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Abstract

This paper is a follow-up to [82] in which two-dimensional conformal field theories in the
presence of spin structures are studied. In the present paper we define four types of CFTs,
distinguished by whether they need a spin structure or not in order to be well-defined,
and whether their fields have parity or not. The cases of spin dependence without par-
ity, and of parity without the need of a spin structure, have not, to our knowledge, been
investigated in detail so far. We analyse these theories by extending the description of
CFT correlators via three-dimensional topological field theory developed in [45] to in-
clude parity and spin. In each of the four cases, the defining data are a special Frobenius
algebra F in a suitable ribbon fusion category, such that the Nakayama automorphism
of F is the identity (oriented case) or squares to the identity (spin case). We use the
TFT to define correlators in terms of F and we show that these satisfy the relevant fac-
torisation and single-valuedness conditions. We allow for world sheets with boundaries
and topological line defects, and we specify the categories of boundary labels and the
fusion categories of line defect labels for each of the four types. The construction can
be understood in terms of topological line defects as gauging a possibly non-invertible
symmetry. We analyse the case of a Z2-symmetry in some detail and provide examples of
all four types of CFT, with Bershadsky-Polyakov models illustrating the two new types.
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1 Introduction and summary

The earliest and most thoroughly investigated two-dimensional conformal field theories (CFTs)
are those where the world sheets are just complex one-dimensional manifolds, and where
no further geometric structure or parity grading is needed to define the theory. Such CFTs
were the focus of the foundational paper [12] on rational conformal field theory, and of early
classification results [17]. These theories are algebraically well-understood via their relation
to three-dimensional topological field theory [45].

The second most studied kind of CFTs are those which require a spin structure to be well-
defined, and where the state spaces are Z2-graded by “fermion number”. The most notable
example is given by massless free fermions. But already for this class of theories a systematic
bootstrap formulation in terms of crossing relations for operator product expansion coefficients
was not available until recently [82]. In that paper, correlators of spin CFTs are described via
topological line defects in a “parity enhancement” of an underlying bosonic theory [76]. A
related approach to fermionic CFTs is via gauging suitable Z2-symmetries [54, 57, 65] giving
a continuum version of the Jordan-Wigner transformation. Minimal model CFTs with half-
integer spin fields have also been investigated earlier in [38,77], but without reference to spin
structures.

In fact, the paper [82] and the present follow-up paper grew out of the desire to develop a
systematic approach to consistency conditions and their solutions for these “fermionic CFTs”.
However, the term “fermionic” can stand for different properties of the theory: it can refer
to the presence of half-integer spin fields, i.e. fields that transform under the double cover of
the rotation group SO(2), or it can refer to the statistics, i.e. to parity signs that arise when
reordering the fields.

1.1 Four types of conformal field theory

To illustrate this, let z(t), w(t) be two paths in the complex plane as follows: consider a
correlator where two copies of a field φ are inserted, one at z(t) and one at w(t), plus possibly
other fields whose positions remain fixed. Continue the correlator from t = 0 to t = π, so that
the two copies of φ exchange places, as in Figure 1. In the theories we study in this paper
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z(t)

w(t)

z(0) = w(π)

z(π) = w(0)ϕ

ϕ
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Figure 1: The choice of path to interchange the positions of two identical fields.

there are three sources of signs which can arise in this process,



φ(z(t))φ(w(t)) · · ·
��

�

t=0 = (−1)M+P+S



φ(z(t))φ(w(t)) · · ·
��

�

t=π . (1)

Here, M is the contribution from analytic continuation controlled by the conformal weights of
the fields, P gives the contribution of parity, and S arises from the effect the monodromy has
on the spin structure. Single-valuedness requires (−1)M+P+S = 1.

It turns out that parity and spin-structure dependence can independently be present or
not, leading to four types of CFT:

type of CFT no parity parity

oriented 1⃝ 2⃝

spin 3⃝ 4⃝

(2)

Here, “oriented” refers to the fact that no spin structure is needed to obtain well-defined cor-
relators, just the orientation induced by the complex structure on the world sheet. The CFTs
mentioned in the first paragraph are of type 1⃝, in this case we have (−1)P = 1 = (−1)S for
all fields. Those in the second paragraph are of type 4⃝, where (−1)P and (−1)S take both
values. In fact, the situation is a little more subtle than (2), as we elaborate on in sections 1.2
and 1.3.

In this paper we present consistency conditions on correlators – namely compatibility with
gluing and monodromy-freeness with or without spin structure or parity – and a construction
of solutions to these conditions for all four types of CFTs. Our construction includes theories
with boundaries and topological line defects. We do this by extending the approach via 3d TFTs
which was developed for theories of type 1⃝ in [45] to the remaining three types. That is, we
express the consistency conditions and solutions in terms of a 3d TFT. For type 4⃝, the present
paper provides the framework to prove the claims in the prequel [82]; the proofs themselves
will be presented in a further part of this series.

Consistency conditions and their solutions for CFTs of types 2⃝ and 3⃝ have, to the best
of our knowledge, not been systematically studied in the literature so far.

1.2 Oriented parity CFT via topological field theory

Let us describe our approach in more detail. The starting point is a rational vertex operator
algebra V and the modular fusion category C formed by its representations. The category C
defines the Reshetikhin-Turaev TFT used in [36,37,40,45,47] to describe type 1⃝ theories.

To treat theories of type 2⃝, we slightly extend this TFT to include parity. Namely, let bC be
the product

bC := C ⊠SVect , (3)
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where SVect is the category of finite-dimensional super-vector spaces. Each simple object of C
comes in two variants in bC, one parity even, and one parity odd. For two parity-odd objects, the
braiding acquires an additional minus sign. Note that bC itself is not a modular fusion category
as it has symmetric centre SVect.

Let Bord 3(bC) denote the category of three-dimensional bordisms with embedded bC-
decorated ribbon graphs. We consider the TFT

ÒZC : Bord 3(bC) −→ SVect , (4)

which is basically the product of the Reshetikhin-Turaev TFT for C and the trivial SVect-valued
TFT, see Section 4 for details.

Consider a surface Σ with marked points p1, . . . , pn labelled by X1, . . . , Xn ∈ bC. To this, the
TFT ÒZC assigns a vector space, which can be interpreted as the space of conformal blocks for
the VOA V on Σ, but where the V-representations are now of even or odd parity. This affects
the monodromy-behaviour of conformal blocks by including parity signs.

From here on, the construction of CFT correlators is the same as in [45], but we go through
it in some detail in Section 5 to stress the effect of including parity.

LetΣ be an oriented world sheet, possibly with boundaries and defect lines. Bulk insertions
are labelled by a tuple (U , V̄,δ,φ) and boundary fields by (W,ν,ψ), where U , V̄ ∈ C (not bC)
give the holomorphic and antiholomorphic representation the bulk field transforms in, W ∈ C
is the representation for the boundary field, δ,ν ∈ {±1} describe the parity of the fields,
and φ,ψ take values in appropriate multiplicity spaces which depend on the theory under
consideration.

From Σ one constructs the double eΣ= (Σ⊔Σrev)/∼, where Σrev is an orientation reversed
copy of Σ and ∼ identifies boundary points of Σ and Σrev. For example, if Σ is a disc, then eΣ
is a sphere. A bulk insertion on Σ splits into two points on eΣ, one on Σ labelled by U and one
on Σrev labelled by V̄ . Boundary insertions result in a single marked point on eΣ labelled by
W . The first key ingredient of the TFT construction is:

The correlator for a world sheet Σ of an oriented parity CFT is an element of the
space of conformal blocks on the double eΣ, i.e. in Bl(Σ) := ÒZC(eΣ).

Specifying an oriented parity CFT now amounts to, firstly, giving the multiplicity spaces
for bulk fields in terms of U , V̄ and the parity ε (which may be zero-dimensional), and ditto
for boundary fields. This specifies the field content of the theory. Secondly, one has to give
a collection of vectors Corror(Σ) ∈ Bl(Σ). The (bi)linear combinations of conformal blocks
described by these vectors are then the correlators of the oriented parity CFT.

The collection {Corror(Σ)}Σ has to satisfy two consistency conditions: it has to be mon-
odromy free, which amounts to mapping class group invariance, and it has to be compatible
with gluing of world sheets, see Section 5.4 for details. These consistency conditions can be
expressed via the TFT ÒZC .

The second key point of the TFT construction is that consistent collections of correlators
for CFTs of type 2⃝ can be constructed from a suitable algebraic input:

From a symmetric special Frobenius algebra B ∈ bC one can construct a consistent col-
lection of correlators Corror

B (Σ) ∈ Bl(Σ). Boundaries of Σ are labelled by B-modules
and defect lines by B-B-bimodules.

The correlators Corror
B (Σ) are described via the TFT ÒZC as follows: From Σ one obtains a

bordism MΣ : ; −→ eΣ which contains a bC-decorated ribbon graph defined in terms of B and
the field insertions, boundaries and line defects on Σ. As a 3-manifold, MΣ = Σ× [−1, 1]/∼,
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where (z, t) ∼ (z,−t) for all z ∈ ∂Σ, t ∈ [−1,1]. For example, if Σ is a disc, then MΣ is a
3-ball. One then sets

Corror
B (Σ) := ÒZC(MΣ) ∈ Bl(Σ) . (5)

If in this construction one takes B ∈ C ⊂ bC, i.e. B is purely parity even, one recovers precisely
the construction in [45] of correlators of oriented CFTs without parity, which is type 1⃝ in the
above table.

A more intuitive way to understand this construction is to think of MΣ as a fattening of the
world sheet Σ, together with a surface defect inserted in place of the embedded copy of Σ in
MΣ. The surface defect determines how the holomorphic and antiholomorphic fields combine
to form a consistent collection of correlators. This interpretation of the construction in [45]
was given in [64], and a detailed study of surface defects in Reshetikhin-Turaev TFTs can be
found in [23, 50]. We will, however, not elaborate more on this point of view in the present
paper.

Our first main result is (Theorems 5.4 and 5.6):

Theorem 1.1. Let B ∈ bC be a symmetric special Frobenius algebra. Then the collection of cor-
relators {Corror

B (Σ)}Σ, where Σ runs over oriented world sheets with boundaries and defects,
is monodromy free and compatible with gluing.

One notable difference of oriented CFT with parity to that without parity is that the state
spaces are now super-vector spaces, and that the modular invariant torus partition function is
obtained as a super-trace. It is therefore a Z-bilinear combination of characters, rather than
a Z≥0-bilinear combination as in the parity-less case. See Section 5.5 and the example in
Section 7.5 for more on this point.

After this discussion we can be more detailed about the relation between CFTs of types 1⃝
and 2⃝. Firstly, one should distinguish whether one is working with just the bulk CFT without
boundaries and defects, or with a CFT on surfaces with boundaries and defects. Let us denote
these as type i⃝bulk and i⃝bnd&def, respectively, for i = 1, 2. We have the inclusions

1⃝bulk ⊂ 2⃝bulk , and 1⃝bnd&def ⊂ 2⃝bnd&def . (6)

For the first inclusion one considers a bulk theory without parity as a bulk theory with parity
which happens to involve only even parity fields, and similarly for the second inclusion for all
bulk, boundary and defect fields. In terms of Theorem 1.1 this happens if B ∈ bC is actually
contained in C, and if one only considers B-modules and B-bimodules contained in C, rather
than in bC.

We say that a CFT is strictly of type 2⃝ if it is not in the image of the inclusions in (6). In
this sense, the table in (2) is about bulk theories without boundaries and defects which are
strictly of the given type.

By restricting to surfaces without boundaries and defects, a CFT of type i⃝bnd&def becomes
a theory of type i⃝bulk. However, the latter may be in the image of the first inclusion in (6),
i.e. a CFT of type 2⃝bnd&def can restrict to 1⃝bulk. This happens if B ∈ C but one considers
B-modules and B-bimodules contained in bC.

Turning this around, one can always enhance a CFT of type 1⃝bnd&def to a CFT of type
2⃝bnd&def by adding parity to all boundaries and defects, resulting in a doubling of bound-

ary and defect conditions. In terms of Theorem 1.1, this means that B ∈ C, but rather than
considering only modules and bimodules in C (which gives 1⃝bnd&def) one allows modules
and bimodules in bC (which gives 2⃝bnd&def). The enhanced theory is strictly of type 2⃝bnd&def
(there are boundary and defect fields of either parity), but it restricts to a theory of type 1⃝bulk.

This will actually be an important intermediate step for example when construction the
free fermion CFT from the Ising CFT later on.
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1.3 Spin CFT via oriented CFT with defects

Here we discuss the situation where the world sheet is equipped with a spin structure, that is,
with a double cover of the oriented frame bundle such that the fibre over each point of the
world sheet is connected. This results in CFTs of types 3⃝ and 4⃝. We will only treat the case
with parity in detail. The case without parity can be obtained from this by choosing purely
even input data, analogous to the oriented case above.

One can define correlators for spin CFTs with parity directly in terms of the TFT ÒZC in a
construction that resembles that for oriented CFTs with parity. However, we find it convenient
to take a slightly different route. Namely, we define correlators of spin CFTs in terms of cor-
relators of oriented CFTs equipped with a specific choice of defect network. This is also the
approach taken in [76,82].

Let Σ be a world sheet with spin structure, and possibly with boundaries and line defects,
and denote by Σ the underlying oriented 2-manifold. Our main technical tool will be the
combinatorial model for spin structures developed in [75, 80, 85] and reviewed in Section 2.
The spin structure on Σ is encoded by choosing a decomposition PΣ of Σ into polygons, and
assigning an index se ∈ {0,1} to each edge e of the decomposition, subject to an admissibility
condition at each vertex. These indices encode the spin structure, and we write PΣ(Σ) for this
combinatorial presentation of the spin structure of Σ.

The spin structure on Σ is not required to extend to insertion points of bulk fields (it can
always be extended to boundary insertions). We distinguish two types of bulk insertions: those
where the spin structure does nonetheless extend are called Neveu-Schwarz (NS) insertions,
and those where it does not extend are Ramond (R) insertions.

The input for the construction of correlators is a special Frobenius algebra F ∈ bC whose
Nakayama automorphism NF squares to the identity,

N 2
F = idF . (7)

Detailed definitions are given in Section 5.1. Here we just note that the Nakayama automor-
phism measures the failure of the invariant pairing on F to be symmetric. In particular, F is
symmetric iff NF = idF . Symmetric algebras therefore satisfy (7), but it turns out that the
resulting correlators are independent of the spin structure of Σ.

In the spin CFT constructed from F , boundaries on Σ are labelled by Z2-equivariant F -
modules, and defects by Z2-equivariant F -F -bimodules, see Section 6.1. The action of Z2 is
defined by twisting the F -action with NF .

From Σ we will now construct an oriented world sheet with boundaries and defects,

Wor(Σ; F) , (8)

for the oriented parity CFT defined by the trivial symmetric special Frobenius algebra B=1 ∈ bC.
Note that for B = 1, the boundary and defect labels are just objects in bC.

The underlying oriented 2-manifold of Wor(Σ; F) is Σ, the underlying manifold for Σ. Let
PΣ(Σ) be a combinatorial presentation of the spin structure of Σ. Then Wor(Σ; F) is obtained
by placing a defect graph dual to the polygonal decomposition on Σ, where the defects are
labelled by F and the vertices are built from products and coproducts of F in a specific way.
The F -defect lines that cross an edge of PΣ are equipped with a power of NF depending on the
index se of that edge. The precise description of this deliberately vague formulation is given
in Sections 6.2 and 6.3.

We now define the correlator of the spin CFT as

Corrspin
F (Σ) := Corror

B=1(Wor(Σ; F)) . (9)

Our second main result (Theorems 6.9 and 6.11) is:
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Theorem 1.2. Let F ∈ bC be a special Frobenius algebra with N 2
F = idF . Then the collection of

correlators {Corrspin
F (Σ)}Σ is monodromy free and compatible with gluing.

In the situation considered in (1), the monodromy does affect the spin structure on the
surface, and so monodromy freeness is now the statement that (−1)M+P+S = 1, where both
(−1)S and (−1)P can be +1 or −1.

We can summarise this discussion as follows:

For F ∈ bC a special Frobenius algebra with N 2
F = idF , the family {Corrspin

F (Σ)}Σ, de-
fined via F -defect networks in the B = 1 oriented CFT, provides a consistent collection
of correlators on spin surfaces with boundaries and defects. Boundaries are labelled
by Z2-equivariant F -modules and defect lines by Z2-equivariant F -F -bimodules.

In other words, we start from the diagonal theory of type 1⃝bnd&def (we consider B = 1 in
C). Its conformal boundary conditions and topological defects are labelled by objects in C. We
then enhance it to type 2⃝bnd&def as described in the end of the previous section (by allowing
B-modules in bC). This does not affect the bulk theory, which is still of type 1⃝bulk, but boundary
conditions and defects are now labelled by objects in bC. Among the defects of the latter theory,
we look for a defect F (i.e. an object bC) which can be equipped with the structure of a special
Frobenius algebra such that (NF )2 = idF . Thinking of F as a possibly non-invertible symmetry,
we can gauge F . In our setting, this amounts to inserting a network of F -defects as described
above – we will come back to this point of view on gauging in Section 1.5 below. Since in
general F is not symmetric but only satisfies (NF )2 = idF , this is a priori not well-defined on
oriented manifolds but is on world sheets with a spin structure.1

The resulting theory is in general of type 4⃝bnd&def. If F happens to be contained in C, the
bulk theory does only involve fields of even parity, and one can restrict oneself to boundaries
and defects labelled by F -modules and bimodules in C, rather than bC. The restricted theory is
of type 3⃝bnd&def. This is the spin-version of the inclusion (6), i.e.

3⃝bulk ⊂ 4⃝bulk , and 3⃝bnd&def ⊂ 4⃝bnd&def . (10)

In the context of bulk CFTs on spin world sheets, there are the additional inclusions

1⃝bulk ⊂ 3⃝bulk , and 2⃝bulk ⊂ 4⃝bulk . (11)

This happens if the bulk CFT turns out to be independent of the spin structure, i.e. if there is
an underlying CFT defined on oriented world sheets, and the correlators on spin world sheets
are obtained by first forgetting the spin structure and then evaluating the oriented theory. In
our setting this happens if F is symmetric, i.e. if (NF )2 = id is satisfied because we already
have1 NF = id. There are corresponding inclusions for types i⃝bnd&def, but we will skip a
more detailed discussion.

As an example of the construction of spin CFT correlators, in Section 6.5 we treat the torus
with its four possible spin structures. We illustrate how F determines the coefficients in the
bilinear combination of characters giving the torus partition function in each of the four cases.

1.4 Examples from a self-dual invertible object

It turns out that one can already obtain examples of CFTs which are strictly of type i⃝bulk for
each of i = 1,2, 3,4 by considering algebras of the form A+ = 1⊕G ∈ C and A− = 1⊕ΠG ∈ bC,

1To obtain an oriented theory, it is actually enough for NF to be an inner automorphism (see Remark 6.7). The
condition (NF )2 = id can be analogously weakened. For a Morita-invariant formulation of this condition in the
context of fully extended topological field theory, see [24].
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where G ∈ C satisfies G ⊗ G ∼= 1 and ΠG ∈ bC denotes the parity-odd copy of G. The objects
A± each carry an up-to-isomorphism unique structure of a special Frobenius algebra whose
Nakayama automorphism squares to the identity, or is already equal to the identity. They can
thus serve as an input for the constructions presented in Sections 1.2 and 1.3. We consider
the trivial case G ∼= 1 first, and then turn to G � 1.

1.4.1 The case G ∼= 1

The case of A− = 1 ⊕ Π1 is instructive, both for its simplicity and for the fact that, when
applied to the trivial c = 0 CFT, it gives the Arf-invariant CFT, or rather, 2d TFT of type 4⃝. In
that example C = Vect, bC = SVect, and A− is the Clifford algebra in one odd generator, see
Section 7.1 for more details.

The case A+ = 1⊕1 simply results in two copies of the initial theory and we do not consider
it further.

1.4.2 The case G � 1

Let now G ∈ C satisfy G � 1 and G⊗G ∼= 1. This implies that G is invertible and self-dual, or, in
other words, that G is an order two simple current. The quantum dimension of G necessarily
satisfies dim(G)2 = 1. Let θG be the eigenvalue of the ribbon twist on G. It is related to the
conformal weight h via θG = exp(2πih). We require that h ∈ 1

2Z, i.e. that

θG ∈ {±1} . (12)

For each of the eight possible choices of dim G, ν, θG , the algebra Aν can serve as an input
to determine a consistent collection of correlators. If NAν = idAν , i.e. if Aν is symmetric, one
obtains a theory of type 1⃝ (ν = 1) or type 2⃝ (ν = −1). If NAν ̸= idAν one correspondingly
gets a theory of type 3⃝ (ν= 1) or 4⃝ (ν= −1).

The dimension and twist multiply under taking products in the following sense. Let C and
C′ be modular fusion categories, obtained as representation categories of rational VOAs V and
V ′, respectively. Suppose there are order two simple currents G ∈ C and G′ ∈ C′. Then C⊠C′ is
the representation category for the product VOA V⊗CV ′, and it contains the order two simple
currents G ⊠ 1′, 1⊠ G′, and G ⊠ G′ =:G. Then

dim(G) = dim(G) dim(G′) , θG = θG θG′ . (13)

The parity is also multiplicative, and so the eight cases for the triple (dim G,ν,θG) form a
(Z2)×3.

We collect the case G ∼= 1 and the eight cases for G � 1 in Table 1. Let us explain the
columns in turn. The first four columns are clear. The meaning of the remaining columns is
as follows:

• The column “Aν sym.” states whether the algebra Aν is symmetric, and as just explained
that corresponds to the type being 1⃝/ 2⃝ or 3⃝/ 4⃝.

• The column “Aν com.” states whether Aν is commutative in bC or not. Commutative
algebras define extensions of the VOA V [19,56].

• In the column “G hol.” we consider the bulk state space of the theory defined by Aν. If
this space contains a field that transforms in the holomorphic / antiholomorphic repre-
sentation (G,1), i.e. if the theory contains the elements of G as holomorphic fields, we
mark a “✓”, and we indicate the parity ± of those fields, and, in the spin case, whether
they are in the NS or R sector. It turns out that a holomorphic copy of G exists iff an
antiholomorphic copy of G exists.

9

https://scipost.org
https://scipost.org/SciPostPhys.15.5.207


SciPost Phys. 15, 207 (2023)

Table 1: Properties of the CFT defined by Aν in dependence on the dimension and
twist of the invertible self-dual object G and on the parity ν of the second summand
of Aν.

G dim G ν θG type Aν sym. Aν com. G hol. example

1 1 −1 1 4⃝ × × ✓ [−,R] Arf invariant, c = 0

� 1 1 1 1 1⃝ ✓ ✓ ✓ [+] Potts c = 4
5

1 1 −1 1⃝ ✓ × × Ising c = 1
2

1 −1 1 4⃝ × × ✓ [−,R] fermionic tetra-Ising c = 4
5

1 −1 −1 4⃝ × ✓ ✓ [−,NS] free fermion c = 1
2

−1 1 1 3⃝ × × ✓ [+,R] (spin BP)×(Ising) c = 9
10

−1 1 −1 3⃝ × ✓ ✓ [+,NS] spin BP c = 2
5

−1 −1 1 2⃝ ✓ ✓ ✓ [−] (parity BP)×(Ising) c = 9
10

−1 −1 −1 2⃝ ✓ × × parity BP c = 2
5

• The last column lists an example of the corresponding theory. These are discussed in
more detail in Section 7. BP stands for Bershadsky-Polyakov. The table also contains
two product theories which illustrate (13).

In particular, we obtain explicit examples of CFTs of type 2⃝ and 3⃝ in terms of Bershadsky-
Polyakov vertex operator algebras (Section 7.5), which to the best of our knowledge are new.

For spin theories, the torus partition function with R-R spin structure is itself modular
invariant. For the free fermion, this particular torus partition function is zero, and for super-
symmetric models it is constant, but for the fermionic tetra-critical Ising model it is neither
zero nor constant. We compute the corresponding Z-bilinear combination of c = 4

5 Virasoro
minimal model characters in Section 7.4, and find that it is given by the difference of the A-
and D-type modular invariant, i.e. by tetra-critical Ising minus three-state Potts. This agrees
with [57], where this model was first considered.

1.5 Relation to gauging topological symmetries

A very useful point of view on the construction of consistent collections of CFT correlators is to
understand it as a generalised orbifold or, equivalently, as a gauging of topological symmetries,
or as an internal state sum.

Orbifolds of CFTs were first considered for finite groups [26, 31], and amount to adding
twisted sectors to the theory and then passing to suitably invariant states. This procedure
has a conceptually important reinterpretation as gauging a discrete symmetry of the original
theory [32], which also provides a connection to state sum constructions.

The study of topological line defects in CFT [43,45,79] allows one to understand discrete
symmetries of CFTs as invertible line defects. Topological line defects are typically not invert-
ible, and it is fruitful to think of the collection of all topological defects as an extension of the
notion of symmetry of a field theory. We will refer to such not-necessarily-invertible defects as
a “topological symmetry” of a given theory. For rational CFTs, and in fact for 2d QFTs in gen-
eral, these form a pivotal monoidal category, or a bicategory with adjoints in the case where
one includes topological interfaces [28,43,88].

The idea to orbifold a given theory by a not-necessarily-invertible topological symmetry
was first formulated in [44] in the context of rational conformal field theory as a reinterpre-
tation of the TFT construction of CFT correlators on oriented world sheets given in [45]. This
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procedure was called a “generalised orbifold”, but recently is more often referred to as “gaug-
ing a topological symmetry”.

For oriented topological field theories in arbitrary dimension, taking generalised orbifolds
/ gauging topological symmetries is discussed in [22]. For Reshetikhin-Turaev TFTs there is a
completeness result analogous to the one above [20,72]: any two such TFTs based on modular
fusion categories in the same Witt class are obtained from one another by gauging a topological
symmetry.

The idea to use gauging of topological symmetry to relate oriented and spin topological
field theories was developed in [2, 9, 53]. In two-dimensional CFTs it was used in [76, 82] in
the guise of defect networks. In [54, 57, 65, 66] the gauging of Z2-symmetries is used to link
oriented and spin CFTs. The examples considered in Section 1.4 can be understood as such a
Z2-gauging. We compare the results of our construction with those in [57] in Section 7.4.4.

As described at the end of Section 1.3, the construction of spin CFTs in this paper can
be reformulated in the context of gauging as follows: Starting from a diagonal CFT of type
1⃝bnd&def, we pass to the theory with parity enhanced defects of type 2⃝bnd&def and gauge a

suitable topological symmetry F with the property that the gauging-procedure needs a spin
structure on the world sheet to be well-defined. This results in a spin theory of type 4⃝bnd&def.

An example which makes use of gauging a non-invertible symmetry is the exceptional spin
CFT for su(2) at level 10. The starting point is the usual WZW model for su(2) at level 10, by
which we mean the oriented CFT with diagonal modular invariant. After parity enhancement
one can identify a non-invertible topological defect F whose gauging produces a spin CFT,
which we call “exceptional” as the sum over spin structures produces the E6-type modular in-
variant oriented su(2)10 WZW CFT. The relevant defect decomposes as F = 0+6+Π4+Π10,
where the underlined numbers are Dynkin-labels and Π refers to the parity shift. The sum-
mands 6 and Π4 describe non-invertible topological defects. However, we will not discuss this
model in the present paper.

Boundaries and topological defects in spin theories were studied using the folding trick
in [73], from the point of view of classifying algebras in [82], via gauging of a Z2-symmetry
in [13, 34, 51], via the Cardy consistency condition in [61], and in relation to super-fusion
categories in [16].

To conclude the introduction, let us discuss in which sense we expect our construction to
be complete, and how it can generalise beyond rational CFTs.

Given a rational VOA V , one can ask what are all the oriented and spin bulk theories which
contain a holomorphic and an anti-holomorphic copy of V in the space of bulk fields, which
have a unique vacuum (in the NS-sector in the spin case), and which have non-degenerate
two-point functions. Let us refer to the collection of such theories as T (V). We expect that all
theories in T (V) can be obtained by our construction for an appropriate choice of Frobenius
algebra in bC, generalising the existence and uniqueness result for type 1⃝ theories in [40,41,
63]. What is more, it is known from [44] that any two type 1⃝ CFTs in T (V) are generalised
orbifolds of one another (i.e. can be obtained from each other by gauging). We expect the
same to hold for any two CFTs C1, C2 ∈ T (V), even if one is spin and the other oriented, or if
one involves parity and the other does not. That is, there should exist a topological defect F
in C1 so that the generalised orbifold (or gauging) by it produces C2. Interfaces between spin
and oriented theories have already been studied in [52,73,82].

The construction we present in this paper is not restricted to rational CFTs. Indeed, the
same gauging procedure works in any 2d QFT, conformal or not, for which one can find a
topological defect F and topological junctions for product, coproduct, unit and counit, such
that it forms a special Frobenius algebra with NF = id or (NF )2 = id in the pivotal monoidal
category of topological defects of the QFT (as defined in [28, Sec. 2.4]). The massive Ising
CFT and the massive free fermion would be an example of this.
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Organisation of this paper

In Section 2, we review the combinatorial description of spin structures and give our con-
ventions for bordisms and world sheets with boundaries and defect lines. We discuss r-spin
structures in general, rather than just 2-spin structures, as having r ∈ Z≥0 as a parameter does
not add any difficulty and makes the description more transparent.

Section 3 gives a short overview of the relation between modular fusion categories and
Reshetikhin-Turaev type 3d TFTs on the one side, and representations of rational VOAs and
their conformal blocks on the other side. This section prepares the ground and sets the notation
for the parity-extension in the next section.

In Section 4 we show how to include parity in the 3d TFT. On the TFT side we describe the
product of the TFT in Section 3 with the trivial SVect-valued TFT. On the VOA side we explain
how to interpret the state spaces of the parity-enhanced TFT in terms of spaces of conformal
blocks, where insertion points in addition have even or odd parity.

Sections 5 and 6 contain the main new constructions presented in this paper. In Section 5
we extend the TFT description of CFT correlators with boundaries and topological line defects
to oriented CFTs with parity: correlators are given as elements in the corresponding spaces
of conformal blocks. Both are given by evaluating the TFT from Section 4 on suitable three-
manifolds and surfaces.

Section 6 treats spin CFTs with parity. Here, the world sheets are equipped with a spin
structure, and they can have boundaries and line defects. The approach we take is to express
correlators on world sheets with spin structure in terms of correlators for the oriented CFT
introduced in Section 5, which now feature a defect network that encodes the spin structure.

In Section 7 we present a number of explicit examples which illustrate the abstract con-
structions. This includes in particular the Bershadsky-Polyakov models which provide exam-
ples for spin CFTs without parity, as well as for oriented parity CFTs, both of which have not
been systematically studied before.

Finally, in the appendix we collect several proofs and detailed computations we omitted in
the main text.

2 Bordisms with boundaries, defects, and spin structures

In this section we collect the geometric structures on two-dimensional bordisms that we will
need to define the oriented and spin CFTs with boundaries and defects. We start with the
geometric and combinatorial description of spin structures, and then turn to boundaries and
line defects.

In the description of spin structures we will be slightly more general than needed later.
Namely, we review r-spin structures while later we only work with 2-spin structures. The rea-
son is that r-spin structures are not more complicated to describe and having r as a parameter
removes the degeneracy 1 = −1 ∈ Z2 one has in the 2-spin case. After this review section,
spin structures only appear again in Sections 6 and 7.

2.1 Geometric description of open-closed spin surfaces

Here we describe open-closed bordisms with parametrised boundaries, as well as including
spin structures and line defects.
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Figure 2: a) An open-closed bordism Σ. The boundary ∂Σ decomposes as follows:
∂ fΣ consists of the components labelled 2, 5,7, ∂ c

inΣ consists of 3,8, ∂ c
outΣ of 1, ∂ o

inΣ

of 6, ∂ o
outΣ of 4. b) The bordism obtained by gluing components 1 and 8, as well as

4 and 6. The location of the now erased gluing boundary is shown as dashed lines.

Open-closed bordisms

By a surface we mean an oriented smooth 2d manifold, possibly with boundaries and corners.
For a 2d manifold with corners, each point has a coordinate chart to some open subset of
the upper right closed quadrant R2

≥0 = {(x , y) ∈ R2|x , y ≥ 0}, see e.g. [70, Sec. 3] for more
details. The coordinate chart changing maps for points on the boundary or for corner points
are required to extend to diffeomorphisms between open subset of R2, even if initially defined
just on open subsets of R2

≥0. This allows one to assign a (two-dimensional) tangent space to
boundary points and corners of Σ.

An open-closed bordism is a compact surface Σ, where parts of the boundary are
parametrised, allowing bordisms to be glued together. While this is standard, see e.g. [84,
Sec. 3.1] and Figure 2, we need some details to describe the spin case later. Boundary compo-
nents and their neighbourhood will be parametrised by certain subsets of R2 and of the closed
upper half plane H= R×R≥0:

• US ⊂ R2 denotes an open neighbourhood of the unit circle, and U+S is the intersection
of such a neighbourhood with {p ∈ R2| |p| ≥ 1}, i.e. R2 minus the open unit disc, while
U−S stands for the intersection with the closed unit disc.

