dimensional “bulk” area functional while Ã is a (d−2)-dimensional “bound-
ary” area functional. In the RS limit λ1,λ2 → 0, we recover (9). The inclusion of boundary
terms in the extremization does not alter the bulk equation for extremal curves γR, but it does
affect boundary conditions.

We reiterate that we apply both the positivity of horizon entropy and causal wedge inclu-
sion (CWI) as swampland criteria on entanglement entropy. With that in mind, our goal is to
use the DGP-modified entropy functional in the black-string solution (18) (Figure 4) to con-
strain the space of DGP couplings (λ1,λ2). Technically the two-KR-brane RS + DGP models
have four free parameters which include not just these two couplings but also the brane angles
(θ1,θ2). Thus we find θ -dependent constraints on λ1 and λ2. This will allow us to explore
how these constraints depend on the brane angles.

We should mention that our approach of using entanglement here builds on some previous
work of [25], which finds DGP couplings yielding negative Geff (i.e. λ < −1) to be unphysical
through using the entropy functional rather than the wrong-sign-action argument. Using a
class of extremal surfaces in AdS described as “bubbles,” [25] argues that the entropy func-
tional supplemented by DGP terms (30) has no global minimum when Geff < 0. Thus, the
λ1,λ2 < −1 regimes of the DGP couplings are deemed pathological. Notably, the constraints
we find are independent from the considerations of [25].

3.2 Extremal curves in the RS + DGP black string

We again consider the (d + 1)-dimensional black string in the bulk with planar branes given
by (18)–(19). For convenience, we fix L = 1. To reiterate, the metric and branes are

ds2 =
1

u2 sin2µ

�

−h(u)d t2 +
du2

h(u)
+ u2dµ2 + d x⃗2

�

, h(u) = 1−
ud−1

ud−1
h

, (31)

Q1 : µ= θ1 , Q2 : µ= π− θ2 . (32)

We take R to be the defect system at t = 0. The time-independent extremal curves may then
be parameterized as

u= u(µ) , µ ∈ (θ1,π− θ2) . (33)

From the metric (31), we have that the bulk area functional is

A[u(µ)] = Vd−2

∫ π−θ2

θ1

dµ
[u(µ) sinµ]d−1

√

√ u′(µ)2

h[u(µ)]
+ u(µ)2

≡ Vd−2

∫ π−θ2

θ1

dµLs[µ, u(µ), u′(µ)] , (34)

where Vd−2 =
∫

d x⃗ and we denote the integrand as a Lagrangian Ls. Furthermore, the bound-
ary area functional for the intersection between u(µ) and µ= µ0 is

Ã[u(µ0)] =
Vd−2

[u(µ0) sinµ0]d−2
. (35)

And so, the entropy functional is

S[R] =
Vd−2

4Gd+1
min ext
γR∼R

�

∫ π−θ2

θ1

dµLs[µ, u(µ), u′(µ)] +
1

d − 2

2
∑

i=1

λi

(ui sinθi)d−2

�

, (36)

where we have defined u1 ≡ u(θ1) and u2 ≡ u(π− θ2) to make the notation more compact.
Note that the DGP couplings λ1 and λ2 only explicitly appear in the boundary terms, although
they will implicitly affect the extremal surfaces through boundary conditions.
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Now, we extremize the functional in (36). Taking the variational derivative and integrating
by parts yields (up to the fixed factor of Vd−2

4Gd+1
)

δS ∼
∫ π−θ2

θ1

dµ
�

∂Ls

∂ u
−

d
dµ

�

∂Ls

∂ u′

��

δu−

�

∂Ls

∂ u′

�

�

�

�

µ=θ1

+
λ1 sinθ1

(u1 sinθ1)d−1

�

δu1

+

�

∂Ls

∂ u′

�

�

�

�

µ=π−θ2

−
λ2 sinθ2

(u2 sinθ2)d−1

�

δu2 ,

(37)

where δu1 and δu2 are first-order variations of the surface’s endpoints. Setting the first term
to 0 yields the Euler–Lagrange equation for Ls, which we solve to write a second-order ODE
for u(µ):

u′′ = −(d − 2)uh(u) + (d − 1)u′ cotµ

�

1−
tanµ
2h(u)

u′

u
+

1
h(u)

u′2

u2

�

−
�

d − 5
2

�

u′2

u
. (38)

The second and third terms are the boundary conditions on Q1 and Q2, respectively. Taking
the dynamical boundary conditions [i.e. δu1 ̸= 0 and δu2 ̸= 0 in (37)] yields

u′1
λ1
= −(sinθ1)h(u1)

√

√

√ u′21
h(u1)

+ u2
1 ≤ 0 ,

u′2
λ2
= (sinθ2)h(u2)

√

√

√ u′22
h(u2)

+ u2
2 ≥ 0 , (39)

where we have defined u′1 ≡ u′(θ1) and u′2 ≡ u′(π− θ2). The inequalities follow from

θi ∈ (0,π) =⇒ sinθi > 0 , ui ∈ (0, uh) =⇒ h(ui)> 0 , u′i ∈ R (i = 1, 2) , (40)

and fix the signs of
u′1
λ1

and
u′2
λ2

. With this in mind, we rearrange these expressions to write

u′21 =
(λ1 sinθ1)2h(u1)2u2

1

1− (λ1 sinθ1)2h(u1)
, u′22 =

(λ2 sinθ2)2h(u2)2u2
2

1− (λ2 sinθ2)2h(u2)
, (41)

and solve for u′1 and u′2:

u′1 = −
(λ1 sinθ1)h(u1)u1
p

1− (λ1 sinθ1)2h(u1)
, u′2 =

(λ2 sinθ2)h(u2)u2
p

1− (λ2 sinθ2)2h(u2)
. (42)

We immediately observe that the horizon u(µ) = uh is still a solution even with the DGP
boundary conditions above. This means that the horizon is always a valid candidate for the
RT surface. We will use this fact in the following discussion.

3.3 Analytic criteria for DGP couplings

We now take an analytic approach to our exploration of the parameter space of DGP couplings
(λ1,λ2) by employing the RT prescription. By noting that the horizon of the black string is
always at least a candidate surface, we can make the following assertions:

(1) Theories in which the RT prescription selects the horizon and computes a positive en-
tropy cannot be excluded.

(2) The horizon entropy upper bounds the RT entropy.

In this section, we will use these statements to explore the DGP parameter space without
numerically constructing extremal surfaces. The results are summarized in Figure 5. Further-
more, we reiterate that the region {λ1 < −1} ∪ {λ2 < −1} is already deemed unphysical by
both our wrong-sign-action argument and an entropy argument by [25].
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Figure 5: A plot of the two-brane DGP parameter space (λ1,λ2) for d = 4. The upper-
right (green) region {λ1 ≥ 0} ∩ {λ2 ≥ 0} cannot be excluded by our swampland
criteria because the horizon is always the (positive-entropy) RT surface. The colored
lines demarcate the boundaries of regions excluded by the positive-horizon-entropy
requirement for fixed θ1 and θ2, which parameterize the branes as per (31)–(32).
We exclude points below these lines. Additionally, the constraints have a reflection
symmetry seen by swapping the labeling of the branes (1↔ 2). We see that thinner
wedges yield more restrictive bounds on (λ1,λ2). The intersection of all (θ1,θ2)-
dependent regions describes the couplings for which the horizon entropy is negative
for all brane angles. This is shown in black and lies entirely within the unphysical
Geff < 0 region, with latter being shaded grey.

