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Abstract

We show that a dynamical transition from a non-heating to a heating phase of a periodic
SL(2,R) driven two dimensional conformal field theory (CFT) with a large central charge
is perceived as a first order transition by a bulk brane embedded in the dual AdS. We
construct the dual bulk metric corresponding to a driven CFT for both the heating and
the non-heating phases. These metrics are different AdS, slices of the pure AdS; metric.
We embed a brane in the obtained dual AdS space and provide an explicit computation of
its free energy both in the probe limit and for an end-of-world (EOW) brane taking into
account its backreaction. Our analysis indicates a finite discontinuity in the first deriva-
tive of the brane free energy as one moves from the non-heating to the heating phase (by
tuning the drive amplitude and/or frequency of the driven CFT) thus demonstrating the
presence of the bulk first order transition. Interestingly, no such transition is perceived
by the bulk in the absence of the brane. We also provide explicit computations of two-
point, four-point out-of-time correlators (OTOC) using the bulk picture. Our analysis
shows that the structure of these correlators in different phases match their counter-
parts computed in the driven CFT. We analyze the effect of multiple EOW branes in the
bulk and discuss possible extensions of our work for richer geometries and branes.
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1 Introduction

Non-equilibrium dynamics of driven quantum matter has been extensively studied in the re-
cent past [1-17]. Out of the several drive protocols that can be used to take a system out of
equilibrium, periodic drives, whose stroboscopic dynamics can be described by Floquet Hamil-
tonians, have received the most attention [6,9,18-20]. The reason for this stems from several
phenomena such as dynamical freezing [21-27], dynamical localization [28-33], topological
transitions in driven systems [34-41], realization of time crystalline states [42-45], dynami-
cal transitions [46-52], and tuning ergodicity properties of quantum systems [53, 54]; these
phenomena have no analogue in either equilibrium or aperiodically driven non-equilibrium
systems.

Several recent studies have focussed on the effect of both quench [55] and periodic drives
[56-61] on conformal field theories. The studies involving periodic protocols usually consider
a Hamiltonian which is expressed in terms of standard Virasoro generators Ly and L.; and is
therefore valued in an su(1, 1)-algebra. The periodic drive in such models leads to an evolution
operator U which is valued in SU(1,1). It is well-known that such a dynamics leads to two
distinct phases separated by a dynamical transition. These are the heating (hyperbolic) and
the non-heating (elliptic) phases; the Casimir of the su(1, 1) algebra has opposite signs in the
two phases. The transition line where the Casimir vanishes is often referred to as the parabolic
line. The presence of a periodic drive, characterized by a frequency wp = 27/T, where T is
the time period, allows one to access this dynamic transition by tuning the drive frequency.
Equivalently, such a tuning is possible by changing the drive amplitude.
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The AdS/CFT correspondence stipulates that corresponding to every such (1 + 1)D CFT,
there exists a three-dimensional (3D) dual AdS bulk [62].! In fact, using this correspondence,
one can have a definite procedure for extending the CFT Hamiltonian in the bulk [63]. It is
then natural to ask what constitutes the bulk signature of the dynamic transition of a driven
CFT. This is the central question which we aim to study in this work. More precisely, the main
goal of our work is to geometrize the dynamical phase transition and to provide a precise and
explicit 3D geometric and Holographic construction that captures this transition.

The main points of our work can be summarized as follows. First, we show that there
are two key steps to construct the geometric description mentioned above. We take CFT,
vacuum as the reference state which is dual to pure AdS;. Since the vacuum does not evolve
under sl(2,R) valued Floquet-Hamiltonian, the bulk geometry remains pure AdS. However to
geometrize the drive, the basic ingredient is the set of bulk generators corresponding to the
Virasoro generators L, and L., of the boundary CFT [63]. Subsequently, one finds the curves
in the bulk geometry which are generated by the bulk Hamiltonian corresponding to the the
CFT Floquet-Hamiltonian. These curves inherit a natural induced metric on them, which are
simply patches of the AdS;-spacetime. These patches have a natural AdS, slicing, which differ
for each phase. In particular, for the heating phase, we find a AdS, black hole slice. For the
non-heating phase we find a global AdS, slicing and the phase boundary corresponds to a
Poincare AdS, slicing. While these patches are highly suggestive, the heating and the non-
heating phases cannot be distinguished by the corresponding free energy, which is given by
the Euclidean on-shell action for pure 3D gravity in AdS;. At this point, it is worth emphasizing
that the boundary CFT Hamiltonian is sl(2,R)-valued and therefore there are no large gauge
transformations in the bulk. Thus, the heating and the non-heating phases are identical in
terms of their Euclidean on-shell actions.

Second, we find that the crucial ingredient in distinguishing between these CFT phases
is a brane degree of freedom. These branes are co-dimension one hypersurfaces in the bulk
geometry. In this work, we have considered both probe branes as well as end-of-world (EOW)
branes. These are respectively probes and fully back-reacting objects in the AdS; geometry.
Given a particular patch (corresponding to the heating, the non-heating or the phase bound-
ary), these branes can distinguish between the on-shell Euclidean action of the (gravity +
brane)-system. The central result of this work is that the corresponding free energy displays
a first order phase transition of the combined system, which is a close cousin of the Hawking-
Page transition [64]. We explicitly demonstrate that this first order transition also occurs due
to the change in sign of the Casimir of the boundary CFT, thereby establishing a direct link
between it and the dynamical transition of the driven CFT mentioned above.

Third, we generalize this construction and introduce more than one EOW-branes. As an
example, we have considered two EOW-branes, which results in a rich structure associated to
the phase transition. The basic qualitative features of the phase transition remain the same.
We note that insertion of the EOW-branes correspond to inserting conformal boundaries to the
boundary CFT. Correspondingly, the CFT is defined on a strip with an infinite family of bound-
ary conditions. These boundary conditions are labelled by the respective brane tensions valued
in the range of [0, 1]. Especially, this family of boundary conditions naturally allow for excit-
ing a boundary-condition-changing operator in the CFT, whenever the boundary conditions
are non-identical at the end points.

Finally, we also study the signature of different phases in unequal time two point and
higher point correlators under the si(2,R) drive [61,65] from the bulk gravity picture without
inserting any brane. In this context, we describe how the different AdS, slicing corresponding

INote that the CFT dual of pure 3D gravity is a debated issue. A precise duality generally contains various fluxes
in a 10D bulk geometry. However, we will ignore this issue for now, as we will be focussing on a rather generic
point which is expected to remain qualitatively true.
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to the two phases and the phase boundary are crucial in determining different temporal behav-
ior of 2-point and 4-point functions from the Holographic description, which can be matched
with results available from large ¢ CFT computations. In particular, we match the two point
functions in each phase with a direct boundary computation of the two point function. We then
set-up the OTOC computation in the bulk. This involves, the by now well-known method of,
computing a two point function of an operator in a shock wave geometry created by the other
operator [66,67]. The AdS, black hole slicing for the heating phase is crucial to obtain the
exponential temporal growth of the OTOC,? that we had obtained in our previous work [65].
We show that the Lyapunov exponent matches exactly with the boundary computation. More-
over we also show how the other AdS, slicing corresponding to the non heating phase and
the phase boundary results in an oscillatory and power law temporal growth of the OTOCs in
these two phases.

The plan for the rest of the paper is as follows. In Sec. 2, we construct the bulk metric for the
different phases of the driven CFTs. This is followed by Sec. 3, where we discuss embedding
both probe and EOW branes. Next, in Sec. 4, we compute two-point correlation functions
and four-point OTOC from the bulk in the large ¢ limit and compare these results with the
corresponding counterparts obtained from the driven CFT at the boundary. Finally, we discuss
our main results and the possibilities of their further extension and conclude in Sec. 5.

2 Bulk metrics in different phases subjected to an SL(2,R) drive

In this section, we construct the bulk metrics for the various phases of the SL(2,R) driven CFT.

General strategy: To begin with let us consider a generic state |) that is evolved in stro-
boscopic time n under some 2D boundary periodically driven Hamiltonian H. We want to
understand the three dimensional holographic realization of the state as well as it’s evolu-
tion i.e.

() = U(nT,0)|yp) = e HMT |y (1)

where U(nT,0) is the evolution operator and Hy is the Floquet Hamiltonian. Here n is a
positive integer, T = 27 /wp, is the drive period, and wy, is the drive frequency. The complete
holographic picture could be obtained by a two step process:

* First we find the geometric dual of a one parameter class of states of the above form,
with nT replaced by s. At this step, s (or rather s/T) should be interpreted as a real
parameter of the geometric description. The geometric dual can then be found by solving
the Einstein equation with source given by the expectation value of boundary stress
tensor in certain choice of coordinate system.

* The next step is to rewrite the new metric in a parametrization where s itself becomes
the time in the metric. This means going to the frame of the co-moving observer along
the curve generated by the Floquet Hamiltonian itself. The well-known example is the
Rindler wedge which is obtained by changing the flat spacetime coordinates to new
coordinates generated by the trajectory of an accelerated observer. Once we are able
to get the effective boundary metric by parametrizing the boundary curve, we need to
lift that into the bulk [68-71]. One straightforward yet harder way to get the final bulk
metric is to solve the same Einstein equation as in the first step with boundary metric as

2We want to emphasize again that the dual 3d AdS metric has no horizon and the blackhole resides in it's AdS,
slice. To the best of our knowledge, OTOCs in these kinds of geometries have not been studied earlier.
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the boundary condition. However, our task is simpler: We can directly solve for the bulk
curves generated by the bulk representation of the boundary Floquet Hamiltonian. The
curves will be parametrized by s and other intrinsic co-ordinates, in terms of which one
rewrites the above metric.

