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Abstract

The work fluctuation theorem (FT) is a symmetry connecting the moment generating
functions (MGFs) of the work extracted in a given process and in its time-reversed coun-
terpart. We show that, equivalently, the FT for work in isolated quantum systems can be
expressed as an invariance property of a modified Keldysh contour. Modified contours
can be used as starting points of perturbative and path integral approaches to quantum
thermodynamics, as recently pointed out in the literature. After reviewing the derivation
of the contour-based perturbation theory, we use the symmetry of the modified contour
to show that the theory satisfies the FT at every order. Furthermore, we extend textbook
diagrammatic techniques to the computation of work MGFs, showing that the contribu-
tions of the different Feynman diagrams can be added to obtain a general expression of
the work statistics in terms of a sum of independent rescaled Poisson processes. In this
context, the FT takes the form of a detailed balance condition linking every Feynman
diagram with its time-reversed variant. In the second part, we study path integral ap-
proaches to the calculation of the MGF, and discuss how the arbitrariness in the choice
of the contour impacts the final form of the path integral action. In particular, we show
how using a symmetrized contour makes it possible to easily generalize the Keldysh ro-
tation in the context of work statistics, a procedure paving the way to a semiclassical
expansion of the work MGF. Furthermore, we use our results to discuss a generalization
of the detailed balance conditions at the level of the quantum trajectories.
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1 Introduction

Green’s functions (GFs) are commonly used to tackle problems of quantum transport in ar-
eas like molecular transport, electronics, superconductivity, nanojunctions and nuclear physics
[1–5]. They can also be used to quantify the linear response to external perturbations, a funda-
mental tool to analyse experiments, for instance in magnetic resonance, Raman spectroscopy
and crystallography [6–8]. Path integral techniques on the other hand, are convenient to
study the relation between the quantum and the classical (stochastic) dynamics in open quan-
tum systems [9–13]. They are also very suitable for studying the physics of phase transitions,
instantons and critical phenomena in general [14,15]. In this seemingly heterogeneous land-
scape, the theoretical framework introduced by Keldysh [16–18] represents a unified way to
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extend both, the usual Feynman approach to path integration and the equilibrium theory of
GFs, to nonequilibrium systems [19,20] and has recently found applications in quantum and
stochastic thermodynamics [21–24]. The idea behind the standard Schwinger-Keldysh tech-
nique is to simplify calculations by introducing an extended version of the time domain, called
the Schwinger-Keldysh contour, that acts as a new ordered domain for the time variables of
the theory. Different extensions of this formalism have proved to be suitable for computing
charge and energy statistics using non-equilibrium GFs [23,25–33].

In the present paper, inspired by the extension of the contour idea to quantum thermody-
namics in the papers of Funo and Quan [22] and Fei and Quan [24], we focus on the issue
of thermodynamic consistency of perturbative and path integral approaches based on modi-
fied contours. Our first step is to introduce a modified Keldysh contour that can be used for
calculating the work MGF in the evolution of an isolated driven quantum system. We then
make use of the symmetries of the theory, in particular the FT [34–39], proving that it can
be seen as a geometrical symmetry of the modified contour. This is crucial to the derivation
of our other results. First, using the modified contour as a starting point for a perturbative
expansion of the MGF, we show that its symmetry can be used to prove that the expansion is
thermodynamically consistent, that is, it satisfies the FT at every perturbative order.

Then, following textbook diagrammatic techniques, we introduce an approach to the per-
turbative expansion of the MGF based on Feynman diagrams. The structure of the diagram-
matic theory is similar to the one of standard perturbation theory [20,40], but while the archi-
tecture is the same, and we can picture it in terms of the topology of the diagrams, the building
blocks, i.e., the propagators and the contour that acts as a domain of integration for the vertex
variables, are different. As an application of this technique, we compute the work statistics
when a small non-linear perturbation of a quadratic Hamiltonian is switched on between two
energy measurements performed at two different times, showing that the probability distri-
bution can be expressed as a linear combination of Poisson processes. We then analyze the
thermodynamic consistency at the level of single Feynman diagrams and prove that the FT can
also be interpreted as a detailed balance condition relating each diagram to its time-reversed
counterpart.

We proceed in the second part of the paper by generalizing the Feynman path integral
technique [41] to the modified contour. We use a similar strategy as in Ref. [22], but our
approach is more suitable for defining a generalization of the Keldysh rotation (used to obtain
a semiclassical expansion of the path integral formulation of dissipative systems [19,42–45])
in the context of quantum thermodynamics. We do so by introducing a symmetrization of the
modified contour. After performing the symmetrization, we obtain a semiclassical expansion
of the MGF where we explicitly compute the zeroth (classical) order and the first quantum
correction to work fluctuations. Another benefit of the symmetrized contour approach is that
it enables us to express the fluctuating work as a function of the endpoints of the quantum tra-
jectories. This can be used to discuss the concept of detailed balance at the quantum trajectory
level.

This paper is organized as follows. In Sec. 2 we introduce the Keldysh contour and its ex-
tension to the modified contour to express the MGF. In Sec. 3 we investigate the work statistics
and show how to obtain the FT as a symmetry of the modified contour. In Sec. 4 we introduce
the perturbation theory in terms of Green’s functions and use the perturbation expansion to
obtain the MGF of work in weakly perturbed quantum systems. Finally, in Sec. 5 we apply
path integral techniques on the modified contour to compute the MGF. By symmetrizing the
contour, we derive the MGF of work, compare it with similar approaches in the literature, and
discuss the semiclassical limit in the path integral expression of the fluctuating work.
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2 The contour in a general two-point measurement

The Schwinger-Keldysh contour makes it possible to simplify and express in an elegant way
the theory of nonequilibrium many-body quantum systems. The same idea can be applied to
the context of counting statistics in a double measurement scheme. In this section we briefly
discuss the idea behind the contour and its generalization to counting statistics, before focusing
our attention on more specific problems, like the work MGF.

Many physical properties of open quantum systems are encoded in correlation functions
between pairs of operators [46]. Here we will use them as a starting point to understand the
intuition behind the Keldysh contour (taking a similar route as more complete textbook deriva-
tions, e.g., Ref. [20]). Given two observables A1, A2 with time arguments in the Heisenberg
picture given by t f , t ′ with t f ≥ t ′ we can introduce the correlation function

CA1,A2
(t f , t ′) = Tr
�

ρ0A(H)1 (t f )A
(H)
2 (t

′)
�

. (1)

The quantity above can be written in the Schrödinger picture after writing out explicitly the
evolution operators contained in A(H)1 and A(H)2

CA1,A2
(t f , t ′) = Tr
�

ρ0U†(t f , 0)A1U(t f , t ′)A2U(t ′, 0)
�

, (2)

where

U(t ′, t) = U†(t, t ′) = T exp

�

−
i
ħh

∫ t ′

t
H(s)ds

�

= T̄ exp

�

i
ħh

∫ t ′

t
H(s)ds

�

, (3)

with T and T̃ representing the time-ordering and anti-time-ordering operator, respectively. If
we expand the evolution operators in Eq. (2) we have to deal with three ordered products and
the calculations can become cumbersome. It is however possible to simplify the expansion by
introducing some “bookkeeping” time arguments A1→ A1(t f ), A2→ A2(t ′), and by letting the
time-ordering operator act on A1(t f ), A2(t ′). In this way, the last term of Eq. (2) reduces to

A1U(t f , t ′)A2U(t ′, 0) = T {e−
i
ħh

∫ t f
0 d tH(t)A1(t f )A2(t

′)} . (4)

It is natural to ask if we can further simplify Eq. (2) by including also U†(t f , 0) in the
time-ordered product in Eq. (4). A possible issue arises from the fact that the time arguments
in U†(t f , 0) are the same as U(t f , t ′) and U(t ′, 0), however, the position of these operators in
the r.h.s. of Eq. (2) are evidently different. An elegant way to circumvent this problem is to
introduce a new ordering operator TK , which orders the operators according to the position of
their time arguments on a new domain γK , called the Schwinger-Keldysh contour [19,20,40,47].
This contour comprises two branches:

1. The forward branch γ−, that goes from the initial time 0 to a final time t f . The ordering
operator TK behaves like the usual time-ordering on this branch, so that, for instance,
we can rewrite Eq. (4) as

A1U(t f , t ′)A2U(t ′, 0) = TK{e
− i
ħh

∫

γ−
d tH(t)A1(t f )A2(t

′)} . (5)

2. The backward branch γ+, that comes after the forward branch and goes back from the
final time to 0 (see Fig. 1A). Since this branch of the contour goes backward in time, TK
is naturally sorting the operators from left to right with their time arguments increasing.
This means that an anti-time-ordered product can be written as an ordered product
over γ+. For instance we have

U†(t f , 0) = TK{e
− i
ħh

∫

γ+
d tH(t)} . (6)
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A B  C

Figure 1: Three different time integration contours: A) The Keldysh contour γK , in
which γ− and γ+ denote, respectively, the forward and the backward branches. B)
The contour γC , obtained by adding two vertical tracks γ↑,↓ to the Keldysh contour. C)
The contour γ, realized by augmenting the previous one with the track γM encoding
the initial condition.

If we put the arguments of TK in Eqs. (5) and (6) under a single ordering, the operators with
time argument on γ+ will be placed to the left of those with time argument on γ− (since γ+
follows γ− on the contour). In this way, U†(t f , 0) in Eq. (2) will be correctly placed to the left
of A1 and we finally obtain

CA1,A2
(t f , t ′) = Tr[ρ0TK{e

− i
ħh

∫

γK
d tH(t)A1(t f )A2(t

′)}] . (7)

Note that the Hamiltonian H(t) is now a function with argument in the contour t ∈ γK that is
equal in each branch to the physical Hamiltonian H(t ∈ γ−) = H(t ∈ γ+).

Using an extension of the Keldysh idea, we can write the MGF in a double measurement
process in a simple and compact way. In this framework a generic observable Λ is measured at
time 0 and time t f while the system evolves under the action of a time-dependent Hamiltonian
between the two measurements. The generating function for the statistics of the difference of
the outcomes of the first and second measurement is given by [37]

MΛ(λ, t f ) = Tr
�

ρ0U†(t f , 0)eλΛ(t f )U(t f , 0)e−λΛ(0)
�

, (8)

which is a special case of Eq. (1) with A1 = eλΛ(t f ) and A2 = e−λΛ(0), as well as t ′ = 0. Note that
Eq. (8) assumes that the initial measurement operator Λ(0) commutes with the initial state
density matrix ρ0, which is something we will always consider to be true. After expressing the

MGF (8) in the form (7) and introducing the dummy integrations eλΛ(t f ) = e−
i
ħh

∫ iħhλ
0 dτΛ(t f ) and

e−λΛ(0) = e−
i
ħh

∫ 0
iħhλ dτΛ(0), we obtain

MΛ(λ, t f ) = Tr
n

ρ0TK

h

e−
i
ħh

∫

γK
dzH(z)e−

i
ħh

∫ iħhλ
0 dτΛ(t f )e−

i
ħh

∫ 0
iħhλ dτΛ(0)
io

. (9)

It is easy to see that the sum of the three integrals can be expressed as a single integration
along a different contour γC that consists in a modification of the Schwinger-Keldysh contour,
in which two vertical branches are added at time 0 and t f (see Fig. 1B). Accordingly, the
ordering operator also has to be extended to this new contour. This allows us to write

MΛ(λ, t f ) = Tr
n

ρ0TC

h

e−
i
ħh

∫

γC
dzHC (z)
io

, (10)

where now the Hamiltonian HC is defined as

HC(z) =











H(t) for z = t ∈ γK ,

Λ(t f ) for z ∈ γ↑,
Λ(0) for z ∈ γ↓,

(11)
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where we labelled the vertical tracks of the contour drawn in Fig. 1B by γ↑,↓. As a last step,
we point out that the dependence on the initial state ρ0 can also be cast as an integration
over an additional track of the contour. Indeed, if we define an effective Hamiltonian HM
by expressing ρ0 as logρ0 = −βHM − log[Z(0)] with Z(0) = Tre−βHM , we can always write

ρ0 = exp
�

− i
ħh

∫ −iħhβ
0 dzHM

�

/Z(0) and express Eq. (10) as in Ref. [24]

MΛ(λ, t f ) =
Tr
h

Tγ
�

e−
i
ħh

∫

γ
dzHγ(z)
	

i

Tr
h

Tγ
�

e−
i
ħh

∫

γ
dzHγ,0(z)
	

i , (12)

where γ is the contour defined in Fig. 1C, built by adding an additional track γM along the
imaginary axis, Tγ denotes the time-ordering operator along this contour, and the extended
Hamiltonian Hγ(z) is defined as

Hγ(z) =



















H(t) for z = t ∈ γK ,

Λ(t f ) for z ∈ γ↑,
Λ(0) for z ∈ γ↓,
HM for z ∈ γM .

(13)

Moreover, we have defined Hγ,0 = Hγ|Λ=0. If the initial state is a Gibbs state, we have
HM = H(0) and β = 1/(kB T ) assumes the role of the inverse of the physical temperature T .
Note that a similar modified contour can be derived for computing the characteristic function
M(iλ, t f ), but in this case the vertical branches of length λ in Fig. 1C are replaced by horizontal
ones [24]. We will discuss this point in more detail in the following sections (see Fig. 5).

3 Work fluctuation theorem as a symmetry of the contour

If the measurement operator Λ(t) is the system Hamiltonian itself, the difference between
the outcomes corresponds to the difference of the final and initial energies, i.e., the work
performed on the system by an external source. The MGF of the work statistics is obtained
from Eq. (8) by choosing Λ(0) = H(0) and Λ(t f ) = H(t f ),

MW (λ, t f ) = Tr
�

ρ0U†(t f , 0)eλH(t f )U(t f , 0)e−λH(0)
�

. (14)

Let us suppose now that the system is initialized in the Gibbs state, so that HM = H(0). In this
setting it is possible to prove a fluctuation theorem (FT), a symmetry connecting the gener-
ating function MW and the generating function M rev

W associated with the time-reversed work
extraction process [35, 48]. We will now show that the FT can be seen as a symmetry of the
contour γ.