Entanglement does not constrain {λ1 ≥ 0} ∩ {λ2 ≥ 0} We first consider the case of non-
negative DGP couplings on both branes. In this case, we find that our swampland criteria do
not apply. Specifically, the entropy functional (36) is always positive, and we can and will
also show that the RT surface is always the horizon, which is consistent with CWI. To do the
latter, we study locally smooth extremal surfaces assumed to not be the horizon, finding that
they are always UV-divergent and, thus, always subdominant to the (UV-finite) horizon in the
functional integral that computes the entropy. In other words, we find that non-horizon candi-
dates (i.e. finite extremal surfaces) for the RT prescription require either DGP coupling being
negative.

Suppose that we have an extremal surface that is anchored to brane 1 at a point u= u1 < uh
and brane 2 at a point u= u2 < uh. Then, from the boundary conditions (42), we have that

u′1 < 0 , u′2 > 0 . (43)

Pictorially in Figure 4, such an extremal surface bends “away” from the horizon at both branes.
Thus, u′(µ) must change sign at some µ = µ0 somewhere in the bulk, i.e. there exists
µ0 ∈ (θ1,π− θ2) for which

u′(µ0 − ε)< 0 , u′(µ0 + ε)> 0 , (44)

for all sufficiently small ε > 0. Since the metric is non-singular, the solutions to the Euler–
Lagrange equation do not accommodate finite discontinuities in u′. We also observe that u′(µ0)
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cannot vanish; if it does, then the equations of motion (38) give

u′′(µ0) = −(d − 2)u(µ0)h[u(µ0)] , (45)

where u(µ0) ∈ (0, u1) and thus h[u(µ0)] > 0. It then follows that u′′(µ0) < 0, but this is
inconsistent with (44).

The only remaining possibility is that u′ has an infinite discontinuity at µ = µ0, i.e. that
taking ε → 0 in (44) respectively yield −∞ and +∞. The resulting surface would not be
globally smooth, but it would consist of two locally smooth components, where each reaches
the defect at u= 0. Nonetheless, we can discard such a surface because it has a UV divergence
in its entropy and thus is larger than the (UV-finite) horizon entropy.

We emphasize that the argument for this statement goes through if either DGP coupling
is zero. Indeed, we had already proven the statement for λ1 = λ2 = 0 in [60]. For just one
positive and one zero DGP coupling, we can set λ1 = 0 without loss of generality. In this case,
we must exploit the fact that u′′(θ1) = 0 by the equation of motion (38). Thus, for some small
ε ≪ 1, u′(θ1 + ε) < 0 and, because we still have u′2 > 0, there exists a µ = µ0 where u′(µ)
changes sign. However, we reiterate that such a sign change cannot happen without an infinite
discontinuity. This completes the proof.

To summarize, for nonnegative DGP couplings λ1,λ2 ≥ 0, the RT surface is always the
horizon because the only other extant extremal surfaces are UV-divergent, so we never find a
violation of CWI in this part of parameter space. Our search for CWI-violating theories in the
swampland must involve at least one negative DGP coupling.

Positivity of entropy constrains {λ1 < 0} ∪ {λ2 < 0} For a (d + 1)-dimensional AdS black
string with two branes, the entropy density, which we define as the functional (36) in units of
the prefactor Vd−2

4Gd+1
, is computed to be

Sh =
1

ud−2
h

�

∫ π−θ2

θ1

dµ

sind−1µ
+

1
d − 2

�

λ1

sind−2 θ1
+

λ2

sind−2 θ2

�

�

. (46)

It is evident that if either DGP coupling is sufficiently negative, then the horizon entropy is
negative. While this is mathematically possible, we argue that this is unphysical.

We briefly reiterate the main points regarding horizon-entropy positivity discussed in Sec-
tion 2. Recall that the RT prescription computes a von Neumann entropy, and such an entropy
must be positive. In a typical AdS calculation with no branes, applying the RT prescription to a
CFT subregion gives a UV-divergent result, since the surface reaches the conformal boundary.
In the field theory, the divergence comes about because we have split the degrees of freedom.
We often subtract this infinity via some ultraviolet renormalization procedure. The renormal-
ized entropy can be negative (depending on the scheme), but this does not violate the original
positivity requirement.

Meanwhile in a two-brane setup, the RT prescription gives UV-finite answers because we
never split a connected CFT region. Another way to say this is that the algebra of observables
on a defect system is type I, rather than type III. However, such an entropy computed from the
gravity side may concernedly negative, which does not happen when there are no branes.

With that said, recall that the black-string horizon is extremal for all DGP couplings, since
it solves (38) and (41). Thus, the horizon entropy upper-bounds the entropy S from RT and

Sh < 0 =⇒ S ≤
Vd−2

4Gd+1
Sh < 0 . (47)

In other words, a negative horizon entropy implies a negative RT entropy.
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Now we rule out parts of (λ1,λ2) parameter space in which either DGP coupling is negative
enough to induce a negative horizon entropy. First, consider fixed brane angles θ1 and θ2. The
excluded region is then determined by a linear constraint:

Sh =
1

ud−2
h

�

∫ π−θ2

θ1

dµ

sind−1µ
+

1
d − 2

�

λ1

sind−2 θ1
+

λ2

sind−2 θ2

�

�

< 0

⇐⇒
λ1

sind−2 θ1
+

λ2

sind−2 θ2
< −(d − 2)

∫ π−θ2

θ1

dµ

sind−1µ
.

(48)

The “bounding line” of this region depends on the values of θ1 and θ2. Furthermore, this
constraint depends on the dimension parameter d. As such, for concreteness we set d = 4,
discussing general d in Appendix B. For d = 4, the horizon’s entropy density is

Sh =

∫ π−θ2

θ1

dµ

u2
h sin3µ

+
λ1

2(uh sinθ1)2
+

λ2

2(uh sinθ2)2

=
1

2u2
h

2
∑

i=1

�

cscθi cotθi − log
�

tan
θi

2

�

+λi csc2 θi

�

. (49)

We can then write the unphysical region as

λ2 < −
�

sinθ2

sinθ1

�2

λ1 − sin2 θ2

2
∑

i=1

�

cscθi cotθi − log
�

tan
θi

2

��

. (50)

Let us now explore more θ -independent bounds. For convenience, we define notation for the
fixed-(θ1,θ2) unphysical regions in (λ1,λ2) space and the corresponding bounding lines:

B(θ1,θ2)≡ {λ2 < LB(λ1,θ1,θ2)} , (51)

LB(λ1;θ1,θ2)≡ −
�

sinθ2

sinθ1

�2

λ1 − sin2 θ2

2
∑

i=1

�

cscθi cotθi − log
�

tan
θi

2

��

. (52)

We can construct two θ -independent regions: the intersection
⋂

B and the union
⋃

B of
B(θ1,θ2) over all valid choices of brane angles. We do so in that order.

