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Abstract

We propose bi-critical and tri-critical theories between chiral spin liquid (CSL), topo-
logical superconductor (SC) and charge density wave (CDW) ordered Chern insulator
with Chern number C = 2 on square, triangular and Kagome lattices. The three CDW
order parameters form a manifold of S? or S! depending on whether there is easy-plane
anisotropy. The skyrmion defect of the CDW order carries physical charge 2e and its
condensation leads to a topological superconductor. The CDW-SC transitions are in the
same universality classes as the celebrated deconfined quantum critical points (DQCP)
between Neel order and valence bond solid order on square lattice. Both SC and CDW
order can be accessed from the CSL phase through a continuous phase transition. At the
CSL-SC transition, there is still CDW order fluctuations although CDW is absent in both
sides. We propose three different theories for the CSL-SC transition (and CSL to easy-
plane CDW transition): a U(1) theory with two bosons, a U(1) theory with two Dirac
fermions, and an SU(2) theory with two bosons. Our construction offers a derivation
of the duality between these three theories as well as a promising physical realization.
The SU(2) theory offers a unified framework for a series of fixed points with explicit
S0O(5),0(4) or SO(3) x O(2) symmetry. There is also a transparent duality transforma-
tion mapping SC order to easy-plane CDW order. The CSL-SC-CDW tri-critical points
are invariant under this duality mapping and have an enlarged SO(5) or O(4) symme-
try. The DQCPs between CDW and SC inherit the enlarged symmetry, emergent anomaly;,
and self-duality from the tri-critical point. Our analysis unifies the well-studied DQCP
between symmetry breaking phases into a larger framework where they are proximate
to a topologically ordered phase. Experimentally the theory demonstrates the possibility
of a rich phase diagram and criticality through closing the Mott gap of a quantum spin
liquid with projective symmetry group.
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1 Introduction

Deconfined critical points with fractionalization have attracted lots of attention because they
are beyond the conventional Landau symmetry breaking framework. One classic example is
the deconfined quantum critical point (DQCP) between the Neel order and valence bond solid
(VBS) order for spin 1/2 system on square lattice [1,2]. The same DQCP can also happen be-
tween a quantum spin Hall insulator and a topologically trivial superconductor [3,4]. In these
examples the phases in both sides are conventional symmetry breaking phases and fractional-
ization happens only at the quantum critical point(QCP). In contrast, there is a different class
of QCP between a fractional phase and a symmetry breaking phase where fractionalization
exists already in one side. One simple example is the XY* transition between a Z, topological
ordered phase and a superfluid phase [5-7]. Such a transition is driven by the condensation of
a Higgs boson ¢, which simultaneously kills the topological order and leads to the onset of the
symmetry breaking because the bilinear of ¢ represents symmetry breaking order parameter.

In this paper we unify the above two classes of DQCPs in one framework. We show that
there can be direct transitions between each pair of these three phases: a U(1), chiral spin
liquid (CSL), a topological superconductor (SC) and a charge density wave (CDW) ordered
Chern insulator with Chern number C = 2. The phase diagrams are illustrated in Fig. 1. There
are three CDW orders, they have momenta Q = (7, 0),(0, ), (7, ) on square lattice and
Q = M;,M,,M; on triangular and Kagome lattice, labeled as (n3,n4,n5). On square lattice,
(n3, ny4) is rotated by C4. On triangular or Kagome lattice, (n3, n4, ns) is rotated to each other
by Cg rotation,forming a manifold of S2. On square lattice, we call (ng,n,) CDW,., and ns
CDW, as an analog of the Neel order with easy-plane or easy-axis anisotropy in magnets.
The superconductor order is labeled as (n;,n,). The topological (d + id) superconductor
can be understood from condensation of the skyrmion defects of the CDW order, which carries
charge 2e similar to the quantum Hall ferromagnetism with C = 2 [8]. Therefore, the CDW-SC
transition on triangular/Kagome lattice is in the same universality class as the DQCP between
the isotropic Neel and VBS order. On square lattice, the CDW,,-SC transition is the same as
the easy plane DQCP These two DQCPs are known to have SO(5) or O(4) symmetry and self-
duality [2]. This article offers a new understanding of these enlarged symmetries as inherited
from the CSL-CDW-SC tri-critical points.

We start from a chiral spin liquid and try to obtain either the SC or CDW phase through a
continuous transition, focusing on half-filling. CSL phase [9,10] was proposed as an example
of quantum spin liquid phase [11-14] in the early attempts to study high Tc superconductor
through the resonating valence bond (RVB) mechanism [15]. It was thought that a supercon-
ductor phase can be reached from the CSL by closing the charge gap. A critical theory between
the CSL and the SC phase has not been written down explicitly. A simple theory for this tran-
sition is through condensation of bosonic holons (eq (40)) starting from a mean field Ansatz
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Figure 1: Phase diagram on square (a) and triangular lattice (b), respectively. We will
provide theories for the bi-critical (as boundaries between two phases) and tri-critical
points(dots at intersection of three phases). The green line separating superconduct-
ing and CDW phases are described by isotropic or easy-plane DQCP The dashed line
represents first-order transitions.

of the CSL phase. On square lattice, the Ansatz for the fermionic spinon of the CSL phase is
gauge equivalent to a d + id superconductor, so a transition through slave boson condensa-
tion seems to be quite straightforward. Careful analysis shows that this transition has a rich
structure and enlarged symmetry. First, on square, triangular and Kagome lattice, there are
odd number of electrons per unit cell for the CSL phase with one electron per site. Thus the
semion excitation is constrained to have a projective translation T; Ty = —T,T;. The fermionic
spinon and bosonic holon inherit this projective translation and the minimal dimension for
the irreducible representation of this projective translation is 2. Therefore, the critical theory
has two bosons ¢, ¢, coupled to a U(1) gauge field with a self Chern-Simons term at level
—2. Similar to the XY* transition, bilinear terms of ¢ = (i1, ¢,)" represent the symmetry
breaking orders. In addition to the SC order ¢]¢,, we find three more gauge invariant order
parameters from | |2 —|¢,|? and the monopole operator of the U(1) gauge field. These three
order parameters can be identified as the three CDW orders (ns3,n4,ns). The appearance of
the CDW order at the QCP is remarkable given that it is absent on both sides away from the
QCP

The CDW order turns out to have an enlarged SO(3) symmetry at the QCP between CSL
and SC, even though microscopically there is easy-plane anisotropy on square lattice. The
emergent symmetry is best revealed in a dual theory with two Dirac fermions coupled to a U(1)
gauge field with self Chern-Simons term at level 1 (eq (45)). The dual theory can be derived
from the standard boson fermion duality. Physically it is obtained by letting the bosonic holon
¢ go through a pleateau transition into a bosonic integer quantum Hall (bIQHE) phase. In
the dual theory the SC order is represented by the monopole operator. The three fermion
bilinear terms )31} correspond to the CDW (ns, N4, ns). The SO(3) symmetry of these three
CDW order is transparent in the Dirac theory given that the four-fermion interaction term is
irrelevant. The vortex of the SC order carries spin 1/2 under this emergent SO(3) symmetry,
an emergent anomaly shared by the usual DQCP [16]. The existence of CDW order at the CSL-
SC transition is required by the Lieb-Schultz-Mattis (LSM) theorem [17-19]. If the bilinear
terms 131 do not carry any non-trivial quantum number of the lattice symmetry, they can be
added to the QCP This leads to a trivial symmetric insulator, impossible with odd number of
electrons per unit cell. So 1G4 must carry non-trivial symmetry quantum numbers. The same
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theory with two Dirac fermions has been proposed between a Laughlin state and a superfluid
phase [20]. This is not a coincidence. Spin gap and single electron gap remain finite across
the CSL-SC transition, so the transition is equivalent to the transition between Laughlin state
and superfluid phase of Cooper pairs up to stacking of a v = —2 integer quantum Hall (IQHE)
phase to account for the edge modes.

A parallel discussion follows for the transition between CSL and CDW, . The criticality is
the same as the CSL-SC transition after exchanging the SC order and the CDW,.,, order. There
is also an SO(3) x O(2) symmetry and the QCP can be described by U(1) theory with either
two bosons or two Dirac fermions. This analysis implies a duality which exchanges the SC and
CDW,, order. Both CSL-SC and CSL-CDW,,,, transitions can be described by a theory with two
bosons coupled to U(1) gauge field with easy plane anisotropy A > 0. The two theories are in
the same form after a mapping between (nq, n,) and (n3, n4). If we tune A < 0 in both theories,
they describe the CSL to CDW,, transition. So the CSL-CDW, QCP is self dual with (nq,n,)
exchanged with (n3,n4). This implies an enlarged O(4) symmetry rotating (ny, ny, ns,ny).
A =0 point of the two theories corresponds to the CSL-CDW,,,-CDW, and CSL-SC-CDW,, tri-
critical points. The CSL-CDW,,,-CDW, tri-critical point describes a CSL-CDW bi-critical point
on triangular lattice because the easy-plane anisotropy term A is forbidden.

The best way to unify these various bi-critical and tri-critical points, and understand the
enlarged symmetry and duality mapping is from an SU(2) theory. The CSL phase can be
understood as a U(1), or SU(2)_; topological order. Especially the fermionic spinon can be
put in an SU(2) Ansatz, from which the U(1) Ansatz descends through a Higgs term. Starting
from the SU(2) Ansatz, a critical theory can be obtained with two bosons ¢,,®, coupled to an
SU(2) gauge field a:

1 1 2
L = 3, —ia’ 15 —i=A,.,To0)®; > —r|®]*>+ —Tr[aAda+ =iaAaAa
sv = 2, G ia) ~ i AT —riel + o TrT 5 ]
1
- 8_7'CACdAC - [’int >
Lin =g|®T®2 4+ Ayn- n—/l(n% + n%) - A’(n% + ni) , @)

where A, is the probe field for the electric charge, T, 0 Pauli matrices act in the SU(2) spinor
and flavor spaces respectively and n = (n, -+ ,ns). The SU(2) theory does not have monopole
operators and all five order parameters can be written as the bilinear terms of ® = (¢, ®,)7.
There are various fixed points in the parameter space of quartic terms (A,A”) shown in fig.
6. There is a duality between the SU(2) theory and the U(1) theory with two bosons for the
CSL-SC transition. In particular there is presumably a manifold of U(1) theory corresponding
to different Higgs terms adding to the SU(2) theory, to wit

Lsyy = |(8u—ia;’r5 —i%AC;MTOO'O)CI)lz— r|®|? + 4inTr[a Ada+ %ia AaAa]l— %ACdAC
—g|<I>T<I>|2—7L0n-n+A(nf+n§)
— Loy —hd'im-51,®
o Loy = Gy =ity — A, 0502 = rlg | + —ada — —A,dA, — &(|p[)?
: oo Ttk 4n 8n ¢
+ A1 Pleal?. (2)

The emergent SO(3) symmetry generally acts non-locally in the U(1) theory in the sense it
changes one U(1) theory to a different one. On triangular/Kagome lattice, the lattice sym-
metry also needs to act non-locally in the U(1) theory. Therefore there is no simple parton
construction of the U(1) theory for the CSL-SC transition on triangular/Kagome lattice.
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In the SU(2) theory, there is an explicit duality mapping A «<— A’ which exchanges (n;, n,)
and (n3,n,). The special line A = A’ is self-dual and generically has an enlarged O(4) symme-
try. The special point A = A’ = 0 has an SO(5) symmetry. We argue that the CSL-CDW,,-SC
tri-critical point on square lattice is at the A = A’ = A* fixed point and thus is self dual with
O(4) symmetry. CSL-CDW-SC tri-critical point on triangular/Kagome lattice isat A = A’ =0
and self-dual with SO(5) symmetry. We also provide self-dual theory with two U(1) gauge
fields coupled to two bosons and two Dirac fermions for the tri-critical points. The self-duality
and SO(5) or O(4) symmetry of the usual DQCP discussed in Ref. [2] can now be understood
as inherited from the tri-critical points.