We first present the standard derivation of the fluctuation theorem. To compute M rev
W , we

first introduce the time-reversed process, in which the system is initialized in a Gibbs state
corresponding to the final Hamiltonian, i.e., ρrev(0) = e−βH(t f )/Z(t f ), and then undergoes a
time-reversed evolution. The latter is a combination of a time-reversal operation Ξ, which is
an anti-unitary operator satisfying Ξi = −iΞ, and a forward evolution with the time-reversed
driving protocol, i.e., Hrev(s) = H(t f − s),

Ξρrev(t f )Ξ= Urev(t f , 0)Ξρrev(0)ΞU†
rev(t f , 0) , (15)

where Urev(t f , 0) = T exp
�

− i
ħh

∫ t f

0 dsHrev(s)
�

. Note that we suppose that the Hamiltonian
does not depend on a magnetic field B, as such a case would lead to an additional minus sign,
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Hrev(s, B) = H(t f − s,−B). Using Eq. (15) and ΞU rev(t f , 0)Ξ = U†(t f , 0), we can deduce the
following identity

MW (λ, t f ) =
1

Z(0)
Tr[Ue−βH(0)e−λH(0)U†eλH(t f )]

=
1

Z(0)
Tr[Ue−βH(0)e−λH(0)U†e(λ+β)H(t f )e−βH(t f )]

=
1

Z(0)
Tr[U†e(λ+β)H(t f )e−βH(t f )Ue−(λ+β)H(0)]

=
Z(t f )

Z(0)
M rev

W (−β −λ, t f ) , (16)

where we introduced the shorthand notation U ≡ U(t f , 0). After introducing the free energy
difference as Z(t f )/Z(0) = e−β∆F , the above result leads to the fluctuation symmetry

MW (λ, t f ) = e−β∆F M rev
W (−β −λ, t f ) . (17)

To formulate this symmetry in the contour framework, we first note that the entire dependence
of Eq. (12) on the counting field and the final time is established through the modified contour
γ in Fig. 1C. With this in mind, every step of the derivation (16) can be seen as a transformation
of the contour itself as shown in Fig. 2. By making the λ dependence explicit, this geometrical
symmetry corresponds to γλ = γrev

−λ−β , where γrev is the contour associated to the time-reversed
generating function (panel D in Fig. 2). The weighted ratio between the generating functions
of the forward and time-reversed processes becomes

MW (λ, t f )Z(0)

M rev
W (−λ− β , t f )Z(t f )

=
Tr[Tγ
�

e
− i
ħh

∫

γλ
dzHγ(z)	]

Tr[Tγrev
−λ−β

�

e
− i
ħh

∫

γrev
−λ−β

dzHγ(z)	
]
= 1 , (18)

which is equivalent to Eq. (17). The contour-based proof of the FT is a structural symmetry of
any theory based on the contour γ of Fig. 1C. Note that the idea of using a modification of the
contour to encode symmetries that are intrinsic in the quantum theory has already proved to be
a valid tool in non-equilibrium physics. For instance, outside the double energy measurement
framework, it has been used to show that equilibrium theories share a fundamental symmetry
at the level of the Schwinger-Keldysh action [49–52].

4 Thermodynamically consistent perturbation theory

The modified contour γ can be used to build perturbative expansions of work generating func-
tions in weakly perturbed quantum systems. Following the standard approach of perturbation
theory, we decompose the contour Hamiltonian as Hγ(z) = H0(z) + χ(z)H1(z) where H0(z)
and H1(z) are the unperturbed Hamiltonian and the perturbation, which are both defined on
the contour γ, and χ(z) is a switching function. In complete analogy with Eq. (13), H1(z) has
different physical interpretations depending on the position of z on the contour γ: it represents
an external perturbation of the physical Hamiltonian for z = t ∈ γK , while it is a correction to
the measurement operator or to the initial state when we choose z ∈ γ↑,↓ or z ∈ γM , respec-
tively.

We will consider the work extraction in two scenarios. In the first scenario, the final Hamil-
tonian is equal to the initial one, i.e., χ(0) = χ(t f ) = 0. We will refer to this protocol as
switching on/off, since the perturbation H1(z) is turned on after the first measurement and
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switched off before the second one. This is the setting in which Bochkov and Kuzovlev derived
the first integral fluctuation theorem (Eq. (8) in Ref. [53]) and the switching function in this
case reads

χ(z) =











χ(t) for z = t ∈ γK ,

0 for z ∈ γ↑,↓,
0 for z ∈ γM .

(19)

Figure 2: A graphical representation of the proof of Eq. (16). The correspondence
between exponentials of time-dependent Hamiltonians and contour tracks allow us to
establish a handy parallelism. Multiplying and dividing by exp[−βH(t)] is equivalent
to adding and subtracting a new track (A→ B) in the picture. Exchanging −λ with
β + λ can be expressed as an inversion of the blue/green stars with the blue/green
circles (B → C). The cyclic property of trace tells us that the starting point of the
contour is arbitrary, so that if we mark the corners of the contour with 1, 2,3, 4,
we can draw an equivalent contour starting from point 3 and running clockwise,
instead of starting from point 1 (C → D). Note that from point C to D we also
shifted the contour upwards. The last step assumes time-reversal symmetry of the
Hamiltonian and shows that the contour D is indeed the one associated with the
backward evolution of the original one (D→ A).
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In the second scenario, the final Hamiltonian is arbitrary, i.e., χ(0) = 0 but χ(t f ) ̸= 0. This is
the general setting considered by Jarzynski [36] and the associated contour Hamiltonian is

χ(z) =











χ(t) for z = t ∈ γK ,

χ(t f ) ̸= 0 for z ∈ γ↑,
0 for z ∈ γM ,↓.

(20)

The results about the perturbation theory and the diagrammatic expansion of the MGF dis-
cussed in the next subsections are true for both the protocols (19) and (20), while at the end
of Sec. 4.2 we will continue our calculation by choosing specifically the protocol (19) and leave
some comments about the generalization to the scenario (20) in App. D.

4.1 Interaction picture and non-interacting Green’s functions

The customary approach to time-dependent perturbation theory begins with the introduction
of the interaction picture [54]. To generalize this concept to the modified contour we use the
following relation

Uγ(z, 0)≡ Tγ{e
− i
ħh

∫ z
γ

dzHγ(z)}= Uγ0(z, 0)Ũγ,1(z, 0) , (21)

where we denoted with
∫ z
γ

the integration between the initial point of the modified contour
and the point z and defined

Uγ0(z, 0) = T {e−
i
ħh

∫ z
γ

dz′H0(z′)}; Ũγ,1(z, 0) = T {e−
i
ħh

∫ z
γ

dz′χ(z′)H̃1(z′)} , (22)

with the contour interaction Hamiltonian defined as H̃1(z) = Uγ0(0, z)H1(z)Uγ0(z, 0) (see
App. A for details). The l.h.s. of Eq. (21) evaluated in −iħhβ gives the numerator of (12), thus,
after some manipulations we obtain

MW (λ, t f ) =
Tr[e−βHMTγ{e

− i
ħh

∫

γ
dzχ(z)H̃1(z)}]

Tr[e−βHM ]
, (23)

where we used that H0(z) = HM on the γM branch of the contour. Equation (23) can also be
written as an explicit function of H1(z)

MW (λ, t f ) =
Tr[Tγ{e

− i
ħh

∫

γ
dzH0(z)e−

i
ħh

∫

γ
dzχ(z)H1(z)}]

Tr[Tγ{e
− i
ħh

∫

γ
dzH0(z)}]

. (24)

The relevance of the equation above is due to the fact that when H1(z) is a small perturbation
of H0(z), we can expand the second exponential in the numerator and obtain a perturbative
series for the generating function. Before doing so let us focus first on the fundamental building
block of perturbation theory which in systems of coupled bosons and fermions is given by the
Green’s function

G(z, z′)≡− i〈Tγ{c̃(z)c̃†(z′)}〉= −iTr[Tγ{e
− i
ħh

∫

γ
dzH0(z)c(z)c†(z′)}] , (25)

where c is a bosonic/fermionic annihilation operator and the angular brackets denote an av-
erage over the initial-state density matrix. Equation (25) is a straightforward generalization
of the Keldysh contour GFs [19], but we stress that z, z′ are defined on the contour in Fig. 1C
instead of the standard Keldysh contour. Using the evolution in the contour interaction picture
(see App. A), the dynamical equation for the Green’s function reads

d
dz′

G(z, z′) =
1
ħh
〈Tγ{c(z)[H0(z

′), c†(z′)]}〉+ iδ(z − z′) , (26)
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where the boundary conditions are given by the Kubo-Martin-Schwinger relations
G(z, 0) = ±G(z,−iħhβ) for any z ∈ γ, where the upper or lower sign stands for bosons or
fermions, respectively.

Let us now replace H0 = ħhωc†c. In this case Eq. (26) can be easily solved to obtain the
non-interacting GFs (see Apps. B and B.1)

G(0)b, f (z, z′) = −ie−iω(z−z′)
�

± nΘγ(z
′ − z) + n̄Θγ(z − z′)

�

, (27)

where the upper (lower) sign again refers to bosons (fermions), n̄ = 1 ± n, and
n = nb, f (ω) = (eħhβω ∓ 1)−1 denotes the Bose (Fermi) distribution function and ω is the
associated frequency. In Eq. (27) we also introduced the contour step function Θγ(z−z′), that
is equal to 1 if z is placed after z′ in the contour γ and equal to 0 otherwise. As in standard
Schwinger-Keldysh theory, the contour Green’s function does not have an evident physical
meaning, unlike its components which are obtained by restricting the domain of z and z′ to
selected branches of the contour (we use ± subscripts to denote time variables on the branches
γ±), for instance

G(0)b, f (t+ + iħhλ, t ′−) = G(0)>b, f (t+, t ′−) = −in̄eħhωλe−iω(t−t ′),

G(0)b, f (t−, t ′+ + iħhλ) = G(0)<b, f (t−, t ′+) = ∓ine−ħhωλe−iω(t−t ′), (28)

are called greater (>) and lesser (<) components, the dependence by λ arises from the vertical
displacement in the complex plane between the γ− and γ+ tracks. Other notable components
can be obtained by choosing different contour arguments (see App. B.1), e.g., the time-ordered
and anti-time-ordered components defined, respectively, as G(0)Tb, f (t−, t ′−) ≡ G(0)b, f (t−, t ′−) and

G(0)T̄b, f (t+, t ′+)≡ G(0)b, f (t+ + iħhλ, t ′+ + iħhλ), which have the property of being λ-independent.

4.2 Perturbative expansion and diagrams

Within the perturbative framework, we can expand the second integral in the numerator of
Eq. (24) in terms of correlation functions of arbitrary order, and obtain an expression of the
form (see also Ref. [24])

MW (λ, t f ) =
∞
∑

n=0

1
n!

�

−
i
ħh

�n∫

γ

dz1 . . . dzn
Tr[Tγ{e

− i
ħh

∫

γ
dzH0(z)χ(z1)H1(z1) . . .χ(zn)H1(zn)}]

Tr[Tγ{e
− i
ħh

∫

γ
dzH0(z)}]

. (29)

At each order n we have a n-point correlation function of the Hamiltonian H1. If we assume
that H1 is a linear combination of products of fermionic and bosonic creation and annihilation
operators, the correlation functions can be decomposed into non-interacting GFs following
Wick’s theorem [20, 40]. It is important to underline that the expansion of the correlation
functions in terms of non-interacting GFs is the same as in standard perturbation theory be-
cause Wick’s theorem is a consequence of the commuting (or anti-commuting) algebra of the
operators c, c† and as such holds independently of the contour of integration.

The discussion above can be reformulated in diagrammatic terms since the Feynman dia-
grams entering in the calculation of Eq. (29) are the same as in standard perturbation theory,
the only difference being the contour of integration of the vertex variables z1, . . . , zn and the
non-interacting GFs themselves, which are given by Eq. (27). To illustrate this, let us consider
as an example the second-order perturbation theory of the Hamiltonian H1 = ħhωχ(a+ a†)c†c
where c and a represent, respectively, the annihilation operator of a fermionic and a bosonic
mode. In this case the contribution of the second order (n = 2) to the numerator of Eq. (29)
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Figure 3: An example of how different Keldysh components appears in the diagram
depicted on the left. The solid and wiggly lines denote the fermionic and bosonic
non-interacting GFs, respectively.

will correspond to two connected Feynman diagrams, the one in Fig. 3A and the “dumbbell”
diagram (see Fig. 6 in App. C). Focusing on the former, which we call M (2),1W (λ, t), we have

M (2),1W (λ, t f ) = −iω2
χ

∫∫

γ

dz1dz2χ(z1)χ(z2)G
(0)
b (z1, z2)G

(0)
f (z1, z2)G

(0)
f (z2, z1). (30)

Assuming a switching on/off protocol as in Eq. (19) and dividing the integration over γ in
an integration over γ− and γ+ (the general rule to divide an integration over the contour in
many integrals over the branches has been introduced by Langreth [55]), we rewrite the above
integral in terms of the components of the GFs as

M (2),1W (λ, t f ) = −iω2
χ

∫∫ t f

0

d t1d t2χ(t1)χ(t2)× (31)

×
§

G(0)T̄b (t1, t2)G
(0)T̄
f (t1, t2)G

(0)T̄
f (t2, t1) + G(0)Tb (t1, t2)G

(0)T
f (t1, t2)G

(0)T
f (t2, t1)

− G(0)>b (t1, t2)G
(0)>
f (t1, t2)G

(0)<
f (t2, t1)− G(0)<b (t1, t2)G

(0)<
f (t1, t2)G

(0)>
f (t2, t1)
ª

.

In complete analogy to the connection between Eq. (30) and Fig. 3A, the four contributions
to Eq. (31) can be expressed in terms of Feynman diagrams with a “charge” ± to take into
account the position of the vertex variables on the contour, see Fig. 3B.

The time-ordered and the anti-time-ordered components are independent of λ while G<,>

include a factor of e±ħhωλ which carries the frequency ħhω [see Eq. (28)]. This simple depen-
dence allows us to introduce the energy transferred in a “charged” diagram d as Ed = ħh

∑

i sd
i ωi

where i runs over all the propagators and sd
i = 0,−1,1 depending on whether the propagator

i in the diagram d is a G< function (sd
i = −1), a G> function (sd

i = 1), or a GT,T̄ function
(sd

i = 0). Each diagram will contribute to the generating function a factor Γd(t f )eλEd , where
Γd(t f ) is a prefactor that can be found by computing the contribution of the diagram (in the
example of Eq. (31) by computing the associated double integral over the time variables).

It is convenient to introduce the cumulant generating function, given by the logarithm of
Eq. (12),

CW (λ, t f ) = logTr[Tγ
�

e−
i
ħh

∫

γ
dzHγ(z)
	

]− log Tr[Tγ
�

e−
i
ħh

∫

γ
dzH0(z)
	

] . (32)
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The diagrammatic expansion of each of the two logarithms contains only connected diagrams,
as a consequence of the linked cluster theorem (see for instance Ref. [20], chapter 11). The
second logarithm contains exactly the same diagrams of the first one, but has λ = 0. As a
result we obtain the following general formula for the cumulant generating function

CW (λ, t f ) =
∑

d,conn.