• UH ⊂H and U±H are the same as above, but in addition intersected with H. Note that U±H
contain corners.

We will take US , U±S , etc, to denote neighbourhoods of the type described above, not a fixed
choice made once and for all.

The boundary ∂Σ (which includes the corners) is decomposed into disjoint subsets as

∂Σ= ∂ gΣ∪ ∂ fΣ , (14)
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where ∂ gΣ is referred to as the gluing boundary and ∂ fΣ as the free boundary. The free bound-
ary consists of circles and closed intervals in ∂Σ, where the endpoints of the intervals are re-
quired to be corners. The gluing boundary is further decomposed into an in- and outgoing
and open/closed part:

∂ gΣ= ∂ c
inΣ∪ ∂

c
outΣ∪ ∂

o
inΣ∪ ∂

o
outΣ . (15)

The closed gluing boundary consists of circular components of ∂Σ, and the open gluing bound-
ary of open intervals between two corners in ∂Σ. A connected component of ∂Σ without
corners can either be a closed gluing boundary or a free boundary. If a connected component
of ∂Σ has corners, its further decomposition has to alternate between free and open gluing
boundaries at the corners.

Each component B of the gluing boundary ∂ gΣ is equipped with a parametrising map, cf.
Figure 2:

• in-going closed gluing boundary B ⊂ ∂ c
inΣ: A smooth map ϕ : U+S −→ Σ whose image is

open in Σ and which is a diffeomorphism onto its image. It follows that ϕ maps S1 ⊂ R2

to a boundary component of Σ, and we require this boundary component to be B.

• out-going closed gluing boundary B ⊂ ∂ c
outΣ: A map ϕ : U−S −→ Σ with the same proper-

ties as above.

• in-going open gluing boundary B ⊂ ∂ o
inΣ: A map ϕ : U+H −→ Σ with the same properties

as above. It follows that ϕ maps the closed upper half circle to part of the boundary of
Σ, and the two endpoints to corners of Σ. We require B to be the image of the open
upper half circle.

• out-going open gluing boundary B ⊂ ∂ o
outΣ: A map ϕ : U−H −→ Σ as above.

When it is clear from the context, in the following we will say e.g. “closed boundary” or
“gluing boundary” instead of “closed boundary component” or “gluing boundary component”
for brevity.

A diffeomorphism of open-closed bordisms is an orientation preserving diffeomorphism of
the underlying surface compatible with the (germs of the) boundary parametrisations.

Given a (not necessarily connected) open-closed world sheet, one can use the parametris-
ing maps to glue an in-going to an out-going closed boundary, and ditto for open boundaries.
See again Figure 2 for an example.

Spin structures on surfaces

We now review the definition of r-spin structures on surfaces, where r ∈ Z≥0. The case r = 2
is the usual spin case, and the case r = 0 is equivalent to considering a framing on the surface,
while for r = 1 one just recovers the underlying oriented surface. More details can be found
in e.g. [69,74,86].

Let us first discuss the simpler case of a surface Σ which is equipped with a metric. Denote
by FSO

Σ −→ Σ the bundle of oriented orthonormal frames in the tangent space of Σ. The group
SO2 acts freely and transitively on the fibres of FSO

Σ , i.e. FSO
Σ is an SO2-principal bundle. The

frame bundle is well-defined also over the boundary and over corner points of Σ due to the
requirement that changes of charts extend smoothly to a neighbourhood of the boundary of
R2
≥0 ⊂ R

2.

WriteÞSO2
r

for the r-fold cover of SO2 if r > 0, and for the universal cover if r = 0, and
denote the covering map by

pr
SO :ÞSO2

r
−→ SO2 . (16)
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For r > 0,ÞSO2
r

is isomorphic to SO2, but for r = 0 it is not. An explicit description ofÞSO2
r

valid for all r is
pr

SO : R/rZ −→ SO2 , x 7−→ e2πi x . (17)

An r-spin structure on Σ is anÞSO2
r
-principal bundle P −→ Σ together with a bundle map

p : P −→ FSO
Σ which intertwines theÞSO2

r
and SO2 actions. Some properties of r-spin structures

are:

• Being a principal bundle, the fibre of P over a point z ∈ Σ looks likeÞSO2
r
, in particular

it is connected.

• The fibre of P above a point in the frame bundle FSO
Σ (via the bundle map p) consists

of r points (for r > 0), respectively of infinitely many points (for r = 0). They are in
bijection with the kernel Zr := Z/rZ of the covering map pr

SO.

• A closed path in the frame bundle FSO
Σ defines a holonomy in Zr by lifting the path to the

spin bundle P. For example, the path obtained by acting on a given frame by x 7−→ e2πi x ,
x ∈ [0,1], lifts to a non-closed (for r ̸= 1) path in P with holonomy 1 ∈ Zr .

If Σ does not carry a metric, one can no longer speak of orthonormal frames, but only
of oriented frames. The oriented frame bundle FΣ −→ Σ is a principal bundle for GL+2 , the
group of linear endomorphisms of positive determinant. As in the metric case, one considers
its r-fold cover (for r > 0), respectively the universal cover (for r = 0),

pr
GL :ÞGL2

r
−→ GL+2 . (18)

For r = 2 an explicit realisation ofÞGL2
r

is given in [75, Sec. 2.2]. One now simply replaces
SO by GL in the above discussion:

Definition 2.1. An r-spin structure on Σ is anÞGL2
r
-principal bundle P over Σ together with a

bundle map p : P −→ FΣ which intertwines theÞGL2
r

and GL+2 actions.

We will call a surface with r-spin structure an r-spin surface and denote it by Σ= (Σ, P, p).
An isomorphism of r-spin surfaces F from Σ= (Σ, P, p) to Σ′ = (Σ′, P ′, p′) is a map F : P −→ P ′

ofÞGL2
r
-principal bundles with underlying diffeomorphism f : Σ −→ Σ′ such that

P P ′

FΣ FΣ′

Σ Σ′

F

p p′

d f∗

f

(19)

commutes. Here, d f∗ is the map induced by f on the frame bundle, acting by d f on each vector
in a given frame. An isomorphism of r-spin structures on a given surface is an isomorphism of
r-spin surfaces whose underlying diffeomorphism is the identity.

Since GL+2 retracts to SO2, dropping the metric does not change the number of isomor-
phism classes of r-spin structures on a given surface.

Given a diffeomorphism f : Σ −→ Σ′ as above, we automatically get a bundle isomorphism
d f∗ : FΣ −→ FΣ′ as in (19). We can use this to pull back the bundle p′ : P ′ −→ FΣ′ to FΣ,
resulting in a spin structure on Σ. Thus, if Σ′ = (Σ′, P ′, p′) is an r-spin surface, Σ is a surface,
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and f : Σ −→ Σ′ is a diffeomorphism, we obtain a pull-back r-spin structure on Σ, which we
denote by f ∗P ′ with resulting r-spin surface

(Σ, f ∗P ′, f ∗p′) . (20)

By construction, (Σ, f ∗P ′, f ∗p′) and Σ′ are isomorphic as r-spin surfaces.

Spin structures via holonomies

We have already noted that given an r-spin surface Σ, a closed path in the frame bundle FΣ
defines a Zr -valued holonomy by lifting the path from FΣ to the r-spin bundle P. In fact, these
holonomies determine the isomorphism class of the r-spin structure. More formally, isomor-
phism classes of r-spin structures on Σ are in 1-1 correspondence with elements H1(FΣ,Zr)
which assign the value 1 to each path in FΣ given by rotating a frame once around itself in
anticlockwise direction while keeping the point in Σ fixed, see e.g. [83, Sec. 2].

It turns out that one can also assign a holonomy to a closed path in the surface Σ, rather
than in FΣ, provided the path is smooth with nowhere vanishing derivative. Namely, let
γ: S1 −→ Σ be a smooth curve such that d

d t γ(t) ̸= 0 for all t. Pick a smooth lift bγ: S1 −→ FΣ
of γ to the frame bundle, such that the first vector of the frame at a point z = γ(t) is the
derivative d

d t γ(t), and the second vector is chosen to produce an oriented frame at z. All such
lifts bγ are homotopic, and the further lift from FΣ to P defines the holonomy

ζ(γ) ∈ Zr . (21)

Again, knowing the holonomies for a generating set of smooth closed curves determines the
r-spin structure on Σ up to isomorphism. The possible holonomies are constrained by the
condition that a path γ bounding a disc and running anticlockwise must have holonomy
ζ(γ) = 1 ∈ Zr . For example, by considering γ to be the equator on a sphere, this implies that
a sphere can be equipped with an r-spin structure only if 1= −1 mod r, i.e. for r ∈ {1,2}.

Open-closed spin bordisms

To describe parametrised boundaries for spin surfaces, we need to equip the open sets US , UH
in the description of open-closed bordisms with an r-spin structure. The two cases behave
differently:

• Closed gluing boundary: r-spin structures on the punctured complex plane C× are char-
acterised by their holonomy along the unit circle. We pick a standard r-spin surface
Cy with underlying surface C× for each y ∈ Zr . We use the explicit representatives
from [74, Sec. 3.4], for which the holonomy along the unit circle S1 with anticlockwise
orientation is actually

ζ(S1) = 1− y . (22)

The minus sign is just a convention which is natural from the point of view of the explicit
construction. The shift by 1, however, is convenient as the resulting Zr grading by y of
bulk fields in the CFT will be respected by the OPE (see Figure 27 below, though a more
detailed discussion of OPEs will only be given in a follow-up paper). Geometrically, this
is the observation that y = 0 corresponds to the unique spin structure which extends
from C× to C, and on the level of r-spin TFT in 2d this follows from [85, Sec. 5.1].2

By U y
S we denote open neighbourhoods of S1 ⊂ C×, together with the r-spin structure

obtained by restricting that of Cy .

2In [85] grading by holonomy is used, and for the pair of pants with two ingoing and one outgoing closed gluing
boundary, the holonomy at the outgoing circle is obtained by adding those of the ingoing circles and subtracting
1. Thus the holonomy grading is not preserved by this bordism.
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Figure 3: Standard position of n vertices (resp. n + 1 vertices) and n edges on the
unit circle (resp. unit half-circle).

• Open gluing boundary: There is a unique r-spin structure on H (including the origin or
not does not make a difference). We writeH for the r-spin surface obtained by restricting
C0 to H, and we denote by UH open neighbourhoods of the closed unit half-circle with
the r-spin structure obtained by restricting that of H.

An open-closed r-spin bordism Σ is now defined in exactly the same way as in the non-spin
case above, except for two modifications: Firstly, all parametrising maps are now r-spin maps,
and secondly, for in/out-going gluing boundaries the parametrising maps ϕ have domain U y,±

S
for a y determined by the r-spin structure on Σ by (22) via the holonomy ζ(ϕ(S)). Here, S
is a rescaled version of the unit circle that lies in the relevant domain U±S . A closed gluing
boundary whose parametrising map has domain U y,±

S will be called of

type y ∈ Zr . (23)

As in the non-spin case, for open-closed spin bordisms in- and out-going boundaries can
be glued using the parametrisation by r-spin maps. In the closed case, this requires the in-
and out-going boundaries to be of the same type y .

The r-spin structure on an open-closed bordism can again be characterised up to isomor-
phism by its holonomies ζ, provided we also include smooth arcs between gluing boundaries
rather than just smooth closed curves. We will skip the detailed description of how holonomies
for such arcs are defined geometrically, as they will not be used in this paper, and refer to [24,
Sec. 3.3.4] for details.

2.2 Combinatorial description of spin structures

In this section we recall the combinatorial description of r-spin structures developed in [74,
75,80,85]. The idea is to decompose the surface into polygons, glued along their edges. Each
polygon is contractible and hence allows for a unique-up-to-isomorphism r-spin structure.
The data of the global r-spin structure is then encoded in the transition functions across the
edges, given by values in Zr that are called edge indices below. Not all collections of edge-
indices are allowed, but only those where the r-spin structure extends to the vertices of the
polygonal decomposition, giving linear conditions on the edge indices. The easiest way to link
the geometric and combinatorial point of view is by computing holonomies.

Marked polygonal decompositions

Let Σ be an open-closed world sheet (not already equipped with an r-spin structure). By a
polygonal decomposition TΣ of Σ we mean writing the surface as a disjoint union of embedded
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v e1
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se1
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se3

Figure 4: Example of a marked polygonal decomposition. The red half-dots indicate
chosen edges for the polygons, the red dotted arrows indicate the anticlockwise ori-
entation around the vertices. Vertex v is used in Figure 5.

polygons with identified edges and vertices as prescribed by the embedding. Technically this
is a PLCW decomposition [62], see also [80] for a discussion in the present context.

At gluing boundaries we require that the edges and vertices of TΣ are given by the images
of those on the standard (half)circle with n edges (see Figure 3) under the corresponding
parametrising map. This will ensure a consistent gluing procedure below. The number of
edges covering a gluing boundary may vary from boundary to boundary.3

Let V denote the set of vertices, E the set of edges and F the set of faces, i.e. the polygons.
Let Ef ⊂ E denote the edges that lie on the free boundary ∂ fΣ of Σ.

A marking of a polygonal decomposition TΣ consists of

• an orientation o of each each edge in E \ Ef,

• a choice of edge m for each polygon (before gluing the edges of the polygons together
to give the decomposition of Σ),

• for each edge e ∈ E \ Ef an edge index se ∈ Zr .

For edges on the gluing boundary we require that their orientation agrees with those of the
edges on the standard (half)circle under the parametrising maps. An example of a marking is
shown in Figure 4. We write

TΣ(o, m, s) , (24)

for a marked polygonal decomposition of Σ. To see why in the second bullet point we demand
to choose the edge of a polygon before gluing, consider a torus decomposed into one square.
One has to select one of the four edges of the square, but after gluing there are only two edges
(and one vertex).

For a given decomposition TΣ with orientations o and choice of marked edges m to give
rise to an r-spin structure on Σ, the edge indices have to satisfy a consistency condition. To
describe this condition, we will need some notation.

Firstly, we split each edge e ∈ E \ Ef into two half-edges. For a vertex v, we write Hv for
the set of half-edges starting or ending at v, and Dv ⊂ Hv for the subset of half edges which
come from the marked edge of the polygon immediately anticlockwise of that half-edge.4 We
denote the induced edge index of a half-edge h as sh. This is illustrated in Figure 5.

3In the combinatorial model in [80, 85] only one edge is allowed on each gluing boundary. For the treatment
of bordisms with defects it is helpful to allow several edges on a given gluing boundary, and we use this slightly
more flexible combinatorial model. The relation to [80,85] is explained in Appendix A.1.3.

4To be precise, we consider the polygon before gluing the edges into the decomposition of Σ. In the example
of the torus above, before gluing, the polygon is a square and there is only one half-edge of the marked edge for
which the square lies anticlockwise of the half-edge and only this half-edge contributes to Dv .
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v
h1

h2

h3

se1

se2

se3

Figure 5: Illustration of the half-edges around the vertex v showing which
contribute to Dv . Here one has Hv = {h1, h2, h3}, |Hv| = 3, Dv = {h1}
|Dv| = 1, bsh1

= se1
, bsh2

= se2
, bsh3

= −1 − se3
. The consistency condition is

sh1
+ sh2
− 1− sh3

≡ 1− 3+ 1 (mod r).

(M1) (M2)

se1

se2

se3

e1

e2

e3e4

e5

se4

se5

se1 + x

se2 − x

se3 − x

e1

e2

e3e4

e5

se4 + x

se5 − x
se

e

−1 − se

e

(M3)

se

e

se − 1

e

se

e

se + 1

e

Figure 6: Moves (M1)–(M3) changing the marking of a fixed polygonal decomposi-
tion.

Given a half edge h ∈ Hv , we write

Òsh =

¨

sh , if the half edge is leaving v,

−1− sh , if the half edge is entering v.
(25)

We call a vertex constrained if it is an interior vertex, or if it lies on a gluing boundary and is
not the image of v0 in case of a closed gluing boundary (cf. Figure 3), and not the image of v0
or of vn in case of an open gluing boundary. Let V c ⊂ V be the subset of constrained vertices.
In other words, the complement V \ V c consists of vertices on the free boundary and of the
image of v0 on each closed gluing boundary.

We call a marking (o, m, s) on TΣ admissible if for every vertex v ∈ V c we have5

∑

h∈Hv

Òsh ≡ |Dv| − |Hv|+ 1 (mod r) . (26)

There is no condition for unconstrained vertices, i.e. vertices that lie in V \V c. However, we will
later prescribe a fixed spin structure near closed gluing boundaries, which leads to a condition
similar to (26) for each v ∈ V \ V c on a closed gluing boundary, see (30) below.

Not all admissible markings (o, m, s) on TΣ describe distinct r-spin structures on Σ. The
redundancy is most easily described by fixing o, m and by considering the following move on
edge indices (Figure 6):

5To obtain an r-spin structure on Σ it is enough to impose the admissibility condition on inner vertices only.
Imposing the condition also for the boundary vertices in V c, as we do here, simplifies the gluing prescription below.
In the case of a closed gluing boundary it will also result in the simple expression (28) for the holonomy along a
curve parallel to the boundary.
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(M4) (M5)

se = 0

e

se′ = se′′

e′ e′′

se = se′ = se′′

e

Figure 7: Moves (M4) and (M5) changing a marked polygonal decomposition.

(M1) For a given polygon p and x ∈ Zr , shift the edge index se of an edge e ∈ E \ Ef on the
boundary of p by +x if it is oriented clockwise with respect to the orientation of p and
by −x if it is oriented anticlockwise. If p lies on both sides of e (i.e. e arises by gluing
two edges of p together), se is not changed.

Geometrically, this amounts to acting with x ∈ Zr on the fibres of the spin structure P seen as
a Zr -principal bundle over the frame bundle FΣ, both restricted to the polygon p.

The move (M1) preserves admissibility and we call two admissible assignments s, s′ of edge
signs equivalent if they are related by a sequence of (M1)-moves.

Theorem 2.2. Let Σ be an open-closed bordism, TΣ a polygonal decomposition, and o, m
choices of edge orientations and chosen edges. Then equivalence classes of admissible edge
indices are in bijection with isomorphism classes of r-spin structures on Σ.

We explain in Appendix A.1.1 how this follows from similar results in [74,80,85].
Given an r-spin structure P on Σ, by the above theorem there exists an admissible marking

on TΣ which encodes P. We write
TΣ(P) , (27)

for such a choice of marking.
The move (M1) does not change the isomorphism class of the r-spin structure defined

by the combinatorial data. There are four more moves which change one or more of
TΣ, o, m and s without changing the r-spin structure [80, Thm. 2,13, Prop. 2.18] and [85,
Prop. 3.1.9, Prop. 3.1.11]:

(M2) Change the edge orientation for an inner edge e and change the edge index se to −1− se
(Figure 6).

(M3) Shift the marked edge of a face anticlockwise. Change the edge index by ±1 depending
on the edge orientation, unless the marked edge is on the free boundary in which case
it does not carry an orientation or an edge index (Figure 6).

(M4) Remove an inner edge e which is adjacent to two distinct polygons. We require that e is
the chosen edge of exactly one of the two polygons, and that e has orientation and edge
index as in Figure 7.

(M5) Remove a 2-valent vertex whose two adjacent edges are distinct. If the vertex is on the
free boundary, there are no additional conditions. If the the vertex is an inner vertex,
the orientations, chosen edges and edge indices have to be as shown in Figure 7. On a
gluing boundary, no vertices can be removed or added.

For the moves (M3)–(M5) it is understood that the inverse moves are included as well. The
move (M2) is self-inverse. Note that (M1) is redundant because it can be obtained by by
iterating (M3). We include it anyway because it is the only move that operates solely on the
edge indices and thereby simplifies the formulation of Theorem 2.2.
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Let Σ,Σ′ be surfaces, and let TΣ′(o′, m′, s′) be a polygonal decomposition of Σ′ with admis-
sible marking. Given a diffeomorphism f : Σ −→ Σ′, we can pull back the decomposition TΣ′
and the marking (o′, m′, s′) along f . We write f ∗TΣ′(o′, m′, s′) for this pull-back. Let now P ′ be
the r-spin structure on Σ′ described by TΣ′(o′, m′, s′). By construction, the pull-back marked
decomposition f ∗TΣ′(o′, m′, s′) describes the pull-back r-spin structure f ∗P ′ from (20). This
can be seen by noting that holonomies do not change under pullback. In the case that Σ= Σ′,
we arrive at the following statement:

Proposition 2.3. Let P be an r-spin structure on Σ, TΣ a polygonal decomposition, and
f : Σ −→ Σ be a diffeomorphism. Then the combinatorial presentation TΣ( f ∗P) of the pull-
back r-spin structure f ∗P on the polygonal decomposition PΣ of Σ can be obtained from the
pull-back decomposition f ∗TΣ(P) by a sequence of moves (M1)-(M5).

Combinatorial model and holonomies

We described in Section 2.1 how an r-spin structure is determined by its holonomies up to
isomorphism. Since a marked polygonal decomposition TΣ(o, m, s) determines an r-spin struc-
ture, it is possible to compute the holonomies in terms of the combinatorial data. The proce-
dure is not complicated but slightly technical, and is described in detail in [80, Sec. 2.4] and
reviewed in Appendix A.1.2. Two important instances are:

• Consider a small circular path running anticlockwise around an interior vertex v. In the
notation used in (26), the holonomy is given by

|Hv| − |Dv|+
∑

h∈Hv

Òsh ∈ Zr . (28)

The condition that this holonomy is 1 amounts to the condition for the spin structure to
extend from a punctured disc to the whole disc. Note that this is also the admissibility
condition (26), explaining its geometric meaning.

• Consider a circular path running parallel to a closed gluing boundary oriented in the
same way as the image of the unit circle under the parametrising map. Let v be the
unique unconstrained vertex on that gluing boundary (i.e. the image of v0 in Figure 3).
It is shown in Appendix A.1.2 that the holonomy is given by

δv

�

|Hv| − |Dv| − 1+
∑

h∈Hv

bsh

�

, (29)

where δv = +1 if v ∈ ∂ c
inΣ and δv = −1 if v ∈ ∂ c

outΣ. Recall from (23) the definition
of the type y ∈ Zr of a closed gluing boundary. By (22), the holonomy is related to the
type via

(hol. in (29)) = 1− y , (30)

which can also be thought of as a constraint on the edge labels if the type is fixed.

Examples of r -spin surfaces

Let us consider two examples of polygonal decompositions, where in both cases we use a single
polygon.

The first example is a 3-holed sphere with two in-going closed gluing boundaries of types
x , y ∈ Zr and an out-going closed gluing boundary of type z. The decomposition is shown in
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a) b)

v2 v1

v3

r1r2

u2 u1

u3

type y type x

type z
v2

r1

u3

u1

type x

v3

v0 u2v1

Figure 8: A marked polygonal decomposition for a) an r-spin sphere with two incom-
ing and one outgoing closed gluing boundary, and b) an r-spin disc with one ingoing
open and one outgoing closed gluing boundary, as well as a free boundary interval.
In this example, the open gluing boundary is covered by two edges.

Figure 8 a). The admissibility conditions (30) at the three vertices are:

v1 : |Hv1
|
︸︷︷︸

=3

− |Dv1
|
︸︷︷︸

=0

−1+
∑

h∈Hv1
Òsh

︸ ︷︷ ︸

=r1−1

= 1− x ⇐⇒ r1 = −x ,

v2 : 3− 0− 1+ r2 − 1= 1− y ⇐⇒ r2 = −y ,

v3 : − (4− 1− 1+ (−1− r1) + (−1− r2)− 1) = 1− z ⇐⇒ z = x + y . (31)

Note that there exists an r-spin structure if and only if z = x + y . In this case, by Theorem 2.2
the isomorphism classes of r-spin structures are parametrised by u1, u2, u3 ∈ Zr up to the move
(M1). E.g. we can use (M1) to set u3 = 0, so that the isomorphism classes of r-spin structures
are parametrised by u1, u2 ∈ Zr .

The second example is an annulus with one in-going open gluing boundary and one out-
going closed gluing boundary of type x , see Figure 8 b). The constrained vertices are v1 and
v3, and the conditions are:

(30) at v3 : − (3− 0− 1+ (−1− r1)− 1) = 1− x ⇐⇒ r1 = 1− x ,

(26) at v1 : u1 + (−1− u2) + r1 = 0− 3+ 1 ⇐⇒ u1 = u2 + x − 2 . (32)

There thus exist r-spin structures for every x ∈ Zr . Using (M1) we can set u3 = 0, so that the
isomorphism classes of r-spin structures are parametrised by u1 ∈ Zr .

Gluing of marked polygonal decompositions

Consider a (not necessarily connected) open-closed bordism Σ with admissible marked polyg-
onal decomposition TΣ(o, m, s). Let Σ′ be the open-closed bordism obtained by either iden-
tifying an out-going and an in-going open gluing boundary, or an out-going and an in-going
closed gluing boundary of the same type in the sense of (30). The identification is defined via
the boundary parametrisation maps by the standard (half) circle (recall Figure 3), so that in
particular the in- and outgoing gluing boundaries must contain the same number of edges and
vertices.

On Σ′ we obtain the induced admissible polygonal decomposition as follows. Denote the
edges on the in- and outgoing boundary that are glued together by ein

i and eout
i , i = 1, . . . , n.
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seout
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seout
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seout
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sen se2 se1

Figure 9: Gluing cell decompositions along closed and open boundaries. The new
edge labels are sei

:= sein
i
+ seout

i
.

a) b) c)

Figure 10: a) Plaquette with some edges on the free boundary of Σ. The edge fol-
lowing the last edge on the free boundary in anticlockwise direction is the marked
edge, the orientation of the edges can be arbitrary (edges on the free boundary carry
no orientation). b) Plaquette with defect arc. The defect has to leave the plaquette at
the marked edge, the orientation of the edges can again be arbitrary. c) Example of
an allowed polygonal decomposition near a closed gluing boundary in the presence
of defects. The marking is not shown.

By construction, the orientations of ein
i and eout

i agree when compared via the parametrising
maps, and we keep this orientation for the glued edges ei (see Figure 9). The edge index of ei
is given by

sei
:= sein

i
+ seout

i
, (33)

and the rest of the marked decomposition is not affected by the gluing. Denote the resulting
admissible marked decomposition by TΣ′(o′, m′, s′).

It is shown in Appendix A.1.3 that (33) does indeed produce an admissible marking for
TΣ′ and that the r-spin structure on Σ′ defined by TΣ′(o′, m′, s′) agrees with the one obtained
by gluing boundaries of open-closed r-spin bordisms via their boundary parametrisation maps
as described in Section 2.1.

2.3 Open-closed spin bordisms with defects

Let Σ be an open-closed bordism. A defect line on Σ is an embedded loop or an embedded arc,
whose endpoints lie on open or closed gluing boundaries, but not on the free boundary. Ac-
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cordingly, an open-closed bordisms with defects is an open-closed bordism with a finite collection
of pairwise disjoint line defects. To avoid corners when gluing, we demand that arcs end on
the gluing boundary orthogonally when mapped to the complex plane via the parametrising
map.

If Σ carries in addition an r-spin structure, then we obtain an open-closed r-spin bordisms
with defects. Note that we do not consider separate r-spin structures on individual patches
obtained by removing the line defects from Σ, but rather an r-spin structure on the entire
surface Σ. This can be understood as a restriction on the type of defects we consider in this
paper.

If the r-spin structure is encoded by an admissible marked polygonal decomposition
TΣ(o, m, s), this means that the line defects do not affect the admissibility conditions at the
vertices, and that the polygonal decomposition can be deformed freely across the line defects.
Nonetheless, the description of CFT correlators in Section 6 becomes simpler if we impose the
following constraints on TΣ(o, m, s) (see Figure 10):

• No vertex of TΣ lies on a defect line. Defect lines intersect the edges of TΣ transversally.

• A polygon can either intersect a defect line, or have edges on the free boundary, or none
of these, but not both.

• If a polygon intersects the free boundary, it does so in a single vertex or in a sequence of
consecutive edges, and not all of its edges lie on the free boundary. The edge following
the last edge on the free boundary in anticlockwise direction is the marked edge of the
polygon (Figure 10 a).

• If a polygon intersects a defect line, it does so in a single arc. The two endpoints of the
arc lie on distinct edges of the polygon (before identification), and the defect arc leaves
the polygon at its marked edge (Figure 10 b).

• A closed gluing boundary that does not contain an endpoint of a defect line is covered
by a single edge. A closed gluing boundary that does contain endpoints of defect lines
has as many edges as endpoints.

• An open gluing boundary that does not contain an endpoint of a defect line is covered
by two edges. An open gluing boundary that does contain endpoints of defect lines has
two edges more than it has defect endpoints, with no defect endpoint lying on the edges
touching the free boundary.

One can account for the restrictions on polygons touching the free boundary in terms of those
for polygons intersecting defect lines by thinking of the free boundary as accompanied by a
parallel line defect.

Subject to these requirements, the moves (M1)–(M5) can be applied in the same way, and
one can convince oneself that they relate any two polygonal decompositions satisfying the
requirements. Some examples are shown in Figure 11.

The gluing procedure is the same as in the case without defects. We illustrate this in
Figure 12.

2.4 World sheets and bordisms

When describing CFT correlators in terms of conformal blocks below, we will use world sheets,
i.e. surfaces with marked points for field insertions, rather than surfaces with gluing boundaries
carrying open or closed states.

In more detail, a world sheet Σ with boundaries and defects, or just world sheet for short,
consists of
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se′ = se′′

e′ e′′

se = se′ = se′′

e

Figure 11: Examples of moves (M4) and (M5) in the presence of defects. The mark-
ing changes in the same way as without defects (cf. Figure 7).
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Figure 12: Gluing cell decompositions along closed and open boundary components
with defects. In the closed case we have three defect line end points on the glu-
ing boundary and three corresponding edges. In the open case two defect line end
points lie on the gluing boundary and we have two corresponding edges in addition
to the two edges for the endpoints of the free boundary. The new edge labels are
sei

:= sein
i
+ seout

i
.

• a surface with possibly non-empty boundary

• an ordered, finite set of marked points, possibly on the boundary,

• a tangent vector at each marked point,

• a partition of the marked points into in-going and out-going marked points,

• a finite set of embedded oriented loops in the interior of Σ, and a finite set of embedded
oriented arcs which intersect the boundary at most at their endpoints.

For the tangent vectors and for the embedded arcs and loops we require the following condi-
tions:

• We take the boundary of the surface to be oriented by the inward pointing normal, i.e. as
the real axis on the upper half plane. For a marked point on the boundary, the tangent
vector has to be parallel to the boundary and to point in the direction given by the
orientation of the boundary.

• The embedded loops are mutually non-intersecting and are disjoint from the marked
points. The embedded arcs have endpoints at marked points, and do not intersect loops.
They can intersect other arcs only at their endpoints.
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a) b)

(in/out)
(in) (out)

(in/out) (in) (out)

Figure 13: Turning an open-closed bordism Σb into a world sheet Σ by gluing in
(half)discs with a marked point at zero. The green dot on the (half)circle gives the
image of 1 ∈ C under the parametrising map. In our convention, the tangent vector
points towards 1 for ingoing gluing boundaries and away from 1 for outgoing ones.

We will refer to a marked point with the corresponding tangent vector as an (ingoing or
outgoing) insertion point. The embedded loops and arcs are the defect lines.

Accordingly, a diffeomorphism of world sheets is an orientation preserving diffeomorphism
of the underlying surfaces which preserves the in- and outgoing marked points, the tangent
vectors at the marked points, and the embedded loops and arcs together with their orientation.

One can turn an open-closed bordism Σb into a world sheet Σ by gluing in unit discs and
unit half-discs via the parametrising maps. The unit disc has zero as an insertion point with
tangent vector point along the positive real axis (and along the negative real axis in case of an
outgoing closed gluing boundary only). For out-going boundaries one needs to compose the
parametrising map with z 7−→ 1/z (closed case) or z 7−→ −1/z (open case) first. The insertion
points keep the in/outgoing label of the gluing boundary they replace. If there are defect lines
ending on a gluing boundary of the bordism, these are extended as straight radial arcs to the
marked point at zero. This is illustrated in Figure 13.

The same procedure works in the presence of r-spin structures. Starting from an r-spin
bordism Σb one obtains an r-spin world sheet Σ. Here it is understood that for closed gluing
boundaries the r-spin structure in general only extends to the punctured disc, i.e. the disc one
glues in minus the marked point. If the boundary is ingoing of type y , the r-spin structure on
the punctured disc is the restriction of Cy , and if it is outgoing that of C2−y . Thus the r-spin
structure extends to the whole disc iff the closed gluing boundary is of type y = 0 (ingoing)
or y = 2 (outgoing).

The difference between in- and outgoing r-spin structure on the punctured disc arises from
the precomposition with z 7−→ 1/z. This is most easily understood in terms of holonomy: by
(22), a anticlockwise unit circle S1 on Cy produces holonomy ζ(S1) = 1− y; under the map
z 7−→ 1/z, the curve changes direction, so that the holonomy becomes y − 1= 1− (2− y).

