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Abstract

We present the first successful application of the matrix product state (MPS) representing
a thermal quantum pure state (TPQ) in equilibrium in two spatial dimensions over al-
most the entire temperature range. We use the Kitaev honeycomb model as a prominent
example hosting a quantum spin liquid (QSL) ground state to target the two specific-
heat peaks previously solved nearly exactly using the free Majorana fermionic descrip-
tion. Starting from the high-temperature random state, our TPQ-MPS framework on a
cylinder precisely reproduces these peaks, showing that the quantum many-body de-
scription based on spins can still capture the emergent itinerant Majorana fermions in a
Z2 gauge field. The truncation process efficiently discards the high-energy states, even-
tually reaching the long-range entangled topological state approaching the exact ground
state for a given finite size cluster. An advantage of TPQ-MPS over exact diagonalization
or purification-based methods is its lowered numerical cost coming from a reduced ef-
fective Hilbert space even at finite temperature.

Copyright M. Gohlke et al.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 03-08-2023
Accepted 10-11-2023
Published 24-11-2023

Check for
updates

doi:10.21468/SciPostPhys.15.5.206

Contents

1 Introduction 2

2 Construction of the TPQ-MPS state 4

3 Application to the Kitaev honeycomb model 5

4 How truncation affects the TPQ-MPS state 7

5 Conclusion 9

A Random sampling average 10

References 12

1

https://scipost.org
https://scipost.org/SciPostPhys.15.5.206
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.15.5.206&amp;domain=pdf&amp;date_stamp=2023-11-24
https://doi.org/10.21468/SciPostPhys.15.5.206


SciPost Phys. 15, 206 (2023)

1 Introduction

Characterizing a thermal quantum state, a quantum many-body state at finite temperature is
an ongoing fundamental challenge in condensed matter physics and beyond, since it is often
a matter of quantum and classical correlations studied in statistical and quantum information
physics [1]. Such a state has an intriguing aspect in that its representation is largely left
facultative [2]; the Gibbs state is a mixture of an exponential number of states given by the
density matrix ρβ of small purity P ∼ e−Θ(N), i.e., vanishing exponentially with the system
size N . The thermal pure quantum (TPQ) state, on the other hand, is a single pure state of
purity P = 1. In addition, there exist numerous thermal mixed quantum (TMQ) states with a
purity between Gibbs and TPQ (see Fig. 1(a)). Canonical typicality guarantees that all these
choices equivalently yield the same thermal equilibrium properties of the subsystem [3, 4],
and are macroscopically in the “same” thermal state. Since Gibbs, TPQ, and TMQ states rely
on different design concepts, even when applying the “same” tensor network representation,
its structure, convergence, or the amount of numerical resources required likely depend on
which type of thermal state is chosen.

An important development concerning the Gibbs state is the matrix product density op-
erator (MPDO), which provides a direct tensor network representation of the density matrix
operator, ρβ [5, 6]. Another standard form of the Gibbs state is the purified state analog to
thermofield double, consisting of the size-N system and the same numbers of ancilla degrees of
freedom each suspended to a local site [7]. Ancilla serve as an entanglement bath and tracing
out the ancilla corresponds to taking the Gibbs ensemble. These doubled states also conform
to a matrix product operator (MPO) approach,1 whose schematic illustrations are shown in
Fig. 1(a). Here, the entanglement entropy is meaningless as a measure to characterize the
Gibbs state. Instead, the thermal area law of mutual information between subsystems deter-
mines the bond dimension χ of MPO’s [10–12]. The numerical drawback of MPDO or purifica-
tion is the increase of the Hilbert space dimension due to the doubled degrees of freedom. Still,
MPDO has been developed further recently using the XTRG algorithm [13], which realizes an
exponential cooling down of the system by iteratively multiplying the matrix ρβ ×ρβ = ρ2β ,
allowing to reach very low temperatures rapidly. XTRG has successfully been applied to two
dimensions [14,15] including our target, the Kitaev honeycomb model [16].