Γd(t f )(e
λEd − 1) , (33)

where the summation variable d runs over all the connected “charged” diagrams. We stress
again that the result (33) is true when assuming that the switching function is non-zero only in
the horizontal branches, that is Eq. (19). The cumulant generating function (33) can be inter-
preted as a sum of independent rescaled Poisson processes with average Γd(t f ) and jumps in
energy given by Ed . Therefore, every diagram represents a channel through which a quantized
amount of energy Ed can be exchanged with a Poissonian rate given by Γd(t f ). The universal-
ity of Eq. (33) can be seen as a consequence of the Poisson law of rare events, since within the
perturbative approach the rate of each energy exchange process is small. We expect Eq. (33)
to break down when an infinite number of diagrams is resummed, in analogy to what happens
in the case of charge statistics [26,56].

In App. C we explore several applications of the result (33), by computing the rates Γd(t f )
explicitly for some specific models. In the case of the Holstein coupling H1 = ħhωχ(a+ a†)c†c
our results can also be verified by direct calculation of the cumulant generating function using
the matrix form of the time evolution operator (see App. E).

We are now in a position to come back to our initial claim that the fluctuation theorem
is satisfied at every order of the perturbative expansion. In Sec. 3 we showed that the con-
tours used to compute MW (λ, t f ) and M rev

W (−λ− β , t f ) are the same. Since the propagators
(see Eq. (27)) and the integration domain of the vertex variables (see Eq. (29)) are fully
determined by the contour, the two perturbative expansions with the same contour are iden-
tical. This ensures, as announced, that for the switching-on/off scenario (19) the symmetry
MW (λ, t) = M rev

W (−λ− β , t) is preserved at every perturbative order.

4.3 Time-reversed diagrams and detailed balance

We can investigate the effects of the FT at the level of the single Feynman diagrams. For this
sake, we have to connect the diagrams appearing in the perturbative expansion of the moment
generating function MW (λ, t f ), with the ones appearing in the expansion of its time-reversed
counterpart M rev

W (λ, t f ). The two MGFs share the same Hamiltonian, but the shape of the
contour is different: while the vertex coordinates of the diagrams associated to MW (λ, t f ) live
on γ in Fig. 2 A, in the case of M rev

W they are defined on γrev in Fig. 2 D. It is thus clear that the
definition of the time-reversed diagrams goes through a mapping between the coordinates of
the contours γ and γrev. To understand the nature of this mapping, let us consider a “charged”
diagram d appearing in the decomposition of the MGF in the scenario (20) (see e.g. one of the
four contributions to Eq. (31)). We introduce its time-reversed as the diagram d̄ appearing in
the expansion of M rev

W (λ, t f ) in which the sign of all the “charges” is the same as in d. Note
that the positions of γ+ and γ− are inverted in γrev if compared to γ (see also [31]), thus for
any greater GF G(0)>b, f (t, t ′) appearing in the formula for d, there will be a lesser GF G(0)<b, f (t, t ′)

appearing in d̄ and vice versa.
Since from Eq. (28) we have

G(0)<b, f (t, t ′)

G(0)>b, f (t, t ′)
= ±e−βħhωe−2λħhω, (34)
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we can conclude that the ratio between the contribution of a “charged” diagram and its
time-reversed contains a factor ±eβħhωe−2λħhω for every lesser GF and a factor ±e−βħhωe+2λħhω

for every greater GF contained in the original diagram, where ω is the frequency of the
fermionic/bosonic mode associated with the propagator. After introducing Ed as in Sec. 4.2
and setting λ = 0, we find that the weights Γd(t f ) and Γ rev

d (t f ) of a given diagram and its
time-reversed are related by

Γd(t f )

Γ rev
d (t f )

= eβEd , (35)

where the sign contribution ± in Eq. (34) can be neglected by assuming that the interaction
Hamiltonian contains an even number of fermionic fields. Equation (35) can be seen as a
diagrammatic version of the detailed balance conditions [57–60]. Note that the condition (35)
is stronger than the FT for the cumulant generating function, CW (λ, t f ) = C rev

W (−λ − β , t f ),
since it holds at a more detailed level, i.e., the level of single transitions. The FT at the level
of the cumulant generating function can now be easily recovered by using Eqs. (35) and (33).
To do so, we write the time-reversed generating function explicitly

C rev
W (−λ− β , t f ) =

∑

d,conn.

Γ rev
d (t f )e

−(λ+β)Erev
d −
∑

d,conn.

Γ rev
d (t f ). (36)

where Erev
d is the energy transferred in the time reversed charged diagrams, that satisfies

Erev
d = −Ed . Using the detailed balance relation in (35), we replace Γ rev

d (t f ) = Γd(t f )e−βEd

in the first term of Eq. (36) which gives

C rev
W (−λ− β , t f ) =

∑

d,conn.

Γd(t f )e
λEd −
∑

d,conn.

Γ rev
d (t f ). (37)

To write the second term as a function of the forward rates Γd(t f ), we note that since
the second addend on the right hand side of Eq. (32) is equal to both log Z(0) and the λ-
independent term in Eq. (33), we have

∑

d,conn Γd(t f ) = log Z(0). In the time-reversed gen-
erating function, Z(0) should be replaced by Z(t f ) (see Sec. 3), however, the two quanti-
ties are equal due to the assumption (19) (switching on/off scenario). Therefore, we con-
clude that
∑

d,conn Γ
rev
d (t f ) =
∑

d,conn Γd(t f ). Replacing this into Eq. (37) we conclude that
C rev

W (−λ− β , t f ) = CW (λ, t f ).

5 Path integration using the modified contour

Another useful approach to studying the generating function is to express Eq. (12) in terms
of path integrals [22, 23, 61]. This approach is an extension of the usual Feynman path inte-
gral approach on the Keldysh contour [41, 62, 63]. We will see that our modified contour is
particularly suitable for work statistics and for describing the semiclassical limit of the MGF
by considering an expansion for small ħh of the generating function [43]. Let us consider the
Hamiltonian of a single particle in an external potential,

H(t) =
P2

2m
+ V [α(t), X ], (38)

where P is the momentum operator, m is mass and V [α(t), X ] is a single particle potential in
the particle position X , which depends parametrically on an external driving parameter α(t).
Plugging the Hamiltonian (38) into Eq. (12) and performing a Trotter decomposition of the
contour-ordered exponentials, we obtain the path integral form of the moment generating
function,

MW (λ, t f ) =
1

Z(0)

∫

Dx(z)Dp(z)e
i
ħh S[x(z),p(z)], (39)
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where p(z) and x(z) are the momentum and position fields defined on the modified contour γ,
Z(0) is the partition function corresponding to the Hamiltonian at time 0 and S is the classical
action

S =

∫

γ

dz
§

d x(z)
dz

p(z)−Hγ[x(z), p(z)]
ª

. (40)

Here we present the calculation for a measurement operator corresponding to the total energy,
Λ = P2

2m + V (X ), but the formalism works similarly for other choices of the measurement
operator. We split the fields on the contour by defining their components, in a similar way to
what was done for the GFs. Defining z = t + iτ we have

x(z) =



















x−(t) for z = t ∈ γ−,

x+(t) for z = t + iλ ∈ γ+,

x↑(τ) for z = t f + iτ ∈ γ↑,
x↓(τ), xM (τ) for z = iτ ∈ γ↓,M ,

(41)

and analogously for p(z). Eliminating the momentum operator p by integrating over Dp(z),
one obtains the Lagrangian representation of the path integral (see App. F)

MW (λ, t f ) =
1

Z(0)

∫

D′x(z)e
i
ħh S[x(z)], (42)

where D′x(z) is the new measure of integration following the elimination of the momenta,
and the Lagrangian action reads

S =

∫

γ

dz Lγ [α(z), x(z)] , (43)

where Lγ is the Lagrangian on the modified contour that according to the portion of the con-
tour of interest can assume different forms as

Lγ[α(z), x(z)] =



















L[α(t), x−(t)] z = t ∈ γ−,

L[α(t), x+(t)] z = t + iλ ∈ γ+,

L↑[α(t f ), x↑(τ)] z = t f + iτ ∈ γ↑
L↓,M [α(0), x↓,M (τ)], z = iτ ∈ γ↓,M ,

(44)

where we have

L[α(t), x(t)] =
1
2

m
�

d x(t)
d t

�2

− V [α(t), x(t)] ,

L↑[α(t f ), x↑(τ)] = −
1
2

m

�

d x↑(τ)

dτ

�2

− V [α(t f ), x↑(τ)] ,

L↓,M [α(0), x↓,M (τ)] = −
1
2

m

�

d x↓,M (τ)

dτ

�2

− V [α(0), x↓,M (τ)] .

(45)

This indicates that the Lagrangian on the vertical branches is the negative of the classical
energy. The generating function in terms of the action in Eq. (40) can be used to study the
characterization of the work fluctuations at the path integral level and its semiclassical limit.
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5.1 Symmetrization of the contour and Keldysh rotation

Following the quantum-classical correspondence principle [64], the generating function in the
semiclassical limit should reproduce its classical analog at first non-zero order in ħh. This means
that the path integral form of the generating function (42), in which fields are defined on the
contour γ, should reproduce its stochastic path integral counterpart in a suitable limit [65–67].
The first obstacle that we have to overcome when trying to find such a correspondence is the
difference between the domains of integration of the stochastic path integral, that is [0, t f ]
and the Keldysh contour [6, 68, 69]. In the path integral representation of the dynamics, this
obstacle is simply overcome by the fact that the forward (γ−) and the backward (γ+) branches
are equal, so the integration on the Keldysh contour can be seen as an integration over the
segment [0, t f ] of the difference between the forward and backward actions [19]. Applying
this reasoning to the contour in Fig. 1C, we look for a transformation of the contour that makes
it possible to divide it into two equal halves. This symmetrization is carried out by assigning
half of the vertical lines of γ↑, γ↓ and γM to an upper branch named γ⊕ and the other half of
the lines to a lower branch γ⊖ (see Fig. 4 for a detailed explanation of this procedure). In the
symmetrized contour in Fig. 4C, an argument z ∈ γ⊕ can be mapped to γ⊖ simply by complex
conjugation. This allows us to write the action in Eq. (43) as

S =

∫

γ⊖

Lγ [x⊖(z),α(z)] dz +

∫

γ⊕

Lγ [x⊕(z),α(z)] dz

=

∫

γ⊖

Lγ [x⊖(z),α(z)] dz −
∫

γ⊖

Lγ[x⊕(z∗),α(z∗)]dz∗

=

∫

γ⊖

�

Lγ[x⊖(z),α(z)]−Lγ[x⊕(z∗),α(z∗)]
	

d Re z

+ i

∫

γ⊖

{Lγ[x⊖(z),α(z)] +Lγ[x⊕(z∗),α(z∗)]}d Im z, (46)

where in the last equality we separated the contribution of the real and imaginary parts of
the differential dz. Interestingly, the contour in Fig. 4 has a great similarity with the the
symmetric contour used by Aron et al. [49] to study the symmetries of the Schwinger-Keldysh
action in equilibrium and non-equilibrium systems. We can now perform an analog of the
Keldysh rotation [42–44,70] and introduce the classical and quantum fields as

xcl(z) =
1
2
[x⊖(z) + x⊕(z

∗)] , xq(z) =
1
2
[x⊖(z)− x⊕(z

∗)] . (47)

Inserting the above expressions into the action in Eq. (46), we can rewrite the generating
function as a path integral over γ⊖. Since the integrand of the action in Eq. (46) depends
on the branch (Im z nullifies on γ(⊖,−) while Re z nullifies on γ(⊖,↑), γ(⊖,↓) and γ(⊖,M)) it is
convenient to separate the contributions of the horizontal and vertical branches, obtaining

MW (λ, t f ) =
1

Z(0)

∫

D′xcl/q(z)e
1
ħh

∫

γ(⊖,↓),(⊖,M)
Σ[xcl (z),xq(z)]d Im z

× e
i
ħh

∫

γ(⊖,−)
M[xcl (z),xq(z)]d Re z

e
1
ħh

∫

γ(⊖,↑)
Σ[xcl (z),xq(z)]d Im z

. (48)

where D′xcl/q(z) =D′xcl(z)D′xq(z) and we introduced the functions

Σ= −m
�

ẋ2
cl + ẋ2

q

�

+ V (α, xcl + xq) + V (α, xcl − xq),

M= 2mẋcl ẋq − V (α, xcl + xq) + V (α, xcl − xq). (49)
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A B C

Figure 4: The equivalence between the contour of Fig. 1C and a new symmetric con-
tour. A) The last interval [−i ħhβ2 + i ħhλ2 ,−iħhβ], denoted with γ̄ in the picture, can
be removed and attached to the initial part of the contour using the cyclic property
of trace. The result of this operation is represented in the next panel. B) We can
translate along the imaginary axis by ħhλ2 using the invariance of the generating func-
tion under such a translation, thus obtaining the contour in the next panel. C) The
final symmetric version of the contour. In this picture, we have used z0 = i ħhβ2 and
z1 = t f + i ħhλ2 . The γ↑,↓,M branches of the contour in Fig. 1C can be naturally divided
into two parts in this representation, which we denote by γ(⊖,↑) ,γ(⊕,↑), by γ(⊖,↓), γ(⊕,↓)
and by γ(⊖,M), γ(⊕,M) respectively. The branch γ(⊖,M) goes from z0 to z = 0, while the
branch γ(⊖,↓) goes from z = 0 to z = −i ħhλ2 .

Notice that in Eq. (46) the domain of the fields of the path integral is γ⊖, with starting and
ending points given by z = iβħh/2 and z = t f . Since in these points the forward and backward
fields are equal, the boundary conditions for Eq. (48) are xq(t f ) = xq(iβħh/2) = 0. It is now
natural, taking inspiration from the classical case in which the fluctuating work can be defined
as a function of the endpoints of the stochastic trajectories, to introduce a quantum energy
function, defined at time t f , as

EQ(λ, t f ) =
1
ħhλ

∫

γ(⊖,↑)

Σ[xcl(z), xq(z)]d Im z, (50)

and its analogue at the initial time t = 0, where γ(⊖,↑) is replaced by γ(⊖,↓). The difference
between the initial and final energy functions gives a characterization of the fluctuating work
at the trajectory level, and we can write the MGF as

MW (λ, t f ) =
1

Z(0)

∫

D′xcl/q(z)e
1
ħh

∫

γ(⊖,M)
Σ(z)d Im z

e
i
ħh

∫

γ(⊖,−)
M(z)d Re z

eλW (λ,t f ), (51)

where M(z) and Σ(z) are given in Eq. (49) and

W (λ, t f ) = EQ(λ, t f )− EQ(λ, 0). (52)

The specific choice of the symmetrization shown in Fig. 4 is essential to obtain a representation
of the MGF in which W (λ, t f ) depends only on the initial and final points of the trajectories. If
we had chosen a different contour instead of considering the contour in Fig. 4C and its lower
half γ⊖ as the domain of integration in the last of Eqs. (46), W (λ, t f ) would have acquired a
different functional dependence on the fields. A particularly interesting choice is the one used
by Funo and Quan [22] that we will summarize in the next section.
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Figure 5: Transforming the modified contour to the asymmetric one by changing
λ→−iλ. A) the modified contour. B) Asymmetric contour resulting from the trans-
formation. One can use this contour to define the work functional in terms of the
forward paths [22].

