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Abstract

A study of the Bell-CHSH inequality in gauge field theories is presented. By using the
Kugo-Ojima analysis of the BRST charge cohomology in Fock space, the Bell-CHSH in-
equality is formulated in a manifestly BRST invariant way. The examples of the free
four-dimensional Maxwell theory and the Abelian Higgs model are scrutinized. The in-
equality is probed by using BRST invariant squeezed states, allowing for large Bell-CHSH
inequality violations, close to Tsirelson’s bound. An illustrative comparison with the en-
tangled state of two 1/2 spin particles in Quantum Mechanics is provided.
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1 Introduction

The Bell-Clauser-Horne-Shimony-Holt inequality [1–3] is a cornerstone of Quantum Mechan-
ics. Its violation signals the existence of strong correlations between the components of a com-
posite system which cannot be accounted for by local realistic theories. This inequality plays
a pivotal role in many aspects of modern Quantum Mechanics such as quantum computation,
teleportation and quantum cryptography. In its traditional form, the Bell-CHSH combination
reads [1–3]

〈ψ|CCHSH |ψ〉= 〈ψ|(A1 + A2)B1 + (A1 − A2)B2|ψ〉 , (1)

where |ψ〉 is the quantum state of the system and (Ai , Bk), with i, k = 1, 2, are four bounded
Hermitian operators fulfilling the strong requirements [4,5]

A2
i = 1 , B2

k = 1 , [Ai , Bk] = 0 . (2)

One speaks of a Bell-CHSH inequality violation whenever

|〈ψ|CCHSH |ψ〉|> 2 . (3)

The value 2
p

2 is the maximum allowed violation, being known as Tsirelson’s bound [4]. In
the last decades, the experimental evidences of Bell-CHSH inequality violations have reached
a very high degree of sophistication, as one can see in Refs. [6–13], confirming the predictions
of Quantum Mechanics. Generalizations of the inequality when the involved operators do not
necessarily have ±1 eigenvalues can be found in [14].

Since the end of the eighties, the Bell-CHSH inequality has been investigated also from
the relativistic Quantum Field Theory (QFT) point of view [15–19]. In particular, in the pi-
oneering articles [15–19], the authors have been able to show that even free quantum field
theories might lead to strong violations of the Bell-CHSH inequality. It should be pointed out
that, although this subject is still barely addressed in the literature when we compare it with
the developments made in the context of Quantum Mechanics, it has been receiving some
contributions recently, cf. Refs. [20–22].

It is worth underlining that, besides the pure theoretical aspects, Bell-CHSH inequality vio-
lations are receiving a recent attention from both phenomenological and experimental sides. In
fact, many experimental tests in the high-energy context were proposed recently, for instance,
in systems with top-quarks [23–27], Λ baryons [28], τ leptons and photons [29]. There are
also proposals for testing experimentally the Bell-CHSH inequality in e+e− collisions [30], neu-
tral meson physics [31], neutrino oscillations [32], charmonium [33,34] and positronium [35]
decays, and in the Higgs boson decay into W bosons [36–38], see also [39–41]. Therefore,
there is a huge interest in investigating the Bell-CHSH inequality in the Particle Physics context,
allowing us to discuss this subject at very high energy scales. Thus, this offers us the possi-
bility of investigating entanglement in a regime never explored before, where the appropriate
physical framework is deeply in the realm of QFT.

The aim of the present work is to pursue the study of the Bell-CHSH inequality in relativistic
Quantum Field Theory. More precisely, we shall focus on the analysis of gauge field theories
within the framework of BRST quantization which, as shown by Kugo-Ojima [42–45], provides
a powerful tool in order to identify the invariant subspace corresponding to the positive norm
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physical states. The whole construction relies on the analysis of the BRST charge cohomology
in Fock space [46].

The main result of the current investigation is the formulation of the Bell-CHSH inequal-
ity in a BRST invariant way, a feature which can be considered as a basic requirement for a
consistent formulation of the Bell-CHSH inequality in gauge theories. This statement can be
formalized through the following steps:

• A characterization of the BRST invariant states |ψ〉 entering the Bell-CHSH inequality
(1) as non-trivial elements of the cohomology [46] of the BRST charge QBRST , namely

Hphys = {|ψ〉 ; QBRST |ψ〉= 0 , |ψ〉 ≠QBRST |·〉} . (4)

• A careful construction of the four bounded Hermitian operators (Ai , Bk), i, k = 1,2,
which, in addition of requirements (2), have now to be BRST invariant as well, i.e.,

[QBRST , Ai] = 0 , [QBRST , Bk] = 0 . (5)

We have tacitly assumed the operators (Ai , Bk) to be bosonic, otherwise the anti-
commutator would appear in Eq. (5).

As one can easily figure out, the combination of the conditions (4) and (5) results in a BRST
invariant formulation of the Bell-CHSH inequality.

As gauge field theories, we shall discuss the massless Maxwell theory and the massive
U(1) Higgs model quantized in covariant gauges, in 1+3 spacetime dimensions. In both cases
we shall outline the construction of the physical subspaces as well as of the BRST invariant
operators (Ai , Bk) entering the inequality (1).

Concerning the state |ψ〉, we shall consider the example of BRST invariant squeezed states
built with the BRST invariant ladder operators corresponding to the physical (transverse) po-
larizations of the Maxwell field and of the massive vector boson of the Higgs model. This kind
of state will lead to a violation of the Bell-CHSH inequality close to saturating the Tsirelson’s
bound. As a motivation behind the choice of such states, we remark that photon squeezed
states are known to be highly entangled, giving rise to applications in many fields [47], see
also [48] for their recent use in gravitational wave detectors.