We discuss the possible experimental realizations. Chiral spin liquid has been found in
(numerical simulations of) various spin 1/2 models and Hubbard models [21-35] and also in
SU(N) model with N > 2 [36-43]. Especially chiral spin liquids with spontaneous time rever-
sal breaking were found in the intermediate U/t regime of the simple Hubbard model [32] on
triangular lattice and in spin 1/2 model on Kagome lattice [25,26]. Triangular lattice Hubbard
model may be simulated in moiré superlattice with U/t tuned by simple gating [44], offering
a promising direction to search for chiral spin liquid and bandwidth tuned transitions into
either superconductor or CDW phase proposed in this paper. Note both superconductor [45]
and chiral CDW [33] were numerically observed from doping a chiral spin liquid. Therefore
it is also interesting to search for chemical potential tuned transitions, which have dynamical
exponent z = 2, but may still share similar structures as the critical theories we propose.

The outline of the paper is as follows: in Section II we lay out the topological order of CSL
and prove that there is a unique symmetry fractionalization pattern on square, triangular and
Kagome lattices, which paves the way to proposing duality for critical theories involving CSL
on one side. In sec. III,IV, the mean-field Ansatz and projective symmetries with SU(2), U(1)
gauge group are discussed, respectively. The relation of U(1) Ansatz to SU(2) is highlighted.
SecV attaches a v = —2 IQHE state of spinful electrons to trivialize the spin degrees of freedom
throughout the transition, effectively rendering the elementary degrees of freedom bosonic.
This helps to simplify the discussion. Sec VLVII discusses the CSL-SC transition on square
lattices described by U(1)_, 2¢, and U(1); 24, respectively. The duality between these two
theories and consequently operator mapping are provided. Sec VIII studies the CSL-CDW tran-
sition and demonstrates a tricritical point for CSL-CDW,,,-CDW, on square lattices. Section
IX and X discuss the SU(2) critical theory that describe CSL-CDW (SC) transitions, its symme-
tries, various fixed points in Fig 6 and the duality to U(1)_, 2¢ theory. Sec XI briefly reviews
the DQCP between CDW insulator and SC. Sec XII then presents a tricritical point for CSL-
CDW-SC transtion. Sec XIII comments on honeycomb lattice where at low energy only one
bosonic mode ( or in dual theory one Dirac fermion) exists and there is no symmetry break-
ing order fluctuating at the QCP. Sec XIV discusses experimental signatures of the duality in
critical theories. We conclude the paper by sec. XV with various technical details delegated to
appendices.

2 Chiral spin liquid and its symmetry fractionalization on different
lattices

A useful way to describe a CSL phase is through the mean field Ansatz of the fermionic spinon
fi:o from the parton construction: S, = % fi';(gc'iagl fi.or- Here G labels the Pauli matrices. In a
CSL phase, the spinon f,; is put into a Chern insulator Ansatz with Chern number C =1 for
each spin. However, the invariant gauge group (IGG) can be either SU(2) or U(1) [46]. After
integrating f,, we get either a U(1)_, gauge theory or a SU(2)_; gauge theory. Both describe
the same topological order following the level-rank duality. The CSL phase here has anyons
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I,s with s as a spin 1/2 semion. We note that there is a different type of CSL which has f, in
a d + id superconductor Ansatz and has only Z, IGG. Such a phase has four different anyons
I,e,m,e. We will only discuss the first CSL with only two anyons as this is the one which was
found by numerical simulations.

If we only care about topological order, the U(1) and SU(2) Ansatz are clearly the same
because of the equivalence between SU(2)_; and U(1), topological field theory. The next
question is whether the U(1) and SU(2) Ansatz correspond to the same phase and can be
connected to each other without a phase transition. Given the topological order is the same,
the only difference between them is the symmetry fractionalization. The symmetry fraction-
alization for the symmetric CSL phase turns out to be unique on various lattices. This was
first proved on Kagome lattice [47] and can be generalized to square and triangular lattice.
The proof proceeded by considering a cylinder geometry with periodic boundary along y,
with two-fold degeneracy |1),]s). |s) is obtained by nucleating a pair of semions and sepa-
rating them to the edges. Operationally it is obtained by threading a flux 27 of S* along y:

ls) = eiZi Sizzg_yyl |1), where y; is the y coordinate of the site i. Due to the 1/2 spin-hall response
oftheC,a§, = % is pumped from x = 0 — x = L, so that there is a semion at each end of the
cylinder with S, = :l:%.

Let us consider square lattices. Consider the algebraic relation for inversion around a
plaquette center I = 1 where I inverses with respect to the middle point of the cylinder and
leaves |1),|s) invariant. The quantum number of I? on a single semion I? = £1 is Z, valued
due to the fact that two semions fusion into the vacuum. Applying I to |s) with one semion
at each end, is equivalent to applying I twice to a single semion.Hence I? is given by the
quantum number of |s) under I denoted as Q,(I) = (s|I|s), relative to that of |1) denoted as

. I
QD) ie. EF =2,

The S” flux ¢ is inverted by /™" (S* the total x component spin) and inversion also reverts
the $* flux, during the adiabatic flux threading, the quantum number of I;,e’™" can be tracked
and cannot change from |0) — |s), i.e.

inS*

QUE™ ) _ (pyinsy2_ g 3)

Q,(Ieins¥) s
Given full SO(3);p;, is preserved, spin rotation commutes with inversion around the pla-
quette center [48]. Hence (I%e!2™5"), = 1. Since each semion carries spin—1/2, we get
(I?); = —1.Similar to the arguments in ref. [47], translation T;T,T 1 1 T, 1 = —1 follows
from the Oshikawa’s generalization [18] of Lieb-Schultz-Mattis theorem. Also we can get
(R, 7)? = —1 following Ref. [47]. The translation and reflection (combined with time rever-

sal) are shown in fig. 2(square),3(triangular).

The site-centered inversion I; on square and triangular lattices is a bit different due to the
location of the branch cut for the S* flux [48]. When adiabatically threading an S* flux ¢ along
the cylinder, we choose a branch cut where the S* rotation acts discontinuously and could not
go through a site. Under inversion that exchanges two semions, one has to perform a spin
rotation e ™5 for the sites encircled by the branch cut and its inversion image to restore the
location of the branch cut. [;(¢) = I [ Ticoncircteq € > ¢ combined with ¢/2i5 ™ hence can
be tracked throughout the flux threading. There are an odd number of sites encircled by the
branch cut and its inversion image since one site sits at the center. When ¢ = 27t and we reach
the |s) state, this additional rotation to restore the branch cut gives a e!5"2" = —1 since there
is a spin—1/2 moment at the inversion site. Hence

Qy(I,(2m)el 2SIy

— inS*\2
Q@S ek ©
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We have I 32 =1 on triangular and square CSL, where I, = Cg’ (triangular),or I, = Cj (square).

Hence we prove that the symmetric CSL has a unique fractionalization pattern on Kagome,
square and triangular lattices. Given the uniqueness of the symmetry fractionalization pattern,
the U(1) and SU(2) Ansatz for the CSL phase must correspond to the same phase on square,
triangular and Kagome lattice. This is quite useful to derive critical theories as now we can
start from either the U(1) or SU(2) Ansatz. Correspondingly the critical theory can be either
U(1) or SU(2) gauge theory which must be dual to each other if we assume that there is only
one universality class for the critical point.

3 SU(2) Mean-field Ansatz, projective symmetries and proximate
phases

We introduce the SU(2) slave rotor theory [11,49] to describe the chiral spin liquid phase
and possible proximate phases. The CSL is realized in a Mott insulator with one electron per
site. The SU(2) gauge field may or may not be higgsed in the mean field Ansatz. The electron
operator is written as:

cy(r) z'li'(r) 2,(1) ) ( fr(x) )
(Cl (1‘)) ( —z,(r) 2(r) fl (r) (r)¥(r) )
where Z(r) € SU(2) is a rotor field representing the charge degree of freedom and fermionic

r
spinon ¥(r) = ()J:T'((r))) carries the spins. There is an SU(2) gauge redundancy:
i

Z() - Z@U' (), () - U@)¥(r), (6)

where U(r) € SU(2).
Simple algebra leads to

fi(x) N fi(x) z1(1) R 21 (1)
(ffm) vt (f;(r))’ (z:(r)) vt (()) @
The system has also a global U(1), symmetry: c, (r) — c,(r)e'?. This U(1) global symme-
try acts as
(ft(l‘)) . (f[‘(l‘)) (zl (r)) Ly i (zl(r)) ®
fo)”Ww) 5o z(0)
Similarly the global SU(2) spin rotation symmetry transforms as
OV (9), (20 (20)
(fl(r) Slaw) mw) T \gm) ©

where Ug € SU(2).
With the holon Z and the spinon ¥, we can always write down a mean field theory with

HM = Hholon + Hspinon . (10)

The mean field Ansatz of the bosonic holon Z and the fermionic spinon ¥ is constrained
by a projective symmetry group (PSG) [50] with an invariant Gauge group (IGG) which could
be SU(2), U(1) or Z,. The bosonic holon could be either gapped or condensed. If Z is gapped,
this describes a spin liquid phase depending on the Ansatz of the spinon W. If Z is condensed,
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we have a conventional phase which may have symmetry breaking if the PSG is non-trivial.
An SU(2) gauge transformation for both ¥ and Z corresponds to a gauge redundancy and
does not change the physical state. However, if we do gauge transformation for only Z or ¥,
we are changing the physical states. In this paper we will choose the gauge to fix the Ansatz
of ¥, then different condensation patterns of (Z) lead to different phases. Alternatively, one
may always fix the condensation of Z to be (z;) # 0, (z,) = 0, then different phases arise from
different Ansatz of the fermionic spinon ¥ related by gauge transformation acting only on .
For our purpose, we take the first approach and always fix the gauge of .

When the bosonic holon Z is gapped, we are in a Mott insulator phase with the spin degree
of freedom decided by Hy. In this section we focus on Ansatz with an SU(2) IGG. The fermion
U, is in a Chern insulator phase with C = 1, so the final theory is an SU(2)_; topological
quantum field theory (TQFT) describing a chiral spin liquid (CSL).! We will discuss mean field
Ansatz on square, triangular and Kagome lattice. Note that Z and ¥ share the same gauge
field and thus the same PSG. Once the mean field Ansatz of ¥ is fixed, we also know the PSG
constraint on mean field Ansatz of Z. We will show that low energy modes of Z consist of two
SU(2) spinor ®; and ®,, whose degeneracy is protected by the projective translation symmetry:
T, T, =—T,T,. From these two modes ®,,a = 1,2 we can construct five gauge invariant order
parameters and derive their symmetry properties. These five order parameters are &’ 7,0,®
and ®'G®. Here o, acts in the space of a = 1,2. For example, o transforms as: ®; < ®,.
On the other hand, 7, is the generator of the SU(2) gauge transformation. For example, 7,

b, ..
(I)a’l . The modes @, are the critical boson whose
a;2

condensations drive the transition between the CSL and a nearby symmetry breaking phase.

Below we list the SU(2) mean field Ansatz for spinons and holons on square, triangular and
Kagome lattices and the PSG of holons at lowest energy. The detailed solution and symmetry
actions are contained in Appendix A.

acts as: &1 < &,.,, where we write &, =

3.1 Square lattices

An SU(2) Ansatz for the CSL on square lattice is:

Hopinon = D190, W, —i(=1)1) 0, +in(-1)"1W),, W, +in(-1)""0], ¥, (11)

r+r1+r2 r—rq +r2
r

This simply describes spinons hopping on square lattice, with the hopping as

brrgr, = L Lrrtr, = (D",
tr,r+r1+rz = (_1)7"11-’ tr,r+r2—r1 = (_1)r1i . (12)

The holon Hamiltonian is given by the spinon mean-field values (f f. ) from H;pinon-
Assuming an electron hopping model Hyy =Y., tc: ¢ s and from the parton relation Eq. 5,

r,r',s
holon sector follow a Hamiltonian determined by the spinon mean-field value
— T T
Hholon - Z tzj’l (fr/’sfr,s>zr’,1 - Z tzr,Z (fr/’sfr,s)*z;k/’z . (13)
r,r’ r,r!

