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Abstract

Quantum computers are expected to give major speed-ups for the simulation of quan-
tum systems. In this work, we present quantum gates that simulate the colour part of
the interactions of quarks and gluons in perturbative quantum chromodynamics (QCD).
As a first application, we implement these circuits on a simulated noiseless quantum
computer and use them to calculate colour factors for various examples of Feynman di-
agrams. This work constitutes a first key step towards a quantum simulation of generic
scattering processes in perturbative QCD.
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1 Introduction

Quantum computing is of widespread interest because it offers exponential or polynomial
speedups for a variety of problems ranging from prime factorisation [1] to unstructured search-
ing [2]. A natural use of quantum computers is the simulation of other quantum systems, with
well-known applications in computational chemistry [3, 4] and condensed matter physics [5,
6].

Recent years have seen proposed applications of quantum computers to lattice-based Quan-
tum Field Theory (QFT) simulations (see Refs. [7,8] and references therein) including the sim-
ulation of Quantum Chromodynamics (QCD), the theory describing the fundamental interac-
tions of quarks and gluons. Lattice QCD is well-suited to studying the lower-energy (sub-GeV)
behaviour of QCD, but the rapid increase in computational cost with lattice size makes lat-
tice QCD exceedingly challenging to use for simulating collisions at the shortest length scales
probed in high-energy colliders such as the Large Hadron Collider (LHC). At these energies,
the QCD coupling constant αs becomes small, and so perturbative calculations become the
method of choice.

The use of quantum computers to simulate hard scattering processes in perturbative QCD
has largely remained unexplored to date. This may be in part because the aims of perturbative
QFT calculations differ from the aims of most quantum simulations: most quantum simulations
(including lattice QCD) aim to take a known Hamiltonian and use it to perform the (unitary)
evolution of a quantum system, whereas perturbative QFT calculations aim to calculate the
(Hermitian, but not unitary) transition matrix describing the scattering of specified external
states and hence study the production or decay of elementary particles.

A method to simulate generic perturbative QCD processes on a quantum computer is still
missing but is desirable for several reasons. Firstly, perturbative QCD calculations require the
evaluation—and quantum coherent combination—of contributions from many unobservable
intermediate states, which makes such calculations natural candidates to benefit from the
ability of quantum computers to manipulate superpositions of quantum states. Secondly, this
ability also means quantum simulations could be well-suited to performing calculations with
full interference effects for processes with high-multiplicity final states. Thirdly, a quantum
simulation of generic perturbative QCD processes could improve the speed and precision of
perturbative QCD predictions by exploiting speedups provided by known quantum algorithms
such as quantum amplitude estimation [9–12].

The object of this article is to take steps towards using quantum computers to simulate
generic perturbative QCD processes. Calculations in perturbative QCD can be performed by
summing contributions from Feynman diagrams. Each contribution can be factorised into a
colour part and a kinematic part. The colour part is simpler to compute than the kinematic
part, and indeed there exist efficient programs [13–18] for calculating colour factors on a
classical computer. Nonetheless, the colour part still presents some of the generic challenges
of simulating perturbative QCD processes on a quantum computer. For example, the quan-
tum gates that form a quantum computer must always be unitary whereas the Feynman rules
(colour and kinematic parts alike) describing components of a Feynman diagram are not gen-
erally unitary. This means the colour parts provide a useful simplified setup with which to
begin developing a framework for the quantum computation of Feynman diagrams, and they
will therefore be the focus of the present work.

The main results in this article are two quantum gates, Q and G, which represent the colour
part of the Feynman rules describing the quark-gluon and the triple-gluon interaction vertices,
respectively. To implement these gates, we introduce the new concept of a unitarisation register
U , which enables the simulation of the non-unitary interactions of quarks and gluons.1 As an

1While the use of ancillary qubits to enforce unitarity is by now well established with methods such as block
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example of the use of Q and G, we use the QISKIT [24] quantum-computing framework to
build quantum circuits that calculate the colour factors of various Feynman diagrams. This is
by no means the only use case for Q and G; they could also be used, for example, to simulate
emissions, absorption, and exchanges of quarks and gluons, either in a scattering amplitude
or in a parton shower. These quantum circuits could also form a component of a quantum
Monte Carlo program which, as highlighted in Ref. [25], would offer a quadratic speedup for
the calculation of cross sections.

Finally, let us mention that this work forms part of a broader exploration of quantum-
technology applications in high-energy physics (see e.g. existing reviews [7, 8, 26, 27] and
references therein). While most of that exploration has focused on the experimental side of
high-energy physics, the last few years have also seen the emergence of applications on various
topics in high-energy theory. These range from parton distribution functions (PDFs) [28, 29]
to amplitudes [30–34], effective field theory [35], cross-section computations [25], parton
showers [30,36–38], and event generation [38–40].