This article is organized as follows. In Section 2 we work out a toy model inspired by
the Fujikawa model [49], consisting of a BRST quartet of massive fields in 1+ 1-dimensional
Minkowski spacetime, i.e., a pair of BRST doublets [46]. As a consequence, the only non-trivial
BRST invariant state turns out to be the vacuum state |0〉M . Despite of its simplicity, the model
has the merit of illustrating in a clear and pedagogical way the whole Kugo-Ojima construc-
tion. Section 3 is devoted to the analysis of the massless Maxwell field in 1+ 3-dimensional
Minkowski spacetime. We survey the Kugo-Ojima setup and identify the physical invariant
subspace. We proceed then with the introduction of the squeezed states, of the BRST invari-
ant operators (Ai , Bk), and with the analysis of the Bell-CHSH inequality violation. Section 4
addresses the comparison with the entangled two spin 1/2 states in Quantum Mechanics. In
Section 5, we discuss the U(1) Higgs model, generalizing the construction done in the case
of the massless Maxwell field to the case of massive vector bosons. Section 6 contains our
conclusion and future perspectives.

2 Warming up: BRST cohomology and Kugo-Ojima quartet mech-
anism

In this section, we review a toy model based on [49] in order to highlight some important
features related to the BRST symmetry [50, 51], setting the stage for the discussion to come.
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Readers already familiar with BRST quantization and the Kugo-Ojima construction can jump
to Sect. 3.

Defining gµν = diag(+1,−1) as the Minkowski metric in 1+1 dimensions, we shall consider
the massive model specified by the following action

S =

∫

d2 x
�

∂µϕ∂
µη−m2ϕη− ∂µ c̄∂ µc +m2 c̄c

�

, (6)

where ϕ and η are real scalars, c and c̄ are anti-commuting ghost fields and m is a parameter
with dimension of mass. This model is invariant under BRST transformations, defined by the
following action of the nilpotent BRST operator s on the fields:

sc̄ = ϕ , sϕ =0 ,

sη= c , sc =0 ,

s2 = 0 , sS =0 .

(7)

One sees that the field content of the model gives rise to a pair of BRST doublets:1 (c̄,ϕ) and
(η, c). The whole set (c̄,ϕ,η, c) is called a BRST quartet. It should also be noted that the
above action can be rewritten as a BRST exact term, that is,

S =

∫

d2 x s
�

∂µ c̄ ∂ µη−m2 c̄η
�

. (8)

Here, we are adopting the Kugo-Ojima Hermiticity assignments [42–45]: ϕ† = ϕ, η† = η,
c† = c, c̄† = −c̄, so as to have a Hermitian action, S† = S, considering the general rule for
Hermitian conjugation (AB)† = B†A† and the Grassmanian nature of the ghost fields. It is
interesting to note that in the limit m→ 0, the model (6) becomes equivalent to the Maxwell
action quantized in the Feynman gauge in 1+ 1 dimensions.

From the action (6), we obtain the equations of motion:
�

□+m2
�

Φ= 0 , for Φ= ϕ,η, c, c̄ . (9)

All fields obey the Klein-Gordon equation with the same mass m. We can perform the canonical
quantization of these fields as follows:

ϕ(x)=

∫

dk
p

(2π)2ωk

�

ϕke−i(ωk t−kx) +ϕ†
kei(ωk t−kx)
�

, (10)

whereωk = k0 =
p

k2 +m2. Denoting the positive frequency modes in 1+1 Minkowski space-
time by

uk =
1
p

2π2ωk
e−i(ωk t−kx) , (11)

we can write the scalar field simply as

ϕ(x) =

∫

dk
�

ϕkuk +ϕ
†
ku∗k
�

. (12)

1A BRST doublet is defined as a pair of fields (α,β) such that

sα= β , sβ = 0 .

It can be shown that the fields of a BRST doublet do not contribute to the cohomology of the BRST operator [46].

4

https://scipost.org
https://scipost.org/SciPostPhys.15.5.201


SciPost Phys. 15, 201 (2023)

It is helpful to introduce the Klein-Gordon inner product:

〈 f |g〉KG = i

∫

d x [ f ∗ (∂t g)− (∂t f ∗) g] , (13)

so that:

〈uk|uq〉KG = δ (k− q) ,

〈uk|u∗q〉KG = 0 ,

〈u∗k|u
∗
q〉KG = −δ (k− q) . (14)

In the same vein, we can write a similar mode expansion for all the other fields:

η(x) =

∫

dk
�

ηkuk +η
†
ku∗k
�

,

c(x) =

∫

dk
�

ckuk + c†
ku∗k
�

,

c̄(x) =

∫

dk
�

c̄kuk − c̄†
ku∗k
�

, (15)

where we remark that the c̄†
k term has an opposite sign thanks to the difference in its Hermiticity

assignment. The canonical commutation relations can be easily evaluated, being given by
�

ϕ (t, x) , ∂ 0η (t, y)
�

= iδ (x − y) ,
�

η (t, x) , ∂ 0ϕ (t, y)
�

= iδ (x − y) ,

{c (t, x) , ∂ 0 c̄ (t, y)}= iδ (x − y) ,

{c̄ (t, x) , ∂ 0c (t, y)}= −iδ (x − y) , (16)

where the minus sign in the last expression is due to the different sign obtained in the conjugate
momentum πc̄ =

δL
δ(∂0 c̄) = −∂

0c. From the KG inner product, we have

ϕk = 〈uk|ϕ〉KG , ϕ†
k =− 〈u

∗
k|ϕ〉KG ,

ηk = 〈uk|η〉KG , η†
k =− 〈u

∗
k|η〉KG ,

ck = 〈uk|c〉KG , c†
k =− 〈u

∗
k|c〉KG ,

c̄k = 〈uk|c̄〉KG , c̄†
k = 〈u

∗
k|c̄〉KG ,

(17)

Using all these expressions, we can obtain the non-vanishing canonical commutation rela-
tions among the creation and annihilation operators:

�

ϕk, η†
q

�

= δ (k− q) ,
�

ηk, ϕ†
q

�

=δ (k− q) ,

{ck, c̄†
q}= −δ (k− q) , {c̄k, c†

q}=−δ (k− q) ,
(18)

with all the remaining commutation relations vanishing. The Fock vacuum of Minkowski space
|0〉M is defined as the state annihilated by all annihilation operators, i.e.,