Since the hopping amplitude for spinons t;; = ( f:i fs,j) from optimizing mean-field Ansatz,
we get the SU(2) invariant Hamiltonian for holons

Hiolon = Z iz, 2 —1(=1) "2, 2 +In(=1)"2, 4 2 Hin(1) 20, 4 2, (14)

Here we consider an electronic system instead of a pure spin model. The charge of the SU(2) gauge field can
be either a fermion (neutral spinon) or a boson (spinless holon). Therefore it corresponds to anyon with either
statistics 6 =  or 6 = —7, which are equivalent up to attachment of a single electron.
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Table 1: The symmetry transforms of boson bilinears in the SU(2) gauge theory on
square lattices. C, = T,C4 so C, acts as —ie'%93, In the following we define A, to be
the gauge field of C,. We see (n3, n,) transforms as SO(2) rotation under C,. ¥'o; ¥
represents 3 CDW order parameters at different momenta, while ¥, 72¥* carries
one unit of A, charge and is identified as the cooper pair with d wave symmetry.

T, T, Cy Cy RT U(1), note
® —io, | —ioy UZei%‘73 —iel %93 io el2908
o, ® + — | 970,90 | @70, | + + ns
®'o,® - + | —%'0,® | @0 | + + ny
dToyd - — | —®T039 | ®T03® | — + ns
dTo,7,® + + - — + 93T o,1,® | ny—in,

where z, = (2,(1), 2,(r)*)T.

There may also be other contributions to the holon mean field Ansatz from the interaction
instead of the hopping of the electrons. But these additional terms do not alter the PSG of
the holons and do not influence our discussion in the following. We solve the Hamiltonian
above and there are two degenerate lowest-energy states at momenta Q, , = (7/2,+m/2).
(See Appendix A). We define, at low energy, two SU(2) spinors for Z = (zl,zé)T:

Z(r)= <I>1(r)eiQ1r + <I>2(r)eiQ2r s (15)

where @, , denotes the slowly-varying fields at momenta Q ;. Each spinor contains 2 com-
ponents (®,.1,®,.2) for (z1,23). Under the SU(2) gauge transformation, ®,(r) — U(r)®,(r),
where U(r) € SU(2).

The relevant symmetries are translations T ,, four-fold rotations around a site C,, time-
reversal followed by reflection Ry ,7. The spatial symmetries are listed in Fig 2. We also

(@) (b) R, ()

A <+ . > + +
~4i v = Y J )
_A _A r 3 - NE r' s T2 - B

¢ / / \ — T,
A D g + +

Figure 2: (a)The translation-invariant electron d + id pairing(spin singlet)
amplitude when condensing holons on square lattices at low-energy fields
®1. = 1,—®,yy = €'©,8,; = &1, = 0, which makes ®T 7,0, = —2. A = €©.
(b,c) CDW patterns where + indicates a positive, negative (real) expectation value
of electron hopping across the bond.(b) CDW order on square lattice upon condens-
ing ®'03®. The unit cell dimension along T, 5 is both enlarged by 2. The black
arrows denotes expectation value of (cl'.'hcj) of the bond (ij) as w = e!™/* with direc-
tion from i — j indicated by the arrow. (¢) CDW pattern upon condensing ® o ®.
Unit cell is enlarged twice along T,. Arrows indicates (ij) = i and direction is from
i — j. Another CDW pattern at momentum (7, 0) by condensing o ,® is obtained

by rotating (c) by /2.
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Table 2: The symmetry transforms of boson bilinears in the SU(2) gauge theory on
triangular lattices. ®'o;® represents 3 CDW order parameters at different momenta,
while &0, 728" carries one unit of A, charge and is identified as the cooper pair with
d wave symmetry.

T; T, Cs RT comment
® ®—>—ic1® | &> —ioc3d | @ iV 5 | & eiBeinie
0,9 + — 3o, + n,
dTo,d — — dTo,d dTo,d n,
dTo,d — + ®'o,® ®'o,® ng
®'o, 720" + + i3 oo, r2e" eltdTo,t20* | ny+in,

calculate rotation around a plaquette center defined as C, = T,C, in table 1. Note that the
sublattice structure on the square lattice gives 4 different rotations around A, B sites/plaquettes
centers, respectively. We only write down rotations around B sites C4 and the plaquette-center
rotation related by €4 = T,C,.

The physical order parameters from electrons can be written from the parton construction,
in particular the singlet pairing reads

Arr’ =CrCr | —Cr Gy = Z _Zl,rZ;r/ <fr,sfr‘c’5> - Z;,rzl,r’ (fr,sfrT/’5>* . (16)
s

Using the (f, fr";s) = t,, for the mean field we use, one could get the electron pairing when

condensing the lowest-energy holons z. Using eq (15) one gets A, = T 1,0,®.

With (®,,%,), we can define five gauge invariant order parameters:
(n1,n,n3,n4,n5) = (Re®T 07,8, Imd7 0,7,8,870,®,870,8,8"03®). Their symmetry
transformations are shown in Table 1. Here we also include U(1). symmetry which corre-
sponds to the charge conservation. Our notation is that the charge of the Cooper pair is 1 and
single electron carries charge 1/2 for this U(1), rotation. One can easily identify n; + in, as
the Cooper pair with the same symmetry as a d + id superconductor. Actually, if we condense
&, = (1,0)T,®, = (0,1)7, the physical electron will be in the d+id superconductor Ansatz.
On the other hand, ns3,n, carry momentum (7,0) and (0, ©). They can be identified as the
CDW,,, order. ng carries momentum (7, 7t) and is the CDW,, order. The d +id superconductor
pattern is plot in Fig 2(a) and the CDW patterns are shown in Fig 2(b,c).

3.2 Triangular lattices
We then move to triangular lattice. The spinon mean field reads
Hpinon = tf U (r+7))ie® " w(r) + h.c. + tf\I/'r(r +7,)(—1) el W(r) + h.c.
+ e, (4 7+ ) (1) e "W (r) + hec., (17)
where 7 , are primitive lattice vectors with an angle 120° between them.
For the boson Z = (zl,z;r ), we get the Hamiltonian:
Hpoton = tpZ (x +7))ie!®™3Z(x) + hoc. + t, 21 (r + 7)) (—1)1ie "3 Z(x) + h.c.
+t,Z (47 + ) (=) e 0% Z(x) + h.c. (18)

When 6 = 0, the mean field is SU(2) invariant.

Similar to the square case, there are 2 minima of holons represented by low energy spinors
&, 5. The PSG for &; are listed in table 2.

The d +id superconducting pattern and CDW pattern on triangular lattices upon condens-
ing 7 0,7,®, 80,9, respectively are shown in fig. 3.
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R,

(a (b)

VANt

Figure 3: (a)The translation-invariant electron d + id pairing(spin singlet)
amplitude when condensing holons on triangular lattices at low-energy fields
$1 = —Byy = 1,8y, = &, = 0, which makes ®T1,0,® = —1. v = ¢?27/3,
Hoppings between neighboring sites are identical. (b) CDW patterns where + in-
dicates a positive, negative (real) expectation value of electron hopping across the
bond. Plotted is upon condensing 'o3®. The unit cell dimension along T; is both

enlarged by 2. The black arrows denotes expectation value of (cl.ch) of the bond (ij)
in/4

asw=e with direction from i — j indicated by the arrow, similarly blue arrows
of value iw = e®™/4. Other 2 CDW patterns are obtained by rotating 27/3, 71/3,
respectively.

3.3 Kagome lattices

For Kagome lattices, the Ansatz for CSL has an enlarged 2 x 1 unit cell shown in Fig 4(a).
The hopping for spinons are purely imaginary and the chern number for the lowest 3 valence
bands for one spinon are —1, 1, 1, respectively. Just retaining the NN hopping would also give a
CSL, though to identify the simplest holon condensation pattern we add next nearest neighbor
hopping to split the degeneracy of lowest energy states to 2-fold.

Again the holon bilinears correspond to symmetry-breaking order parameters and trans-
form in table 3.

The electron hopping and pairing descends from the holon expectation values and spinon
Ansatz from the relation eq (16) with the results shown in fig. 4(b), where w depends on NNN
hopping, and the plot is for NNN hopping amplitude };r. The CDW pattern is shown in fig. 4(c).

Table 3: The symmetry transforms of boson bilinears in the SU(2) gauge theory on
Kagome alttices. ®0;® represents 3 CDW order parameters at different momenta,
while "0, 72®* carries one unit of A, charge and is identified as the cooper pair.

T, T, Ce RlT note
X ~01¥02703 T
transform | icy | ios | ™6’ va 3| eid %
d'o® - | - d'o,® —&To,® ns
‘bTO'zq) + - q)TO'Bq) —_ ny
d'0;d - + d'0® —d'0,® ns
dToyte* | + + el™/3 —i®T0,720* | ny +iny

12


https://scipost.org
https://scipost.org/SciPostPhys.15.5.215

Scil SciPost Phys. 15, 215 (2023)

(b) pairing hopping (c) T,
wei23

Figure 4: (a)The SU(2) invariant CSL Ansatz on Kagome lattices, with the arrows
(irrespective of colors) indicating the direction of imaginary hopping. The unit cell
is enlarged to 2 x 1. Black(red) bonds are additional positive(negative) real hopping
that breaks SU(2) to U(1).(b)The electron pairing(spin singlet) and hopping ampli-
tudes when condensing holons at low-energy fields ®,.; = &5, = 1,®;; = &1, = 0.
The corresponding BCS Hamiltonian is translation invariant, though pairing sym-
metry is p + ip. w = e/™*. Arrows in the hopping pattern generally denote com-
plex hopping we do not specify here for conciseness, and along the arrow direction
is the hopping amplitude with an argument 6 € (—n/2,7/2). The hopping flux
around hexagons/triangles are 7t/2, 7 /4 respectively. (c) CDW order on Kagome lat-
tice where the flux around hexagones, triangles are marked.The unit cell is enlarged
twice along T,. The black arrows denotes expectation value of (cjcj) of the bond (ij)
as v = e'2™/3 with direction from i — j indicatd by the arrow, similarly red arrows of
value —iv* = e®™/®_ blue arrows of value u = v/2¢!117/12,

4 U(1) CSL Ansatz

In the previous section we show the SU(2) Ansatz for the chiral spin liquid. Here we provide
U(1) Ansatz for the same CSL phase. They are descendants of the SU(2) Ansatz by one addi-
tional Higgs term. Here we believe they actually belong to the same CSL phase as the SU(2)
Ansatz: the topological order is the same and the lattice symmetry action on the semion should
also be the same given the symmetry fractionalization is unique.

4.1 Square lattices

On square lattice there turns out to be two different U(1) Ansatz for the CSL. The U(1) Ansatz
can be obtained from adding SU(2) Ansatz. The low energy bosonic holon ® = (&, ®,)" will
also feel the Higgs term. The two U(1) Ansatz corresponding to two different types of Higgs
terms: (N®'o37,®; (1) ' 150.

4.1.1 Typel: ®'0373®

The first U(1) Ansatz is the stagger flux:

— ¥ ie.0 il —ie 0 T T
HSPinon - Zfr+?1,seler fr’S +fr+?z,se - fr,s + T)fr+?1+?2,s€rfr,s N T’fr—?ﬁ'?z,serfr’s +he., (19)
rs

where s represents spin indices,r; , are unit lattice vectors along two orthogonal directions,
n € R and €, is an alternating factor (—1)"1*"2 for two sublattices of square lattice. The
hopping flux around an elementary square alternates between £46 for neighboring plaquettes,
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hence staggered flux. This coupling form is invariant under a U(1) rotation for the spinons
f, — e'?f,, which is a subgroup of the SU(2) gauge group.