The simplest example of the above set up is when we take H = Hepr = Lo+ L, and the state
is the vacuum |0). The state does not evolve in (the stroboscopic) time as e!(fotLo)?|0) = |0).
In the Euclidean boundary, this corresponds to radial quantization which can be visualized by
conformally mapping the plane into a cylinder, where n coincides with the time direction in
the cylinder. On the bulk, this corresponds to global AdS; with n naturally enlarged to s which
acts as the global time. If we choose H to be other linear combinations of conformal generators
Ly, Z,p, it corresponds to a different quantization [72], [73] in the CFT. The corresponding bulk
metric will be obtained by mapping it from the AdS; coordinates under large diffeomorphism
(generated by boundary L,’s) in a specific gauge [74] and then solving for the bulk curve. Let
us now discuss this explicitly when p = {0, £1}.

Bulk metric under an SL(2,R) drive: To compute the bulk metric in an SL(2,R) driven CFT,
we extend the boundary Hamiltonian into the bulk by replacing the global Virasoro generators
by it’s AdS; representation [63]:

1 1
Lb’0=—§zaz—§3§, Lb’1=§z§82+§'23§—z285, Lb’_1=8§. (2)

Here, { = x — it and { = x + i7 are the boundary coordinates and z is along the bulk direc-
tion. We will work in two step discrete drive protocol [56-58] governed by the Hamiltonian
Hy =Lo— % tanh(2¢)(L; + L_;)+anti chiral part. For time period 7 the system is evolved by
Hy=Hg_, , and for time period 7, it is evolved by H; = Hy, and then we repeat it periodi-
cally for n number of drives. The stroboscopic time parameter n plays the role of time in our
setting. Here we still start with the vacuum |0). Since again H ¢ is constructed out of SL(2,R)
generators, the vacuum remains unchanged. This dictates that the bulk remains pure AdS,.
However to construct the bulk tangent curve along the direction of drive n, it might be difficult
to track down the time dependent set up at each period of time. For computational purposes,
it would be useful to find the Floquet Hamiltonian which controls the evolution of the driven
system after an integer number of drive periods. We can write an effective Hamiltonian with
the following form

Heffza(L0+Z40)+ﬁ(L1 +I;1)+'}’(L_1 +I;_1) . (3)

We give the relevant details of a, 3,y in the appendix A. The corresponding AdS; representa-
tion of the Hamiltonian is given by,

Hb = a(Lb,o + I‘b,O) + /5 (Lb,l + i‘b,l) + Y(Lb,—l + I‘b,—l) . (4)

This class of Hamiltonians are valued in su(1,1)-algebra which generates a time-evolution
valued in the SU(1, 1) group. Given {a, 3, v}, the Casimir of the algebra is given by (a?—47y)
and we define:

B a2—4/5)f

d
4p2

(5)
which keeps track of the sign of the Casimir. It is now well-known that the system can be tuned
to any of the three distinct phases, depending on the sign of d, see e.g. [56-61] for several
related works exploring these phases.
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Specifically, we can distinguish the three phases of the system:

d <0: Heating Phase,
d>0: Non-heating Phase,

d =0: Phase transition.
Substituting (2) and corresponding complex conjugates in (4) we can write:
Hy = (—az +2B2x)d, + (—ax — fz> + f(x2 —12) +1)0, + (—at + 2Bx71)2, . (6)

As mentioned before, we consider an intrinsic coordinate, denoted by s € R, to parameterize
the curves generated by the bulk Hamiltonian and solve the following tangent equations [75]:

dz(s) =—az+2Pzx, (7
ds

—dT(S) =—at+2Bx7T, (8)
ds

dzgs) =—ax— P22+ p(x* =) +7, 9

to find the relation between the embedding coordinates {7, x,z} and the patch solved by the
equations in (7-9). Note that, the bulk coordinate s is continuous while the stroboscopic time
is discrete. The identification of the stroboscopic time with this continuous bulk coordinate
is made only at discrete points. Said another way, different values of the stroboscopic time
correspond to different points on the curve whose coordinate is s. Note also, that a solution
to the above equations will allow an arbitrary constant shift in s and therefore, effectively we
can set the range: s € [—00,00]. The solution space can be divided into three categories,
depending on the sign of d. Below, we discuss these in detail.

For non-heating phase(d> 0):

When d > 0, the set of equations in (7)-(9) is solved by

X = —g(coth[u(s +16)]+ coth[u(s — i9)]) ,

vd : :
T= —m(coth[u(s +160)]—coth[u(s — 19)]) ) (10)
2 :—&(coth[,u(s+i9)]—coth[,u(s—i9)]), u=pvd. (1)

2i4/1+c?

Here ¢; and 6 characterize the parametric solutions. After rewriting ¢; = tan ¢; and substi-
. . . 7 . 2 2 2
tuting (10) in AdS;-Poincaré metric, ds? = dx+dz—§+dz we get®

dep? 4B2d (ds®+d6?)

ds* = + : (12)
sin?[¢]  sin®[¢]sin?[2V/dB6O]
Finally, analytically continuing s — is we obtain:
2 29 (_gc2 2
ds? — do 4p4d (—ds=+d6*) (13)

 sin?[¢] * sin?[¢ ] sin?[2v/dB0]

3When we are substituting in the metric, we treat 8 and ¢ to be the normal coordinates to the curve.

6
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The ranges of coordinates s,0,¢ are respectively given by [—oo,+c>o],[0,ﬁ],[0,+n].
It is straightforward to check that these ranges cover the full Poincaré patch of AdSs,
ie. T € [—00,00], x € [-00,00] and z € [0,00]. The metric in (13) describes an AdS;
foliated by AdS, geometries at each ¢ = const. It is instructive to note that, by comparing
(13) with eqn (3.1) in [76], the constant ¢ slices correspond to global-AdS, geometry. We
will revisit this in detail later.

For heating phase (d< 0):

When d < 0, the set of equations in (7)-(9) is solved by

x = g(tan[u(s +1i0)]+ tan[u(s — iQ)]) )

vd . -
T= m(tan[u(s +i0)]—tan[u(s — 19)]) ) (14)

1/361

2i4/1+ c?

z =

(tan[,u(s +i0)]—tan[u(s — i9)]) .

As before, substituting (14) in AdS;-Poincaré metric, ds? = M we get:
gs? = d¢? 4p2d (ds® +d6?) (15)
2 ) . 2 °
sin[¢]  sin?[¢] sinh*[2v/dB 6]
Again, the analytic continuation: s — is gives
2 23 (9.2 2
PR do 4p4d (—ds*+d6°) (16)

 sin?[¢] " sin?[¢] sinh*[2vdBO]

The ranges of variables s,8,¢, for the metric (16) in heating phase are given by
(—o0,+00),(0,00),(0, ) respectively. The ¢ = const slices of (16) are now AdS, black
holes which is explicitly visible by comparing (16) with equation (3.3) in [76].

On the transition line (d= 0):

By using exact similar analysis for d = 0, the coordinates and corresponding analytically
continued metric can be written down as follows:

X =

_L(LJrL) g1 ( 1 1 )
28\s+i6 s—if) 2ip /1+cf s+i0 s—if )’

z 17)

_ C1 ( 1 . 1 )
- 21'[3 /1+C% s+i0 s—if )’
This yields:
9 do? —ds% + d6?
ST = 2 + 2 . (18)
sin“[¢] sin®[¢] 62

In this case, the ¢ = const slices corresponds to the AdS,-Poincaré patch [76]. We will now dis-
cuss how these patches determine the physics of the transition, especially by inserting explicit
brane degrees of freedom inside the bulk geometry.
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3 Brane embeddings in AdS;

In this section we will demonstrate how a non-trivial conformal boundary can detect the phase
transition. Our explicit calculations will be carried out in the Holographic description, since
it provides us with a natural and simple way to characterize various boundary conditions on
the conformal boundaries of the CFT. In the Holographic dual, such boundaries correspond to
defect branes which are described by hypersurfaces in the geometry. We will show below that
these branes can detect the heating to non-heating phase transition in both a probe limit as
well as away from the probe limit. Before proceeding further, let us recall that the relevant
metric data, in the Euclidean description, are given by

2 2 (:2 2
g5 = 40—, MU HdO) T ], dso, (19)
sin“[¢] sin“[¢] sin“[2ub]
w
for the non-heating phase. Similarly, for the heating phase, we obtain:
2 2 (3:2 2
ar= S WU HdOD g fdl, d<o, @D
sin’[¢]  sin?[¢] sinh*[2u6]
se[—o0,00], 6O€[0,00], ¢<[0,x]. (22)

Note that, in both (19) and (21), we can absorb the factor of u by redefining s — 2us and
6 — 2u6 and the resulting metric becomes independent of u. However, the geometries retain
the memory of sgn(d) since (21) is obtained by sending yu — —iu (equivalent to sending
d — —d) in (19).* In the subsequent discussions, we will keep the factor of u explicit.