This article is organised as follows: sec. 2 begins with a high-level overview of the use of our
quantum circuits to calculate the colour factor for a simple Feynman diagram (sec. 2.1). The
rest of sec. 2 provides details of the methods and algorithms employed. In particular, sec. 2.2
explains the functioning of the unitarisation register mentioned above, and sec. 2.3 presents
the quantum circuits implementing quark and gluon interactions. In sec. 3, we generalise
our methods to simulate more complicated processes and validate this by using a simulated
noiseless quantum computer to calculate colour factors for various Feynman diagrams. Finally,
sec. 4 contains a summary of our findings and concluding remarks. In Appendix A, a few
miscellaneous quantum gates related to the calculation of traces are presented.

2 Methods

2.1 Illustrative example

The main results in this article are two quantum gates, Q and G, which simulate, respectively,
the colour factors T a

i j of the quark-gluon vertex and f abc of the triple-gluon vertex. We defer
a description of the explicit construction of Q and G to sec. 2.3. As we will see in sec. 3,
these gates can be used to calculate the colour factor of any Feynman diagram. In the present
section, we will illustrate how our method works by applying it to calculate the colour factor
of the simple example Feynman diagram shown on the left-hand side of fig. 1.

In general, any Feynman diagrams involving quark-gluon or gluon-gluon interactions will
carry colour information from the SU(3) symmetry group of QCD. When squaring the diagrams
to obtain the cross section, the colour algebra has to be carried out, resulting in so-called colour
factors. The latter contain a generator T a for each quark-gluon vertex and a structure constant
f abc for each triple-gluon vertex.2 In the present example, the colour factor reads

C =
∑

a∈{1,...,8}
i, j,k∈{1,2,3}

T a
i j T

a
jkδik , (1)

where

T a =
1
2
λa , (2)

encoding [19–22] or qubitisation [23], to the best of our knowledge our implementation is original and has the
advantage of allowing multiple independent non-unitary operations to be carried out sequentially while only re-
quiring a small number of ancilla qubits, as will be explained in sec. 2.2.

2More references and information on colour algebra can be found in Refs. [41,42].
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Figure 1: Example Feynman diagram (left) and a graphical representation of its cor-
responding circuit (right).

and λa are the Gell-Mann matrices:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1
p

3





1 0 0
0 1 0
0 0 −2



 .

(3)

This colour factor can be computed using the quantum circuit shown on the right-hand side
of fig. 1, whose workings will now be explained. The circuit contains several qubits, which we
combine into groups called registers. Each register r is initially in some reference state |Ω〉r .3

In this particular example, there is a gluon register, labelled g, and a pair of quark registers,
labelled q and q̃. In general there will be a gluon register for each gluon in a Feynman diagram,
and a pair of quark registers for each quark line in the diagram. We will see that the state of the
q register is altered by the simulated emission and absorption of gluons, while the q̃ register is
left unaffected and serves only to help implement the δik term in eq. (1). Each quark register
is made of 2 qubits, with the states |00〉 , |01〉 , |10〉 representing the Nc = 3 quark colours
|1〉 , |2〉 , |3〉, while the state |11〉 is unused. The gluon register is composed of 3 qubits, whose
8 states |000〉 , |001〉 , . . . , |111〉 represent the N2

c − 1 = 8 colours |1〉 , |2〉 , . . . , |8〉 of the gluon.
There is also a unitarisation register, labelled U , whose purpose will be explained in section 2.2.
The initial state of the circuit is thus |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U .

First, a gate Rg is applied to the gluon register to put it into an equal superposition of
colour states. A detailed definition of Rg will be given in Appendix A and its effect reads as
follows:

Rg |Ω〉g =
8
∑

a=1

1
p

8
|a〉g . (4)

The gate Rq (also to be defined in Appendix A) is now applied to the quark registers with the
following effect:

Rq |Ω〉q |Ω〉q̃ =
3
∑

k=1

1
p

3
|k〉q |k〉q̃ . (5)

3In practice, in this work we always choose |Ω〉r to be the state where each qubit of r is in the state |0〉.
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Thus, after applying the Rg and Rq gates, the quantum computer is in the state

1
p

24

8
∑

a=1

3
∑

k=1

|a〉g |k〉q |k〉q̃ |Ω〉U . (6)

Next, the Q gate is applied to the g and q registers. Q represents the quark-gluon inter-
action and is designed (see sec. 2.3.1) such that for a gluon colour basis state |a〉g and quark
colour basis state |k〉q, where a ∈ {1, . . . , 8} and k ∈ {1, 2,3}, the following equation holds:

Q |a〉g |k〉q |Ω〉U =
3
∑

j=1

T a
jk |a〉g | j〉q |Ω〉U + (terms orthogonal to |Ω〉U ) . (7)

Note that Q does not act on the q̃ register. The linearity of quantum gates ensures that Q models
the quark-gluon interaction correctly even if the quark or gluon registers are in superpositions
of colour basis states or are entangled with other registers. Thus, after applying the Q gate
once, the quantum computer is in the state

1
p

24

∑

a∈{1,...,8}
j,k∈{1,2,3}

T a
jk |a〉g | j〉q |k〉q̃ |Ω〉U + (terms orthogonal to |Ω〉U ) . (8)

The Q gate is now applied a second time to the g and q registers, to simulate the second
quark-gluon vertex. This puts the quantum computer into the state