Assuming an electron hopping model Hgp = Zr’r,’s tciscr/,s and from the parton relation
eq (5) (identical to the derivation of eq (13)), holon sector follows a Hamiltonian determined
by the spinon mean-field value

— T T
Hholon - Z tZ:il (fr/’sfr,s>zr’,1 - Z tzr,Z (fr/’sfr,s>*zf/’2 . (20)
r,r! r,r!

The spinon mean-field value ( fr"; fr+3) is given by the corresponding hopping amplitude in
eq (19).
Hence for staggered flux the holons are put into the Ansatz:
Highoton = Z 2} 0z vz 02 402l L L eZo—nZ] e Z A he, (21
r,s
where Z, = (zl(r),z;(r))T and €, = 1 for sublattices A,B in a checkerboard alignment,
respectively.

At filling x condensing holons in the 2 lowest energy states of eq (21), with equal ampli-
tudes and a relative phase © gives

((Zl,r)’ <Z2,r>) = 1/;(1: ereiG)) . (22)

The electrons have a finite overlap with the spinons by the relation 1, = %(Zr)\llr, and the

Hamiltonian is related to Hy;p,, by the condensed holon values, i.e.
_ T oain@e®.F i i® T
Helectron = E essl[cns sinfe Cris e~ Crs SID Oe Critys

s
T L0 et i
+ ”)Cr,se Cr+?1+?2,s’ lncme Cr+?2—?1,s’]

+c cos0c 5 ¢l cosOc,yz, s +hc., (23)

where €, is an antisymmetric symbol for spin indices and the state has a d +id pairing struc-
ture.

Relation to the SU(2) Ansatz: The staggered flux is obtained from the SU(2) invariant CSL
Ansatz by adding real hopping for spinons:

AHeg = e(Q (12 fo + (CLV2FLL £ (24)

One could check that adding such terms to the spinon Ansatz in eq (11) would change the

hopping flux around elementary square plaquette from 7 to £(7t + ) in alternate plaquettes,

where 6 = 4arctan(e). Hence the Ansatz is gauge equivalent to the staggered flux eq (19).
For holons the additional terms would correspond to

AHp.g = E(Z(—l)rzzrfwzrgzr + (=) 2], Taz,). (25)
r

Projecting the terms to the lowest-energy holon states in eq (A.2) (15), we find that it amounts
to adding 0, 75®, which upon the redefinition by & — ¢!™/4%1® this additional term is in
the form ®'o575®. It naively breaks the translation and rotation symmetry in Table. 1, but
it is actually symmetric if one includes a gauge transformation it after the translation, R;7
and C4. The new symmetry action is:

Tl:(I)_)T]_O'lq’, T2:¢—)T102¢’,
: iZo
Cy:®—> —iT0, 4730,

Cp:®——ieli93®, R, T:®—>1,05. (26)
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4.1.2 Typell: ®'75®

Another U(1) Ansatz on square lattice is by adding to the SU(2) Ansatz Eq. 11 longer range
real spinon hopping:

tiivor, = tiitor, = €, (27)

where € € R. This Ansatz corresponds to adding ®'74® to the SU(2) Ansatz for the holon
low-energy fields ® = (®,,®,)".

4.2 Triangular and Kagome lattices

We try to generalize the U(1) Ansatz to the triangular and Kagome lattice by considering
possible symmetric Higgs terms. Unlike the case for the square lattice, 70,7 j®(i,j # 0) can
not be symmetric unless i = 0. So the only U(1) Ansatz is the type II Ansatz with the Higgs
term as ' 7,®. On triangular lattice this corresponds to adding:

tiitor, = tii+or, = —lii+or +27, = €, (28)

where € € R.

The U(1) Ansatz on Kagome lattice can be obtained by adding real hopping with certans
signs for spinons across neighboring bonds as the black/red bonds in Fig 4(a). In terms of the
spinor ¥ real hopping is proportional to \1117%3\1!]-. Again for boson we can only add the Higgs
term ®'7,®.

The type I and type II U(1) Ansatz will have very different symmetry transformations. As
we will show, superconductor can be obtained from simple holon condensation only from the
type 1 U(1) Ansatz. On the other hand, from the type Il U(1) Ansatz we can get the CDW,,,
order from holon condensation. From both type I and type II Ansatz, the CDW,, order can be
obtained from condensing the holons with easy axis anisotropy. These different approaches
lead to various critical theories. Especially the CSL-CDW, transition can be described starting
from both type I and type II Ansatz, which implies two critical theories in the same form for
the same critical point. This QCP turns out to be self dual. For the CSL-SC or CSL-CDW,,,
transition, we can only start from either type I and type II Ansatz. But we will find out these
two critical points are described by the same U(1) theory with two critical bosons. Basically.
there is a duality transformation mapping the type I to type II U(1) Higgs term, which induces
duality mapping in the critical theories. This duality transformation will be discussed in details
in Sec. 9.

5 Equivalence between CSL-SC transition and Laughlin state to
superfluid transition of Cooper pair

We are going to discuss the transition between the chiral spin liquid (CSL) and the d + id
superconductor. The spin and single electron remain gapped in the bulk. Although the charge
gap is closed at the QCB the critical degree of freedom does not carry spin. So in the low
energy we only need to consider the bosonic degree of freedom. Actually, here we show that
the QCP can be viewed as a state with fractional quantum Hall effects (FQHE) to a superfluid
(SF) transition of the charge 2e Cooper pair.

We will stack a v = —2 state with integer quantum Hall effects (IQHE) of spinful electrons
to the CSL-SC transition. This IQHE state does not change across the transition and it does not
have any effect in the bulk. Its role is to gap out the gapless edge mode carrying S = % in the
CSL-SC transition, so that we can get rid of the spin 1/2 electron in our final critical theory.
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We label A. and A; as probing gauge fields corresponding to charge Q and spin S,. Then the
response of v =—2 IQHE is:

1 1 1 . 11.
Lionr = 4_nﬁ1dﬁ1 + 4—n/52d/52 + %Acd(ﬁl + ) + %EAsd(ﬂl —B2), (29)

where f3;, 85 are introduced to describe the C = 1 IQHE of each spin. Here we use £, 3,
to keep the information of the thermal Hall effect or chiral central charge. Throughout this
paper we use adb as an abbrivation of the Chern-Simons term €""?a,,0, b, where " is the
anti-symmetric tensor with €%12 =1 and e*”? = —eH7”,

We can integrate f3;, 3, to get:

2 ~ 11. .
£IQHE = —4—7IACdAC — 54_7_CAsdAs —4CS[g], (30)

where CS[g] is the gravitational Chern-Simons term to encode the thermal Hall effect.This
CS[g]is given by some function of the Riemann tensor of a 4 dimension manifold. It is formally
needed to produce a theory which leads to the same partition function as that from a U(1);
action, consistent with framing anomaly and gluing laws, etc. On physical grounds, a Dirac
chiral fermion edge mode, associated with thermal hall effects, propagates along the edge on
an open manifold from the U(1); action. This makes the partition function diffeomorphism
invariant and the CS[g] holds the same issue, requiring a Dirac chiral edge mode to remedy.
For a review see [51].
For the CSL part, its effective action is:

1 1 1 /1. 1 1.
Legg =——aqday——ayday,+—| =A,+a |dai+— | —=A,+a |da,, 31
csL 414 T - aaday 27'5(2 s ) 1 27_5( 5% ) 2 (31

where a4, a, are introduced to describe C = 1 Chern insulator phase for spin up and spin
down spinon f,. We can also integrate a;, a, to get

Lcst = 2 ada+ liAsdAs +4CS[g]. (32)
4r 24r
Note here a is a spin gauge field meaning it couples to a fermion. Therefore, the anyon with
[ =1 charge has statistics 0 = —% 4+ m = 7, which is a semion expected for a CSL phase.
Then the total action is:
Ligue+csL = iada - iAcdf‘ic . (33)
4 4m

One can see that the spin Hall effect and the thermal Hall effect of the CSL are cancelled
by that of the IQHE phase. We can also do a redefinition: @ = a —A,, so that

LionE+csL = %&da + %Acd&. (34)

The charge of @ can now be either a fermion withQ =0,S = % orabosonwithQ=1,5=0
because we can always combine a single electronwithQ =1,S = % Here Q is the charge under
A, and S is the physical spin. The former has statistics 6 = 5, Q=0,S= % and is the usual
semionic spinon. The latter has statistics 6 = g, Q = 1,S = 0 and can be identified as the
anyon ofa v = —% Laughlin state of the Cooper pair. Actually the above Lagrangian is exactly
the effective theory of the Laughlin state.

Because edge mode does not carry any S = %, we can view it as a phase of bosonic Cooper
pair and ignore the single electron excitation. Then we define A, = 2A, as the probing gauge
field of the Cooper pair charge, then the effective theory is

2 1
L = —ada+ —A_.da. 35
IQHE+CSL = 7 ol (35)
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Similarly, for the d + id superconductor, there is a spin Hall effect and ¢ = 2 thermal Hall
effect, which can also be cancelled by the v = —2 IQHE phase. Therefore, the effective theory
for the d+id SC+IQHE is:

1 11
Lione+sc = %Acd a=3 4_7_CAchc ) (36)

where a is a gauge field representing the superfluid Goldstone mode. The first term represents
a superfluid phase of the Cooper pair. The second term can be ignored for a superfluid phase.
The final phase has chiral central charge ¢ = 0 and is an ordinary superfluid phase.

In the above we show that the CSL to d+id SC transition can be viewed as a transition
between v = —% Laughlin state to superfluid transition of the Cooper pair up to stacking of
a v = —2 IQHE phase. In the remaining of the paper, we will always stack the v = —2 IQHE
phase at the critical points between CSL, SC and even CDW Chern insulator. For the CDW
Chern insulator, the final phase is a trivial insulator after the stacking of the v = —2 IQHE
phase. The critical theories can then be viewed as that of a pure bosonic model formed by
spinless Cooper pair. As a result physical spin will be ignored in the discussions. We note that
a critical theory with two Dirac fermions was proposed before for Laughlin state to superfluid
transition [20] in the context of quantum Hall system, which coincides with one of our critical
theories for the CSL-SC QCP (see Sec. 7). We complement with two other theories with two
bosons coupled to either U(1) or SU(2) gauge fields. Note a U(1) theory with four critical
bosons was considered in Ref. [52].

Our analysis shows that there are three additional CDW orders at the CSL-SC, which is
required by the LSM theorem. Without the crystal symmetry and LSM constraint, the transition
is generically fine tuned and there will be an intermediate trivial insulator in between [20].
The crystal symmetries and LSM constraint required to protect the direct transition are not
obviously there for the usual Laughlin state in quantum Hall system, but in our model they
naturally exist.

6 U(1)_, with 2¢ for the CSL-SC transition on square lattice

We first derive a critical theory starting from the U(1) Ansatz for the CSL on square lattice.
As shown in Sec 4, on square lattice, there is a U(1) mean field Ansatz (the staggered flux
Ansatz) which is gauge equivalent to d + id superconductor. Then we expect the transition
from the CSL to the d+id SC is driven simply by holon condensation. But as we will show in
this section, there are two bosonic fields ¢, and ¢, at the critical point. The degeneracy of
these two bosons is protected by the projective translation symmetry T; T, = —T,T; in the PSG
of the staggered flux Ansatz. If we use the gauge in which the Ansatz is written as a d + id
superconductor for ¥, then naively we have trivial PSG T; T, = T,T;. However, in this gauge
the U(1) gauge field can not be written in an explicit way. It is more convenient to work in
the staggered flux Ansatz where there is an explicit U(1) gauge symmetry.

We consider the staggered flux Ansatz discussed in section 4. It is equivalent to add a
perturbation term to the SU(2) Ansatz:

H =—3'1,0,9, (37)

where ® = ($,,9,). ®, is an SU(2) spinor. ®; and ®, are related by projective translation
symmetry.