3 Reshetikhin-Turaev TFT and conformal blocks

The holomorphic fields of a CFT form a vertex operator algebra, as do the anti-holomorphic
fields. We will consider CFTs where the holomorphic and the anti-holomorphic fields both
contain a given VOA V , and where this VOA is rational in the sense that its category of repre-
sentations C = Rep(V) is a modular fusion category. Via the Reshetikhin-Turaev construction,
C defines a 3d TFT which (conjecturally) encodes the spaces of conformal blocks of V as well
as their monodromy and gluing properties.

In this section we briefly review these connections to the extend needed in the following.
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3.1 Modular categories

A modular fusion category C is finitely semisimple, and it is equipped with a tensor product,
duals, a non-degenerate braiding, and a ribbon twist. In particular, C is a ribbon category, and
we will use the standard graphical calculus to represent morphisms in C. For the conventions
and definitions stated below, we do in fact not need the braiding and the ribbon twist, but we
prefer to stay in the framework of ribbon categories to avoid changing the setting too often.
For more details we refer to [33].

An object U ∈ C is said to have a left dual if there is an object U∗ together with evaluation
and coevaluation morphisms evU : U∗⊗U −→ 1 and coevU : 1 −→ U⊗U∗ satisfying the zigzag
identities, see [33, Sec. 2.10]. For a right dual object ∗U , the order of the tensor product in the
(co)evaluation morphisms is reversed. We use the following graphical notation:

∗U U∗UU

ẽvUevU ∗UU U∗ U

c̃oevUcoevU

(34)

In particular, we read our diagrams from bottom to top.
In a ribbon category, we can always take ∗U = U∗, and below we will write U∗ for both

duals.
We write C(U,V ) for the space of morphisms from U to V in C, as a shorthand for HomC(U,V).

Out of evaluation and coevaluation one can form a morphism in C(1,1), which we identify
withC via λ 7−→ λ id1 ∈ C(1,1). The resulting number is the quantum dimension, or dimension
for short, of U:

dim(U) := U = U (35)

The fact that the two expressions for dim(U) coincide is a property of ribbon categories (and
more generally of spherical categories). For ribbon categories one can see this by thinking of
both sides as ribbons in R3 (drawn here flat in the paper plane) and deforming one into the
other.

The collection of invariants of the Hopf link coloured by (representatives of isomorphism
classes of) simple objects U , V ∈ C is called the s-matrix,

sU ,V = TrU⊗V (σV,U ◦σU ,V ) = UV = UV (36)

where σU ,V : U ⊗ V −→ V ⊗ U denotes the braiding of C. For a modular fusion category, the
matrix s with entries sU ,V is non-degenerate.

3.2 Conformal blocks and 3d TFT

Let V be a rational VOA such that C = Rep(V) is a a modular fusion category (see [58] for the
precise conditions and the proof). In this section we will review a further relation between
V and C, namely that the spaces of conformal blocks obtained from V agree with the state
spaces of the Reshetikhin-Turaev (RT) TFT defined by C. Standard references for this section
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are [10, 35, 68, 71, 87]. A proof of factorisation for spaces of conformal blocks has recently
been given in [27].

The main aim of this and the next section is to explain why the TFT considerations in the
later chapters are indeed the ones relevant to describe CFT correlators and their properties.
The construction of parity CFTs and spin CFTs presented in Sections 5 and 6 will be given in
the TFT setting and will not make direct use of VOAs.

The RT TFT ZRT
C is a symmetric monoidal functor from the category Bord 3(C) of C-

extended surfaces and 3-bordisms with embedded C-coloured ribbon graphs to the category
of vector spaces Vect. A C-extended surface is a closed surface with a finite ordered set of
marked points, where each marked point p consists of a tuple p = (p, U , v,δ), where p ∈ Σ,
U ∈ C, v is a tangent vector at p, δ ∈ {±}, and which is equipped with a Lagrangian subspace
λ ∈ H1(Σ,R). The Lagrangian subspace, as well as an integer assigned to each bordism, is
required to compensate a gluing anomaly, we refer to [87, Sec. IV.9] for details. We will mostly
not mention this data explicitly in the following.

There is a direct relation between the Hom-spaces of C and the state spaces of the RT TFT,
i.e. the vector spaces that ZRT

C assigns to C-extended surfaces. To describe it, let I be the set
labelling isomorphism classes of simple objects in C, and let

Si , i ∈ I , (37)

be a choice of representatives. We write L =
⊕

i∈I Si ⊗ S∗i for the coend in C. Let Σ be a
C-extended surface of genus g with marked points pi = (pi , Ui , vi ,δi = −), i = 1, . . . , n, and
consider the handle body

H f =

U1

f

ι ι

U2 Un

L
L

. . .

. . .
PP

. . .

(38)

where f ∈ C(U1 ⊗ · · · ⊗ Un, L⊗g), P =
⊕

i∈I Si and ι : L −→ P ⊗ P∗ is the diagonal embedding.
We take H f to be a bordism ; −→ Σ in Bord 3(C). Applying the TFT functor gives a linear map

C
ZRT

C (H f )
−−−−−−→ ZRT

C (Σ) . (39)

Evaluating at 1 ∈ C gives an element in the state space ZRT
C (Σ). By construction of the RT TFT,

the map
C(U1 ⊗ · · · ⊗ Un, L⊗g) −→ ZRT

C (Σ) , f 7−→ ZRT
C (H f )(1) , (40)

is an isomorphism of vector spaces. Changing δi = − to δi = + amounts to replacing Ui by
the dual U∗i .

Next we outline the relation between state spaces of the RT TFT and spaces of conformal
blocks. Let Σc be a C-extended surface equipped with a complex structure, and with a holo-
morphic local coordinate ϕ for each insertion p such that ϕ(0) = p and ϕ′(0) = v. The VOA
V assigns to Σc the space of conformal blocks βV(Σc). This is the subspace

βV(Σ
c) ⊂ HomC(U1 ⊗C · · · ⊗C Un,C) , (41)

of the linear maps U1⊗C · · ·⊗CUn −→ Cwhose elements satisfy the Ward identities determined
by V .
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The subspace βV(Σc) depends on the moduli of Σc , that is on the insertion points, local
coordinates and complex structure, and one can combine the βV(Σc) into a vector bundle over
the corresponding moduli space. This bundle is equipped with a projectively flat connection,
so that a path in moduli space can be lifted to a path in the bundle of conformal blocks, and
up to an overall scalar, the endpoint of the lift depends only on the homotopy class of γ.

By forgetting the complex structure and the local coordinates of Σc one recovers the un-
derlying C-extended surface Σ. The spaces of conformal blocks for V conjecturally6 agree with
the state spaces of the RT TFT for C = Rep(V) in the sense that there is a linear isomorphism

F(Σc) : βV(Σ
c)
∼
−→ ZRT

C (Σ) (42)

(more precisely, one has an equivalence of modular functors, but we will not go into this). One
way to make the above isomorphism explicit is to first use that conformal blocks on a sphere
with insertions at points 1, 0, and∞ labelled by (U ,−), (V,−) and (W,+), respectively, are
intertwining operators of type

� W
U V

�

for the V-modules U , V, W . By construction, these define
the tensor product on C, i.e. are canonically identified with C(U ⊗ V, W ). Then one can use
factorisation of conformal blocks to reduce more complicated surfaces to this case.

3.3 Compatibility with transport

Here we briefly recall the relation between paths in the fine moduli space of complex structures
and families of complex curves with base given by an interval. We then consider families of
C-extended surfaces with complex structure to formulate the compatibility of the isomorphism
(42) with transport along paths.

LetΣ0 be a surface without complex structure and without marked points. The fine moduli
space of complex structures, or Teichmüller space, is defined as

T (Σ0) := {(Σc ,φ : Σ0 −→ Σc)}/∼ , (43)

where Σc is a surface with complex structure, φ is an orientation preserving diffeomorphism
and the equivalence relation is defined as follows: (Σc ,φ) ∼ (Σ′c ,φ′) if there is a biholomor-
phic map ψ: Σc −→ Σ′c such that ψ ◦φ and φ′ are homotopic.

Let γ: [0, 1] −→ T (Σ0) be a path in the fine moduli space from γ(0) = Σc to γ(1) = eΣc .
One can turn γ into a bordisms Eγ : Σ −→ eΣ as follows. Consider the family of complex curves
Eγ −→ [0, 1] obtained by pulling back the universal curve over T (Σ0) (where over each point
is the corresponding complex curve) along γ. Thus the fibre at t ∈ [0, 1] is γ(t). The total
space Eγ can also be thought of as a bordism between the fibres over 0 and 1. Note that every
family of complex surfaces over [0,1] defines a path in T (Σ0), so that pulling back along the
path reproduces the original family [14].

In the following we will use the notions path and family interchangeably, and we will
denote the family obtained from a path γ by Eγ.

Let Eγ be a family of C-extended surfaces with complex structure and with local coor-
dinates around the marked points. Write Σc := γ(0) and eΣc := γ(1), so that when forget-
ting the complex structure on the fibres, Eγ defines a bordism Σ −→ eΣ. The isomorphism
(42) is compatible with transport along Eγ in the following sense: parallel transport via the
projectively flat connection on the bundle of conformal blocks gives a linear isomorphism
Tγ : βV(Σc) −→ βV(eΣc). On the other hand, the bordisms Eγ : Σ −→ eΣ defines a linear isomor-
phism ZRT

C (Eγ): ZRT
C (Σ) −→ ZRT

C (eΣ). The compatibility relation (again conjectural) is

F(eΣc) ◦ Tγ ∝ ZRT
C (Eγ) ◦ F(Σc) , (44)

6For certain examples this is known, see e.g. [4], and the results in [27] might allow to show this in general
(for rational V).
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Figure 14: a) Closed path γ in the moduli space given by rotating the local coordinate
once by 2π. The fibres of the corresponding family Eγ differ only in the angle α of
the tangent vector at v. b) The orientation conventions for an outgoing boundary
component of a bordisms, and for how the tangent vector v and the orientation of
core and surface of a ribbon attached to the marked point (p, U , v,−) are related. c)
The bordism Eγ : Σ(0) −→ Σ(2π) = Σ(0) defined by the path γ.

where the two sides may differ by a multiplicative constant.
Finally, we need to say how both sides of (42) behave under changing the order of the

n marked points on Σc by some permutation π ∈ Sn. Note that the labels U , v,δ of a given
marked point p do not change, just its position in the total order on the marked points.

Let Σc
π be the surface with the new ordering of its insertion points. For an element

b ∈ βV(Σc), this amounts to precomposing b with the corresponding permutation of factors in
the tensor product U1⊗C · · ·⊗CUn (cf. (41)), i.e. with the permutation built from the symmetric
braiding in vector spaces. Let Tπ : βV(Σc) −→ βV(Σc

π) be the resulting linear map.
For ZRT

C (Σ), one simply considers the cylinder Eπ := Σ× [0,1] with vertical ribbons and
changes the ordering of marked points in the target object, so that Eπ becomes a bordism
Σ −→ Σπ. Then

F(Σc
π) ◦ Tπ = ZRT

C (Eπ) ◦ F(Σc) . (45)

Let us illustrate compatibility with transport in three examples: rotating the local coordi-
nate frame by 2π, moving one insertion point around another, and executing a Dehn-twist on
a torus. Some more examples can be found in [47, Sec. 5].7

Rotating the coordinate frame

Consider the case where Σc(α) is the Riemann sphere C ∪ {∞} with an insertion
p = (p = 0, U , v = eiα,δ = −) and local coordinate ϕ(z) = eiαz, and other insertions else-
where, see Figure 14 a). Suppose that U is an irreducible V-module of lowest conformal weight
hU . For the family Eγ given by taking α from 0 to 2π in Σc(α), Tγ acts by precomposing with
e2πi L0 = e2πihU : for b ∈ βV(Σc)

Tγb = b ◦ e2πi L0 |U = e2πihU b , (46)

7When comparing results, one has to take into account the slightly different orientation conventions used in [47]
and the fact that there the ribbon twist is taken to be e−2πihU .
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Figure 15: a) Closed path γ in the moduli space given by moving p2 around p1, each
point describes a fibre in the family Eγ. b) Bordism N : ; −→ Σ(0) given by a solid
3-ball (only part of which is shown) and embedded ribbon graph. c) The composition
Eγ ◦ N . The dotted line α = 0 indicates where the boundary between Eγ and N was
before composition.

where in the second expression it is understood that e2πi L0 |U only acts on the tensor factor U
and is extended as the identity to the other factors.

In Figure 14 b) we give our conventions for the relative orientations of three-manifold,
an out-going boundary component, and ribbons ending on it. The family Eγ thought of as a
bordism is shown in Figure 14 c). Applying the TFT functor gives ZRT

C (Eγ) = θU∗ idU∗ , where
θU∗ = θU = e2πihU is the ribbon twist on the simple object U ∈ C. Thus (44) holds in this case
(with proportionality constant 1).

Taking one field insertion around another

We again take Σc(α) to be the Riemann sphere C ∪ {∞}, but this time with exactly two
insertions p1 = (0, U1, 1,−) and p2 = (eiα, U2, 1,−), see Figure 15 a). We assume that U1
and U2 are irreducible and satisfy U1

∼= U∗2 , and that both have the same lowest conformal
weight h. For b ∈ βV(Σc), and v1 ∈ U1, v2 ∈ U2 lowest weight vectors, the dependence on the
insertion points p1, p2 is b(v1, v2) = (const)(p2 − p1)−2h. From this one reads off the effect of
Tγ as

Tγb = e−4πih b . (47)

In Figure 15 b) we show part of a bordism N : ; −→ Σ(0) = Σ(2π), which is a solid 3-ball
with embedded ribbon graph as shown. The state space ZRT

C (Σ(0)) is one-dimensional, and
b = ZRT

C (N) provides a basis (for some non-zero choice of f ). Figure 15 c) shows the compo-
sition Eγ ◦ N : ; −→ Σ. By deforming the ribbon graph one can convince oneself that indeed

ZRT
C (Eγ)(b) = θ

−2
U1

b , (48)

in agreement with (47).
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Figure 16: a) Closed path in the moduli space given by taking the shift x in the
identification from 0 to 1. b) Solid torus N j : ; −→ Σ(0). c) The composition Eγ ◦N j .

Dehn twist on the torus

Let Σc(x) be the rectangle in C with corners 0,1, i t, i t + 1 for some t > 0, and identify edges
parallel to the imaginary axis via is ∼ 1+ is, and the edges parallel to the real axis with a twist
s ∼ i t + x + s for some x ∈ [0, 1], see Figure 16 a). One checks that Σc(x) is biholomorphic to
the torus obtained by quotienting C by Z+τZ with τ= x + i t (via the map sending z ∈ Σc(x)
to its class in the quotient). We will need at least one insertion point on Σc , which we take to
be 0, and we take it to be labelled by the vacuum module V . We take γ to be the path given
by Σc(x) with x ∈ [0, 1].

For S j , j ∈ I one of the chosen irreducibleV-modules, let χ j(w,τ)=trS j

�

w0exp(2πiτ(L0−
c

24)
�

be the torus conformal block with one insertion of an element w ∈ V (only its zero mode con-
tributes) and where τ= i t. Then βV(Σc(0)) has basis {χ j(−,τ)} j∈I [91], and

(Tγχ j)(w, i t) = χ j(w, i t + 1) = e2πi(h j−
c

24 )χ j(w, i t) . (49)

On the TFT side, χ j(w,τ) is represented by a solid torus N j : ; −→ Σ(0) with an S j-labelled
ribbon at its centre, see Figure 16 b) (vacuum insertions are not visible in the TFT presenta-
tion). We write v j = ZRT

C (N j) for the corresponding element in the state space ZRT
C (Σ(0)). The

composition Eγ ◦ N j is shown in Figure 16 c). It follows that

ZRT
C (Mγ)(v j) = θS j

v j . (50)

Thus (44) is satisfied, but this time with a non-trivial proportionality constant.

4 3d TFTs with values in super-vector spaces

The most basic example of a (2-)spin CFT, namely that of single free fermion, requires us to
distinguish between even and odd fields, and to include parity signs when they are re-ordered.
Mathematically this can be described by working with super-vector spaces and their parity-
dependent braiding. In this section we define the corresponding generalisation of RT TFT we
will need for this. We start by stating our conventions for super-vector spaces, then define
the trivial TFT valued in super-vector spaces, as well as its product with a RT TFT. Finally we
relate this product TFT to conformal blocks of purely even vertex operator super-algebras, or,
in other words, VOAs whose representations are considered in super-vector spaces.
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4.1 Super-vector spaces

In this section we give our conventions for the category SVect of finite dimensional super-
vector spaces.

The objects of SVect are finite dimensional Z2-graded vector spaces over C, and the mor-
phisms are degree preserving (i.e. even) linear maps. We write X = X 0 ⊕ X 1 ∈ SVect for the
degree 0 (even) and degree 1 (odd) components of the super-vector space X . There are two
simple objects up to isomorphism, namely the even and the odd 1-dimensional vector spaces

K+ := C1|0 , and K− := C0|1 . (51)

The category SVect is equipped with an involutionΠ called parity shift. The parity shift functor
simply exchanges the parity on a super-vector space,

Π(X )0 = X 1 , Π(X )1 = X 0 . (52)

On morphisms, Π acts as the identity.
SVect is a braided monoidal category via the graded tensor product (with monoidal unit

K+) and braiding

σX ,Y : X ⊗ Y −→ Y ⊗ X , x ⊗ y 7−→ (−1)|x |·|y| y ⊗ x , (53)

for X , Y ∈ SVect and x , y homogeneous of degree |x |, |y| ∈ Z2. This braiding is symmetric,
so that SVect is a symmetric monoidal category.

For the ribbon structure we fix the left and right duals of X ∈ SVect to be the dual vector
space

∗X = X ∗ = HomC(X ,C) , (X ∗)i = HomC(X
i ,C) (i ∈ Z2) , (54)

of not necessarily degree preserving linear maps, so that linear maps X i −→ C have Z2-degree
i. The left duality morphisms are the same as for vector spaces,

evX : X ∗ ⊗ X −→ K+ , coevX : K+ −→ X ⊗ X ∗ ,

ξ⊗ x 7−→ ξ(x) , 1 7−→
∑dimC(X )

j=1 e j ⊗ϕ j , (55)

where (e j ,ϕ j) j=1,...,dimC(X ) is a dual basis pair for X and X ∗. The right duality morphisms differ
from those in vector spaces by a parity sign coming from the symmetric braiding,

eevX = evX ◦σX ,X ∗ : X ⊗ X ∗ −→ K+ , ßcoevX = σX ,X ∗ ◦ coevX : K+ −→ X ∗ ⊗ X . (56)

The ribbon twist can now be computed from the duals and the braiding to be

θX = idX : X −→ X . (57)

Altogether, SVect is a ribbon category with trivial ribbon twist and symmetric braiding.
The quantum dimension of a super-vector space X ∈ SVect (cf. (35)) is what is usually

called the super-dimension sdimC(X ),

dim(X ) = sdimC(X ) = dimC(X
0)− dimC(X

1) . (58)

For the simple objects we have

dim(K+) = +1 , and dim(K−) = −1 . (59)
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Figure 17: Underlying 3-manifold with embedded ribbon graph for the bordisms
M : Σ1 −→ Σ2 and M ′ : Σ1 −→ Σ′2.

4.2 The trivial 3d TFT with values in SVect

The trivial 3d TFT with values in SVect is a symmetric monoidal functor SV from the cate-
gory Bord 3(SVect) of SVect-extended surfaces and 3-bordisms with SVect-coloured ribbon
graphs to SVect:

SV : Bord 3(SVect) −→ SVect . (60)

Here SVect plays two different roles: on the one hand, it is used as a ribbon category to label
marked points and ribbon graphs. On the other hand, it is used as a target category for the
functor, and in this case we only use its symmetric monoidal structure. The definition of SV
is as follows:

• On objects: The value of SV on an extended surface Σ with ordered marked points
(pi , X i , vi ,δi), i = 1, . . . , n is

SV(Σ) := Xδ1
1 ⊗ · · · ⊗ Xδn

n , (61)

where X+i = X i and X−i = X ∗i . Note that this just depends on the ordered set of marked
points, and not on the underlying surface Σ.

• On morphisms: Let Σ and Σ′ be extended surfaces with marked points (pi , X i , vi ,δi),
i = 1, . . . , n and (q j , Yj , w j ,ν j), j = 1, . . . , m, respectively. Let M : Σ −→ Σ′ be a bordism
with embedded SVect-coloured ribbon graph Γ . If one just retains the combinatorial
data of Γ and forgets the surrounding manifold and the framing of the ribbons, one
obtains an even linear map

eΓ : Xδ1
1 ⊗ · · · ⊗ Xδn

n −→ Y ν1
1 ⊗ · · · ⊗ Y νm

m . (62)

This is well-defined since as a ribbon category, SVect is symmetric and has trivial twist.
We set

SV(M) := eΓ . (63)

For example, if M is a bordism ; −→ ;, i.e. a closed 3-manifold, and if M has empty ribbon
graph Γ = ;, then SV(M) = 1. If the same M contains a ribbon graph Γ ′ consisting of loops
labelled X1, . . . , Xn, then SV(M) =

∏n
i=1 sdimC(X i), independent of M and how the loops are

linked or framed.
As another example, consider three extended surfaces Σ1,Σ2,Σ′2, which all have underly-

ing surface C∪ {∞} but which differ in their marked points:

• Σ1: p1 = (0, X ,+) and p2 = (1, Y,+) ,

• Σ2: q1 = (0, Y,+) and q2 = (1, X ,+) ,

• Σ′2: q ′2 = (0, Y,+) and q ′1 = (1, X ,+) .
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In each case, the index i = 1, 2 gives the order of the two points, so that Σ2 and Σ′2 only differ
in the ordering of the two marked points. We have

SV(Σ1) = X ⊗ Y , SV(Σ2) = Y ⊗ X , SV(Σ′2) = X ⊗ Y . (64)

Let M : Σ1 −→ Σ2 and M ′ : Σ1 −→ Σ′2 be two bordisms which have the same underlying 3-
manifold (C ∪ {∞})× [0, 1], and which have the same embedded ribbon graph as shown in
Figure 17, so that they only differ in their target object. Then

SV(M) =
�

X ⊗ Y
σX ,Y
−−→ Y ⊗ X
�

, SV(M ′) =
�

X ⊗ Y
id
−→ X ⊗ Y
�

. (65)

Thus, even though the bordism in Figure 17 looks like a crossing, whether or not it gets mapped
to the symmetric braiding in SVect depends on the ordering of the marked points.

A related example is to take Σ with marked points pi = (pi , X i ,+), i = 1, . . . , n and Σ′ with
the same marked points but ordered differently, p′i = pπ(i) for some permutation π ∈ Sn. Then
we can consider the cylinder M = Σ× [0, 1] with vertical ribbons as a bordism M : Σ −→ Σ′.
In this case, SV(M): X1⊗· · ·⊗Xn −→ Xπ(1)⊗· · ·⊗Xπ(n) implements the permutation of factors
with parity signs.

Remark 4.1. The above construction is not specific to three dimensions. One can in the same
way define a TFT on n-dimensional bordisms with embedded SVect labelled ribbon graphs
which takes values in SVect for any n≥ 1. However, we will only need the three-dimensional
case in this paper.

4.3 Reshetikhin-Turaev TFT with values in SVect

Let C be a modular fusion category and set

bC := C ⊠SVect . (66)

The product ‘⊠’ denotes the Deligne product of abelian categories, see [33, Sec. 1.11]. Since C
is semisimple, the objects of C⊠SVect are simply sums of products U⊠M , U ∈ C, M ∈ SVect,
and its morphisms are the corresponding direct sums of tensor products (over C) of the Hom-
spaces of C and SVect.

In particular, if {Si}i∈I denotes a choice of representatives of the isomorphism classes of
simple objects of C as in (37), then the simple objects of bC are {Si ⊠ K+, Si ⊠ K−}i∈I .

The category bC has symmetric centre SVect and hence is not modular and cannot be used
directly as input for the Reshetikhin-Turaev construction.8 But we can still use bC to decorate
bordisms, and – as we now describe – one can still use it to obtain a TFT with values in SVect,
i.e. a symmetric monoidal functor

ÒZC : Bord 3(bC) −→ SVect . (67)

We define ÒZC to be the product of the RT TFT ZRT
C : Bord 3(C) −→ Vect and the trivial SVect

valued TFT SV. In more detail, the value of ÒZC on objects and morphisms is as follows:

• On objects: Let Σ be a bC extended surface with marked points (pi , Ui ⊠ X i , vi ,δi),
i = 1, . . . , n, i.e. all objects labels have product form. In this case we get a C-extended

8Braided fusion categories whose symmetric centre is SVect are called slightly-degenerate, see e.g. [30] for
properties of such categories. If one uses a different spherical structure on SVect to the one used here, namely
where the quantum dimensions are all positive (and hence the twist is −1 on K−), slightly degenerate categories
are called super-modular in [8], and bC would be an example of a slit super-modular category.
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surface Σ′ and a SV-extended surface Σ′′ by forgetting the second, respectively the first
factor. Then

ÒZC(Σ) :=ZRT
C (Σ

′)⊗ SV(Σ′′)
(∗)
∼= C(U−δ1

1 ⊗ · · · ⊗ U−δn
n , L⊗g)⊗ Xδ1

1 ⊗ · · · ⊗ Xδn
n , (68)

where for (∗) we in addition assume Σ to be connected and of genus g, and where we
consider the Hom-space C(· · · ) as a purely even super-vector space. In (∗) we further-
more used the isomorphism (40), for which the marked points have δi = − and which
is the reason for the relative signs. The definition of ÒZC for marked points labelled by
general objects from bC is by linear extension via direct sums.

• On morphisms: For morphisms we proceed analogously. Let M : Σ1 −→ Σ2 be a bordism
where all labels of objects and coupons are of factorised form. One then obtains bordisms
M ′ : Σ′1 −→ Σ

′
2 and M ′′ : Σ′′1 −→ Σ

′′
2 in Bord 3(C) and Bord 3(SVect), respectively. We

set
ÒZC(M) := ZRT

C (M
′)⊗ SV(M ′′) . (69)

For general morphisms one extends linearly.

For a connected bC-extended surface Σg of genus g with marked points (pi , Yi , vi ,−) for
Yi ∈ bC (i = 1, . . . , n) we can rewrite (68) as

ÒZC(Σg) =
⊕

ε∈{±}

bC(Y1 ⊗ · · · ⊗ Yn, Lg ⊠ Kε)⊗ Kε . (70)

Later we will need the value of ÒZC on S3 without embedded ribbon graph, which is given
by

ÒZC(S
3) = ZRT

C (S
3) · SV(S3) =DC · 1 , (71)

where
DC =
Æ

Dim(C) , Dim(C) =
∑

i∈I
dim(Si)

2 , (72)

is a fixed choice of square root of the global dimension Dim(C) of C.
A related construction of a TFT with values in the symmetric centre of the ribbon category

one starts from can be found in [67]. That construction works for general symmetric centres,
not just SVect, but its formulation does not include bordisms with embedded ribbon graphs.

4.4 Relation to conformal blocks of vertex operator super algebras

The VOAs V that occurred in Section 3 were “bosonic” in the sense that they were objects in
the category Vect∞ of possibly infinite dimensional vector spaces. If V is in addition equipped
with a Z2-grading (and with even structure maps and suitable parity signs in its defining con-
ditions), it is called a vertex operator super-algebra (VOSA),9 see e.g. [19,89] for more details.
In this case we have V ∈ SVect∞, the category of possibly infinite dimensional super-vector
spaces.

For a VOSA V ∈ SVect∞, we consider Z2-graded representations, i.e. V-modules are also
objects in SVect∞ (again with corresponding parity signs and even structure maps). We write
RepS(V) instead of Rep(V) to stress this point. The morphisms in RepS(V) are parity-even
linear maps that intertwine the V-actions.

9This is not to be confused with vertex algebras that contain a copy of some supersymmetric extension of the
Virasoro algebra. Though the latter would in particular also be Z2-graded.
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bC as representations of a purely even VOSA

A VOSA W can be split into its parity even and parity odd subspace W =W0 ⊕W1. Then W0
is a bosonic VOA and W1 is a W0-module.

Conversely, we can take a bosonic rational VOAV and understand it as a VOSAV ∈ SVect∞
concentrated in even degree, V = V0. Then its representation category in super-vector spaces
satisfies

RepS(V) = Rep(V)⊠SVect . (73)

If we set C = Rep(V) as before, then C is a modular fusion category, and

bC = C ⊠SVect = RepS(V) . (74)

Thus the category bC from (66) describes the representation theory of a bosonic rational VOA
V in super-vector spaces.

State spaces of ÒZC as conformal blocks of a purely even VOSA

Recall from in Section 3.2 the discussion of the relation between the state spaces of ZRT
C and

the spaces βV(Σc) of conformal blocks for V seen as a bosonic VOA.
When considering V as a purely even VOSA, its representation category is given by
bC, so that the representations acquire a Z2-grading by parity. Accordingly the space
HomC(U1 ⊗C · · · ⊗C Un,C) of all linear maps in (41) is now Z2-graded, too. Since V is purely
even, the defining conditions of the subspace βV(Σc) are not sensitive to parity. In more detail,
if bΣc is a bC-extended surface with complex structure and marked points labelled by V-modules
Mi ⊠ X i , with Mi ∈ C and X i ∈ SVect, we obtain a C-extended surface Σc , where the marked
points are labelled only by Mi . Then

βV(bΣ
c) = βV(Σ

c)⊗ X1 ⊗ · · · ⊗ Xn . (75)

Comparing this to (42) and (68), we see that βV(bΣc) is isomorphic to ÒZC(bΣ) (with bΣ obtained
from bΣc by forgetting the complex structure).

The transport maps in (44) do not change the order of the marked points and hence only
act on the first tensor factor in (68) and in (75). Thus the proportionality in (44) remains
valid. Changing the order of points leads to the same parity factor on both sides of (45), as
in both cases the same permutation π is now expressed via the braiding in SVect instead of
Vect. Hence, the identity (45) remains valid as well.

Example: conformal two-point blocks on the Riemann sphere

Let V be the VOA of the c = 1
2 Ising CFT, i.e. the unique unitary simple VOA at c = 1

2 , and let
Mε be the irreducible V-module with lowest conformal weight hε =

1
2 (see Section 7.3 for a

more detailed discussion of the Ising CFT).
Let ψ ∈ Mε be the lowest weight vector in Mε. The space of conformal blocks on C∪{∞}

with insertions of Mε at z and w is one-dimensional. An element b depends on the insertion
points as (via parallel transport)

b(z, w)(ψ,ψ) = (z −w)−1 , (76)

for an appropriate normalisation of ψ. Suppose the insertion points are ordered such that z
is first and w is second. Consider the operation of exchanging the points z and w by moving
them along half-circles on C. Call the resulting path in moduli space γ. This is not yet a closed
path, as the ordering of the insertion points is different: now w is first and z is second. After
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reversing the order via the transposition π ∈ S2 one arrives back at the original surface. The
effect of the two operations on b is

(TπTγb)(z, w)(ψ,ψ) = −(z −w)−1 = −b(z, w) . (77)

In this sense, b is not single valued under exchange of the insertion points. Now consider V
as a purely even VOSA and take ψ ∈ Π(Mε), the parity shifted version of Mε, cf. (52). Then
Tπ produces an addition parity sign and one now has

(TπTγb)(z, w)(ψ,ψ) = +(z −w)−1 = b(z, w) . (78)

Thus after shifting the parity of the representations labelling the insertion points, the combined
operation of exchanging points and reordering produces trivial monodromy.

Let us see how the same effect arises in the TFT description, i.e. on the right hand side of
(44) and (45). In the bosonic case this is similar to Figure 15, but with only a half-turn rather
than a full turn. The transport bordism Mγ is shown in Figure 17 (with z = 0, w= 1, and one
has to take X = Y = Mε). We consider the composition E = Eπ ◦ Eγ of the change-of-ordering
bordism Eπ with the transport bordism Eγ. The bordism E is an endomorphism Σ −→ Σ of
the C-extended surface Σ = C ∪ {∞} with marked points 0 and 1, in this order. The state
space ZRT

C (Σ) is one-dimensional and spanned by v = ZRT
C (N) with N as in Figure 15 b) (with

U1 = U2 = Mε). One finds ZRT
C (E)(v) = e−πihε v = −v, as expected.

Next consider the TFT ÒZC and the Riemann sphere with insertions ofΠ(Mε) = Mε⊠K− ∈ bC.
In this case, for the composition E = Eπ ◦ Eγ one finds

ÒZC(E)
(69)
= ZRT

C (E
′)⊗ SV(E′′) = (− id)⊗ (− id) = id , (79)

where ZRT
C (E

′) = − id was just computed above, and SV(E′′) = − id is precisely the first
example in (65). This result agrees with (78).