1
p

24

∑

a∈{1,...,8}
i, j,k∈{1,2,3}

T a
i j T

a
jk |a〉g |i〉q |k〉q̃ |Ω〉U + (terms orthogonal to |Ω〉U ) . (9)

Since Rg is unitary, one can see by inverting eq. (4) that R−1
g acting on any state

∑8
a=1 ca |a〉g

of the gluon register would produce the state

R−1
g

8
∑

a=1

ca |a〉g =

�

1
p

8

8
∑

a=1

ca

�

|Ω〉g +
�

terms orthogonal to |Ω〉g
�

. (10)

Similarly, it can be seen by inverting eq. (5) that R−1
q acting on any state

∑

i,k∈{1,2,3} cik |i〉q |k〉q̃
of the q and q̃ registers would produce the state

R−1
q

∑

i,k∈{1,2,3}

cik |i〉q |k〉q̃ =

�

1
p

3

3
∑

i=1

cii

�

|Ω〉q |Ω〉q̃ +
�

terms orthogonal to |Ω〉q |Ω〉q̃
�

. (11)

Therefore, taking the state produced in eq. (9) and applying the gates R−1
g and R−1

q , the state
of the quantum circuit becomes

1
24







∑

a∈{1,...,8}
i, j∈{1,2,3}

T a
i j T

a
ji






|Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U +

�

terms orthogonal to |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U
�

. (12)

Thus, in the final quantum state (12) of the quantum circuit, the colour trace (1) to be com-
puted is found encoded in the coefficient of the reference state |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U . As we
will now discuss, this circuitry can either be used as part of a higher-level algorithm, or the
information in the output state (12) can be extracted directly.
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A simple way to verify this result is to perform many independent runs of the circuit, where
after each run the final state of all the registers is measured and then reset to the initial state
|Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U . One can then count the number of runs where the final state is measured
to be |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U , and compare against the prediction of eq. (12) which is that for each

run the measurement of the final state will yield |Ω〉g |Ω〉q |Ω〉q̃ |Ω〉U with probability C2

242 , where
C was defined in eq. (1).4 We note that this measurement strategy, while relatively simple
to understand, is only being presented as a transparent way to verify that the state (12) is
correctly produced. More advanced methods exist for examining, measuring, and exploiting
quantum states. For example, Quantum Amplitude Estimation [9–12] could be employed in
order to achieve a quadratic improvement in speed. Alternatively, to go beyond calculating the
colour factor of a single Feynman diagram, the output (12) of the circuit can be directly used
as a component of a future algorithm, such as one that calculates the kinematic factors and
then sums over Feynman diagrams, or one that performs Monte Carlo integration to compute
cross-sections.

Although not required for this simple example Feynman diagram, let us mention that in
addition to the Q gate used above, we have also designed a gate G which represents triple-
gluon interactions. The detailed definition of G will be given in sec. 2.3.2, but for now we will
simply note that, similarly to eq. (7), G has been designed to act on 3 gluon registers (g1, g2,
and g3) and U such that

G |a〉g1
|b〉g2
|c〉g3
|Ω〉U = f abc |a〉g1

|b〉g2
|c〉g3
|Ω〉U + (terms orthogonal to |Ω〉U ) , (13)

where f abc are the SU(3) structure constants mentioned above. Note that to avoid artificially
distinguishing between “emitted” and “emitter” gluons, we have a separate register for each of
the 3 gluons at a triple-gluon vertex and so the G gate in eq. (13) only rescales the amplitude
(projected onto |Ω〉U) by f abc , without rotating the gluon colour states. In contrast, the q
register represents an entire quark line, whose state (projected onto |Ω〉U) is rotated by the Q
gate at each interaction. Note also that we do not construct a specific gate for the four-gluon
vertex since that vertex can decomposed into a linear combination of products of three-gluon
vertices, each product having an independent kinematic coefficient.

This concludes our example computation of a colour trace. In sec. 3, we will generalise
this to calculate the colour traces of more complicated processes. Before that, however, we
will describe the details that we have so far deferred: in sec. 2.2 we will describe the purpose
and functioning of the unitarisation register U , and in sec. 2.3 we will present the explicit
construction of the Q and G gates.

2.2 Unitarisation register

To simulate perturbative QCD processes, we would like to construct quantum gates for the 8
linear operators

| j〉q→
∑

i

T a
i j |i〉q , (14)

and the (diagonal) linear operator

|a〉g
1
|b〉g

2
|c〉g

3
→ f abc |a〉g

1
|b〉g

2
|c〉g

3
, (15)

where q is a quark register and g
1
, g

2
, g

3
are gluon registers. However, quantum gates can

only be constructed for unitary operators. A linear operator is unitary if and only if the rows
of its matrix representation are orthonormal. The matrix representations of eqs. (14) and (15)

4Such a verification will not yield information about the complex phase of the trace, but that can be obtained
by instead implementing the well-known Hadamard test [43].
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consist of rows which are mutually orthogonal but not necessarily of unit norm;5 indeed, many
rows are zero. In this section we will present a way to circumvent this problem.