The TPQ state, in comparison, consisting only of physical degrees of freedom, is pure by
construction, and does not need the doubling of the local Hilbert space. In MPDO and its ana-
logues, the doubling or the ancilla play the role of an ensemble average—or the classical mix-
ture of states—which provide the volume-law thermal entropy. The lack of doubling implies
that the pure TPQ state needs to store the same amount of entropy internally as a volume-law
entanglement entropy [17–19]. For such purpose, the tensor-network-based representation
bounded by the area law entanglement are thought to naturally be out of reach. Yet, the
authors have recently exploited the specific form of matrix product state (MPS) practically re-
covering the volume law entanglement; only two ancilla/auxiliaries are attached to both edges
of the one-dimensional (1D) MPS train, yet they have turned out to be sufficient to keep the
nearly uniform distribution of entanglement entropy density throughout the system2 which

1The difference between MPDO and purification is that the MPDO is not necessarily positive definite after trun-
cation, whereas purification using a canonical form is positive definite. However, purification generally requires
larger χ than MPDO [8], and there are some examples [9] that the purification MPO shows a divergence of χ at
low temperatures, which may indicate that the thermal area law may not safely apply.

2If we take a bipartition of the TPQ-MPS system into left and right, each attached to the auxiliary, the en-
tanglement entropy does not depend on the size of the left/right part, unlike the usual MPS that follows the
size-dependent Page curve. This translational invariance of the entanglement entropy allows entanglement en-
tropy between the center-n sites and the rest (with N − n sites and two auxiliaries) to follow the n-linear volume
law (see Ref. [19]).
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Figure 1: (a) Schematic illustration of different thermal quantum states, classified by
purity. The two well-known representations of the Gibbs state are sketched. Purifi-
cation prepares a product state of singlets on a pair of system and ancilla sites, and
operates

p
ρB⊗Uaux where

p
ρB = e−β Ĥ/2 acts on the system and Uaux on the ancilla.

The resultant state is shown in the simplified tensor form. (b) Schematic illustration
of TPQ-MPS with auxiliary degrees of freedom providing an entanglement bath, and
the MPO-based imaginary time evolution. (c) Illustration of the honeycomb lattice
composed of x-, y-, and z- bonds. For the underlying 1D MPS structure, we use
a cylindrical geometry with a helical enumeration scheme as is highlighted by or-
ange dashed lines. Equivalent bonds across the boundary are marked with the same
roman literal. Specifically shown is the YC8×3×2 geometry with a shifted (by one
lattice vector) boundary condition. Orange dots connected by solid lines represent
the auxiliary sites.

is essential for the volume law entanglement. We call this construction the TPQ-MPS [19].
The TPQ state itself has a numerically long history [20–23] far before the formulative seminal
works [24, 25]. They mostly rely on a full Hilbert space representation using Lanczos-based
methods that limit the system size to typically N ≲ 30−40. The TPQ-MPS largely shrinks the
representation space and increases N by factors by efficiently choosing its constituent states
to those representing the target temperature limited by the bond dimension of the MPS. We
review a measure of the quality of a TPQ-MPS, which has been developed in Ref. [2], in Ap-
pendix A.

The present work advances a few steps in developing a TPQ-MPS for two dimensions (2D),
particularly for a quantum mechanically nontrivial quantum spin liquid state with long-range
entanglement. Encoding the substantial amount of entanglement expected for QSL within an
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MPS or a tensor-network is generically a challenging task, although reported in the case of
ground state [26–28]. Our result is the first to track the state by an MPS in the nearly pure
form from the high-temperature random state down to the QSL with substantial entanglement
between limited selection of basis states.

We finally refer to some TMQ-state-based approaches; the minimally entangled typical
thermal state (METTS) [29, 30] mixes (takes an equal weight average of) a series of MPS
generated from the Markov process. The quantum Monte Carlo designs a local product state
basis to suppress the sign problem [31, 32], which are recently highlighted in combination
with the iPEPS.

2 Construction of the TPQ-MPS state

We consider the standard imaginary-time evolution in generating the TPQ state at inverse
temperature β = 1/T given as

|Ψβ〉= e−
β
2 H|Ψ0〉 = U(β/2) |Ψ0〉 , (1)

where H is the Hamiltonian of the system of interest, and the initial state |Ψ0〉 representing an
‘infinite-T ’ state is chosen as random, satisfying |Ψ0〉〈Ψ0| ∝ I , where · · · is the random average
and I is the unit matrix.