The intersection describes the part of parameter space in which the horizon entropy is
always negative regardless of the brane angles. Thus, the intersection in the swampland. To
find this region, it is helpful to define the contribution of an individual brane to the entropy:

S(i)h ≡
1
2

�

cscθi cotθi − log
�

tan
θi

2

�

+λi csc2 θi

�

. (53)

S(i)h has a positive singularity as θi → 0+ for λi ≥ −1. So, if either DGP coupling is at or
above −1, then we can get a positive horizon entropy by taking the corresponding angle to be
sufficiently small. This means that

⋂

B ⊂ {λ1 < −1} ∩ {λ2 < −1} . (54)

Meanwhile, for λi < −1 the sign of the singularity flips, and S(i)h also has a negative singularity

as θi → π−. Thus, the profile of S(i)h develops a maximum in θi at

cosθi∗ = −
1
λi

. (55)
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We can explicitly compute the value of this maximum:

Si∗ ≡ S(i)h

�

�

�

θi=θi∗
=
λi

2
−

1
4

log
�

λi + 1
λi − 1

�

. (56)

Up to a positive factor, the total horizon entropy at a point in {λ1 < −1} ∪ {λ2 < −1} is
upper-bounded by the sum of these maxima, and so

S1∗ +S2∗ < 0 ⇐⇒ Sh < 0 , ∀ (θ1,θ2) . (57)

Hence, the couplings (λ1,λ2) for which S1∗ +S2∗ < 0 are precisely those in
⋂

B. We find the
boundary of this region by setting the sum of maxima to 0, which is equivalent to

λ1 +λ2

2
−

1
4

log
��

λ1 + 1
λ1 − 1

��

λ2 + 1
λ2 − 1

��

= 0 . (58)

This produces a curve in (λ1,λ2) space bounding the region of couplings for which horizon
entropy is always negative, and thus we write

⋂

B =
§

λ1 +λ2

2
−

1
4

log
��

λ1 + 1
λ1 − 1

��

λ2 + 1
λ2 − 1

��

< 0
ª

. (59)

The takeaway is that combinations of two very negative DGP couplings should be seen as be
highly pathological, particularly since this regime is also ruled out by other arguments (namely
our wrong-sign-action argument and the RT bubbles of [25]).

Next, the union only tells us where at least one set of brane angles furnishes a negative
horizon entropy. Put another way, the complement of the union consists of the DGP parameters
that are unaffected by the positivity of horizon entropy, and knowing the union helps visualize
which part of the parameter space might conceivably be subjected to swampland constraints.
With that in mind, we now compute the union. We argue that16

⋃

B = {λ1 < −1} ∪ {λ2 < −1} ∪ {λ1 +λ2 < 0} . (60)

Notably, (60) contains positive-negative combinations of DGP couplings, including ones which
yield Geff > 0 on both branes.

To prove (60), we first check that {λ1 < −1} ∪ {λ2 < −1} ∪ {λ1 + λ2 < 0} ⊂
⋃

B. To do
so, we compute (51) in the following three limits:

B
�π

2
,
π

2

�

= {λ1 +λ2 < 0} , (61)

B
�

0,
π

2

�

= {λ1 < −1} , (62)

B
�π

2
,0
�

= {λ2 < −1} . (63)

Now, we want to show that points that are not in the union of (61)–(63) also never accom-
modate negative horizon entropies. Since all of the fixed-(θ1,θ2) bounds are linear in DGP
couplings, we just need to confirm three statements for the bounding lines LB (52):

(i) Any bounding line must have negative slope;

(ii) any bounding line must intersect λ1 = 0 at some λ2 < 0; and,

(iii) any bounding line which intersects λ1+λ2 = 0 once does so in {λ1 < −1}∪ {λ2 < −1}.
16This turns out to be the union of all fixed-(θ1,θ2) constraints in any number of spacetime dimensions. In

contrast, the intersection depends on d. We show this in Appendix B.
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These conditions ensure that any point contained in some excluded region B(θ1,θ2) will be in
the union of of (61)–(63), thus proving (60). (i) is immediate from (52):

∂ LB
∂ λ1

= −
�

sinθ2

sinθ1

�2

< 0 , (64)

To check the other two statements, it helps to fix θ2 = θ and set θ1 = π − θ − δ, where
δ ∈ (0,π− θ ). We then write

LB(0,π− θ −δ,θ ) = − sin2 θ F(θ ,δ) , (65)

F(θ ,δ)≡ cscθ cotθ − csc(θ +δ) cot(θ +δ)− log
�

tan
�

θ

2

�

cot
�

θ +δ
2

��

. (66)

The derivative of F with respect to δ is 2 csc3(θ + δ), which is positive for all valid brane
angles. Furthermore, F(θ , 0) = 0, so we infer that F > 0. Thus, (65) is negative, confirming
(ii).

To check (iii) directly,17 we start by denoting the intersection between a bounding line
LB and λ1 + λ2 = 0 by (λ∗1,λ∗2). We then use this intersection constraint to solve for λ∗1 as a
function of θ and δ:

−λ∗1 = LB(λ
∗
1,π− θ −δ,θ ) =⇒ λ∗1(θ ,δ) =

F(θ ,δ)
csc2 θ − csc2(θ +δ)

. (67)

Over the full domain of δ, this function has the endpoint values

λ∗1(θ , 0) = secθ , λ∗1(θ ,π− θ ) = −1 . (68)

We also observe that the derivative of λ∗1 with respect to δ is positive for θ ∈ (0,π) and
δ ∈ (0,π− θ ). So now if we assume θ > π

2 , then we have enough to deduce that λ∗1 < −1.
However, if θ < π

2 , then we note that there is a pole at δ = π−2θ . Nonetheless, the derivative
is still positive, so it turns out that

δ ∈ (0,π− 2θ ) =⇒ λ∗1 > 1 , δ ∈ (π− 2θ ,π− θ ) =⇒ λ∗1 < −1 . (69)

The points for which λ∗1 < −1 are in {λ1 < −1}. Meanwhile, since λ∗2 = −λ
∗
1, the points for

which λ∗1 > 1 are in {λ2 < −1}. Thus, (iii) is true.
With (i)–(iii) in hand, we can conclude that any bounding line LB(λ1;θ1,θ2) must be

contained within the union of (61)–(63), and so (60) is true. We reiterate that
⋃

B includes
DGP parameters for which the effective Newton constant on each brane is positive, unlike

⋂

B.

3.4 Numerical violations of causal wedge inclusion

From the equation of motion (38) and boundary conditions (42), we can numerically solve for
the (static) extremal surfaces for particular choices of brane angles (θ1,θ2) and DGP param-
eters (λ1,λ2). We may then check whether or not there exists an extremal surface with total
entropy strictly smaller than the horizon. This would be a violation of causal wedge inclusion
(CWI) and put that combination of parameters in the swampland.

