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Abstract

One of the unique features of non-Hermitian (NH) systems is the appearance of NH de-
generacies known as exceptional points (EPs). The extensively studied defective EPs oc-
cur when the Hamiltonian becomes non-diagonalizable. Aside from this degeneracy, we
show that NH systems may host two further types of non-defective degeneracies, namely,
non-defective EPs and ordinary (Hermitian) nodal points. The non-defective EPs mani-
fest themselves by i) the diagonalizability of the NH Hamiltonian at these points and ii)
the non-diagonalizability of the Hamiltonian along certain intersections of these points,
resulting in instabilities in the Jordan decomposition when approaching the points from
certain directions. We demonstrate that certain discrete symmetries, namely parity-time,
parity-particle-hole, and pseudo-Hermitian symmetry, guarantee the occurrence of both
defective and non-defective EPs. We extend this list of symmetries by including the NH
time-reversal symmetry in two-band systems. Two-band and four-band models exem-
plify our findings. Through an example, we further reveal that ordinary nodal points
may coexist with defective EPs in NH models when the above symmetries are relaxed.
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1 Introduction

Despite violating the axioms of quantum mechanics, non-Hermitian (NH) Hamiltonians offer
compelling descriptions for numerous interacting/open systems in various fields of physics
[1–7]. The underlying physics of these effective Hamiltonians goes beyond the realm of Her-
mitian physics and has been immensely studied lately [8–23]. Aside from unraveling rich
physics, the properties of NH systems are well-reflected in abstract mathematical frameworks,
including homotopy theory [24–28] and K-theory [29–31]. These frameworks provide a reli-
able toolbox to understand the exotic properties of NH systems and distinguish their behavior
from Hermitian physics.

One notable distinction between NH Hamiltonians and their Hermitian counterparts is the
appearance of exceptional points (EPs) as NH degeneracies. While one generally should satisfy
n−1 complex constraints to realize EPs of order n (EPns), at which the Hamiltonian casts a Jor-
dan block, recent studies have shown that the presence of certain discrete symmetries, such as
parity-time (PT ), parity-particle-hole (CP), or pseudo-Hermiticity (psH) symmetry, reduces
the total number of constraints [32–43]. Although these studies mainly focused on character-
izing symmetry-induced restrictions on defective EPs, drawing a link between discrete symme-
tries and non-defective degeneracies associated with the NH Hamiltonian beyond case studies
has received little attention. Furthermore, while there is a near consensus on calling defective
degeneracies [44, 45] defective EPs, non-defective degeneracies in NH systems are referred
to as diabolic points [46–49], Fermi points [50], Dirac points and vertex points [51].1 These
non-defective degeneracies are different in nature. While both Dirac points and vertex points
might appear in the vicinity of defective EPs, diabolic points and Fermi points are similar to
(Hermitian) ordinary nodal points (ONPs).

Recalling their mathematical origin, EPs were introduced by Kato as isolated singularities
of systems depending on one complex variable [52], and they were recently classified into type
I EPs and type II EPs [2]. EPs of type I are degeneracies with or without algebraic singularities
reminiscent of defective EPs and ONPs. In contrast, type II EPs are defined as points in the
complex plane where the Jordan normal form is unstable, i.e., the eigenprojectors have a
pole. While the appearance and existence of degeneracies reminiscent of type I EPs have been
studied extensively, type II EPs have hitherto been overlooked in the literature.

In this work, we introduce a natural extension of type II EPs to higher dimensions, dubbed
non-defective EPs. We present that the correct criterion for detecting non-defective EPs is the
form of the Hamiltonian matrix in the vicinity of these degenerate points: Non-defective EPs
are surrounded by defective EPs in certain intersections such that the Hamiltonian matrix casts
a Jordan block along directions where defective EPs reside. Furthermore, we show that the
Jordan decomposition is singular at these points when approaching the points from certain

1An exception is considered in Ref. [51]where ‘hybrid points’ have also been introduced based on the asymptotic
dispersion relations close to defective degeneracies. Note that branch cuts do not terminate at hybrid points [50].
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Figure 1: Schematic illustration of three different degeneracies in non-Hermitian
systems. For each degeneracy, we list the required constraints for the occurrence of
degeneracies, an intuitive way to identify them, and an example of the dispersion
relation of such degeneracies in two-level systems. Here, n denotes the order of the
degeneracy.

directions, emphasizing that non-defective EPs indeed are reminiscent of the type II EPs in
Ref. [2]. To characterize the role of symmetries in witnessing NH degeneracies, we study the
coexistence of defective and non-defective EPns in two-, three- and four-band models in the
presence of psH, PT or CP symmetry. Additionally, we show that symmetry-protected non-
defective EP2s may also appear in models with non-Hermitian time-reversal symmetry. We
include a two- and four-band example to highlight our findings. Finally, we find that defective
EPs may coexist with ONPs instead of non-defective EPs when lifting symmetry constraints.
We illustrate this finding with a fine-tuned example. Our findings are summarized in Fig. 1.