Let L be a linear operator acting on a Hilbert space H1. If L is non-unitary, it cannot be
implemented as a quantum circuit. The Gell-Mann matrices in eq. (3) are examples of such
non-unitary operations. However, it may still be possible to define a unitary operator L̂ acting
on a larger Hilbert space H1 ⊗HU such that for some state |Ω〉U ∈ HU and for any states
|χ1〉 , |χ2〉 ∈H1 the following equation holds:

〈Ω|U 〈χ2| L̂|χ1〉 |Ω〉U = 〈χ2|L|χ1〉 . (16)

Clearly, there are many ways to achieve eq. (16), each with different advantages. In this
work, we have sought a way that firstly allows multiple independent non-unitary operations
to be performed sequentially, secondly keeps the size of HU small, and thirdly maintains quan-
tum coherence without intermediate measurements so that these circuits can be used as build-
ing blocks in a higher-level algorithm. Specifically, regardless of the complexity of the Feyn-
man diagram, we introduce a single additional register U , whose size is small: it contains
NU =

�

log2(NV + 1)
�

qubits, where NV is the number of vertices in the Feynman diagram.
More generally, NV would be the number of non-unitary operations to be performed. We call
U the unitarisation register, and denote its 2NU basis states |k〉U with k ∈ {0, . . . , 2NU − 1}.
Later in this section we will define two gates A and B(α), where α ∈ C and |α|2 ≤ 1, which are
designed to act on U in the following way:

B(α)A |k〉=











α |0〉+
p

1− |α|2 |1〉 , if k = 0 ,

|k+ 1〉 , if 0< k < 2NU − 1 ,
p

1− |α|2 |0〉 −α |1〉 , if k = 2NU − 1 .

(17)

The state |0〉U is special and we interchangeably denote it as |Ω〉U . Equation (17) implies two
key properties: firstly,

〈Ω|UB(α)A|Ω〉U = α , (18)

and secondly, we can apply the A and B gates6 repeatedly up to 2NU − 1 times and obtain

〈Ω|U

Nops
∏

i=1

{B(αi)A} |Ω〉U =
Nops
∏

i=1

αi , (19)

where the number of operations Nops ≤ 2NU − 1.
For a given operator L, our general strategy for implementing an operator L̂ which satisfies

eq. (16) comprises two steps. One step is to act on H1 with a unitary operator whose rows
differ from the rows of L by only a (row-dependent) normalisation. The other step is to act on
H1 ⊗HU with controlled7 versions of the A and B(α) gates in a way that, thanks to eq. (18),
corrects for the normalisation changes.8 Equation (16) follows as a direct consequence of
these two steps. To apply a sequence of non-unitary operations, we simply repeat these two
steps. In general, this will place U into a superposition of states, with the component propor-
tional to |Ω〉U containing the information of interest due to eq. (16). Since the step acting on
H1 does not affect U , and the step acting on H1 ⊗HU only increments the state of U by at
most 1 according to eq. (17) and never decrements it as long as k < 2NU − 1, it can be seen

5Helpfully for what follows later, the factor of 1
2 in eq. (2) ensures that all rows have norm ≤ 1.

6It will turn out that B(0) = 1, and so the separation of the A and B(α) gates will allow the B(α) gate to be
omitted if α= 0.

7To be explained shortly.
8By applying suitable rotations, our method could be extended to apply to cases where the rows of L are not

mutually orthogonal, but that is beyond the scope of this article.

7

https://scipost.org
https://scipost.org/SciPostPhys.15.5.205


SciPost Phys. 15, 205 (2023)

|ψ⟩

U

Figure 2: Graphical representation of |ψ〉-controlled-U gate C|ψ〉 [U] defined in
eq. (20). Here, |ψ〉 is any specified state of the upper register, and U is any op-
erator defined on Hilbert space of the lower register.

that the two steps can be repeated up to 2NU − 1 times before the unitarisation register over-
flows. Therefore, as desired, the required size of U is small: it is logarithmic in the number
of sequential non-unitary operations that we wish to perform. Furthermore, our unitarisation
strategy maintains the quantum coherence of states produced by non-unitary operations, thus
allowing the circuits in this paper to be used as building blocks for higher-level algorithms.
The explicit implementation of eq. (16) for the linear operators in eqs. (14) and (15) is left to
sec. 2.3. In the remainder of this section, we will introduce notation for controlled quantum
gates, and then give explicit definitions for the A and B(α) gates.

For convenience, let us define some notation for controlled quantum gates, which will be
used in this section and the next one. For any quantum gate, a controlled version of it can
loosely be understood as applying that gate to one register, designated as the target register,
if one or more other registers, designated as the control registers, are in a particular specified
state. For example, as we will see in sec. 2.3.1, the Q gate implements the quark-gluon inter-
action by applying a rotation which is targeted at the quark register, with the choice of rotation
controlled by the state of the gluon register. More precisely, let U (not to be confused with
U) be any quantum gate acting on a Hilbert space Htrgt and let |ψ〉 be a normalised state in
another Hilbert space Hctrl. Then we define the |ψ〉-controlled-U gate C|ψ〉 [U] acting on the
Hilbert space Hctrl ⊗Htrgt as follows:

C|ψ〉 [U] = |ψ〉 〈ψ| ⊗ U +
�

1Hctrl
− |ψ〉 〈ψ|

�

⊗1Htrgt
. (20)