3.1 A Lorentzian discussion

It is evident from (19) and (21) that the ¢p = const slices are special. This will prove crucial
in the subsequent discussions and here we will discuss the Lorentzian picture in some detail,
which will form the basic intuition in all subsequent observations. The Lorentzian patches are
obtained by sending s — is on the ¢ = ¢ slices. The induced metric on the various phases
are:

2 (g2 2
ds?= 8 ( &+ do ) sel-oo,00], 2p0el0n],  (23)
sin® ¢ \ sin“(2u6)
2 [_ .2 2
dst= W [ZICHAE ) [ oo,00], Eef0,00], (24)
sin® ¢ \ sinh“(2ué&)
2 [ gm2 2
gs? = S~ (ZAT+dXT) oo, 00], X €[0,00]. (25)
sin ¢, X2

Here (23), (24) and (25) correspond to non-heating, heating phases and at the transition
point. These patches describe various parts of an AdS, geometry. Making explicit use of these
metrics in [76], they are also related to each other by simple co-ordinate transformations.

Explicitly,
+2u6 —2ub
T+X=tan| = |, T—X=tan| ], (26)
2 2
s—%5+2ub ot s+5—2ub ot
tan| ———— |=—e #t+)  tan — = uw(t=e) 27)

“Recall that the phase transition takes place as a function of sgn(d), which is the sign of the Casimir of the
SU(1,1) evolution in the driven CFT.
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J— ?{"'l,"(

Figure 1. A pictorial representation of various patches of AdS, covered by vari-
ous phases. The left-most is the non-heating phase that covers the global patch of
AdS,, the middle one covers the Poincaré patch of AdS, and the right most covers a
Schwarzschild-like patch in AdS,. These patches are explicitly related by the coordi-
nate transformations in (26) and (27).

which relate the non-heating patch to the transition patch in (26) and the non-heating patch
to the heating patch in (27). Note from (26) that the line s = 2uf — n and s = = —2u6 both
map to X = 0o. On the other hand, 6 = 0 is mapped to X = 0. Similarly, it is straightforward
to check that s = 2u6 — /2 and s = /2 —2u6 map to £ = oo line, while 8 = 0 maps to
& =0 line. These patches are pictorially represented in Fig. 1. These ¢ = const AdS, patches
will be crucial in the subsequent sections.

3.2 Probe branes

Let us first consider probing the geometries in (19) and (21) with a brane.® Consider a two-
dimensional hypersurface with the following action:

Sprane = TJ d?c 7 = Tf d*cL, (28)

where, yq, = g,,0,X"0,X", is the induced metric and, g, is the background metric and
T is the tension in the brane. Let us choose the world-volume coordinates to be: o° = s,
o! = 6, and let ¢(0) denote the corresponding embedding function. The corresponding

induced metrics are:

272 2
ds? = — 21 _4‘U; ds + (¢,2 + #)d@z , heating, (29)
sin® ¢ (0) \ sinh”(2u0b) sinh*(2u6)
272 2
ds? = — 21 .4‘; ds +(¢’2+#)d92 , non—heating . (30)
sin® ¢ (0) \ sin“(2u6) sin“(2u0)

®Note that probe branes can be used to detect phase transitions across a wide range of systems, e.g. [77], [78],
[79].
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With the above ansatz, the Lagrangian becomes a functional of the embedding function
L =L[6,¢,¢’'] and the brane profile can be obtained by solving the Euler-Lagrange equation:

d (9L oL
4 (22)

It is straightforward to observe that in both phases, the Euler-Lagrange equation admits a
simple, analytical solution ¢(6) = 7m/2.° For analytical control on the calculations, we will
discuss only this solution. The corresponding on-shell actions of the probe branes, in both
phases, can be computed by substituting this solution into the action. This yields:

) 2
speaing — dsd@# = — 2uT coth(2u)[;™ | ds
rane Sinh (z‘ue) min
T
= f ds (—Z,uT + —) s (32)

€h

sroheating _ 7 [ g9 M7 __op cot(2u6)|g™ | ds

brane Sil’lz( 2 u 2] ) ,U, p Omin

Zst (Z—T) (33)
€nh

It is straightforward to observe that by choosing e}, = €,,;,/2 the divergent pieces in the heating
and the non-heating phases become equal. Here, to regulate the divergences, we have intro-
duced two cut-offs €, = O, in the heating phase, and €, = 0,;, = 7/(2U) — O« in the
non-heating phase.

The phase transition can be detected by considering the difference in their respective
on-shell actions: AS = ng:;?g — Efar:eheatmg. This is formally divergent, unless we choose
€y, = €yn/2. This is certainly an allowed choice and it yields: AS ~ —2uT < 0, V T > 0.
Alternatively, we can renormalize the corresponding on-shell actions by adding appropriate
counter-terms to the respective branes. In the non-heating phase, there are two boundaries:
6 — 0 and ©/(2u) — 6 — 0, while the heating phase has only one boundary limit 6 — 0.
The corresponding on-shell action can be renormalized by introducing the following bound-
ary terms:

S&on—heating _ J dS\/E — f dS\/H , (34)

Y —
Q_E_Enh 9—€nh

gheating _ _ f dsvh| (35)

9:€h

such that ng:;;ng + S?teatmg and S;f;_eheatmg + S?ton_heatmg are both finite. Here h denote the
induced metric on the boundary (i.e. 6 = const slice) of the brane.

Several comments are in order. First, it is clear that for a fixed tension brane, the free
energy is lowered as sgn(d) crosses zero from the positive side. We emphasize again that even
though the factor of (uT) can be absorbed in redefining s, the memory of sgn(d) remains in the
final answer. Here sgn(d) corresponds to the sign of the Casimir that distinguishes between
the non-heating and the heating phases. This phase transition is a first order one, since it is

straightforward to observe that e.g. (85 /0 ,u) have a discontinuous jump at the transition.”

There is a family of solutions to the Euler-Lagrange equation, subject to appropriate boundary conditions,
which can be obtained numerically.

7 Also note that, the free energy does not have the detailed swallow-tail structure associated with a typical first
order phase transition. This is perhaps due to the simplicity of the system.

10


https://scipost.org
https://scipost.org/SciPostPhys.15.5.202

Scil SciPost Phys. 15, 202 (2023)

Intuitively, one would prefer the positive tension branch, since it corresponds to a positive
kinetic energy for the brane and satisfy standard positive energy conditions on the brane.
The negative tension, on the other hand, corresponds to a negative kinetic energy and can
lead to instabilities. Nonetheless, such objects appear naturally within the context of string
theory as e.g. orientifold planes (see e.g. [80]) and can play pivotal role in realizing interesting
cosmological scenario.

3.3 End-of-world (EOW) branes

We will now consider introducing fully back-reacting and dynamical End-of-World (EOW)
branes in the corresponding heating and non-heating patches of AdS; geometry.® Since the
two patches are related by local co-ordinate transformations and not by large gauge trans-
formations, the on-shell action of the three-dimensional Einstein-Hilbert term along with the
Gibbons-Hawking boundary term cannot distinguish between the two phases. An EOW brane
introduces a hypersurface dynamics which is determined by the extrinsic curvature and is
therefore not a topological quantity in two-dimensions. Thus, it is expected that the phase
transition will be explicitly visible once EOW-branes are inserted into the geometry. We will
first consider a single EOW-brane and subsequently discuss two EOW-branes.

3.3.1 Single EOW brane

The full bulk action now comprises of several pieces: The gravity part, the brane part and the
intersection boundary part between the bulk geometry and the brane:

Sfull =S gravity + Sbrane + Scorner ) (36)
1 1
Sgravity = "33 d*x/g(R—2A)— Ff d>y VhK, (37)
M oM
1
Sbrane = _ﬁf dzo-\/?(K_ T) > (38)
z
1
Scorner:_ﬁf dthC(n_GE,EM)> C=XNnoM. (39)
C

Here d3x, d? y, d?c and d& denote the volume element of the full bulk geometry, the confor-
mal boundary, the brane and the corner. Correspondingly, g, h, y and h, denote the metrics on
them, K denotes the corresponding extrinsic curvatures and T is the brane tension. The angle
O, 5 0 denote the angle at which the brane intersects the conformal boundary. The variational
problem on (36) is defined by varying the inverse metric within the region bounded by the
branes and the boundary, keeping the branes and the corners fixed. This yields the following
equations:

1
RW—E(R—M)gW:O, (40)
Kip—(K—=T)ya =0. (41)
The first equation (i.e. Einstein equations) above determines the three-dimensional bulk geom-

etry and the second equation determines the profile of the brane. For us, the Einstein equations
are satisfied simply because we consider an AdS; geometry.

8Note that our framework will be very similar to e.g. [81-83], where unrelated physics questions have been
addressed.
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Figure 2: A pictorial representation of the two types of foliations described by equa-
tions (46) and (47). For the linear leaves, positive tension Karch-Randall branes are
located at constant angle ¢, € [5, 7] and for negative tension, they correspond to
¢o €[0, 51. Here, the EOW-brane intersects the conformal boundary at 7 = 0.