2 Symmetry-stabilized (non-)defective EPs

A generic n-band Hamiltonian can be decomposed as

H = dµΥ
µ , (1)

where µ ∈ {0, · · · , n2 − 1}, dµ are continuously differentiable complex-valued functions of
the lattice momentum k, Υ 0 denotes the identity matrix of order n and Υ is the basis of the
SU(n) group, which consists of three Pauli matrices when n = 2, eight Gell-Mann matrices
when n = 3, and fifteen generalized Gell-Mann matrices when n = 4, see Appendix A. The
Hamiltonian H displays PT symmetry with generator PT , CP symmetry with generator CP ,
or psH with generator ς, if it satisfies one of the following relations, namely,

PT : H(k) = (PT )H∗(k)(PT )−1 , (2)

CP : H(k) = −(CP)H∗(k)(CP)−1 , (3)

psH : H(k) = ςH†(k)ς−1 . (4)

These symmetry considerations reduce the number of non-zero dµ values. To be precise, for
each basis matrix Υµ, only either the real or imaginary part of dµ remains non-zero. This
means only one real-valued function dµ survives for each dimension of Υµ [42]. Trivial band
touching points occur when the traceless part of H becomes a Null matrix ([0]n×n), i.e., all of
the non-zero dµ values for µ > 0 must vanish, which means that one needs to satisfy n2 − 1
real constraints. For n = 2,3, 4, we have collected these dµ’s for each symmetry operation
alongside a choice for its generator in Tables 1, 2, and 3, respectively.

3

https://scipost.org
https://scipost.org/SciPostPhys.15.5.200


SciPost Phys. 15, 200 (2023)

It was shown in Ref. [42] that the n − 1 complex constraints to find defective EPns can
be expressed in terms of the traces and the determinant of H, which for two-, three-, and
four-band models, respectively, read

n= 2 : η2b = tr[H]2 − 4 det[H] , (5)

n= 3 :

¨

η3b = 1
2

�

tr[H]2 − 3 tr[H2]
�

,

ν3b = 1
2

�

54 det[H]− 5 tr[H]3 + 9 tr[H] tr[H2]
�

,
(6)

n= 4 :











η4b = −3ac + b2 + 12d ,

ν4b = 27a2d − 9abc + 2b3 − 72bd + 27c2 ,

κ4b = a3 − 4ab+ 8c ,

(7)

where

a = tr[H] , (8)

b =
(tr[H])2 − tr[H2]

2
, (9)

c =
tr[H]3 − 3 tr[H] tr[H2] + 2 tr[H3]

6
, (10)

d = det[H] . (11)

We refer to Appendix B for details on how to derive these expressions.
In the presence of PT , CP , or psH symmetry, some of these constraints are automatically

satisfied, leaving us with exactly n−1 real constraints, cf. Tables 1, 2 and 3 [42]. It is notable
that at trivial solutions (d = 0), all traces and the determinant of H acquire zero values, and
subsequently, the constraints in Eqs. (5)-(7) are also satisfied. The trivial solutions mark non-
defective EPns with the binding signature that H is diagonalizable at these points.2 Perturbing
the system away from these non-defective points along intersections at which the constraints
vanish brings the Hamiltonian into a non-diagonalizable structure. We set this behavior as a
criterion to detect non-defective EPs. We note that this is opposed to the situation in which
trivial solutions are isolated, and thus, band touching points behave similarly to Hermitian
degeneracies, i.e., ONPs.

In summary, we thus notice that NH systems may exhibit three different eigenvalue degen-
eracies, schematically depicted in Fig. 1. Formally, the different degeneracies are defined as
follows:

• Defective EPs: Eigenvalue degeneracies appearing for non-zero d at which also eigen-
vectors coalesce, making the Hamiltonian cast a Jordan block form.

• ONPs: Eigenvalue degeneracies appearing for trivial d = 0, which are isolated from
defective EPs. The Hamiltonian is diagonalizable at ONPs and remains diagonalizable
in any infinitesimally small but finite neighborhood around the region d= 0.

• Non-Defective EPs: Eigenvalue degeneracies appearing for trivial d = 0 located in the
direct vicinity of defective EPs, usually comprising intersections of defective EPs. The
Hamiltonian is diagonalizable at non-defective EPs but casts a Jordan block in certain
directions away from, yet arbitrarily close to, the non-defective EPs. Consequently, when
approaching the non-defective EP along any non-diagonalizable direction, the Jordan
decomposition becomes singular.

2We note that in the absence of PT , CP , or psH symmetry, trivial solutions describe one of the non-defective
degeneracies, i.e., non-defective EPns, or ordinary nodal points.
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Table 1: Summarized symmetries, their generators, and their associated constraints
to find defective and non-defective EP2s in two-band systems.