We first obtain a plethora of numerical extremal surfaces. Specifically, we shoot from brane
1 with fixed angle θ1 and over a range of initial parameters u1 and couplings λ1. Note that
the value of u′1 is set by (42). We then filter the list of these solutions down to those consistent
with a particular value of θ2 at the second brane. For these remaining points, we compute the
entropy density Sext numerically and the entropy density of the horizon Sh analytically (49).

17We use a more indirect method in Appendix B which can be applied in any number of dimensions.
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Then, we repeat the above process by shooting from brane 2. In the end, we have a large list
of points (λ1,λ2) on a fixed-(θ1,θ2) plane for which there is a non-horizon extremal surface,
along with the associated entropies.

With that list in hand, we delete any points which seem pathological, such as those with
large (and thus potentially numerically unstable) areas. Guided by both the positivity of hori-
zon entropy Sh > 0 and possible cases (16)–(17) diagnosing whether or not we have a violation
of CWI, we sort the points (λ1,λ2) in this list into three subsets:

(λ1,λ2) , for which Sext > Sh > 0 , (70)

(λ1,λ2) , for which Sh < 0 , (71)

(λ1,λ2) , for which Sh > Sext and Sh > 0 . (72)

(70) consists of points that cannot be ruled out by the entropic swampland conditions con-
sidered in this paper, but we emphasize that these points may still appear in the pathological
region with at least one negative effective Newton constant {λ1 < −1} ∪ {λ2 < −1}. Mean-
while, the regions (71) and (72) are unphysical on the fixed-(θ1,θ2) plane. Specifically, the
points in (71) must be contained within the analytically excluded region B(θ1,θ2) defined
in (51). Points in (72) are not in the analytically excluded region since they furnish positive
horizon entropy, but they still violate CWI.18

Note that a pair of DGP couplings in satisfying (71) or (72) for some combination of brane
angles need not always be in the swampland. In fact, a pair (λ1,λ2) is only generically be in
the swampland (based on our criteria) if it is in the union of (71) with (72) and taken over all
(θ1,θ2). The excluded points presented below (Figure 6) should be interpreted with a specific
combination of brane angles in mind.

The primary fact that want to demonstrate is that this last set of points overlaps with
the part of the (λ1,λ2) parameter space that is not already excluded by either the positivity
of horizon entropy or the positivity of the brane’s effective Newton constant, i.e. that (72)
includes points for which [recalling (51)–(52)]

λ2 > LB(λ1;θ2,θ2) , and λ1,λ2 > −1 . (73)

We can be more ambitious and ask for a complete understanding of the DGP couplings that
allow for non-horizon extremal surfaces, as well as how such a set partitions into subsets
(70)–(72). While our approach does this to some extent, we emphasize that our numerics
provide only evidence for such information, rather than proof. However, the numerics are still
sufficient to exclude a region of parameter space within (73).

Inspecting the found points For various combinations of fixed (θ1,θ2), we present the re-
sulting sets of points in Figure 6. We observe points in (70) (red), (71) (blue), and (72)
(green). By definition, the blue points are below the bounding line (52) along which Sh = 0,
while the red and green points are above this bounding line. Based solely on these numerics,
we make several observations.

First, note that the blue points are in the region {λ1 < −1} ∩ {λ2 < −1}, i.e. they appear
at couplings for which both effective Newton constants are negative. This suggests that any
couplings which allow negative horizon entropy and a non-horizon extremal surface are deeply
pathological, since they violate multiple swampland criteria. Furthermore, these points are
completely disconnected from the others.

The red and green points appear to form a single connected region above the bounding
line LB (52). Most of the red points, which we reiterate correspond to couplings that do

18A priori this set may also include more strongly pathological points for which Sext < 0. Not only would such
points violate CWI, but they would also have a negative entropy as determined by the RT prescription.

22

https://scipost.org
https://scipost.org/SciPostPhys.15.5.199


SciPost Phys. 15, 199 (2023)

ext > h, h > 0 h < 0 ext < h, h > 0























































































































































 

 
































































































































































































-1.5 -1.0 -0.5 0.5 1.0
λ1

-1.5

-1.0

-0.5

0.5

1.0

λ2

(a) θ1 = 1.2, θ2 = 1.0
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(c) θ1 = 1.2, θ2 = 1.4

Figure 6: The points in (λ1,λ2) parameter space for which we find non-horizon
extremal surfaces, for fixed angles θ1 and θ2. The colors correspond to (70) (red),
(71) (blue), and (72) (green). The thick dashed lines are the (θ1,θ2)-dependent
bounding lines (52) below which Sh < 0, while the light dashed line is λ1 +λ2 = 0.
We have also shaded the region in which either effective Newton constant is negative.

not violate CWI, are pathological anyway because they furnish at least one negative effective
Newton constant, i.e. λ1 < −1 or λ2 < −1. Interestingly, some are not sick, and these points
are near but notably not arbitrarily close to the {λ1 < −1} ∪ {λ2 < −1} region. However, we
caution that this part of the parameter space near the boundary of {λ1 < −1} ∪ {λ2 < −1} is
subject to higher numerical errors and such points may be artifacts of those errors. We will
elaborate on this point later.

Meanwhile, the green points designating CWI-violating couplings appear within the region
{λ1 > −1} ∩ {λ2 > −1} ∩ {λ1 +λ2 < 0}.19 So for a given θ1 and θ2, CWI excludes points not
already ruled out by the positivity of horizon entropy and effective Newton constant. Thus,
CWI provides another nontrivial swampland criteria for braneworlds.

We should say that these numerics do not suggest that CWI is a stronger condition than
the positivity of horizon entropy. This would only be a true statement if the set of points ruled
out by CWI contains the region B(θ1,θ2) (51) in which Sh < 0, but our numerics only find
non-horizon extremal surfaces within a subset of B(θ1,θ2).

19Some green points are hidden below the red points, but even those green points are within this region.
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How does this story depend on the combination of angles? While we have sampled and
shown only a few combinations as shown in Figure 6, we can make some conjectures based
on the observed patterns. For one thing, the green and red points are above the bounding
line LB but seem to follow the line as the angles are dialed. Numerically the CWI-excluded
points are above the bounding line by a gap of order 0.1 at most in the sampled angles in
Figure 6. For combinations of brane angles that yield a “wider” wedge, i.e. smaller θ1 + θ2,
this line resides within the region {λ1 < −1}∪{λ2 < −1}, with the limit θ1,θ2→ 0 completely
assuring positivity of entropy for all (λ1,λ2). So if the CWI-excluded points must move with
the bounding line, then in the limit θ1,θ2 → 0 we would expect CWI to become redundant
with the positivity of the effective Newton constants.

It would be worthwhile to search for CWI-violating surfaces in the regime of small brane
angles. However, taking both θ1,θ2 → 0 gives rise to instabilities in our numerics, so we
are unable to confidently rule out points in this regime of parameter space. A more refined
approach to searching for the CWI-violating surfaces is necessary. Alternatively it may be
possible to organize the contributions of higher-derivative terms to the entropy into an ordered
series in this limit, which would allow for analytic statements.