ϕk|0〉M = ηk|0〉M = ck|0〉M = c̄k|0〉M = 0 . (19)

Let us proceed with the characterization of the physical subspace Hphys, Eq.(4). To that end
we need to evaluate the BRST charge. From the Noether Theorem,

�

ϕ(x)
δ

δc̄(x)
+ c(x)

δ

δη(x)

�

S = ∂µJµBRST (x) , (20)
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for the BRST conserved current we get

JµBRST = (∂
µc)ϕ − (∂ µϕ) c . (21)

Defining the associated charge as the integral in space of the zeroth component of the con-
served current, it follows

QBRST =

∫

d x
��

∂ 0c
�

ϕ −
�

∂ 0ϕ
�

c
�

. (22)

Making use of the mode expansion of these fields, one finds the expression for QBRST in terms
of creation and annihilation operators:

QBRST = −i

∫

dk
�

ckϕ
†
k −ϕkc†

k

�

. (23)

From the above expression, one immediately obtains Q†
BRST = QBRST and Q2

BRST = 0,
two important properties of the BRST charge. Following Kugo-Ojima [42–45], we look at all
commutation and anti-commutation relations of the creation and annihilation operators with
the BRST charge, finding:

[QBRST ,ηk] = ick , {QBRST , ck}= 0 ,
�

QBRST ,η†
k

�

= ic†
k , {QBRST , c†

k}= 0 ,

{QBRST , c̄k}= −iϕk , [QBRST ,ϕk] = 0 ,

{QBRST , c̄†
k}= iϕ†

k ,
�

QBRST ,ϕ†
k

�

= 0 .

(24)

We see that (ηk, ck), (η
†
k, c†

k), (c̄k,ϕk) and (c̄†
k,ϕ†

k) form BRST doublets. As such, they do not
contribute to the cohomology of the BRST charge QBRST [46]. Therefore, the unique state
belonging to the physical subspace Hphys is the vacuum state |0〉M , i.e., Hphys = {|0〉M} [49].

We can thus appreciate the powerful and beautiful construction of Kugo-Ojima in order to
deal with the BRST symmetry. We are ready now to face the more complex and non-trivial
case of the Maxwell field.

3 Maxwell gauge theory from a BRST point of view

The main lines of the BRST approach were addressed in the last section, were we used the 1+1
model of Eq. (6) to discuss the BRST symmetry role in the physical states definition, via the
Kugo-Ojima quartet mechanism. In this section, we move on to the Maxwell action describing
photons in 1+3-dimensional Minkowski space endowed with metric gµν = diag (+,−,−,−). In
the sequel, we shall discuss the canonical quantization of the photon field, study its BRST sym-
metry, and investigate the possible violation of the Bell-CHSH inequality in a BRST invariant
setup by considering the case of a squeezed light state.

3.1 Quantization and BRST invariance

Let us consider the Maxwell action in 1+3-dimensional Minkowski spacetime

S0 =

∫

d4 x
�

−
1
4

FµνFµν
�

, (25)

where Aµ is the photon field, and its field strength tensor is given by Fµν = ∂µAν − ∂νAµ. The
above action is invariant under local Abelian gauge transformations given by A′µ = Aµ − ∂µω.

6
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In order to quantize the theory, we need to fix the gauge. Implementing the Faddeev-Popov
procedure in the covariant Feynman gauge, one introduces the Nakanishi-Lautrup field b,
obtaining the following gauge-fixed action:

S =

∫

d4 x

�

−
1
4

FµνFµν + b
�

∂µAµ
�

+
b2

2
+ c̄□ c

�

, (26)

where c and c̄ denote the Faddeev-Popov ghosts and we defined □ ≡ ∂µ∂ µ. The gauge-fixed
action (26) is invariant under the following BRST transformations

sAµ = −∂µc , sc = 0 ,

sc̄ = b , sb = 0 ,

s2 = 0 , sS = 0 .

(27)

As done in the previous section, we adopt the Kugo-Ojima Hermiticity assignments
A†
µ = Aµ, b† = b, c† = c, c̄† = −c̄, so that S† = S. For the equations of motion:

□Aµ = □c = □c̄ = 0 ,

b+ ∂µAµ = 0 . (28)

We can see that the Nakanishi-Lautrup field b is an auxiliary field, enforcing the gauge-fixing
condition, while all other fields satisfy the massless Klein-Gordon equation.

In the 1+3-dimensional Minkowski spacetime, we can define objects completely analogous
to the ones defined in the previous section, in order to simplify the notation. For instance, the
Klein-Gordon inner product in 1+3-dimensional Minkowski spacetime is given by

〈 f |g〉KG = i

∫

d3 x [ f ∗ (∂t g)− (∂t f ∗) g] , (29)

and the positive-frequency modes can be written as

uk =
1
p

(2π)3 2ωk

e−i(ωk t−k⃗· x⃗) . (30)

These modes satisfy the relations

〈uk|uq〉KG = δ
3
�

k⃗− q⃗
�

,

〈uk|u∗q〉KG = 0 ,

〈u∗k|u
∗
q〉KG = −δ3
�

k⃗− q⃗
�

. (31)

Let us proceed with the canonical quantization of the fields. First, we consider the gauge field
mode expansion

Ai(x) =

∫

d3k
3
∑

λ=1

ε
(λ)
i (k)
�

aλkuk + a†
λku∗k
�

, (32)

A0(x) =

∫

d3k
�

a0kuk + a†
0ku∗k
�

, (33)

where ωk = k0 = |k⃗|, since we are dealing now with massless fields. In the above expression,
ε
(λ)
i (k) are polarization vectors. Here, ε(1)i (k) and ε(2)i (k) represent the transverse polariza-

tions such that ε⃗α(k) · ε⃗β(k) = δαβ and k⃗ · ε⃗α(k) = 0 for α,β = 1, 2, and ε(3)i (k) = ki/|k⃗| is
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the longitudinal one. Concerning these polarization vectors, we can also write the following
expression:

∑

α=1,2

εαi (k)ε
α
j (k) =

�

δi j −
kik j

|k⃗|2

�

. (34)