5 Oriented CFT with parity signs

In this section we present the construction of rational conformal field theory on oriented world
sheets with boundaries and defects via three-dimensional topological field theory as developed
in [36, 37, 40, 45, 47]. We do this in some detail since we will use the SVect-valued TFT and
the SVect-valued conformal blocks described in the previous section. This entails that the
requirement of singe-valuedness under monodromy now involves parity signs, which has not
been treated in the above works.

We fix a modular fusion category C and will work with the product bC = C ⊠ SVect as in
(66). We think of this as in (74): bC = RepS(V), where V is a bosonic rational VOA and one
considers its representations in super-vector spaces.

5.1 Algebras and modules

Here we recall some algebraic background on algebras and modules that we will need. This
could be presented in an arbitrary pivotal tensor category, but to avoid changing the setting
too often, we work in bC.

Throughout this paper, we will often implicitly use the embeddings C ,→ bC and SVect ,→ bC.
For example, given an object U ∈ C and a super-vector space M ∈ SVect, the product U ⊗M
stands for (U ⊠ K+)⊗ (1⊠M) = U ⊠M .
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A Frobenius algebra is an object A ∈ bC together with a multiplication µ, unit η, comul-
tiplication ∆, and counit ε, such that the comultiplication is a bimodule map A −→ A⊗ A,
see [45,48] for more details. We use the graphical notation

µ=

A A

A

, η=
A

, ∆=

A

AA

, ε=

A

. (80)

A Frobenius algebra is called simple, if it is simple as a bimodule over itself.
A morphism of (Frobenius) algebras is a morphism which commutes with the (co)product

and (co)unit. An important role will be played in the following by the Nakayama automor-
phism of A, which is indeed an isomorphism NA : A−→ A of Frobenius algebras, see e.g. [49].
Explicitly, NA and its inverse are given by10

NA =

A

A

, N−1
A =

A

A

, N n
A =

A

A

n ,

A

A

1 =

A

A

, (81)

where the last two equalities give our notation for powers of Nakayama automorphisms.
We say that A is normalised special (or just special for short) if µ ◦∆= idA and if ϵ ◦η ̸= 0.

We call A symmetric if NA = idA. If A is symmetric and special, then one can check that
ϵ◦η= dim(A), and so for symmetric special Frobenius algebras one necessarily has dim(A) ̸= 0.
This implies that a special Frobenius algebra A with dim(A) = 0 is never symmetric, we will
see an example of this in Section 6.1.

For left and right A-modules X and Y we denote the actions by ρl : A ⊗ X −→ X and
ρr : Y ⊗ A−→ Y , respectively, and we use the graphical notation

ρl =

A

X

X

, ρr =

A

Y

Y

. (82)

A morphism of left (right) modules is a morphism commuting with the corresponding action.
We denote the category of left (right) A-modules by A

bC (resp. bCA). An A1-A2-bimodule is a left
A1- and right A2-module with commuting actions. We denote the category of A1-A2-bimodules
by A1
bCA2

.
Given an A1-A2-bimodule X and an A2-A3-bimodule Y , one can consider their tensor prod-

uct over A2, written as X⊗A2
Y . If A2 is special, the tensor product can be conveniently described

as the image of an idempotent p on X ⊗ Y , namely

p =

Y

Y

X

X

A2 =

Y

Y

X

X

ι

π

(83)

where we have also introduced the embedding and projection maps for the image of p:

π: X ⊗ Y −→ X ⊗A2
Y , ι : X ⊗A2

Y −→ X ⊗ Y , π ◦ ι = idX⊗A2
Y , p = ι ◦π . (84)

10We follow the convention of [74,80]. In [21,49] the Nakayama automorphism is the inverse of (81).
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The tensor product X ⊗A2
Y is an A1-A3-bimodule via the action

X ⊗A2
Y

ι

π

X ⊗A2
Y

A3A1

(85)

The same construction applies to iterated tensor products X1 ⊗A2
X2 ⊗A3

· · · ⊗An
Xn.

Finally we turn to the definition of duals, or rather adjoints, which relate bimodules in

A1
bCA2

and A2
bCA1

. As explained e.g. in [21, Sec. 4.3], in case that A1 and A2 are not symmetric,
the Nakayama automorphisms enters the definition of adjoints. Namely, let X ∈ A1

bCA2
. To start

with, we turn X ∗ (the dual in bC) into an A2-A1-bimodule via the actions

X∗

A2 X∗

=

A2 X∗

X∗ X∗

A1X∗

=

A1X∗

X∗

(86)

Then we define
X † := (X ∗)N−1

A1
. (87)

The twist of the right action is necessary for the evaluation and coevaluation maps to induce the
counit X ⊗A2

X † −→ A1 and unit A2 −→ X †⊗A1
X of the adjunction, we refer to [21, Prop. 4.7]

for details. In general, this adjunction is not two-sided, but there are two situations important
here, where also the corresponding maps X † ⊗A1

X −→ A2 and A1 −→ X ⊗A2
X † exist:

• If A1 and A2 are symmetric, i.e. if NA1
= idA1

and NA2
= idA2

, then X † = X ∗ is a two-sided
adjoint – this is the situation relevant in Section 5.3.

• For equivariant bimodules one can define these maps by suitably modifying the
(co)evaluation maps of bC – this will be done in Section 6.1.

Finally, we introduce two idempotents, Q(in)n and Q(out)
n which will be used below (in both

the oriented and spin case, with appropriate choices for the algebra A) to describe the labels
of insertion points in the interior of a world sheet. Let X ∈ A

bCA, U , V̄ ∈ C (not bC), ε ∈ {±1}
and n ∈ Z. The idempotents act on the following Hom-spaces,

Q(in)n on bC(U ⊗ V̄ ⊗ Kε, X ) , Q(out)
n on bC(X , U ⊗ V̄ ⊗ Kε) , (88)

where K± was defined in (51). The action is given by, for ψ: U ⊗ V̄ ⊗ Kε −→ X and
φ : X −→ U ⊗ V̄ ⊗ Kε

Q(in)n (ψ) =
ψ n

KϵV̄U

X

Q(out)
n (φ) = −n+ 2

X

ϕ

KϵV̄U

(89)
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A short computation shows that these are indeed idempotents. We denote their images by, for
t ∈ {in, out},

M(t)
n,ε(U , V̄ ; X ) := imQ(t)n , (90)

so that

M(in)
n,ε (U , V̄ ; X ) ⊂ bC(U ⊗ V̄ ⊗ Kε, X ) , M(out)

n,ε (U , V̄ ; X ) ⊂ bC(X , U ⊗ V̄ ⊗ Kε) . (91)

These subspaces will later play the role of multiplicity spaces for bulk field insertions. They
are dual to each other via the trace pairing:

Lemma 5.1. The pairing 〈 , 〉bulk : M(out)
n,ε (U , V̄ ; X )×M(in)

n,ε (U , V̄ ; X ) −→ C, where

〈 f , g〉bulk :=
1

ÒZC(S3)εdim(U)dim(V̄ )
trU⊗V̄⊗Kε( f ◦ g) , (92)

is non-degenerate.

The extra normalisation factors are conventional but make the conditions on correlators
in Section 5.4 look simpler. The invariant ÒZC(S3) was given in (71).

Proof. Denote by 〈 , 〉 the extension of the pairing 〈 , 〉bulk to the entire Hom-space. That is,
〈 f , g〉 is given by the same trace-formula as in (92), but now arbitrary f ∈ bC(U ⊗ V̄ ⊗ Kε, X )
and g ∈ bC(X , U ⊗ V̄ ⊗ Kε) are allowed. Since the trace-pairing is non-degenerate in a pivotal
fusion category, so is 〈 , 〉.

A slightly more lengthy but straightforward computation with string diagrams gives

〈 f ,Q(in)n (g)〉= 〈Q
(out)
n ( f ), g〉 . (93)

A standard argument now shows that the restriction 〈 , 〉bulk is also non-degenerate: Suppose
that g ∈ M(in)

n,ε (U , V̄ ; X ). By non-degeneracy there is an f ∈ bC(U ⊗ V̄ ⊗ Kε, X ) such that

〈 f , g〉 ̸= 0. Using (93) and that Q(in)n is an idempotent, one concludes that also 〈Q(out)
n ( f ), g〉

is non-zero.

We will also need a pairing between multiplicity spaces of boundary field insertions. These
will be given directly by Hom-spaces: for M , N ∈ A

bC, W ∈ C and X ∈ A
bCA, we define

〈 , 〉bnd : bC(M∗ ⊗A X ⊗A N , W ⊗ Kε)× bC(W ⊗ Kε, M∗ ⊗A X ⊗A N) −→ C ,

〈 f , g〉bnd =
1

εdim(W )
trW⊗Kε( f ◦ g) . (94)

This pairing is just the trace-pairing of bC and is hence non-degenerate.

5.2 Oriented CFT without boundaries and defects

In this section we recall how to assign correlators to oriented world sheets (without spin struc-
ture). We follow [45,47] except that we use the SVect valued TFT ÒZC from Section 4.3.

We fix a symmetric special Frobenius algebra B, i.e.

B ∈ bC , NB = idB . (95)

This determines which particular full CFT we will describe in terms of the conformal blocks
for V .

41

https://scipost.org
https://scipost.org/SciPostPhys.15.5.207


SciPost Phys. 15, 207 (2023)

Decorated world sheets

By a decorated world sheet we mean a world sheet Σ as in Section 2.4 together with additional
decorations. In this section we treat the case without boundaries or defects, and so the only
decorations are bulk insertion points. A bulk insertion point is a marked point (p, v, t) with v
a tangent vector at p and t ∈ {in, out}, labelled in addition by a tuple

(U , V̄,ε,φ) , (96)

where

• U , V̄ ∈ C give the holomorphic and antiholomorphic representation of the bulk insertion,

• ε ∈ {±} gives the Z2-parity, and

• φ ∈M(t)
n=0,ε(U , V̄ ; B), where t is the in/out label of the marked point, parametrises the

multiplicity space of bulk fields of type (U , V̄,ε), see (97) below.

Since we have NB = id, the space M(t)
n,ε(U , V̄ ; B) does not depend on n, and in this sense the

choice n= 0 made above is arbitrary.

Space of bulk fields

If the labels U and V̄ of a bulk field are chosen to be irreducible, they describe a summand
U⊗C V̄ ⊗CKε in the space of bulk fields, which carries an action of the holomorphic and of the
antiholomorphic copy of V on U and V̄ , respectively, and which has parity ε. The multiplicity
of U ⊗C V̄ ⊗C Kε in the space of in/outgoing bulk fields is given by dimCM(in/out)

n=0,ε (U , V̄ ; B).
To describe the space of bulk fields in purely categorical terms, we need to introduce the

category C⊠Crev⊠SVect. Here, Crev is the same tensor category as C, but with inverse braiding
and twist, and describes the representations of the antiholomorphic copy of V . The product
‘⊠’ denotes the Deligne product as in (66).11

The space of in- and outgoing bulk fields of the oriented CFT is given by

H(t)bulk(B) =
⊕

i, j∈I,ε∈{±1}
Si ⊠ S̄ j ⊠ Kε ⊗M(t)

0,ε(Si , S̄ j; B) ∈ C ⊠ Crev ⊠SVect , (97)

where t ∈ {in, out}, and I is the index set for simple objects in C as in (37). When writing the
tensor product with the C-vector space M(t)

0,ε(U , V̄ ; B), we are using the natural embedding of

Vect in C ⊠ Crev ⊠SVect as multiples of the tensor unit. In other words, M(t)
0,ε(Si , S̄ j; B) is the

multiplicity space of the object Si ⊠ S̄ j ⊠ Kε in H(t)bulk(B).

Connecting manifold

In the TFT approach, CFT correlators are described as elements in the appropriate TFT state
space. To obtain an actual function of field insertions which depends on insertion points and
complex structure moduli, one needs to use the relation between TFT state spaces and confor-
mal blocks as outlined in Sections 3.2 and 4.4.

To a decorated world sheet Σwe assign a bC-extended surface eΣ, the double of Σ, as follows.
First, let Σrev be the same surface as Σ but with opposite orientation. The surface underlying
eΣ is simply the disjoint union of Σ and Σrev:12

eΣ= Σ⊔Σrev . (98)
11In terms of the relative Deligne product one can also write C ⊠ Crev ⊠ SVect = bC ⊠SVect

bCrev, but we will not
use that formulation.

12Recall that here we assume that Σ has empty boundary. In the presence of a boundary this prescription has to
be modified, see Section 5.3 below.
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Each marked point p of Σ produces two points p+ ∈ Σ, p− ∈ Σrev on eΣ. If p has tangent
vector v and is decorated with the objects (U , V̄,ε,φ), then the two marked points on eΣ are

(p+, U , v,δ) , (p−, V̄ ⊗ Kε, v,δ) . (99)

Here, δ = − if p is an ingoing insertion point, and δ = + if p is outgoing. The ordering of the
marked points on eΣ is such that if p1 < p2 < . . . on Σ, then p1,+ < p1,− < p2,+ < p2,− < . . . on
eΣ. Attaching the parity factor Kε to p− instead of p+ is a convention, see Remark 5.2 below.

To complete the definition of the double eΣ as a C-extended surface, we need to give a La-
grangian subspace of λ ⊂ H1(eΣ,R). We will do this after introducing the connecting manifold.

The connecting manifold of Σ is the three-manifold12

MΣ := Σ× [−1,1] . (100)

Its boundary is ∂MΣ = eΣ, and we consider MΣ as a bordism

MΣ : ; −→ eΣ . (101)

The Lagrangian subspace λ of eΣ is given by the kernel of the homomorphism
H1(eΣ,R) −→ H1(MΣ,R) induced by the inclusion eΣ = ∂MΣ ⊂ MΣ (see [40, App. B] for more
details).

To complete the definition of the connecting manifold, we need to describe the ribbon
graph in MΣ in terms of the decorated world sheet Σ. Let Σ0 := Σ× {0} be the embedding of
the world sheet in the “middle” of the connecting manifold. The ribbon graph in MΣ consists
of

1. vertical ribbons (in the [−1, 1]-direction) connecting the marked points of eΣ to Σ0

2. a ribbon graph embedded in Σ0, such that the 2-orientation of all ribbons embedded in
Σ0 agrees with the 2-orientation of Σ0.13

In part 1 of the ribbon graph, for an insertion point p ∈ Σ labelled by (U , V̄,ε,φ), the
ribbon graph in a neighbourhood of the vertical line {p}× [−1,1] in MΣ looks as in Figure 18,
depending on whether the insertion point is ingoing or outgoing.

For part 2 of the ribbon graph, place a network of B-ribbons inΣ0 with three-valent vertices
labelled by product and coproduct of B as appropriate for the orientations. The B-ribbons of
the field insertions are connected to this network, and the network is such that the components
of Σ0 minus the B-ribbons are all homeomorphic to discs. This latter point can be achieved
for example by choosing the graph dual to a triangulation of Σ. Proposition 5.3 below states
that the value of the TFT does not depend on the particular choice of B-ribbon graph.

Correlators

The correlator for a decorated world sheet Σ will be an element in the space of conformal
blocks for the double eΣ, i.e. in the TFT state space

Bl(Σ) := ÒZC(eΣ) . (102)

We already assumed that Σ has empty boundary, so that eΣ = Σ⊔Σrev, with marked points as
described above. If in addition Σ is connected and of genus g, by monoidality of ÒZC and by

13We use different orientation conventions for the ribbon graph in the connecting manifold as compared to
[45,47]. For example, the conventions described in [47, Sec. 3.1] are such that the 2-orientation of the embedded
ribbon graph is opposite to that of Σ0.
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1

2

B

1

2
ϕ

(out)

(in)

1

2

3

(V̄ , ϵ,−)

(U,+,−)

(V̄ , ϵ,+)

(U,+,+)

ϕ

B
U

U

V̄

V̄

Kϵ

Kϵ

Figure 18: Ribbon graph in the connecting manifold near a bulk insertion point la-
belled (U , V̄,ε,φ), both for an ingoing and an outgoing marked point. Observe the
opposite half twists on the ribbons for in- and outgoing insertions.

(68), we have explicitly

Bl(Σ) = ÒZC(Σ⊔Σrev)

= ZRT
C (Σ

′)⊗C ZRT
C (Σ

rev′)⊗C SV((Σ∪Σrev)′′)
∼= C(U−δ1

1 ⊗ · · · ⊗ U−δn
n , L⊗g)⊗C Crev(V̄−δ1

1 ⊗ · · · ⊗ V̄−δn
n , L⊗g)⊗C Kε1 ⊗C · · · ⊗C Kεn ,

(103)

where we identified K± = (K±)∗.
In terms of the VOA V , according to (40) and (42), the factor C(. . . ) is interpreted as

the space of holomorphic conformal blocks on Σ, the factor Crev(. . . ) as the space of anti-
holomorphic conformal blocks, and the product of Kεi collects the various parities of the in-
sertion points.

The correlator Corror
B (Σ) for the world sheet Σ is a bilinear combination of holomorphic

and anti-holomorphic conformal blocks, and so an element of Bl(Σ). The relevant element is
defined in terms of the TFT ÒZC and the connecting manifold MΣ via

Corror
B (Σ) := ÒZC(MΣ) ∈ Bl(Σ) . (104)

We stress that even though the space of blocks Bl(Σ) is a super-vector space which may include
odd components, the element Corror

B (Σ) is always purely even, since ÒZC(MΣ): K+ −→ Bl(Σ)
is a morphism in SVect, i.e. an even linear map.

Remark 5.2. Placing the parity factor Kε at the point p− on Σrev instead of with p+ on Σ is
a convention. Note that either choice produces the same space Bl(Σ) in (103) because the
SV-factor in ÒZC only depends on the ordering of the marked points and not on their positions,
and placing Kε with p+ or p− does not change the order. Similarly, both choices will produce
the same vector Corror

B (Σ) in Bl(Σ).

As the notation suggests, the element Corror
B (Σ) only depends on the decorated world sheet Σ:
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a) b)

(U, V̄ , ϵ, ϕ) (U ′, V̄ ′, ϵ′, ϕ′)

(R, S̄, ν, ξ)

X C ∪ {∞}
p p′

q (U, V̄ , ϵ, ϕ)
(W, ν, ψ)

X

D2

Figure 19: a) Riemann sphere with three insertions (only the part near the insertions
is shown), where p, q are ingoing and p′ is outgoing. Here, ξ ∈ M(in)

0,ν (R, S̄; B),

φ ∈ M(in)
0,ε (U , V̄ ; X ), and φ′ ∈ M(out)

0,ε′ (U
′, V̄ ′; X ). b) Disc with one ingoing defect

field insertion in the bulk and one ingoing defect field inserted on the boundary.
Here, φ ∈M(in)

0,ε (U , V̄ ; X ), and ψ ∈ C(W ⊠ Kν, M∗ ⊗B X ∗ ⊗B N).

1

2

X1

1

2

ι
◦ ϕ

(out)

(in)

1
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ϕ
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X4

U

U
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Kϵ

Kϵ

X2

X5

X3

Figure 20: Connecting manifold near bulk insertions with attached defect lines.

Proposition 5.3. Corror
B (Σ) does not depend on the choice of B-ribbon graph in part 2 of the

construction of MΣ.

The proof is the same as in the non-SVect-valued case in [40,45,47], see in particular [40,
App. B.3] for details.

The correlators Corror
B (Σ) satisfy the required compatibility conditions with respect to

transport and gluing. We discuss this in detail in Section 5.4.

5.3 Including boundaries and defects

We now extend the construction of correlators as elements of TFT state spaces to world sheets
with boundaries and defects. The idea is the same as above, but now involves more notation.
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Decorated world sheets

Let Σ be a world sheet as in Section 2.4, possibly with boundaries and defects. A decoration
of Σ consists of the following data (see Figure 19 for two examples):

• A connected component of the boundary minus the boundary insertion points gets la-
belled by a left B-module in bC. The B-module describes the boundary condition for the
given stretch of boundary.

• A connected component of the defect network minus field insertions gets labelled by a
B-B-bimodule in bC describing the defect condition.

• A boundary insertion which separates boundary conditions M and N , in this order along
the orientation of the boundary, and which is not the endpoint of a defect line, is labelled
by

(W,ε,ψ) . (105)

Here W ∈ C, ε ∈ {±1} is the parity, and ψ ∈ bC(W ⊗ Kε, M∗ ⊗B N) (ingoing insertion) or
ψ ∈ bC(M∗ ⊗B N , W ⊗ Kε) (outgoing insertion).

• Consider a boundary insertion between boundary conditions M , N on which defect lines
with defect conditions X1, . . . , Xm start or end. Let δi = + if X i is pointing away from
the insertion, and δi = − otherwise. Set

X = Xδi
1 ⊗B · · · ⊗B Xδm

m ∈ B
bCB , where X+i = X i and X−i = X ∗i . (106)

The boundary insertion is again labelled by (105), but nowψ ∈ bC(W⊗Kε, M∗⊗B X⊗B N)
(ingoing), respectively ψ ∈ bC(M∗ ⊗B X ⊗B N , W ⊗ Kε) (outgoing).

• The label of a bulk insertion which is not connected to any line defects has already been
described in (96).

• Consider a bulk insertion on which defect lines with defect conditions X1, . . . , Xm start
or end, and let X be as in (106). The insertion is again labelled as in (96), but now
φ ∈M(t)

n=0,ε(U , V̄ ; X ), with t = in (ingoing insertion) and t = out otherwise, and where
the multiplicity spaces are given in (90).

Spaces of boundary and defect fields

From the above description of field labels, we can read off the spaces of boundary and bulk
fields with attached defect lines. Namely, for boundary insertions we have, with X as in (106)

H(in)M ,N (X ) =
⊕

i∈I,ε∈{±1}
Si ⊠ Kε ⊗ bC(Si ⊗ Kε, M∗ ⊗B X ⊗B N) ∈ bC ,

H(out)
M ,N (X ) =
⊕

i∈I,ε∈{±1}
Si ⊠ Kε ⊗ bC(M∗ ⊗B X ⊗B N , Si ⊗ Kε) ∈ bC . (107)

For bulk insertions with attached defect lines we get, with t ∈ {in, out},

H(t)bulk(X ) =
⊕

i, j∈I,ε∈{±1}
Si ⊠ S̄ j ⊠ Kε ⊗M(t)

0,ε(U , V̄ ; X ) ∈ C ⊠ Crev ⊠SVect . (108)

The algebra B, seen as a bimodule over itself, labels the trivial defect. And indeed, setting
X = B in the above state space gives the space of bulk insertions without attached line defects
from (97).
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Figure 21: Connecting manifold near boundary insertion.

Connecting manifold

In the presence of boundaries we need to extend the definition of the double of a decorated
world sheet and of the connecting manifold. Namely, given a decorated world sheet Σ, the
double eΣ is a bC-extended surface whose underlying surface is obtained by gluing Σ and Σrev

together along their boundary:

eΣ= Σ⊔Σrev/(x ∼ x rev, x ∈ ∂Σ) . (109)

Note that eΣ has empty boundary.
As before, a bulk insertion in Σ (with or without attached defects) labelled as in (96) gives

rise to two marked points on eΣ labelled as in (99).
Each marked point p on the boundary of Σ gives a single marked point p in eΣ. Since the

tangent vector v at p is parallel to the boundary, it makes sense to take the same tangent vector
in eΣ. If the label of p on the decorated world sheet is as in (105), the marked point on eΣ is
labelled by

(p, W ⊗ Kε, v,δ) , (110)

where as in (99), δ = − if p is an ingoing insertion point, and δ = + if p is outgoing.
The definition of the connecting manifold is extended from (100) to

MΣ := Σ× [−1,1]/∼ , (x , t)∼ (x ,−t) , x ∈ ∂Σ . (111)

Its boundary is ∂MΣ = eΣ. The construction of the ribbon graph in MΣ has two parts as in
Section 5.2.

For part 1, the relevant vertical parts of the ribbon graph for in/outgoing bulk and boundary
insertions, possibly with defects, are shown in Figures 20 and 21.

For part 2, the only modification is that the network of B-lines also attaches to the
(bi)modules labelling boundaries and defects via the corresponding B-action. The network
of B-lines has to be such that each connected component of the world sheet minus all B-lines
and all defect lines is contractible.

As an example, for the two decorated world sheets in Figure 19 the connecting manifolds
are shown in Figures 22 and 23.
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Figure 22: Connecting manifold for the world sheet shown in Figure 19 a).

Correlators

For a decorated world sheet Σ with boundaries and defects, the space of conformal blocks is
still defined as in (102), namely Bl(Σ) = ÒZC(eΣ), and correlators are given as in (104):

Corror
B (Σ) = ÒZC(MΣ) ∈ Bl(Σ) , (112)

and as before, these are always purely even elements of Bl(Σ). Proposition 5.3 applies equally
to the present situation with boundaries and defects. The proof is as in [37,40] and we omit
the details.

We now turn to the description of the compatibility conditions with respect to transport
and gluing and give the proof that the collection of correlators {Corror

B (Σ)}Σ satisfies these
conditions.

5.4 Consistency of oriented correlators in the presence of parity

From the input data of a symmetric special Frobenius algebra B ∈ bC, the above construction
produces a family of vectors {Corror

B (Σ)}Σ, where Σ runs over decorated world sheets and
Corror

B (Σ) ∈ Bl(Σ).
For such a collection of correlators to be consistent, we require two conditions, which we

elaborate in the following:

(T) (Transport) If two decorated world sheets Σ and Σ′ are joined by a path γ in decorated
world sheets, then Corror

B (Σ
′) agrees with the transport of Corror

B (Σ) along γ.

(G) (Gluing) If Σ′ is obtained from Σ by gluing after removing from Σ a disc around an
ingoing and an out-going field insertion, then Corror

B (Σ
′) is obtained from Corror

B (Σ) by
summing over intermediate labels.

We now describe in detail how these conditions are expressed in terms of the TFT ÒZC . This
closely follows [37,40], up to some modifications due to the inclusion of parity in our setting.
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Figure 23: Connecting manifold for the world sheet shown in Figure 19 b).

Transport

Recall from Section 3.3 that we will use paths and families interchangeably. To formulate the
transport condition we will use the language of families.

Let Eγ be a family of world sheets over [0,1] with fibre γ(t) for t ∈ [0, 1] and Σ = γ(0),
Σ′ = γ(1). For each t ∈ [0, 1] consider the double eγ(t) of γ(t) as in (109). This defines a
family E
eγ of bC-extended surfaces, as well as the corresponding transport bordism as in (44),

eΣ= eγ(0) , eΣ′ = eγ(1) , E
eγ : eΣ −→ eΣ′ . (113)

The compatibility with transport can now be stated as follows:

Theorem 5.4. Let B ∈ bC be a symmetric special Frobenius algebra, and let Eγ be a family of
decorated world sheets from Σ to Σ′. The correlators for B satisfy

ÒZC(Eeγ)(Corror
B (Σ)) = Corror

B (Σ
′) . (114)

Proof. Since Eγ is a family over a contractible space it is diffeomorphic to the trivial family
Σ × [0,1] (together with a corresponding diffeomorphism Σ′ −→ Σ for the fibre γ(1)). The
bordism E
eγ ◦ MΣ is therefore diffeomorphic to MΣ′ , possibly up to the choice of network of

B-ribbon graph, and so by Proposition 5.3, evaluating ÒZC yields the same linear map in either
case.

Let f : Σ −→ Σ′ be an orientation preserving diffeomorphism of decorated world sheets.
This induces a diffeomorphism ef : eΣ −→ eΣ′ between the corresponding doubles. Let E

ef be the

mapping cylinder for ef . Then E
ef is a bordism from eΣ to eΣ′.

Corollary 5.5. We have
ÒZC(Eef )(Corror

B (Σ)) = Corror
B (Σ

′) . (115)

Proof. The mapping cylinder E
ef is a special case of a family of decorated world sheets from Σ

to Σ′. This reduces the above statement to Theorem 5.4.
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Gluing

The proof of consistency with gluing will require more notation and will be more involved
than that of consistency with transport.

To start with, we need to choose basis / dual basis pairs in the multiplicity spaces of bulk
and boundary fields. Namely, for a given X ∈ B

bCB and M , N ∈ B
bC:

• (bulk) Let U , V̄ ∈ C and ε ∈ {±1}. Choose bases

{α} ⊂ M(in)
0,ε (U , V̄ ; X ) , and {β̄} ⊂ M(out)

0,ε (U , V̄ ; X ) , (116)

cf. (90), which are dual to each other with respect to the pairing (92): 〈β̄ ,α〉bulk=δα,β .

• (boundary) Let W ∈ C and ε ∈ {±1}. Choose bases

{α} ⊂ bC(W ⊗ Kε, M∗ ⊗B X ⊗B N) , and {β̄} ⊂ bC(M∗ ⊗B X ⊗B N , W ⊗ Kε) , (117)

which are dual to each other with respect to the pairing in (94): 〈β̄ ,α〉bnd = δα,β .

LetΣ be a decorated world sheet for B and letΣb be the underlying bordism. Let bin∈∂ t
inΣb

and bout ∈ ∂ t
outΣb, t ∈ {c, o} be two open or two closed gluing boundaries, cf. (15). We

require that they are parametrised by the same (half-)annulus with defects, so that they can
be consistently glued.

If bin/out are closed gluing boundaries, we will write

Σ(U , V̄,ε,α, β̄) , (118)

for the world sheet Σ where the puncture of the disc glued to bin is labelled by (U , V̄,ε,α) and
that for bout by (U , V̄,ε, β̄), with α, β̄ the basis vectors introduced in (116). If bin/out are open
gluing boundaries, we will correspondingly write

Σ(W,ε,α, β̄) , (119)

for the world sheet Σ where the punctures of the glued half-disc are labelled (W,ε,α) and
(W,ε, β̄) in terms of the basis vectors in (117).

Let Σ′b be the bordism obtained by gluing bin to bout, and let Σ′ be the corresponding
decorated world sheet, which has the same decoration as Σ away from the two (half-)discs
which got omitted in the gluing.

The final ingredient we need for the gluing condition is the bordism of the TFT which
implements the gluing of marked points on the bC-extended surfaces given by the doubles of
the corresponding world sheets:

• (open gluing boundary) The open gluing bordism

GW,ε : eΣ(W,ε,α, β̄) −→ eΣ′ , (120)

is defined as follows. Let S be the circle in the doubled surface eΣ′ which is the preimage
of the glued half-circles bin ∼ bout under the projection eΣ′ −→ Σ′ from the double to the
world sheet. Let AS be a small closed annular neighbourhood of S.

Abbreviate eΣ = eΣ(W,ε,α, β̄). Denote by p and q the punctures on the half-discs glued
to bin and bout, respectively. Let Dp and Dq be the two closed discs in eΣ which are the
preimages of the half-discs containing p and q under the projection eΣ −→ Σ. We obtain
the identity14

eΣ′ \ Inn(AS) = eΣ \ Inn(Dp ⊔ Dq) . (121)

14Strictly speaking, we have to enlarge Dp and Dq slightly by the corresponding halves of AS in eΣ for the identity
to hold. We use the same notation for these enlarged closed discs.
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Figure 24: a) The three-manifold with corners gU ,ε used in the description of the
gluing bordisms. b) Wedge presentation of the same manifold: we identify the faces
marked by c⃝.
In the presentations a) and b) of gU ,ε the parts of the boundary marked a⃝ agree in
both presentations, as do those marked b⃝. The two sides c⃝ that are identified in
presentation b) are also shown in presentation a).

Finally, GW,ε is defined to be
�

eΣ′\Inn(AS)
�

×[0, 1] glued to the 3-manifold (with corners)
gW,ε shown in Figure 24 along ∂ (AS)× [0,1].

• (closed gluing boundary) The closed gluing bordism is denoted by

GU ,V̄,ε : eΣ(U , V̄,ε,α, β̄) −→ eΣ′ . (122)

To define it, let S+ and S− be the two circles in the doubled surface eΣ′ which are the
preimage of the glued circles bin ∼ bout under the projection eΣ′ −→ Σ′. Let AS+ and AS−
be small closed annular neighbourhoods. Analogously to the open case, there are four
closed discs Dp± and Dq± in the double eΣ := eΣ(U , V̄,ε,α, β̄), so that

eΣ′ \ Inn(AS+ ⊔ AS−) = eΣ \ Inn(Dp+ ⊔ Dp− ⊔ Dq+ ⊔ Dq−) . (123)

Then GU ,V̄,ε is defined to be
�

eΣ′ \ Inn(AS+ ⊔ AS−)
�

× [0, 1] with gU ,+ glued along
∂ (AS+)× [0, 1] and gV̄,ε glued along ∂ (AS−)× [0,1].

The compatibility with gluing can now be stated as follows:15

Theorem 5.6. Let B ∈ bC be a symmetric special Frobenius algebra. Then:

• (closed gluing) Let Σ′ be obtained by gluing from Σ(U , V̄,ε,α, β̄) as above. The correla-
tors for B satisfy

Corror
B (Σ

′) =
∑

U ,V̄,ε,α

ÒZC(GU ,V̄,ε)(Corror
B (Σ(U , V̄,ε,α, ᾱ))) , (124)

where U , V̄ run over simples of C, ε ∈ {±} and α runs over the basis (116).

15In [37, 40] there is an extra term in the gluing condition arising from a two-point correlator. Since we work
with in- and outgoing field insertions, we obtain the simpler gluing relation stated in Theorem 5.6.