Symm. Generator Constr. def. EP2s Constr. non-def. EP2s

PT 1 η2b
R = 0 dxR = dy I = dzR = 0

CP 1 η2b
R = 0 dx I = dyR = dzI = 0

psH adiag[1,1] η2b
R = 0 dxR = dy I = dzI = 0

TRS† adiag[1,−1] η2b
R = η

2b
I = 0 dxa = dya = dza = 0

Here we use either d j = d jR + id j I or d j = d js + d ja, where d js(d ja) is (anti-)symmetric with
respect to k→−k. η2b is given in Eq. (5) with η2b = η2b

R + iη2b
I .

Table 2: Summarized symmetries, their generators, and their associated constraints
to find defective and non-defective EP3s in three-band systems.

Symm. Generator Constr. def. EP3s Constr. non-def. EP3s

PT diag[1,−1,1] η3b
R = ν

3b
R = 0

d1R = d2I = d3R = d4I = 0
d5R = d6I = d7R = d8R = 0

CP diag[1,−1,1] η3b
R = ν

3b
I = 0

d1I = d2R = d3I = d4R = 0
d5I = d6R = d7I = d8I = 0

psH diag[1,−1,1] η3b
R = ν

3b
R = 0

d1I = d2R = d3I = d4I = 0
d5R = d6I = d7R = d8R = 0

Here we use d j = d jR + id j I . Complex valued η3b and ν3b constraints are given in Eq. (6)
with α3b = α3b

R + iα3b
I for α ∈ {η,ν}.

The diagonalizability of the Hamiltonian at non-defective EPs enables us to map our NH
Hamiltonians into their Hermitian counterparts with nodal points. In addition, having n2 − 1
non-zero dµ’s as in Hermitian systems enforces non-defective EPs to always appear in pairs
in the Brillouin zone. This statement originates from the Poincaré-Hopf theorem [53], as the
number of non-zero dµ functions equals the dimension of the vector space (n2 − 1), cf. last
columns in Tables 1, 2, and 3.3 Consequently, these non-defective EPs are topological in the
same sense as, e.g., Weyl points in Hermitian systems, and can be classified by Chern numbers.

Aside from PT , CP , and psH symmetries, a particular non-Hermitian time-reversal sym-
metry, known as TRS†, in two-band systems may also give rise to realizing non-defective
EPs. To evidently see this behavior, we recall that respecting TRS† symmetry imposes
H(−k) = C+HT(k)C†

+ [31]. This non-(momentum)-local transformation does not reduce the
number of non-vanishing (real/imaginary) parts of dµ. However, when C+C∗+ = −1, e.g.,
C+ = iσy , it enforces all symmetric parts of dµ to become zero. We further know that at the
time-reversal invariant momenta (TRIM), functions that are anti-symmetric with respect to
k vanish. Therefore, at kTRIM, both real and imaginary parts of anti-symmetric dµ functions
become zero, which gives rise to the observation of non-defective EPs in the spectra of the
two-band TRS†-symmetric Hamiltonian H in 3D, cf. Table 1. The non-defective EPs protected
by TRS† are also topological in the sense that there exist non-trivial loops around them. Yet,
they are different from those arising in, e.g., PT -symmetric systems, as the TRIM are fixed
points. Hence, non-defective EPs are stationary in momentum space, and a non-defective EP
cannot be annihilated by merging together with a non-defective EP of opposite topological
charge. This means that there does not exist a unified notion of topological invariants for
non-defective EPs, but the classification depends on the present symmetry.

3This can also be deduced from the Nielsen-Ninomiya Theorem. See also Ref. [50].
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Table 3: Summarized symmetries, their generators, and their associated constraints
to find defective and non-defective EP4s in four-band systems.

Symm. Generator Constr. def. EP4s Constr. non-def. EP4s

PT diag[1,−1,1,−1] η4b
R = ν

4b
R = κ

4b
R = 0

d1R = d2I = d3R = d4R = 0
d5I = d6R = d7I = d8R = 0

d9I = d10I = d11R = d12I = 0
d13R = d14R = d15R = 0

CP diag[1,−1,1,−1] η4b
R = ν

4b
R = κ

4b
I = 0

d1I = d2R = d3I = d4I = 0
d5R = d6I = d7R = d8I = 0

d9R = d10R = d11I = d12R = 0
d13I = d14I = d15I = 0

psH diag[1,−1,1,−1] η4b
R = ν

4b
R = κ

4b
R = 0

d1I = d2R = d3I = d4I = 0
d5R = d6I = d7I = d8R = 0

d9I = d10I = d11R = d12I = 0
d13R = d14R = d15R = 0

Here we use d j = d jR+ id j I . Complex valued η4b, ν4b and κ4b constraints are given in Eq. (7)
with α4b = α4b

R + iα4b
I for α ∈ {η,ν,κ}.