We now specify the construction of TPQ-MPS utilized here. The 1D tensor train of size-
N and bond dimension χ is prepared with auxiliary degrees of freedom added to both ends
to provide an entanglement bath (Fig. 1(b)). Here, instead of the χ × χ form proposed in
Ref. [19], each auxiliary consists of Naux sites with the same local Hilbert space d as the phys-
ical sites of the system, i.e. d = 2 for S = 1

2 spins, resulting in rank-3 tensors of the form
χi−1×χi×d. The number of auxiliary sites dictates the maximum bond dimension at the edge
of the physical system as χaux = dNaux and, hence, the maximum amount of entanglement
between the auxiliary and the system.3 We emphasize that the auxiliary sites are not coupled
to the physical system by any physical exchange, and therefore only the identity is applied to
them during the imaginary time-evolution.

We extend TPQ-MPS to two spatial dimensions by wrapping the lattice on a cylinder with a
finite circumference and wind the 1D MPS structure around, enumerating all the sites linearly
(see Fig. 1(c)). Cylinder tensor networks are fairly standard techniques nowadays, involving
various variants in the way of wrapping the lattice and subsequent enumeration schemes.
The precise way of wrapping the lattice can have physical implications; The system, although
gapless in the two-dimensional limit, maybe gapped if the gapless nodes are not on allowed
momenta lines in the Brillouin zone [27]. There are choices of particular cylindrical geometry
known to capture the gapless state of the KH model [28,33], but are not used here. The choice
of such cylinder is important for the ground state but not for the temperature we can reach in
the present study. The enumeration scheme should, ideally, not alter the physical properties.
However, in reality, it can influence the spatial distribution of correlations and entanglement in
particular for relatively small bond dimensions [14]. We employ a helical enumeration scheme
with 8×3×2 (YC8×3×2, which has circumference Lcirc = 6 and is illustrated in Fig. 1(c)) and
8× 4× 2 sites (YC8×3×2, Lcirc = 8) conforming to YC3-1 and YC4-1, respectively, using the
convention in Ref. [34]. Both schemes treat the x- and z-bond on equal footing, i.e. they are
nearest neighbors in the 1D MPS structure, while the y-bonds turn into an exchange with range
2Lcirc − 1 sites. This choice results in the smallest χM PO of the time-evolution unitary, while

3Using Naux spins of dimension d is equivalent to preparing a single degree of freedom with dN
aux. However, the

former has practical advantage regarding the ease of implementation and the physical intuition about the degrees
of freedom included in the bath.
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also reducing the number of nearest-neighbor bonds cut by a bipartition which, at sufficiently
low T , enters the amount of entanglement entropy encoded in the TPQ-MPS.

The long-range interactions within the effective 1D model make the time-evolving block
decimation scheme [35–37] in Eq. (1) infeasible. Instead, we rely on an MPO formulation of
the time-evolution operator [38].4 Specifically, we discretise U(β/2) = [U(dτ)]N with small
imaginary time steps dτ and represent U(dτ) as MPO [38].5 After each MPO-MPS product,
the MPS is compressed using a variational scheme [41] reducing χ. We use an upper bound for
the maximum χ = {362,512, 724,1024} to limit the computational resources needed. If the
bound is not reached, small Schmidt values λi are discarded provided either of the two criteria
are met: (I) discard all λi ≤ strunc or (II) discard all λi sufficing

∑

i λ
2
i < (s

sum
trunc)

2 beginning
from the smallest λi .