5.2 Connection with the results of Funo and Quan

To compare our approach with the one presented in Ref. [22], we assume as a first step that
the counting field is purely imaginary and replace λ → −iλ. This amounts to replacing the
contour γ with the flat one in Fig. 5B. Such a contour allows a calculation of the characteristic
function of work, which using path integrals can be written as

MW (−iλ, t f ) =
1

Z(0)

∫

D′xMD′xD′ ye−
i
ħh (S1[x]−S2[y])−

1
ħh SM [xM ], (53)

where S1, S2 and SM are the the actions of the forward, backward and γM branches in the
contour of Fig. 5B, respectively,

S1 =

∫ ħhλ

0

dsL [α(0), x(s)] +

∫ ħhλ+t f

ħhλ
dsL [α(s−ħhλ), x(s)] ,

S2 =

∫ t f

0

dsL [α(s), y(s)] +

∫ ħhλ+t f

t f

dsL
�

α(t f ), y(s)
�

,

SM =

∫ −ħhβ

0

dsLM [α(0), xM (s)] . (54)

The fields on the path integral (53) have boundary conditions x(ħhλ + t f ) = y(ħhλ + t f ),
xM (−ħhβ) = x(0), and xM (0) = y(0). These conditions are a direct consequence of the con-
tinuity of the field x(z) in the modified contour, since x , y, xM are its components in the con-
tour in Fig. 5B (analogously to the case of the contour in Fig. 5A in which they are given by
Eq. (41)). Note that differently from the contour in Fig. 5B, the Lagrangian in the forward and
backward branches are now different. This lays behind the definition of the work functional
as a difference between the forward and backward action in terms of the forward path x (for
details we refer to Ref. [22])

iλWλ[x] =
i
ħh
�

Sλ1 [x]− Sλ2 [x]
�

, (55)

17

https://scipost.org
https://scipost.org/SciPostPhys.15.5.209


SciPost Phys. 15, 209 (2023)

which after some manipulations makes it possible to express the work functional at the level
of quantum trajectories:

Wλ =

∫ t f

0

d t
1
ħhλ

∫ ħhλ

0

dsα̇(t)
∂ V [α(t), x(t + s)]

∂ α(t)
, (56)

where the integrand of the first integral acts as a quantum generalization of the instantaneous
power. This result is different from the representation (52) in which the work is expressed as
a function of the endpoints of the trajectories only.

5.3 Semiclassical limit

To analyze the semiclassical limit it is convenient to represent the path integral in the Hamil-
tonian convention, retaining the integral over the p fields until the end of the calculation. In
this case, we can repeat the procedure in Sec. 5.1 and obtain the same result as in Eq. (48)
but with the path integral now including the momentum variables Dpx/cl . The functions M
and Σ are replaced by (see App. G.1 for details)

Σh =K+m
�

p2
cl + p2

q

�

+ V [α, xcl + xq] + V [α, xcl − xq],

Mh =K+ 2
m

pcl pq − V [α, xcl + xq] + V [α, xcl − xq], (57)

where K = 2pq(d xcl/dz)−2xq(dpcl/dz). Since we expect the final energy to be a function of
xcl(t f ), pcl(t f ) in the classical limit, we will assume that the contribution of xq and pq is small
on the vertical branches. This intuition can be verified by keeping the nonlinear contributions
in xq and pq, and showing that they scale as an higher power of ħh (see App. G and [43]).

To first order in pq and xq, Eq. (57) leads
to Σh ≈ K + 2Ecl(z) = K + p2

cl(z)/m + 2V [α(t f ), xcl(z)]. Therefore, at this order, the path
integrals over xq and pq become trivial. Since the function K contains the first order of the
quantum fields, the path integral on γ(⊖,↑) is written as

∫

DxqDpqe
∫

γ(⊖,↑)
K(xcl ,xq ,pcl ,pq)dz

=
∏

ξ=p,q

δ[ξcl(z)− ξcl(t f )]. (58)

Hence, the only admissible classical paths in this limit are the ones in which xcl(z), pcl(z) in
the vertical branches are always equal to xcl(t f ), pcl(t f ). With this in mind, the path integral
over the classical fields can be easily carried out,

∫

DxclDpcl e
∫

γ(⊖,↑)
[ 1

m p2
cl+2V (α,xcl )]dz∏

ξ

δ[ξcl(z)− ξcl(t f )] = e
λ

�

p2
cl (t f )
2m +V [α(t f ),xcl (t f )]

�

. (59)

Combining this result with the one we obtain doing the analogous calculation on γ(⊖,↓) and
γ(⊖,M), we finally conclude that

W (λ, t f ) = Ecl(t f )− Ecl(0) +O(ħh). (60)

that is the classical version of Eq. (52). This result is independent of the counting field λ and
coincides with work fluctuations in classical driven isolated systems [36,71]. We obtained Eq.
(60) as a limit of Eq. (52), but we could have obtained it as the classical limit of Eq. (56) as
well. In the latter case it can be shown (see [22]) that the term inside the time integral in Eq.
(56) reduces to the instantaneous power output generated by the time-dependent driving and
Eq. (60) is recovered after carrying out the time integration.
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The first quantum correction to Eq. (60) can be obtained by keeping the quadratic
terms in xq and pq in the expansion of Σh. In this case we are left with a Gaussian inte-
gral over the quantum fields, which we computed explicitly in App. G.3. If we introduce
W (λ, t f ) =W0(t f )+λW1(t f )+λ2W2(t f )+O(λ3,ħh2) with W0(t f ) = Ecl(t f )− Ecl(0), we have

W1(t f ) = −
ħh2V ′′[α(t f ), xcl(t f )]

4m
+
ħh2V ′′[α(0), xcl(0)]

4m
(61)

W2(t f ) =
ħh2V ′′[α(t f ), xcl(t f )]

12m

�

p2
cl(t f )

2m
+

V ′2[α(t f ), xcl(t f )]

2V ′′[α(t f ), xcl(t f )]

�

−
ħh2V ′′[α(0), xcl(0)]

12m

�

p2
cl(0)

2m
+

V ′2[α(0), xcl(0)]
2V ′′[α(0), xcl(0)]

�

,

where W1 contributes to the variance of work, that corresponds to the second derivative of
the generating function with respect to λ. Moreover, the above results become exact for time-
dependent harmonic potentials (see App. H). In this case, we recover the results of Ref. [72].

5.4 Detailed balance and connections with the Wigner function

One of the main advantages of the representation of the work (51), (52) arising from the
contour in Fig. 4C is that while the information on the dynamics is all contained in the forward
branch γ(⊖,−), the λ dependence is isolated in the vertical branches. This separation between
the dynamical contribution to the action and the “thermodynamical” one allows us to solve,
at least formally, both contributions separately. This is not possible if we represent the work
as in Eq. (56), since the fields appearing in the definition of Wλ are the same appearing in
the dynamical action (i.e., the fields in the forward branch). We can exploit this advantage to
study a generalization of the concept of detailed balance at the level of quantum trajectories,
in a way that is conceptually similar to what we did in Sec. 4.3 in the case of the diagrammatic
approach to perturbation theory. As a first step, we introduce the formal solution to the path
integral on the vertical branch γ(⊖,↑), that is the last part of Eq. (48)

Eλ,t f
[y f

q , y f
cl ,α(t f )] =

1
λ

log

∫

D′xcl/qe
1
ħh

∫

γ(⊖,↑)
Σ[xcl (z),xq(z)]d Im z

, (62)

where the boundary conditions of the path integral are xq↑(0) = 0, xq↑(−ħhλ/2) = y f
q , and

xcl↑(−ħhλ/2) = y f
cl , and we made the dependence on α(t f ) explicit for convenience. Note

that, in a similar way to Eq. (41), xq↑(τ) and xcl↑(τ) are defined as the quantum and classical
fields on the branch γ(⊖,↑), by replacing z = t + iτ. Since the contribution of the other vertical
branch γ(⊖,↓),(⊖,M) is functionally the same, apart from replacing λ → −λ − β , we can write
Eq. (48) as

MW (λ, t f ) =
1

Z(0)

∫

d y f
q d y f

cl d y i
qd y i

cl
eλEλ[y

f
q ,y f

cl ,α(t f )]

e(β+λ)E−λ−β [y
i
q ,y i

cl ,α(0)]
U[y f

q , y f
cl , t f ; y i

q, y i
cl , 0] , (63)

with U representing the propagator from the initial values of the fields (y i
q, y i

cl) to the final

values (y f
q , y f

cl), that can be obtained by integrating the contribution of the forward branch in
Eq. (48) with the appropriate boundary conditions (see also Eqs. (62), (143), (144) of App. I
for details). Let us define the integrand of Eq.(48) for λ= 0 as

K(y f
q , y f

cl , y i
q, y i

cl) = Z(0)−1U[y f
q , y f

cl , t f ; y i
q, y i

cl , 0]e−βE−β [y
i
q ,y i

cl ,α(0)]. (64)
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It has a similar structure as the joint probability distribution of a classical system with a
two-dimensional configuration space spanned by (yq, ycl), prepared in a Gibbs state with
Hamiltonian E−β[y i

q, y i
cl ,α(0)], and following a stochastic evolution that brings the system

in (y f
q , y f

cl). However, since U is in general a complex number, K lacks a probabilistic inter-
pretation. Despite this, we can give an interpretation to Eq. (64) in terms of Wigner func-
tions [42,43,73–75]. Indeed it is possible to prove that
∫

d y i
qd y f

q K(y f
q , y f

cl , y i
q, y i

cl) = C

∫

dpidp fΠ(p f , y f
cl , pi , y i

cl)Wβ(p
i , y i

cl) , (65)

where Wβ is the Wigner representation of the initial state, Π is the Weyl transform of the
propagator (see App. I) and C is a normalization constant. It is known that Wβ and Π on
the r.h.s. of Eq. (65) reduce, respectively, to a classical Gibbs state distribution in the phase
space, and to a classical propagator that imposes the deterministic equations of motion in the
phase space [73]. We can use both the integrand of the l.h.s. and the integrand of the r.h.s. in
Eq. (65) to discuss the concept of detailed balance. Let us introduce K rev as the integrand of
Eq. (48) for λ = 0, but in the symmetrized version of the time-reversed contour γrev in Fig.
2D. In the time-reversed contour with λ = 0 the only vertical branch is placed at Rez = t f ,
and represents the initial preparation of the time-reversed trajectories. With this in mind, it is
easy to prove that

K(y f
q , y f

cl , y i
q, y i

cl)

K rev(−y i
q, y i

cl ,−y f
q , y f

cl)
=

e−βE−β [y
i
q ,y i

cl ,α(0)]

e−βE−β [−y f
q ,y f

cl ,α(t f )]
e−β∆F , (66)

where e−β∆F = Z(t f )/Z(0) and the minus sign in front of the quantum variables at the de-
nominator comes from the fact that the forward and backward branches are inverted in the
time-reversed contour. As discussed above, K is not necessarily real and has no operational
meaning in terms of measurements. On the contrary, if we choose y i

q = y f
q = 0 it represents

the joint probability distribution P(y f
cl , y i

cl) in a two-point measurement process of the posi-

tion operator, with initial and final measured values given by y i
cl and y f

cl (see App. I). In the
classical limit, this reduces to

P(y f
cl , y i

cl)

Prev(y i
cl , y f

cl)
= eβ[V (α(t f ),y

f
cl )−V (α(0),y i

cl )]−β∆F +O(ħh) , (67)

that is, a detailed balance condition for the exchanges of the potential energy of the system.
This is expected since in the initial measurement there is no information on the initial mo-
mentum of the particle. To obtain the classical form of the detailed balance in the phase space
representation, we have to rely on the r.h.s. of Eq. (65) instead. Indeed, even if the Wigner
function is non-positive in general, it is in the classical limit, where we obtain

Π(p f , y f
cl , pi , y i

cl)Wβ(p
i , y i

cl)

Πrev(−pi , y i
cl ,−p f , y f

cl)W
rev
β
(−p f , y f

cl)
=

Wβ(pi , y i
cl)

W rev
β
(−p f , y f

cl)
≈ eβ(W0−∆F) +O(ħh) , (68)

where W0 is given by Eq. (60), in analogy with the classical results [71], and W rev
β

denotes
the Wigner function associated to the initial state of the time-reversed trajectory. The last
equality also follows from the equivalence of the Wigner function and classical Gibbs state in
the classical limit [73]. The minus signs in front of the final momentum has been added for
the sake of completeness, in our calculations the Hamiltonian is always quadratic in p and the
change of sign becomes irrelevant.
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6 Conclusions

We used the modified Keldysh contour as a versatile tool to investigate the perturbative ap-
proach to MGFs and their semiclassical limit. The symmetry property of the extended contour
proved instrumental in showing the consistency of the perturbative expansion, ensuring that
the fluctuation theorem is satisfied at every order in the expansion of the MGF. We showed
that the modified contour technique is particularly suitable for diagrammatic approaches, and
we used it to derive the work distribution in a switch on/off scenario, showing the work to
be distributed as a linear combination of rescaled Poisson processes. Each of those processes
represent a channel in which a discrete package of energy is exchanged between the system
and the experimental driving apparatus. To investigate the semiclassical limit of the MGF, we
expressed it in terms of a Feynman path integral and discussed how the form of the action
depends on the choice of the modified contour. By symmetrizing the contour, we used the
Keldysh rotation to write the action in terms of the classical and quantum fields, in a general-
ization of the Keldysh rotation approach. Our technique allows for a discussion of the detailed
balance conditions, both at the level of the diagrammatic and the path integral approaches. In
the former case, we show how the fluctuation theorem can be seen as resulting from a stronger
detailed balance symmetry at the level of the single diagrams, while in the latter case we pro-
posed a way to generalize the detailed balance to quantum trajectories and showed how this
approach allows us to make contact with the Wigner function and with classical phase space
approaches to thermodynamics. A interesting future perspective would be to generalize our
approach to many-body open quantum systems [3,20] and assess the advantages of our new
contour. This should be particularly relevant for preserving thermodynamic consistency while
calculating work and heat counting statistics using known approximations schemes such as
GW or random phase (RPA) [46,76,77]. To conclude, we expect that generalizing our formal-
ism to the case in which the system is in contact with many baths at different temperatures
will present a very interesting challenge, since in this extended scenario the temperature is
not unique, nor is the counting field, considering that one is typically interested in measur-
ing many different thermodynamic fluxes (e.g. the different heat flows in each one of the
reservoirs). We expect that studying in detail the many baths scenario could help in bridg-
ing the non-equilibrium GF formalism and the modified contour formalism with other general
approaches to thermodynamic consistency in stochastic thermodyanmics [59].
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A Interaction picture on the modified contour