Similarly, for the ghost fields we have,

c(x) =

∫

d3k
�

ckuk + c†
ku∗k
�

, (35)

c̄(x) =

∫

d3k
�

c̄kuk − c̄†
ku∗k
�

. (36)

Remembering that b = −∂µAµ, it follows that the mode expansion of the Nakanishi-Lautrup
field reads

b = i

∫

d3k ωk

��

a0kuk − a†
0ku∗k
�

−
�

a3kuk − a†
3ku∗k
��

. (37)

From the Lagrangian, Eq.(26), one obtains the following conjugate momenta: πA
i = −F0i ,

πA
0 = b, πc = ∂ 0 c̄, πc̄ = −∂ 0c. Imposing the equal time canonical commutation relations:

�

Aµ(t, x⃗), πν(t, y⃗)
�

= i gµνδ
3 ( x⃗ − y⃗) ,

{c(t, x⃗), ∂ 0 c̄(t, y⃗)}= iδ3 ( x⃗ − y⃗) ,

{c̄(t, x⃗), ∂ 0c(t, y⃗)}= −iδ3 ( x⃗ − y⃗) , (38)

one gets
�

aik, a†
jq

�

= δi jδ
3
�

k⃗− q⃗
�

,
�

a0k, a†
0q

�

= −δ3
�

k⃗− q⃗
�

,

{ck, c̄†
q}= −δ

3
�

k⃗− q⃗
�

, {c̄k, c†
q}= −δ

3
�

k⃗− q⃗
�

.
(39)

The minus signs in the commutation relations will give rise to unphysical states with negative
norm [42–45]. In fact, consider the Fock vacuum of the Minkowski space |0〉M , annihilated by
all the annihilation operators:

aik|0〉M = a0k|0〉M = ck|0〉M = c̄k|0〉M = 0 . (40)

The whole Fock space is obtained by the action of the creation operators on the vacuum |0〉M .
This will include physical and unphysical states, and we need to employ the BRST charge in
order to obtain the subspace of the physical states, as discussed before.

Following the same steps of the last section, we find the expression for the charge associated
with the BRST symmetry:

QBRST =

∫

d3k
�

c†
k (a0k − a3k) + ck

�

a†
0k − a†

3k

��

. (41)

With the above expression, one can check that: Q†
BRST =QBRST , Q2

BRST = 0. The BRST charge,
Eq.(41), also enjoys a remarkable property, concerning the unphysical modes [42–45]. Let N
be the number operator counting all unphysical modes that are present in a state, that is,

N =
∫

d3k
�

a†
3ka3k − a†

0ka0k − c†
k c̄k − c̄†

kck

�

. (42)
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It turns out that the number operator N can be written as the anti-commutator between the
BRST charge and a certain operator R:

∃R , such that N = {QBRST ,R} . (43)

Explicitly, we have

R=
∫

d3k
��

a†
0k + a†

3k

�

c̄k + c̄†
k (a0k + a3k)
�

. (44)

The physical subspace is defined by the cohomology of the BRST operator. Considering the
property presented above, one can prove that the physical subspace Hphys cannot contain
unphysical modes, being spanned by the positive norm states corresponding to the transverse
polarizations ε(1)i and ε(2)i of the photon field.

In fact, suppose that the state |α〉 is annihilated by the BRST charge, and that it contains
some unphysical modes:

QBRST |α〉= 0 , N |α〉= n|α〉 , n ̸= 0 . (45)

Therefore, from the previous property, we find:

n|α〉=N |α〉= {QBRST ,R} |α〉=QBRST [R|α〉] , (46)

which shows that BRST invariant states containing unphysical modes cannot belong to the
physical subspace. Indeed, if Eq. (45) is valid, Eq. (46) implies that |α〉 = 1

nQBRST [R|α〉],
making it a trivial state in the BRST cohomology.

The BRST invariant states belonging to the physical subspace are those generated by the
creation operators a†

1 and a†
2 corresponding to the physical polarizations of the photon, ε(1)i

and ε(2)i , that is,

| f 〉 ∈Hphys =⇒ | f 〉=
�

a†
1k

�m �
a†

2q

�n
|0〉M . (47)

We emphasize that, by construction, physical states must be annihilated by the BRST charge
(QBRST | f 〉 = 0) without being in its image (| f 〉 ≠ QBRST |·〉). This follows by noticing that the
BRST charge of Eq.(41) does not contain (a†

1, a†
2):

�

QBRST , a†
1k

�

=
�

QBRST , a†
2k

�

= 0 . (48)

Let us conclude this section by reminding that, as they stand, the states (47) are not truly
normalizable. As is well known, this a consequence of the fact that quantum fields are rather
singular quantities, being needed to be treated as operator-valued distributions [52]. To that
end, and in view of the next construction, it is helpful to introduce the smeared operators [52]

a1( f ) =

∫

d3k
p

(2π)32ωk

a1k f̃ (k) ,

a2(g) =

∫

d3k
p

(2π)32ωk

a2k g̃(k) ,

a†
1( f ) =

∫

d3k
p

(2π)32ωk

a†
1k f̃ ∗(k) ,

a†
2(g) =

∫

d3k
p

(2π)32ωk

a†
2k g̃∗(k) , (49)
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where

f̃ (p) =

∫

d4 x e−ipx f (x) , g̃(p) =

∫

d4 x e−ipx g(x) , (50)

and it is implicitly understood that we are considering k0 =ωk under all the integral signs in
Eqs. (49).

The test functions ( f (x), g(x)) belong to C∞0
�

R4
�

, the space of smooth infinitely differ-
entiable functions with compact support. Moreover, as required by relativistic causality, the
supports of ( f (x), g(x)) are space-like separated. The space of test functions C∞0

�

R4
�

is the
adequate space2 to be employed in the study of the Bell inequalities in QFT [16–18]. The test
functions are also normalizable, something we will use later on.