Further technical details are given as follows; The initial random TPQ-MPS state |Ψ0〉 is
prepared by applying a sequence of random two-site unitary matrices to a Néel-like product
state in the z-basis, i.e. | · · · ↑↓ · · · 〉, in a TEBD-like way. We prepare Nsamples = 100 independent
random initial states using 25 TEBD-iterations and cap the bond dimension at χini = 32. See
Appendix A and Ref. [2] for further details regarding the random initial state. The imaginary-
time step is chosen as dτ = 0.1 and smaller for β ≤ 0.8. Truncation thresholds are set to
strunc = 10−6 and ssum

trunc = 10−5 unless stated otherwise. Measurements are not independent
concerning β , since they are taken in a sequence of fixed β during each independent run of
imaginary- time evolution, while the Nsamples averages are taken from the set of independent
runs. The TenPy library [42] is used for all MPS-related numerical calculations.

3 Application to the Kitaev honeycomb model

We employ TPQ-MPS to the Kitaev honeycomb (KH) model defined as [16]

H = Kx

∑

〈i, j〉x

σx
i σ

x
j + Ky

∑

〈i, j〉y

σ
y
i σ

y
j + Kz

∑

〈i, j〉z

σz
iσ

z
j , (2)

where σγi are Pauli operators σx , σ y , and σz acting on sites i. The three sets of parallel bonds
on the honeycomb lattice are labeled as γ= {x , y, z} (see Fig. 1(c)). The Kitaev interaction Kγ
couples a neighboring pair of spins 〈i, j〉γ along the γ-bond by an Ising-like exchange σγi σ

γ
j .

The KH model features a gapless QSL ground state if Kα ≤ Kβ + Kγ is satisfied for all per-
mutations of the bond labels {x , y, z}. Otherwise, a gapped QSL is found which adiabatically
connects to the Toric Code [43]. Here, we focus on the case of Kx = Ky = Kz =

1
3 .

The KH model features a double-peak structure in the specific heat, signalling crossovers
and releasing an entropy of ∆S/N = 1

2 ln 2 each. The associated two energy scales are well
known [44]: At the high-T peak, TH/K ≈ 0.5, nearest-neighbor spin-spin correlations develop
and the fractionalization into itinerant and localized Majorana fermions occurs. The latter con-
tributes to the formation of fluxes at each hexagonal plaquette given as WP =

∏

i∈P σ
γP (i)
i ,

where γP(i) = x , y, z is the label of bond connected to site i while not being part of the plaque-
tte P . The fluxes give an extensive set of quantum numbers, wP = ±1, which are disordered
at T ≲ TH/K . Below the low-T peak, TL/K ≈ 0.016, the fluctuation of fluxes is suppressed
and we eventually find 〈WP〉 → 1. They form the static Z2 lattice-gauge field, fixing half of
the Hilbert space per unit cell. A local Hilbert space dimension of

p
2 per site remains which

is associated with itinerant Majorana fermions. Although the KH model at finite temperature

4We note that time-dependent variational principle (TDVP) [39,40] can be utilized as well.
5The MPO representation of the imaginary time evolution is given as W II(dτ) ≡ U(dτ), following Ref. [38].

Splitting dτ= τ1 +τ2 with sufficiently chosen complex τ1 and τ2 such that U(dτ)≈W II(τ2)W II(τ1) reduces the
error in dτ by one order.
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Figure 2: Temperature (T = β−1)-dependent (a) energy density E and (b) specific
heat density exhibiting the double peak obtained by TPQ-MPS on cluster YC8×3×2
and YC8×4×2 and several upper bounds for χ. Reference data (black dots) uses
MC+FFED on 12 × 12 × 2 sites [44] and was provided by courtesy of J. Nasu.
YC8×4×2 exhibits a good quantitative agreement with MC+FFED down to T ∼ 0.05.
We attribute the difference in the position of TL , in particular for YC8×3×2, to the fi-
nite circumference geometry used here; the ground state energies EGS of an infinitely
long Lcirc = 6 cylinder (YC3-1, dash-dotted horizontal line) obtained by iDMRG has
a ground state energy density lower than the bulk exact one [16] (solid horizontal
line) by about ∼ 0.01K , yielding different crossover slopes in E near TL and a shifted
peak. The XTRG result using a 6×4×2 cylinder is extracted from Fig. 4 in Ref. [15]
and shown for comparison. The inset focuses on T ≤ 0.42 using a linear scale for
the temperature. (c) The evolution of the plaquette flux average, 〈Wp〉. The flux-free
state at T = 0 exhibits 〈Wp〉= 1.