With this perturbation, the IGG becomes U(1) and the CSL is described by a U(1), theory.
The relevant low energy holon fields are now ¢; = &;;; and ¢, = @, ,. Note that naively

—&"1,0,® term breaks some symmetries listed in Table. 1, but the Ansatz is actually symmetric
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Table 4: Symmetry transformations in the U(1), 2¢ theory for the CSL-SC transition
on square lattice. C is the charge conjugation which exists only for the bandwidth
tuned transition. Only R;7 is anti-unitary. The monopole operator is defined as
M, = ./\/lg(ap"rioz(f'go*) (¢T3 ¢), where ./\/12 is the bare monopole operator. This
composite monopole operator is a singlet under the SO(3) symmetry at the A = 0

. i1z o . .
point generated by ¢ — e'2° . Here 7 is a unit vector.

T; T, Cy R,T | C U(1), U(1), comment
o =(pne)" | 019" | —ic19* | —ioyeli®y | 010t | ¢* e395%¢ ¢i29%
plop + + - + + | ¢'(cosOoq +sinboy)yp oo n,
¢'op + + - - — | ¢"(—sin6o +cosOoy)p ployp ny
Re M, + - Im M, + + Re M, cos ORe M, +sin OIm M, ns
Im M, — + —Re M, + - Im M, —sinRe M, + cos OIm M, ny
plosy - - + - |+ plosy p'osy ns

if we include an SU(2) gauge transformation +it;. We have new symmetry transformations
for ® = (®,,8,): Ty : 7,01, Ty : 7109, RyT : 17104, G4 —ie'%93, The transformations in
terms of ¢ = (1, ¢5)" can be easily derived and are listed in Table. 4, where we use G as
Pauli matrices in the space of (¢4, ¢,). U(1), is the physical U(1) rotation with the convention
that the charge is 1 for the Cooper pair. We also include an emergent U(1), symmetry, which
is the continuum version of the C, rotation.

From the symmetry transformation in Table. 4, it is clear that np'llﬂpz is the superconductivity
order parameter. Its symmetry transformation matches that of the d + id superconductor.
When we have a condensation ¢ = (1,1)7, it is shown that the electron operator c,, acquires
a d +id superconductor order in section 4. When ¢ is gapped, it is a CSL phase. Therefore a
direct CSL to d+id SC transition can be described by the condensation of .

For simplicity, one will stack a ¥ = —2 IQHE phase to cancel the spin Hall effect as done in
Sec. 5. The critical theory is:

1,1, 2 1
L=18,—ia,—iZA,05—izA e P=rlpl*+ —ada—g(e)* + A1 Plpsl* — —AdAT, (38)

where |p|2 = |1|? + |, |? and Pauli matrix & is acting in the ¢ = (i1, p,)T space. We use the
Lorentz convention 1oy = 1,711 = 122 = —1, where 7,,, is the metric. Note thatr, g, A need to
be added a sign when compared to the Euclidean spacetime. Here AL is the probing gauge field
for U(1), symmetry. AL is a probing gauge field for the U(1), symmetry, which is a continuum

generalization of the C, rotation. As we discuss later, at the critical point the discrete C,
rotation can be promoted to a continuous rotation and one has an emergent U(1), symmetry
whose transformation is listed in Table. 4. In the above %Tada comes from the integration of
the fermionic spinons. Spin Hall and thermal Hall effect are cancelled by the stacked IQHE
phase. The above theory should describe a purely bosonic system with elementary physical
charge 1 under A,.

r is the tuning parameter of this QCP Easy-plane anisotropy A > 0 is needed for
the CSL-SC transition. U(1), symmetry forbids ¢To,¢ and ¢To,p. T, forbids pTo;¢p.
Then the only gauge invariant bilinear term is ¢'p. One possible symmetric term is
—ht,o"f(iSIBSt + apgosz + %Af) + %A603)<p, One can check that this term is invariant under
Ty, Ty, C4,R,T. The couplings to Aj and Aj are enforced by the corresponding U(1) transfor-
mations. Therefore the critical theory should contain this term and the dynamical exponent is
z = 2, unless fine tuning h to be zero. If the probing field A° ,AL = 0, then the critical point is at

r. = 0. However, if we add a constant Ay = du, then r. is modified to be at r, = %h5 u+ %5 u?,
from which one can obtain h = % |5u=0- Physically 6u is obviously the change of the chem-

ical potential. So one reaches the conclusion that the term h = O when %LI su=0 = 0. When
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h = 0, the critical theory has a Charge conjugation symmetry:

C:p— ", AL—>—AL, A;—>—AL,aM—>—aH. (39)

The h term will be mapped to —h under C. So to leading order, one expects h ~ —du as
ou = Aj and r, ~ —5&u?. This is also the relation shared by the superfluid-Mott insulator
transition in boson Hubbard model. We will mainly focus on the point with h = 0 and a
charge conjugation symmetry. Experimentally this fine tuned point can be easily accessed in
the bandwidth controlled transition with electron density fixed at n = 1. On the other hand,
the chemical potential tuned transition will have the h term and a dynamical exponent z = 2.
One can also remove the coupling of ¢ to AL by redefinition: a,, — a, — %AL, then
. 1
Ly1—cst—se = 1(G —ia, — 1£AL03)ap|2 —rlpl? —g(e?)? + A1 Plwof?
2

1 1 1
+ —ada— —A°dA°* + —A"dA" — —A"da. (40)
4m 8m 81 21

If r > 0, ¢ is gapped and one is left with the following Lagrangian:

2 11 11 1
L=—ada—=-—AdA"+ ——A"dA" — —A"da, (41)
4r 24n 24n 27
one can make a redefinition: a,, — a, + %AL + %AL, then get:
2 1
L =—ada+ —A%da, 42)
4n 2

which is just the effective theory for the v = —% Laughlin state for the Cooper pair.

When r < 0, ¢ needs to condense. For the fixed point with A > 0, o< (1,1)7. This will
higgs both q, and AL, so a, is gapped and a superfluid phase for AL occurs. There is still a
term in the superconductor phase:

L= —iAc dA® + iAr dA". (43)
8m 87

The term for A° can be ignored because of Meissner effects. There is a 1/2 Hall effect
for A”. In our case the U(1), symmetry is present only at the QCB so A" is not well defined
in the superconductor phase. Notwithstanding this term suggests that this is a topological
superconductor.

One can identify ¢3¢ as (ny,n,,n5). We comment on the monopole operators in Ta-
ble. 4. In the SU(2) theory there are five order parameters. The Higgs term should not alter
this structure. In the U(1) theory the remaining two order parameters come from the real
and imaginary part of the monopole operator. We define the bare monopole operator as /\/lg
which annihilates a 27 flux for the internal gauge field a,. Because of the self Chern-Simons
term 4%ada, the bare monopole operator needs to be accompanied with operators such as
¢} to be gauge charge neutral. There are various different operators which carry charge
2 under a. Here we choose the one which is singlet under the SO(3) symmetry at A = 0
generated by ¢ — ei%a'ﬁap with 7 a unit vector. The monopole oprator we are looking for is
Mg = Mi(p'io,59%)- (95 ).

This Monopole corresponds to the order parameter ns + in, because it carries charge 1
under A, and meanwhile is a SO(3) singlet. On the other hand, the monopole operator such
as My'io,3 p* corresponds to composite order parameter (n;+ing)(ny, ny, ng) because it is a
tripet under the SO(3) symmetry which rotates (n;, n,,ns) at A = 0. When A # 0, this SO(3)
symmetry is broken down to SO(2) and the expression of the monopole may be deformed
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to have only Mg(cp"riazaggo*)(cﬁagap) component, but its symmetry transformation should
remain the same as A = 0. The symmetry actions of the monopole operator can be derived
from the atomic limit of the holon states as we demonstrate in Appendix. C. But the most
convenient way is to start from the SU(2) theory and view the theory in Eq. 40 as its Higgs
descendant. Then the symmetry quantum numbers of the monopole operator should inherit
the corresponding bilinear operators in the SU(2) theory. We will further discuss this approach
in Sec. 10.

7 U(1); with 21 theory, boson-fermion duality and emergent sym-
metry

We have shown a critical theory for the CSL-SC transition in the simple holon condensation
picture if the parton mean field theory for the CSL is in the type I U(1) Ansatz. However, CSL
can also have the type II U(1) Ansatz. Actually on triangular and Kagome lattice, there is no
type I U(1) Ansatz. For the type IT U(1) Ansatz, holon condensation picture can only give a
CDW phase because the Ansatz can not be gauge transformed to a translationally invariant
superconductor Ansatz.

As argued before, the type I and type I U(1) Ansatz on square lattice should really describe
the same CSL phase. So in principle there should still be a CSL-SC transition starting from the
type II Ansatz. There is no way to formulate it in the holon condensation picture. In this
section we will provide an alternative path to the topological superconductor from the CSL
phase.

7.1 U(1), with 24 theory from plateau transition of holon

For this purpose, we can only use the U(1) slave rotor theory with ¢;; = b;f;, where the
gauge constraint is ny = n; and b, f,; share the same U(1) gauge field. In the U(1) Ansatz,
both b and f,; are in a 7t flux Ansatz: (da) = 7. The density of the slave boson ny is 1 per site
and thus it is at filling ¥ = —2 per magnetic unit cell. Here minus sign arises because b carries
opposite gauge charge compared to f. As before, the CSL phase corresponds to the trivial Mott
insulator phase of the slave boson b. For the type II U(1) Ansatz, superfluid phase of b leads
to a CDW phase. However, boson at magnetic filling v = —2 can also be in a bosonic integer
quantum Hall (bIQHE) phase. As shown in ref. [46], bIQHE phase of the slave boson leads to
a d +id superconductor phase, schematically illustrated in Fig. 5. The simple understanding is
that the %rada term of the CSL phase gets cancelled by the v = —2 bIQHE phase of b and we
are left with a term %Acd a. Thus a, now represents the Goldstone mode of the SC. A detailed
analysis shows that its topological property is equivalent to a d + id superconductor [46].

In this picture, the phase transition is driven by the plateau transition of the slave boson,
which is known to be described by a Ny = 2 QED [53, 54]. The final critical theory is:

L= 3 iirudu— b+ i — o (34 —a)d( 34.—a)

i=1,1 2

1 1 2 1
—Dbd(=A,. — —ada— —A_.dA
+27‘C (2 ¢ a)+4na @7 grle®e (44

where two Dirac fermions v, 4 are introduced to describe the plateau transition of the holon,
which couples to %AC —a. b, is another internal gauge field. m < 0 and m > 0 corresponds
to the trivial Mott insulator and bIQHE phase of the holon respectively. %Tada comes from
integration of the fermionic spinons. —%ACdAc comes from the stacking of the v =—2 IQHE

20


https://scipost.org
https://scipost.org/SciPostPhys.15.5.215

Scil SciPost Phys. 15, 215 (2023)

p=p+tp,=0

27 flux

Y a
spinoy Q@ /

Figure 5: The schematic illustration of the formation of superconducting phases
from CSL when the holons form a bosonic integer quantum hall insulator with filling
v = —2 with opposite chirality to that of the spinon. The spinon remains in a chern
insulator with v = 2. A 27 flux of the internal gauge field nucleates a pair of holons
and spinons, hence forming a spin singlet Cooper pair. From Ioffe-Larkin rule [11],
the resistivity of holon and spinons are opposite and the physical resistivity tensor p,
is zero, suggesting a superconducting phase.

phase discussed in Sec. 5. We use the convention Yo = 13,71 = if, ¥ = in; and Y = y,.
1, is Pauli matrix acting on the spinor basis of a Dirac fermion.
Integrate a,, and then one obtains

_ : 1 1 1
Losp = D, Wil=ivuBu=byy, )i+ mipih— —bdb+ —A.db——A.dA.~2CS[g], (45)
i=1,2

where —2CS[g] comes from %Tada. The information of a central charge ¢ = —1 is lost after
integrating a,, so we need to add a gravitational Chern-Simons term to keep track of the
thermal Hall effect.