From the commutation relations (39) one gets
�

aα( f ), a†
β
(g)
�

= δαβ〈 f |g〉 , α,β = 1,2 , (51)

where 〈 f |g〉 is the Lorentz invariant scalar product

〈 f |g〉=
∫

d3k
(2π)32ωk

f̃ (ωk, k⃗) g̃∗(ωk, k⃗) ,

=

∫

d4k
(2π)3

θ (k0)δ(k
2) f̃ (k) g̃∗(k) . (52)

In particular,
�

aα( f ), a†
β
( f )
�

= δαβ〈 f | f 〉= δαβ || f ||2 , (53)

where || f ||2 is the norm of f . Moreover, notice that by a simple rescaling, the test functions
f (x) can be always chosen to be normalized to 1, i.e.

f (x)→
1
|| f ||

f (x) , so that || f ||= 1 , (54)

giving
�

aα( f ), a†
β
( f )
�

= δαβ . (55)

It can be easily checked that, when acting on the vacuum state |0〉M , the smeared operators
a†
β
( f ) give rise to truly normalizable states. Of course, (aα( f ), a†

β
(g)) are still left invariant by

the BRST charge, namely

[QBRST , aα( f )] =
�

QBRST , a†
β
(g)
�

= 0 . (56)

3.2 BRST invariant construction of the Bell-CHSH inequality. Squeezed photon
states

Let us face now the construction of the BRST invariant formulation of the Bell-CHSH inequality
which, as already mentioned, will be investigated by using as probing state the normalized
two-mode squeezed state, defined as

|η〉 ≡ Neη a†
1( f ) a

†
2(g) |0〉M . (57)

The most general two-mode squeezed state, in terms of an Sp(4,R) algebra, can be found in
Ref. [53]. The special case of Eq. (57) already satisfies our current needs.

2It is well-known that the Fourier transform ĥ(p) of a test function h(x) ∈ C∞0 (R
4) is a rapidly decreasing

function at large p.
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From Eq.(56), it follows that |η〉 belongs to the physical subspace, namely,

QBRST |η〉= 0 , |η〉 ̸=QBRST |·〉 . (58)

By expanding the exponential in Eq.(57), we can rewrite

|η〉= N
∞
∑

n=0

ηn |n f , ng〉 , (59)

where we defined the normalized states

|n f , ng〉=

�

a†
1( f )
�n

p
n!

�

a†
2(g)
�n

p
n!
|0〉M , (60)

with 〈m f , mg |n f , ng〉 = δmn. Notice that both creation operators a†
1 and a†

2 have the same
power in Eq.(59). From the normalization condition of |η〉, i.e., 〈η|η〉 = 1, we immediately
find N =
p

1−η2, where η ∈ [0, 1[ to guarantee convergence and thus the normalizability.
Let us proceed with the introduction of the four operators (Ai , Bk), with i, k = 1, 2, Eq.(2).

To that end we follow the procedure outlined in [15,54] and rewrite expression (59) by con-
sidering the even and odd contributions, i.e.:

|η〉= N
∞
∑

n=0

�

η2n|2n f , 2ng〉+η2n+1|2n f + 1, 2ng + 1〉
�

, (61)

and defining the operators (Ai , B j), with i, j = 1,2 as

Ai|2n f , ·〉= eiαi |2n f + 1, ·〉 ,

Ai|2n f + 1, ·〉= e−iαi |2n f , ·〉 ,

B j|·, 2ng〉= eiβ j |·, 2ng + 1〉 ,

B j|·, 2ng + 1〉= e−iβ j |·, 2ng〉 , (62)

where (α1,α2,β1,β2) are arbitrary real parameters which can be chosen at the best conve-
nience. These parameters play the same role of the four unit arbitrary vectors entering the
original Bell-CHSH for spin 1/2 [1–3]. Notice that the operator Ai acts only on the first entry
of the state |n f , ng〉, while the operator B j only on the second. By their very definition, it is
immediate to see that A2

i = B2
j = 1, and that we have

�

Ai , B j

�

= 0. Furthermore, reminding
that |n f , ng〉 belongs to the cohomology of the BRST charge QBRST , it follows that equation
(62) implies that (Ai , B j) are BRST invariant operators, i.e.,

[QBRST , Ai] =
�

QBRST , B j

�

= 0 . (63)

In fact, one can immediately see that

[QBRST , Ai] |2n f , ·〉= eiαiQBRST |2n f + 1, ·〉= 0 ,
�

QBRST , B j

�

|·, 2ng〉= eiβ jQBRST |·, 2ng + 1〉= 0 . (64)

These operators can be used to emulate an SU(2) pseudo-spin algebra, see [55, 56] and ref-
erences therein for more details on this, effectively bringing one as close as possible to the
original Bell-CHSH setup, even for the bosonic degrees of freedom we are considering now.

Now, let us consider the BRST invariant Bell-CHSH operator defined here by

CCHSH ≡ (A1 + A2)B1 + (A1 − A2)B2 . (65)

11

https://scipost.org
https://scipost.org/SciPostPhys.15.5.201


SciPost Phys. 15, 201 (2023)

The goal here is to evaluate the correlation 〈CCHSH〉η ≡ 〈η|CCHSH |η〉. In order to accomplish
this task and check out if there is violation, we need to compute:

B1|η〉= N
∞
∑

n=0

�

η2neiβ1 |2n f , 2ng + 1〉+η2n+1e−iβ1 |2n f + 1,2ng〉
�

. (66)

Acting now with (A1 + A2) we find

(A1 + A2)B1|η〉= N
∞
∑

n=0

�

η2n
�

eiα1 + eiα2
�

eiβ1 |2n f + 1, 2ng + 1〉

+ η2n+1
�

e−iα1 + e−iα2
�

e−iβ1 |2n f , 2ng〉
�

. (67)

Analogously, for the action of (A1 − A2)B2 on |η〉. Using the normalization 〈m f , mg |n f , ng〉=δmn,
we find

〈CCHSH〉η = N2
∞
∑

n=0

η4n+12Ω (α1,α2,β1,β2) , (68)

where we defined

Ω (α1,α2,β1,β2)≡ cos(β1 +α1) + cos(β1 +α2) + cos(β2 +α1)− cos(β2 −α2) . (69)