The standard approach to time-dependent perturbation theory is based on the interaction pic-
ture [54]. We start by proving Eq. (21). The derivative of Uγ(z, 0) in respect to z reads

d
dz

Uγ(z, 0) = −
i
ħh

Hγ(z)Uγ(z, 0) . (69)

The preceding equation can be shown by doing an infinitesimal displacement of the generator
and expanding to first order

Uγ(z + ε, 0)≡ Tγ
�

e−
i
ħh

∫ z+ε
γ

Hγ(z)dz}=
�

I− i
ε

ħh
Hγ(z)
�

Tγ
�

e−
i
ħh

∫ z
γ

Hγ(z)dz}+O(ε2)
�

I− i
ε

ħh
Hγ(z)
�

Uγ(z, 0) +O(ε2) . (70)

Let us now compute the derivative of the right hand side of Eq. (21) and verify that is the same
as Eq. (70).

d
dz

Uγ0(z, 0)Ũγ,1(z, 0) = −iH0(z)Uγ0(z, 0)Ũγ,1(z, 0)− iχ(z)Uγ0(z, 0)H̃1(z)Ũγ,1(z, 0)

= −iH0(z)Uγ0(z, 0)Ũγ,1(z, 0)− iχ(z)Uγ0(z, 0)H̃1(z)Uγ0(0, z)Uγ0(z, 0)Ũγ,1(z, 0)

= −iH0(z)Uγ0(z, 0)Ũγ,1(z, 0)− iχ(z)H1(z)Uγ0(z, 0)Ũγ,1(z, 0) , (71)

and the last term is equal to the r.h.s. of (69) after regrouping H0(z) and χ(z)H1(z). Note
now that the numerator of Eq. (12) in terms of Uγ(z, 0) is simply given by

Tr
h

Tγ
�

e−
i
ħh

∫

γ
Hγ(z)dz	
i

= Tr[Uγ(−iħhβ , 0)] , (72)

and we can use Eq. (21) to write

Tr[Uγ(−iħhβ , 0)] = Tr[Uγ0(−iħhβ , 0)Ũγ,1(−iħhβ , 0)] = Tr[e−βH0 Ũγ,1(−iħhβ , 0)] . (73)

After expanding Ũγ,1 as a contour ordered exponential and dividing by the proper normaliza-
tion, we obtain Eq. (23) of the main text.

B Green’s functions and higher order correlation functions

A generic two-point correlation function on the contour in the Schrodinger picture is written
as

CA1,A2
(z1, z2)≡ 〈Tγ
�

A(H)1 (z1)A
(H)
2 (z2)
	

〉

= Θγ(z1 − z2)〈A
(H)
1 (z1)A

(H)
2 (z2)〉+Θγ(z2 − z1)〈A

(H)
1 (z2)A

(H)
2 (z1)〉

= Θγ(z1 − z2)Tr[Uγ(−iħhβ , z1)A1(z1)Uγ(z1, z2)A2(z2)Uγ(z2, 0)]

+Θγ(z2 − z1)Tr[Uγ(−iħhβ , z2)A2(z2)Uγ(z2, z1)A1(z1)Uγ(z1, 0)] . (74)

To ease the calculations we rewrite the two-point correlation function as

CA1,A2
(z1, z2) =Θγ(z1 − z2)Tr[Uγ(−iħhβ , 0)Uγ(0, z1)A1(z1)Uγ(z1, z2)A2(z2)Uγ(z2, 0)]

+Θγ(z2 − z1)Tr[Uγ(−iħhβ , 0)Uγ(0, z2)A2(z2)Uγ(z2, z1)A1(z1)Uγ(z1, 0)]. (75)
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To take the the derivatives with respect to z1 and z2, we use the equations bellow which come
from (70)

d
dz1

Uγ(z1, z2) = −
i
ħh

Hγ(z1)Uγ(z1, z2)

d
dz1

Uγ(z2, z1) =
i
ħh

Uγ(z2, z1)Hγ(z1). (76)

Using above equations we can take the derivative of (75) to obtain the equations of motion
for the two-point correlation function

∂

∂ z1
CA1,A2

(z1, z2) =
i
ħh
Θγ(z1 − z2)Tr[Uγ(−iħhβ , 0)Uγ(0, z1)[Hγ(z1), A1(z1)]Uγ(z1, z2)A2(z2)Uγ(z2, 0)]

+
i
ħh
Θγ(z2 − z1)Tr[Uγ(−iħhβ , 0)Uγ(0, z2)A2(z2)Uγ(z2, z1)[Hγ(z1), A1(z1)]Uγ(z1, 0)]

+δ(z1 − z2)Tr
�

Uγ(−iħhβ , 0)Uγ(0, z1)A1(z1)Uγ(z1, z2)A2(z2)Uγ(z2, 0)
	

−δ(z1 − z2)Tr
�

Uγ(−iħhβ , 0)Uγ(0, z2)A2(z2)Uγ(z2, z1)A1(z1)Uγ(z1, 0)
	

,

∂

∂ z2
CA1,A2

(z1, z2) =
i
ħh
Θγ(z1 − z2)Tr[Uγ(−iħhβ , 0)Uγ(0, z1)A1(z1)Uγ(z1, z2)[Hγ(z2), A2(z2)]Uγ(z2, 0)]

+
i
ħh
Θγ(z2 − z1)Tr[Uγ(−iħhβ , 0)Uγ(0, z2)[Hγ(z2), A2(z2)]Uγ(z2, z1)A1(z1)Uγ(z1, 0)]

−δ(z1 − z2)Tr
�

Uγ(−iħhβ , 0)Uγ(0, z1)A1(z1)Uγ(z1, z2)A2(z2)Uγ(z2, 0)
	

+δ(z1 − z2)Tr
�

Uγ(−iħhβ , 0)Uγ(0, z2)A2(z2)Uγ(z2, z1)A1(z1)Uγ(z1, 0)
	

. (77)

More general correlation functions can be obtained by including more operators in the
trace (74). For instance, we introduce the n-operator correlation function as

CA1,..An
(z1, ...zn) = Tr
h

Tγ
�

e−
i
ħh

∫

γ
Hγ(z)dzA1(z1)...An(zn)

	

i

. (78)

In this manuscript we are mainly interested in the case in which the operators Ai are products
of bosonic or fermionic creation and annihilation operators. However, the equations of motion
(77) can be solved only in specific cases, for instance when Hγ is quadratic and A1,2 are single
creation/annihilation operators. At the contrary, when Hγ is not quadratic, the equations (77)
are not closed in GA1,A2

and depend on higher order correlation functions, giving rise to the
Martin-Schwinger hierarchy [20].

B.1 Calculation of the non-interacting Green’s functions

Using the results of App. B it is easy to find that for a bosonic operator a governed by the
Hamiltonian H0 =ωa†a, we have

−i
d

dz′
〈Tγ
�

a(z)a†(z′)
	

〉= 〈Tγ
�

a(z)[ωa†(z′)a(z′), a†(z′)]
	

〉+ i[a(z), a†(z′)]δ(z − z′)

=ω〈Tγ
�

a(z)a†(z′)
	

〉+ iδ(z − z′) , (79)

where theδ-term comes from the fact that, if z′ > z, the ordering operator switches the position
of a and a†. Substituting the definition of the Green’s function into the equation above, we
have for a bosonic Green’s function,

d
dz′

G(0)b (z, z′) = iωG(0)b (z, z′) + iδ(z − z′). (80)
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Table 1: The values of the contour propagator G(0)(z1, z2) for selected values of the
vertex time arguments.

z2 ∈ γ+ z2 ∈ γ−
z1 ∈ γ+ G(0)T̄ G(0)>

z1 ∈ γ− G(0)< G(0)T

We can derive the same equation for a fermionic operator c as follows,

−i
d

dz′
〈Tγ
�

c(z)c†(z′)
	

〉= 〈Tγ
�

c(z)[ωc†(z′)c(z′), c†(z′)]
	

〉+ i[c(t ′), c†(t ′)]δ(z − z′)

=ω〈Tγ
�

c(z)c†(z′)
	

〉+ iδ(z − z′), (81)

which is formally identical to Eq. (80). The solution of Eq. (80) for a generic GF reads

G(0)b, f (z, z′) = −ie−iω(z−z′)
�

A
�

Θγ(z − z′) +Θγ(z
′ − z)
�

+Θγ(z − z′)
	

. (82)

The constant A in the equation above can be determined by means of the boundary conditions
[20]: if we replace any of the arguments on the contour with the earliest and latest instants on
the contour, the two results should be the same (for bosons) or differ by a sign (for fermions).
For a two point GF we thus obtain

G(0)b, f (−iħhβ , t ′) = ±G(0)b, f (0, t ′),

G(0)b, f (t,−iħhβ) = ±G(0)b, f (t, 0), (83)

which leads to Eq. (27) of the main text. When λ = 0 and t = t ′, Eqs. (28) represent the
components of the non-interacting density matrix [40]. Choosing instead both time arguments
on γ− or γ+ we obtain the time ordered and anti-time ordered GF

G(0)Tb, f (t−, t ′−) = −ie−iω(t−t ′)
�

± nΘ(t ′ − t) + n̄Θ(t − t ′)
�

,

G(0)T̄b, f (t+, t ′+) = −ie−iω(t−t ′)
�

± nΘ(t − t ′) + n̄Θ(t ′ − t)
�

, (84)

where Θ is the Heaviside step function on the real axis. These functions coincide with the
conventional Green’s functions. A summary of the main GF components according to the
position of the arguments on the contour is given in Table 1. It is possible to consider more
general components by choosing the arguments in the new branches of the contour, e.g., a
mixed non-interacting GF G(0)b, f (t, iτ) for t ∈ γ± and iτ ∈ γ↑. These new GFs play no role
in discussing the work statistics in the switching on/off scenario (19), but are relevant when
considering the more general assumption (20). We will discuss them more in detail in App. D.

C Examples

Let us consider a simple Holstein coupling model, in which a fermionic energy level is shifted
by an amount that depends on the position of a quantum harmonic oscillator. The Hamiltonian
of this model is given by

H = ħhω f c†c +ħhωba†a+ħhχωχ c†c(a+ a†). (85)

The Feynman diagram contributing to the second-order expansion of Eq. (29) for this potential
is represented in Fig. 3A. The only other connected diagram contributing at second order is
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Figure 6: Dumbbell diagrams appearing in the calculations of the work statistics for
the Hamiltonian (85).

represented in Fig. 6A, with the associated diagrams for the components given in Fig. 6B.
We thus have to take in account a total of 8 diagrams, which we label as d = 1, . . . , 4 for the
diagrams in Fig. 3B and d = 5, . . . , 8 for the diagrams in Fig. 6. The diagrams d = 1,2, 5,6
depend only on time-ordered and anti-time-ordered Green’s functions, that according to the
definition of Ed given in Sec. 4.2 have Ed = 0. Therefore, by inspecting the expression for
the cumulant generating function in (33) we realize that these diagrams give a vanishing
contribution since (eλEd − 1) = 0.

At the contrary, the three propagators in the third and fourth diagrams (d = 3, 4) in Fig. 3
give a non-zero contribution to the cumulant generating function. Starting directly from Eq.
(32), and using the notation G(0)b, f (t1, t2)|λ=0 to indicate a GF in which λ has been set to 0, we
end up with

C (2)W (λ, t f )d=3,4 (86)

= iχ2ω2
χ

∫ t f

0

∫ t f

0

d t1d t2G(0)<f (t1, t2)G
(0)>
f (t2, t1)[G

(0)>
b (t1, t2)− G(0)>b (t1, t2)|λ=0]

+ iχ2ω2
χ

∫ t f

0

∫ t f

0

d t1d t2G(0)<f (t1, t2)G
(0)>
f (t2, t1)[G

(0)<
b (t1, t2)− G(0)<b (t1, t2)|λ=0] ,

with a prefactor −1
2 × 2 × −1 × i3 × −1 = i in which −1

2 appears in every second order
diagram, 2 comes from the freedom of exchanging the two vertices in fig 3, −1 from the single
+ in Fig. 3, i3 from the definition of many body Green’s function (see Eqs. (25) and (30)) and
−1 is the factor prescribed by the Wick theorem (see for instance [20]). The energy jumps for
these diagrams d = 3,4 are E3 = −ħhωb and E4 = ħhωb, respectively, as we can verify directly
by replacing the components in Eq. (86),

C (2)W (λ, t f )d=3,4 = iχ2ω2
χ

∫∫ t f

0

−i(1− n f (ω f ))[in f (ω f )][−i(1+ nb(ωb))e
ħhωbλe−iωb(t1−t2)]d t1d t2 (87)

+iχ2ω2
χ

∫∫ t f

0

−i(1− n f (ω f ))[in f (ω f )][−inb(ωb)e
−ħhωbλeiωb(t1−t2)]d t1d t2
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−iχ2ω2
χ

∫∫ t f

0

[−i(1− n f (ω f ))[in f (ω f )][−i(1+ nb(ωb))e
−iωb(t1−t2) − inb(ωb)e

iωb(t1−t2)]d t1d t2

=
2χ2ω2

χ

ω2
b

(1− cos
�

ωb t f

�

)[n f (ω f )− n f (ω f )
2][(1+ nb(ωb))(e

ħhωbλ − 1) + nb(e
−ħhωbλ − 1))] .

By direct comparison with Eq. (33), we find

Γ3(t f ) = γωb
(t f )[n f (ω f )− n2

f (ω f )][1+ nb(ωb)] ,

Γ4(t f ) = γωb
(t f )[n f (ω f )− n2

f (ω f )]nb(ωb) , (88)

with γωb
(t f ) =

2χ2ω2
χ

ω2
b
[1−cos
�

ωb t f

�

]. The contributions of the diagrams d = 7,8 represented

in Fig. 6 are the same as the ones computed for d = 3,4 a part from the prefactor (−n2
f + n f )

being exchanged with n2
f . Summing all the contributions, we obtain

C (2)W (λ, t f ) =
∑

±
γωb
(t f )n f (ω f )nb(∓ωb)(e

±ħhωbλ − 1) . (89)

In App. E we compute the generating function of the work exactly, and check that the expansion
up to the second order in χ indeed leads back to Eq. (89).