51

https://scipost.org
https://scipost.org/SciPostPhys.15.5.207


SciPost Phys. 15, 207 (2023)

• (open gluing) Let Σ′ be obtained by gluing from Σ(W,ε,α, β̄) as above. The correlators
for B satisfy

Corror
B (Σ

′) =
∑

W,ε,α

ÒZC(GW,ε)(Corror
B (Σ(W,ε,α, ᾱ))) , (125)

where W runs over simples of C, ε ∈ {±} and α runs over the basis (117).

The proof of this theorem is given in Appendix A.3.

5.5 Example: torus partition function

The aim of this section is to show that the partition function of the oriented parity CFT defined
by a symmetric special Frobenius algebra B ∈ bC is the super-trace over the (in-going, say)
space of bulk fields as given in (97).

Let T2 be a 2-torus without insertion points, thought of as a bC-extended surface. By (68),
the corresponding TFT state space is

ÒZC(T
2) = ZRT

C (T
2)⊗ SV(T2)∼= C(1, L) . (126)

A basis of this space can be given by solid tori with embedded ribbons. Namely, for X ∈ bC let
NX be a solid torus with an embedded X -labelled ribbon, see Figure 16 b). From the definition
of ÒZC , one checks that

ÒZC(NX⊗Kε) = ε ÒZC(NX ) ∈ ÒZC(T
2) . (127)

Thus, labelling the central ribbon by the simple objects Si ⊗ K+ and Si ⊗ K− of bC, with i ∈ I,
produces linearly dependent elements in ÒZC(T2)which differ by a sign. In particular, in giving
a basis we can restrict ourselves to simples of the form Si = Si ⊗ K+, namely we choose

χi := ÒZC(NSi
) , i ∈ I . (128)

Let us now think of T2 as a world sheet without field insertions. By (102), the relevant
space of blocks is

Bl(T2) = ÒZC(T
2 ⊔ (T2)rev) = ÒZC(T

2)⊗C ÒZC((T
2)rev) , (129)

which has basis
�

χi ⊗χ j

	

i, j∈I . The overline is to indicate that the boundary T2 is taken with
reverse orientation. We would like to compute the coefficients Z(B)i j in

Corror
B (T

2) =
∑

i, j∈I
Z(B)i j χi ⊗C χ j ∈ Bl(T2) . (130)

The result is:

Proposition 5.7. For B ∈ bC a symmetric special Frobenius algebra, the coefficients Z(B)i j in
(130) are given in terms of the multiplicity spaces in (97) as

Z(B)i j = dimM(in)
0,+(Si , S̄ j; B)− dimM(in)

0,−(Si , S̄ j; B) . (131)

Proof. The computation works analogously to [45, Sec. 5.3], but we will go through it in detail
to show where the additional parity signs appear.

The basis {χ∗i } dual to the χi consists of solid tori T2 −→ ; with embedded Si-ribbon
running in the opposite direction. This gives

Z(B)i j = (χ
∗
i ⊗C χ

∗
j ) ◦Corror

B (T
2) = ÒZC(Ci, j) , (132)
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where Ci, j is the three-manifold S2 × S1 with embedded ribbon graph as follows:

Ci, j =

Si

Sj

B

B

B
B

S2 × S1

(133)

Next we expand the identity on S∗i ⊗ B ⊗ S∗j into a sum over simple objects Sk ⊗ Kε of bC by

choosing a basis {αk,ε} in bC(Sk ⊗ Kε, S∗i ⊗ B ⊗ S∗j ) and a corresponding dual basis {ᾱk,ε} in
bC(S∗i ⊗ B ⊗ S∗j , Sk ⊗ Kε). This results in the equality

idS∗i ⊗B⊗S∗j
=
∑

k,ε,α

αk,ε ◦ ᾱk,ε . (134)

Note that here we have to include the sum over ε as Sk ⊗ K+ and Sk ⊗ K− are distinct simple
objects of bC. Inserting the above identity into Ci, j gives

ÒZC(Ci, j) =
∑

k,ε,α

ÒZC(C
k,ε,α
i, j ) , (135)

where

Ck,ε,α
i, j =

Si

Sj

B

B

S2 × S1

α ᾱ
B

Sk ⊗KϵSk ⊗Kϵ

B
(136)

Since Sk ⊗ Kε is simple, there are numbers λk,ε such that
∑

α

ᾱk,ε ◦ p ◦αk,ε = λk,ε · idSk⊗Kε , (137)

where p is the endomorphism on S∗i ⊗ B ⊗ S∗j given by

p =

S∗
i S∗

jB

S∗
i S∗

jB

(138)

It is easy to check that p is an idempotent: p ◦ p = p.
Let C(X ) be the manifold S2 × S1 with a single ribbon labelled X running along the S1-

direction. Then (135) simplifies to

ÒZC(Ci, j) =
∑

k,ε

λk,ε
ÒZC(C(Sk ⊗ Kε)) . (139)

The TFT state space on S2 with a single marked point labelled by Sk ⊗Kε is Kε for Sk = 1 and
zero otherwise (cf. (68)). From this, the invariant for C(Sk ⊗ Kε) is obtained as a trace, and
one gets (cf. (69)),

ÒZC(C(Sk ⊗ Kε)) = ZRT
C (C(Sk)) · SV(C(Kε)) = δk,1 · ε . (140)
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Putting all this together, we arrive at

Z(B)i j =
∑

ε

λ1,ε · ε . (141)

It remains to show that λ1,ε = dimM(in)
0,ε (Si , S̄ j; B). To see this, note that Pε := p ◦ (−) acts

as an idempotent on bC(Kε, S∗i ⊗ B ⊗ S∗j ). Choosing the basis {α1,ε} to consist of eigenvectors
shows that λ1,ε = dim im(Pε).

In Proposition 6.12 below we will show in a more general setting that there is a linear
isomorphism f : bC(Si ⊗S j ⊗Kε, B) −→ bC(Kε, S∗i ⊗ B⊗S∗j ) which satisfies f ◦Q(in)0 = Pε ◦ f with
respect to the bulk field projectors given in (89). This completes the proof.

Remark 5.8. 1. Suppose bC = RepS(V) for a bosonic rational VOA V as in Section 4.4. As
argued in Section 3.3, χi from (128) does represent the character of the V-module Si
(or, more generally, the corresponding torus one-point block with an arbitrary insertion
of V). In this situation, the torus amplitude Corror

B (T
2) in (130) does indeed represent

the super-trace of qL0−c/24q̄ L̄0−c/24 over H(in)bulk (possibly with an additional insertion from
V ⊗C V).

2. It was shown in Corollary 5.5 that the correlators Corror
B (Σ) are mapping class group in-

variants. Thus, in particular, the bilinear combination of characters in (130) is SL(2,Z)-
invariant. This would in general not be true if one took the usual trace over H(in)bulk rather
than the super-trace. (The usual trace amounts to adding dimensions in (131) rather
than subtracting them.) We will see an example of this in Section 7.5 below.

6 Spin CFT with parity signs

In this section we combine the ingredients set up so far to describe spin CFTs, that is, CFTs
defined on spin surfaces, and which may or may not include parity. While in Section 2 we
discussed r-spin structures in general, here we restrict ourselves to the case r = 2, and we will
just say “spin” instead of “2-spin”. Furthermore, we will work in the setting with parity, as it
is easy to recover the parity-less situation by restricting to the parity-even sector.

We start in Section 6.1 by introducing the Z2-equivariant modules and bimodules needed
to describe boundary conditions and defects of the spin CFT. In Sections 6.2 and 6.3 we give the
correlators of the spin CFT in terms of those of an underlying oriented CFT with an appropriate
network of additional line defects. The proof that this prescription is monodromy-free and
consistent with gluing is given in Section 6.4. As an example, in Section 6.5 we give the
relation between (super-)traces over state spaces and the correlators on the torus for the four
possible spin structures.

As in Section 5 we fix a modular fusion category C and set bC = C ⊠SVect.

6.1 Z2-equivariant modules and bimodules

Let F1, F2 ∈ bC be Frobenius algebras with N 2
Fi
= idFi

. Consider the endofunctor on F1
bCF2

which
sends an F1-F2-bimodule X to the twisted bimodule NF1

XNF2
. This defines a strict Z2-action on

F1
bCF2

. We denote the category of Z2-equivariant objects by

D(F1, F2) :=
�

F1
bCF2

�Z2 . (142)

In the following we will give an explicit description of D(F1, F2). For more details on equiv-
ariantisation see e.g. [33, Sec. 2.7].
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A Z2-equivariant F1-F2-bimodule is an F1-F2-bimodule X ∈ bC together with an involution

NX =

X

X

: X −→ X , N 2
X = idX , (143)

which satisfies the following compatibility condition with the Fi-actions:

X

X

F2F1

=

X

X

F2F1

(144)

As before we use the following notation to denote powers of NX :

N m
X =

X

X

m (145)

A morphism of Z2-equivariant bimodules X , Y ∈ D(F1, F2) is a morphism f : X −→ Y which is
a morphism of F1-F2-bimodules and which commutes with the Z2-action:

f ◦ NX = NY ◦ f . (146)

Let F ∈ bC be a Frobenius algebra with N2
F = idF . A Z2-equivariant left F-module is a

Z2-equivariant F -1-bimodule, we write

B(F) :=D(F,1) . (147)

Let Fi (i = 1,2, 3) be special Frobenius algebras in bC with N 2
Fi
= 1. The tensor product of

X ∈D(F3, F2) and Y ∈D(F2, F1) over F2 is defined as in Section 5.1, with Z2-action given by

NX⊗F2
Y := NX ⊗F2

NY . (148)

In terms of the projection and embedding maps for the relative tensor product in (84), this
reads

NX⊗F2
Y =

X ⊗F2
Y

X ⊗F2
Y

=

X ⊗F2
Y

ι

π

X ⊗F2
Y

(149)

For F1 = F2 =: F , an example of a Z2-equivariant bimodule is F , seen as a bimodule over
itself, with Z2-action given by NF . This furnishes the tensor unit in D(F, F).

Duals

Let Y ∈D(F1, F2) and recall the definition of Y † from (87). Together with the Z2-action

NY † =

Y ∗

Y ∗

=

Y ∗

Y ∗

= (NY )
∗ , (150)
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Y † becomes an object in D(F2, F1). In fact it turns out that in the Z2-equivariant setting, this
is a two-sided adjoint. To describe the various adjunction maps, first consider the following
maps in bC:

ev′Y = evY ◦(idY † ⊗N−1
Y ): Y † ⊗ Y −→ 1 , coev′Y = (NY ⊗ idY †) ◦ coevY : 1 −→ Y ⊗ Y † ,

eev′Y = eevY : Y ⊗ Y † −→ 1 , ßcoev′Y =ßcoevY : 1 −→ Y † ⊗ Y . (151)

One can easily check that the idempotent p in (83) for the tensor product Y ⊗F2
Y † or Y †⊗F1

Y
can be omitted against the four maps in (151), for example eev′Y ◦ p = eev′Y . In particular, ev′Y
and eev′Y are balanced maps and descend to the tensor product over F2. Using the projection
and embedding maps from (84), one further checks that the maps

evDY =

−1

ι

Y † ⊗F1
Y

F2

coevDY =
π

Y ⊗F2
Y †

F1

+1

eevDY =

ι

Y ⊗F2
Y †

F1

ßcoevDY =
π

Y † ⊗F1
Y

F2

(152)
are bimodule maps and are compatible with the Z2-action, i.e. are morphisms in D(F1, F1),
respectively D(F2, F2).

We define the dimension function D of a Z2-equivariant bimodule Y to be

D(Y ) := ev′Y ◦ßcoev′Y = −1

(∗)
= +1 = eev′Y ◦ coev′Y , (153)

where in (∗) we used that NF = N−1
F and that bC is spherical. If we apply this definition to

F ∈D(F, F) with F ∈ bC special Frobenius and N 2
F = idF , we get

D(F) = εF ◦ηF ̸= 0 . (154)

This is immediate from taking the trace in bC of the definition of NF in (81) (and the convention
that “special” means “normalised special”, cf. Section 5.1).

In case F is simple, the function D in (153) is related to the quantum dimension in D(F, F)
via

dimD(F,F)(Y ) =
D(Y )
D(F)

. (155)

To see this, note that since F is simple, the composition of evaluation and coevaluation in
D(F, F) is a multiple of idF , which in turn can be computed by inserting both sides in εF ◦(−)◦ηF .

It follows from (155) and semisimplicity of D(F, F) that D(F, F) is spherical.

Example 6.1. Consider the case that C = Vect, so that bC = SVect. The Clifford algebra
Cℓ1 = C1|1 ∈ SVect is generated by one odd element θ satisfying θ2 = 1. Cℓ1 is a Frobenius
algebra with counit and coproduct given by

ϵ(1) = 2 , ϵ(θ ) = 0 , ∆(1) = 1
2(1⊗ 1+ θ ⊗ θ ) , ∆(θ ) = 1

2(1⊗ θ + θ ⊗ 1) , (156)
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and with these choices Cℓ1 is also special. The Nakayama automorphism is given by

N(1) = 1 , N(θ ) = −θ . (157)

With this, it is immediate that
D(Cℓ1) = 2 , (158)

while the super-dimension (58) is dim(Cℓ1) = 0.

6.2 Spin CFT without defects and boundaries

Following [76], in this section, we convert a world sheet with spin structure into an oriented
world sheet containing a defect network using the combinatorial model for spin structures
reviewed in Section 2. The spin CFT is then defined by evaluating this defect correlator in the
oriented CFT. This procedure applies in the same way to theories with and without parity.

We fix a special Frobenius algebra F ∈ bC with N 2
F = idF .

We will describe the construction for spin CFTs and oriented CFTs with parity. The setting
without parity is recovered by choosing F ∈ C and only using parity label “+” below.

Decorated spin world sheets

Let Σb = (Σb,σ) be a spin bordism with no defects or free boundaries, and hence with only
closed gluing boundaries. Let Σ be the spin world sheet with ordered in/outgoing marked
points obtained by gluing in discs as in Figure 13 a). Then Σ becomes a decorated spin world
sheet if each marked point p is labelled by a tuple

(U , V̄,ε, y,φ) , (159)

where

• U , V̄ ∈ C give the holomorphic and antiholomorphic representation of the bulk insertion,

• ε ∈ {±} gives the Z2-parity,

• y ∈ Z2 is the type of the gluing boundary and is related to the holonomy of the spin
structure around the insertion via (22),

• φ ∈M(t)
y,ε(U , V̄ ; F), with t = in if the insertion point is ingoing, and t = out otherwise

(recall (90)). The morphism φ parametrises the multiplicity space of bulk fields of type
(U , V̄,ε, y), see (161) below.

The relation between the type of an insertion and being Neveu-Schwarz (NS) or Ramond (R)
is as follows:

type name
0 NS
1 R

(160)

Space of bulk fields in the NS and R sector

As in the oriented case, the multiplicity spaces allow one to read off the space of bulk fields.
Namely, the space of in- and outgoing bulk fields of type y of the spin CFT is given by

Hy,(t)
bulk (F) =
⊕

i, j∈I,ε∈{±1}
Si ⊠ S̄ j ⊠ Kε ⊗M(t)

y,ε(Si , S̄ j; F) ∈ C ⊠ Crev ⊠SVect , (161)
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a) b) c) d)
F

F

F

F

F

s

s =
s+1

s

F F

F F

(in)
v0

(U, V̄ , ϵ, ϕ)

F

(out)
v0

(U, V̄ , ϵ, ϕ)

F

Figure 25: Building blocks of the spin defect network: a) defect graph inside a pla-
quette, b) defect graph near an edge. c) and d) give the defect graphs to be placed
on the discs glued to in- and out-going closed gluing boundaries. Note the position
of v0 in d): the disc is rotated by 180◦ relative to the disc in c).

where t ∈ {in, out}, and I is the index set for simple objects in C as in (37). If we also split
the state space according to even/odd parity, we obtain (restricting to the ingoing case)

HNS,even
bulk (F) =
⊕

i, j∈I
Si ⊠ S̄ j ⊠ K+ ⊗M(in)

0,+(Si , S̄ j; F) ,

HNS,odd
bulk (F) =
⊕

i, j∈I
Si ⊠ S̄ j ⊠ K− ⊗M(in)

0,−(Si , S̄ j; F) ,

HR,even
bulk (F) =
⊕

i, j∈I
Si ⊠ S̄ j ⊠ K+ ⊗M(in)

1,+(Si , S̄ j; F) ,

HR,odd
bulk (F) =
⊕

i, j∈I
Si ⊠ S̄ j ⊠ K− ⊗M(in)

1,−(Si , S̄ j; F) . (162)

Translation into an oriented world sheet with F -defects

Let Σ be a decorated spin world sheet (without boundaries and defects) as above. From Σ we
will construct an oriented world sheet with defects

Wor(Σ; F) , (163)

for the symmetric special Frobenius algebra B = 1 ∈ bC. Note that defects in the oriented CFT
defined by B = 1 as in Section 5 are described simply by objects in bC. In particular, F itself
defines a defect for the oriented B = 1 theory.

Let Σb = (Σb,σ) be the spin bordisms from which Σ was defined. Let TΣb
(σ) be the

combinatorial presentation of the spin structure σ by a marked polygonal decomposition. The
defect graph on Wor(Σ; F) is obtained from TΣb

(σ) as follows:

• For each plaquette of TΣb
(σ) place the F -defect graph shown in Figure 25 a) on Wor(Σ; F),

and for each edge the graph shown in Figure 25 b).

• The marked points in Wor(Σ; F) are as for Σ, except that one forgets the type,

(U , V̄,ε, y,φ) ⇝ (U , V̄,ε,φ) , (164)

which is of the form (96). To see that φ is indeed a label for the oriented theory, note
that for B = 1, the inclusions in (91) (with X = F) are actually equalities.

• For each disc glued to the bordism Σb to obtain the world sheet Σ place the F -defect
graph shown in Figure 25 c) and d), depending on whether the gluing boundary was in-
or outgoing.
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a) b)

(in) (out)

u

v

−x
(in) (out)

0

0

−x
−x

0

c) d)

u

v

−x

u+ v

x

Figure 26: a) A spin cylinder over S1
x with x ∈ Z2 and u, v ∈ Z2. b) Two spin

cylinders with u = v = 0 glued together. This can be simplified to the cylinder in
a) with u = v = 0. c) The defect network on the world sheet corresponding to a)
obtained by gluing discs with field insertions. d) Simplification of the defect network
which still gives the same correlator as c).

Two examples of spin bordisms and associated decorated world sheets in the oriented
defect CFT for B = 1 are shown in Figures 26 and 27.

• Figure 26: Part a) shows a cylinder with one in-going and one out-going closed gluing
boundary of type x . The corresponding defect graph is shown in part c). Below it will
be shown that the rules in Figure 28 can be used to simplify defect graphs, and in the
present case the result is shown in part d). For u = v = 0 the cylinder is the identity
in the bordism category. This can be seen in an example in part b) where two such
cylinders have been glued together. One can remove the middle loop using (M4) and
then the middle vertex by (M5), resulting in Part a) with u = v = 0. Indeed, Part d) for
u= v = 0 is just the projector Q(in)x which acts as the identity on a bulk insertion of type
x labelled with φ ∈M(in)

x ,ε (U , V̄ ; F) as in (159).

• Figure 27: Part a) shows a pair of pants with spin structure. This particular bordism and
the resulting world sheet determine the OPE of bulk fields in the spin CFT in terms of
those of defect fields in the oriented CFT. Note that the resulting F -defect graph can be
deformed to agree with the one used in [82, Eq. 2.5].

Remark 6.2. Unless we say otherwise, when rearranging the defect networks obtained from
the combinatorial spin structure, we will not make use of the fact that the edge indices take
values in Z2, but instead treat them as valued in Z. For example, in Figures 26 and 32 we
distinguish between x and −x . The reason for this is two-fold. One the one hand it makes
the computations easier to follow, and on the other hand this already sets the stage for the
discussion of r-spin CFTs to which we hope to return in the future.
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a) b) c)

(in)

(out)
0

0

−y

(in)

0

−x

−y

−x

y

x

Figure 27: a) A spin pair of pants with one outgoing and two incoming closed gluing
boundaries (of types x and y , respectively) and combinatorial description of the spin
structure. b) The corresponding defect network. c) Simplified network which gives
the same correlator.

Correlators of the spin CFT

Let Σ be a decorated spin world sheet and let Wor(Σ; F) be the corresponding world sheet
for the oriented CFT with B = 1. The space of conformal blocks for Σ and the correlators
Corrspin

F (Σ) of the spin CFT for F are defined in terms of those of the oriented theory for B = 1
given in (103) and (104) as

Bl(Σ) := Bl(Wor(Σ; F)) ,

Corrspin
F (Σ) := Corror

B=1(Wor(Σ; F)) ∈ Bl(Σ) . (165)

We will show in Proposition 6.5 that Corrspin
F (Σ) is independent of the choice of TΣb

(σ), and
in Section 6.4 that it is compatible with transport and gluing.

Manipulating F -defects in the oriented CFT

The network of F -defects in Wor(Σ; F) can usually be simplified further. A collection of useful
identities when working with networks of F -defects is given in Figure 28. The identities given
in [82, Fig. 1] agree with those in Figure 28. Figures 26 d) and 27 c) provide examples of how
the rules in Figure 28 can be used to simplify F -networks. That these rules indeed hold is the
content of the next proposition.

Proposition 6.3. LetΣ andΣ′ be oriented world sheets with F -labelled defect networks which
only differ locally in one place in the way shown in Figure 28. Then Corror

B=1(Σ) = Corror
B=1(Σ

′).

Proof. By the definition of Corror
B=1(Σ) in (112) we have to show ÒZC(MΣ) = ÒZC(MΣ′). The

resulting identities for ribbon graphs in the connecting manifold follow immediately from the
defining properties of the special Frobenius algebra F . Let us nonetheless briefly comment on
two identities in part e) of Figure 28:

• The first identity in e) follows since the ribbon graph in MΣ near the field insertion will
be precisely the projector Q(in)y from (89), and by construction (see (159)) the field φ

lies in M(in)
x ,ε (U , V̄ ; F) = imQ(in)x , cf. (90).

• The second equality follows by inserting the projector Q(in)x via first identity in e) and
using the other rules listed to unwind the F -line.
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∆

∆

=µ

µ

µ ∆

∆

=∆

d)

µ

∆
=−1

µ

∆
=+1 m = =m = =

m

mmm

m m

µ

µ ∆

∆
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y

type x

type x
(U, V̄ , ϵ, ϕ)

θU
θV̄

= =
x+ 1

type x

x

type x
=

Figure 28: Local modification of a network of F -defects that leave the correlator
Corror

B=1 unchanged: a) properties of the unit and counit, b) bubble move, c) associa-
tivity conditions, d) properties of the Nakayama automorphism, e) moves involving
ingoing bulk field insertions.

• In the third identity in e), the first equality uses two ways to express the 2π-rotation of
the tangent vector in the connecting manifold:

1

2

F

1

2

ϕ

(in)

1

2

3

(V̄ , ϵ,−)

(U,+,−)

U

V̄ Kϵ

=

1

2

F

1

2

ϕ

(in)

1

2

3

(V̄ , ϵ,−)

(U,+,−)

U

V̄ Kϵ

(166)
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Remark 6.4. When using the associativity moves in Figure 28 e) one has to be careful that
one does not accidentally replace any of the following configurations by any of the others as
they are inequivalent:

(167)

Indeed, if NF ̸= id, i.e. if F is not symmetric, the four local configurations shown above are
pairwise distinct. This can be seen by inserting unit and counit in appropriate places. For
example, if in the first two diagrams, one attaches a unit to the ingoing top F -line and a counit
to the outgoing top F -line, the first diagram becomes idF and the second N−1

F .

6.3 Including boundaries and defects

Here we extend the definition of spin CFT in terms of the oriented defect CFT to include
boundaries and defects. The procedure is the same, but involves extra notation.

Decorated spin world sheets

As before, let Σb = (Σb,σ) be a spin bordism, but now possibly with defects and boundaries.
Let Σ be the corresponding spin world sheet obtained by gluing in discs or half-discs as in
Figure 13. Then Σ becomes a decorated spin world sheet as follows:

• (Boundary condition) A connected component of the boundary minus the boundary in-
sertion points gets labelled by a Z2-equivariant left F -module, i.e. by an object in B(F),
cf. (147).

• (Defect condition) A connected component of the defect network minus field insertions
gets labelled by a Z2-equivariant F -F -bimodule, i.e. by an object in D(F, F), cf. (142).

• Consider a boundary insertion between boundary conditions M , N , and on which defect
lines with defect conditions X1, . . . , Xm start or end (with m = 0 corresponding to no
attached defects). Let δi = + if X i is pointing away from the insertion, and δi = −
otherwise. Set

X = Xδi
1 ⊗F · · · ⊗F Xδm

m ∈D(F, F) , where X+i = X i , and X−i = X †
i . (168)

The boundary insertion is labelled by

(W,ε,ψ) . (169)

Here, W ∈ C, ε ∈ {±1} is the parity, and ψ ∈ bC(W ⊗ Kε, M† ⊗F X ⊗F N) (ingoing),
respectively ψ ∈ bC(M† ⊗F X ⊗F N , W ⊗ Kε) (outgoing).

• The label of a bulk insertion which is not connected to any line defects has already been
described in (159).

• Consider a bulk insertion on which defect lines with defect conditions X1, . . . , Xm start
or end, and let X be as in (168). The insertion is again labelled as in (159), but now
φ ∈M(t)

y,ε(U , V̄ ; X ), where t ∈ {in, out} and the multiplicity spaces are as given in (90).

After introducing the defect graph obtained from a combinatorial spin structure below, we
can comment on why the dagger-dual X † or M† from (152) is the relevant dual for defect
labels X and boundary labels M attached to components pointing towards the field insertion,
rather than, say, the dual X ∗ or M∗ in bC, cf. Example 6.6.
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X3 X4

(out)

v0
(U, V̄ , ϵ, ϕ)

Figure 29: Details of the defect network in Wor(Σ; F) presenting the combinatorial
spin structure for a spin world sheet with defect lines and closed gluing boundaries.

Spaces of boundary and defect fields

For the space of boundary fields we get the same as in (107), but with ‘⊗F ’ in place of ‘⊗B ’.
For the bulk defect insertions we have, with X as in (168),

Hy,(t)
bulk (X ) =
⊕

i, j∈I,ε∈{±1}
Si ⊠ S̄ j ⊠ Kε ⊗M(t)

y,ε(Si , S̄ j; X ) ∈ C ⊠ Crev ⊠SVect . (170)

As in the oriented case, setting X = F in the above state space recovers the space of bulk
insertions without attached line defects as in (161).

Translation into an oriented world sheet with F -defects

Let Σ be a decorated spin world sheet, possibly with boundaries and defects. From Σ we will
construct an oriented world sheet with defects Wor(Σ; F) for the symmetric special Frobenius
algebra B = 1 ∈ bC.

Let Σb = (Σb,σ) be the spin bordisms from which Σ was defined. Let TΣb
(σ) be the

combinatorial presentation of the spin structure σ by a marked polygonal decomposition,
subject to the constraints arising from the presence of defects and boundaries described in
Section 2.3.

The defect graph on Wor(Σ; F) is obtained from TΣb
(σ) as follows:

• For plaquettes of TΣb
(σ) not containing defects or boundaries, and for insertions in

the interior of Σ without attached line defects, the defect graph in Wor(Σ; F) is as in
Section 6.2.

• For each plaquette or edge intersecting the defect network of Σ, place the defect graph
shown in Figure 29 a) or b) on Wor(Σ; F).

• Consider a closed gluing boundary in Σb with attached defect lines as shown in Fig-
ure 29 c). On the disc glued to this boundary in order to obtain Σ, place the defect
graph shown in Figure 29 d) and e).
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X1 X2
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Figure 30: Details of the defect network in Wor(Σ; F) for a spin world sheet with free
boundaries and open gluing boundaries.

• For each plaquette intersecting the free boundary of Σ, place the defect graph shown
in Figure 30 a), and for each edge starting or ending on the free boundary of Σ the
graph in Figure 30 b). Recall from Section 2.3 that there may be several edges lying on
the boundary, as long as they are in one sequence and the plaquette has at least one
non-boundary edge. E.g. in Figure 30 a) there are two boundary edges.

• Consider an open gluing boundary in Σb, possibly with attached defect lines as shown
in Figure 30 c) (the case n = 0 amounts to no attached defect lines). On the half-disc
glued to this gluing boundary, place the defect graph shown in Figure 30 d) and e).

Correlators of the spin CFT with defects and boundaries

Let Σ be a decorated spin world sheet and let Wor(Σ; F) be the corresponding world sheet
for the oriented CFT with B = 1. The space of conformal blocks for Σ and the correlators
Corrspin

F (Σ) of the spin CFT for F are defined in terms of those of the oriented theory for B = 1
by the same expression as in (165), in particular

Corrspin
F (Σ) := Corror

B=1(Wor(Σ; F)) . (171)

The construction of Wor(Σ; F) involved choosing TΣb
to encode the spin structure. The fol-

lowing proposition states that Corrspin
F (Σ) does not depend on that choice. The proof will be

given in Appendix A.2.

Proposition 6.5. Let Σ and Σ′ be choices for Wor(Σ; F) which differ in the marked polygonal
decomposition used to encode the spin structure. Then

Corror
B=1(Σ) = Corror

B=1(Σ
′) . (172)

We will show in the next section that Corrspin
F (Σ) is compatible with transport and gluing.

Example 6.6. 1. As a first example, let us explain why the dagger-dual is used in the multi-
plicity space for defects or boundary components pointing into a field insertion. Namely,
one can use the combinatorial presentation of the spin structure in terms of line defects
to produce projectors on the multiplicity space, and one finds in this way the projec-
tor for the dagger-dual. We illustrate this in the simplest example, namely a boundary
insertion without line defects, in Figure 31.
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a) b)
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v
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(W, ϵ, ψ)

−t− 1 s
M N

x+ 1

. . . . . .

Figure 31: a) Example of a polygonal decomposition near a boundary field insertion
on Σ. The admissibility condition at v is −s−1+ x + t = 0−3+1, i.e. x = s− t −1.
b) The corresponding defect network on Wor(Σ; F). Taking the action past the iso-
morphisms N s

N and N−t−1
M and substituting the value for x produces precisely the

projector onto the tensor product M† ⊗F N , cf. (83) and (87).

2. As an example involving defects, in Figure 32, a contractible defect loop labelled by
X ∈D(F, F) is considered. We see that for simple F an X -labelled defect loop is equal to
the quantum dimension of X in D(F, F), cf. (155) (and not to the quantum dimension
of X in bC).

Remark 6.7. 1. If NF = idF , the special Frobenius algebra F still is a valid choice to define
correlators Corrspin

F (Σ). However, in this case, the value of Corrspin
F (Σ) is independent

of the spin structure, e.g. the NS- and R-state spaces in (162) are the same.

However, conversely, NF ̸= idF does not guarantee that the theory detects spin structures.
Namely, NF could be an inner automorphism of F , see [75, Sec. 4.10] for an example in
2d TFT.

A more invariant formulation would be in terms of the Serre-automorphism which is
implemented by the twisted bimodule FNF

. This is isomorphic to F as a bimodule iff
NF is inner. See [24, Sec. 4.1] for more on Serre automorphism and on fully extended
r-spin TFTs.

2. The formalism presented here also allows one to treat defects between spin CFTs and
oriented CFTs. This can be done by treating the interface-defect between the two theories
as a boundary as far as the spin structure is concerned (i.e. no edge labels for edges lying
entirely in parts of the world sheet which support the oriented CFT). If the algebras B
and F describe the oriented and spin CFTs, respectively, then the defects are decorated
by bimodules in D(B, F) or D(F, B), depending on the defect-orientation. Note that these
are still Z2-equivariant bimodules, but since NB = idB, for X ∈D(B, F) (or X ∈D(F, B))
the involution NX is now an intertwiner for the B-action.

Let X ∈ D(F, F) and write M(in)
y,ε (U , V̄ ; X )inv for the subspace of M(in)

y,ε (U , V̄ ; X ) on which
composing with NX acts as the identity, i.e. for the invariant subspace with respect to the
Z2-action generated by NX ◦ (−). It is not hard to show that

M(in)
y,ε (1, 1̄; X † ⊗F X )inv ∼= HomD(F,F)(X ⊗ Kε, XN y ) . (173)

Here, the right action of F on X ⊗ Kε is given by first taking F past Kε with the symmetric
braiding, and the Z2-equivariant structure is simply NX ⊗ idKε .

The space M(in)
y,ε (1, 1̄; X † ⊗F X ) describes the multiplicities of weight (0,0) fields of parity

ε in sector y on the defect X . Equation (173) shows that we can read off the multiplicity of
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Figure 32: a) Part of a spin world sheet Σ with combinatorial spin structure near a
vertex v surrounded by a defect loop. The admissibility condition (26) at the vertex
v is s + t = 0− 2+ 1. b) The corresponding defect network on the oriented world
sheet Wor(Σ; F) and a reformulation. c) The same local part of Σ, but without the
defect loop and (the resulting correlator is) multiplied by the factor D(X )/D(F). d)
Corresponding defect network and simplification. The equality (∗) holds under the
assumption that F is simple, see (155).

such fields which are in addition Z2-invariant from an appropriate Hom-space in the pivotal
fusion category D(F, F) labelling the line defects.