Therefore, we obtain the final result

〈CCHSH〉η =
2η

1+η2
Ω (α1,α2,β1,β2) . (70)

It remains now to choose the free parameters (αi ,β j). Following [15, 54], we take
(α1,α2,β1,β2) = (0,+π/2,−π/4,+π/4), yielding the maximum value for Ω, namely,
Ω= 2

p
2. Thus,

〈CCHSH〉η = 2
2
p

2 η
1+η2

. (71)

There is a Bell-CHSH inequality violation for this choice of parameters (α1,α2,β1,β2) when-
ever
p

2−1< η < 1. As η increases, the violation becomes higher, staying close to Tsirelson’s
bound (2

p
2) for η ≈ 1. Notice also that the maximization procedure for the Bell-CHSH in-

equality translates into the necessary stationary condition

∂

∂ η
〈CCHSH〉η = 0 , (72)

which is a self-consistent gap equation for the squeezing parameter η, supplemented with
∂ 2

∂ η2 〈CCHSH〉η > 0.
We see therefore that the squeezed state |η〉 might lead to a strong violation of the Bell-

CHSH inequality even in the case of the free Maxwell theory, a fact already emphasized in the
pioneering work [15–19]. Moreover, thanks to the Kugo-Ojima construction, everything has
been realized in a manifestly BRST invariant way.

4 A helpful comparison with quantum mechanics

For a better understanding of the result (71), it is helpful to provide a comparison with Quan-
tum Mechanics. Consider an entangled state of two spin 1/2 particles,

|ψ〉=
� |+〉a|−〉b − r|−〉a|+〉bp

1+ r2

�

, 〈ψ|ψ〉= 1 , (73)
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where r stands for a real positive parameter, r > 0. We can introduce the operators (Ai , Bk) in
the same way as before, that is,

Ai|+〉a = eiαi |−〉a , Ai|−〉a = e−iαi |+〉a ,

Bk|+〉b = e−iβk |−〉b , Bk|−〉b = eiβk |+〉b .
(74)

Then,

AiBk|ψ〉=
�

−re−i(αi+βk)|+〉a|−〉b+ei(αi+βk)|−〉a|+〉bp
1+ r2

�

, (75)

and
〈ψ|AiBk|ψ〉= −2

r
1+ r2

cos(αi + βk) . (76)

Using the values (α1 = 0,α2 =
π
2 ,β1 = −

π
4 ,β2 =

π
4 ), we get

|〈CCHSH〉ψ|= 2
2
p

2 r
1+ r2

, (77)

which is very similar to Eq.(71). The parameter r plays now exactly the same role of the
squeezing parameter η. There is violation whenever we have

p
2− 1< r <

p
2+ 1 . (78)

The maximum violation is attained when r = 1, |〈CCHSH〉ψ| = 2
p

2, in which case the state
|ψ〉 becomes maximally entangled, coinciding in fact with the Bell singlet state.

In much the same way, tracing out one photon polarization, it is quickly checked that the
reduced density matrix ρ1 obtained from ρ12 = |η〉〈η|, i.e.,

ρ1 = Tr2(ρ12) = (1−η2)
∞
∑

n=0

η2n|η f 〉〈n f | , (79)

gives

ρ2
1 = (1−η

2)2
∞
∑

n=0

η4n|η f 〉〈n f | . (80)

Therefore,

Trρ2
1 =

1−η2

1+η2
, (81)

from which one can immediately see that ρ1 becomes very impure when η ≈ 1. This sim-
ple analogy gives a rather nice understanding of the role played by the parameter η. As η
increases, the squeezed state |η〉 becomes more and more entangled, resulting in a strong
violation of the Bell-CHSH inequality when η≈ 1.

One can also expect this pattern of violation of the Bell-CHSH inequality considering the
entanglement entropy. The reduced density matrix (79) yields

S = −Trρ1 lnρ1 = − ln
�

1−η2
�

−
η2 lnη2

1−η2
. (82)

This entropy is a monotonically increasing function of η and diverges for η→ 1, confirming
that the system is highly entangled in this limit.
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5 Extending the BRST invariant setup to the Abelian Higgs model

We extend now the results obtained in the previous sections to the Abelian Higgs model. In
this first paper, we restrict ourselves to the quadratic approximation which, according to the
general results [15–19], already displays all features enabling for the violation of the Bell-
CHSH inequality. Said otherwise, we omit interactions for now. For the starting action we
write

Lquad =−
1
4

FµνFµν +
m2

2
AµAµ +

1
2

�

∂µρ
�2
+mAµ∂

µρ

+
1
2

�

∂µH
�2 −

m2
H

2
H2 +

b2

2
+ b
�

∂µAµ −mρ
�

− ∂µ c̄ ∂ µc +m2 c̄c , (83)

with

Squad =

∫

d4 xLquad , (84)

where Aµ is the Abelian gauge field, H the Higgs scalar field, ρ the Goldstone boson and (c̄, c)
the Faddeev-Popov ghosts. Expression (83) can be obtained by expanding the U(1) Higgs
model

L= −1
4

FµνFµν + |(∂µφ + ieAµφ)|2 −
λ

2

�

|φ|2 −
v2

2

�2

+LF P , (85)

around the vacuum configuration

φ(x) =
1
p

2
(v +H + iρ) , (86)

while retaining the quadratic terms. The gauge boson mass and the Higgs mass are given,
respectively, by

m2 = e2v2 , m2
H = λv2 . (87)

In the above expressions, e is the electric charge and λ > 0 the self-quartic scalar coupling,
while v/

p
2 is the minimum of the Higgs potential. Moreover, LF P stands for the Faddeev-

Popov gauge-fixing in ’t Hooft gauge, i.e.,

LF P = ξ
b2

2
+ b
�

∂µAµ − ξevρ
�

+ c̄
�

∂µ∂
µ + ξe2v2
�

c . (88)

In the following, the value ξ = 1 will be adopted. As usual, b is the Nakanishi-Lautrup auxil-
iary field.