When m < 0, integration of v gives a —4%[ bdb term and a thermal Hall effect —2CS[g].
Finally we have:

2 1 1
L=——bdb+ —A.db——A,dA.—4CS[g]. (46)
4m 2n 4m
One can check it is equivalent to the CSL phase with a stack of ¥ = —2 IQHE phase. Note that
the charge of b,, is a fermion, so the anyon here carries statistics = 7 — = —3 and charge

Q= % under A.. One combines a single electron (with charge 1/2 under A, and physical spin
S =1/2) to get a neutral semion with spin 1/2 as expected for the CSL phase.
When m > 0, integration of 1) gives a ‘%ﬂbdb term and a thermal Hall effect 2CS[g].

Finally we have:
1 1
L=—A.db——A/A.. 47)
27 47
This is the superconductor phase where b higgs A.. Note that the —A%TEACdAc term can be

absorbed by b — b — %AC. This means that charge Hall effect is ill defined in a superfluid
phase.

7.2 Boson fermion duality

In the above we show that the CSL to SC transition is captured by a U(1); theory with two
Dirac fermions. The previous section provides a different critical theory with two complex
bosons for the same transition. Assuming that there is only one universality class for this QCB
the two critical theories in Eq. 40 and in Eq. 45 must be dual to each other. If one ignores
the Chern-Simons term in the two theories, the two theories are known to be dual to each
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other [2] and they describe the Neel to VBS deconfined quantum critical point(DQCP) [1].
Here we demonstrate the duality in the modified version with Chern-Simons terms for the
CSL-SC transition.

Start from the U(1)_, theory with two complex bosons:

. 1 2
=10, —1ia, —lgAc;uvg)cplz —rlelP—g(e*)? + Al Pl * + 2,%da

1 1 1
— gAchc + gArdAr — %Arda 5 (48)
where ¢ = (1, 9,)T and |¢|? is an abbreviation of ¢ = |@;]? + |p,|? .
Then apply the standard boson-fermion duality for one single boson or fermion [51,55]:

. s 1 - 1 1
10, —ia)p* =Tl —gldp|* > P(—iv, 9y — by, + o dbEmpyp = o—bda+ ——ada,
(49)

which sends a theory describing boson condensation with internal U(1) gauge field a,, to a
dual one with one Dirac fermion coupling to U(1) gauge field b,. The mass r > 0 (r < 0)
corresponds to m > 0 (m < 0). There are two versions of the duality, corresponding to two
sign choices (taking uniformly the upper or lower signs). For our purpose we will take the
lower sign convention.

Applying the duality to ¢; and ¢,, one gets

_ _ 1 1 1
Ly o> 3 Bilirydu= b b —mbipi— Y <bidbi—5-bid a+ 34

i=1,2 i=1,2

1 1 1 1 1 1 1 1
— —byd|a—-A. a+-A |dla+-A. |——|a—=A. |d| a—=A,
21 2 47r 2 2 4 2 2
2

1 1 1
+ 4—nada - 8—ACdAC + 8_71'ArdAr - %Arda - 2CS[g]

- 1
= > i (—iyu8u— by, ) i —mpp — Y gbidbi

i=1,2 i=1,2

— L by +by+A ) da+ ——A.d (b —by)— AdA 1 4 da —2cs[g], (50)
27 4 8m

where v;, b; are introduced as dual theory of ¢; fori =1,2. —2CS[g] is introduced to match
the thermal Hall effect of the left side, which is lost because 4%ada term is cancelled.

Integration of a, leads to by, + by, = —A,,,. We will substitute b,,, = —%Aw + by,
1
by, = —3A,,, — b, and get

P 1 S 1
Ly Ly =P7,(~i8, = b0+ JA ) —myp — —bdb+ -—Acdb
L AdA, + ——A,dA, —2C5[g], 1)

4 7 T 16m

where v = (y1,%,)". & are Pauli matrices acting on the (1);,1),) space. Ynp = Yoyy.
We can make a charge conjugation transformation only for ¢,: 95 =C (1/;2)T with C yl

Usmg Yo = n3,y1 iny,y2 = iny and R Yo, it can be shown that 1,02 1/)2

C7ly,C ==y Then mipyhy = —mpT ()" = mpsps, hartps ==y () == wc
and Y,(—iy, P, = ng(—iyﬁau)(zpz)T = Y5(—iy,0,)¢5. We will replace v, with 15,
which only needs a flip of the signs for the couplings to the gauge fields. In the end one labels
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Table 5: Five order parameters in the two dual theories for the CSL-SC transition.
Symmetry transformations of these order parameters can be found in Table. 4. We
list the corresponding operators in the SU(2) theory which is going to be discussed
in Sec. 9. Mg is the bare monopole operator in the U(1) 2¢ theory. /\/l(b) is the bare
monopole operator in the U(1) 21y theory.

n ny ns Ny ns
U(1)—z 2¢ 9oy oloye | ReMO(9Tio,5¢%) (975 ¢) [ ImMO(pTio,59%) - (¢T5¢) | ¢Tosp
U(1), 2¢p | ReMOy Py | ImMOyY 9, 1/{0'111’ Yo U{Us”(.b
SU(2)_; 2® | RedT0y7,® | ImdT 057, 370, ® 70, I

15 with 1, for simplicity. Finally we obtain:

- 1 . 1 1
Ly= > Pi(—ir,8,— by, + SAruOsY W+ mip; — -—bdb+ ——Acdb

i=1,2
1 1
——AdA.+ —A,dA, —2CS[g], (52)
41 167

If we ignore A,, this is exactly the same as in Eq. 45. Now from the duality one can also
derive the coupling to the probing field A,, which is absent in Eq. 45. The above duality is
derived by ignoring the interaction term (2g — A)|¢|2|p,|?. The r < 0 (r > 0) side of Eq. 40
and m < 0 (m > 0) side of Eq. 52 describe the same phase. Integration of v gives a term

1 1 1 1
_Sgggtm)((b +5A)A(D + JA) + (b= 2A)d(b— ~A,)) —sgn(m)2CS[g]
_ _sgn(m) bdb— Sgn(m)ArdAr —sgn(m)2CS[g].
41 167

Thus for m < 0, the final theory is £,,.o = %Acdb - A%TACdAC + %ArdAr. This is a super-
fluid phase with %ArdAr response, the same as the r < 0 side of Eq. 40. When m > 0,
we have £,,.9 = —4% bdb + %Acdb — ‘%TEACdAC —4CS[g]. This is a phase with response
—SLﬂAchC — 2CS[g], the same as the Laughlin state at r > 0 side of Eq. 40. The anyon has
charge Q = % and statistics 6 = —%,2 also consistent with the v = —% Laughlin state of Cooper
pair. Given that the two sides of the two critical theories are exactly the same, it is quite nat-
ural to expect that the two critical theories at m = 0 (r = 0) are also dual to each other. The
derivation above further supports this duality. Similar theories with Dirac fermions describing
CSL to XY-ordered or VBS transitions on square lattices are discussed in ref. [56], where the
boson-fermion duality was also formally derived. A different derivation of the duality appears
in ref. [57].

7.3 Order parameters in the dual theory

We have shown that there are five order parameters at the CSL-SC QCP in Table. 4, which is
derived in the U(1)_, theory with 2¢. Now with a dual theory in terms of Dirac fermions,
these order parameters should exist also in the dual side. First, when deriving the duality,
we start from a boson theory with the same mass r for ¢; and ¢,. Had one introduced r;
and r,, for ¢; and ¢, separately, the same procedure would have given mass term m; and m,
for 21 and 4, in the dual side. This means that ¢ o3¢ is dual to ypo3¢p. This is the order
parameter ns, representing the CDW order with momentum (7, 7). In the Dirac theory; it is
easy to see that 1,4, carries charge —1 under A,. Therefore one can identify it as the order

2The minus sign here comes from the fact that the charge of b, is a fermion.
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Table 6: The symmetry actions of Dirac fermions realized from square lattice 7 flux

state.
Op. mapping | T; | Ty Cy RT | C
Jowp |- |- + | - [+
Yoy — |t | Yoy | + | =
Yo + | - | Yoy + | F

parameter ns + iny. In other words, 1o and 10,1 correspond to the two CDW orders ns
and ny. In the Dirac theory, the term %Acdb indicates that the monopole /\/lgT carries charge
1 under A,. Usually one needs to add a fermion zero mode to the monopole to make it gauge
neutral. In our case, the term —4% bd b shows that the bare Monopole carries gauge charge —1,
so one needs to attach two fermion zero modes to the monopole. Hence the gauge invariant
monopole operator is /\/lg'(l/)];@,b;. /\/121/)11,112 is then the physical Cooper pair, whose real and
imaginary parts are n; and n,. We list the operator mappings in the two theories in Table. 5.
The duality provides information on symmetry transformations of the operators in the
Dirac theory, which is otherwise not obvious given that the microscopic content of the Dirac
fermions 1,7, are not clear. We can provide an Ansatz for the Dirac fermions to satisfy the
symmetry constraints, by taking a 7t flux state on square lattice for spinless fermions to realize
the two Dirac fermions at low energy. The lattice site now is at the plaquette center of the
original lattice. Taking the mean-field ¢;;,s = (—1)”,¢t; ;43 = 1, the low-energy Lagrangian
reads,
Lope= D, Wiy, (53)
i=1,2,=0-2
where vy = m3,712 = iny; as n are Pauli matrices acting on Lorentz indices. The symmetry
action for the Dirac fermions reads under appropriate basis choice, (in ¥ = (y1,,)"

Tl:\I/—>iO'2‘~I/, Tz:\IJ—>iO'1\I/,
o a

Cy: ¥ —e'%3%30 02y,
io. L ivoZ

Cy: ¥ —e'%3%0g5e 020,

C:¥—y05(0)7, RiT ¥ ——io V. (54)

One can verify that o ;1) transform in the same as the three CDW orders in the U(1) 2¢
theory, as listed in Table. 6.

As for the transformation of Mgzplwz,it is hard to derive its quantum numbers due to a
lack of definite UV realization of the QED theory L, (note there is a Chern-simons coupling)
and the existence of associated atomic limits. So we rely on duality and match the monopole
symmetries with those of ], in the U(1) 2¢ theory.

The U(1) 21 theory for the CSL-SC transition is derived from the plateau transition of the
bosonic holons and it should also apply to the triangular and Kagome lattice. Later an SU(2)
theory for the CSL-SC transition on triangular and Kagome lattice is provided. Therefore this
U(1) 29 theory should be dual to the SU(2) theory. The symmetry transformations of the
five operators in the U(1) 21y theory should be the same as in the SU(2) theory. Especially
G still represent three CDW orders. We will not try to regularize the Dirac fermions with
a lattice model and instead rely on the duality to the SU(2) theory to obtain the symmetry
transformations in this low energy theory.
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7.4 Emergent symmetry and anomaly

Here we show that the CSL-SC QCP has an emergent symmetry SO(3) x O(2). First, the SC
order parameter (n,,n,) has a U(1) global symmetry generated by A,. Similarly, easy-plane
CDW order (ns,n,) has a U(1) global symmetry generated by A,. Note that U(1), is already
emergent, as there is only C,4 rotation in the lattice scale. In the Dirac fermion theory, it is
believed the quartic terms are irrelevant. Then one can see that Eq. 52 has an SO(3) symmetry
generated by the three Pauli matrices 0, 05, 03, which rotate in the subspace (n3, n4, ns). This
enlargement of U(1), to SO(3) is not transparent in the boson theory, but given the duality,
one can now easily see it in the Dirac theory. In addition to SO(3) and U(1),, there is also
a Z, symmetry from the charge conjugation C, which corresponds to an improper rotation in
(nq1,n,) and (ns3, ny4, ns) space. Together, we have SO(3) x O(2) symmetry. Note that there is
an additional R; 7 symmetry which is an anti-unitary transformation and maps n5 to —ns.