Another simple application is the anharmonic oscillator with Hamiltonian

H = ħhωba†a+ħhχωχ(a†2 + a2) . (90)

As usual, we consider the system as initialized in a Gibbs state of the unperturbed Hamiltonian,
switch on the anharmonic term at time zero and perform energy measurements at times 0 and
t, before switching on and after switching off the perturbation. The vertex in Eq. (90) is given
by two inward or outward lines, that at second order produces a single diagram (a loop with
two bosonic propagators between time t1 and t2). The contribution of such a diagram gives
the cumulant generating function at second order

C (2)W (λ, t f ) = 2γ2ωb
(t f )[(e

−2ħhλωb − 1)n2
b + (1+ nb)

2(e2ħhλωb − 1)] . (91)

In the notation of Eq. (33), this cumulant generating function consists of two rescaled Pois-
sonian energy jumps with energies equal to Ed = ±2ħhωb and rates given by γ2ωb

(t f )n2
b and

γ2ωb
(t f )(1+ nb)2, respectively.

D The role of the other GF components on the contour

When writing the contour GF in its component we also need to consider situations in which
one of the arguments is in the vertical track γ↑. We can define a non-interacting GF with both

arguments on the vertical track, G(0)↑↑b, f (r, r ′)≡ G(0)b, f (ir, ir ′) with ir, ir ′ ∈ γ↑. As a consequence
we have

G(0)↑↑b, f (r, r ′) = −ieω(r−r ′)
�

± nΘ(r ′ − r) + n̄Θ(r − r ′)
�

. (92)

Another possibility is represented by the case in which one argument is on the horizon-
tal branches and one on γ↑. We can identify four different cases G(0)↑+b, f (r, t) = G(0)b, f (ir, t),

G(0)↑−(r, t) = G(0)b, f (ir, t), G(0)+↑b, f (t, r) = G(0)b, f (t, ir), G(0)−↑b, f (t, r) = G(0)b, f (t, ir).
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We explicitly write this four new components below

G(0)↑+b, f (r, t ′) = ∓ineω(r−λ)+iω(t f −t ′); G(0)↑−b, f (r, t ′) = −in̄eωr+iω(t ′−t f );

G(0)+↑b, f (t, r ′) = −in̄e−ω(r−λ)−iω(t f −t ′); G(0)−↑b, f (t, r ′) = ∓ine−ωr−iω(t ′−t f ). (93)

This definitions pave the way to an application of the theory to protocols beyond the switching
on/off paradigm in which χ(z) is defined as in Eq. (20). For a generic integral of a function
in the modified contour we have
∫

γ

χ(z) f (z)dz =

∫

γ+

χ(z) f (z)dz +

∫

γ−

χ(z) f (z)dz +

∫

γ↑

χ(z) f (z)dz

=

∫ t f

0

χ(t) f−(t)d t −
∫ t f

0

χ(t) f+(t)d t + iχ(t f )

∫ ħhλ

0

f↑(r)dr. (94)

where f↑, f± are the components of the function f in the modified contour. Notice that the
contribution of the downward and Matsubara tracks is absent, since we are implicitly assuming
χ(z) = 0 on γM ,↓ as prescribed by the protocols (19) and (20). The same decomposition of the
integral can be done for the equations arising from the perturbative expansion, like Eq. (30).

To make the calculations simpler, let us carry them on in the case in which the switching
function is given by

χ(z) =











0 for z ∈ γK ,

0 for z ∈ γM ,↓,

χ for z ∈ γ↑,
(95)

this case correspond to a system in which the HamiltonianωχH1 is quenched and then imme-
diately measured (without leaving the system enough time to evolve). We can compute the
generating function for the case of the Hamiltonian (85) discussed in the main text. The dia-
grams involved are the same (see A panels of Fig. 3 and 6) but we integrate over the vertical
branch, and the only Green’s function appearing in the calculations is G(0)↑↑b, f . The integrals in
Eq. (30) reduce to

C (2)W (λ, t f )d=1 = iχ2ω2
χ

∫ λ

0

∫ λ

0

dr1dr2G(0)↑↑b (r1, r2)G
(0)↑↑
f (r1, r2)G

(0)↑↑
f (r2, r1)

= −χ2ω2
χ

∫ λ

0

∫ λ

0

dr1dr2(−n f n̄ f )e
ωb(r1−r2)[nbΘ(r2 − r1) + n̄bΘ(r1 − r2)]

= χ2ω2
χn f n̄ f [nb

ħhλωb + e−ħhλωb − 1

ω2
b

+ n̄b
−ħhλωb + eħhλωb − 1

ω2
b

]

= χ2ω2
χ

n f − n2
f

ω2
b

[nb(e
−ħhλωb − 1) + (1+ nb)(e

ħhλωb − 1)−ħhλωb]. (96)

Where we denoted with d = 1 the contribution of the diagram in Fig.3A with the value of the
vertex variables to be chosen in γ↑. The contribution of the dumbbell diagram is instead given
by
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M (2)W (λ, t f )d=2 = −iχ2ω2
χ

∫ λ

0

∫ λ

0

dr1dr2G(0)↑↑b (r1, r2)G
(0)↑↑
f (r1, r+1 )G

(0)↑↑
f (r2, r+2 )

= χ2ω2
χ

∫ λ

0

∫ λ

0

dr1dr2n2
f eωb(r1−r2)[nbΘ(r2 − r1) + n̄bΘ(r1 − r2)]

= χ2ω2
χn2

f [nb
ħhλωb + e−ħhλωb − 1

ω2
a

+ n̄b
−ħhλωb + eħhλωb − 1

ω2
b

]

=
χ2ω2

χn2
f

ω2
b

[nb(e
−ħhλωb − 1) + (1+ nb)(e

ħhλωb − 1)−ħhλωb]. (97)

The cumulant generating function at second order can be obtained by summing the two con-
tributions in (96) and (97).

E Work statistics in the dispersive coupling case: non-perturbative
approach

The dispersive coupling Hamiltonian is common to several models in open quantum systems,

H = ħhωba†a+ħhω f c†c +ħhχωχ c†c(a† + a) (98)

where a and c denote a bosonic and fermionic annihilation operator, respectively. The
fermionic operators in the Hamiltonian (98) can be expressed as Pauli matrices acting over
a two dimensional Hilbert space, by defining σ+ = c†, σz = 2c†c − 1. The anticommutation
relations {σ−,σ+}= {c, c+}= 1 are preserved and we obtain

H = ħhωba†a+ħh
�

σz

2
+

1
2

�

(ω f +χωχa† +χωχa). (99)

The Hamiltonian commutes with σz , so we can write the time evolution operator as

U(t, 0) = T {e−
i
ħh

∫ t
0 H(s)ds}=
�

e−
i
ħh (ħhωba†a+ħhω f +ħhχωχa†+ħhχωχa)t 0

0 e−iωba†at

�

. (100)

The top-left element of the matrix (100) is the same as from a driven harmonic oscillator. We
can define Hb = ħhωb(a†a+ 1/2) and

〈1|e−
i
ħh Ht |1〉= e−i(ω f −ωb)t e−

i
ħh Hb t−iχωχ (a+a†)t , (101)

the exponential above can be written in terms of displacement operators [78]

e−
i
ħh Hb t−iχωχ (a+a†)t = e

i
ħhθ (t)D[δ(t)]e−

i
ħh Hb t , (102)

where θ (t) is a phase factor and

D[δ(t)] = exp
�

(δ(t)a† −δ∗(t)a)
	

, (103)

is the displacement operator of argument δ(t). The time dependent parameter δ(t) is con-
nected to the classical solution for the Hamilton equations for the variable α(t) = x(t)+ip(t)p

2
,

with α(0) = 0. This variable evolve as α(t) = αe−iωt+δ(t), where δ(t) =
χωχ
ωb
(1− e−iωt). For
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counting the work statistics in the sudden quench scenario we have the following generating
function

MW (λ, t f ) =
1
Z

Tr[eλH0 U(t f , 0)e−(λ+β)H0 U†(t f , 0)], (104)

so that it is clear using Eq. (100) that we have to evaluate the tilted displacement
D[δ(t f ),λ] = eλH0 D[δ(t f )]e−λH0 . Since eλH0 e−λH0 = 1 we can bring the two matrices at
the exponent in the displacement operator and obtain

D[δ(t f ),λ] = exp
�

δ(t f )e
λH0 a†e−λH0 −δ∗(t f )e

λH0 ae−λH0
�

= exp
�

δ(t f )e
ħhλωb a† −δ∗(t f )e

−ħhλωb a
�

. (105)

Using Eq. (104)) we find

MW (λ, t f ) =
1
Z

Tr[U†(t f , 0)Uλ(t f , 0)

�

e−ħhβωba†ae−ħhβω f 0
0 e−ħhβωba†a

�

]

=
1
Z

Tr[

�

D[−δ(t f )]D[δ(t f ),λ] 0
0 1

��

e−ħhβωba†ae−ħhβω f 0
0 e−ħhβωba†a

�

], (106)

We are interested in a weak perturbation expansion of equation above, that is δ(t f ) << ωb,
so we can Taylor expand D[−δ(t f )]D[δ(t f ),λ] keeping only the terms with the same number
of a and a† operators, the others averaging to 0:

D[−δ(t f )]D[δ(t f ),λ] = 1+ |δ(t f )|2[(eħhλωb − 1)aa† + (e−ħhωbλ − 1)a†a] +O(χ3). (107)

The final expression for M(λ, t) thus reads

MW (λ, t f ) =
1
Z f
(1+ e−ħhβω f {1+ |δ(t f )|2[(eħhλωb − 1)(1+ nb) + (e

−ħhωbλ − 1)nb]}) (108)

=1+ 4
χ2ω2

χ

ω2
b

sin2
�ωb t f

2

�

n f [(e
ħhλωb − 1)(1+ nb) + (e

−ħhωbλ − 1)nb], (109)

computing the logarithm to find the expansion for the cumulant generating function and noting
that 2 sin2(

ωb t f
2 ) = 1− cos
�

ωb t f

�

we obtain and confirm the result of the Eq. (89).

F Summation over the momentum variables in the path integral

To write the path integral in terms of the position coordinates we consider the quantity
S = i/ħhS in the exponent of the Eq. (39). From the main text we have

S = i
ħh

∫

γ

{
d
dz

x(z)p(z)−
p(z)2

2m
− V [x(z)]}dz, (110)

where for ease of notation we exclude the parameter α from the argument of V . Depending
on the branch we are considering the integration of the momentum variables leads to different
results. Adopting discrete notation, the exponent of the path integral reads

on γ− → −
i
ħh

p2(t)
2m

∆t +
i
ħh

d x(t)
d t

p(t)∆t; on γ+ →
i
ħh

p2(t)
2m

∆t −
i
ħh

d x(t)
d t

p(t)∆t; (111)

on γ↑ →
p2
↑(τ)

2m
∆τ− i

d x↑(τ)

dτ
p↑(τ)∆τ; on γ↓,γM → −

p2
↓,M (τ)

2m
∆τ+ i

d x↓,M (τ)

dτ
p(τ)∆τ ,
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where we have assumed z = t+ iτ. After eliminating the momentum variables from the action
of the path integral via gaussian integration, the new exponents on the different branches of
the contour read

on γ− →
i

2ħh
m
�

d x(t)
d t

�2

∆t; on γ+ → −
i

2ħh
m
�

d x(t)
d t

�2

∆t;

on γ↑ →
1
2

m
�

d x(τ)
dτ

�2

∆τ; on γ↓,γM → −
1
2

m
�

d x(τ)
dτ

�2

∆τ.

(112)

The terms above give the contribution to exponent in the path integral and can be written
respectively like iT,−iT, T,−T with T the kinetic energy. After going back to the contour
variable z this kinetic contribution sums with the potential energy and gives

on γ− → (iT − iV )∆t = (iT − iV )∆z = iLdz;

on γ+ → (−iT + iV )∆t = (−iT + iV )(−∆z) = iLdz; (113)

on γ↑ → (T + V )∆τ= −i(T + V )∆z = iL↑dz;

on γ↓,γM →−(T + V )∆τ= i(T + V )(−∆z) = iL↓/M dz.

In total we can write the exponent of the path integral as

S = i
ħh

∫

γ

Lγ
�

x(z), x ′(z)
�

dz, (114)

where L is defined on the contour as

Lγ(z) =
¨

L[x(t), ẋ(t)] for z ∈ γK ,

L↑,L↓,LM for z ∈ γ↑,↓,M .
(115)

G Semiclassical limit

G.1 Hamiltonian action in the modified contour

The same manipulations done to obtain (46) can also be done before the integration of the
momentum variables, at the level of the action (40):

i
ħh

S=
i
ħh

∫

γ

dz
§

d x(z)
dz

p(z)−Hγ[x(z), p(z)]
ª

(116)

=
i
ħh

∫

γ⊖

dz
§

d x⊖(z)
dz

p⊖(z)−Hγ[x⊖(z), p⊖(z)]
ª

+
i
ħh

∫

γ⊕

dz
§

d x⊕(z)
dz

p⊕(z)−Hγ[x⊕(z), p⊕(z)]
ª

=
i
ħh

∫

γ⊖

dz
§

d x⊖(z)
dz

p⊖(z)−Hγ[x⊖(z), p⊖(z)]
ª

−
i
ħh

∫

γ⊖

dz∗
§

d x⊕(z∗)
dz∗

p⊕(z
∗)−Hγ[x⊕(z

∗), p⊕(z
∗)]
ª

=
i
ħh

∫

γ⊖

d Re z
§

d x⊖(z)
dz

p⊖(z)−
d x⊕(z∗)

dz
p⊕(z

∗)−
�

Hγ[x⊖(z), p⊖(z)]−Hγ[x⊕(z
∗), p⊕(z

∗)]
	

ª

−
1
ħh

∫

γ⊖

d Im z
§

d x⊖(z)
dz

p⊖(z)−
d x⊕(z∗)

dz
p⊕(z

∗)−
�

Hγ[x⊖(z), p⊖(z)] +Hγ[x⊕(z
∗), p⊕(z

∗)]
	

ª

,

where we used that in the vertical branches, in which d Im z ̸= 0, we have d
dz∗ = −

d
dz , while

in the horizotontal branches, in which d Re z ̸= 0, we have d
dz∗ =

d
dz . To have an expression of

the action in terms of the quantum and classical components of the fields we apply the linear
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transformation (47) and substitute xcl(z) = 1/2[x⊖(z)+x⊕(z∗)], xq(z) = 1/2[x⊖(z)−x⊕(z∗)],
pq(z) = 1/2[p⊖(z)− p⊕(z∗)] and pcl(z) = 1/2[p⊖(z) + p⊕(z∗)], therefore

d x⊖(z)
dz

p⊖(z)−
d x⊕(z∗)

dz
p⊕(z

∗) =
d xcl(z)

dz
[p⊖(z)− p⊕(z

∗)] +
d xq(z)

dz
[p⊖(z) + p⊕(z

∗)] . (117)

From it, using again Eq. (47), we obtain an expression only in terms of the quantum and
classical components

d x⊖(z)
dz

p⊖(z)−
d x⊕(z∗)

dz
p⊕(z

∗) = 2
d xcl(z)

dz
pq(z) + 2

d xq(z)

dz
pcl(z) . (118)

If we replace the equation above in Eq. (116) we obtain the action in terms of the quantum
and classical variables

i
ħh

S =
i
ħh

∫

γ⊖

d Rez
§

2
d xcl(z)

dz
pq(z) + 2

d xq(z)

dz
pcl(z)
ª

(119)

−
i
ħh

∫

γ⊖

d Rez
§

Hγ[xcl(z) + xq(z), pcl(z) + pq(z)]−Hγ[xcl(z)− xq(z), pcl(z)− pq(z)]
ª

−
1
ħh

∫

γ⊖

d Im z
§

2
d xcl(z)

dz
pq(z) + 2

d xq(z)

dz
pcl(z)
ª

+
1
ħh

∫

γ⊖

d Im z
§

Hγ[xcl(z) + xq(z), pcl(z) + pq(z)] +Hγ[xcl(z)− xq(z), pcl(z)− pq(z)]
ª

.