Here 1Hi
is the identity operator acting on the Hilbert space Hi . In the context of eq. (20) we

will call the qubits represented by Hctrl the control qubits, and call the qubits represented by
Htrgt the target qubits. Equation (20) implies in particular that for any state |φ〉 ∈Htrgt,

C|ψ〉 [U] {|ψ〉 ⊗ |φ〉}= |ψ〉 ⊗ U |φ〉 , (21)

and furthermore that given any state |ψ′〉 ∈Hctrl satisfying 〈ψ′|ψ〉= 0,

C|ψ〉 [U] {|ψ′〉 ⊗ |φ〉}= |ψ′〉 ⊗ |φ〉 . (22)

In this article, any controlled gate C|ψ〉 [U] will be depicted in the manner shown in fig. 2. In
our QISKIT program, the function qiskit.extensions.UnitaryGate.control has been
used to implement eq. (20).

Let us proceed by defining the well-known increment operator (see for example [44,45]),
which we denote A and which is depicted in fig. 3. Formally, the gate can be defined as follows.
Let X be the Pauli-X single-qubit gate:

X =

�

0 1
1 0

�

. (23)
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A

=

q1

q2

qNU

Figure 3: Graphical representation of the circuit for the A operator, which increments
the unitarisation register U . Here,

⊕

represents the Pauli-X gate and |q1〉 , . . . , |qNU
〉

are the qubits that form U .

Let Xn be the gate C|1 . . . 1
︸ ︷︷ ︸

n−1

〉[X ] acting on the first n qubits of the unitarisation register, with

qubits 1 through n− 1 serving as control qubits and qubit n serving as target qubit. Let A1 be
the Pauli-X gate acting on qubit 1, and define recursively9 for n> 1:

An = An−1Xn . (24)

For a unitarisation register with NU qubits, the increment operator of fig. 3 can now be formally
defined as A = ANU

. Interpreting each basis state of the unitarisation register as a binary

representation of a number |k =
∑NU

i=1 ui2
i−1〉, where un ∈ {0,1} is the state of the nth qubit,

it can be verified that
A |k〉U = |k+ 1 (mod 2NU )〉U , ∀k . (25)

In this article, A should be assumed to always act on the unitarisation register.
Next let us define a single-qubit gate

B1(α) =

�p

1− |α|2 α

−α
p

1− |α|2

�

, (26)

which should be understood to always act on qubit 1 of the unitarisation register.
We now define a partial-decrement operator B(α) as follows:

B(α) = C|0 . . . 0
︸ ︷︷ ︸

NU — 1

〉[B1(α)] , (27)

which should be understood to act on the unitarisation register with qubits 2 through NU
serving as control qubits and qubit 1 serving as target qubit, as shown in fig. 4. The desired
behaviour of the A and B(α) gates shown in eq. (17) follows immediately from eqs. (25–27).

This concludes our explanation of the unitarisation register U and the A and B(α) gates.
We will now proceed to use them to implement eq. (16) for the quark-gluon (14) and triple-
gluon (15) interactions.

2.3 Construction of interaction gates

In this section, we will give details of the construction of the Q and G gates which simulate
quark-gluon and triple-gluon interactions, respectively. As mentioned earlier, 2-qubit registers
are used to represent the Nc = 3 colour states of a quark as |00〉, |01〉, and |10〉. Note that the

9One sometimes encounters [45] a different (but equivalent) recursive definition, which involves a controlled-
An−1 gate, but we have chosen not to adopt it here.
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B1(α)q1

q2

qNU

B(α)

=

Figure 4: Graphical representation of the circuit for the partial-decrement operator
B(α) defined formally in eq. (27).

|11〉 state of each quark register is unused: all operators O acting on a quark register satisfy
〈11|O|11〉 = 1, which means the last row and last column of the 4× 4 matrix representing O
are both (0 0 0 1), ensuring that the register never enters the |11〉 state. For brevity we
will omit the fourth row and fourth column when representing these operators as matrices.

2.3.1 Quark-gluon interaction gate Q

We wish to construct a gate Q which will implement the quark-gluon interaction. This in-
teraction is described by the non-unitary operator shown in eq. (14), and we therefore wish
unitarise it—see eq. (16)—by constructing a suitable L̂ for it. Following the general strategy
explained in sec. 2.2, we start by defining the following unitary matrices λa:

λ1 =





0 1 0
1 0 0
0 0 1



 , λ2 =





0 −i 0
i 0 0
0 0 1



 , λ3 =





1 0 0
0 −1 0
0 0 1



 ,

λ4 =





0 0 1
0 1 0
1 0 0



 , λ5 =





0 0 −i
0 1 0
i 0 0



 , λ6 =





1 0 0
0 0 1
0 1 0



 ,

λ7 =





1 0 0
0 0 −i
0 i 0



 , λ8 =





1 0 0
0 1 0
0 0 1



 .