For “thinner” wedges, the bounding line intersects the region with positive effective New-
ton constants, i.e. increasing θ1 + θ2 also pushes LB up and to the right in the (λ1,λ2) pa-
rameter space. This also pushes the red and green points up, and such combinations of brane
angles is when CWI distinguishes itself from the other swampland conditions.

Possible expansion of excluded zone The key takeaway is that CWI certainly excludes DGP
couplings that otherwise seem okay. The green points in Figure 6 are certainly sick. However,
there are various nontrivial features of the plots. In particular, the switch between the green
region and red region seems somewhat arbitrary, and there is also a gap between the red/green
region and the bounding line LB. This latter feature in particular suggests that CWI does not
actually lower-bound the DGP couplings.

To be more precise, on the fixed-(θ1,θ2) slices shown in Figure 6, the excluded zone is not
convex and consists of two disconnected pieces. But we reiterate that the disconnectedness is
not expected to be a feature of the excluded manifold in the full four-dimensional parameter
space. This is because of our expectation that in the θ1,θ2→ 0 limit, both CWI and positivity
of entropy become subsumed by the condition that the effective Newton constants are positive,
which by itself excludes a connected region.

We caution that the numerics could be subject to some slight instability originating from the
shooting procedure, particularly when dealing with surfaces which are numerically close to the
horizon. Such surfaces appear in our numerics near the boundary of the {λ1 < −1}∪{λ2 < −1}
region. Furthermore, in our approach we only completely specify one of the DGP couplings,
whereas we read off the other coupling from a list of solutions. Thus, some of the green or red
points are only really specified up to some error, and if the difference between Sh (computed
analytically) andSext (computed numerically) is within the margin of error of the shooting then
the switch between red points and green points is also ambiguous. However, we emphasize
that our numerics are relatively stable against changes in precision, and so we believe these
errors to be insignificant for most couplings—particularly for green points that are further from
the red region in Figure 6.

It should be possible to further improve on our numerics. We emphasize that our primary
goal was to find points excluded only by CWI. We have accomplished that much by considering
a range of angles in which the numerics are under control. However, if one wants to better
understand how the excluded zone is embedded in parameter space [for example, the shape
of the excluded points in (λ1,λ2,θ1) keeping θ2 fixed], then it would be necessary to use more
refined approaches.
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Figure 7: A cartoon of a possible time-dependent entangling surface in the two-brane
setup with DGP couplings, shown on the t = 0 slice of the maximally extended black-
string geometry, in which the horizons are identified. This surface would violate
causal wedge inclusion—we can see that the entanglement wedge (in green) does
not include the full exterior of either side and thus never includes the causal wedge
of either defect.

We also do not search for potential extremal surfaces that go into the black-string interior
(Figure 7) and thus correspond to a time dependence in the entanglement entropy for the
one-sided defect. Such surfaces require that λ1 < 0 and λ2 < 0 due to their shape, but they
are harder to construct because they are not Z2 symmetric with respect to the maximally
extended geometry.20 Nonetheless, these would also violate causal wedge inclusion and could
in principle be used to rule out theories, possibly filling the gap between the CWI-excluded
and positive-entropy-excluded regions observed in Figure 6.

However, it is possible that such surfaces are not even mathematically feasible. In AdS
black geometries without branes, entanglement surfaces akin to Figure 7 and anchored to the
conformal boundary are not allowed because horizons in those settings are “extremal surface
barriers” [86]. So, the only way to get time-dependent surfaces without branes is to compute
the entropy of a boundary region supported on both sides of the maximally extended geometry
(cf. [87]). But, it is not clear that such a mathematical obstruction exists for surfaces ending on
KR branes. If it does, then it would be a mathematical statement—rather than just a physical
one—that the entanglement entropy of the one-sided defect geometry can only follow a trivial
(time-independent) Page curve.

4 Discussion

To summarize, we have explored how entanglement structure constrains effective field theories
of gravity on branes in AdS. Our core philosophy is that the AdS/CFT dictionary, being a fea-
ture of UV physics, gives rise to swampland criteria that may be implemented in semiclassical
holographic models. As a case study, we have used this idea to put nontrivial constraints—both
analytic and numerical—on the RS + DGP braneworld model of gravity.

We should emphasize that the end-of-the-world branes we consider in this paper are of a
particular class. They are “constant-angle” branes (32) embedded in a bulk AdS space (31).
In principle, one may consider other foliations of the bulk into KR branes. This would yield
more configurations, and in principle holography could be used to put different constraints on
higher-derivative brane couplings. We leave this to future explorations.

Another notable caveat is that we only consider one particular two-derivative correction

20One may consider surfaces that are anchored to the branes, dive into the horizon, and satisfy this Z2 symmetry
as in [67]. However, those surfaces contribute to the entropy functional of the purified defect system. This entropy
is 0, and the corresponding bulk RT surface “shrinks” onto the brane’s horizon [38].
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to the brane action—the DGP term. Even at the level of two derivatives in the effective theory,
we can write additional independent terms proportional to squares of extrinsic curvature.
Schematically, this correction takes the form

IK2 =

∫

brane

(aK2 + bKµνKµν) . (74)

So in truth, general two-brane setups with actions truncated at two derivatives occupy an eight-
dimensional parameter space parameterized as (θ1,θ2,λ1,λ2, a1, a2, b1, b2). Fortunately as
found by [35], (74) does not affect the embedding equations (23), so the shapes of the branes
are only determined by the RS tensions and DGP couplings. However, (74) may alter the
(d−2)-dimensional area terms in the entropy functional (30). To see how, one would need to
apply the recipe of [25] [specifically their equation (A.7)] to (74).

Our goal in this paper was merely to show the possibility that a swath of effective brane-
localized theories can be excluded on general physical principles. We do this by restricting to
a slice of theory space where the terms (74) (and all higher couplings) are dialed to zero. We
leave exploration of other higher-derivative couplings to future work.

Trivial massless Page curves We briefly comment on the significance of these results to
the recent discourse on the black hole information paradox. The typical (d > 2) higher-
dimensional realization of Page curves as describing the evolution of semiclassical black hole
information relies on the construction with one-KR-brane embedded in an ambient AdS ge-
ometry with a nontrivial blackening factor. The first such construction was numerical [14],
and a simple analytical model was provided by [57] shortly after. Moreover, [57] claimed
that the existence of a nontrivial Page curve may be due to the semiclassical theory on the
brane being a massive gravity theory, a feature that has long been ascribed to the presence of
a non-gravitating bath glued on at asymptotic infinity [58,59].

This aspect of the one-brane setup motivated our study of a two-brane setup embedded in
a bulk black string geometry in [60]. Here, one of the branes acts as a gravitating bath, and so
the semiclassical theory on the branes maintains a massless graviton in its spectrum [61]. We
had found the entropy of radiation collected in the gravitating bath to be eternally computed
by the bulk horizon area. Thus, the entropy of radiation was found to be constant in time, in
agreement with the claims of [64].