Before moving on to examples, we note that the different number of constraints that need
to be satisfied to find symmetry-protected defective and non-defective EPns also result in a
different codimension of these EPs. Here, the codimension is given by the difference between
the total dimension of the system and the dimension of the exceptional feature. Equivalently,
the codimension corresponds precisely to the number of non-vanishing constraints. In particu-
lar, while the presence of PT , CP and psH symmetries reduces the number of real constraints
for finding defective EPns to n − 1, the number of real constraints to detect non-defective
EPns is n2 − 1. As a consequence, in the case of n = 2, defective EP2s have codimension one,
whereas non-defective EP2s have codimension three. Therefore, the latter appear as points in
three-dimensional systems, whereas defective EP2s appear as two-dimensional surfaces. For
the TRS† invariant two-band model, the codimension of defective EP2s is two, and hence the
defective EP2s are curves connected at the TRIMs.

Examples for the coexistence of defective and non-defective EPs.

We start with introducing a two-band PT -symmetric Weyl-like tight-binding model described
by

H2b
PT = d0Υ

0 + dxRΥ
1 + idy IΥ

2 + dzRΥ
3

= 2λ0 sin (kx)Υ
0 + 2t sin (kx)Υ

1 + 2t sin
�

ky

�

Υ 3

+ i
�

2t cos (kz) + 2V
�

2− cos (kx)− cos
�

ky

��	

Υ 2 . (12)

Here λ0, t and V are real-valued parameters. The real and imaginary parts of the band struc-
ture are shown in Figs. 2(a) and (b), respectively. Non-defective EPs appear when all com-
ponents of the Hamiltonian, except d0, vanish. More specifically, these degeneracies emerge
when the solutions of dxR = 0 (at kx = nπ with n ∈ Z), dy I = 0 (orange curves in Fig. 2(c)),
and dzR = 0 (grey line) intersect. Red points at k = (0, 0,±π/2) in Fig. 2(c) exemplify such
solutions. Note that the criterion for detecting non-defective EPs is satisfied for the red points
in Fig. 2(c) as they are surrounded by defective EPs (dashed blue curves), residing on η2b

R = 0,
where η2b

R is the real part of η2b in Eq. (5).
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-5

0

5

(a) (b) η2b
R = 0

dyI = 0dzR = 0

(c)

Figure 2: Real (a) and imaginary (b) parts of spectra for Eq. (12) along kx = ky
with kz = π/2. Red points indicate non-defective EPs. Panel (c) displays solutions
of dy I = 0 (orange), dzR = 0 (gray), and η2b

R = 0 (dashed blue) at kx = 0, which is a
solution to dxR = 0. Red points at k= (0,0,±π/2) indicate the intersection between
solutions to η2b

R = dy I = dzR = 0, and are non-defective EPs. Here we set t = V = 1,
and λ0 = 0.

Let us now investigate how the dispersion and eigenvectors of H2b
PT behave at the non-

defective EP. Around k= (0,0,π/2) := kNDEP, the corresponding eigensystem reads,

ε
2b,±
PT = 2

�

λ0k̃x ±
r

t2
�

k̃2
x + k̃2

y − k̃2
z

�

�

, (13)

ψ
2b,±
PT =





t k̃y±
r

t2
�

k̃2
x+k̃2

y−k̃2
z

�

k̃x+k̃z

1



 , (14)

where we set k̃= k−kNDEP. First, we note that the dispersion is linear in momentum, evident
in Fig. 3. We further note the special behavior in the directions of the defective EPs, indicated
by flat lines along k̃x = ±k̃z in Fig. 3(c). This differs significantly from the dispersion behavior
around defective EPs, which is always fractional in momentum in two-band models. Second,
we interestingly observe that the coalescence of the eigenvectors depends on which direction
we approach the non-defective EP. Approaching the non-defective EP along the defective EPs,

Figure 3: Real (a) and imaginary (b) part of band structure for H2b
PT in Eq. (12)

at ky = 0 along kx and kz . Red points indicate non-defective EPs at k = (0,0,±k0).
Panel (c) displays the linear dependence on the momentum of the absolute value of
the eigenvalues at the non-defective EP k= (0, 0,π/2) in different cuts of momentum
space. We notice flat directions along the defective EP. To contrast this, panel (d)
shows the fractional behavior of the absolute value of the eigenvalues around the
defective EP at k = (π/2, 0,π/2) in the same cuts. Here we set t = V = 1, and
λ0 = 0.
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defined by d2
xR + d2

zR = d2
y I , yields,

lim
k̃x→0

lim
k̃y→

q

k̃2
z−k̃2

x

ψ
2b,±
PT =

 q

k̃2
z

k̃z

1

!

. (15)

When finally going to the non-defective EP, corresponding to further take the limit k̃z → 0, we
can conclude that the eigenvectors seem to coalesce at the non-defective EP. Thus, when ap-
proached along the defective EPs, the origin of momentum space seems to comprise a defective
point. If we instead approach the non-defective EP as, e.g.,

lim
k̃y→0

lim
k̃z→0

ψ
2b,±
PT =

 

±
q

−t2 k̃2
x

t k̃x

1

!