Suppose now that X is simple in D(F, F). Then also X ⊗ Kε and XN y are simple. Thus in
each of the four cases ε ∈ {±1} and y ∈ {0,1}, the spaces in (173) are either zero– or one-
dimensional. For ε = + (parity even) and y = 0 (NS-sector), the right hand side of (173) is
HomD(F,F)(X , X ), which is always one-dimensional for simple X .

Some of the simple defects may allow for parity-odd weight (0, 0) fields. Of particular
interest is the case ε= − and y = 0, i.e. the space HomD(F,F)(X ⊗Kε, X ). Denote its dimension
by d. Then the algebra of Z2-invariant NS-sector weight (0,0) fields on X is isomorphic to

• C if d = 0, and

• Cℓ1, the Clifford algebra in one odd generator, if d = 1.

We stress that this analysis applies to theories of type 2⃝ and of type 4⃝ alike, but for type 2⃝
one can restrict to y = 0.

Remark 6.8. 1. In the setting of fermionic topological phases of matter, it was observed
in [2] that there are two kinds of simple objects in the relevant categories (called super-
pivotal categories there), namely those with endomorphism algebra C and those with
Cℓ1. The former were called m-type, and the latter q-type.

We expect that in the way indicated above, the pivotal fusion category D(F, F) already
contains the information necessary to enrich it to a super-pivotal fusion category. A more
detailed study of D(F, F) will be presented in a future publication.
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2. In the context of boundary conditions for the fermionic Ising model, i.e. the massless free
fermion, the fact that some elementary boundary conditions carry odd weight zero fields
was observed in [25,55]. In [82] topological defects in spin CFTs were described by rep-
resentations of a classifying algebra, and it was noted that they come in two classes,
depending on whether they carry a fermionic weight-zero field or not. In [16], these
topological defects are called m-type and q-type, respectively, and their categorical prop-
erties have been studied.

6.4 Consistency of spin correlators

Given a special Frobenius algebra F ∈ bC with N2
F = id, the above construction produces a

family of vectors {Corrspin
F (Σ)}Σ. In this section we will verify the consistency conditions (T)

and (G) from Section 5.4 for this family of spin correlators. However, rather than directly
using the definition in terms of 3d TFT as we did in Section 5.4, here we reduce the statement
to the oriented case with defects, for which (F) and (G) have already been shown.

Transport

Let γ be a path in decorated spin world sheets with defects and boundaries. For the spin
structure we use the combinatorial model from Section 2.3. That is, the underlying bor-
dism is equipped with an admissibly marked polygonal decomposition which varies contin-
uously along the path in the sense that the path descends to a path in the space of pairs
(Σb, TΣb

(o, m, s)), where Σb is an open-closed bordism with defects, and TΣb
(o, m, s) is an

admissibly marked polygonal decomposition.
In other words, we consider a family Eγ whose fibre γ(t) over a point t ∈ [0,1] is a dec-

orated spin world sheet with combinatorial description of its spin structure. By taking the
double of Wor(γ(t); F) at each fibre, we obtain a family E

eγ of bC-extended surfaces which we
think of as a bordism from the double of Wor(γ(0); F) to the double of Wor(γ(1); F).

In terms of these ingredients, consistency with transport amounts to the following state-
ment:

Theorem 6.9. Let F ∈ bC be a special Frobenius algebra with N2
F = id, and let Eγ be a family

of decorated spin world sheets from Σ to Σ′. The correlators for F satisfy

ÒZC(Eeγ)(Corrspin
F (Σ)) = Corrspin

F (Σ′) . (174)

Proof. From the definition in (171) we see that we need to show Corror
B=1(Σ) = Corror

B=1(Σ
′),

where Σ = Wor(γ(0); F) and Σ′ = Wor(γ(1); F). But this follows from applying Theorem 5.4
to the path Wor(γ(t); F).

As in Corollary 5.5 in the oriented case, compatibility with transport implies mapping class
group(oid) invariance: Let f : Σ −→ Σ′ be an isomorphism of decorated spin world sheets.
This induces a diffeomorphism ef : eΣ −→ eΣ′ between the corresponding doubles of Wor(Σ; F)
and Wor(Σ

′; F), respectively. Note that eΣ and eΣ′ do not depend on the choice of polygonal
decomposition. Let E

ef be the mapping cylinder for ef .

Corollary 6.10. We have

ÒZC(Eef )(Corrspin
F (Σ)) = Corrspin

F (Σ′) . (175)

Gluing

As in the oriented case, we need to choose basis / dual basis pairs in the multiplicity spaces.
For boundary fields we can take the choice made in (117) (with F in place of B). For bulk
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Figure 33: Surface Σ(U , V̄,ε, x ,α, ᾱ) with F -defect network at the in- and outgoing
insertion points p and q.

fields we need to take into account their type x ∈ {0,1}, namely we choose bases

{α} ⊂ M(in)
x ,ε (U , V̄ ; X ) , and {β̄} ⊂ M(out)

x ,ε (U , V̄ ; X ) , (176)

which are dual to each other with respect to the pairing (92).
Let Σ be a decorated spin world sheet for F and Σb the underlying open-closed spin bor-

dism with defects. Let bin ∈ ∂ t
inΣb and bout ∈ ∂ t

outΣb, t ∈ {c, o} be two open or two closed
gluing boundaries. We require that they are parametrised by the same (half-)annulus with
defects, and that in the closed case they are of the same type x , cf. (160). These conditions
ensure that they can be consistently glued.

As in the oriented case, we write

closed: Σ(U , V̄,ε,α, β̄) , open: Σ(W,ε,α, β̄) , (177)

for the world sheet Σ where the puncture of the (half-)disc glued to bin/out is labelled as in
the oriented case in Section 5.4, with α, β̄ the basis vectors introduced above. Let Σ′b be the
bordism obtained by gluing bin to bout, and let Σ′ be the corresponding decorated world sheet,
which has the same decoration as Σ away from the two (half-)discs which got omitted in the
gluing.

Recall the gluing bordisms GW,ε and GU ,V̄,ε from (120) and (122). The compatibility with
gluing is the following statement:

Theorem 6.11. Let F ∈ bC be a special Frobenius algebra with N2
F = id. Then:

• (closed gluing) Let Σ′ be obtained by gluing from Σ(U , V̄,ε,α, β̄) as above. The correla-
tors for F satisfy

Corrspin
F (Σ′) =
∑

U ,V̄,ε,α

ÒZC(GU ,V̄,ε)
�

Corrspin
F (Σ(U , V̄,ε,α, ᾱ))

�

, (178)

where α runs over the basis in (176) for the type x of the boundary components bin/out.

• (open gluing) Let Σ′ be obtained by gluing from Σ(W,ε,α, β̄) as above. The correlators
for B satisfy

Corrspin
F (Σ′) =
∑

W,ε,α

ÒZC(GW,ε)
�

Corrspin
F (Σ(W,ε,α, ᾱ))

�

. (179)

Proof. The proof in the open case is almost identical to the proof in the oriented case. The
only difference is the presence of Nakayama automorphisms of the F -modules due to the edge
indices on the gluing boundary. By the gluing construction (33) the Nakayama automorphisms
simply compose after gluing.
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Figure 34: a) Marked cell decomposition of a torus T2
s,t with spin structure described

by the holonomies s, t ∈ Z2 along the loops A and B respectively. b) Defect network
for the spin torus T2

s,t . c) Simplified defect network for the spin torus T2
s,t .

Let us consider the closed case. By Theorem 5.6 we have

Corrspin
F (Σ′)

def.
= Corror

B=1(Wor(Σ; F))
Thm. 5.6
=
∑

U ,V̄,ε,α

ÒZC(GU ,V̄,ε)
�

Corror
B (Wor(Σ(U , V̄,ε, x ,α, ᾱ)))

�

, (180)

where the sum runs over a basis of bC(U ⊗ V̄ ⊠Kε, X ) i.e. the multiplicity space for the oriented
B = 1 theory. Observe that whenever α ̸∈M(in)

x ,ε (U , V̄ ; X ) the corresponding summand is 0, as

the F -defect network on Σ near the insertion points contains the projector Q(in/out)
x ,ε , as shown

in Figure 33. We skip the details on how the projectors arise, the computation is analogous
to that in Figure 27. Therefore the sum restricts to a basis of the multiplicity space for the F
theory and we have

Corrspin
F (Σ′) =
∑

U ,V̄,ε,α
α∈M

ÒZC(GU ,V̄,ε)
�

Corror
B (Wor(Σ(U , V̄,ε, x ,α, ᾱ)))

�

def.
=
∑

U ,V̄,ε,α

ÒZC(GU ,V̄,ε)
�

Corrspin
F (Σ(U , V̄,ε, x ,α, ᾱ))

�

.
(181)

6.5 Example: Torus partition functions for the four spin structures

Consider the spin tori T2
s,t in Figure 34 a), where s, t ∈ Z2 denote the holonomies s, t ∈ Z2

along the loops A and B: ζ(A) = s, ζ(B) = t. The action of the mapping class group on the set
{T2

s,t}s,t∈Z2
is as follows [86, Lem. 3.3.1]:

T = TA : T2
s,t −→ T

2
s,t+s ,

S = TB TATB : T2
s,t −→ T

2
t,s , (182)

where TA and TB are Dehn twists along the loops A and B (here we explicitly use s = −s, t = −t,
cf. Remark 6.2). Note that TA appears instead of T−1

A due to the non-standard orientation of
A.

The correlator for T2
s,t is an element of Bl(T2). We use the basis

�

χi ⊗ χ j

	

i, j∈I for Bl(T2)
as in Section 5.5, and we would like to compute the coefficients in the expansion

Corrspin
F (T2

s,t) =
∑

i, j∈I
Z(F ; s, t)i j χi ⊗χ j ∈ Bl(T2) . (183)
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The result is expressed in terms of traces over multiplicity spaces of the linear map given
by precomposing with an appropriate power of the Nakayama automorphism:

Proposition 6.12. For F ∈ bC a special Frobenius algebra with N2
F = id, the coefficients

Z(F ; s, t)i j in (183) are given in terms of the multiplicity spaces in (161) as

Z(F ; s, t)i j = trM(in)
1−s,+(Si ,S̄ j ;F)

�

N−t
F ◦ (−)
�

− trM(in)
1−s,−(Si ,S̄ j ;F)

�

N−t
F ◦ (−)
�

. (184)

The proof is very similar to that of Proposition 5.7, so we will be more brief here, except
for when we give the missing details on the isomorphism f promised at the end of that proof.

Proof. The coefficients in (183) can be expressed as

Z(F ; s, t)i j = (χ
∗
i ⊗C χ

∗
j ) ◦Corror

B (T
2) = ÒZC(C(s, t)i, j) . (185)

Rather than giving C(s, t)i, j , which is analogous to (133), we directly expand the identity as
in (134) and give the manifold corresponding to (136). Namely,

ÒZC(C(s, t)i, j) =
∑

ε,α

ÒZC(C(s, t)ε,αi, j ) , (186)

where

C(s, t)ε,αi, j =

i

j

F

1 − s

S2 × S1

α ᾱ
−t

KϵKϵ

(187)

and where we already used that in the sum over Sk ⊗ Kε, only 1 ⊗ Kε contributes. The F -
ribbons and powers of the Nakayama automorphism are prescribed by the defect network in
Figure 34 c).

Next, set H := bC(Kε, S∗i ⊗ F ⊗ S∗j ) and define the linear maps Px , My : H −→ H as

Px(φ) =

S∗
i S∗

jF

x

ϕ

Kϵ

My(φ) =

S∗
i S∗

jF

y

ϕ

Kϵ

(188)

Then from (186) we get
ÒZC(C(s, t)i, j) = trH(M−t P1−s) . (189)

In order to compute the trace, we will relate Px to Q(in)x from (89). Define the isomorphism
f : bC(Si ⊗ S j ⊗ Kε, F) −→ bC(Kε, S∗i ⊗ F ⊗ S∗j ) via

f (ψ) =

S∗
i S∗

jF

ψ

Kϵ

(190)
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We claim that
f (Q(in)x (ψ)) = Px( f (ψ)) , f (N y ◦ψ)) = My( f (ψ)) . (191)

The second equality is clear. For the first equality, one just writes out the left hand side and
deforms the resulting string diagram:

f (Q(in)x (ψ)) =

S∗
i S∗

jF

ψ

Kϵ

x =

S∗
i S∗

jF

ψ

Kϵ

x

= Px( f (ψ)) . (192)

Via the isomorphism f , the trace over H in (189) can instead be written as the trace of
ψ 7−→ N−t

F ◦Q(in)s−1(ψ) over bC(Si ⊗ S j ⊗ Kε, F). Since Q(in)x is an idempotent which commutes
with NF ◦ (−), we can instead trace N−t

F ◦ (−) over its image. This proves (184).
Note that for NF = id, Px in (188) agrees with p ◦ (−) where p is taken from (138), and so

the above argument also provides the missing step at the end of the proof of Proposition 5.7.

7 Examples

In this section we apply the formalism for oriented and spin CFT with or without parity to the
simplest non-trivial case, namely when the algebra is a direct sum of 1 and an order-2 simple
current in bC. For G ∈ C an invertible simple object with G ⊗ G ∼= 1, we consider the special
Frobenius algebras with underlying objects

A+ = 1⊕ G , A− = 1⊕ΠG . (193)

In the case G ∼= 1, only Π1 has order two and we only consider A−. The results of this section
have already been summarised in Table 1.

7.1 The trivial CFT and the Arf invariant

This example was already considered in [75] where it is Example 1. We now present this
example in terms of the constructions in this paper.

7.1.1 Chiral data

Take V to the be the irreducible Virasoro VOA at c = 0. The stress tensor of this VOA is zero,
and the VOA is spanned by a single state |0〉 of conformal weight h= 0: V = C |0〉. There is a
single irreducible representation of V of conformal weight h= 0, namely V itself. The category
C = Rep(V) is just the category Vect and has a single simple object 1. The CFTs constructed
in this example will actually be 2d TFTs.

7.1.2 Field content for B – the trivial 2d TFT

The category bC is given by Vect ⊠SVect ∼= SVect and thus has two simple objects,

1= 1⊠ K+ , Π1= 1⊠ K− .

71

https://scipost.org
https://scipost.org/SciPostPhys.15.5.207


SciPost Phys. 15, 207 (2023)

To construct the oriented CFT (with parity), we take the symmetric special Frobenius alge-
bra B = 1 and the space of bulk fields can be computed from (89) (remembering that NB = id
and so the idempotents are independent of n) and is simply

H(in)bulk(1) = 1⊠ 1̄⊠ K+ .

The only parity-odd field in the bulk lives at the end of the Π1 defect, calculated from (89)
with X = Π1 and notation as in (108)

H(in)bulk(Π1) = 1⊠ 1̄⊠ K− .

Altogether, this gives a CFT of type 2⃝bnd&def, which becomes 1⃝bulk if one only considers
world sheets without boundaries and defects.

7.1.3 Field content and partition functions for F – the Arf invariant

For the algebra F ∈ bC, we take F = A− = 1 ⊕ Π1 = Cℓ1, the Clifford algebra in one odd
generator. One checks that NF = id1− idΠ1 is the parity involution, and so the algebra F = A−
defines a CFT of the following type:

type of CFT no parity parity

oriented

spin F = 1⊕Π1

(194)

Since NF is no longer just the identity, the fields split into Neveu–Schwarz and Ramond
sectors, with the following bulk field content:

HNS,even
bulk (F) = 1⊠ 1̄⊠ K+ , HNS,odd

bulk (F) = 0 ,

HR,even
bulk (F) = 0 , HR,odd

bulk (F) = 1⊠ 1̄⊠ K− , (195)

i.e. there are two bulk fields, both of conformal weight 0: a parity even field in the NS sector
and a parity odd field in the Ramond sector. The resulting theory is of type 4⃝bulk, or of type
4⃝bnd&def if one includes boundaries and defects.

The τ-independent partition functions in the four sectors are

ZNS,NS
F = 1 , ZNS,R

F = 1 , ZR,NS
F = 1 , ZR,R

F = − 1 . (196)

This agrees with Example 1 in [75], where it is also verified that this 2d TFT computes the
Arf-invariant of a spin structure.

7.2 Computing multiplicity spaces for G � 1

Let G ∈ C be an invertible simple object with G � 1, G ⊗ G ∼= 1. Write dim G ∈ {±1} for
its quantum dimension and θG ∈ {±1,±i} for its twist eigenvalue (see Appendix A.4 for why
these are the only possible values).

For a rational VOA V and C = RepV , θG and dim G can be expressed via the lowest confor-
mal weight hG of the representation G and the S-matrix describing the modular transformation
of characters as

θG = e2πihG , dim G =
SG,1

S1,1
. (197)

For ν∈{±1} the object Aν in (193) carries a special Frobenius algebra structure iff θG∈{±1},
in which case this structure is unique up to isomorphism and its Nakayama automorphism
satisfies (Lemma A.22):
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• dim G = ν: Aν is symmetric, and so NAν = idAν ,

• dim G ̸= ν: Aν is not symmetric, i.e. NAν ̸= idAν , and we have N 2
Aν
= idAν .

The classification of the CFT defined by V and Aν as in (2) is:

type of CFT no parity parity

oriented ν= +1 , dim G = +1 ν= −1 , dim G = −1

spin ν= +1 , dim G = −1 ν= −1 , dim G = +1

(198)

Note that this is independent of the twist θG . In unitary theories one necessarily has dim(G)>0,
so that for these examples, the off-diagonal entries (where the bulk is strictly of type 2⃝ or
3⃝) will be non-unitary. The diagonal entries may be either unitary or non-unitary, depending

on V .
In the examples below we would like to compute the bulk state space(s) and torus partition

function(s) for each of the eight possibilities for (dim G,ν,θG) as in Table 1. For this, we need
the so-called monodromy charge qU of a simple object U ∈ C,

qU =
θG⊗U

θG θU
=

sU ,G

dim(U)dim(G)
=

SU ,G S11

S1,U S1,G
, (199)

see (A.54) and Lemma A.23. In the second equality we used that the Hopf link invariant sU ,V
from (36) can be expressed in terms of the modular S-matrix as sUV = SUV/S11.

The multiplicity spaces in (90) are given by (see Lemma A.25)

Mx ,ε(Si , S̄ j; Aν) = M1 ⊕MG , (200)

where

M1 =

¨

C(Si ⊗ S̄ j ,1) , if ε= + and qi = (νdim(G))x ,

{0} , otherwise,

MG =

¨

C(Si ⊗ S̄ j , G) , if ε= ν and qi = (νdim(G))x+1 θG ,

{0} , otherwise.
(201)

For Aν symmetric, the choice of x does not matter and one can take x = 0. For Aν not sym-
metric, the choice of x gives the sector of the bulk field (NS/R) as in (160).

Let us make some general observations on CFTs obtained from algebras of the form Aν

Remark 7.1. 1. One can ask when the state space of the CFT defined by Aν contains holo-
morphic or antiholomorphic fields in the representation G. From inspecting (201) and
using qG = 1 (Lemma A.23), one concludes that the following three statements are
equivalent:

(a) (G ⊠ 1) ⊗ Kε is a direct summand in the state space H(in)bulk(Aν) (for NAν = id) or
⊕

x∈Z2
Hx ,(in)

bulk (Aν) (for NAν ̸= id), cf. (97) and (161).

(b) (1⊠ G)⊗ Kε is a direct summand in H(in)bulk(Aν) or
⊕

x∈Z2
Hx ,(in)

bulk (Aν).

(c) One has ε= ν and (νdim G)x+1 = θG for some x ∈ Z2.

In the oriented case we have NAν = id, and so νdim G = 1. Hence an (anti)holomorphic
G is contained in the state space iff θG = 1, i.e. iff G has integer conformal weight.

In the spin case, νdim G = −1, and so there is always an (anti)holomorphic copy G in
the state space. It is in the NS-sector (x = 0) if θG = −1 and in the R-sector (x = 1) if
θG = 1.

This explains the column “G hol.” in Table 1.
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2. Aν is commutative iff θG = νdim G (Lemma A.22). This explains the column “Aν com.”
in Table 1. For a rational VOA V and bC = RepS(V) (cf. (74)), it follows that Aν with
ν = θG dim G is again a VOA (ν = 1) or a VOSA (ν = −1), see [56, Thm. 3.6], as well
as [18, Thm. 3.9] and [19, Thm. 4.2]. We will use this in the examples below to also
present the results from the point of view of the extended VO(S)A Aν.

7.3 Ising CFT and free fermions

7.3.1 Chiral data

Take V to be the irreducible Virasoro VOA at c = 1
2 . This describes the chiral symmetry of

the minimal model M(3,4). The irreducible representations of V and their lowest conformal
weight h and monodromy charge q are given by:

name 1 σ ε

h 0 1
16

1
2

q 1 −1 1

(202)

We take G = ε, so that
dim(G) = 1 , θG = −1 . (203)

By (198), the algebras B = A+ and F = A− define CFTs of the following types:

type of CFT no parity parity

oriented B = 1⊕ ε
spin F = 1⊕Πε

(204)

The algebra B is Morita-equivalent to 1, but using B = 1 ⊕ ε exhibits more clearly the
difference that the parity-shift of ε makes. By Remark 7.1 (2.), the algebra F is commutative
and in fact a VOSA, the free fermion VOSA. It has three irreducible (twisted) modules: I = F ,
the tensor unit, ΠI , the parity shifted version where the ground state has odd parity, and the
twisted module Rt = σ⊕Πσ.

To express the S-matrix in terms of these representations of the VOSA F , we introduce the
following combinations of characters of the Virasoro VOA V:

χI(τ) = χ1(τ) +χε(τ) , eχI(τ) = χ1(τ)−χε(τ) , χRt
(τ) = 2χσ(τ) . (205)

Here, χI is the usual trace of qL0−c/24 over F , eχI is the trace with an additional insertion of the
automorphism NF , which amounts to taking the super-trace. The corresponding expressions
for ΠI just produce an overall minus sign. The twisted trace eχRt

(τ) is identically zero. In this
basis, and in the order {χI , eχI ,χRt

} as above, the S- and T-matrices read

S=





1 0 0
0 0 1/

p
2

0
p

2 0



 , T= e−πi/24





0 1 0
1 0 0
0 0 eπi/8



 . (206)

We will see a similar block structure for the S-matrix in the other examples. Note, however,
that the T-matrix is no longer diagonal.
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7.3.2 Field content and partition function for B – critical Ising CFT

By (97) we only need to consider Mx ,ε for x = 0. Since ν = +, from (200) we see that all
spaces M0,− are zero. As expected, combining (97) and (200) we find

Hbulk(B) = 1⊠ 1̄⊕ ε⊠ ε̄⊕σ⊠ σ̄ . (207)

Accordingly, by (131) the vectors Corror
B (T

2) ∈ Bl(T2) are given by

Corror
B (T

2) = χ1 ⊗C χ1 +χε ⊗C χε +χσ ⊗C χσ . (208)

To turn these into partition functions which depend on the modular parameter τ, one has to
replace the vectors χi ∈ ÒZC(T2) from (128) by the τ-dependent characters,

ZB(τ) =
�

�χ1(τ)
�

�

2
+
�

�χε(τ)
�

�

2
+
�

�χσ(τ)
�

�

2

= 1
2

�

�χI(τ)
�

�

2
+ 1

2

�

�

eχI(τ)
�

�

2
+ 1

4

�

�χRt
(τ)
�

�

2
. (209)

This is indeed the modular invariant partition function of the critical Ising CFT, as expected.

7.3.3 Field content and partition functions for F – free fermion CFT

The various sectors of the state spaces as in (162) can computed from the general formula in
(200),

HNS,even
bulk (F) = 1⊠ 1̄⊠ K+ ⊕ ε⊠ ε̄⊠ K+ ,

HNS,odd
bulk (F) = ε⊠ 1̄⊠ K− ⊕ 1⊠ ε̄⊠ K− ,

HR,even
bulk (F) = σ⊠ σ̄⊠ K+ ,

HR,odd
bulk (F) = σ⊠ σ̄⊠ K− , (210)

which is of course the expected result for the free fermion state spaces, see e.g. [29, §10.3].
The Nakayama automorphism NF acts as id on the summand 1 of F and as − id on the

summand G⊠K−. The precomposition with NF is thus equal to the identity on the multiplicity
spaces M1 in (200) and to minus the identity on MG . One can now use (184) to read off Corrspin

F
for the four spin structures on the torus to be (recall that T2

s,t is labelled by monodromy)

NS,NS Corrspin
F (T2

1,1) = χ1 ⊗C χ1 +χε ⊗C χε +χε ⊗C χ1 +χ1 ⊗C χε ,

NS,R Corrspin
F (T2

1,0) = χ1 ⊗C χ1 +χε ⊗C χε −χε ⊗C χ1 −χ1 ⊗C χε ,

R,NS Corrspin
F (T2

0,1) = 2χσ ⊗C χσ ,

R,R Corrspin
F (T2

0,0) = 0 . (211)

The corresponding τ-dependent partition functions in the four sectors are

ZNS,NS
F (τ) =
�

�χ1(τ) +χε(τ)
�

�

2
= |χI(τ)|2 ,

ZNS,R
F (τ) =
�

�χ1(τ)−χε(τ)
�

�

2
= |eχI(τ)|2 ,

ZR,NS
F (τ) = 2
�

�χσ(τ)
�

�

2
= 1

2 |χRt
(τ)|2 ,

ZR,R
F (τ) = 0 . (212)

Using (206) one can now see explicitly that these bilinear combinations of characters are
compatible with the modular properties of spin tori listed in (182).
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Table 2: Kac-table of the minimal model M5,6 of central charge c = 4
5 , and the names

we use for the distinct representations in the Kac-table.

r = 4

r = 3 1ϕ uϕ fϕ vϕ wϕ
r = 2

r = 1 1 u f v w

s = 1 s = 2 s = 3 s = 4 s = 5

7.4 Three-state Potts and fermionic tetra-critical Ising CFTs

7.4.1 Chiral data

Take V to be the irreducible Virasoro VOA at c = 4
5 describing the chiral symmetry of the

diagonal minimal model M(5,6). The irreducible representations are (see Table 2 on how
these correspond to entries in the Kac-table):

name 1 u f v w 1ϕ uϕ fϕ vϕ wϕ

h 0 1
8

2
3

13
8 3 7

5
21
40

1
15

1
40

2
5

q 1 −1 1 −1 1 1 −1 1 −1 1

(213)

We take G = w, so that dim(G) = 1, θG = 1, and by (198) we obtain CFTs of the following
types:

type of CFT no parity parity

oriented B = 1⊕w

spin F = 1⊕Πw

(214)

The oriented CFT obtained from B is the critical three-state Potts model, the D-type modular
invariant at that central charge. The spectrum of the spin CFT defined by F was first given
in [57]. In Table 1 we refer to it as the fermionic tetra-critical Ising model, and we explain the
name after discussing its field content in Section 7.4.3.

Of the two algebras B and F , only B is commutative (Remark 7.1), and the resulting VOA
is the chiral symmetry of the first non-trivial member in the series of W3-minimal models due
to [90]. As a VOA, B is generated by the Virasoro VOA 1 ⊂ B and by the primary field W (z) of
weight 3 in w ⊂ B. The VOA B has six untwisted modules and two twisted modules:

untwisted twisted

name I S S∗ Iϕ Sϕ S∗ϕ Ut Uϕ,t

h 0 2
3

2
3

2
5

1
15

1
15

1
8

1
40

decomp. 1⊕w f f 1ϕ ⊕wϕ fϕ fϕ u⊕ v uϕ ⊕ vϕ

(215)

The representations S and S∗ have the same underlying Virasoro representation f , but the
action of W (z) differs by a sign. Ditto for Sϕ and S∗ϕ.

This implies that S and S∗ have the same restricted character (given by the trace over
qL0−c/24). To determine the S-matrix one needs to work with characters including an insertion
from the VOA B. These are also called unspecialised characters or torus one-point blocks (with
an insertion from the vacuum sector). In this case an insertion of the zero mode W0 of the
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field W (z) is enough to lift the degeneracy. A corresponding computation for Bershadsky-
Polyakov models is done in more detail in Section 7.5, here we just note that traces over W0
can be found in [59, Sec. 3], and the S-matrix of untwisted representations is given explicitly
in [15, Sec. 4.2].

We group the functions needed to give the S-matrix into three groups:

χx : untwisted char. of untwisted reps. x ∈ {I , Iϕ, S, Sϕ, S∗, S∗ϕ} ,

eχx : twisted char. of untwisted reps. x ∈ {I , Iϕ} ,
χx t

: untwisted char. of twisted reps. x t ∈ {Ut , Uϕ,t} ,
eχx t

: twisted char. of twisted reps. x t ∈ {Ut , Uϕ,t} . (216)

Here, χx etc. denote the unspecialised characters. The twisted traces are obtained by inserting
a Z2-automorphism (in more detail: by working with Z2-equivariant modules with respect to
the Z2-automorphism of B), for example eχI = χ1−χw (in terms of specialised characters). For
S, S∗, Sϕ, S∗ϕ there is no such Z2-automorphism, hence they are not included.

The S-matrix then has the following block decomposition

S=











χ eχ χt eχt

χ C 0 0 0
eχ 0 0 D 0
χt 0 D 0 0
eχt 0 0 0 −D











, (217)

with the individual blocks given by, in the order of vectors as stated in (216),

C =
1
p

3





D D D
D ωD ω2D
D ω2D ωD



 , D =
2
p

5

�

sin π5 sin 2π
5

sin 2π
5 − sin π5

�

, ω= e2πi/3 . (218)

7.4.2 Field content and partition function for B – critical Potts model

Combining (97) and (200) we find

Hbulk(B) = (1+w)⊠ (1̄+ w̄) ⊕ 2 f ⊠ f̄ ⊕ (1ϕ +wϕ)⊠ (1̄ϕ + w̄ϕ) ⊕ 2 fϕ ⊠ f̄ϕ . (219)

By (131) we find

Corror
B (T

2) =
�

χ1 +χw

�

⊗C
�

χ1 +χw

�

+ 2χ f ⊗C χ f

+
�

χ1ϕ +χwϕ

�

⊗C
�

χ1ϕ +χwϕ

�

+ 2χ fϕ ⊗C χ fϕ . (220)

As is well-known, rewriting this as a τ-dependent partition function and in terms of characters
for the W3-model gives the diagonal theory:

ZB(τ) = |χI(τ)|2 + |χS(τ)|2 + |χS∗(τ)|2 + |χIϕ(τ)|
2 + |χSϕ(τ)|

2 + |χS∗ϕ
(τ)|2 . (221)

7.4.3 Field content and partition functions for F – fermionic tetra-Ising model

The various sectors of the state spaces as in (162) can be computed from the general formula
in (200),

HNS,even
bulk (F) = 1⊠ 1̄⊠ K+ ⊕ w⊠ w̄⊠ K+ ⊕ f ⊠ f̄ ⊠ K+ ⊕ (. . . )ϕ ,

HNS,odd
bulk (F) = u⊠ v̄ ⊠ K− ⊕ v ⊠ ū⊠ K− ⊕ (. . . )ϕ ,

HR,even
bulk (F) = u⊠ ū⊠ K+ ⊕ v ⊠ v̄ ⊠ K+ ⊕ (. . . )ϕ ,

HR,odd
bulk (F) = w⊠ 1̄⊠ K− ⊕ 1⊠ w̄⊠ K− ⊕ f ⊠ f̄ ⊠ K− ⊕ (. . . )ϕ , (222)
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where (. . . )ϕ stands for the same summands again, but now all representation labels have the
additional index ϕ, i.e. are taken from the third row of the Kac-table, rather than the first.

Note that restricting to the even subspace produces the state space of the A-type modular
invariant at c = 4

5 , i.e. of the tetra-critical Ising model. This is the reason to call the theory
obtained from F the fermionic tetra-critical Ising model.

As in the Ising case, the precomposition with NF is equal to the identity on the multiplicity
spaces M1 in (200) and to minus the identity on MG . From (184) one obtains:

NS,NS Corrspin
F (T2

1,1) = χ1 ⊗C χ1 +χw ⊗C χw +χ f ⊗C χ f +χu ⊗C χ v +χv ⊗C χu + (. . . )ϕ ,

NS,R Corrspin
F (T2

1,0) = χ1 ⊗C χ1 +χw ⊗C χw +χ f ⊗C χ f −χu ⊗C χ v −χv ⊗C χu + (. . . )ϕ ,

R,NS Corrspin
F (T2

0,1) = χw ⊗C χ1 +χ1 ⊗C χw +χ f ⊗C χ f +χu ⊗C χu +χv ⊗C χ v + (. . . )ϕ ,

R,R Corrspin
F (T2

0,0) = −χw ⊗C χ1 −χ1 ⊗C χw −χ f ⊗C χ f +χu ⊗C χu +χv ⊗C χ v + (. . . )ϕ .
(223)

Note that the R-R partition function is indeed modular invariant as it is the difference of the
A-type and D-type modular invariant.