Recent work [67–69] has proposed that our prior result is changed by adding DGP terms to
the two-brane setup. The basic claim is that for at least some combinations of DGP couplings
(with at least one being negative) the bulk horizon no longer computes the minimum of the
entropy functional, allowing for time-dependent RT surfaces. Furthermore, one may also get
static RT surfaces that are not the horizon. For example in making this case, [67] explicitly finds
the latter type of surface for a particular combination of parameters, which in our conventions
are21

θ1 ≈ 1.090 , θ2 ≈ 0.585 , λ1 = 0 , λ2 ≈ −0.984 . (75)

However, the DGP couplings allowing for any such non-horizon RT surfaces in the first place
are in conflict with causal wedge inclusion, since the causal wedge of one of the defect systems
includes the entire corresponding side’s exterior region. That is also true of time-dependent
surfaces (see Figure 7).22 Thus, semiclassical massless-gravity theories furnishing nontrivial

21As a consistency check, we have checked our entropies associated with these values against those of [67]. The
analytic horizon entropies are precisely the same. Numerically, shooting from either brane yields Sext ≈ 0.838,
which is consistent with the value Sext ≈ 0.842 of [67] up to small O(0.1%) error.

22As a side note, explicitly constructing time-dependent surfaces may allow one to further expand the excluded
zone presented in Figure 6. There may also exist brane angles for which time-dependent surfaces are the only way
to violate CWI, but searching for such points is beyond the methods in the current paper.
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time-dependent Page curves or any static non-horizon bulk RT surfaces are in the swampland,
and the lessons of [67] are unphysical. See [38] for more specific discussion of this point.

In fact, our numerics loosely indicates that most (but conceivably not all) DGP couplings
for which there even exists a UV-finite extremal surface apart from the horizon are sick, either
because of a violation of causal wedge inclusion or some other physical pathology such as a
negative effective Newton constant.

In conclusion, we have shown how swampland constraints can restrict the viability of AdS
gravity theories with a holographic interpretation. Indeed, holography is fundamentally a
feature of UV physics, and so care must be applied in assuming that it holds semiclassically to
avoid misleading conclusions. Our work here focuses on entanglement structure in braneworld
models, with an eye towards their recent application to the black hole information problem.
The takeaway is that the existence of a holographic dictionary is an important limitation on
physically consistent semiclassical models of gravity.
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A Effective action with RS + DGP gravity

We briefly review the derivation of the semiclassical gravitational action on the brane with both
an RS and a DGP term. We discuss this in the case of a semi-infinite (d + 1)-dimensional bulk
geometry M with one d-dimensional brane Q (as in [25,85,88,89]), but the basic results carry
over to the two-brane configuration. The starting point is the bulk action with brane-localized
terms (leaving Gibbons–Hawking terms implicit),

I =
1

16πGd+1

∫

M

p

−g
�

R+
d(d − 1)

L2

�

︸ ︷︷ ︸

Einstein–Hilbert

+

∫

Q

p

− g̃
�

−T +
1

16πGb
R̃
�

︸ ︷︷ ︸

RS + DGP

, (A.1)

where g is the bulk metric, g̃ is the induced brane metric, and tildes denote curvature invariants
of the latter. We implicitly work with a bulk metric of the form

ds2 =
L2

u2 sin2µ

�

−h(u)d t2 +
du2

h(u)
+ d x⃗2 + u2dµ2

�

, (A.2)

where u > 0, (t, x⃗) ∈ Rd−1, and µ ∈ (θ ,π). µ = θ designates the position of the brane, and
θ is geometrically the angle between this brane and the conformal boundary. h(u) is some
analytic function for which this metric satisfies Einstein’s equations (5).
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We then treat the brane like a cutoff surface and integrate the Einstein–Hilbert term over
the bulk radial direction. [25] computes the resulting dimensionally-reduced action to be of
the form

Idiver =
1

16πGd+1

∫

p

− g̃
�

2(d − 1)
L

+
L

d − 2
R̃+O(R̃2)
�

. (A.3)

There is an infinite tower of higher-derivative corrections, but in the semiclassical regime we
are simply concerned with the Einstein–Hilbert terms on the brane consisting of R̃0 and R̃1

terms. Because we are dealing with just one copy of the bulk instead of two (cf. [25]), the
effective action includes only one copy of Idiver:

Ieff = Idiver +

∫

Q

p

− g̃
�

−T +
1

16πGb
R̃
�

. (A.4)

Plugging in (A.3) then yields

Ieff =

∫

Q

p

− g̃
��

d − 1
8πGd+1 L

− T
�

R̃0 +
�

L
16π(d − 2)Gd+1

+
1

16πGb

�

R̃+O(R̃2)
�

. (A.5)

We then write the action in the form

Ieff =
1

16πGeff

∫

Q

p

− g̃

�

(d − 1)(d − 2)
ℓ2eff

+ R̃+O(R̃2)

�

, (A.6)

where the Geff is the effective Newton constant (i.e. the coupling of the effective Einstein–
Hilbert terms) and ℓeff is the effective curvature scale,23 each of which are respectively identi-
fied as

1
Geff
=

L
(d − 2)Gd+1

+
1
Gb

,
1

ℓ2eff

=
2
L2

�

1−
8πGd+1 L

d − 1
T
��

(d − 2)Gd+1

Gb L
+ 1
�−1

. (A.7)

A.1 The λ and θ parameters

Throughout this paper, we study a particular class of “planar” KR branes (32) with AdSd ge-
ometry embedded in a bulk AdSd+1 spacetime (31). We find it more useful to parameterize
the embeddings of our branes not by (T, Gb) but by alternate parameters (θ ,λ). θ measures
the angle between the brane and the conformal boundary while λ captures the relative contri-
butions between the RS and DGP terms to the effective Newton constant. We now define the
mapping between these different sets of parameters.

Taking 1
Gb
→ 0 in (A.1) to remove the DGP term, we are simply left with the RS term. The

effective RS Newton constant and curvature scale are then identified as

1
GRS

=
L

(d − 2)Gd+1
,

1

ℓ2RS

=
2
L2

�

1−
8πGd+1 L

d − 1
T
�

. (A.8)

The RS Newton constant partly contributes to the effective Newton constant of the brane with
RS + DGP terms (A.7). This motivates us to define a dimensionless parameter,

λ≡
GRS

Gb
, (A.9)

23We emphasize that this effective curvature scale is not the same as the induced curvature radius of the brane
read off the induced metric, e.g. (20).
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describing the relative strength of these two terms. The effective Newton constant is then

1
Geff
=

1
GRS
(1+λ) . (A.10)

In particular, we have a negative effective Newton constant if λ < −1.
Next, we write the dynamical boundary condition of the brane with a DGP term. In RS,

recall that it is (6). More generically, the boundary condition takes the form

Kµν − K g̃µν = Tµν , (A.11)

where Tµν is the brane’s stress tensor (with a factor of 8πGd+1 included in the definition),

Tµν = −
16πGd+1
p

− g̃

δIQ
δ g̃µν

. (A.12)

For the brane action in (A.1), this is simply

Tµν = −8πGd+1T g̃µν −
Gd+1

Gb

�

R̃µν −
1
2

R̃g̃µν

�

= −8πGd+1T g̃µν −
λL

d − 2

�

R̃µν −
1
2

R̃g̃µν

�

.
(A.13)

We have used the relationship between GRS and Gd+1 to write the right-hand side in terms of
λ. We can then solve for the tension by contracting (A.11) with the induced metric tensor.
This yields

8πGd+1T =
d − 1

d
K +

λL
2d

R̃ . (A.14)

Now by computing the curvature invariants associated with µ= θ in (A.2),

K =
d
L

cosθ , R̃= −
d(d − 1)

L2
sin2 θ , (A.15)

we can at last write the tension as a function of λ and θ :

T =
d − 1

8πGd+1 L

�

cosθ −
λ

2
sin2 θ

�

. (A.16)

Equipped with (A.9) and (A.16), we may use the parameters (θ ,λ) to fix the explicit couplings
(T, Gb). We thus parameterize the effective theories in terms of the former.