is not exactly solvable, once Z2 bond variables constituting the Z2 gauge field are treated as
classical degrees of freedom, a combination of classical Monte Carlo method with free (Ma-
jorana) fermion exact diagonalization (MC+FFED) provides a nearly exact calculation in a
relatively large cluster, as performed by Nasu, et.al [44]. Whereas, its counterpart Eq.(2) is a
quantum many-body Hamiltonian which is generically difficult to solve at finite temperatures
straightforwardly by an unbiased quantum many-body calculation. Therefore, the model pro-
vides a good platform and benchmark for our approach. We would like to emphasize that our
approach, unlike MC+FFED, is not custom tailored to the KH model and can be applied to
other quantum many-body Hamiltonian.

Our TPQ-MPS data in Fig. 2 exhibits a good qualitative agreement with the results obtained
from MC+FFED [44] on a 12× 12× 2 cluster and XTRG using a 6× 4× 2 geometry [15]; The
energy density6 E rapidly decreases near TH resulting in a crossover peak in the specific heat C .

6We are computing the energy density neglecting the left Nl = Lcirc and right Nr = Lcirc sites of the physical
system to obtain a better estimate of the energy density in the bulk.
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A second step of energy reduction occurs near TL . The two-step behavior is already present for
small χ = 362 with well converged behaviour down to T ∼ 0.2 including the high-T peak in
the specific heat. Whereas for T ≲ 0.2, the finite-size and finite-χ effects inevitably influence
the data; In Fig. 2(a) we display in two different lines the ground state energy obtained using
iDMRG on an infinite cylinder with the same circumference Lcirc = 6, 8 and helical boundary
condition YC3-1 and YC4-1, respectively. The circumference seriously affect the numerically
achieved ground state energies and consequently the specific heat which can be summarized as
follows: (I) The cylinder with Lcirc = 6 features an enhanced reduction in energy upon cooling
down approaching the significantly lower ground state energy. The low-T peak in specific heat
is of similar height to MC+FFED, while shifted to a two to three times higher temperature.
(II) For Lcirc = 8 we obtain an evolution of the energy closer to MC+FFED, thus reducing the
finite-size effect signicantly. For TL ≳ T ≳ 0.2, however, TPQ-MPS overestimates E compared
to MC+FFED. Here, increasing χ gradually reduces E possibly approaching MC+FFED for
sufficiently large χ. Near T ∼ TL and below, the effect of finite χ ceases and the energy
eventually approaches both MC+FFED as well as the ground state energy. As a consequence
of the overestimated energy density at intermediate T , we obtain an enhanced slope of E
resulting in a higher peak in the specific heat. Again, increasing χ improves accuracy, reduces
the height of the peak and results in a behaviour closer to MC+FFED. The peak position is very
similar to MC+FFED at any χ.

The average of Z2 fluxes in Fig. 2(c) nicely marks the two peaks by an onset of nonzero
value (TH) and the inflection point (TL), finally approaching 〈WP〉 → 1 at T → 0 systematically
for various χ.

A recent XTRG calculation applied to the KH model reports the lower-T -peak at TL ∼ 0.023
with the peak-height of ∼ 0.3 using a 6 × 4 × 2 cylinder [15]. While the circumference is
similar to our YC8×4×2, the XTRG work uses a slightly shorter cylinder, does not use helical
boundary condition, and employs a different winding scheme. The quantitative agreement
of XTRG with MC+FFED and TPQ-MPS is very good above T ∼ 0.1 where finite-size effects
become negligible. At lower temperature, however, deviations become apparent (see Fig. 2):
Our geometry YC8×4×2 with helical boundary condition exhibits a ground state energy close
to the thermodynamic limit, whereas XTRG uses a different winding scheme, which influences
the location of TL . The comparison with our two geometries confirms that the size or shape of
the cylinder shifts the TL peak. The height of the peak in XTRG is similar to that of MC+FFED
and YC8×3×2. Both TPQ-MPS and XTRG give reasonable results for the given finite size
system, but the choice of the cylinder can easily influence the quantitative agreement of the
data against the bulk data at T ≤ 0.1.