Finally, let us rewrite these expressions in terms of the characters (216) for the extended
algebra B, as τ-dependent partition functions:

ZNS,NS
F (τ) = 1

2

�

|χI |2 + |eχI |2 + |χUt
|2 − |eχUt

|2
�

+ |χS|2 + (. . . )ϕ ,

ZNS,R
F (τ) = 1

2

�

|χI |2 + |eχI |2 − |χUt
|2 + |eχUt

|2
�

+ |χS|2 + (. . . )ϕ ,

ZR,NS
F (τ) = 1

2

�

|χI |2 − |eχI |2 + |χUt
|2 + |eχUt

|2
�

+ |χS|2 + (. . . )ϕ ,

ZR,R
F (τ) = 1

2

�

− |χI |2 + |eχI |2 + |χUt
|2 + |eχUt

|2
�

− |χS|2 + (. . . )ϕ . (224)

In writing these expressions, we did not distinguish χS and χS∗ , since they are the same as
function of τ, and since we did not investigate the action of W (z) (which is now an odd field
in the Ramond sector) on these fields in the spin model.

It is straightforward to check the modular properties (182) of spin tori using the explicit
S-matrix in (217).

7.4.4 Comparison with other constructions

The approach in this paper and in [82] to the construction of theories on spin world sheets
is to start from the category bC labelling parity enriched topological defects, then to identify
a suitable non-symmetric Frobenius algebra F in bC. The spin CFT is constructed using this
algebra.

An alternative construction, which is possibly more physically intuitive, is to introduce the
coupling of an oriented CFT without parity to the spin structure by tensoring with a theory
with parity which already sees the spin structure - the Arf theory from Section 7.1 - and then
gauging a Z2 which couples the original theory to the spin structure, followed by secondary
stacking with Arf to generate a (possibly different) spin CFT with parity. This approach is used
for example in [57].

The construction in this paper can produce the same theories as the above approach,
through a suitable choice of Frobenius algebra F . Let us illustrate this in the case of the
c = 4/5 Virasoro minimal model by comparing our approach to that in [57].

There are four distinct CFTs with c = 4/5 discussed in [57], which they call A, D, F and eF.
A is the diagonal invariant for the Virasoro VOA and is a purely parity even CFT on oriented
surfaces. D is the diagonal invariant for the W3-algebra VOA which is also a purely parity even
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CFT on oriented surfaces. F and eF are CFTs with parity on surfaces with spin structure which
are related by stacking with the invertible Arf 2d spin TFT, which is the same as swapping the
parity in the Ramond sector. The field contents are given in table II of [57].

In our construction, the theories A and D can be obtained from the Virasoro category C
using BA = 1 and BD = 1⊕ w in C, respectively, while the spin theories eF and F are obtained
from bC using F

eF = 1⊕Πw and FF = (1⊕Πw)⊗Cℓ1, respectively. In this section we only treated
the examples BD and F

eF explicitly.

7.5 Bershadsky-Polyakov models: spin without parity and parity without spin

7.5.1 Chiral data

The Bershadsky-Polyakov models were introduced in [7,78] and have been investigated from
the point of view of VOAs in [3, 5, 42]. We will consider the simplest model W (2)

3 which
contains a chiral algebra with 3 primary fields of weights 1, 3

2 , 3
2 denoted J , G±, together with

the Virasoro algebra. These field have modes Jm, G±r , Lm, where m ∈ Z but r ∈ Z + 1
2 (NS

sector) or r ∈ Z (R sector). We take the commutation relations

[Lm, Ln] =
c

12 m(m2 − 1)δm+n,0 + (m− n)Lm+n ,

[Lm, G±r ] = (m/2− r)G±m+r , [Lm, Jn] = −nJm+n ,

[Jm, G±r ] = ±G±m+r , [Jm, Jn] =
2k+3

3 mδm+n ,

[G+r , G−s ] =
(2k+3)(k+1)

2 (r2 − 1
4)δr+s,0 +

3
2(k+ 1)(r − s)Jr+s + 3 (JJ)r+s − (k+ 3)Lr+s ,

[G+r , G+s ] = [G
−
r , G−s ] = 0 . (225)

The central charge is parametrised by k ∈ C as

c = −
(2k+ 3)(3k+ 1)

k+ 3
. (226)

The peculiar feature of these models is that the fields are all bosonic, i.e. of even parity, and de-
spite having half-integer weights the modes of the fields satisfy commutation relations, rather
than anti-commutation relations.

The irreducible VOA obtained from the W (2)
3 algebra at central charge c(k) is denoted by

BPk in [42]. We shall take as an example the model with k = −1/2. The irreducible VOA
BP−1/2 is C2-cofinite and rational [3] and has central charge is c(k) = 2/5. It is also called
the “Bershadsky–Polyakov minimal model” BP(5,2). Since the term “minimal model” usually
refers to the full CFT and not just the VOA, we will use BP−1/2.

BP−1/2 has 12 (twisted) irreducible representations, 6 in the NS sector and in 6 in the R
sector, see [42, Fig. 2] and Appendix A.5 for more details. The NS representations of BP−1/2
are labelled by the highest-weight eigenvalues of J0 and L0 denoted by j and h. The NS and R
sectors are related by “spectral flow”. We give details of this in Appendix A.5, but a summary
is that if we define a highest weight state in the R sector to be annihilated by G−0 (as well as
all positive modes) then there is a spectral flow σ1/2 under which an NS representation with
eigenvalues ( j, h) “flows” to an R representation with eigenvalues ( j − 1/3, h − j/3 + 1/12).
We list these in Tables 3 and 4. We denote the R representation obtained from the NS repre-
sentation M by M s.

The W (2)
3 algebra has a Z2 automorphism, which we denote (−1)G . It acts as L 7−→ L,

J 7−→ J , G± 7−→ −G± and the VOA splits into ±1 eigenspaces under its action. This is anal-
ogous to the automorphism W 7−→ −W of the W3 algebra in Section 7.4.1 under which the
oriented algebra B decomposes into B = 1⊕w. We shall denote the representations appearing
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Table 3: NS representations of BP−1/2. We will also write 1= ide and G = ido.

name id φ φ̄ u ψ ψ̄

( j, h) (0, 0) (1
3 , 1

30) (−1
3 , 1

30) (0, 1
5) (2

3 , 1
3) (−2

3 , 1
3)

decomp. 1⊕ G φe ⊕φo φ̄e ⊕ φ̄o ue ⊕ uo ψe ⊕ψo ψ̄e ⊕ ψ̄o

Table 4: R representations of BP−1/2.

name ids φs φ̄s us ψs ψ̄s

( j, h) (−1
3 , 1

12) (0,− 1
20) (−2

3 , 17
60) (−1

3 , 17
60) (1

3 , 1
12) (−1, 3

4)

decomp. ids
e⊕ ids

o φs
e ⊕φ

s
o φ̄s

e ⊕ φ̄
s
o us

e ⊕ us
o ψs

e ⊕ψ
s
o ψ̄s

e ⊕ ψ̄
s
o

in the decomposition of id as ide ≡ 1 and ido ≡ G. Since G has weight 3
2 , its twist eigenvalue

is

θG = e2πi3/2 = −1 . (227)

Each NS representation M of the W (2)
3 algebra can be decomposed into two subspaces,

Me given by the action of 1 = ide on the highest weight state and Mo given by the action of
G = ido. In the NS sector, the highest weight state space is one-dimensional and if the NS
highest weight state is defined to have (−1)G eigenvalue +1 then Me is the (−1)G eigenspace
with eigenvalue +1 and Mo the space with eigenvalue −1.

In the R sector, there is a non-trivial algebra with generators G±0 , J0, L0 and so one has to
make a choice for the definition of the highest weight space. We follow [3] and define the
highest weight space to be annihilated by G−0 (this is the opposite convention to [42]) and
define it to be an eigenvector of (−1)G of eigenvalue +1. As with NS representations, we
define the subspace Me of a R representation M to be given by the action of ide on the highest
weight space (and hence having (−1)G eigenvalue +1) and the subspace Mo to be given by
the action of ido on the highest weight space (and hence having (−1)G eigenvalue −1).

The modular properties of the characters under S are best expressed in terms of the traces
of the full representations with or without including (−1)G , just as are those of the Ising model.
As in the previous examples, we will write χM for untwisted trace and eχM for the twisted trace:

χM (τ, z) = TrM

�

zJ0qL0−c/24
�

, eχM (τ, z) = TrM

�

(−1)GzJ0qL0−c/24
�

, (228)

so that

TrMe

�

zJ0qL0−c/24
�

=
1
2
(χM + eχM ) , TrMo

�

zJ0qL0−c/24
�

=
1
2
(χM − eχM ) . (229)

We define the index set
J := {id,φ, φ̄, u,ψ, ψ̄} . (230)

As in (216) we obtain four sets of characters, where in each case x runs over all elements in
J :

χx : untwisted char. of NS-sector reps.

eχx : twisted char. of NS-sector reps.

χx s : untwisted char. of R-sector reps.

eχx s : twisted char. of R-sector reps. (231)

80

https://scipost.org
https://scipost.org/SciPostPhys.15.5.207


SciPost Phys. 15, 207 (2023)

The modular S-matrix S appears in the following relations,

χi(τ, 1) =
∑

j

Si jχ j(−1/τ, 1) ,
d
dz
χi(τ, z)
�

�

�

z=1
= −

1
τ

∑

j

Si j
d
dz
χi(−1/τ, z)
�

�

�

z=1
. (232)

The S-matrix then has the following block decomposition (cf. Appendix A.5)

S=











χ eχ χs eχs

χ 0 0 0 C
eχ 0 D 0 0
χs 0 0 E 0
eχs C T 0 0 0











, (233)

with the individual blocks given by, in the order of vectors as stated in (230),

C = γ















1 a a −a 1 1
−aω2 1 ω −ω2 −aω −a
−aω 1 ω2 −ω −aω2 −a
−a 1 1 −1 −a −a
ω a aω2 −aω ω2 1
ω2 a aω −aω2 ω 1















, D = γ















1 a a −a 1 1
a −ω −ω2 1 aω2 aω
a −ω2 −ω 1 aω aω2

−a 1 1 −1 −a −a
1 aω2 aω −a ω ω2

1 aω aω2 −a ω2 ω















,

E = γ















−ω a aω2 aω −ω2 −1
a 1 1 1 a a

aω2 1 ω ω2 aω a
aω 1 ω2 ω aω2 a
−ω2 a aω aω2 −ω −1
−1 a a a −1 −1















,

γ =
2sin(2π/5)
p

15
,

ω = e2πi/3 ,

a = 2 cos(2π/5) .

(234)

The value of dim G can be deduced simply from the block structure (233), but explicitly
we have, from the block D

χ1(
−1
τ ) =

1
2

�

χid(
−1
τ ) + eχid(

−1
τ )
�

= γ
2 eχid(τ) + · · · =

γ
2χ1(τ)−

γ
2χG(τ) + · · ·

⇒ S1,1 = −S1,G =
γ
2 ⇒ dim(G) =

S1,G

S1,1
= −1 . (235)

We also have the value of θG from (227), so that altogether

dim(G) = −1 , θG = −1 . (236)

The monodromy charges (199) of the irreducible representations with respect to the subalge-
bra 1 = ide of the BP−1/2 algebra can be read off from the decompositions given in Tables 3
and 4. Namely, for an NS-representation M , the G-modes change the L0-weight by Z + 1

2 ,
so that θG⊗M/θM = −1. For an R-representation N , the shift is by Z and so θG⊗N/θN = 1.
Since θG = −1, all ide-representations appearing as summands of NS representations have
monodromy charge q = 1, while those appearing in R representations have q = −1:

qxe/o
= 1 , qx s

e/o
= −1 , where x ∈ J . (237)

From Tables 3 and 4 one can also read off what the conjugate representation of each
irreducible ide-representation is. For example, the conjugate of φe has J0 charge j = −1

3 and
L0-weight h = 1

30 , and so has to be given by φ̄e. The conjugate of ψs
e has j = −1

3 and h = 1
12
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Table 5: The conjugates x∗ of irreducible ide-representations x . The grey columns
contain the self-dual representations. Note that spectral flow does not preserve self-
duality.

x 1 G φe φo φ̄e φ̄o ue uo ψe ψo ψ̄e ψ̄o

x∗ 1 G φ̄e φ̄o φe φo ue uo ψ̄e ψ̄o ψe ψo

x ids
e ids

o φs
e φs

o φ̄s
e φ̄s

o us
e us

o ψs
e ψs

o ψ̄s
e ψ̄s

o

x∗ ψs
e ψs

o φs
e φs

o us
o us

e φ̄s
o φ̄s

e ids
e ids

o ψ̄s
e ψ̄s

o

and so is given by ids
e. For us

e the conjugate has j = 1
3 and h= 17

60 . The highest weight state of
(us

e)
∗ is thus a G+0 -descendent of that of φ̄s

e, i.e. (us
e)
∗ = φ̄s

o. (And indeed, the corresponding
characters of BP−1/2 in Table 8 show a two-fold degeneracy for the lowest L0-weight in these
representations.) Analogously one sees (us

o)
∗ = φ̄s

e. These are the only two instances where
the e/o-label is exchanged under conjugation. We list the full result in Table 5.

Next we give the state spaces and torus partition functions for the following two cases:

type of CFT no parity parity
oriented B = 1⊕ΠG

spin F = 1⊕ G
(238)

7.5.2 Results for B

Let J be as in (230). From (97) and (200) (with ν= −) one finds16

Heven
bulk (B) =
⊕

x∈J

�

xe ⊠ (xe)
∗ ⊠ K+ ⊕ xo ⊠ (xo)

∗ ⊠ K+
�

,

Hodd
bulk(B) =
⊕

x∈J

�

x s
e ⊠ (x

s
o)
∗ ⊠ K− ⊕ x s

o ⊠ (x
s
e)
∗ ⊠ K−
�

. (239)

Thus

Corror
B (T

2) =
∑

x∈J

�

χxe
⊗C χ(xe)∗ +χxo

⊗C χ(xo)∗ −χx s
e
⊗C χ(x s

o)∗
−χx s

o
⊗C χ(x s

e)∗
�

. (240)

If we rewrite this as a τ-dependent expression in terms of the untwisted and twisted characters
(231) of the BP−1/2 algebra, we obtain

ZB(τ) =
∑

x∈J

1
2

�

|χx(τ)|2 + |eχx(τ)|2 − |χx s(τ)|2 + |eχx s(τ)|2
�

. (241)

This is indeed modular invariant since the matrices C , D and E in the block decomposition
(233) are all unitary and the following combinations are separately modular invariant,

Z1(τ) =
∑

x∈J

�

|χx(τ)|2 + |eχx(τ)|2 + |eχx s(τ)|2
�

, Z2(τ) =
∑

x∈J
|χx s(τ)|2 . (242)

The partition function (241) is the super-trace over the full space of states Heven
bulk (B)⊕Hodd

bulk(B)
in (239) and so the minus sign in front of 1

2 Z2 is fixed by the parity of the fields.

16Here and below we omit the bars over the representation label used to mark the antiholomorphic factor to
avoid confusion with the naming of representations in Tables 3 and 4.
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7.5.3 Results for F

In this example we have F ∈ C, i.e. F is purely even, and so the odd part of all bulk state spaces
is zero. The even state spaces again follow from (200) (this time with ν = +) and altogether
one finds, unsurprisingly,

HNS
bulk =
⊕

x∈J
(xe + xo)⊠ (xe + xo)

∗ ,

HR
bulk =
⊕

x∈J
(x s

e + x s
o)⊠ (x

s
e + x s

o)
∗ . (243)

As in the previous examples, precomposition with NF is equal to the identity on the multi-
plicity spaces M1 and to minus the identity on MG . From (184) one reads off the torus partition
functions as

NS,NS Corrspin
F (T2

1,1) =
∑

x∈J

�

χxe
−χxo

�

⊗C
�

χ(xe)∗ −χ(xo)∗
�

,

NS,R Corrspin
F (T2

1,0) =
∑

x∈J

�

χxe
+χxo

�

⊗C
�

χ(xe)∗ +χ(xo)∗
�

,

R,NS Corrspin
F (T2

0,1) =
∑

x∈J

�

χx s
e
−χx s

o

�

⊗C
�

χ(x s
e)∗
−χ(x s

o)∗
�

,

R,R Corrspin
F (T2

0,0) =
∑

x∈J

�

χx s
e
+χx s

o

�

⊗C
�

χ(x s
e)∗
+χ(x s

o)∗
�

. (244)

In terms of untwisted and twisted characters (231) of the BP−1/2 algebra, this can be rewritten
as a τ-dependent function as follows:

ZNS,NS
F (τ) =
∑

x∈J
|eχx(τ)|2 , ZNS,R

F (τ) =
∑

x∈J
|χx(τ)|2 ,

ZR,NS
F (τ) =
∑

x∈J
|eχx s(τ)|2 , ZR,R

F (τ) =
∑

x∈J
|χx s(τ)|2 . (245)

It is easy to check from the block structure (233) and the fact that C , D and E are unitary, that
ZNS,NS

F and ZR,R
F are invariant under S, and that ZNS,R

F (τ) = ZR,NS
F (−1/τ) as required.

Notice that in contrast to the free fermion case in (212), the twisted characters now appear
in the NS,NS and R,NS sectors, rather than in NS,R (and R,R, though that sector is zero for
the free fermion). The reason is the minus sign in front of the second term in (184) which
contributes in the free fermion example, while here there is no parity and only the first term
contributes.

Remark 7.2. 1. In Table 1 also the product of a BP model with an Ising model is consid-
ered. Write CBP for the modular fusion category spanned by the 24 irreducible repre-
sentations of the integer weight subalgebra ide of BP−1/2, and write CIs for the Ising
modular category treated in Section 7.3. We take bC = CBP ⊠ CIs ⊠ SVect, and one finds
that B := 1⊕Π(G ⊠ ε) is commutative and symmetric, and F := 1⊕ (G ⊠ ε) is neither
commutative nor symmetric but satisfies N 2

F = idF .

2. The formalism developed in this paper applies only to rational VOAs, i.e. to VOAs whose
category of representations is a modular fusion category. However, if one looks be-
yond this class of models to include logarithmic examples, one finds that the symplectic
fermions [60] are candidates to provide CFTs of types 2⃝ and 3⃝, just as the BP model
treated in this section.
Namely, the symplectic fermion VOA is of the form 1⊕ΠG with dim(G) = −1 and θG = 1.
Thus B = 1⊕ΠG provides an oriented theory with parity, and F = 1⊕ G a spin theory
without parity. See [1] for the definition of the symplectic fermion VOA and [39,81] for
an explicit description of the corresponding non-semisimple modular tensor category.
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ea

a
bsa

ea
= sa

ea

a
bsa

ea
= −sa − 1

fa

a
bδa

fa
= 0

fa

a
bδa

fa
= +1

Figure 35: Arc a ∈ A(γ), leaving the face fa at edge ea. We define bδa
fa
= 0 if the

clockwise vertex of fa is on the left side of a and bδa
fa
= 1 otherwise. Furthermore

bsa
ea
= sea

or −sea
− 1 depending on the orientation of ea.
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A Appendix

A.1 Details for the combinatorial model of r -spin structures

A.1.1 Proof of Theorem 2.2

By [85, Prop. 3.1.9] isomorphism classes of r-spin structures on an open-closed surface with
parametrised boundary are in bijection with equivalence classes of admissible markings on
a fixed polygonal decomposition of the surface. The equivalence relation is generated by
the Moves (M2) and (M3). Recall that Move (M1) is an iterated application of Move (M3).
Similarly as observed in [80, Rem. 2.14], the above moves commute, and when one fixes the
edge orientations and the marked edges, the equivalence relation is generated by Move (M1).

In Theorem 2.2 we stated that the above holds without specifying the type of the bound-
ary components, i.e. the holonomy along closed boundary components. The construction
of [74] of an r-spin structure from the combinatorial data remains the same, therefore [85,
Prop. 3.1.9] holds by dropping the admissibility condition for the chosen closed boundary ver-
tices (v0), and by the above discussion, by fixing the edge orientations and markings.
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a) b)

e1

e2

e3

e4 e5

s1

s2

γv
v

u1

v2

un = u0

uk

v0

v1

u2

γ

vk

vn−1

Figure 36: a) anticlockwise oriented loop γv encircling an inner vertex v. b) Loop γ
parallel to the gluing boundary.

A.1.2 Combinatorial model and holonomies

Let Σ be a surface with parametrised boundary and TΣ(o, m, s) an admissible marked polygo-
nal decomposition for fixed boundary types. Let γ be an embedded loop in Σ which intersects
the edges transversally and does not intersect any vertices. The faces of the polygonal decom-
position decompose γ into a set A(γ) of arcs. We may assume that each arc intersects exactly
two edges: we can split edges via (M5). For a ∈ A(γ) let fa denote the face containing a and ea
the edge where the arc leaves the face fa. We define bδa

fa
and bsa

ea
in Figure 35, see [80, Sec. 2.4]

for more details.

Lemma A.1 (see [80, Prop. 2.15.3]). The holonomy along γ in the r-spin structure defined by
TΣ(o, m, s) is

hol(γ) =
∑

a∈A(γ)

�

bδa
fa
+bsa

ea

�

. (A.1)

For an inner vertex v write γv for a small loop encircling v anticlockwise as in Figure 36 a).
Next consider a closed boundary component of type y parametrised as in Section 2.2 with n
boundary edges e0, e1, . . . , en = e0 and n boundary vertices v0, v1, . . . , vn = v0. Let γ be a loop
running parallel to the closed gluing boundary, oriented in the same way as the edges on that
boundary, see Figure 36 b). Recall that by definition the holonomy along γ is hol(γ) = 1− y .

Lemma A.2. 1. The holonomy along γv for an inner vertex v is

hol(γv) = |Hv| − |Dv|+
∑

h∈Hv

bsh = +1 . (A.2)

2. The holonomy along the loop γ parallel to a closed gluing boundary of type y is

hol(γ) = ε
�

|Hv0
| − |Dv0

| − 1+
∑

h∈Hv0

bsh

�

= 1− y . (A.3)

Here, ε= 1 if the boundary is ingoing and ε= −1 if it is outgoing.

Proof. Part 1: We already explained that the holonomy is +1 as the r-spin structure extends
over the vertex. We now show how to obtain the combinatorial expression in (A.2). Consider
Figure 36 a) According to Lemma A.1 the contribution of an edge ei is exactly bsi , and the
contribution of all faces is |Hv| − |Dv|: we count the faces for which the clockwise vertex from
the marked edge is not v.
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Part 2: We consider the case where the boundary component is ingoing as shown in Fig-
ure 36 b). For an outgoing boundary component the computation is similar and the resulting
holonomy is −(1− y). According to (26), the admissibility condition at vk, k = 1, ..., n− 1, is
∑

h∈Hvk
h inner

bsh − uk − 1+ uk+1 = |Dvk
| − |Hvk

|+ 1 ⇔ |Hvk
| − 2− |Dvk

|+
∑

h∈Hvk
h inner

bsh = uk − uk+1 .

(A.4)

By Lemma A.1 the holonomy along γ is

n−1
∑

k=0

�

|Hvk
| − 2− |Dvk

|+
∑

h∈Hvk
h inner

bsh

� (A.4)
= |Hv0

| − 2− |Dv0
|+
∑

h∈Hv0
h inner

bsh +
n−1
∑

k=1

(uk − uk+1)

= |Hv0
| − 2− |Dv0

|+
∑

h∈Hv0
h inner

bsh + u1 − un

= |Hv0
| − 1− |Dv0

|+
∑

h∈Hv0

bsh , (A.5)

where we used that the loop intersects |Hvk
|−2 edges for each vertex vk, and that bu1 = u1 and

bun = −un − 1.

A.1.3 The gluing construction

Recall the gluing construction from Section 2 and the marked polygonal decompositions of the
bordisms Σ and Σ′, where the latter is obtained by gluing an in- and an outgoing boundary
component along their boundary parametrisation. The edge indices of the glued boundary
edges of Σ′ are

si = sin
i + sout

i (i = 1, . . . , n) . (A.6)

Let us first check that the assignment (A.6) results in an admissible marking. We distinguish
two situations:

• Constrained vertices on the gluing boundary: Suppose v ∈ TΣ′ arose from gluing two con-
strained vertices vin, vout ∈ V c on the gluing boundaries of Σ. To check the admissibility
condition (26) at v, first note that

|Hv|= |Hvin |+ |Hvout | − 2 , |Dv|= |Dvin |+ |Dvout | . (A.7)

Let ei ∈ Hv be the edge on Σ′ which resulted from gluing ein
i and eout

i and which points
into v, and analogously for ei+1 pointing out of v. Then the contribution to the admissi-
bility condition at v is

bsi +bsi+1 = bs
in
i +bs

in
i+1 +bs

out
i +bsout

i+1 + 1 , (A.8)

where we used (A.6). Substituting these relation shows that the admissibility condition
at v is obtained from adding those at vin and vout.

• The vertex v0 on a closed gluing boundary: Let v ∈ TΣ′ arise from gluing vin and vout in
TΣ as above, but now assume that vin, vout are images of v0 under the parametrisation
of the closed gluing boundaries. At vin, vout the condition on the edge indices is given in
(30). Subtracting the two conditions from each other, the 1− y term on the right hand
side cancels and the remaining calculation is exactly as above.
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s
ein1

s
ein2seinn

seout1
seout

2

seout
n

se1

se2

sen

γ1

γ2

γ

Figure 37: Arc segments before and after gluing along the boundary parametrisation.

Next we turn to comparing the geometric and combinatorial gluing procedure for spin
structures. Let Σ = (Σ,σ) and Σ′ = (Σ′,σ′) denote the r-spin bordisms defined by the cor-
responding marked polygonal decompositions TΣ and T ′Σ′ and Σglued = (Σ′,σglued) the r-spin
bordism, where the r-spin structure σglued is defined by gluing the r-spin structure σ along
the boundary parametrisation maps of Σ.

Proposition A.3. The r-spin structures σ′ and σglued are isomorphic.

Proof. In the case n = 1 this holds by [85, Prop. 3.1.14]. Note that our boundary edges are
oriented oppositely to [85], so that sStSz

1 = −1 − s1. In [85] the index of the glued edge is
sStSz
1 = sStSz,in

1 + sStSz,out
1 + 1, which translates into (A.6) after substitution.

For arbitrary n ≥ 1 the proof follows the same idea as the proof of [85, Prop. 3.1.14],
which we sketch here. Recall from Section 2.1 that isomorphism classes of r-spin structures
on Σ (resp. Σ′) are in bijection with the set of holonomies assigned to a fixed set of loops and
arcs in Σ (resp. Σ′). Let us assume that these loops and arcs agree for Σ and Σ′, except those
starting and ending at the chosen gluing boundary components of Σ and the one crossing the
glued edge in Σ′. Consider the contribution h′ to the holonomy computed for an arc segment
crossing the glued edge, and the contributions hin and hout for the two arc segments starting
and ending on the in- and outgoing boundary components shown in Figure 37. The holonomy
for the arc in Σ′ with r-spin structure σglued is hin+hout. The computation of holonomies from
the combinatorial model in Lemma A.2 can be extended to arcs as in [80, Eq. 2.23], but we do
not present the details here. The r-spin structures σ′ and σglued are isomorphic if and only if
h′ = hin + hout, which holds if (A.6) holds.

Remark A.4. Recall from Theorem 2.2 the bijection between isomorphism classes Spinr
2(Σ)/iso

of r-spin structures on Σ (with fixed holonomies along closed gluing boundary components)
and the equivalence classes Marking(TΣ)/ ∼ of admissible markings of a fixed polygonal de-
composition TΣ of Σ such that (A.3) holds at the images of v0 on closed gluing boundaries.
The edge index assignment (A.6) makes the following diagram of bijections commute:

Spinr
2(Σ)/iso Spinr

2(Σ
′)/iso [σ] [σglued] [σ′]

Marking(TΣ)/∼ Marking(T ′Σ′)/∼ [TΣ(σ)] [T ′Σ′(σ
′)]

glue

(A.6)

Thm.2.2 Thm.2.2

(A.9)
This is the only edge index assignment that makes the above diagram commute for every
surface.

A.2 Invariance of correlators under local moves

We show invariance of correlators defined in Section 6 under the local moves (M1)-(M5) on
marked polygonal decompositions. Recall that (M1) is a repeated application of (M2). These
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are the moves shown in Figures 6, 7 and 11. The graphs of F -defects assigned to plaquettes and
edges are shown in Figures 25, 29, and 30. The manipulation rules for networks of F -defects
are summarised in Figure 28.

Moves involving edges without free boundary or defect lines

Lemma A.5. The correlators are invariant under the move (M2).

Proof. We compare what is assigned to the two configurations:

s

s

F

F

−(s−1)+1=−s
−s−1

F

F (A.10)

These are equal, as the Nakayama automorphism is a morphism of Frobenius algebras.

Lemma A.6. The correlators are invariant under the move (M3).

Proof. By Lemma A.5 the construction is invariant under changing the edge orientation, so we
can fix a particular orientation.

We compare what is assigned to the two configurations:

s s− 1

s

F

F FF F

=

s

F

F FF F

=
F

F FF F

s− 1

(A.11)

Here we used the definition of N and that N is a Frobenius algebra morphism.

Lemma A.7. The correlators are invariant under the move (M4).

Proof. By Lemma A.6 the construction is invariant under changing the marked edge of a face,
so we can fix a particular edge of the face on the left. The two sides agree by the Frobenius
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relation and (co)unitality:

0

FF FF F FF F

=

FF FF F FF F

(A.12)

Lemma A.8. The correlators are invariant under the move (M5).

Proof. By Lemma A.6 we have invariance under move (M3) and hence also under move (M1),
which we use to set the index of the edge we want to split to zero. The construction assigns
the left hand side of (A.12) to the two faces before splitting the edge. When we split the edge
we get

0

0

0

FF FF F FF F

=

FF FF F FF F

(A.13)

which is the same by applying associativity, the Frobenius relation and use that F is special
and unital.

Moves involving the free boundary

Lemma A.9. The correlators are invariant under the move (M2) in the presence of boundary
edges.

Proof. This amounts to the following equality of defect networks:

s

M

M

s
= −(−s−1)−1=s

M

M

−s−1
(A.14)
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By the previous lemma we can fix the orientations of inner edges so that the defect lines
for the free boundary always cross them as shown on the left hand side of (A.14). Note that
the orientation of edges on the gluing boundary is fixed.

Since we fixed the marked edge on every face touching the free boundary to the edge
where the boundary leaves the face, we need to check invariance under moves which keep
this choice of marked edges.

Lemma A.10. The correlators are invariant under the move (M1) in the presence of boundary
edges. .

Proof. This holds by the Z2-equivariant property:

s1s2

s3

s4

FF

M

M

s4

s1s2s3

=

FF

M

M

s4 + 1

s1 − 1s2 − 1s3 − 1 s1 − 1s2 − 1

s3 − 1

s4 + 1

(A.15)

Lemma A.11. The correlators are invariant under the move (M4) in the presence of boundary
edges.

Proof. Here we use again that F is associative furthermore that Y is a left F -module. Recall
that bivalent vertices on the free boundary have no effect on the defect network.

0

FF M

M

FF

=

FF M

M

FF (A.16)

We furthermore have invariance under move (M5). The proof is analogous to that of
Lemma A.15 below (in the same way that the proofs of Lemmas A.11 and A.13 are), and we
skip it here.

Moves involving defect lines

The proof of the next lemma is the same as for Lemma A.9:

Lemma A.12. The correlators are invariant under the move (M2) in the presence of defect
lines.

We can thus fix the orientations of inner edges so that the defect lines always cross them
as shown on the left hand side of Figure 29 b).

Lemma A.13. The correlators are invariant under the move (M1) in the presence of defect
lines.
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Proof. This holds by the Z2-equivariant property:

s1
s2

s3

s4

s5

FF

X

X

s4

s1s2s3

F

s5 + 1

=

FF

X

X

s4 + 1

s1 − 1s2 − 1s3 − 1

F

s5 s1 − 1s2 − 1

s3 − 1

s4 + 1

s5 − 1

(A.17)

Lemma A.14. The correlators are invariant under the move (M4) in the presence of defect
lines.

Proof. We use the bimodule property of X .

0

FF X

X

FFFF

=

FF X

X

FF FF

(A.18)

Lemma A.15. The correlators are invariant under the move (M5) in the presence of defect
lines.

Proof. The left hand side is that of (A.18). We use that X is a bimodule and F is a special
Frobenius algebra.

0

FF X

X

FFFF

=

FF X

X

FFFF

0

0

(A.19)

A.3 Proof of factorisation

Bulk factorisation with defects

We follow the strategy of [37] and start with explaining how we can reduce the proof of
factorisation to the presence of one defect line.