(28)

It can be observed that these matrices are similar to the Gell-Mann matrices eq. (3) but have
been adjusted to make them unitary, and therefore implementable as quantum gates acting on
a 3-state quark register. We combine the λa gates into a new gate Λ acting on a gluon register
g and quark register q in the following way

Λ=

� 8
∏

a=1

C|a〉g
�

λa

�

�

, (29)

where g serves as control register and q serves as target register, as shown in fig. 5. Thus,
depending on the colour a of the gluon register, Λ applies the gate λa to the quark register.

We proceed to construct the quark-gluon interaction gate Q, which is based on Λ but uses
A and B gates to account for the differences between the matrices λa and λa, as well as for
the factor of 1

2 in eq. (2). In brief, the Q gate will increment U using the A gate and then
conditionally decrement it again using B gates, before finally applying the Λ gate to the state
thus produced. More formally, as depicted in fig. 6, the Q gate is defined to act on the state
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Λ =

8∏

a=1

g |a〉

q λa

Figure 5: Graphical representation of the circuit of the Λ gate defined in eq. (29).

Q

=

Λ

M

A

g

q

U

Figure 6: Graphical representation of the circuit of the quark gate Q defined in
eq. (30).

|Ψ〉g⊗q⊗U of any gluon register g, any quark register q, and the unitarisation-register U in the
following way:

Q |Ψ〉g⊗q⊗U = (Λ⊗1U )M(1g ⊗1q ⊗ A) |Ψ〉g⊗q⊗U , (30)

where
M =

∏

a,i : µ(a,i)̸=0

C|a〉g |i〉q [B (µ(a, i))] , (31)

and

µ(a, i) =























1
2 , if

�

λa

�

i j
− (λa)i j = 0 , ∀ j ,

1
2
p

3
, if a = 8 , and i ∈ {1,2} ,

−1p
3

, if a = 8 , and i = 3 ,

0 , otherwise.

(32)

A graphical representation of the operator M is shown in fig. 7.
The definitions of λa and µ(a, i) in eqs. (28) and (32) have been chosen so that the fol-

lowing equation holds

µ(a, i)λa |i〉=
1
2
λa |i〉 , (33)

where the λa are defined in eq. (3) and the factor of 1
2 originates from eq. (2). Note that since

the control states in eq. (31) are mutually orthogonal, applying M does not decrement the
state of U by more than 1. By using the properties of U in eq. (18) and the definitions of Q,
M , and Λ in eqs. (29–31), it can be seen that if |ψ1〉= |a〉g |k〉q |Ω〉U and |ψ2〉= |b〉g |l〉q |Ω〉U
then

〈ψ2|Q|ψ1〉= 〈b|a〉 〈l|
1
2λa|k〉 . (34)

The desired property of Q shown in eq. (7) follows immediately from this. Thus, a sequence of
emissions and absorptions of gluons by a quark line can be simulated on a quantum computer
by chaining a corresponding sequence of Q gates.
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M

=
∏

a,i:µ(a,i)6=0

g |a〉

q |i〉

U B(µ(a, i))

Figure 7: Graphical representation of the circuit of the M operator defined in eq. (31).

G
=

g1

g2

g3

U

G′

A

Figure 8: Graphical representation of the gluon gate G defined in eq. (35).

2.3.2 Triple-gluon interaction gate G

We shall now proceed to the description of a quantum gate for the triple-gluon interaction.
This interaction is described by the non-unitary operator shown in eq. (15), and so we wish
to unitarise it—see eq. (16)—by finding a suitable L̂ for it, following the general strategy ex-
plained in sec. 2.2. In contrast to the quark-gluon operator (14), the triple-gluon operator (15)
is diagonal and so its corresponding L̂ operator, which we call G, can be constructed using only
A and controlled B(α) gates.

We define the gate G acting on any state |Ψ〉g
1
⊗ g

2
⊗ g

3
⊗U of gluon registers g1, g2, and g3,

and the unitarisation register U in the following way:

G |Ψ〉g
1
⊗ g

2
⊗ g

3
⊗U = G′A |Ψ〉g

1
⊗ g

2
⊗ g

3
⊗U , (35)

where

G′ |Ψ〉g
1
⊗ g

2
⊗ g

3
⊗U =

 

∏

a,b,c : f abc ̸=0

C|a〉|b〉|c〉
�

B
�

f abc
��

!

|Ψ〉g
1
⊗ g

2
⊗ g

3
⊗U . (36)

The gates G and G′ are illustrated in figs. 8 and 9, respectively.
One sees that in eq. (36), by definition (20) of the control gate, each factor

C|a〉|b〉|c〉
�

B
�

f abc
��

applies B( f abc) to the unitarisation register if the three gluons have colours
a, b, c respectively, and leaves the unitarisation register unchanged if the gluons are in a state
orthogonal to |a〉g

1
|b〉g

2
|c〉g

3
. As was seen for the M gate in the previous section, applying the

G′ gate does not decrement the state of U by more than 1, since the control states in eq. (36)
are mutually orthogonal. Since B(0) = 1 and C|a〉|b〉|c〉 [1] = 1, the product in eq. (36) does
not need to include any cases where f abc = 0. By using the property shown in eq. (18) and
the definitions of G and G′ in eqs. (35) and (36), it can be verified that eq. (13) indeed holds.