, (16)

we obtain two linearly independent eigenvectors even when taking the final limit k̃x → 0.
This behavior is also reflected in the Jordan decomposition of H2b

PT on the exceptional surface
around kNDEP given by H2b

PT = SJS−1 with

S =

 
q

k̃2
z−k̃2

x

k̃x+k̃z

1
2t(k̃x+k̃z)

1 0

!

, (17)

J =

�

2λ0k̃x 1
0 2λ0k̃x

�

. (18)

The second column in the transformation matrix (S) exhibits a singularity when k̃x = −k̃z ,
along the defective EPs. Since there is a rotational symmetry on the exceptional surface, we
can perform a coordinate change to move away from this singularity as long as k̃x and k̃z are
non-zero. Thus, apart from k̃x = k̃z = 0, this amounts to a coordinate singularity. Exactly at
the non-defective EP, however, there is a true singularity. Hence, the Jordan decomposition is
unstable at the non-defective EPs.

As a comparison, we note that the band disperses like the square root of the momentum
components around defective EPs, displayed in Fig. 3(d). Furthermore, the eigenvector coales-
cence at these points is not dependent on the direction from which the point is approached. In
this sense, eigenvector coalescence is not a local system property in momentum space. Similar
conclusions were recently made in Ref. [54].

We further note that the defective EPs separate two regions in the real part of the spectrum,
where Re[∆ε] = 0 and Re[∆ε] ̸= 0 with ∆ε being the difference between the two energy
bands as shown in Fig. 2(a). Regions where Re[∆ε] = 0 are sometimes referred to as NH
bulk real-Fermi states, which merely appear in NH systems [8]. In Appendix C, we show that
besides these bulk Fermi states, this model also hosts states on the boundary. Therefore, there
is a coexistence between defective and non-defective EPs as well as between bulk Fermi states
and boundary states.

Let us now turn to a four-band model. We consider a Dirac-like psH-symmetric model
described by

H4b
psH =

�

t
�

cos (kx) + cos
�

ky

�

− 2
�

+ tz [cos (kz)− cos (k0)]
	

�

2
p

3
Υ 14 +

√

√2
3
Υ 15

�

+ iλI x y sin
�

ky

�

(Υ 3 + Υ 4) + iλI x x sin (kx)(Υ
9 + Υ 10)

+ im′I sin (kz)
�

cos (kx)− cos
�

ky

�� �

Υ 7 − Υ 12
�

, (19)
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Figure 4: Real (a) and imaginary (b) part of band structure for H4b
psH in Eq. (19)

along kx = ky and kz . Note that along this particular cut, both bands are doubly
degenerate. Red points indicate non-defective EPs at k = (0, 0,±k0). Also here,
it is clear that the absolute value of the eigenvalues depend linearly on the mo-
mentum components close to the non-defective EP at k = (0,0, k0) [panel (c)],
while a fractional behavior is observed around defective EPs, exemplified around
k=

�

π/2,π/2, arccos
�

2−
p

2
��

in panel (d). Here we set t = tz = λI x x = λI x y = 1,
m′I = −0.27 and k0 = π/2.

where t, tz , λI x y , λI x x , and m
′

I are real-valued parameters. This model is a pseudo-Hermitian
generalization of the tight-binding model studied in Ref. [55]. The trivial band touching
points for obtaining the null form of the traceless part of H4b

psH in Eq. (19) are located at
k = kpsH = (0, 0,±k0). Right at these points and on lines connecting these points, constraints
for realizing EP4s, summarized in Table 3 and given in Eq. (7), are also satisfied. Hence,
points at k= kpsH in our psH-symmetric model are non-defective EP4s. We present these nodal
points (red spheres) in the band structure of H4b

psH in Fig. 4. The real part of the spectra (a)
shows that two arc-shaped surfaces with (non)zero real (imaginary) parts are terminated by
the non-defective EPs as well as the defective exceptional lines. These surfaces are the afore-
mentioned NH bulk real-Fermi surfaces. While our model hosts bulk Fermi surfaces, boundary
states are unstable, similar to their Hermitian counterparts [55].

Similar to the case of the two-band model, we investigate the behavior of the dispersion
and eigenvector coalescence near the non-defective EP. LinearizingH4b

psH around k= kpsH yields
the following eigensystem,

ε±psH = ±
r

t2
z k̃2

z −λ2
x x k̃2

x −λ2
x y k̃2

y , (20)

ψ
1,±
psH =











i
�

−tz k̃z∓
Ç

t2
z k̃2

z−λ2
x x k̃2

x−λ2
x y k̃2

y

�

λx x k̃x+iλx y k̃y

0
0
1











, (21)