Before proceeding further, let us note that the non-heating patch is described by

Vid| Vid| Vid|

=—— v, T=—— ucos¢, z=-— 5 using, (42)
u= %[coth(,u(s + i9)) —coth(,u(s—i@))] , v= [coth(,u(s + iG)) +coth(u(s —iO))] .
(43)

Similarly, the heating phase is described by the following patch:

Vid| Vid| V1d|

=———V, T=——ucos¢, z=
2 2 ¢ 2

u= % [tan(u(s + i@))—tan(,u(s—i@))] , V= [tan(,u(s + i9)) +tan(,u(s—i9)):| .
(45)

usin¢g, (44)

Both the patches are essentially described by the following equations:

2422 = %uz, (46)

=tan¢. (47)

(£|

SRR

From (46), we observe that each u = const describes a leaf of a circular foliation of the Poincaré
patch and (47) implies that each ¢p = const describes a leaf of a planar foliation of the same. It
is expected that each leaf of both the planar and the circular foliation is described by a Karch-
Randall brane of a given tension. We will explicitly show this and for simplicity, we will focus
on the planar foliations.

Let us choose 0 = s and 0! = 0 as the worldvolume coordinates, and ¢ = ¢(8) as the
embedding function. This implies: d¢ — ¢’dO = 0 and therefore the unit outward normal to
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the brane is given by

Tlgh = z‘u L (03 _¢/’ ]‘) 2 (48)
sin ¢ V4u2 + ¢’2sin®(2u0)
o 2 L (o-¢), 4

sing \/4u2 + ¢/2sinh*(2u6)

where n, h and n correspond to non-heating and heating phases, respectively. The extrinsic
curvature is calculated by using K., = V,n,eje;, where e; = (8x“/ oo ) The simplest
component of the brane equation in (41) is given by the nn-component which can be readily
solved to obtain the profile: ¢(0) = ¢, where T = —cos ¢, in both phases. It is now
straightforward to check that this solves the full equations in (41).

Let us now evaluate the on-shell actions in the corresponding phases. First, in the non-

heating phase, we obtain:

/o 12 T
Sgravity Kz ) J f SIHZ(Z,U,Q) Sbrane ﬁ g m J‘ ds 5 (50)
Scorner = __2¢ f ds. (51)
K €

We add the following counter-term:
, (52)

Sa= = (7o (- m)J
p=n—e

T/2uU
Anh = dn zd—e . (53)
0 sin“(2u6)

Here h denotes the induced metrics at the corresponding hyper-surfaces. Note that the z = €
hypersurface corresponds to ¢ = 1 — e hypersurface. Also note that, the coefficient Ay, is for-
mally a divergent quantity, which itself needs a regularization. Nonetheless, the upshot is that
there is no finite contribution from the counter-terms and therefore the sum of Sg;; +S.. =0,
in the non-heating phase.

A similar computation in the heating phase require identical counter-terms as above, except
Ay — Ay, where

1
‘f—Anhﬁf \/ﬁ

6=¢

A= | d 5
h JSJ 51nh2(2,u9) G

Note that, while A;, is still formally a divergent quantity and needs regularization, the 6-
integral produces a finite contribution as & — oo. This very feature becomes crucial on the
brane. In the non-heating phase, the brane on-shell action consists only of divergent contri-
butions while in the heating phase the 6-integral contains a finite piece, as we just noticed.
Upon introducing the counter-terms this finite contribution survives and we obtain:

1 2uT
Sfull + Sct = E 1—T2 f ds. (55)

A few comments are in order. Note that, in the tension-less limit T — O and therefore
¢o — m/2, which recovers the probe limit answer of equation (31). In the strict T = 0
limit, (55) vanishes, which is also consistent with the probe limit calculation. The free energy
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in the small tension limit, however, does not reduce to the probe limit answer since the ex-
trinsic curvature still contributes to the full action. This is manifest in (55), in which AS > 0,
whereas the probe calculation yields AS < 0. Nevertheless, in both calculations, the phase
transition is detectable. A final comment is on the discontinuity of the first derivative of the
free energy across the transition. This is obtained by computing (85)/(8d) ~ d~/? — 00?
as d — 0. Hence the phase transition is accompanied by a generally divergent discontinuity,
except in a fine-tuned limit T — 0, in which it can become a finite quantity. Alternatively, we
can consider a derivative with respect to u, which will remain finite and the corresponding
phase transition will be associated with a finite discontinuity of the derivative. Finally note
that, as T — 1, the free energy and all other associated physical quantities diverge. This is
a singular limit, in which the EOW brane coincides with the conformal boundary of AdS and
cuts-off the entire geometry.

Let us now briefly discuss the dual CFT picture. The insertion of an EOW-brane in the
bulk amounts to introducing a boundary in the dual CFT, following the proposals in [84,
85]. These boundaries preserve conformal symmetries and the corresponding boundary states

are obtained by solving (Lp —i_p) |IB) = 0, where {Lp,iq} are the holomorphic and anti-
holomorphic copies of Virasoro generators. A general boundary state |B) can be constructed
from a linear combination of the so-called Ishibashi states [86]. As Fig. 2 demonstrates, the
CFT is defined on x € [—00,00] and 7 € [0,00]. The corresponding boundary state can
be labelled by an index |B,), which is encoded in the tension of the brane. Subsequently,
for a CFT defined on a cylinder, the Euclidean on-shell action is related to the disc partition
function for the BCFT, given by (0|B,) = g,. Note, however, that we started with a Poincaré
AdS; geometry and therefore the Holographic on-shell action is not simply related to the disc
partition function. Instead, it computes the CFT partition function defined on the half-plane
in 7. Finally, a note of caution: Recall that the action of the bulk Hamiltonian as well as the
equations for the tangent curves are obtained starting from a Poincaré AdS bulk. One can also
begin with a bulk dual of a BCFT and subsequently analyze the bulk Hamiltonian as well as
the tangent curves accordingly. This description contains an EOW-brane to begin with and it
will be interesting to analyze this case further. We do not, however, expect any qualitative
difference in the physical picture.

3.3.2 Two EOW branes

Let us now consider two such EOW-branes. The corresponding action is given by

Sfull = Sgravity + Sbrane + Scorner > (56)
1 1
Sgravity = "33 d®x/g(R—2A)— = J d>yvVhK (57)
M oM
1
Sbrane = Z _ﬁf dZO'ﬁ(K— Ti) ’ (58)
i=1,2 %

1
Scorner =~ L dEVhe®s o0, C=(ZNaM)U(Z,NnaM)U(ZNT,). (59)

Here %;, i = 1,2 denote the two EOW branes and T; are the corresponding tensions. The
equations of motion are still given by (40) and (41) and the corresponding brane solutions
are T} = —cos ¢ and Ty = —cos ¢5. Now these two EOW-branes may intersect in the bulk,
in which case there is a non-trivial finite contribution to the free energy coming from the

°Recall that u = f34/|d|.
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Figure 3: A pictorial representation of two intersecting EOW-branes. The outward
normal to %; , are denoted by ni’z and the outward normal to the conformal bound-
ary of AdS is denoted by nzM. The two branes intersect at an angle 6, , = ¢, — ¢ in
the bulk. The gravitational theory is defined within the triangle, including its sides
and corners.

intersection point of the two branes. However, if the two branes remain non-intersecting,
then there is no such contribution and the result remains the same as above.°

The intersecting case is shown in Fig. 3. The analyses proceeds as above with one important
addition. Since the outward normals at ¥; and %, satisfy: g*f ng})ng) < 0, we choose:

1 1
() 2 —
n,’=-——(0,0,1), ng,’ =—-

@ sin ¢ ( ) ¢ sin ¢,
in both heating and non-heating phases. Here, we have already used the solution for the EOW-
brane ¢;, = 0. From Fig. 3, the branes are intersecting if 6; = ¢ — P > 0;!! and there is
no intersection if 6, 5 < 0. To proceed further, it convenient to describe these branes in the
Poincaré patch:

(0,0,1), (60)

=tan¢;, =tan ¢,, 61

T—1Tq1 T—7Toy

where 7, 5 are the points at which the EOW-branes %, , intersect the conformal boundary of
AdS. Their mutual intersection point is given by

_ Tytang,— Ty tan g,
"~ tan¢; —tan ¢,

T1— T2
s z, =tan ¢, tan p,———, (62)
¥ o1 ¢2tan ¢, —tan o,

*

It is easy to evaluate the pure-gravity part of the on-shell action in both phases. This yields:

1 1 C;
Sgravity: F(Tl_Tz)Z_ZJ dX+§, (63)

*

10Recently, similar EOW-branes have been explored in the literature with a different physical motivation. See
e.g. [81-83,87] for a representative of such works.
"This, in turn, implies that 7, < 7.
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which consists of either a divergent piece or a finite term that is universal in both phases. Thus,
this will not be relevant in the free energy differences. Likewise, the intersection terms S.qper
are universal in both phases, except for the contribution coming from the mutual intersection
point of the two branes. To proceed further, we now need to fix the ranges of coordinates
corresponding to the region enclosed by the branes and the conformal boundary of AdS (see
e.g Fig. 3).