Hence, a triple-gluon interaction can be implemented by applying the gate G to the corre-
sponding gluon registers. It can be observed that the gates G and Q do not rotate the states of
the gluon registers and so in diagrams where several triple-gluon interactions are present, the
corresponding G gates can be applied in any order.
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G′ =
∏

a,b,c:fabc ̸=0

g1

g2

g3

U

|a⟩

|b⟩

|c⟩

B(fabc)

Figure 9: Graphical representation of the circuit of the G′ gate defined in eq. (36).

3 Results

In this section, the method introduced in sec. 2.1 will be generalised to simulate—and calculate
colour factors for—arbitrary Feynman diagrams.

Let ng be the number of gluons in the diagram and let nq be the number of quark lines in the
diagram. The quantum circuit to be constructed will contain gluon registers, quark registers,
and a unitarisation register. There are ng gluon registers, each with 3 qubits. There are nq
pairs of quark registers, each pair comprising 2 registers labelled q and q̃, with 2 qubits per
register. The unitarisation register has NU =

�

log2(NV + 1)
�

qubits, where NV is the number
of vertices in the Feynman diagram. The procedure for calculating colour factors is as follows:

1. Initialise each register r into the state |Ω〉r .

2. Apply Rg , as in eq. (4), to each gluon register separately.

3. For each quark line, apply Rq to the corresponding pair of quark registers, q and q̃, as in
eq. (5).

4. For each quark-gluon interaction vertex, apply a Q gate to the quark register q and gluon
register g that correspond to the quark and gluon at that vertex. The corresponding q̃
register does not participate here.

5. For each triple-gluon interaction, apply a G gate to the 3 corresponding gluon registers.

6. Apply an R−1
g gate to each gluon register.

7. For each quark line, apply an R−1
q gate to the corresponding pair of quark registers, q

and q̃.

In the above procedure, steps 4 and 5 simulate the evolution of the colour states of the particles
in the Feynman diagram, while the remaining steps serve to perform the trace over the colours.
Note that the Q gates corresponding to a given quark line must be applied in the order in which
the corresponding interactions appear on that quark line in the Feynman diagram. Apart from
this, there is no restriction on the ordering of the Q and G gates.

Analogously to the result in sec. 2.1, it follows from the Feynman rules and from eqs. (7),
(13), and (19) that after step 7 the colour factor C of the Feynman diagram will be found
encoded in the final state of the quantum computer, which is

1
N C |Ω〉all + (terms orthogonal to |Ω〉all) , (37)

13

https://scipost.org
https://scipost.org/SciPostPhys.15.5.205


SciPost Phys. 15, 205 (2023)

Table 1: Colour factors for example Feynman diagrams. The first column depicts
the Feynman diagrams, with indices on external legs indicating identical colours.
The central column states the analytical result for the colour factor. The last column
displays the numerical result for each colour factor obtained using 100 million runs
of the simulated quantum circuit, along with the associated statistical uncertainty.

Diagram Analytical Numerical

i i

CF N = 4 3.9988± 0.0012

i i
CF

2N = 16
3 5.331± 0.010

i i

CF
2 =

2
3 0.673± 0.010

a a

N(N2 − 1) = 24 23.95± 0.03

i i

j j

(N2−1)
4 = 2 2.00± 0.03

i i

j j
0 0.0+0.5

−0.0

i i

CF N2

2 = 6 5.92± 0.08

where N = N
nq
c
�

N2
c − 1

�ng and

|Ω〉all =

� ng
∏

m=1

|Ω〉gm

�� nq
∏

l=1

|Ω〉ql
|Ω〉q̃l

�

|Ω〉U . (38)

As explained in sec. 2.1, the result in eq. (37) can be verified by repeatedly running the
circuit and counting the number of times it is measured10 to be in the state |Ω〉all , optionally
in conjunction with Hadamard testing (to retain phase information) and Quantum Amplitude
Estimation (to obtain a quadratic speedup). Alternatively, the output (37) of the circuit can be

10The measurements are performed in the computational basis.
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directly used as a component of a future algorithm, such as one that calculates the kinematic
factors and then sums over Feynman diagrams, or one that performs Monte Carlo integration
to compute cross-sections. Since the output (37) is a quantum state, once combined with the
corresponding kinematic factor it would be well-suited to future work which calculates the
quantum interference of multiple diagrams, possibly by implementing a quantum-computing
equivalent of the recursive algorithms [46] that are widely used in modern classical calcula-
tions.

To validate the methods and circuits described in this article, we have implemented them
in a program named QCOLOUR written in PYTHON using the IBM QISKIT package.11 Using
QCOLOUR we have built quantum circuits to simulate several Feynman diagrams shown in
Table 1. For each Feynman diagram, the corresponding circuit was run 108 times on a sim-
ulated noiseless quantum computer and the number NΩ of times the output state was mea-
sured to be |Ω〉all was counted. It follows from eq. (37) that NΩ is binomially distributed as

NΩ ∼ B
�

108,
� C
N
�2�

. We therefore infer the absolute value of the colour factor to be

|C|=N
√

√ NΩ
108

, (39)

with a statistical uncertainty that can be estimated using the Wilson score interval [47]. As
can be seen from Table 1, the colour factors obtained using the simulated quantum circuits are
fully consistent with the colour factors calculated analytically.