ψ
2,±
psH =











0
i
�

−tz k̃z∓
Ç

t2
z k̃2

z−λ2
x x k̃2

x−λ2
x y k̃2

y

�

λx x k̃x+iλx y k̃y

1
0











, (22)

where k̃ = k − kpsH and we note that in this linearized regime, the eigenvalues are doubly
degenerate. The dispersion is again linear in the momentum components, as displayed for the
respective absolute values in Fig. 4(c). To contrast this, Fig. 4(d) shows the dispersion around
a defective EP, which is of the square-root type. Approaching the origin along the defective
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EPs defined by t2
z k̃2

z −λ
2
x x k̃2

x −λ
2
x y k̃2

y , the eigenvectors become

lim
tz k̃z→

q

λ2
x x k̃2

x

lim
k̃y→0

ψ
1,±
psH =











− i
q

λ2
x x k̃2

x

λx x k̃x

0
0
1











, (23)

lim
tz k̃z→

q

λ2
x x k̃2

x

lim
k̃y→0

ψ
2,±
psH =











0

− i
q

λ2
x x k̃2

x

λx x k̃x

1
0











, (24)

making it clear that we only have two linearly independent eigenvectors when approaching
the non-defective EP and that the point looks as if it is defective also when k̃x → 0. Yet again,
when approaching the origin from another direction, e.g.,

lim
k̃y→0

lim
k̃z→0

ψ
1,±
psH =







±sign(k̃x)
0
0
1






, (25)

lim
k̃y→0

lim
k̃z→0

ψ
2,±
psH =







0
±sign(k̃x)

1
0






, (26)

none of the eigenvectors coalesce when k̃x → 0. Just as in the previous case, this is reflected
in the corresponding Jordan decomposition, which along the defective EPs reads

S4b
psH =















−
i
Ç

λ2
x x k̃2

x+λ2
x y k̃2

y

λx x k̃x+iλx y k̃y
− i
λx x k̃x+iλx y k̃y

0 0

0 0 −
Ç

λ2
x x k̃2

x+λ2
x y k̃2

y

λx x k̃x+iλx y k̃y
− i
λx x k̃x+iλx y k̃y

0 0 1 0
1 0 0 0















, (27)

J4b
psH =







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0






. (28)

The matrix S4b
psH has a singularity at the origin, corresponding exactly to the non-defective EP.

Thus, the Jordan decomposition exhibits an instability exactly at the non-defective EP.

3 Searching for the coexistence of ONPs and defective EPs

So far, we have explored how the presence of one of the PT , CP or psH symmetries leads to
the general coexistence of defective and non-defective EPs. Now, we instead address whether
ONPs may also exist in NH spectra. For this purpose, we lift (discrete) symmetry restrictions
such that some (or all) dµ’s have real and imaginary parts. We emphasize that in this situation,
in contrast to the EPs in the previous sections, non-defective band degeneracies are generally
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Figure 5: Real (a) and imaginary (b) part of band structure forH2b
ONP in Eq. (29) along

kz = π. (c) Solutions of the real (blue spheres) and imaginary (green manifold) parts
of η2b in Eq. (5). Red closed lines in (c) present the intersection of these manifolds
and correspond to defective EPs. Black points in panels (a) and (b) indicate ONPs.
For visibility purposes, merely a corner of the Brillouin zone is shown in panels (a)
and (b). Panel (d) displays that the absolute values of the eigenvalues depend linearly
on the momentum components close to the ONP located at the origin.

unstable to small perturbations.4 This is because solving d = 0 generally requires satisfying
n2−1 complex constraints. Consequently, the appearance of ONPs in NH models is vulnerable
to the fine-tuning of parameters, and therefore, these systems may not exhibit experimental
signatures different from those in generic NH systems. Nevertheless, we show in the following
that this setting provides a platform to observe ONPs.

To illustrate our idea, we introduce a two-band model given by

H2b
ONP = sin(kx)

�

1/2+ i cos(ky)
�

Υ 1

+ sin(ky) [1/2+ i cos(kz)]Υ
2

+ sin(kz) [1/2+ i cos(kx)]Υ
3 . (29)

Fig. 5 exhibits the real (a) and imaginary (b) part of the energy dispersion of this system along
kz = π. The black points in these panels mark real and imaginary band touching points located
at kONP

x ,y,z = ±nπ. Even though at these momenta the traceless part of H2b
ONP becomes a null

matrix, we emphasize that k = kONP indicates the location of ONPs and not non-defective
EPs. The reason for this statement lies in the fact that the criterion for the emergence of
non-defective EPs is not satisfied, i.e., no defective EPs reside close to kONP. This can be seen
from Fig. 5(c) in which we present defective EPs, red curves, as the intersection between
Re[η2b] = 0, blue spheres, and Im[η2b] = 0, green manifold. Fig. 5(c) reveals that defective
EPs do not cross k = kONP and thus the black points at kONP indeed correspond to ONPs.
Consequently, H2b

ONP is diagonalizable at k= kONP and in any small neighborhood surrounding
the point; see Fig. 5(d) for a momentum expansion of eigenvalues, with k̃ = k, around the
origin.

Aside from these ONPs in the momentum space, introducing models that host boundary
states connecting ONPs in NH systems is theoretically feasible. We present an example of such
a model in Appendix D.