The domain of interest is defined by the Poincaré coordinates x € [—00,00], T € (7,,T5)
and z € (0,2,). In the non-heating phase, recall that:

Vid| V1d]

T=—, ucospy,, z=-— 2 using, o, u=%[coth(u(s+i9))—coth(u(s—i9))]. (64)

It is clear that z, = 2,(s, ), and therefore the corresponding ranges of the coordinates {s, 0}
are mutually dependent. For example, setting s = 0,'2 the corresponding coordinate ranges
are given by

T 1 -4
beld,—|, 0,=—cot | ———|. (65)
|: ' 2:“i| tow (v|d|sin¢1’2)

Similarly, in the heating phase, one obtains the following range:

1 Z
6el6,0], 6, = —tanh'| —=— |, (66)
[* ] o (\/Idlsinqbl’z)

where we implicitly assume that the intersection point z, remains within the corresponding
patch. Note that, the ranges in (65) and (66) both depend on z,, given a brane angle ¢ .
In general, therefore, 6, = 6,(s). Thus, the region bounded by the EOW-branes becomes
explicitly dynamical. Correspondingly, the on-shell action also depends explicitly on s. For
simplicity, we will be working with a free energy density defined at the s = 0 slice, using the
above ranges.

In the non-heating phase, the finite contribution from the brane and the corner part eval-
uates to:

2u | cos¢y 4 Z, cos ¢, 1 Z,
Strane = —= | — cot| 2cot + — cot| 2cot —_— ,
T k2 | sin? ¢y ( v |d|sin ¢, sin? ¢, v |d|sin ¢4

Scorner = _ZK_‘; (¢2 - ¢1) csc (2 COt_l (Z—*)) . (67)

\/Wsindn

In the heating phase, the corresponding finite contributions are:

2u | cos ¢, 1 Z,
S =— coth{ 2tanh™" | ———
Prane = k2 | sin? ¢1 ( V1d[sin¢;
Cos ¢ -1 Zx
+ coth| 2tanh _ ,
sin® ¢ ( (\/ |d|sin¢2))

Scorer = —2—5 (qbz - ¢1) sinh (2 tanh ™! (z—*>) . (68)
K

Vld|sin ¢,

12Recall that this choice does not affect the stroboscopic time n to be a suitably large integer. This is simply
because there is always a shift freedom between these two coordinates.
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Figure 4: A representative behaviour of the free energy difference

AS = Sheating — Snon—heating> for fixed values of T; = 0.001, |d| =2, 7, — 7, = —0.1,
within a specified range of values of T, which are shown in the figure. This plot
shows a monotonically increasing and a positive AS in this range of T,, with
AS — o0 as T, — T; ~ 0.0715. At T, = Ty, there is an infinite jump. Thus, the
non-heating phase, in this branch, has a lower free energy.

The free energy difference is now given by taking the difference between (68) and (67).

It is straightforward to check that in the special case when T, = 0 and T; = T, we get
back the same answer as in (55). In the special case when T; = T, = T, we also get back
the same qualitative physics, since the free energies are enhanced by a factor of two, keeping
the sign and the behaviour of the difference the same. The general behaviour is richer. A
representative feature is shown in Figs. 4 and 5. For a given Tj, the free energy difference has
two distinct signatures in two regimes of T,. These two regimes are demarcated by the point
at z, = +/|d|sin ¢1, which yields:

(69)

Vd|sin ¢,
T, — Ty + 4/|d|cos ¢,

At this location AS — £00, as ¢, approaches the above value from above or from below.

Let us now discuss the dual CFT perspective. The presence of two boundaries in the CFT has
two different interpretations for the corresponding BCFT. In the so-called open string channel,
one considers an open string with two end points at the two boundaries. Alternatively, one
can adopt a closed-string channel description, in which case a closed string state evolves from
an initial state to a final state. Consider the Euclidean path integral, denoted by Z,;, of a CFT
on a cylinder with circumference 7 and vertical width 7,,, with boundary conditions a and b
at the two ends. See Fig. 6 for a pictorial representation. As before, we add a note of caution:
One can alternatively begin with a bulk geometry with the EOW-branes already inserted and
explore the corresponding patches by analyzing the bulk Hamiltonian and the corresponding
tangent curves. We expect the key qualitative aspect to remain unchanged, however, it is an
interesting scenario to explore in detail.

In the open-string channel, Z,; can be thought of as a thermal partition function for a
system defined within an interval of width 7, with boundary conditions a and b at the two
end points. Thus, Z,, = Tr(e~"#Horen). In the closed string channel, this becomes a transition
amplitude between two boundary states, |a) and |b), in a system which is defined on a circle
of circumference tg. Thus, Zy, = (ale~*wHdosed|p), Note that this geometry is characterized

¢y = arctan(
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Figure 5: A representative behaviour of the free energy difference
AS = Speating — Snon—heating> for fixed values of T; = 0.001, |d| =2, 11 — T, = —0.1,
within a specified range of values of T, which are shown in the figure. This plot
shows a negative AS in this range of T, > T; ~ 0.0715. Thus, the heating phase
has a lower free energy in this branch.

by the dimensionless ratio 7,,/7g, up to its conformal class. It can be shown that in the

TCTy

limit 7,,/75 — 0o, the Euclidean path integral is given by: Z,, = g,gpe *# , where c is the
central charge of the CFT and g, = (a, b|0). These g, are ground state degeneracies. In
the limit, 7,,/7g — 00, the Holographic on-shell action is precisely related to these ground
state degeneracies. Note, however, that our bulk dual is based on the Poincaré AdS; geometry
and therefore the CFT is defined on a decompactified circle: 75 — oo. In this limit, the bulk
on-shell action still computes the CFT partition function Z,;, and this receives contribution
from ground state as well as excited states. To precisely connect with boundary entropy of the
BCFT, one should begin with a global AdS; geometry and subsequently carry out the analyses
above. It is an interesting aspect, which we leave for a future work.

A final note is about the types of boundary conditions. With two EOW-branes, i.e. with
two boundaries one can define a boundary condition changing operator. These operators are
formally defined as the primary operators with the smallest dimension, in the spectrum of
open string channel with two non-identical boundary conditions at the two end points. This
is non-trivial when a # b, which corresponds two EOW-branes with two different tensions
T, # T,. As we have demonstrated above, this has a rich structure associated with the phase
transition.

4 Boundary correlation functions from the bulk geometry

In this section, we compute two-point and four-point correlation functions in the bulk in all
three phases. We then compare them with the known results in a large ¢ CFT [61, 65]. This
will provide a self-consistency check on our geometric description.

4.1 Two-point correlation functions

We will compute the two-point function using the geodesic approximation [66] [67], wherein
the two point function is approximated by the exponential of the geodesic distance between the
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Figure 6: A pictorial representation of the BCFT partition function, which is defined
on a rectangular region of horizontal length 74 and a vertical length of 7,,. Let us
assume that 7 g is periodic. The picture above corresponds to the open string channel,
in which an open string has end points at the two horizontal lines, separated by 7,,,.
The corresponding CFT can be defined on the upper half plane, which is shown on
the right. The picture below corresponds to the closed string channel, in which a
closed string of circumference 7 propagates from an initial state to a final state.
The corresponding CFT is defined on the entire plane, with different states inserted
on circles of different radii.

two boundary operators. To this end, we first express the geodesic in terms of the embedding
coordinates (T;, Ty, X1, X,) of AdS;.

The geodesic distance (D) between two points whose embedding coordinates are (T;, T5,
X1, X5) and (T}, T,, X1, X5), is given by [67]'3

coshD =T T] + T, T, — X1 X] — XX, (70)

We then express the answer in terms of the bulk coordinates by using the explicit map
between the bulk coordinates in which the bulk metric is written for each of the phases and
the embedding coordinates. We do this for each phase separately and after regulating the
divergence in the geodesic distance, we find an exact match with the boundary two-point
function.

4.1.1 2-point correlation function in the heating phase

We start with the metric (21) for the heating phase (d < 0) and consider the following coor-
dinate changes:
r =coth(2uf), and t=2us, (71

to rewrite (21) as:

ds* =
sin?¢  sin? ¢

d¢? N 1 (dr2

r2—1

—(rz—l)dtz). (72)

3We have set the AdS radius [ = 1.
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The embedding coordinates corresponding to (72) are given by:

T, =V r2—1sinhtcsco,

T, =rcsco,
X, =cot¢,
Xo=4r1r2—1coshtcsco. (73)

We now compute the correlators of two boundary operators V!4 which are located at
(tln ry, ¢ = 0) and (t29 ra, ¢ = 0)
In this set-up, the geodesic length in (70) turns out to be:

coshD = A? (rlrz —1— \/(rl2 —1)(r? —1)cosh(t; — tz)) . (74)

Here A = csc¢. For the boundary points, this is actually divergent since the boundary points
are at ¢ = 0. We therefore regulate it by taking A large but not infinite and then removing
the divergent term to obtain the regularized geodesic distance. In this limit, the expression
simplifies to:

rlrz—l—\/(rf—l)(rzz—l)cosh(tl—tz)
D~1 24/12—1 | 244/72—1 . (75)
0og ( r] )( ry ) 2\/(r12—1)(r§—1)

Using (74), and removing the regulator term 2A+/(r2 — 1), the two point correlator becomes:

24/r2—14/r2—1
riry—1—4/r?—14/r2 —1cosh(t; —t,)

This matches exactly with the boundary computation as we now show.