In this context, we like to remark that in many frustrated spin models, the specific heat
at T ≲ 0.1 naturally suffers large finite-size effect independent of the method employed. For
example, in Kagome-lattice Heisenberg antiferromagnet, specific choices of clusters sometimes
yield unphysical peaks or features not observed in other choices of cluster [25, 45] possibly
obscuring the physical behaviour.

4 How truncation affects the TPQ-MPS state

We now quantify the TPQ-MPS based on the error analysis during the run by focusing on two
quantities: The first one is the sum of all discarded Schmidt values (λi for i > i0(β j) which
fulfills aforementioned I or II in Sec. 2) accumulated over a single imaginary-time evolution,

Σtrunc(β) =
∑

β j<β

∑

i>i0(β j)

λ2
i (β j) . (3)
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Figure 3: Evolution of the truncation error and bond dimension of the KH model:
(a) Accumulated truncation error per unit of imaginary-time ∂βΣtrunc and bond di-
mension χ̄ averaged over the system, and (b) fidelity F of the evolved MPS before
and after the truncation accumulated for all β j < β .

The second one is the product of the fidelities of the state |Ψ(β j)〉 = W II(dτ)|Ψ(β j−1)〉 (see
Ref.[36]) and |Ψ̃(β j)〉 just before and after truncation, respectively, for all truncations down
to the temperature β−1,

F(β) =
∏

β j<β

(|〈Ψ̃(β j)|Ψ(β j)〉|2) , (4)

which evaluates how we deviate from the non-truncated wave function at β . The amount
of truncated Schmidt values per unit of imaginary time is given as ∂βΣtrunc. In Figure 3 we
show the evolution of ∂βΣtrunc, of the average bond dimension χ̄, and of F . Upon cooling
down, ∂βΣtrunc remains below 10−7 until χ̄ reaches the upper bound χ̄ ∼ χ, which occurs
near T ∼ 1. Larger χ or smaller system size generally lowers this threshold temperature. At
these high temperatures, the evolution is very accurate reflected in a fidelity F ∼ 1. Upon
lowering the temperature, ∂βΣtrunc increases and then reaches a plateau at TL ≲ T ≲ TH with
values ∂βΣtrunc ∼ 10−5 to 10−4 depending on χ. Here, F starts to depart gradually from 1,
which is more distinct for smaller χ. At T ≲ TL the error ∂βΣtrunc reduces again and F starts
to flatten out. In particular for YC8×3×2, a drop in χ̄ is apparent, indicating the reduction in
the size of the Hilbert space needed to effectively encode the low-temperature state.

These observations suggest two effects of the truncation χ; For relatively small χ that
is reached quickly, in particular at intermediate TL ≲ T ≲ TH , taking a larger χ lowers the
energy towards the optimal value. This becomes evident upon inspection of E in Fig. 2(a),
whose accuracy improves for larger χ approaching the MC+FFED data.

The second effect concerns the states at high energy. Let us expand the TPQ state con-
structed for the full Hilbert space for finite N . The system is split into a smaller part A (with
dimension DA) and a bigger part B, which is Schmidt decomposed as

|Ψβ〉=
DA
∑

n=1

λn|nA〉|nB〉 , (5)

to the orthogonal basis sets {|nA〉} and {|nB〉}. The local part A is thermalized and its density
operator is approximated by the Gibbs state in A as

ρA =
DA
∑

n=1

λ2
n|nA〉〈nA| ≃

e−βHA

ZA
, (6)
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where {|nA〉} is thought to be the energy eigenbasis of the subsystem’s Hamiltonian HA. For
its eigenvalues {EA

n}, the Schmidt coefficient λn is represented as e−βEA
n/2/
p

ZA, and we find

|Ψβ〉 ≃
DA
∑

n=1

e−βEA
n/2

p

ZA
|nA〉|nB〉 . (7)

Note here that {|nB〉} is left unknown. We finally truncate |Ψβ〉 as DA→ χ in Eq.(7), discarding
the basis states with small weight. Specifically, information of |nA〉 belonging to higher EA

n
is lost. This explains the capability of TPQ-MPS to express qualitatively different quantum
states from high to low temperatures; The truncation of the MPS efficiently compresses the
information needed to represent the thermal state particular at low temperatures.