4More precisely, twofold degeneracies are protected by composite symmetries consisting of multiple symmetry
operations [56]. Respecting all these symmetry operations might be easily violated upon introducing perturbations.
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4 Footprints of non-Hermitian degeneracies in experiments and
their plausible physical implications

PT -symmetric models have been extensively realized in various experimental setups, includ-
ing superconducting quantum processors [57], optics [58, 59], photonics [60–62], acous-
tics [63], electronic circuits [64, 65] and flying atoms [59]. While all of these experiments
report observing footprints of PT (un)broken phases in their measurements, experimental
constraints, e.g., limited ranges of parameters, restrict the measurements to be performed
close to one EP and usually away from the non-defective EPs.5 For this reason, most of the
above-mentioned experiments do not confirm the distinct behavior of different types of EPs in
their observations.

The quantum setup reported in Ref. [59] is one of the exceptions, where the accessible pa-
rameter space allows for the appearance of the EP pairs. The two-channel model is obtained
from the density matrix formalism upon imposing approximations on different parameters.
Aside from the model, the authors of Ref. [59] also reported the measured transmission spec-
tra and compared those with their theoretical model. Looking at the transmission spectra in
Hermitian and NH systems (see Figs. 2 and 3 in Ref. [59]), we recognize distinct features. They
report a two-peak (single-peak) structure of the transmission spectra in the PT (un)broken
phases. The peaks in the unbroken phase are zero-centered, resembling the zero slope of
the intersection connecting non-defective EPs to defective EPs. In contrast, in the (effective)
Hermitian model, transmission spectra for each channel exhibit single peaks keeping opposite
distances from zero. This reflects the linear dispersion around regular degeneracies. In the
PT -broken phase, a two-peak structure with non-zero centers of the maxima for the transmis-
sion spectra is reported. These observations demonstrate how different types of non-Hermitian
degeneracies can give rise to distinct features in different observables.

The microwave experiments with metallic mesh 3D photonic crystals have also realized
PT -symmetric models [66] with chains of nodal lines. Exceptional chains have recently been
observed in mechanical systems [67], where the intersection of these EP lines represents non-
defective EPs. Sometimes, these non-defective degeneracies are protected by additional mirror
symmetries; see Refs. [68,69] for details.

In addition to the setups mentioned above, numerous studies on heterostructures report
the occurrence of EPs in these systems [6, 70–72]. However, to the best of our knowledge,
no record of non-defective degeneracies is reported. Nevertheless, further engineering of the
structure of these systems to maintain the symmetries discussed here may allow for the emer-
gence of non-defective degeneracies and the experimental realization of our findings in these
setups.

Aside from realizing NH degeneracies, the occurrence of these degeneracies in the spec-
trum may give rise to exotic responses. The NH anomalous currents observed in odd spatial
dimensions exemplify these interesting responses. It has been shown that NH (non)interacting
systems with ONPs, when coupled to gauge fields, e.g., electromagnetic fields, exhibit anoma-
lous currents different from their Hermitian analog [5, 73, 74]. For instance, the NH chiral
magnetic effect, in contrast to its Hermitian counterpart, may find room to emerge in equilib-
rium in PT -symmetric systems [73].

5Note that in these systems, EPs emerge in pairs; see Sec. 2 for more details.
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5 Conclusion

Despite the intense focus on NH systems in recent studies, the possibility of realizing different
types of EPs has hitherto been overlooked. The present work shows that two different types
of EPs, dubbed defective and non-defective EPs, may coexist in various setups of physical
importance. We show that non-defective EPs are stabilized by certain symmetries, including
PT , CP , psH, and time-reversal symmetry. To resolve the confusion in the current literature,
where non-defective EPs are mixed up with ONPs, we have in this work introduced a clear
criterion to distinguish these concepts. We also highlight this difference in example models.

Our systems, especially PT -symmetric models, are experimentally feasible as they can be
implemented in experimental optical setups with balanced gain and loss [75]. As exploring
the role of EPs in PT -symmetric optical systems has already unraveled many interesting phe-
nomena [60, 76–79], we expect that finding possibilities to detect ONPs and (non-)defective
EPs may also pave the way to advance applications of Hermitian and NH topological properties
in various fields of research.
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A Bases matrices for two-, three-, and four-band systems

Basis matrices for two-band systems

The basis matrices for two-band systems are Pauli matrices, which read

Υ 1 =

�

0 1
1 0

�

, Υ 2 =

�

0 −i
i 0

�

, Υ 3 =

�

1 0
0 −1

�

. (A.1)

Basis matrices for three-band systems

The basis matrices for three-band systems are the Gell-Mann matrices that span the Lie algebra
of the SU(3) group,

Υ 1 =





0 −i 0
i 0 0
0 0 0



 , Υ 2 =





0 0 −i
0 0 0
i 0 0



 , (A.2)

Υ 3 =





0 0 0
0 0 −i
0 i 0



 , Υ 4 =





0 1 0
1 0 0
0 0 0



 , (A.3)