(VV) ~e ™D = (76)

Boundary computation of the two point function:

The boundary theory lives at ¢ = 0. From the curve equations in (14) in the heating phase,
at ¢ =0 we get:

x+ir=z=\/§tan,u(n+i9), (77)
x—i’r=2=\/§tanu(n—i9). (78)

Here we have identified n with the boundary time s.
If we define w = u(n +10), then the above equations become:

z = \/E tanw, (79)
Z = \/E tancw. (80)
Using (79) and (80) the two point function can be written as:

] BN AN EPA N EEANEI A 1
wovonmenon=(32) (52) (52) (32) amopezam

22h

(cos 2u(n, —ny) —cosh2u(6; — 92))2h .

14Here, the operators in consideration are heavy operators of mass m.
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We analytically continue n — in to get the Lorentzian correlator as:

_ ~ 22h
(@(wq,01)P(wy, ;) = o (81)
(cosh 2u(n, —ny) —cosh2u(6; — 92))
Re-defining t = 2un and coth2ub =r,
cosh2u(6; —6,) = T . (82)
V=102 -1)
Substituting (82) in (81), we get:
\/ 5 . 2h
24/ (rs=1D)(r5—1)
(®(01,1)®(ws, 35)) = - - (83)

(cosh(t; —t5)4/(r2=1)(r2—1)—ryry+ 1)

For heavy operators identifying m ~ 2h,,, we get an exact match with the bulk answer given
in (76).

4.1.2 2-point correlation function in the non-heating phase

We can rewrite the metric (19) corresponding to the non-heating phase (d > 0) as

d¢? 1 2
ds® = .d) + — ( dr —(r2+1)dt2), (84)
sin?¢  sin?¢p \r2+1
by considering the following coordinate change
r=cot(2ub), and t=2us. (85)

The embedding coordinates are given by:

T, =+vr2+1sintcsco,
T,=+vr2+1costcsco,

X, =cot¢,
X, =rcsco. (86)

The geodesic length, given by (70), is:

coshD = A2 (\/(rl2 12+ D cos(t, — t,)—1— rlrz) . 87)

Once again, the distance is divergent and we need to regulate it. Hence, as in the heating
phase case, we obtain

V2 + D2 +1)cos(t; — tg) — iy — 1

D~log|(224/rF+1 )(22¢/13+1) (88)
2,/(r2+ D)2 +1)
Using (88), the two point correlator is obtained to be:
m
2,/r2+14/r2+1
(VV) ~e ™ = ! 2 (89)

'V 7”12+1V 1’§+1C05(t1—t2)—r1r2—1
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In the above, the geodesic distance has been regulated with a regulator 244/ (r2 + 1).

The boundary computation:

At ¢ =0, the curve equations in (10) gives:

xX+it=g=— dcoth,u(n+i9)=—\/gcothw, (90)
X—iT=%Z=— dcothu(n—i9)=—\/gcotha'). 91)

Using the above equations the two point function in this case can be written as:

- _ _ 30)1 h 30)2 h 6(151 h 8(52 h 1
wevonsenan=(52) (52) (52) (52) eoapm—am

22h

- (cos2u(n; —ny) —cos2u(H; — 6,))2h

The Lorenzian correlator for non-heating case after analytic continuation (n — in) and coor-
dinate re-definition (t = 2un, r = cot2u0) is:

2h
24/ (r2+1)(r2+1)
(@(w1, 01)2(wy, 0,)) = \/ - 2 (92)
(cos(t; — t5)/(r2+ D2+ 1) —ryry— 1)
Which matches with the expression derived from the bulk in equation (89)
4.1.3 2-point correlation function in the phase boundary
The embedding coordinates for this case can be written down as:
1
T, = 2—(1 +r2(1—tH)csco,
r
T,=trcsco,
X, =cot¢,
1
Xy = 2—(1—r2(1+t2))csc¢. (93)
r

In this case the corresponding metric in (18), after the coordinate change r = % and t =s,
can be rewritten as,
de? 1 dr?
g2 =49, 1 (——rzdtz). (94)
sin®¢  sin*¢ \ r?

The corresponding geodesic length is:

2’2
2ri1y

coshD =

((rl —1)* = (rr)*(ty —tz)z) . (95)

Similar to the previous cases, using (95), we find the regulated geodesic length, with regulator

(rA= °S§¢) and then the two point correlator is obtained to be:

2..2 m
(VV) ~e ™D = ( 172 ) . (96)

(ri—ry)?— r12r22(t1 —ty)?

22


https://scipost.org
https://scipost.org/SciPostPhys.15.5.202

Scil SciPost Phys. 15, 202 (2023)

The boundary computation:

As before, we start with (17) at ¢ = 0 and find the two point correlator after analytically
continuing n — in and suitably redefining coordinates t =n,r = % to be:

(rlzrzz) :|2h

(ry—ry)?— rlzrzz(ﬁ —ty)?

(®(wq, 01)®(wy, Dy)) = (97)

Again this matches exactly with (96).

4.2 4-point out of time order correlators from the bulk

In this section we compute a 4-point OTOC in the bulk geometry following the work of [66,67].
The idea, as argued in [67], is that the four point OTOC in the bulk can be thought of as a
two point function in a perturbed shock wave geometry created by one of the operators. In
this section, we will set up the computation in the heating phase geometry. We will show
the emergence of a exponential temporal behaviour at late times with a Lyapunov exponent
which will exactly match with the boundary value obtained in [65]. We then end the section
by pointing out the crucial difference with the other two phases, which will lead to a non-
exponential temporal behaviour in those cases.

4.2.1 The shock wave profile

We begin with a derivation of the shock-wave profile following the seminal work of [88]. We
start with the form of metric given in 72:

dep? 1 dr?
asr=20" 1 (AT _2qyqe2), (98)
sin“¢ sin®¢p \r*—1

In terms of Kruskal coordinates, this takes the form:

2 _
ds? = do ! ( 4 dudv), (99)

= +
sin?¢  sin?¢ \ (1 +uv)?
where, u=—e"%, v =¢’ withii=t—r,, 7=t+r,and r, = %lnliz—il.
The metric (72) has a horizon at r = 1 or uv = —1. This will then represent a two-sided

black-hole geometry in extended Kruskal coordinates. The boundary theory lives at ¢ = 0
hyper-surface. The above metric (99) is of the following form [89]:

ds? = 2A(u, v)h(¢)dudv + h($)d 2, (100)

where A(u,v) = ﬁ and h(¢) = Smlz e Consider a scenario where a massless particle at
u = 0 moves along the v-direction in the background metric (100), along a constant (¢ = a)
which back-reacts and results in a shock wave geometry. Following [88], our ansatz for the

form of the shock wave geometry is:
ds? = 2A(i1, ¥)h($)ditd v — 24>, )h(P)né (@)di® + h(p)d P> (101)

This shock wave geometry in (101) is described by (100) for both u > 0 and u < 0 with the
effect of the shock wave being that the v coordinate for u > 0 is shifted to v+ 1(¢). In (101),
 =v+n1(¢$)0(w), it =u and ¢ = ¢. Our main objective is to determine 1(¢) that determines
the shock wave profile.!®

15Let us note that due to the presence of an overall conformal factor h(¢ ), the metric in (100) is slightly different
from the form of the metric considered in [88] and [89]. Therefore, we expect the conditions (eg. see Eq. 2.10
of [89]) on metric components and the equation satisfied by the shock wave profile in our case would be different.
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The core idea of this calculation is based on the fact that the ansatz metric (101) solves
the Einstein equation with appropriate source terms. These source terms are given by the sum
of stress tensor of the unperturbed geometry and the stress tensor of the moving particle (T?)
with momentum p. Here,

TP = TP dii* = —4p A* h*(¢) (i) dit®.

Subsequently, comparing the coefficients of 6(ii) on both sides of the Einstein equation, we
get the following conditions:

At i1=0, Af,:O, A,W:O,

h’ ,
W)+ g (9) = 32mp AT 59 —a).
In our case, this takes the following form:
n"(¢)—cotd n'(¢) = ——g 5(¢ —a), (102)
sin” ¢

where, ¢/ = 327 p. The solution to above equation is:

n(¢p)=cy—ccos¢p + ¢’ csc*a [(cos ¢ —cosa)O(¢p — a)] . (103)

To proceed further, we need to impose boundary conditions to fix the constant ¢; and c,.
We impose the boundary condition that the shock wave is entirely in the bulk and has no
component along the boundary, i.e.: n(¢p) =0 at ¢ =0, .

This completely determines the profile function, which takes the following form.!®
¢’ cscta
n(¢) = — |:(1 —cos¢)(1+cosa)+ 2(cos¢p —cosa)O(¢p — a)] . (104)

4.2.2 4-point OTOC in the heating phase geometry

Let us now compute OTOC of two scalar operators (V and W) in the bulk. As mentioned
earlier, this reduces to the computation of a two point function in a perturbed shock wave
geometry [67]. Therefore, we have to compute , (V; Vz)y similar to 4.1.1 but in the shock
wave geometry produced by a particle W, where the two boundary operators (V;, Vz) with
mass m are considered to be on left and right boundary of the extended geometry. The shock
wave in this case is due to back-reaction produced by the large blue shifted proper energy,
denoted by E,,, of the probe particle W. This W particle is released from the boundary in the
far past, at a time t,,, as measured by a static observer near horizon at time t = 0.} We can
redefine t = 23+v/d s and r’ = 23v/d r, the metric (72) becomes a AdS, blackhole patch of
AdS; with horizon at ' = 2v/df:

dp? 1 ( dr’

2 _
s r2 — 4dp2

= +
sin?¢  sin? ¢

—(r’2—4d/52)dsz) . (105)

1®The final expression (104) depends quite non-trivially on the specific choice of boundary conditions i.e.
n(¢) = 0 at ¢ = 0, 7. Given the fact that the calculation’s final outcome is heavily reliant on this shock wave
profile, one may wonder if there is a particular and distinctive way to select the boundary conditions and whether
different boundary conditions will correspond to completely different physical cases. It would be nice to explore
these questions further.