The above context of discarding high-temperature states—or high-energy states,
respectively—explains a particular feature of TPQ-MPS: the variance of physical quantities
among different initial states becomes smaller by more than one order for lower tempera-
ture [2,19]. This tendency is opposite to the usual random sampling methods including stan-
dard TPQ or Monte Carlo methods, where the sampling error is by orders of magnitude larger
in the lower temperature phase. We illustrate this point further by referring to the standard
TPQ using the full Hilbert space for a limited system size N : It is shown in Ref. [25] that the
variance increases at low temperatures by the order of ≤ e−SN/T , and when the entropy SN
of size N is sufficiently large, the increase is moderately suppressed. This fact supports the
application of TPQ methods to highly frustrated quantum magnets including the present KH
model and Kagome or related lattice models [46–51]. However, the idea of relying on the
large entropy does not apply to TPQ-MPS: in the first proposal of TPQ-MPS in Ref. [19] some
of the authors have shown that even for non-frustrated systems, the sample variance becomes
smaller at lower temperature contrary to the prospect from TPQ. This is intuitively because
MPS provides a good description of a quantum many body state at zero temperature. Our
Eq. (7) and the related discussions support this observation irrespective of the choice of spa-
tial dimensions, and suggest good applicability of the present 2D TPQ-MPS to non-frustrated
models.

5 Conclusion

To summarize, the TPQ-MPS is applied to 2D by wrapping the MPS train into cylinders. The
two peaks in the specific heat of the KH model signaling the fractionalization of spins into
Majorana fermions and fixing the Z2 gauge flux are both reproduced. While finite-size effects
appear at T ≲ 0.1 as is common with other methods, finite-χ affects the MPS-TPQ only at in-
termediate temperatures T ∼ 0.1 and is less of a concern at very low temperatures T ≲ 0.01.
This fact is in sharp contrast to other random sampling methods including the original TPQ
method using the full Hilbert space. Here, the truncation process of TPQ-MPS efficiently dis-
cards the higher-temperature information explaining why it can track a nearly pure thermal
state with its volume-law entanglement equivalent to the thermal entropy across a wide range
of temperatures. This allows the state starting from random at high temperature (initial state)
to gradually reach the qualitatively different long-range entangled topological ordered ground
state. The application to non-frustrated model is expected to be promising because, unlike for
the original TPQ, a high entropy density is not required at low temperature to attain a reason-
able accuracy at a moderate numerical cost.
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A Random sampling average

TPQ-MPS is a random sampling method using the MPS representation of the quantum many-
body wave function. Since the quality of the MPS state relies on its bond dimension χ practi-
cally accessible in the computation, a smaller χ would require a larger number of independent
runs to be averaged over. This number is generally by orders of magnitude smaller than with
METTS when applying them to the same system.

Let us first highlight the difference from METTS, which is a moderately mixed quantum
thermal state. METTS starts from a (classical) product state with χ = 1, and χ grows upon
imaginary time evolution. Accordingly, the entanglement stored is moderate and does not suf-
fice the amount of entropy of the thermal state: This is compensated by taking an average over
samples and constructing a mixed state. In METTS, a Markov chain scheme is employed to in-
crease the efficiency of the sampling, while the sample number typically amounts to order-102.
Their χ can be kept smaller by increasing the sample average. TPQ-MPS does not rely much
on the sample average by storing the entanglement as maximally as possible in a single pure
TPQ-MPS form, which usually requires large χ. However, by relying on the auxiliary degrees
of freedom on the edges, the entanglement entropy distribution becomes nearly flat (without
auxiliaries, χ at the edge becomes very small), and this allows us to store the entanglement
maximally for a given χ. There exists a trade-off between the size of χ and of the sample
average, but each method has a specific control parameter to keep them in the practically
reasonable range. A more detailed comparison with METTS is given in Ref. [2].