As shown by Kugo-Ojima [42–45], the quadratic action Squad , (84), is perfectly suited for
the analysis of the BRST cohomology. In fact, it follows that Squad is left invariant by the
nilpotent BRST transformations3

sAµ = −∂µc , sc̄ = b , sρ = mc ,

sH = 0 , sb = 0 , sc = 0 ,

s2 = 0 , sSquad = 0 .

(89)

3As one can easily figure out, the transformations (89) are nothing but the linearized version of the BRST
transformations which leave invariant the full action (85) [42–45].
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Again, we adopt the Kugo-Ojima Hermiticity assignments: A†
µ = Aµ, c† = c, c̄† = −c̄, H† = H,

ρ† = ρ, b† = b, so that S† = S. The equations of motion here are given by:
�

□+m2
�

Φ= 0 ,
�

□+m2
H

�

H = 0 ,

b+ ∂µAµ −mρ = 0 , (90)

where Φ= Aµ,ρ, c, c̄. Besides the Nakanishi-Lautrup field b, we see that the Higgs field obeys
the Klein-Gordon equation with mass mH , while the other fields satisfy the Klein-Gordon equa-
tions with the same mass m.

As pointed out by Kugo-Ojima [42–45], the quadratic action Squad (84) is diagonalizable
by introducing the following field combination:

Uµ ≡ Aµ −
1

m2
∂µb+

1
m
∂µρ . (91)

The field Uµ has very interesting features. First of all, it is BRST invariant, sUµ = 0. Looking
at the equations of motion, we see that it satisfies the Klein-Gordon equation with mass m,
�

□+m2
�

Uµ = 0 as well as the transversality condition, given by ∂µUµ = 0. Therefore, the
vector field Uµ is a BRST invariant Proca field with mass m. It identifies the three BRST
invariant degrees of freedom of the gauge vector boson, dynamically massive by means of the
Higgs mechanism.

When rewritten in terms of the new vector field Uµ, the action takes the following nice
form:

Squad = Sphys +Sunphys , (92)

where we defined the physical part, Sphys, as that being given by the BRST invariant fields

sH = sUµ = 0 , (93)

namely,

Sphys =

∫

d4 x

�

−
1
4
Fµν(U)Fµν(U) +

m2

2
UµUµ +

1
2

�

∂µH
�2 −

m2
H

2
H2

�

, (94)

where the field strength now is Fµν(U) = ∂µUν − ∂νUµ.
The remaining terms are collected in Sunphys, that can be written as

Sunphys =

∫

d4 x
�

1
2m2

b
�

□+m2
�

b−
b
m

�

□+m2
�

ρ + c̄
�

□+m2
�

c
�

. (95)

Notice that this action is BRST exact, i.e., it can be rewritten as:

Sunphys=

∫

d4 x s
�

1
m
∂µ c̄ ∂ µρ −mc̄ρ +

c̄ b
2
+

1
2m2

c̄□b
�

. (96)

Remarkably, the fields entering the above expression give rise to a BRST quartet, i.e.

sc̄ = b , sρ = mc , sb = 0 , sc = 0 . (97)

As such, they do not contribute to the physical subspace, spanned by (H, Uµ). This statement
expresses the content of the Kugo-Ojima analysis of the Higgs model [42–45].
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By the same Noether procedure already adopted in the last sections, we can evaluate the
charge associated with the BRST symmetry (89), obtaining:

QBRST =

∫

d3 x
��

∂ 0c
�

b−
�

∂ 0 b
�

c
�

. (98)

The physical subspace is constructed by acting on the vacuum state with the creation operators
of the mode expansion of (H, Uµ):

|phys〉=
�

h†
�n �

a†
λ

�p
|0〉M , (99)

where QBRST |phys〉 = 0, |phys〉 ̸=QBRST |·〉. As before, |0〉M stands for the Fock vacuum of the
Minkowski space, being annihilated by all annihilation operators. For the mode expansion of
the fields (H, Uµ) we have

H(x) =

∫

d3k⃗
q

(2π)32ωH
k

�

hke−ikx + h†
ke+ikx
�

, (100)

and

Uµ(x) =

∫

d3k⃗
Æ

(2π)32ωm
k

3
∑

λ=1

ε(λ)µ (k)
�

aλke−ikx + a†
λke+ikx
�

, (101)

withωH
k =
q

|k⃗|2 +m2
H andωm

k =
Æ

|k⃗|2 +m2. The creation and annihilation operators satisfy

the commutation relations
�

hk, h†
q

�

= δ(3)
�

k⃗− q⃗
�

and
�

aλk, a†
ρq

�

= δλρ δ(3)
�

k⃗− q⃗
�

. The three

polarization vectors ε(λ)µ (k) obey the relations [57] kµε(λ)µ (k) = 0 for λ = 1,2, 3 as well as
3
∑

λ=1
ε(λ)µ (k)ε

(λ)
ν (k) =
�

gµν −
kµkν
m2

�

.

5.1 Construction of the BRST invariant squeezed states and violation of the
Bell-CHSH inequality in the Abelian Higgs model

In order to construct normalizable squeezed states, we proceed as in the case of the Maxwell
theory and introduce the smeared operators

h(g) =

∫

d3k⃗
q

(2π)32ωH
k

g̃(k)hk ,

a1( f1) =

∫

d3k⃗
Æ

(2π)32ωm
k

f̃1(k)a1k ,

a2( f2) =

∫

d3k⃗
Æ

(2π)32ωm
k

f̃2(k)a2k ,

a3( f3) =

∫

d3k⃗
Æ

(2π)32ωm
k

f̃3(k)a3k , (102)

as well as their respective Hermitian conjugates. As before, the test functions (g, fi) belong
to the space C∞0 (R

4). In terms of the smeared operators (102), the canonical commutation
relations become