One comment on mixed anomaly of the U(1), xU(1), % T; or U(1), x U(1), % T, symmetry
is in order. At the QCP the lattice symmetries act like an internal symmetry. For example, T;
and T, act like a Z, symmetry in Table. 4. In Eq. 52, dA, = 27 carries gauge charge 1 under
b,. In order to cancel the gauge charge, one needs to combine a Dirac fermion v, or v,
which carries charge i% under A,. Similarly, from the boson theory in Eq. 40, one can see
that dA, = 21 needs to combine a boson which carries charge :l:% under A.. This anomaly
indicates that there is no trivially gapped phase without symmetry breaking proximate to the
QCP For example, from the superfluid phase of A, to reach a trivially gapped phase one needs
to condense its vortex. However, the above analysis shows that the vortex carries charge
+1/2 under A, and its condensation leads to a superfluid of A,, which correspond to the
(ns,ny) orders. A Z, symmetry from T; or T, is crucial. For example, in Eq. 40, one can have
(¢1) # 0, {p3) = 0, which locks a,, = —%AC;H. Then we have £ = —%nAchr—BinArdAr. In this
case both U(1), and U(1), are preserved. However, T, is broken because T, flips the charge
of A,. This phase has the order ns. Similar anomaly also exists in the familiar example of Neel
to VBS DQCP [1,2,16].

The U(1); 24 theory in Eq. 52 has already been proposed in a previous paper on the
transition between a Laughlin state and a superfluid phase of boson [20]. Generically there
is a relevant term )0 ,4p which drives the system to an insulator in the middle between the
Laughlin state and the superfluid phase. In order to have a direct transition between the
superfluid and the Laughlin state, one needs extra crystal symmetry to forbid the relevant
terms Yo 4 with a = 1,2,3. In the CSL-SC transition on square lattice at filling n = 1,
1) 4 correspond to three CDW order parameters and these terms are forbidden by translation
symmetry. This is actually quite generic at filling with odd number of electrons per unit cell on
any lattice. With odd number of electrons per unit cell, the Luttinger theorem requires a Fermi
surface with size 1/2 of Brillouin zone for any symmetric phase without fractionalization.
Because the transition happens below a spin gap, a Fermi liquid is impossible. Then there
is no symmetric gapped phase without fractionalization according to the Lieb-Schultz-Mattis
(LSM) [17-19]. On the other hand, if one adds a v, term, one can reach a gapped phase
without fractionalization following Eq. 52.3 This phase nevertheless needs to break symmetry,
i.e. 10,4 must carry a non-trivial quantum number under lattice symmetry. Therefore the
intertwinement of three other symmetry breaking order parameters at the CSL-SC transition
is guaranteed by the Lieb-Schultz-Mattis (LSM) theorem for odd number of electrons per unit
cell. Exactly at the QCB there is an emergent SO(3) symmetry rotating these three order
parameters and the vortex of the SC order needs to carry 1/2 spin under this SO(3) rotation.
As we will explicitly demonstrate below, at CSL-SC transition on triangular lattice and Kagome
lattice, 13 also corresponds to three CDW orders.

3There can still be invertible topological order such as integer quantum Hall effect.

25


https://scipost.org
https://scipost.org/SciPostPhys.15.5.215

Scil SciPost Phys. 15, 215 (2023)

Table 7: Symmetry transformations in the U(1)_, 2¢ theory for the CSL-CDW
transition on square lattice. C is the charge conjugation and R;7 is anti-unitary.
Symmetry actions for p'o,¢ inherits from that of the SU(2) Ansatz in Table. 1.
M, = /\/lg(cp“"iazé'ap*) (¢T3 ), where Mg is the bare monopole operator.

T, T, Cy R,T | C U(1), U(1), comment
¢ =(p1,92)" | 010 | igap | —ie'3%¢ | io1p | ¢* ey €l2030
ploip + - —pTo,p + + oo 0T (cos@o, +sinHa,)p ng
vloyp - + lop + - PN @©T(—sinfo; +cosBoy)y ngy
Re M, + + — + + cos O6Re M, +sin 0Im M, Re M, n,
Im M, + + - — | — | —sin6Re M, + cos 6Im M, Im M, n,
plozp - — + — + p'osp plosp ng

8 CSL to CDW transitions

In the previous two sections we discuss two critical theories for the CSL-SC transition, which
are argued to be dual to each other. The U(1)_, 2¢ theory can be naturally derived from the
type I U(1) Ansatz for the CSL phase. In this section we explore the other possibility start-
ing from the type II U(1) Ansatz. As argued in the previous section, CSL to SC transition is
still possible from a plateau transition of bosonic holon. However, the simple condensation of
bosonic holons in this case leads to a charge density wave (CDW) Chern insulator phase. We
discuss critical theories associated with the CSL-CDW transitions. Note that the symmetries
for the CDW on square and triangular lattice are very different. On both lattices, there are
three different CDW orders labeled as (n3, n4,ns). On triangular/Kagome lattice, they have
momenta M;, M,,M; and are related by Cg rotation symmetry. On the other hand, on square
lattice, (n3,n4) carry momenta (7r,0) and (0, ), and are related by C, rotation. ns carries
momentum (7, ) and is distinct from (n3,n,). As a result, one goes to the CDW (ns3,n,) or
ns; depending on anisotropy terms. As an analog to Neel order, CDW (n3, n4) can be called
as CDW,., and ns CDW,. On square lattice, we have CSL-CDW,,, transition or CSL-CDW,
transition depending on whether it is easy plane anisotropy or easy axis anisotropy. On trian-
gular/Kagome lattice, CDW,, and CDW, are related by symmetry. The CSL-CDW transition
will be shown to be the same as the tri-critical point between CSL, CDW,., and CDW, on square
lattice.

8.1 CSL-CDW,, transition on square lattice

Following the same analysis in Sec. 6,from the type II U(1) Ansatz of CSL phase, one can easily
obtain a critical theory for CSL-CDW transition in the holon condensation picture. The type II
Ansatz is equivalent to adding a perturbation H' = —®'7,® to the SU(2) Ansatz (See Sec. 4).
The low energy holon fields are ¢, = ®;.; and ¢, = ®;.,, where ®; and &, are the SU(2)
spinors introduced in the SU(2) Ansatz in Sec. 3. The symmetry actions of ¢ = (1, ¢,) can
be derived from Table. 1 and are shown in Table. 7. The difference from the theory in Sec. 6
is that now the action of U(1), and U(1), get exchanged. As a result, ], is now the easy
plane CDW order nj + in, and the monopole operator M = M(¢Tio,5¢*) - (p'5 ) is now
the SC order n; +in,. ¢ o3¢ remains as the easy axis CDW ns.
A critical theory similar to Eq. 38 can be written down in terms of ¢ = (1, p5)':

. .1 1
Lii—csi—cdw = |(a,u, —a, — liAc;,u - l_O-BAr;u)(Plz - rl‘P|2

2
2 1
+-—ada—g(lp*)* + A Plea* — —AdA,, (55)
4n 8m
where we still stack a ¥ = —2 IQHE phase to cancel the quantum spin Hall response. A..,
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and A, are probing fields as in Eq. 38. The only difference from Eq. 38 is that A, and A, get
exchanged.
By a redefinition a

—a, — %AL one obtains a new version:

© w

. 1 2 1
L=1(6,—ia,— lEAr;ws)solz —rlel? —g(lel*? + ApaPleal* + 7, %da——Ada. (56)

For now let us assume A > 0, corresponding to easy-plane anisotropy. If r > 0, ¢ is gapped
and we are left with the following Lagrangian:

L= iada—iAcda, (57)
4r 2n
which is the CSL phase.

When r < 0, ¢ needs to condense. For the fixed point with A > 0, ¢ o< (1,1)7. This will
higgs both q,, and A,., so a, is gapped and we have a superfluid phase for A,.,. There is no
other term left. Superfluid of A, means that there is a symmetry breaking order parameter
(n3,ny), i.e. a CDW insulator. Note that we have stacked a v = —2 IQHE phase. Without the
stacking , the CDW phase is a Chern insulator with C = 2.

Table 7 lists the symmetries of bilinears in ¢ descending from those in the SU(2) theory ta-
ble 1. ¢ o, transform as the 3 CDW order parameters. We have the transform of monopoles
in the fourth and fifth line of table 7. The symmetry transformations are inferred from assum-
ing that they are the same as in the SU(2) theory described in section 9 because Higgs term
should not alter the symmetry properties of the order parameters.

The CSL-CDW,., critical theory is the same as the CSL-SC critical theory under exchange
of A, <= A,. Then it is also dual to a U(1)_; 21 theory. Following the procedure to derive the
boson-fermion duality in Sec. 7, the U(1); 2¢ critical theory for the CSL-CDW,,, QCP reads:

L£=1y,(-id,—b,— %AC;MU:;)’(I) —myy + %Ardb — %ArdAr — ﬁACdAC . (58)
One can check that the m < 0 gives the CSL phase and m > 0 describes a superfluid phase
of A,. In the Dirac theory, there is again a SO(3) symmetry. But now the SO(3) vector 3
corresponds to the order parameter (n;,n,,ns). Then the duality implies that at the CSL-
CDW,,, QCR the superconductor order and the easy axis CDW, order ns forms a SO(3) vector
together. In total, this QCP should have SO(3) x O(2) symmetry if we further include the
U(1)rotation U(1),. The CSL-CDW,,, QCP is dual to the CSL-SC QCP upon exchange of (1, n5)
and (n3, ny).

8.2 CSL-CDW, transition on square lattice

We have shown that the critical theory in Eq. 56 with easy-plane anisotropy A > 0 describes the
transition between CSL and the CDW,,, order. Now consider the easy-axis anisotropy A < 0,
then the r < 0 side selects the condensation ¢ = (1,0)” or ¢ = (0,1)” and one has the CDW,
order. So A < 0 corresponds to the CSL-CDW, transition.

One interesting observation is that the A < 0 case of Eq. 40 also describes the CSL-CDW,
transition. These two theories are related to each other by exchange of A. and A,. Therefore,
the CSL-CDW, QCP is self dual under exchange of A, and A,. CDW, order corresponds to
¢'o3¢ in both theories. However, n; +in, (or ns +in,) corresponds to ¢ o ¢ in one theory
and the monopole operator M, in the other theory. This suggests that for A < 0, the U(1)_, 2¢
theory has a hidden symmetry which relates ¢ o 5 to the monopole operator M,. Indeed,
as shown in Sec. 9, the CSL-CDW, has an O(4) symmetry rotating the vector (n, n,, nz, ng).
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Table 8: Symmetries of boson bilinears and monopoles for U(1)_, 2¢ theory on
triangular lattices to describe CSL-CDW transition with Eq. 56 with A = 0. It can
be viewed as descending from SU(2) theory eq (59) by adding a mass ®'o;®. We
define U(1), to be ¢ — ei%‘739<,0 to preserve Eq.(56).Like on the square lattice, U(1),
rotates 2 CDW order parameters (ns,ns) ~ (p'o10, 9 05¢) and preserves other

operators.
T, T, Ce RT C U(1), note
——— ooy —— -
0 =(p1,9)" | —io1p | —iozp die A Sy ey @ €290y

ploiy + - ¢Tose + + ployp ng
9oy - - ¢losp plosp - LAY 4
p'osp - + p'owp p'oap + p'osp ng
Re M, + + cos(Z)Re M, +sin(Z)m M, | cos(Z)Re M, +sin(E)im M, | + | cosORe M, +sinfIm M, ny
Im M, + + cos(Z)Im M, +sin(3)Re M, | —cos(E)Im M, —sin(Z)Re M, | — | —sinORe M, +cosOIm M, | n,

8.3 CSL-CDW,,-CDW, tricritical point on square lattice and CSL-CDW transition
on triangular/Kagome lattice

We have shown that A > 0 and A < 0 of Eq. 56 corresponds to the CSL-CDW,, and CSL-
CDW,, transitions on square lattice. Then naturally A = 0 is the tri-critical point between CSL,
CDW,,, and CDW,. On the other hand, on triangular/Kagome lattice, there is no easy-plane
or easy-axis anisotropy for the three CDW orders. A = 0 is required by the Cg rotation and the
tri-critical point now becomes a bi-critical point on triangular/Kagome lattice between CSL
and isotropic CDW phase. At this QCB there is a SO(3) x O(2) symmetry. SO(3) rotates the
three CDW orders (ng, ny, ns).