G.2 Expansion of the action with respect to the fields

In this section, we perform the expansion of the action (119) under the assumptions that the
quantum fields admit an expansion in powers of ħh. Now we can expand both the integrals
over the quantum variables xq and pq up to the second order thus for the horizontal track we
will have

Hγ[xcl(z) + xq(z), pcl(z) + pq(z)]−Hγ[xcl(z)− xq(z), pcl(z)− pq(z)]

= 2
pcl pq

m
+ V [xcl(z) + xq(z)]− V [xcl(z)− xq(z)]≈ 2

pcl pq

m
+ 2xq

∂

∂ xcl
V [xcl] , (120)

and for the vertical branches

Hγ[xcl(z) + xq(z), pcl(z) + pq(z)] +Hγ[xcl(z)− xq(z), pcl(z)− pq(z)]

= 2Hγ[xcl(z), pcl(z)] +
p2

q(z)

m
+ x2

q (z)
∂ 2

∂ x2
cl

V [xcl] . (121)

After integrating by parts Eq. (119) and replacing the expansions (120) and (121) we obtain

i
ħh

S =
2i
ħh

∫

γ⊖

d Re z
§

d xcl(z)
dz

pq(z)−
dpcl(z)

dz
xq(z)−
� pqpcl

m
+ xq

∂

∂ xcl
V [xcl]
�ª

(122)

− 2
ħh

∫

γ⊖

d Im z

�

d xcl(z)
dz

pq(z)−
dpcl(z)

dz
xq(z)−

�

Hγ[xcl(z), pcl(z)] +
p2

q(z)

2m
+

1
2

x2
q (z)

∂ 2

∂ x2
cl

V [xcl]

�

�

.

Notice that the boundary terms of the integration by parts vanish as an effect of the boundary
conditions xq(t f ) = xq(iħhβ/2) = 0. Let us decompose the integral over the vertical lines
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(
∫

γ⊖
d Im z) in two separate contributions given by the vertical tracks γ(⊖,↑) and γ(⊖,↓),(⊖,M)

where we write the components of the quantum and classical fields as

xcl/q(z) =

¨

xcl/q↑(τ) for z = t f + iτ ∈ γ(⊖,↑),

xcl/q↓(τ) for z = iτ ∈ γ(⊖,↓),(⊖,M).
(123)

Note that in (41), we identified the components of the branches γM and γ↓ by xM (τ) and
x↓(τ), respectively. However, here on the symmetrized contour, for ease of calculations, we
have denoted the fields on the branches γ(⊖,↓) and γ(⊖,M) by xcl/q↓(τ). In this way we will have

−
2
ħh

∫

γ⊖

d Im z

¨

d xcl(z)
dz

pq(z)−
dpcl(z)

dz
xq(z)−

�

Hγ[xcl(z), pcl(z)] +
p2

q(z)

2m
+

1
2

x2
q (z)

∂ 2

∂ x2
cl

V [xcl]

�«

= (124)

−
2
ħh

∫ 0

−λħh/2
dτ

¨

i
dpcl↑(τ)

dτ
xq↑(τ)− i

d xcl↑(τ)

dτ
pq↑(τ)−

�

p2
cl↑(τ)

2m
+ V [xcl↑(τ)] +

p2
q↑(τ)

2m
+

1
2

x2
q↑(τ)V

′′
[xcl↑(τ)]

�«

+
2
ħh

∫ βħh/2

−λħh/2
dτ

¨

i
dpcl↓(τ)

dτ
xq↓(τ)− i

d xcl↓(τ)

dτ
pq↓(τ)−

�

p2
cl↓(τ)

2m
+ V [xcl↓(τ)] +

p2
q↓(τ)

2m
+

1
2

x2
q↓(τ)V

′′
[xcl↓(τ)]

�«

.

G.3 Gaussian integration of the fields

In the Eq. (124) the action is quadratic in the fields xq, pq. They can be eliminated through
a Gaussian integration. If define i

ħh S̃ as the exponent of the path integral after such Gaussian
integration, we have

iS̃
ħh
=

1
ħh

∫ 0

−ħhλ/2

dτ
V ′′[xcl↑(τ)]

�

dpcl↑(τ)

dτ

�2

+
1
ħh

∫ 0

−ħhλ/2
dτm

�

d xcl↑(τ)

dτ

�2

+
2
ħh

∫ 0

−λħh/2
dτ

¨

p2
cl↑(τ)

2m
+ V [xcl↑(τ)]

«

−
1
ħh

∫ βħh/2

−ħhλ/2

dτ
V ′′[xcl↓(τ)]

�

dpcl↓(τ)

dτ

�2

−
1
ħh

∫ βħh/2

−ħhλ/2
dτm

�

d xcl↓(τ)

dτ

�2

−
2
ħh

∫ βħh/2

−ħhλ/2
dτ

¨

p2
cl↓(τ)

2m
+ V [xcl↓(τ)]

«

. (125)

Notice that a byproduct of the path integration above is a change of the normalization factor
proportional to 1/

Æ

V ′′[xcl↓(τ)], 1/
Æ

V ′′[xcl↑(τ)]. To make further manipulations possible
we will assume that the quantities V

′′
[xcl↓(τ)], V

′′
[xcl↑(τ)] can be respectively replaced with

V
′′
[xcl(0)], V

′′
[xcl(0)] and V

′′
[xcl(t f )], V

′′
[xcl(t f )] in the kinetic terms of the action, and the

normalization. The idea behind this replacement is that the vertical tracks are short in the
semiclassical limit, so that it is possible to replace the values of the fields in γ↑,γ↓ with the
values of the fields at their boundaries. Let us focus now on the integral in the momentum
variables. After defining m̃(t f ) = 2/V

′′
[xcl↑(t f )] and ω(t f ) =

Æ

V ′′[xcl↑(t f )]/m we have

∫

Dpcl↑ exp

¨

1
ħh

∫ 0

−λħh/2
dτ

m̃(t f )

2

�

dpcl↑(τ)

dτ

�2

+
m̃(t f )ω2(t f )p2

cl↑(τ)

2

«

= (126)

√

√ m̃ω
2πħh sinh(ħhωλ/2)

exp
§

m̃ω
2ħh sinh(ħhωλ/2)

¦�

p2
cl(t f ) + p2

cl↑(0)
�

cosh(ħhωλ/2)− 2pcl(t f )pcl↑(0)
©

ª

.

32

https://scipost.org
https://scipost.org/SciPostPhys.15.5.209


SciPost Phys. 15, 209 (2023)

where for now we restrict our analysis to γ↑. To integral over pcl↑(0) reads
∫

Dpcl↑

√

√ m̃ω
2πħh sinh(ħhωλ/2)

(127)

× exp
§

m̃ω
2ħh sinh(ħhωλ/2)

¦�

p2
cl(t f ) + p2

cl↑(0)
�

cosh(ħhωλ/2)− 2pcl(t f )pcl↑(0)
©

ª

=

√

√ m̃ω
2πħh sinh(ħhωλ/2)

exp
§

m̃ω
2ħh sinh(ħhωλ/2)

p2
cl(t f ) cosh(ħhωλ/2)

ª

×
∫

dpcl↑ exp
§

m̃ω
2ħh sinh(ħhωλ/2)

�

p2
cl↑(0) cosh(ħhωλ/2)− 2pcl(t f )pcl↑(0)

�

ª

=

√

√ 1
2 cosh(ħhωλ/2)

exp

�

p2
cl(t f )m̃ω

2ħh sinh(ħhωλ/2)

�

cosh(ħhωλ/2)−
1

cosh(ħhωλ/2)

�

�

=

√

√ 1
2 cosh(ħhωλ/2)

exp

�

p2
cl(t f )m̃ω

2ħh cosh(ħhωλ/2)
sinh(ħhωλ/2)
�

.

Similarly for the other vertical branch we will have
∫

Dpcl↓ exp

¨

−1
ħh

∫ βħh/2

−λħh/2
dτ

m̃(t f )

2

�

dpcl↓(τ)

dτ

�2

+
m̃(t f )ω2(t f )p2

cl↓(τ)

2

«

(128)

=

√

√ m̃ω
2πħh sinh(ħhω(λ+ β)/2)

exp
§

−
m̃ω cosh(ħhω(λ+ β)/2)
2ħh sinh(ħhω(λ+ β)/2)

�

p2
cl(0) + p2

cl↓(βħh/2)
�

ª

× exp
§

m̃ω
2ħh sinh(ħhω(λ+ β)/2)

�

2pcl(0)pcl↓(βħh/2)
	

ª

.

A further integration over pcl↓(βħh/2) yields
∫

Dpcl↓ exp

¨

−1
ħh

∫ βħh/2

−λħh/2
dτ

m̃(t f )

2

�

dpcl↓(τ)

dτ

�2

+
m̃(t f )ω2(t f )p2

cl↓(τ)

2

«

(129)

=

√

√ 1
2 cosh(ħhω(λ+ β)/2)

× exp

�

−p2
cl(0)m̃ω

2ħh sinh(ħhω(λ+ β)/2)

�

cosh(ħhω(λ+ β)/2)−
1

cosh(ħhω(λ+ β)/2)

�

�

=

√

√ 1
2 cosh(ħhω(λ+ β)/2)

exp

�

−p2
cl(0)m̃ω

2ħh cosh(ħhω(λ+ β)/2)
sinh(ħhω(λ+ β)/2)

�

.

Thus we can write the contribution to the path integral due to vertical lines as
∫

DxqDpqDpcl
e

1
ħh

∫

(γ⊖,↓),(⊖,M)
Σ[xcl ,xq]d Im z

e
1
ħh

∫

γ(⊖,↑)
Σ[xcl ,xq]d Im z

(130)

= exp
2
ħh

∫ 0

−ħhλ/2
dτ

¨

m
2

�

d xcl↑(τ)

dτ

�2

+ V [xcl↑(τ)]

«

× exp
−2
ħh

∫ βħh/2

−ħhλ/2
dτ

¨

m
2

�

d xcl↓(τ)

dτ

�2

+ V [xcl↓(τ)]

«

×
√

√ 1
4 cosh(ħhωλ/2) cosh(ħhω(λ+ β)/2)

exp

�

p2
cl(t f )m̃ω

2ħh
tanh(ħhωλ/2)
�

× exp

�

−p2
cl(0)m̃ω

2ħh
tanh(ħhω(λ+ β)/2)

�

.
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G.4 semiclassical limit in the work functional

Above relation leads to the semiclassical definition of the work function up to the sec-
ond order in ħh. For a generic potential we write the fields in the vertical branch as
xcl↑(τ) = xcl(t f ) +δxcl↑(τ) and keep only the second order in δxcl↑(τ)

∫

Dxcl↑ exp
2
ħh

∫ 0

−ħhλ/2
dτ

¨

m
2

�

d xcl↑(τ)

dτ

�2

+ V [xcl↑(τ)]

«

=

∫

Dδxcl↑ exp
2
ħh

∫ 0

−ħhλ/2
dτ

¨

m
2

�

dδxcl↑(τ)

dτ

�2

+ V [xcl(t f )] + V ′[xcl(t f )]δxcl↑(τ)

+
1
2

V ′′[xcl(t f )]δxcl↑(τ)
2
ª

= expλ

�

V [xcl(t f )]−
V ′[xcl(t f )]2

2V ′′[xcl(t f )]

�

×
∫

Dδxcl↑ exp
1
ħh

∫ 0

−ħhλ/2
dτ

¨

m

�

δxcl↑(τ)

dτ

�2

+ V ′′[xcl(t f )]δxcl↑(τ)
2

«

. (131)

To obtain the last line we have completed the square in the last two terms of the second line
and then redefined δxcl↑ + V ′[xcl]/V ′′[xcl]→ δxcl↑. Note that in this passage one should be
careful with the integration domain of the path integral

∫

Dδxcl↑. Before doing the change

of variable the limit of integration was
∫ δxcl↑(0)
δxcl↑(−ħhλ/2)

Dδxcl↑. Using δxcl↑(τ) = xcl↑(τ)− xcl(t f )

we will have
∫

Dδxcl↑ =
∫ xcl↑(0)−xcl (t f )

0 Dδxcl↑. Therefore the change of variable in the above
equation will result in the change of domain into

∫ xcl↑(0)−xcl (t f )

0

Dδxcl↑→
∫ xcl↑(0)−xcl (t f )+

V ′[xcl (t f )]

V ′′[xcl (t f )]

V ′[xcl (t f )]

V ′′[xcl (t f )]

Dδxcl↑. (132)

With this in mind (131) can be written as

expλ

�

V [xcl(t f )]−
V ′[xcl(t f )]2

2V ′′[xcl(t f )]

�

(133)

×
∫

Dδxcl↑ exp
1
ħh

∫ 0

−ħhλ/2
dτ

¨

m

�

dδxcl↑(τ)

dτ

�2

+ V ′′[xcl(t f )]δxcl↑(τ)
2

«

=

√

√

√

1

2cosh
�

ħhω(t f )λ/2
� expλ

�

V [xcl(t f )]−
V ′[xcl(t f )]2

2V ′′[xcl(t f )]

�

× exp

¨

mω(t f )

ħh

�

V ′[xcl(t f )]

V ′′[xcl(t f )]

�2

tanhħhω(t f )λ/2

«

.
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For the other vertical branch we will have
∫

Dxcl↓ exp
−2
ħh

∫ βħh/2

−ħhλ/2
dτ

¨

m
2

�

d xcl↓(τ)

dτ

�2

+ V [xcl↓(τ)]

«

(134)

=

∫

Dδxcl↓ exp
−2
ħh

∫ βħh/2

−ħhλ/2
dτ

×

¨

m
2

�

δxcl↓(τ)

dτ

�2

+ V [xcl(0)] + V ′[xcl(0)]δxcl↓(τ) +
1
2

V ′′[xcl(0)]δxcl↓(τ)
2

«

= e

§

−(λ+β)
�

V [xcl (0)]−
[V ′[xcl (0)]

2

2V ′′[xcl (0)]

�ª

×
∫

Dδxcl↓ exp
−1
ħh

∫ βħh/2

−ħhλ/2
dτ

¨

m

�

δxcl↓(τ)

dτ

�2

+ V ′′[xcl(0)]δxcl↓(τ)
2

«

=

√

√ 1
2cosh(ħhω(0)(λ+ β)/2)

exp

�

− (λ+ β)
�

V [xcl(0)]−
V ′[xcl(0)]2

2V ′′[xcl(0)]

��

× exp

�

mω(0)
ħh

�

V ′[xcl(0)]
V ′′[xcl(0)]

�2

tanh(ħhω(0)(λ+ β)/2)
�

.