Consider a world sheet Σ(n) and an embedded circle S crossed by n defect lines labelled by
bimodules X i (i = 1, ..., n) as in Figure 38 a). Furthermore consider the connecting manifold
MΣ(n) and the manifold M ′ which agrees with MΣ(n) except inside a ball containing all crossings
of S and the defect lines as shown in Figure 38 c). There S is crossed by a single defect line
labelled by the B-B-bimodule X = Xn ⊗Bn

· · · ⊗B2
X1 (B = B1). Note that we assumed that all

defect lines point in the same direction, which we can do by relabelling by dual bimodules if
needed. The next lemma follows from a similar discussion as in [37, Sec. 3.2.3]:
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a) b) c)
. . . X1Xn X2

S X1

Xn
X2

S

X1

Xn
X2

S

ιπ
X

Figure 38: a) Embedded circle S crossing n defect lines in Σ(n). b) Detail of the con-
necting manifold of Σ(n) with embedded circle S crossing n defect lines. c) Modified
3-manifold, the morphisms ι and π are the embedding and projection for the relative
tensor product. The circle S is now only crossed by one defect line labelled X .

a) b)
X

S

X

p

q

X

(in)

(out)

Figure 39: Cutting/gluing a world sheet along an embedded circle S.

Lemma A.16. The correlator Corr(Σ(n)) can be computed as

Corr(Σ(n))
def.
= ÒZC(MΣ(n)) = ÒZC(M

′) . (A.20)

This lemma implies that there is no loss of generality if we assume that only one defect
line is present where we glue. From now on we assume that the circle S crosses a single defect
line labelled by the B-B-bimodule X , and we will write Σ′ = Σ(1) for the corresponding world
sheet before cutting along S.

Let U , V̄ ∈ C, ε ∈ {±} and let

J0,J1 ⊂ bC((U ⊗ V̄ )⊠ Kε, X ) , and J̄0, J̄1 ⊂ bC(X , (U ⊗ V̄ )⊠ Kε) , (A.21)

denote an eigenbasis of the idempotents Q(in)0 and Q(out)
0 from (89) with eigenvalues 0 and 1

respectively which are dual with respect to the non-degenerate pairing (92):

〈β̄ ,α〉bulk = δα,β , (A.22)

for α ∈ Ji and β̄ ∈ J̄ j with i, j ∈ {0, 1}. Note that by (93) this pairing is compatible with the

idempotents Q(in/out)
0 . By construction J1 is a basis of the multiplicity space M(in)

0,ε (U , V̄ ; X )
and

J := J0 ∪J1 , (A.23)

is a basis of bC((U ⊗ V̄ )⊠ Kε, X ). Similarly we set J̄ := J̄0 ∪ J̄1.
Consider the world sheet Σ(U , V̄,ε,α, β̄) from (118) and the glued world sheet Σ′ with

α ∈ J1 and β̄ ∈ J̄1, see Figure 39.
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a

b

c

X

B

a

b

c

X

B
c

X

a

b

d

B

a

c

Figure 40: Wedge representation of a detail of the connecting manifold MΣ′ of the
glued surface.

Recall the gluing manifold GU ,V̄,ε from (122) and consider the connecting manifolds
MΣ(U ,V̄,ε,α,β̄), MΣ′ and GU ,V̄,ε ◦ MΣ(U ,V̄,ε,α,β̄) in Figures 40 and 41. We define the solid tori

TX ,T α,β̄
X ;U ,V̄,ε

: ; −→ T2
X as in Figure 42 and define MΣ′,T2 : T2

X −→ Σ
′ by cutting out the solid

torus TX from MΣ′:

MΣ′ = MΣ′,T2 ◦ TX . (A.24)

By looking at Figure 41 we directly get:

Lemma A.17. We have

GU ,V̄,ε ◦MΣ(U ,V̄,ε,α,β̄) = MΣ′,T2 ◦ T α,β̄
X ;U ,V̄,ε

. (A.25)

In order to be able to compare correlators on Σ(U , V̄,ε,α, β̄) and Σ′ we need to consider
how the invariants of the solid tori in Figure 42 are related. For this we need some preparation.

Lemma A.18. The vectors

vα,β̄
U ,V̄,ε

= ÒZC(T α,β̄
X ;U ,V̄,ε

) , and v̄ᾱ,β
U ,V̄,ε

=
1

(ÒZC(S3))2εdim(U)dim(V̄ )
ÒZC(T̄ ᾱ,β

X ;U ,V̄,ε
) , (A.26)

for α ∈ J and β̄ ∈ J̄ and U , V̄ irreducible objects in C, form a dual basis pair of ÒZC(T2
X ) and

ÒZC(T2
X )
∗ respectively.

Proof. Using (70) we can write

ÒZC(T
2
X )
∼=
⊕

ε∈{±}

bC(X ⊗ X ∗, L ⊠ Kε)⊗ Kε

∼=
⊕

ε∈{±}

bC(1, X ∗ ⊗ (L ⊠ Kε)⊗ X )⊗ Kε

∼=
⊕

ε∈{±}

⊕

i

bC(1, X ∗ ⊗ (Si ⊗ S∗i )⊠ Kε ⊗ X )⊗ Kε

(∗)
∼=
⊕

ε∈{±}

⊕

i, j

bC(1, X ∗ ⊗ (Si ⊗ S j)⊠ Kε)⊗ bC(1, (S∗j ⊗ S∗i )⊠ Kε ⊗ X )⊗ Kε

∼=
⊕

ε∈{±}

⊕

i, j

bC(X , (Si ⊗ S j)⊠ Kε)⊗ bC((Si ⊗ S j)⊠ Kε, X )⊗ Kε .

(A.27)
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a) MΣ′ : b) MΣ′,T2 : c) MΣ : d) GU ,V̄,ε ◦MΣ :

X

B

(X,−)

(X,+)

(in)

(out)

(out)

X α

β̄X

U

V̄ Kϵ

U

V̄ Kϵ

@p

@q

X α

β̄X

U

V̄ Kϵ

Figure 41: Details of connecting manifolds MΣ′ (Part a), MΣ′,T2 (Part b),
MΣ = MΣ(U ,V̄,ε,α,β̄) (Part c) and GU ,V̄,ε ◦MΣ = GU ,V̄,ε ◦MΣ(U ,V̄,ε,α,β̄) (Part d).
In c) we have rotated one of the tangent vectors in each of the pieces shown by 180◦

relative to the definition in Figure 18 in order to be consistent with the paper plane
framing implicit when drawing ribbons just as lines.

TX =

(X,−)

(X,+)

(out)

X

B

T α,β̄
X ;U ,V̄,ε

=

(X,−)

(X,+)

(out)

X
U

α

β̄
V̄

V̄
Kϵ

Kϵ

X

T̄ ᾱ,β
X ;U ,V̄,ε

=
(X,−)

(X,+)

(in)

X
U

ᾱ

β
V̄

V̄
Kϵ

Kϵ

X

Figure 42: The solid tori TX ,T α,β̄
X ;U ,V̄,ε

: ; −→ T2
X and T̄ ᾱ,β

X ;U ,V̄,ε
: T2

X −→ ;.

In step (∗) we used [87, Lem. IV.2.2.2]. The inverse chain of isomorphisms sends

α⊗ β̄ 7−→ vα,β̄
Si ,S j ,ε

.
Now we check that we indeed have a dual basis. We have

v̄ᾱ,β
U ,V̄,ε
◦ vα

′,β̄ ′

U ′,V̄ ′,ε′
=

1

(ÒZC(S3))2εdim(U)dim(V̄ )
ÒZC(T̄ ᾱ,β

X ;U ,V̄,ε
◦ T α

′,β̄ ′

X ;U ′,V̄ ′,ε′
) . (A.28)

The 3-manifold on the right hand side is S2 × S1 with a ribbon graph:

U ′

α′

β̄′

V̄ ′

V̄ ′Kϵ′

Kϵ′

X
U

ᾱ

β
V̄

V̄ Kϵ

Kϵ

X

S2 × S1

(A.29)
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(X,−)

(X,+)

(out)

X

B

(X,−)

(X,+)

(in) T 2 × [0, 1]

X

B

Figure 43: The bordism PX : T2
X −→ T2

X .

Using the identity

U (U ′)∗Kϵ′Kϵ

U (U ′)∗Kϵ′Kϵ

=
δε,ε′ δU ,U ′

εdim(U)

U U∗KϵKϵ

U U∗KϵKϵ

+ (other terms with intermediate simple object � 1),

(A.30)

and that the dimension of the state space on S2 with a single insertion of the simple object Si
is dim(ÒZ(S2(i)) = δSi ,1 we compute

v̄ᾱ,β
U ,V̄,ε
◦ vα

′,β̄ ′

U ′,V̄ ′,ε′
=

1

(ÒZC(S3))2εdim(U)dim(V̄ )
ÒZC























U ′

α′

β̄′

V̄ ′

V̄ ′Kϵ′

Kϵ′

X
U

ᾱ

β
V̄

V̄
Kϵ

Kϵ

X























=
δε,ε′ δU ,U ′ δV̄,V̄ ′

(ÒZC(S3)εdim(U)dim(V̄ ))2
ÒZC























U

α′

β̄′

V̄

V̄

X
U

ᾱ

β

Kϵ

Kϵ

X























= δε,ε′ δU ,U ′ δV̄,V̄ ′〈α, ᾱ′〉bulk〈β , β̄ ′〉bulk
ÒZC(S

2 × S1)

= δε,ε′ δU ,U ′ δV̄,V̄ ′ δα,α′ δβ ,β ′ dim(ÒZC(S
2))

︸ ︷︷ ︸

=1

.

(A.31)

Lemma A.19. Consider the bordism PX : T2
X −→ T2

X in Figure 43.

1. ÒZC(PX ) is idempotent and

ÒZC(PX ) ◦ ÒZC(TX ) = ÒZC(TX ) . (A.32)
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2. For α ∈ J and β̄ ∈ J̄ we have

ÒZC(PX ) ◦ vα,β̄
X ;U ,V̄,ε

= δα∈J1
δβ̄∈J̄1

vα,β̄
X ;U ,V̄,ε

. (A.33)

3. The vectors {vα,β̄
X ;U ,V̄,ε

}α∈J1,β̄∈J̄1
span the image of ÒZC(PX ).

Proof. Part 1: is a straightforward computation using that B is special.

Part 2: We compute ÒZC(PX ) ◦ vα,β̄
X ;U ,V̄,ε

U

α

β̄

V̄

V̄
Kϵ

Kϵ

(X,−)

(X,+)

(out)

X

X

B

B

=
U

α

β̄

V̄

V̄
Kϵ

Kϵ

(X,−)

(X,+)

(out)

X

B

X
B

(A.34)

which is vα,β̄
X ;U ,V̄,ε

if α ∈ J1 and β̄ ∈ J̄1, and which is 0 otherwise.
Part 3: Clear from Lemma A.18 and Part 2.

Lemma A.20. We have

ÒZC(TX ) =
∑

U ,V̄,ε

∑

α∈J1

ÒZC(T α,ᾱ
X ;U ,V̄,ε

) . (A.35)

Proof. We can express ÒZC(TX ) as a linear combination

ÒZC(TX )
(1)
=
∑

U ,V̄,ε

∑

α∈J ,
β̄∈J̄

Kα,β̄
U ,V̄,ε

vα,β̄
U ,V̄,ε

(2)
=
∑

U ,V̄,ε

∑

α∈J1,
β̄∈J̄1

Kα,β̄
U ,V̄,ε

vα,β̄
U ,V̄,ε

. (A.36)

Step 1 uses the basis from Lemma A.18. Step 2 follows from Lemma A.19, which states that
ÒZC(TX ) is in the image of the idempotent ÒZC(PX ) and hence the sum over basis elements can
be restricted from J to J1.

To determine the coefficients Kα,β̄
U ,V̄,ε

we evaluate a dual basis element in ÒZC(T2
X )
∗ from

Lemma A.18 on (A.36):

Kγ,δ̄
R,S̄,ν

= v̄γ̄,δ
X ;R,S̄,ν

◦ ÒZC(TX ) =
1

(ÒZC(S3))2νdim(R)dim(S̄)
ÒZC(T̄ γ̄,δ

X ;R,S̄,ν
) ◦ ÒZC(TX ) . (A.37)

On the right hand side we have ÒZC evaluated on S3 with a ribbon graph in it, which is

B

X
R

γ̄

δ
S̄

S̄ Kν

Kν

S3

=
X

R

γ̄

δ

S̄

Kν

S3

(A.38)
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Corror
B

�

X1 X2 Xn

X1 X2 Xn

. . .

. . .

M Ñ

�

= Corror
B

�

X1 X2 Xn

X1 X2 Xn

. . .

. . .

M N

ι

π

Ñ

Ñ

�

Figure 44: Reducing the boundary factorisation to the case without defect lines.
Here, N = X1 ⊗B · · · ⊗B Xn ⊗B eN .

Σ :
q

p

N

N

M

M

Σ′ :

NM

Figure 45: The cut world sheet Σ= Σ(W,ε,α, β̄) and the glued world sheet Σ′.

So altogether using (92) we have

Kγ,δ̄
R,S̄,ν

=
1

ÒZC(S3)νdim(R)dim(S̄)
trR⊗S̄⊠Kν(γ̄ ◦δ) = 〈γ̄,δ〉bulk = δγ,δ . (A.39)

Proof of Theorem 5.6 (closed case). Combining Lemmas A.17 and A.20 we obtain

Corror
B (Σ

′)
def.
= ÒZC(MΣ′)

(A.24)
= ÒZC(MΣ′,T2) ◦ ÒZC(TX )

Lem. A.20
= ÒZC(MΣ′,T2) ◦

� ∑

U ,V̄,ε

∑

α∈J1

ÒZC(T α,ᾱ
X ;U ,V̄,ε

)
�

Lem. A.17
=
∑

U ,V̄,ε

∑

α∈J1

ÒZC(GU ,V̄,ε) ◦ ÒZC(MΣ(U ,V̄,ε,α,ᾱ))

def.
=
∑

U ,V̄,ε

∑

α∈J1

ÒZC(GU ,V̄,ε)(Corror
B (Σ(U , V̄,ε,α, ᾱ))) .

(A.40)

We did not discuss the gluing anomaly in terms of Maslov indices in detail here, but it is
shown in [36, Thm. 3.9] and in [40, Sec. 5.1] that the relevant Maslov indices vanish in this
computation.

Boundary factorisation with defects

Similarly as in the case of bulk factorisation, we can reduce the proof of boundary factorisation
to the situation where we glue a world sheet Σ at free boundary insertions where no defect
lines meet, see Figure 44. From now on we assume this. Let

J ⊂ bC(W ⊗ Kε, M∗ ⊗B N) , and J̄ ⊂ bC(M∗ ⊗B N , W ⊗ Kε) , (A.41)

denote bases of the in- and outgoing boundary multiplicity spaces, dual with respect to the
pairing 〈−,−〉bnd in (94). Consider the world sheet Σ(W,ε,α, β̄) for α ∈ J and β̄ ∈ J̄ from
(119) and its gluing Σ′ in Figure 45. The corresponding connecting manifolds and the gluing
manifold are in Figure 46. We will need the following lemma.

97

https://scipost.org
https://scipost.org/SciPostPhys.15.5.207


SciPost Phys. 15, 207 (2023)

MΣ :

q

p

N

N

M

M

ι ◦ α
W Kϵ

β̄ ◦ π
W Kϵ

MΣ′ :

N

N

M

M

B GW,ε :

q

p

W Kϵ GW,ε ◦MΣ :

N

N

M

M

ι ◦ α

β̄ ◦ π

W Kϵ

Figure 46: The connecting manifolds of Σ= Σ(W,ε,α, β̄) and Σ′. The shaded areas
show the world sheets.

Lemma A.21. We have

M∗ N

M∗ N

=

M∗ N

M∗ N

π

ι

M∗ ⊗B N =
∑

W,ε

∑

α∈J

M∗ N

M∗ N

π

ι

M∗ ⊗B N

α

ᾱ

M∗ ⊗B N

U Kϵ (A.42)

Proof. The left hand side of (A.42) is the idempotent projecting onto M∗ ⊗B N , and we can
split the idempotent as ι ◦π. For the second equation we define

p :=
∑

W,ε

∑

α∈J
α ◦ ᾱ , (A.43)

and we show that p = idM∗⊗BN . This is equivalent to p ◦ β = β for any β ∈ J and for a fixed

simple object W ′ ⊠ Kε
′
. We compute

p ◦ β =
∑

W,ε

∑

α∈J
α ◦ ᾱ ◦ β

(∗)
=
∑

W,ε

∑

α∈J
αδW,W ′δε,ε′δα,β = β . (A.44)

In step (∗) we used that J̄ is a basis dual to J with respect to 〈−, 〉bnd as follows:

ᾱ ◦ β =
trW ′⊠Kε′ (ᾱ ◦ β)
ε′ dim(W ′)

idW ′⊠Kε′ = 〈ᾱ,β〉bnd idW ′⊠Kε′ = δα,β idW ′⊠Kε′ . (A.45)

Proof of Theorem 5.6 (open case). Using Lemma A.21 we can compute

Corror
B (Σ

′)
def.
= ÒZC(MΣ′)

Lem. A.21
=
∑

W,ε

∑

α∈J

ÒZC(GW,ε ◦MΣ(W,ε,α,ᾱ))

=
∑

W,ε

∑

α∈J

ÒZC(GW,ε)ÒZC(MΣ(W,ε,α,ᾱ))

def.
=
∑

W,ε

∑

α∈J

ÒZC(GW,ε)(Corror
B (Σ(W,ε,α, ᾱ))) .

(A.46)

As in the closed case, there is no gluing anomaly as relevant Maslov indices vanish, see [36,
Thm. 3.10] and [40, Sec. 4.1].
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A.4 Algebras and multiplicity spaces for a self-dual invertible object

Throughout this appendix we fix G ∈ C such that G⊗G ∼= 1. It follows that G is simple, invert-
ible, and self-dual. In this appendix we recall how to construct algebras from G and compute
the associated multiplicity and state spaces. We follow [46] (though there it is assumed that
the quantum dimension is one), and also [18] where dim(G) is not constrained.

We write dim(G) for the quantum dimension of G and θG for its twist eigenvalue. The
quantum dimension is multiplicative, so G ⊗ G ∼= 1 implies that dim(G) ∈ {±1}. The self-
braiding of G is given by

σG,G = dim(G)θG · idG⊗G , (A.47)

as can be seen by taking the partial trace over one factor of G on both sides. The self-braiding
defines a quadratic form onZ2, and hence can only take values in {±1,±i}. This also constrains
θG to be in {±1,±i}. The quadratic form σG,G determines the braided monoidal structure on
the subcategory generated by {1, G} via direct sums, see e.g. [46, Sec. 2]. It thus also fixes the
braided monoidal structure on the subcategory generated by {1, G ⊠ Kν}

Algebras

Let ν ∈ {±} and denote with

Aν := 1⊕ G ⊠ Kν =

¨

1⊕ G ∈ C , if ν= + ,

1⊕ΠG ∈ bC , if ν= − .
(A.48)

We have:

Lemma A.22. 1. There is a special Frobenius algebra structure on Aν if and only if the twist
on G satisfies θ2

G = 1. In this case, the special Frobenius algebra structure is unique up
to isomorphism.

Assume now that θ2
G = 1, so that Aν is a special Frobenius algebra. Abbreviate bG := G⊠Kν

2. The restriction µ
bG,bG of the product to bG ⊗ bG satisfies

µ
bG,bG ◦σbG,bG = νdim(G)θG ·µbG,bG . (A.49)

In particular Aν is commutative iff dim(G)θG = ν.

3. The Nakayama automorphism is given by

NAν = id1+νdim(G) · id
bG . (A.50)

In particular N2
Aν
= idAν and Aν is symmetric iff dim(G) = ν.

4. We have dim(Aν) = 1+ νdim(G) and D(Aν) = 2.

Proof. Part 1: From [46, Lem. 3.10]: The special Frobenius algebra structure exists iff the
associator on the subcategory generated by {1, bG} is trivialisable, which happens iff θ2

G = 1,
and so an associative product exists only in this case. Since H2(Z2,C×) = 0, there is up to
isomorphism only one product (which allows for a non-degenerate pairing) and hence also
only one special Frobenius algebra structure.

Part 2 is immediate from the self-braiding (A.47).
Part 3: Denote the components of the product by µ= µ1,1+µ1,bG+µbG,1+µbG,bG . The explicit

form of the coproduct and counit is

∆=
1
2
·
�

µ−1
1,1 +µ

−1
1,bG
+µ−1
bG,1
+µ−1
bG,bG

�

, ϵ = 2 · (π1 ◦η)−1 ◦π1 , (A.51)
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where π1 : Aν −→ 1 is the projection onto the summand 1. From this we can compute the
Nakayama automorphism restricted to g ∈ {1, bG} as

g

g

=

g

g

=

g

g

=

g

g

g g cg,g c−1
g,g = dim(g)

g

g

(A.52)

where we used that σg,g = cg,g idg⊗g for some cg,g ∈ C× and that

g = ε ◦µg,g ◦
1
2
µ−1

g,g ◦η= 1 . (A.53)

Part 4 is clear from the explicit expression for NAν .

Multiplicity spaces

Define the monodromy charge qU of a simple object U ∈ C with respect to G to be [46, Sec. 3.5]

σU ,G = qU ·σ−1
G,U ⇔ qU =

θG⊗U

θG θU
. (A.54)

Recall the definition of the s-matrix from (36) in terms of invariants of the Hopf link.

Lemma A.23. For U ∈ C simple we have

qU =
sU ,G

dim(U)dim(G)
∈ {±1} , and qG = 1 . (A.55)

Proof. The first equality is immediate from the definition of sU ,V as a trace over the double
braiding. That qU ∈ {±1} can be seen as follows. First note that

G

U

U

= qU

G

U

U

= dim(G)qU

U

U

(A.56)

This can be used to compute

q 2
U

U

U

=
�

dim(G)qU

�2

U

U

(A.56)
=

G

U

U

G =
G⊗G

U

U

=

U

U

(A.57)

That qG = 1 follows directly from comparing (A.47) and (A.54).

Remark A.24. By fixing G ∈ C one obtains a Z2-grading on C via the monodromy charges qU
in (A.54). When θG = −1, a modular fusion category with this structure is an example of a
spin modular category in the sense of [6,11], see also [8], and can be used for the construction
of invariants of 3-dimensional spin manifolds.
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After these preparations, we can compute the multiplicity spaces M(in)
x ,ε (U , V̄ ; Aν) from (90)

for the algebra Aν ∈ bC.

Lemma A.25. The multiplicity spaces for Aν are given by M(in)
x ,ε (Si , S̄ j; Aν) = M1⊕MG , where

M1 =

¨

C(Si ⊗ S̄ j ,1) , if ε= + and qi = (νdim(G))x ,

{0} , else,

MG =

¨

C(Si ⊗ S̄ j , G) , if ε= ν and qi = (νdim(G))x+1θG ,

{0} , else.
(A.58)

Proof. Let φ ∈ bC(Si ⊗ S̄ j ⊗ Kε, Aν). We compute Q(in)x (φ):

ϕ x

KϵV̄U

Aν

(1)
=

ϕ

KϵV̄U

Aν

11

+ qU(νdim(G))x
ϕ

KϵV̄U

Aν

Ĝ Ĝ

(2)
=

1
2 ϕ

KϵV̄U

Aν

+ qU(νdim(G))x
�

ϕ

KϵV̄U

1

Ĝ
Ĝ

1

Ĝ

+

ϕ

KϵV̄U

Ĝ
Ĝ

Ĝ

Ĝ

1
�

(3)
=

1
2

�

ϕ

KϵV̄U

Aν

+ qU(νdim(G))x
�

ϕ

KϵV̄U

1

+ νdim(G)θG ϕ

KϵV̄U

Ĝ

��

=
1
2

�

1+ qU(νdim(G))x
�

ϕ

KϵV̄U

1

+
1
2

�

1+ qU(νdim(G))x+1θG

�

ϕ

KϵV̄U

Ĝ

(A.59)

where in (1) we used (A.50) and (A.54), in (2) and in (3) we used that the projector to 1 is
1
2η ◦ ε, and in (3) we substituted (A.49) and used (A.53). From this we see that Q(in)x is the
projection onto the subspace given in the statement of the lemma.
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A.5 Some details on the Bershadsky-Polyakov algebra at k = −1/2

A.5.1 Spectral flow

“Spectral flow” is the name for a family of maps σs between representations of the BP algebra
labelled by s ∈ 1

2Z which, in the case k = −1/2, acts on the generators as [42]

σs(Lm) = Lm − sJm +
s2

3
δm,0 , σs(Jm) = Jm −

2s
3
δm,0 , σs(G

±
r ) = G±r∓s . (A.60)

If | j, h〉 is a NS highest weight state with eigenvalues ( j, h) satisfying

L0| j, h〉= h| j, h〉 , J0| j, h〉= j| j, h〉 , G+1/2| j, h〉= G−1/2| j, h〉= 0 , (A.61)

then | j, h〉 is a R highest weight state under the action σ1/2 with eigenvalues ( j− 1
3 , h− j

2 +
1
12)

σ1/2(L0)| j, h〉= (L0 −
1
2 J0 +

1
12)| j, h〉= (h−

1
2

j +
1

12
)| j, h〉 ,

σ1/2(J0)| j, h〉= (J0 −
1
3)| j, h〉= ( j − 1

3)| j, h〉 , (A.62)

σ1/2(G
−
0 )| j, h〉= G−1/2| j, h〉= 0 , σ1/2(G

+
1 )| j, h〉= G+1/2| j, h〉= 0 .

A.5.2 Change of grading

We presented the BP algebra in equations (225) in the form in which the generators G± have
weight 3/2. It is, however, possible to make a change of basis to new generators in which
G± have integer weights but J is no longer a primary field. The new basis has generators
eLm, eJm, eG±m where (in the case k = −1/2) eLm satisfy the Virasoro algebra with central charge
ec:

eJm = Jm , eG±m = G±
m∓ 1

2
, eLm = Lm −

1
2
(m+ 1)Jm , ec = c + 2=

8
5

. (A.63)

With this choice of Virasoro algebra, eG+ is primary of weight 1, eG− is primary of weight 2 but
eJ is no longer primary:

[eLm, eG+r ] = −r eG+m+r , [eLm, eG−r ] = (m− r) eG−m+r , [eLm, eJn] = −neJm+n −
1
3

m(m+ 1)δm+n,0 .

(A.64)

Since the fields G± have integer weight, the modes of eG±m should have integer labels m, and
hence the modes G±m have half-integer modes. As a consequence, representations of the even-
graded algebra correspond to NS representations of the “standard” algebra. When it comes to
characters, however the difference between c and ec, and the required shifts when mapping the
zero modes of eT and eJ from the cylinder to the plane (the shifts are the ubiquitous eL0 −ec/24
and the perhaps unfamiliar eJ0− 1/3) exactly replicate the effect of the spectral flow σ1/2 and
the characters of the even-graded algebra are identical to the Ramond sector characters. This
is consistent with the fact that the R sector closes onto itself under modular transformations.

We note that the vacuum module in the even-graded theory is not self-conjugate and so falls
outside the class of theories to which the TFT construction as we present it here is applicable.

A.5.3 Representations

The representations of the integer-graded algebra at k = −1/2 are given in [3, Prop. 2.4], in
1-1 correspondence with the representations of affine sl(3) at level 2. They are indexed in [3]
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Table 6: Representations of BP−1/2. The first row is for the integer-graded algebra
in the notation of [3], and the second and third rows are for the half-integer graded
algebra as used in section 7.5 in the NS and R sectors respectively.

(i j), [mi] (13), [11] (12), [21] (11), [31] (22), [12] (21), [22] (31), [13]

(ej,eh) = (ξi j ,χi j) (0, 0) (1
3 ,− 2

15) (2
3 , 0) (−1

3 , 1
5) (0, 1

5) (−2
3 , 2

3)

( j, h)NS = (ej,eh+
1
2
ej) (0, 0) (1

3 , 1
30) (2

3 , 1
3) (−1

3 , 1
30) (0, 1

5) (−2
3 , 1

3)

name id φ ψ φ̄ u ψ̄

( j, h)R = (ej −
1
3 ,eh+ 1

12) (−1
3 , 1

12) (0,− 1
20) (1

3 , 1
12) (−2

3 , 17
60) (−1

3 , 17
60) (−1, 3

4)

name ids φs ψs φ̄s us ψ̄s

by a pair of integers (i j) with i, j > 0, i + j < 5, but many properties are more apparent if
instead we use the labels [mi] where m= 5− i− j. For NS representations of the half-integer
graded algebra this agrees with the notation of [42] if λ1 = m,λ2 = i, and one finds e.g. that
the NS representation [im] is conjugate to the representation [mi].

Relating the highest weight condition in [3] to that in the NS algebra, we find that the
highest weights in [3] are indeed highest weights of the half-integer graded NS algebra:

eG−0ψ= G−1/2ψ= 0 , eG+1ψ= G+1/2ψ= 0 . (A.65)

This means that a HW state of the integer graded algebra satisfying (A.65) with eigenvalues
(ej,eh) corresponds to a HW state of the NS algebra with ( j = ej, h= eh+ 1

2
ej).

This also agrees with the list of NS and R representations given in [42, Fig. 2], provided one
takes into account that our convention for the highest weight state in the R sector is opposite
to theirs (we take it to be annihilated by G−0 ), so that j differs by 1 for φ̄s and us and 2 for ψ̄s.

In Table 6, we give the values of (i j), [mi], (ej,eh) (denoted (ξi j ,χi j) in [3]) and the cor-
responding NS values ( j, h)NS and the values of ( j, h)R for the R representations obtained in
turn from these by spectral flow.

The (full) characters TrM (zJ0qL0−c/24) could in principle be obtained from the Hamiltonian
reduction using formulae in [5] or [42]; here, in tables 7 and 8, we give the leading terms
from a direct calculation of the rank of the inner product matrix at each L0-level.

Note that the modular transformation formulae given in [5] do not apply here as we are not
taking the W (2)

3 algebra in a “good even grading”, which would imply all the fields have integral
weights as discussed above. We obtained the explicit S-matrix given in (233) numerically from
the approximate characters. The exact entries are confirmed by matching against entries of
the S-matrix of Òsu(3)2.
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Table 7: Characters of the NS representations of BP−1/2.

M TrM

�

(±)GzJ0qL0−c/24
�

id q−
1
60
�

1+ q± (z+1
z )q

3
2 + 3q2 ± 2(z+1

z )q
5
2 + (5+z2+ 1

z2 )q3 ± 4(z+1
z )q

7
2 + . . .
�

φ z
1
3 q

1
60
�

1± 1
z q

1
2 + 2q± (z+2

z )q
3
2 + (4+ 1

z2 )q2 ± (2z+5
z )q

5
2 + (8+ 2

z2 )q3 ± (5z+9
z )q

7
2 + . . .
�

φ̄ z−
1
3 q

1
60
�

1± zq
1
2 + 2q± (2z+1

z )q
3
2 + (4+z2)q2 ± (5z+2

z )q
5
2 + (8+2z2)q3 ± (9z+5

z )q
7
2 + . . .
�

u q
11
60
�

1± (z+1
z )q

1
2 + 2q± 2(z+1

z )q
3
2 + 5q2 ± 4(z+1

z )q
5
2 + (z2+9+ 1

z2 )q3 ± 8(z+1
z )q

7
2 + . . .
�

ψ z
2
3 q

19
60
�

1± 1
z q

1
2 + (1+ 1

z2 )q± 2
z q3/2 + (3+ 1

z2 )q2 ± (z+4
z )q

5
2 + (5+ 3

z2 )q3 ± (2z+8
z )q

7
2 + . . .
�

ψ̄ z−
2
3 q

19
60
�

1± zq
1
2 + (1+z2)q± 2zq3/2 + (3+z2)q2 ± (4z+1

z )q
5
2 + (5+3z2)q3 ± (8z+2

z )q
7
2 + . . .
�

Table 8: Characters of the R representations of BP−1/2.

M TrM

�

(±)GzJ0qL0−c/24
�

ids z−
1
3 q

1
15
�

1+ (1± z)q+ (3± 2z + z2 ± 1
z )q

2 + (5± 4z ± 2
z + z2)q3 + . . .
�

φs q−
1

15
�

1+ (2± z ± 1
z )q+ (4± 2z ± 2

z )q
2 + (8± 5z ± 5

z )q
3 + . . .
�

φ̄s z−
2
3 q

4
15
�

(1± z) + (2± 2z + z2)q+ (4± 1
z ± 5z + 2z2)q2 + (8± 2

z ± 9z + 4z2)q3 + . . .
�

us z−
1
3 q

4
15
�

(1± z) + (2± 1
z ± 2z)q+ (5± 2

z ± 4z + z2)q2 + (9± 4
z ± 8z + 2z2)q3 + . . .

�

ψs z
1
3 q

1
15
�

1+ (1± 1
z )q+ (3±

2
z ± z + 1

z2 )q2 + (5± 4
z ± 2z + 1

z2 )q3 + . . .
�

ψ̄s z−1q
11
15
�

(1± z + z2) + (1± 2z + z2)q+ (3± 4z + 3z2)q2 + (5± 1
z ± 8z + 5z2 ± z3)q3 + . . .

�
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