17See 4.2.3 for more detail.
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The boosted large energy at time t,, = 0 in the above metric is:

E, sinae?VdPsw | (106)

" 4dp?

As we do in the two-point function computations, we start by writing down geodesic
lengths in terms of embedding coordinates but this time we write two separate geodesic dis-
tances d; and d, from a boundary point to some bulk point on both sides of the shockwave
geometry. The actual geodesic is then calculated by extremizing the sum of two distances
d; + d,, with respect to v and ¢ so that it meets the shock wave at v, on ¢, slice. Here, d;
refers to the geodesic length from the left boundary point (t; = 0,1, ¢y = 0) to some bulk point
at (u=0,v,¢), while, d, is the geodesic length from (ii = u = 0, ¥, ¢) to the right boundary
point (tg = 0,1, o = 0). The expressions for d;, d, in terms of embedding coordinates in (73)
are given by

coshd; = [r +e v r2—1v—cos¢cos qbo]csc ¢ csc g, (107)
coshd, = [r +e ®Vr2—1 (v +n(¢))—cos¢ cos (i)o]csc ¢ csc oy . (108)

Recall that for ¢y = 0, csc ¢, = A diverges and needs a regularization. The final geodesic
length is calculated in two steps: First, by extremizing d; +d, in (107) and (108) with respect
to v yields: v, = —n/2 and the corresponding geodesic length is given by

cosh%=A(r+\/r2—1@—cos¢)cscq§. (109)

Extremizing further with respect to ¢ yields:

44 c'vVr2—1(cosa+1)cscta

cos ¢, = , for ¢ <a,
- 4r +c’vr2—1(cosa+1)cscta
44c'VrZ—1(cosa—1)cscta

cos ¢, = ( ) for ¢ >a.

4r +c/'VrZ—1(cosa—1)cscta’

Substituting ¢, back in (73), the final geodesic distance turns out to be:

-1 +1
d NZIOg[Z?L\/ r2—1]+log 14"\ i (%) , fora> E, (110)
r+1\ sin‘*a 2

or,

+1(1—
dm210g[27t\/r2—1]+log 14"\ i (ﬂ) , fora< =, (111)
r—1\ sin*a 2

After subtracting the divergent contribution from 2A+/r2—1 and using a geodesic ap-
proximation, ,(VV)y, o< e ™ with regularized geodesic distance d and substituting
¢/ ~32n-L_sin aez‘/zﬁSW, we find that the final form of OTOC is:

4dp?
m
w VL VR)w ~ 1 (112)
WW)(V; V, E 1(1+
( VALY 1+32ﬂ;4dﬁ21/%(ﬁ)62\/&ﬂsw

From the above expression we get the Lyapunov exponent to be 2+/d3 . This matches precisely
with the Lyapunov exponent obtained from a purely CFT computation in [65]. In that work,
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a direct and explicit CFT calculation was carried out for a large ¢ CFT. With a discrete drive,
in the heating phase, the four point OTOC in large-c CFT was obtained to be:

2h,

F= L , (113)

24mih,e4nd
c€12€34A(2y,2y)

1)z +1
where, A(zy,,2,) = —1602%

exponent to be:

. From the above equation, one can extract the Lyapunov

40

= 114
(T7 +Ty) (1

AL
Expressing the above equation in terms of the parameters of the effective hamiltonian, then
using (A.11), we get:

=2 —apy=2pvd=—20 _ (115)

(T1 +T5)

This matches with the bulk computation. It would be nice to match the full expression (113)
with its bulk counterpart and not just the Lyapunov exponent. The function A(z,,z,,) is a
non-trivial function of the position of two operators V and W. The bulk expression derived
here is a function of the position of the boundary V operator, however the only information of
the W operator which enters is the direction ¢ = a along which the particle which creates the
shock wave propagates. We have not been able to translate this information into the boundary
location of the W operator. However, it is encouraging that the dependence on the position of
the V operator is similar in both the expressions. We hope to be able to return to this in the
near future.

4.2.3 OTOC in non-heating phase and phase transition

Let us repeat the same calculations in the non-heating phase, as well as on the phase boundary.
In the heating case, the exponential behaviour in the OTOC was due to the shockwave geom-
etry that results from the large blue-shifted energy O(e! ) of the W particle which is released
at a very early time t,,. In general, if a particle released from the boundary r — o0 at an early
time is moving along a null trajectory with proper energy E, the energy E, measured on the

time slice t =0, is
E
E, = —— (116)

\/g00|t=0.

We will now investigate the behavior of E, for the metrics in other phases.

For non-heating phase: We start with the metric (19) and follow exact similar procedure

as in the previous section to rewrite the metric in terms of r = cot(2u6), t = 2us and ¢:

e 49?1 ( dr?
sin?¢  sin?p \r2+1

—(r2+1)dt2). (117)

. . . . . . dr. —
The tortoise coordinate r in this case is given by 7= = 7 +1r2 and hence, r, = tan~! r. Therefore,

the trajectory of nearly null W-particle released from boundary at t,,, in terms of the tortoise
coordinate r, at time t is:

t—thr*—g. (118)
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Substituting (118) in (116) we see that for metric (84) the energy measured at time t = 0 is:

E. = Esina sint,,. (119)

On the phase boundary:

Similarly, the metric (18) can be re-defined in terms of r = % and n = t. The tortoise coor-
dinate for this case is given by r, = f ‘:—S = —%. Then the null trajectory of W-particle in this

case is:
t T
f dt=f dr,
ty 0

>t—t,=r,.
Then using this in (116) we find the energy measured at t = 0 is:
E.=Esina t,,. (120)

Hence we find that the energy measured at time ¢t = 0 in non-heating phase (119) and during
phase transition (120) respectively show oscillatory and power law dependence on t,,. This is
consistent with the boundary results [65].

5 Discussions

In this article, we constructed a Holographic description of a (gravity + brane) system which
is capable of detecting the non-heating to heating phase transition in the dual boundary CFT,
which is subject to a periodic drive. While this framework is completely natural and intuitive
in this respect, our construction should be viewed as the simplest of the richer possibilities.'®
Subsequently, there are several intriguing aspects for future explorations. We enlist some of
them below.

First, note that the periodically driven Hamiltonian is sl(2,R)-valued and therefore does
not accommodate the possibilities of a large gauge transformation. The general class of Brown-
Henneaux diffeomorphisms contain an infinite number of such large gauge transformations,
which are dual to a periodically driven Hamiltonian valued in the sIY(2,R), for ¢ > 1. Con-
ceptually, it is no harder to find the corresponding curves in the bulk which would be generated
by the bulk Hamiltonian. Subsequently, the various patches will likely contain a richer class of
metrics, including dynamical ones. This generalization will naturally include the possibility of
analyzing a non-trivial highest weight state and its corresponding evolution in the bulk geo-
metric description, which are expected to lie within the family of Banados geometries. It will
be an interesting question to consider these cases in detail, also in the presence of EOW-branes.
For the conceptual richness and the technical involvement, this deserves an independent study
which we hope to address in near future.

A much simpler problem is to consider the sl(2,R)-valued drive Hamiltonian and work
out the corresponding phase patches starting from a global AdS;. In this case, the CFT is
defined on a cylinder and the corresponding (gravity + brane) on-shell action corresponds
to the boundary entropy of the dual BCFT. This boundary entropy counts the ground-state
degeneracy in the BCFT and it will be interesting to understand in detail how this counting
detects the phase transition. This further generalizes in the presence of more than one EOW-
branes, with different tensions.

8Note that, the richness of a boundary degree of freedom in dynamical context has been explored also in [90-92]
in the probe limit and in [93-95] away from any probe approximation.
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Relatedly, we can explore an alternative way of inserting the EOW-branes in the bulk. One
can begin with a bulk Hamiltonian, in a geometry where EOW-branes are already inserted
and subsequently analyze the tangent curves and the corresponding induced geometries. This
is conceptually different from what we have done here. Although we expect the qualitative
features to remain the same, especially so since the EOW-branes emerge naturally in the cor-
responding patches that we have considered here, it will nonetheless be an interesting issue
to understand in greater detail.

It is interesting to note the similarities with the framework in [96], in which a path integral
optimization in CFT has been realized in terms of a holographic description. The similarities
between these are worth exploring further, especially focussing on the potential connection
between phase transition detection and path integral optimization as well as the holographic
path-integral complexity.