Therefore (130) can be rewritten as
∫

Dxcl

∫

DxqDpqDpcl e
1
ħh

∫

γ(⊖,↓),(⊖,M)
Σ[xcl ,xq]d Im z

e
1
ħh

∫

γ(⊖,↑)
Σ[xcl ,xq]d Im z

(135)

=
1

2 cosh
�

ħhω(t f )λ/2
� exp

�

p2
cl(t f )m̃ω(t f )

2ħh
tanhħhω(t f )λ/2

�

× expλ

�

V [xcl(t f )]−
V ′[xcl(t f )]2

2V ′′[xcl(t f )]

�

× exp

¨

mω(t f )

ħh

�

V ′[xcl(t f )]

V ′′[xcl(t f )]

�2

tanh
�

ħhω(t f )λ/2
�

«

×
1

2 cosh(ħhω(0)(λ+ β)/2)
exp

�

−p2
cl(0)m̃ω(0)

2ħh
tanh(ħhω(0)(λ+ β)/2)

�

× exp

�

− (λ+ β)V [xcl(0)]−
V ′[xcl(0)]2

2V ′′[xcl(0)]

�

× exp

�

mω(0)
ħh

�

V ′[xcl(0)]
V ′′[xcl(0)]

�2

tanh(ħhω(0)(λ+ β)/2)
�

.

The expansion of the above result is shown in (61) which indicates the semiclassical limit of
work functional up to the second order in ħh. This result is evidently satisfying the fluctuation
relations.

H Work MGF for a harmonic oscillator

For the case of a time dependent harmonic oscillator the potential energy assumes the simple
form as V [x , t] = 1/2Mω(t)x2 which for the vertical lines reduces to the intial ω(0) = ω0
and final ω(t f ) = ω1 value for the left and right vertical branches, respectively. For
this potential, the two parameters ω(t f ) and m(t f ) will be constant so the approximation
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V
′′
[xcl↑(τ)] ≈ V

′′
[xcl(t f )] is exact. Therefore using (130) and doing the path integral over

xcl we will have

∫

Dxcl

∫

DxqDpqDpcl
e

1
ħh

∫

γ(⊖,↓),(⊖,M)
Σ[xcl ,xq]d Im z

e
1
ħh

∫

γ(⊖,↑)
Σ[xcl ,xq]d Im z

= (136)

×
√

√ 1
2 cosh(ħhω1λ/2)

exp

�

x2
cl(t f )mω1

ħh cosh(ħhω1λ/2)
sinh(ħhω1λ/2)

�

×
√

√ 1
2 cosh(ħhω0(λ+ β)/2)

exp

�

−x2
cl(0)mω0

ħh cosh(ħhω0(λ+ β)/2)
sinh(ħhω0(λ+ β)/2)

�

×
√

√ 1
2 coshħhω1λ/2

exp

�

p2
cl(t f )

mω1ħh cosh(ħhω1λ/2)
sinh(ħhω1λ/2)

�

×
√

√ 1
2 cosh(ħhω0(λ+ β)/2)

exp

�

−p2
cl(0)

mω0ħh cosh(ħhω0(λ+ β)/2)
sinh(ħhω0(λ+ β)/2)

�

.

To go further we need to integrate over p(t f ), x(t f ), pcl(0) and xcl(0), However, the relation
between them is given by the path integral over the horizontal line that results in the equation
of motion for a time dependent harmonic oscillator as x(t f ) = A(t f )x(0) + B(t f )p(0)/M and
p(t f ) = MȦ(t f )x(0) + Ḃ(t f )p(0). Therefore we can write the above relation as

MW (λ, t) =
sinh(βħh/2)

2cosh(ħhω1λ/2) cosh(ħhω0(λ+ β)/2)
exp

�

−1
2

�

x(0) p(0)
�

�

C11 C12
C21 C22

��

x(0)
p(0)

��

, (137)

with

C11 =
2mω0

ħh
tanh (ħhω0(λ+ β)/2)−

2m
ħhω1

�

A2ω2
1 + Ȧ2
�

tanh (ħhω1λ/2) ,

C22 =
2

mω0ħh
tanh (ħhω0(λ+ β)/2)−

2
ħhmω1

�

ω2
1B2 + Ḃ2
�

tanh (ħhω1λ/2) ,

C12 = C21 = −
�

2ω1

ħh
AB +

2
ω1ħh

ȦḂ
�

tanh (ħhω1λ/2) ,

(138)

where the term sinhβħh/2 comes form the normalization of the generating function. Therefore
the integration over p0 and x0 will result in 2π/

p

det(C) which can be written as

MW (λ, t f ) =
sinh(βħh/2)

cosh(ħhω1λ/2) cosh(ħhω0(λ+ β)/2)
(139)

×
1

Ç

tanh2 (ħhω0(λ+ β)/2)− 2Q∗ tanh (ħhω1λ/2) tanh (ħhω0(λ+ β)/2) +
�

ȦB − ḂA
�2

tanh2 (ħhω1λ/2)
.

We notice that the last term under the square root is the Wronskian and for our given boundary
conditions is 1. Also for Q∗ we have

Q∗ =
1

ω0ω1

�

ω2
0

�

ω2
1B2 + Ḃ2
�

+
�

ω2
1A2 + Ȧ2
�	

. (140)

Thus we write (139) as

MW (λ, t f ) =
p

2 sinh(βħh/2)
p

cosh(ħhω0(λ+ β)) cosh(ħhω1λ)−Q∗ sinh(ħhω0(λ+ β)) sinh(ħhω1λ)− 1
. (141)

This allows us to recover the results of ref [72].
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I Classical limit in detailed balance conditions

In Sec. 5.4 we introduced a notion of detailed balance at the level of the quantum trajecto-
ries. The strategy of Sec. 5.4 is to divide the path integration in Eq. (48) in three separate
propagators, that read

Eλ,t f
[y f

q , y f
cl ,α(t f )] =

1
λ

log

∫

B(y f )
D′xcl/qe

1
ħh

∫

γ(⊖,↑)
Σ[xcl (z),xq(z)]d Im z

, (142)

E−λ−β ,0[y
i
q, y i

cl ,α(0)] =
1

−λ− β
log

∫

B′(y i)
D′xcl/qe

1
ħh

∫

γ(⊖,↓),(⊖,M)
Σ[xcl (z),xq(z)]d Im z

, (143)

U[y f
q , y f

cl , t f ; y i
q, y i

cl , 0] =

∫

B′′(y i ,y f )
D′xcl/qe

i
ħh

∫

γ(⊖,−)
M[xcl (z),xq(z)]d Re z

, (144)

where B(y i), B′(y f ), B′′(y i , y f ) are shortcuts to denote the boundary conditions of the
path integrals. For Eq. (142) the boundary conditions are xq↑(−ħhλ/2) = y f

q , xq↑(0)
= 0, xcl↑(−ħhλ/2) = y f

cl , for Eq. (143) we have1 xq↓(ħhβ/2) = 0, xq↓(−ħhλ/2) = y i
q,

xcl↓(−ħhλ/2) = y i
cl while for Eq. (144) we have xq(0), xcl(0) = y i

q, y i
cl , xq(t f ), xcl(t f ) = y f

q , y f
cl .

The definition of the time-reversed trajectory is arbitrary, but similarly to what we did
in Sec. 4.3, for every trajectory defined in the Keldysh contour γK , we can consider the
trajectory that attains the same values but on a reversed contour in which the forward
and backward branches are exchanged. This trajectory starts in the final points (y f

cl ,−y f
q )

and ends in the initial points (y i
cl ,−y i

q), where the sign of the quantum components has
been changed due to the inversion of the forward and backward branches. We have
U(y f

q , y f
cl , y i

q, y i
cl) = U rev(−y i

q, y i
cl ,−y f

q , y f
cl) from which Eq. (66) follows.

Let us now focus on the classical expansion of the quantity E−β , that is the integral in the
branch γ(⊖,M). The action in this case is given by Σ, that can be expanded for small xq↓

2 as

Σ= m
�

ẋ2
cl↓ + ẋ2

q↓

�

+ 2V (α, xcl↓) + V ′′(α, xcl↓)x
2
q↓ +O(ħh2). (145)

Note that respect to Eq. (49) there is a change of sign in the kinetic term, due to the use of
xcl↓(τ) instead of γcl(z), since we have d

dz = −i d
dτ in the vertical branches. Since the branch

γ(⊖,↓) is short for ħh→ 0, the value of xcl↓ will not variate too much from the value attained at
the boundary with γ(⊖,−) (that is y i

cl) so we can define xcl↓(s) = y i
cl +δ(s) and obtain

Σ=m
�

δ̇2(s) + ẋ2
q↓(s)
�

+ 2V (α(0), y i
cl) + 2V ′(α(0), y i

cl)δ(s)

+ V ′′(α(0), y i
cl)[x

2
q↓(s) +δ

2(s)] +O(ħh2). (146)

We are mainly interested in the case in which the boundaries in the path integration in Eq. (143)
with λ = 0 are given by xq↓(ħhβ/2) = xq↓(0) = 0, a case in which the contribution of the in-
tegral over the quantum variables is negligible. The path integration in xcl↓ reduces to a path
integration in δ(s) with boundary conditions δ(0) = 0, while the initial value of δ is free, we
call it δ̄:

∫

D′δe
1
ħh

∫ 0

ħh β2
dτ
�

mδ̇2(s)+2V (α(0),y i
cl )+2V ′(α(0),y i

cl )δ(s)+V ′′(α(0),y i
cl )δ

2(s)
�

=

∫

D′δe
1
ħh

∫ 0

ħh β2
dτ
�

mδ̇2(s)+mΩ2
�

δ+∆
�2
−mΩ2∆2
�

, (147)

1Here we use the notation xq/cl↓(τ) for the fields on the branch γ(⊖,↓),(⊖,M) (see Eq (123)).
2See footnote 1.
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where we introduced Ω=
r

V ′′(α(0),y i
cl )

m and∆=
V ′(α(0),y i

cl )

V ′′(α(0),y i
cl )

. After doing the change of variable

δ→ δ +∆ and solving the path integral (remember that changing the variable also changes
the boundaries of the path integration) we obtain as a result

e−β[V (α(0),y
i
cl )−

1
2 mΩ2∆2]

�

mΩ

πħh sinh
�βħhΩ

2

�

�
1
2

exp

¨

−
mΩ
ħh

cosh
�ħhβΩ

2

�

[(δ̄+∆)2 +∆2]− 2∆(δ̄+∆)

sinh
�ħhβΩ

2

�

«

≈ e−β[V (α(0),y
i
cl )−

1
2 mΩ2∆2]

�

2m

πħh2β

�
1
2

exp

�

−
2m

ħh2β
δ̄2 −

2m

ħh2β

ħh2β2Ω2

8
[2∆2 + 2δ̄∆+ δ̄2]

�

, (148)

where the two contributions in the last exponential come from the zeroth and second order
expansions of the hyperbolic cosine in respect to ħh. Now note that the terms proportional to
∆2 cancels out so we are left with the integral over δ̄

∫ ∞

−∞
dδ̄e−βV (α(0),y i

cl )

�

2m

πħh2β

�
1
2

exp

�

−
2m

ħh2β
δ̄2 −

mβ2Ω2

4
[2δ̄∆+ δ̄2]

�

≈
∫ ∞

−∞
dδ̄e−βV (α(0),y i

cl )

�

2m

πħh2β

�
1
2

exp

�

−
2m

ħh2β
δ̄2

�

= e−βV (α(0),y i
cl ) , (149)

where the second term in the integrand in the first line can be neglected since it is of the
next order in ħh. This proves the result (67). To prove the last result it is sufficient to use the
properties of the Wigner function for small ħh, so we can focus on Eq. (65).
∫∫

d y i
qd y f

q K(y f
q , y f

cl , y i
q, y i

cl) (150)

=

∫∫

d y i
qd y f

q

∫∫

dpidp f

∫∫

dηidη f K(η f , y f
cl ,η

i , y i
cl)e

ipi(y i
q−η

i)eip f (y f
q −η f ) .

Let us focus on the dependence by ηi , y i
q, pi , after replacing the definition of K in the equation

above we have a contribution of the form

Z(0)−1

∫∫

dηid y i
qeipi(y i

q−η
i)U[η f , y f

cl , t f ;ηi , y i
cl , 0]e

−βE−β [ηi ,y i
cl ,α(0)]. (151)

Remembering the definition of E−β we can also write

e−iηi pi
Z(0)−1e−βE−β [η

i ,y i
cl ,α(0)] = e−iηi pi 


y i
cl −η

i
�

�ρ0

�

�y i
cl +η

i
�

. (152)

After performing the integral in ηi , the quantity above becomes (up to irrelevant prefactors)
the Wigner function associated to the initial state, that we denoted with Wβ . In a similar way,

we can show that the integral over y i
q and the integrals over y f

q transform the propagator U
in the quantum phase space propagator.
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