�

h(g), h†(g ′)
�

= 〈g|g ′〉 ,
�

aλ( f ), a†
λ′
( f ′)
�

= δλλ′〈 f | f ′〉 , (103)
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where 〈g|g ′〉, 〈 f | f ′〉 stand for the Lorentz invariant inner products defined in Eq. (52).
In the present case we can construct several types of squeezed states as, for example,

|ξ〉 ≡ (1− ξ2)1/2 eξh†( f ) a†
3(g) |0〉M ,

|ζ〉 ≡ (1− ζ2)1/2 eζa†
1( f )a

†
2(g) |0〉M , (104)

where (ξ,ζ) ∈ [0, 1[ to guarantee convergence.
To introduce the four operators (Ai , B j), i, j = 1, 2, Eq.(2), we repeat the same steps done

in the Maxwell case. For example, considering the state |ξ〉, we write

|ξ〉=Nξ

∞
∑

n=0

�

ξ2n|2n f , 2ng〉+ξ2n+1|2n f + 1, 2ng + 1〉
�

, (105)

where Nξ = (1− ξ2)1/2, and |n f , ng〉 =
(h†( f ) a†

3(g))
n

n! |0〉M . Let us consider the same Bell setup
as before (62), i.e.,

Ai|2n f , ·〉= eiαi |2n f + 1, ·〉, Ai|2n f + 1, ·〉= e−iαi |2n f , ·〉 ,

B j|·, 2ng〉= eiβ j |·, 2ng + 1〉, B j|·, 2ng + 1〉= e−iβ j |·, 2ng〉 ,

where (α1,α2,β1,β2) are arbitrary real parameters. By construction, these operators fulfill
A2

i = B2
j = 1,
�

Ai , B j

�

= 0 and are BRST invariant, [QBRST , Ai] =
�

QBRST , B j

�

= 0. For the
Bell-CHSH inequality violation, we now get

〈CCHSH〉ξ = 2
2
p

2 ξ
1+ ξ2

, 〈CCHSH〉ζ = 2
2
p

2 ζ
1+ ζ2

, (106)

attaining the maximum value for (ξ,ζ)≈ 1. Obviously, the same remarks about the entangle-
ment entropy that were made before for the photon case can be done here.

6 Conclusions and future perspectives

In this work the Bell-CHSH inequality has been investigated within the context of gauge field
theories in Fock space. Relying on the construction outlined by Kugo-Ojima [42–45], we have
been able to cast the Bell-CHSH inequality in a manifestly BRST invariant way.

According to Eqs. (4), (5), this has required the use of the BRST invariant physical sub-
space, identified through the cohomology of the BRST charge, QBRST , in Fock space as well as
the BRST invariant construction of the four operators (Ai , Bk) entering the Bell-CHSH corre-
lator, Eq. (1). The examples of the Maxwell gauge field and of the Abelian Higgs model have
been scrutinized. The violation of the Bell-CHSH inequality has been investigated by taking
as probing states the BRST invariant squeezed states built with the creation operators corre-
sponding to the physical polarizations of the photon and of the massive vector boson of the
Higgs model.

In general, it seems fair to state that the study of the Bell-CHSH inequality in relativistic
Quantum Field Theory is still at its infancy. It represents a great challenge, from theoretical,
phenomenological and experimental points of view. Till now, the inequality has been inves-
tigated by considering free theories which, as proven by [15–19], already exhibit violation.
Needless to say, the next step is to take interactions into account and find out how the viola-
tion depends on the coupling constants. Let us mention here that the recent formulation of
the Bell-CHSH inequality within the Feynman path integral [21] might open the possibility of
studying the inequality through the dictionary of Feynman diagrams. This might lead to an
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extension of the present analysis to non-Abelian gauge theories as well. Furthermore, a gen-
eral setup to investigate the Bell-CHSH inequality violation for the vacuum state in the realm
of QFT was proposed recently [64], opening a new path to investigate Bell-CHSH inequalities
in a more general setting, which can also include the interacting case.

One may envisage that including quantum corrections will lead to parameters running
according to the energy scale. Thinking about a renormalization group (RG) equation for the
Bell correlators, taking into account the fact that these operators dimensionless and square
to 1, it is very reasonable to assume that the Bell operators Ai , B j will not get anomalous
dimensions. However, since we are evaluating these correlators not in the vacuum but in a
squeezed state, the couplings defining that state could run according to an RG equation, next
to the standard couplings of the underlying QFT.

To that end, it might be interesting to observe that one can actually rewrite Eq. (57) (see
e.g. [58]) as

|σ〉=Kσ|0〉M , (107)

where σ ∈ [0,1[, and Kσ is the unitary operator

Kσ=
1

coshσ
exp
hσ

2
(a†

1( f )a
†
2(g)−a1( f )a2(g))

i

, (108)

upon identifying ζ= tanhσ. The Bell-CHSH expression can then be recast in the form

〈σ|AiB j|σ〉= M 〈0|AK
i B

K
j |0〉M , (109)

where AK
i =K†

σAi Kσ and BK
j =K†

σB j Kσ can be thought as a kind of dressed Bell operators,
now depending on the squeezing parameter. Eq. (109) can be interpreted, in a suggestive way,
as the two-point correlation function in the vacuum of the composite dressed operators AK

i
and BK

j , which are unitarily equivalent to the original Bell operators.
We point out there that the squeezing parameter is a measurable quantity, see e.g. [59]

and references therein for recent experimental progress regarding this hard to control param-
eter. Since these squeezing parameters enter the amount of violation, this would also mean
the saturation of Tsirelson’s bound found for the free theory might be corrected again upon
including radiative corrections.

One challenge will be to construct suitable dichotomic Bell-CHSH operators like the used
Ai , B j for a generic quantum field theory, let stand alone a gauge theory. One could proceed
along the lines of [56, 60] to construct suitable pseudo-spin Bell operators and investigate
to what extent some version of such operators can be put under the path integral sign. In
order to make the transition to a path integral language, it might also be fruitful to express
the squeezed state in terms of field and conjugate momentum operators, following [61], after
which a suitable perturbation theory could be developed, following e.g. [62,63]. This will be
the subject of future work.
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