A.2 Flat-space limits

The DGP term is often used to construct models of flat branes in flat space [24], with the RS
tension being a bare vacuum energy [90]. However, our paper is about swampland criteria
emerging from AdS/CFT, and so we are considering the DGP term in the context of AdS branes
in AdS space as in [25]. Nonetheless, to connect to braneworld phenomenology, we can ask
what happens to our constraints by taking one of two flat limits.

Roughly speaking, the first limit is to take the bulk curvature radius L to be large (making
the bulk cosmological constant vanish) and the brane tension to be 0. The second is a flat limit
of just the effective theory on the brane in which we take the effective length scale (A.7) to be
large. However, we find that the constraints from entanglement lose all power in either case.

Let us be more specific. The first flat-space limit we can consider is one in which we take

L→∞ , T → 0 , Gd+1, Gb-fixed . (A.17)
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In other words, we are eliminating the cosmological-constant terms in (A.1). This yields the
original DGP model [24] with flat branes in a flat bulk. Instead of (A.5), the resulting semi-
classical theory on the brane is

Ieff
L→∞, T→0
−−−−−−−→

1
16πGb

∫

p

− g̃
�

R̃+O(R̃2)
�

, (A.18)

i.e. we have that Geff = Gb and ℓeff → ∞. Note that in this regime, the requirement that
Geff > 0 turns into the constraint Gb > 0.

(A.17) is perfectly compatible with the semiclassical regime of the Ryu–Takayanagi pre-
scription Gd+1 ≪ Ld−1. However, by keeping Gd+1 and Gb finite while sending L →∞, we
are essentially imposing the limit

λ=
GRS

Gb
=
(d − 2)Gd+1

LGb
→ 0 . (A.19)

Our entanglement-based swampland criteria, which require at least one negative DGP coupling
in the two-brane setup, are no longer applicable.

Another possibility is to consider a “flat-brane” limit in which the effective cosmological
constant ∼ 1

ℓ2eff
vanishes. This can be done by taking the following limit of the tension:

T →
d − 1

8πGd+1 L
. (A.20)

For a given λ, we can rephrase this in terms of a limit on the brane angle θ . From (A.16), we
get (A.20) by taking one of two values for the brane angle:

θ → 0+ , or θ → Cos−1
�

1+
2
λ

�

. (A.21)

For the first brane angle, we are essentially taking the planar brane to the conformal boundary.
In the case of two planar branes forming a wedge, this makes the wedge wider. As seen in the
main text however, the excluded points would then be pushed into the {λ1 < −1}∪{λ2 < −1}
region, in which Geff < 0 on at least one of the branes. Meanwhile, the second brane angle
only makes sense when we assume λ < −1. So for this flat limit, we see that the swampland
constraints coming from entanglement are simply subsumed by the requirement that Geff > 0
and thus lose all power.

However, we should emphasize that we are working with a particular slicing whereby the
brane is a constant-µ hypersurface in (A.2). It is conceivable that another configuration of
branes could yield well-defined bounds in flat-space limits. We leave this to future work.

B Dimension dependence of the positive-entropy constraint

In general, the entropy density of the (d + 1)-dimensional black string’s horizon with two RS
+ DGP branes is given by (46), which we recall here:

Sh =
1

ud−2
h

�

∫ π−θ2

θ1

dµ

sind−1µ
+

1
d − 2

�

λ1

sind−2 θ1
+

λ2

sind−2 θ2

�

�

. (B.1)

θ1 and θ2 are the angles of the branes while λ1 and λ2 are their respective DGP couplings.
Furthermore, d is the number of brane dimensions. Physically, (B.1) must never be negative,
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but mathematically there exist ranges of λ1 and λ2 for which Sh < 0. For fixed brane angles
(θ1,θ2), we denote this part of the (λ1,λ2) parameter space by

Bd(θ1,θ2)≡

¨

∫ π−θ2

θ1

dµ

sind−1µ
+

1
d − 2

�

λ1

sind−2 θ1
+

λ2

sind−2 θ2

�

< 0

«

, (B.2)

and assert that it resides in the swampland.
In the main text (Section 3.3), we use this condition to rule out a section of the DGP

parameter space for d = 4. For fixed angles, the constrained region is linear, and we also
compute both the intersection

⋂

Bd and the union
⋃

Bd of these excluded regions over all
choice of (θ1,θ2). The intersection is the region of DGP parameter space in which we get a
negative horizon entropy for any choice of brane angles, while the union is that in which we
find a negative horizon entropy for at least one choice of brane angles. However, the details
may depend on d. Our goal in this appendix is to describe this dependence. Roughly speaking,
the intersection becomes smaller as d is tuned larger, but the union is d-independent.

Intersection of excluded regions First, we observe that the horizon-entropy density can be
rewritten as a sum over the two branes:

Sh =
1

ud−2
h

2
∑

i=1

S(i)h (d) , S(i)h (d)≡
∫

π
2

θi

dµ

sind−1µ
+
λi

d − 2
cscd−2 θi . (B.3)

As in the d = 4 case, S(i)h generally24 diverges as θi → 0+ or θi → π−. The signs of these diver-
gences depend on λi , and the divergence at θi = 0 is particularly important for determining
the intersection. If there is a positive divergence there, then we may force the entire sum to
be positive by taking θi ≪ 1, .

We can find the signs of these divergences by examining the derivative of S(i)h with respect
to θi ,

∂ S(i)h

∂ θi
= − cscd−1 θi (1+λi cosθi) . (B.4)

For |λi|< 1, this quantity is negative, and so S(i)h monotonically decreases. Thus the divergence
as θi → 0+ must be positive, while the divergence as θi → π− is negative. For |λi| > 1,
however, the derivative has a zero at θi = θi∗, where

cosθi∗ = −
1
λi

. (B.5)

Furthermore, we observe that λi > 1 implies that this is a minimum, whereas λi < −1 implies
it is a maximum. So, both divergences are positive for λi > 1, whereas they are negative for
λi < −1.