A crucial point of our study is the appearance of AdS, slicing which plays a pivotal role in
distinguishing phases in terms of unequal time correlators as well as provides a natural set-
ting to incorporate EOW brane. In particular, the OTOC computation strongly suggests that
the AdS, physics is responsible for the different temporal growth in different phases. From
the boundary perspective it is not at all clear why such AdS, foliation emerges. For instance,
from Eq. (77) and (90) the boundary tangent curve parametrizes a time dependent boundary
metric. This time dependence in boundary metric is responsible for the different temporal
behavior of the unequal time correlators. However when we lift those boundary metrics to the
bulk AdS; we end up with time independent AdS, slicing of AdS;. The presence of the EOW-
branes in an AdS-background suggests a doubly-Holographic model structure. Such models
have recently been intensely explored in connection with the black hole information para-
dox [97]- [98]. It will be intriguing if there is a clear connection between the physics of the
transition with the physics of the information paradox here. We hope to return with a more
clear answer in future. Also note that our brane-analyses are explicitly tied to the choice of
static gauge for the brane profile. In general, a relaxation of this condition is technically viable
and it remains to be seen how crucially the physics of the phase transition depends on this
choice.

Relatedly, it will be interesting to construct examples in which the black hole on the brane
becomes truly dynamical. This aspect is expected to be visible with a periodic drive with an
s1D(2, R)-valued Hamiltonian. Alternatively, similar dynamical situation could be appeared
in a primary state under the sI(2,R) drive. We would like to address some of these issues in
future.

Continuing on the point above, the class of time-dependent Hamiltonians that we have
considered is certainly not of the most general kind. There are several possible generalizations
that may allow sufficient controlled calculations. For example, a potential generalization to
higher dimensional cases appear especially intriguing and some preliminary work is underway
to explore this possibility.

Finally, since a connection with the doubly-holographic models emerge in the 2d CFT cases,
it will be very interesting to further sharpen the precise connection between such models in
higher dimensional CFTs. In recent times, doubly-holographic models have been widely used
to address salient features of black hole information recovery where one couples the black
hole with a non-gravitational bath. Within our driven CFT framework, such a coupling may
be natural for various subsequent physics questions, across dimensions.
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A Floquet (effective) Hamiltonian of a driven CFT

In this appendix, we explicitly construct the Floquet (Effective) Hamiltonian (H.g) for the
two period discrete drive protocol. The form of Floquet Hamiltonian depends on the driving
protocol of the CFT. As an example, we compute the Floquet Hamiltonian of a discretely (two-
step) driven CFT where, where, the Hamiltonian Hy = f OL Too (1 —tanh (29)cos(2%)) dx in
each period switches between Hy = Hy—(,H; = Hp as in Fig. 7 [57].

Figure 7: Pictorial representation of discrete drive protocol.

In terms of the modes, the Hamiltonians are given as following:

21 - TIC
Hy=—|Lyg+Ly|——,
°T [Lo+Lo] 12L
and
27 L1+L_1] TtC . .
H, = —| Ly—tanh (26 — + anti-holomorphic part.
1 I [ 0 (20) 5 121 phicp
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At this point, we make an ansatz for the Floquet Hamiltonian, that replicates the same dynam-
ics as the original system. We assume the following as the Floquet Hamiltonian'®

Heg =[aLy+ BLy +yL_;]+ anti-holomorphic part(A.H) .

Since H, and H; are only made of Ly, L.;, the BCH formula guarantees that the Floquet
Hamiltonian should be made of only by those global conformal generators. We may able to
determine a, 3,y by demanding that H.g must satisfy the following condition:

e~ ToHop=T1H1 o — o (To+T1)Het 5 (A.1)

For discrete drive, the LHS of the above equation gives [55],

[(1—8)cosh20 — (5 + 1)](
[(1 — 5)51nh29](

zm)z + Efzg_lﬁ),sthQ

(6 —1)cosh26 — (6 + 1)]

—TOHOe—TlHl g =

e ,  (A2)

2v65’)z + 256’ [

where § := eLcoshze and &' := e " . First, we'll compute the action of H.¢ on z. We will then
compare the result with (A.2) to derive the relations between the parameters a, 3,y and the
parameters of the drive. In the z plane, H.g is

d
Heg = f z—z_(az +Bz2 +7)T(z) + AH. (A.3)
i
To simplify (A.3) further, we map it to Z plane such that H ¢ becomes
dg . . . .
Heff = —.ZT(Z) +AH= LO B (A4)
27
where Z and z are related by the following transformation:

5= [C/(Z —A)] \/(azl—4ﬁy)

5 A.5

o (A.5)

where, ¢ is a constant, A = V2= °(20/§2_4M and B = =20 W. In the Z plane, H,;( acts as,
etz = eho = ¢, (A.6)

using the above identity and (A.5), we found that
g = e—ToHoe—TlHl Z = e—(To"'Tl)Heff.Z(g) — Z(e_(T0+T1)§)

-1 1
Am 2 —Bm?2 ol
—Q3 z+A—B (mZ—m2)
= - - s (A.7)
= 2 4 AmT—Bmi
(mz _mZ)A—B+ 2A-B

19Here we ignore the c-number part which is irrelevant for our purpose.
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here, m = e(To+t TV (@®=4BY) - Afrer comparing (A.7) with (A.2) we found that,

B _ 5'(1—6)sinh26 (A8)
a (6+1)(1—-6)—(6—1)(1+6)cosh26’ '
Y _ (1—06)sinh 26 (A.9)
a (6+1)(1-6)—(6—1)(1+6)cosh26’ '
(((1 +5)(1+5’)+(1—5)(1—5’)cos,hze))2—1655’)E
" 4(56")z
2
L (1+8)(1+68)+(1-5)(1 -5 )cosh26 (A10)

4(55")2

In the discrete drive protocol, a simple choice of drive frequencies leads to a heating phase:
iTg =Ty = %, itT,=T, = Lc%h(ze) such that the su(1,1) transfer matrix takes a simple form:
a, =d, = (—1)"cosh(2n0); b,, = ¢,, = —(—1)"sinh(2n0) [57]. We have used this protocol to
determine OTOC in discrete drive protocol in [65]. Plugging this choice of Lorentzian time
periods in A.8 we get

460
a2_4m:—(TO+T1)’ (A.11)
a=0,p=-r= T02+9T1'
Note that, the Floquet Hamiltonian for this choice reduces to%°
e—i(To+T1)Hett — eze(Ll—L,ﬁil—Ll) . (A.12)

Interestingly, this Hamiltonian also annihilates the boundary state |B)?! apart from the vac-
uum. Thus this Hamiltonian can not distinguish between vacuum and boundary state.

B Derivation of the solution to the tangent equations

In this appendix, we show the derivation of the solutions to the tangent equations (7)-(9) for
all three phases in more detail. We begin by rewriting the bulk extension of the boundary
effective Hamiltonian, which is given by

Hy =(—az+2p2X)d, + (—aX — B2+ BX2—12)+ )/) Ox +(—at+2BX1)0; . (B.1)

2°0ne may wonder how we get a> — 43y > 0 in heating phase. This is due to the fact, when we write
Uy = e (ot™Heii ypon analytic continuation to Lorentzian time, we can write the evolution operator with
Hy = iaLy+ ifL, +iyL_;. This shift of a,,y — ia,if,iy changes the sign of the Casimir and hence the
sign of a2 —4pPy.

21By definition, (L, — L_,)|B) = 0.
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Subsequently, we rewrite the corresponding tangent equation as the follows:

dz(s) a ) _

I =20z ( —2/3)—2/32)(, (B.2)
dz(s) _ L

ds _2/”( 2/5)_2/5“’ >
dx(s) a ) @ y

L e e | B I e ()

where, x = (X —%) and d = (% Y) Then using (B.2) and (B.3) one can first solve, dT =2

T
to get 2 = ¢; 7. Now, the other two solutlons can be obtained straight forwardly by substituting

z = ¢; T back in the above equations and then solving the following (for each phase):

d
—d’: = B2 —d), (B.5)
d
_d: = p(v2—d), (B.6)

written in terms of redefined variables u = x +i67 and v = x —i§7 with 62 =1 + cf.

For Non-heating Phase (d > 0):

u—vd 21/3/53

First, one can easily check that solving (B.5), one gets: Vg = e , where ¢,
is a complex number. Next, after redefining the following ¢, = Re'®, s + 1205[_1;] — s and
ﬁ — 0, the solution can be written as u = —+d coth(f+/d(s + i0)) and similarly

v = —+v/d coth(fv/d(s —if)). From u = x +i67 and v = x —i57 one can then obtain
the final form of the solution in (10).

For heating phase (d < 0):

Approaching similarly as that of the non-heating case, one solves (B.5) with d < 0, to
obtain tan_l(%) = ¢, + v/dBs, where c, can again be redeﬁned as ¢, = x + 1y, at first and

then just like the previous case, one can redefine s + 7/3 and = ‘/_ 7p 28 and 0 respectively.

The solutions to (B.5) and (B.6) for this case then read, u = +/d tan(fvd(s + i0))
v =+/d tan(fv/d(s—i0)). x and T can then be found out using u = x + it and v = x —i67
and z using z = c¢; 7. Hence, one obtains the solution in (14) and the corresponding metric.

At the phase boundary (d = 0):

The solution to (B.5) and (B.6) readsu=v = — B Si 5 Again, considering ¢, = x +1iy and

redefining s + x and % as s and 6, one can find the solutions in (17).
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