One may anticipate that the present two-dimensional KH model might require more sam-
ples than a 1D system [19]. As illustrated in Fig. 1 in the main text, the higher the purity is,
fewer samples Nsamp are needed to safely reproduce the thermal quantum state. In TPQ-MPS,
the Nsample-independent runs are performed starting from the independent initial random MPS,

yielding a set of unnormalized states over different β j for each, {|Ψ(l)(β j)〉}
Nsample

l=1 . The random
average of physical quantities O is taken as

〈O〉=
∑Nsample

l=1 〈Ψ
(l)(β j)|O|Ψ(l)(β j)〉

∑Nsample

l=1 〈Ψ(l)(β j)|Ψ(l)(β j)〉
. (A.1)

Here, the summations over samples are taken independently between the numerator and de-
nominator, since the partition function is given by the denominator Z=

∑M
l=1〈Ψ

(l)(β j)|Ψ(l)(β j)〉
(the reasoning for why the average taken by the normalized |Ψ(l)(β j)〉 does not provide the
correct sampling average is analytically shown in Ref. [2]).
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Figure 4: (a) Normalized fluctuation of partition function (NFPF) δz2 as a func-
tion of T for the data calculated in Fig. 2 for the KH model with different χ. The
number of samples required to obtain the same quality data scales linearly with δz2.
(b) Evolution of the entanglement entropy of bipartition as a function of iterations.
Each iteration consists of applying two-site random unitary matrices on even and
odd bonds similar to the TEBD algorithm. S̄E is obtained by taking the average of SE
over bipartitions between any of the physical sites. An additional sample averaging
is done over 10 samples to obtain error bars indicating the variance. However, error
bars are typically smaller than the marker size.

The number Nsample required can be measured using a quantity called normalized fluctua-
tion of partition function (NFPF),

δz2 =
Var(〈Ψ(β j)|Ψ(β j)〉)
�

〈Ψ(β j)|Ψ(β j)〉
�2 , (A.2)

where · · · is the random average. It is shown that the purity of the thermal state scales with
δz2 and the larger δz2 means that the obtained state varies much with a sample. In fact, we
showed that the number of samples needed, Nsample, to obtain the same quality of Eq.(A.1)
increases proportionally to δz2 [2].

The results of δz2 for the present calculation on the KH model are given in Fig. 4(a) for a
set of data given in Fig. 2. The largest δz2 at low-T ranges at 10−1−101, which is comparable
to the value for the 1D Heisenberg model [2] using Nsample = 100. Based on this comparison,
we also adopt Nsample = 100 for the KH model. The present calculation shows that the 2D
TPQ-MPS is as capable as the 1D case despite the consensus that the calculations in 2D are
much more difficult than in 1D.

The plateau of ∂βΣtrunc observed in Fig. 3 agrees with the plateau of δz2, and as in Fig. 3,
χ dependence appears at T ≲ 100, showing that δz2 is indeed a good measure to qualify
the quantum state. We find a suppression of δz2 by a log scale in terms of χ, indicating the
high capability of TPQ-MPS to store the information required for a wide range of temperatures
exhibiting different natures.

As mentioned above, TPQ-MPS stores substantial amount of entropy in the starting point of
the imaginary time evolution, which is contrary to METTS. Therefore, the quality of the initial
random state is important to have high purity and smaller δz2, respectively. When generating
the initial random TPQ-MPS state, we use a TEBD-like algorithm with alternating application
of random two-site unitary matrices. Although not relevant to our model, an advantage of
this method is the possibility of utilizing charge or Sz conservation, e.g. when studying a U(1)
symmetric model. The iteration number, we use 25 iterations, is determined by ensuring a
saturated entanglement entropy. Figure 4(b) shows the evolution of entanglement entropy of
bipartition S̄E , averaged over the physical sites, as a function of iterations. While the bond
dimension of the state generally doubles after each iterations, S̄E is not fully saturated after
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N = 5 iterations, which is required to reach χRMPS = 32. Instead, saturation is reached at
around N ∼ 10 iterations. Our choice of N = 25 iterations is well within the saturated regime.
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