Taken together, these observations imply that if either λ1 > −1 or λ2 > −1, then we may
take one of the angles to be very small, inducing a positive blow-up in the total entropy. And
so,

⋂

Bd ⊂ {λ1 < −1} ∩ {λ2 < −1} . (B.6)

We had found this in d = 4, but we have just shown that (B.6) is true in any number of
dimensions. Recalling that {λ1 < −1} ∪ {λ2 < −1} is already deemed pathological both
because of our wrong-sign-action argument in the main text and the RT bubble argument
of [25], (B.6) means that the DGP couplings for which we get negative horizon entropy for all
combinations of brane angles are already sick.

24The exception is for d = 3, for which the setting λi = 1 cancels the θi → π− divergence and taking λi = −1
cancels the θi → 0+. These are edge cases, so we ignore them.
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Figure 8: The (λ1,λ2) parameter space with the d-dependent contours demarcating
the intersection (over brane angles) of all regions excluded by horizon-entropy posi-
tivity. We depict contours for a variety of (brane) dimensions d. The intersection for
a given d is the region below the corresponding contour.

To compute the intersection more precisely, we must specify d. Upon doing so, we compute
the maximum value of S(i)h (d) as a function of λi . For example, these maxima for the first three
values d = 3,4, 5 are

S(i)h (3)
�

�

�

θi=θi∗
= −
q

λ2
i − 1 , (B.7)

S(i)h (4)
�

�

�

θi=θi∗
=
λi

2
−

1
4

log
�

λi + 1
λi − 1

�

, (B.8)

S(i)h (5)
�

�

�

θi=θi∗
=

1
3

2−λ2
i
q

λ2
i − 1

. (B.9)

The point is that a pair of couplings (λ1,λ2) is in
⋂

Bd precisely when the sum of the maxima
for brane 1 (i = 1) and brane 2 (i = 2) is negative. We can find this region by finding the
contour in (λ1,λ2) parameter space along which the sum of maxima are 0, then by noting
that the horizon entropy becomes negative if either DGP coupling decreases. In other words,
the intersection of excluded regions is everything to the lower-left of the zero contour. These
contours for various dimensions are shown in Figure 8.

Union of excluded regions We can also ask what part of the (λ1,λ2) parameter space allows
for at least one combination of brane angles furnishing a negative entropy, so as to get a
sense of how much of the parameter space could potentially be impacted by the swampland
constraints.25 This turns out to be

⋃

Bd = {λ1 < −1} ∪ {λ2 < −1} ∪ {λ1 +λ2 < 0} , (B.10)

regardless of the number of dimensions. The argument is similar to that of the main text. First,
we note that

S(i)h (d) =

p
πΓ
�

1− d
2

�

2Γ
�3

2 −
d
2

� −
1
2

B
�

sin2 θi; 1−
d
2

,
1
2

�

+
λi

d − 2
cscd−2 θi , (B.11)

25To be more specific, the complement of the union is the part of the parameter space in which we will never
get a negative horizon entropy and thus have no theories ruled out by the positivity requirement.
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where B is the incomplete beta function and we employ a dimensional regularization scheme26

to write a finite entropy. We then take the following extremal combinations of brane angles:

θ1→
π

2
, θ2→

π

2
=⇒ S(1)h (d) +S(2)h (d)∼

1
d − 2

(λ1 +λ2) , (B.12)

θ1→ 0 , θ2→
π

2
=⇒ S(1)h (d) +S(2)h (d)∼

(1+λ1)
d − 2

cscd−2 θ1 , (B.13)

θ1→
π

2
, θ2→ 0 =⇒ S(1)h (d) +S(2)h (d)∼

(1+λ2)
d − 2

cscd−2 θ1 . (B.14)

For these respective combinations of brane angles, requiring positive horizon entropy excludes
the region {λ1 < −1}, {λ2 < −1}, and {λ1 +λ2 < 0}, and so we at least have

⋃

Bd ⊂ {λ1 < −1} ∪ {λ2 < −1} ∪ {λ1 +λ2 < 0} . (B.15)

Now, we argue that any point outside of the set on the right-hand side cannot furnish negative
horizon entropy for any combination of angles. To do so, we write the general-d bounding
line in slope-intercept form:

λ2 = LB,d(λ1;θ1,θ2)≡ −
�

sinθ2

sinθ1

�d−2

λ1 − (d − 2) sind−2 θ2

∫ π−θ2

θ1

dµ

sind−1µ
. (B.16)

As the constraint for fixed (θ1,θ2) is linear, it is sufficient to show the following three state-
ments, which we had shown for d = 4 in the main text:

(i) Any bounding line must have negative slope;

(ii) any bounding line must intersect λ1 = 0 at some λ2 < 0; and,

(iii) any bounding line which intersects λ1+λ2 = 0 once does so in {λ1 < −1}∪ {λ2 < −1}.

(i) is immediately true; the slope read from (B.16) is always negative. (ii) is true because the
integral
∫

cscd−1µ is of a positive function over a positive interval (θ1 < π− θ2), and sinθ2 is
also positive.

(iii) is difficult to prove directly in general d, but we can prove it indirectly by using the
linearity of the bound for fixed (θ1,θ2) in conjunction with (i) and (ii). Denote the intersection
of a bounding line LB,d with λ1+λ2 = 0 by (λ∗1,λ∗2). Then, for any LB,d with a negative slope
and negative λ2-intercept, λ∗1 ∈ (−1, 0) implies that LB,d intersects λ1 = −1 at some λ2 > 1,
whereas λ∗1 ∈ (0,1) implies that LB,d intersects λ2 = −1 at some λ1 > 1.

So, we now show that the bounding line evaluated at λ1 = −1 must have a value below
1. This argument along with the symmetry of the problem under interchanging 1 ↔ 2 is
sufficient to also assert that bounding lines intersect λ2 = −1 only at λ1 < 1. Fixing θ2 = θ
and setting θ1 = π− θ −δ where δ ∈ (0,π− θ ), we evaluate

LB,d(−1;π− θ −δ,θ ) =
sind−2 θ

sind−2(θ +δ)
− (d − 2) sind−2 θ

∫ π−θ

π−θ−δ

dµ

sind−1µ
. (B.17)

At δ = 0, this evaluates to 1. Furthermore, its derivative is

∂ LB,d

∂ δ

�

�

�

�

λ1=−1
= −(d − 2)

sind−2 θ

sind−1(θ +δ)
[1+ cos(θ +δ)]< 0 . (B.18)

The punchline is that a bounding line LB,d cannot actually intersect λ1 = −1 at a point where
λ2 > 1. By essentially the same reasoning, this line cannot intersect λ2 = −1 at a point where

26The dimensional regulator cancels the even-d divergence of the beta function, allowing us to ignore it.
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λ1 > 1. Lastly, we note that λ∗1 ̸= 0 unless the bounding line is itself λ1 + λ2 = 0. Ergo,
λ∗1 /∈ (−1,1), and so (iii) is true.

With (i)–(iii) proven, we conclude that any excluded region Bd(θ1,θ2) is contained within
the union {λ1 < −1} ∪ {λ2 < −1} ∪ {λ1 + λ2 < 0}. Thus, (B.10) is true for any number of
spacetime dimensions.
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