Υ 5 =





0 0 1
0 0 0
1 0 0



 , Υ 6 =





0 0 0
0 0 1
0 1 0



 , (A.4)

Υ 7 =





1 0 0
0 −1 0
0 0 0



 , Υ 8 =





1p
3

0 0

0 1p
3

0

0 0 − 2p
3



 . (A.5)
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Basis matrices for four-band systems

The basis matrices for four-band systems are the generalized Gell-Mann matrices that span the
Lie algebra of the SU(4) group,

Υ 1 =







0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0






, Υ 2 =







0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0






, (A.6)

Υ 3 =







0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0






, Υ 4 =







0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0






, (A.7)

Υ 5 =







0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0






, Υ 6 =







0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0






, (A.8)

Υ 7 =







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0






, Υ 8 =







0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0






, (A.9)

Υ 9 =







0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0






, Υ 10 =







0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0






, (A.10)

Υ 11 =







0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0






, Υ 12 =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






, (A.11)

Υ 13 =







1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0






, Υ 14 =









1p
3

0 0 0

0 1p
3

0 0

0 0 − 2p
3

0
0 0 0 0









, (A.12)

Υ 15 =











1p
6

0 0 0

0 1p
6

0 0

0 0 1p
6

0

0 0 0 −
q

3
2











. (A.13)

B Derivation of constraints to find EPns

Here we briefly summarize how to derive Eqs. (5, 6, 7) in the main text, where these constraints
were originally derived in Ref. [42]. There, it was shown that the characteristic polynomial
of an n-band NH matrix can be expressed in terms of its determinant and traces. Indeed, for
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(a) (b)

Figure 6: Real (a) and imaginary (b) part of spectra for Eq. (12) with open boundary
condition in the y direction and kx = 0. Red lines present boundary states. Here we
set t = V = λ0 = 1.0.

two-, three- and four-band matrices, these polynomials read

F2b(λ) = λ2 − tr[H]λ+ det[H] = 0 , (B.1)

F3b(λ) = λ3 − tr[H]λ2 +
tr[H]2 − tr[H2]

2
λ− det[H] = 0 , (B.2)

F4b(λ) = λ4 − aλ3 + bλ2 − cλ+ d = 0 , (B.3)

where

a = tr[H] , b =
tr[H]2 − tr[H2]

2
, d = det[H] , (B.4)

c =
tr[H]3 − 3 tr[H] tr[H2] + 2 tr[H3]

6
, (B.5)

and λ are the eigenvalues of H.
To find degeneracies, the discriminant D[H] of these characteristic polynomials should be

set to zero. The discriminants read

D[H2b] = tr[H]2 − 4 det[H] , (B.6)

D[H3b] = −
1
27
[4(η3b)3 + (ν3b)2] , (B.7)

D[H4b] =
1

27
[4(η4b)3 − (ν4b)2] , (B.8)

where η3b and ν3b, and η4b and ν4b are given in Eqs. (6) and (7) in the main text, respectively.
From here, we immediately see that setting the discriminants in Eqs. (B.6) and (B.7) to zero
gives us the constraints in Eqs. (6) and (7) in the main text, respectively. In the case of the
four-band model, we note that for all roots of the discriminant to coincide, not only η4b = 0
and ν4b = 0 need to be satisfied but also κ4b = 0, where κ4b is defined in Eq. (7) in the main
text. We refer to Ref. [42] for a more detailed discussion on this point.

C Spectra of the two-band model with open boundary condition

In addition to the properties of momentum-dependent spectra for H2b
PT in Fig. 2, we present

the real (a) and imaginary (b) part of the energy dispersion with open boundary condition in
the y direction plotted in Fig. 6. The figure exhibits boundary states, red lines, well-separated
from the bulk states (blue lines) when |kz|> π/2.
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(a) (b)

Figure 7: Real (a) and imaginary (b) part of spectra for Eq. (D.1) with open boundary
condition in the y direction and at kz = 0. Red lines present boundary states. Black
points mark ONPs. Here we set t = V = 1.0,λ0 = 2.3.

D Realizing Hermitian boundary states in non-Hermitian systems

Here, we present a non-Hermitian tight-binding model hosting Hermitian boundary states,
which connects ONPs with zero imaginary parts.

Our two-band model Hamiltonian reads

H2b
edg = λ0 cos(kx)Υ

0 − iV [1− cos(kz)]Υ
1

+
�

2V cos(ky)− 2t cos(kx)
�

Υ 1

− 2t sin(ky)Υ
2 − 2t sin(kz)Υ

3, (D.1)

where λ0, t and V are real-valued coupling constants. Along kz = 0, the above Hamilto-
nian is fully Hermitian. As a result, nodal points, which live on the (kx , ky) plane, are band-
touching points with zero imaginary parts. For instance, these ordinary nodal points appear
at kONPs = (±nπ,±nπ, 0) with n ∈ Z when t = V . Considering the open boundary condition
along the y axis and at kz = 0 results in mid-gap boundary states, red lines in Fig. 7(a), which
connects kONPs.
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