It may be observed that the fractional uncertainty in the inferred colour factors increases
with the complexity of the diagram, but we emphasise again that the measurement strategy
employed here is only intended as a transparent way to verify that the circuits correctly produce
the state (37). As mentioned above and in sec. 2.1, more sophisticated strategies can be
employed to examine, measure, and exploit this quantum state, and the state can furthermore
be used in a higher-level algorithm rather than being immediately measured. Therefore, while
more complicated scattering processes are always likely to have higher computational costs (as
in classical Monte Carlo calculations), the examples in Table 1 should not be taken as providing
a conclusive indication of the scaling rate.

4 Conclusion

The simulation of quantum systems is a flagship application of quantum computers, with ex-
pectations for polynomial or exponential speed-ups over classical computers. In this article,
first steps were taken towards a quantum simulation of generic perturbative QCD processes.
In particular, quantum circuits were designed to simulate the colour parts of the interactions
of quarks and gluons. In order to do so, the concept of a unitarisation register was devised to
enable a unitary quantum-circuit implementation of the non-unitary Gell-Mann matrices λa
and structure constants f abc that describe the interaction vertices in Feynman diagrams. It
was shown that these quantum circuits can be used to simulate the colour parts of arbitrary
Feynman diagrams. Furthermore, these circuits were implemented on a simulated noiseless
quantum computer using the QISKIT framework, and colour factors were hence calculated for
various examples of Feynman diagrams. It is to be emphasised that besides enabling the cal-
culation of colour factors, the quantum circuits presented in this work can in the future be
directly used as components of a full quantum simulation of scattering amplitudes.

The work presented here opens several directions for future exploration. Following the
present simulation of the colour parts of Feynman diagrams, a natural extension of this work

11For this implementation, we have used QISKIT version 0.36.1.
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Rg =

H

H

H

Figure 10: Graphical representation of the circuit of the Rg gate.

is the simulation of the kinematic parts, since the unitarisation register devised here would
also be particularly useful there. Simulating the kinematic parts will require appropriate ways
to handle the much larger Hilbert spaces resulting from the continuous nature of kinematic
variables. This is likely to require many more qubits than the colour parts do, but since collid-
ers like the LHC probe energy scales that are several orders of magnitude higher than ΛQCD,
we expect that the number of qubits required for simulating the kinematic parts can still be
competitive against the requirements of lattice-based quantum-computer simulations of the
same processes. Another natural extension is to explore the quantum-coherent interference of
the contributions from multiple Feynman diagrams, a task to which quantum computers are
naturally well-suited. Furthermore, it would also be interesting to explore the application of
the quantum circuits from this work to perform calculations with full quantum correlations
for high-multiplicity processes that are currently described using parton showers. Finally, al-
though the present work is aimed at error-corrected quantum computers that are envisaged
for the medium term, it would meanwhile be interesting to test these circuits against the noise
characteristics of specific near-term hardware devices, and then perform custom adaptations
(in hardware and software) to mitigate against the noise and its effects. In the long term, all
these aspects can be combined with quantum algorithms known to have quadratic (or bet-
ter) speedups, such as quantum Monte Carlo simulations, and then implemented on future
physical quantum computers. This would provide significant improvements in the speed and
possibly the reach of perturbative QCD calculations.
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A Miscellaneous gates

In this Appendix we give explicit definitions for the gates Rg and Rq. Both of these gates are
used in sec. 2.1 and sec. 3. We also provide a circuit diagram for the Λ gate that was defined
in eq. (29).

The Rg gate is composed of a Hadamard gate H acting on each qubit of the gluon register.
Since H satisfies H−1 = H, it follows that R−1

g = Rg . Its graphical representation is provided
in fig. 10.
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Rq =

Rq

q̃

Figure 11: Graphical representation of the circuit of the Rq gate.

The Rq gate is defined by the circuit shown in fig. 11 and is composed of two controlled-X
gates and a 2-qubit gate R defined as follows:

R=











q

1
3

q

1
2

q

1
6 0

q

1
3 −

q

1
2

q

1
6 0

q

1
3 0

q

2
3 0

0 0 0 1











. (A.1)

The inverse R−1
q of Rq is easily constructed by reversing the order of the 3 gates in fig. 11 and

replacing R by its transpose RT .
Finally, the explicit form of the Λ gate in terms of basic gates can be found in fig. 12.

The matrices λa are given in eq. (28), and should be understood to be 4× 4 dimensional as
explained at the start of sec. 2.3. The M gate is constructed in a similar fashion, and comprises
17 controlled gates corresponding to the 17 combinations of a and i for which µ(a, i) is non-
zero according to eq. (32). However, since µ takes one of only 4 different values, we expect
that M could be constructed with fewer controlled operations by choosing a suitable encoding
of a and i into qubits.

Λ =

g

q λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

Figure 12: Explicit graphical representation of the circuit of the Λ gate defined in
eq. (29). White and black circles represent controlled operations with control states
|0〉 and |1〉, respectively.
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