We list the symmetry actions for ¢ and the five order parameters on triangular/Kagome
lattice in table 8 and 9. They can be derived from the type II U(1) Ansatz of the CSL phase by
adding —®'7,% term to the SU(2) Ansatz.

8.4 CSL-CDW,-SC tricritical point on square lattice

We comment on the A = 0 point of the CSL-SC critical theory Eq. 40. In this case A > 0
describes the CSL-SC transition and A < 0 describes the CSL-CDW,, transition on square lattice.
Then naturally A = 0 is a tri-critical point on square lattice. This tri-critical point is dual to
the tri-critical point between CSL-CDW,.,,-CDW, because the action is in the same form up to
an exchange of A, and A,.. Again one expects a SO(3) x O(2) symmetry with SO(3) symmetry
rotating (n;, n,, n5) now.

Table 9: Symmetries of boson bilinears and monopoles for U(1)_, 2¢ theory on
Kagome lattices to describe CSL-CDW transitions. It can be viewed as descend-
ing from SU(2) theory eq (59) by adding a mass ®'o;®. We define U(1), to be
p — ei%"39g0 to preserve Eq.(56).Like on the square lattice, U(1), rotates 2 CDW
order parameters (ns,n4) ~ (07010, ¢T0,¢) and preserves other operators.

T, T, Ce RT C U(1), comment
T - - 7 0005 & —r iz 1,8
¢ =(¢1,92) 10yp | LO39p e'ce BBy elie VI 20 | o” e'29%p
plory - - ployy —¢'osp + plony n
p'oap + - plosp - - ¢ 09 4
elosp - + elop —p,01¢ + plosp M5
Re M, + + | cos(3)Re M, +sin(5)Im M, Im M, + | cos@Re M, +sinOIm M, ny
Im M, + + cos(3)Im M, +sin(5)Re M, Re M, — | —sinfRe M, + cos 6Im M, ny

28



https://scipost.org
https://scipost.org/SciPostPhys.15.5.215

Scil SciPost Phys. 15, 215 (2023)

Table 10: Symmetry transformations in the SU(2)_; 2® theory for the CSL-SC transi-
tion on square lattice. Cis the charge conjugation which exists only for the bandwidth
tuned transition. Only R;7 is anti-unitary.

T, T, Cy4 RT | C U(1), U(1), comment
@ =(0,,8,) | —i0,® | —i0,@ | —iel 79 | io,@ | & ¢i2900g €l29309
Re ®70,7,® + + — + | + | cosORe ®T0,7,® +sinOIm & 0,7,® + ny
Im &To,7,® + + — + | — | —sinORe T 0,7,® + cos OIm &7 0, 7,® + n,
oo, ® + — ®To,0 + |+ oo, ® cosORe 70, ® +5sin 09T ,P ny
®'0,% — + —o'0,® + - ®'0,% —sin0®'c® +cos0d'0,® ng
70, - — + — |+ + ¥ ns

9 SU(2) theory: a unified framework for CSL-SC and CSL-CDW
transitions

As shown in previous sections, the CSL can have either SU(2) Ansatz or U(1) Ansatz at the
mean field level. Both Ansatz describe the same topological order. We can describe the CSL-SC
transition starting from either Ansatz. For the U(1) Ansatz, there are two types. In type I U(1)
Ansatz, the mean field theory of spinon f, can be gauge transformed to that of a translation
invariant superconductor. Then CSL-SC transition can be captured by condensation of bosonic
holons as demonstrated in Sec. 6. In contrast, for the type II U(1) Ansatz, the mean field
theory of spinon f, is not gauge equivalent to a translation invariant superconductor. In this
case holon condensation leads to CDW order instead of superconductor as discussed in Sec. 8.
Even for this case, we can still reach a SC phase if the bosonic holon goes through a plateau
transition, as shown in Sec. 7. The final theory contains two Dirac fermions and is argued to
be dual to the theory with bosonic holon fields. The shortcoming of the U(1); theory with
two Dirac fermions is that the microscopic symmetry actions on the Dirac fermions are not
transparent. On triangular lattice and Kagome lattice, there is no type I U(1) Ansatz, hence
there is no obvious critical theory with two complex bosons ¢ coupled to U(1) gauge field to
describ CSL-SC transition.

In this section, we will start from the SU(2) Ansatz for the CSL and derive a new critical
theory for the CSL-SC transition where there are two SU(2) bosonic spinors &, ®, coupled to
an SU(2) gauge field with chern-simons term at level —1. Because the SU(2) Ansatz describes
the same CSL phase as the U(1) Ansatz, we will argue that this SU(2) critical theory is dual to
the U(1)_, theory with 2¢ and the U(1); theory with 21} in the previous two sections. This
offers a new perspective on the critical point. In the SU(2) theory, the five order parameters are
all bilinears of the bosonic fields and there is no monopole. Therefore the symmetry actions on
the five order parameters can be easily obtained from mean field Ansatz. In the SU(2) theory,
one can identify other fixed points corresponding to CSL-CDW transition and tricritical points
at the intersection of CSL, SC and CDW. Therefore SU(2) theory offers a unified framework
to capture all critical theories discussed in the previous sections. Enlarged symmetry and self
duality at certain fixed points in the SU(2) theory are shown explicitly.

9.1 SU(2) theory on square lattice

On square lattice, we start from the SU(2) Ansatz for the CSL listed in Sec. 3.1. As already
shown in Sec. 3.1, at low energy there are two bosons $; and ®, in the fundamental represen-
tation of the SU(2) gauge field. They are related by translation symmetry and their degeneracy
is guaranteed by the T; T, = —T, T, algebra. A critical theory can be written down correspond-
ing to the condensation of these two bosons. The symmetry transformations of ® = (&,,®,)”
are listed in Table. 10, which follows from Table. 1. U(1), symmetry and charge conjugation
symmetry follows the same notation as in Sec. 6. Here o, labels Pauli matrices acting in the
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Table 11: The role of quartic terms in the SU(2) theory to select the symmetry break-
ing order parameter in the ordered side. The energy cost is defined on top of g+ A,.

Order parameter SC (nq,n,) CDW (ng, ny4) CDW ngs
1 0 1 1 1 0
i =L =1 =L =L — —
Condensation | ®; = 7 (0),<I>2 =7 (1) =5 (0),<I>2 =% (O) ®, = (O),cpz = (0)
Energy .y N 0

(®1,%®,) space. 1; labels generators of SU(2) gauge field and acts in the (®,.1,®,.) space for
a =1,2. The SU(2) critical theory is

. .1 1.
ESU(Z) = Z |(3M - la;rs - IEAC;MTOO.O - ElAr;uTOO-B)q’ilz - r|¢|2
i=1,2

1 2 1
+—Trlanda+ —iaNaANa]l——A.dA. — Ly »
4m 3 8m
Lin = g|®"®2 4+ Agn-n— A(n% + n%) — A’(n% + ni), (59)

where a®,s = 1,2,3 is an SU(2) gauge field. A. and A, are the U(1) probing fields for the
U(1). and U(1), global symmetry

n = (ny,ny,n3,M4,n5) = (Re®’ 0,7,8, ImdT 0,7,8,870,8,870,®,870,8).

4iTtTr[a ANda+ %ia A a A a] is the Chern-Simons term for SU(2) gauge field coming from the
integration of the fermionic spinons. Here a, = > _; ;3 a, 7. The —5-A.dA, term again
is from the stacking of the v = —2 IQHE phase to cancel the spin Hall effect. All symmetry
allowed quartic terms are included(see Appendix. B). The theory has a charge conjugation
symmetry

C:d(x)— d*(x), a,(x) = —a,(x),
AL(x) — —AL(X), AL(X) — —AL(X). (60)

Under C, (ny,ny) — (ny,—n,) and (ng, ng,ns) — (n3,—ny,ns). The same as the discussion
for the U(1)_, 2¢ theory, the C symmetry exists only for the bandwidth tuned transition. For
the chemical potential tuned transition, there is a i%'8,% term and the dynamical exponent is
z = 2. We focus on the bandwidth tuned transition and thus a charge conjugation symmetry
is present.

The phase transition is tuned by the sign of r. When r > 0, ¢ is gapped out and one is
left with the SU(2)_; Chern Simons theory, which is known to be equivalent to the U(1), CSL
phase by level-rank duality. When r < 0, condensation of ® higgses the SU(2) gauge fields and
leads to a symmetry breaking phase. There are various different possible phases corresponding
to different condensation patterns of ¢, which are decided by the quartic terms.

It can be shown that A > 0 favors the SC order parameter (n;,n,). In contrast, A’ > 0
favors the CDW order parameter (ns,n,). A < 0,1’ < 0 favors the CDW order ng. Therefore
there should be several different fixed points in the parameter space (A, 1’), corresponding
to transition between the CSL and different symmetry breaking phases. The energy cost of
different symmetry breaking orders can be found in Table. 11.

9.2 SU(2) theory on triangular and Kagome lattices

On triangular and Kagome lattices, we also have SU(2) Ansatz for the CSL phase. Again
the low energy holon fields are captured by ®; and ®,, whose symmetry transformations are
listed in Table. 2 and in Table. 3. As in square lattice, T; and T, relates ®; and ®, and protect
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their degeneracy. ®'3® all break translation symmetry and now carry momenta M;, My, M3,
corresponding to three CDW orders (ns, ny, ns). Together they form a three dimensional vector
i1 = (n3,n4,ns) and lattice symmetries act as one element of a SO(3) rotation on 7. As on
square lattice, T; and T, act as a 180° rotation around one of 7i3, 74, fi5. In contrast to square
lattice, the Cg acts as an rotation around the direction along %(ﬁ?) + 14 +1i5) and thus rotates
fi3, M4, 75 to each other. The C4 on square lattice instead rotates around 7is; and the CDW on
square lattice has an easy-plane anisotropy meaning (ns,n4) can not be rotated to ns by any
symmetry.

A critical theory in terms of & = (®,,®,)! reads as Eq. 59, albeit with the easy-plane
anisotropy terms A’ forbidden by the Cg symmetry which rotates ng, n4, ns to each other. U(1),

symmetry is now enlarged to SO(3), however we can still keep the probing field A,, which acts

.1
1503

as ® — e'2939%, In summary the critical theory is Eq. 59 with A’ = 0.

9.3 Enlarged symmetry and duality

Here we discuss the symmetry in the (A, ") space. It is convenient to construct a 2 x 2 matrix

field for each field @,,:
1 (®,, @ .2)
Xe=—| 5 il (61)
e \/E (_4)22 <I>2;1
It can be shown that (@1, <I>a;2)T and (—®y.,, @Z;l)T transform in the same way under the

SU(2) gauge transformation. Therefore, the SU(2) gauge transformation acts as:
X, — X, Ug . (62)

where U, € SU(2).
The four elements of X, are not independent. They are constrained by the condition:

X: = TzXa’Tz. (63)

Note that the gauge transformation e*«® acts on the right of X,. On the other hand, X, — UX,
with U € SU(2) generically does not belong to the gauge group.

Xy
X,
with o = 1,2 as the index for the ‘valley’ degree of freedom. We need to apply the following
constraint:

We can then define a 4 x 2 matrix field: X = . Each element can be labeled as X ../

X*:O-()@TzXTz, (64)

where 0y ® 7, is a 4 x 4 matrix.

The gauge invariant bilinear operators can be organized in TtX "o, 7, X witha, b=0, 1,2, 3.
Among the 16 operators, we find that ten of them vanish (see Appendix. B). TrX'X = &'®.
The remaining five are the five symmetry breaking order parameters:

n = (ny,ny,n3,M4,15) = (Red  0,7,8,Imd  0,7,8,8'0,%, 80,8, 8"03®)

— T
=TiX"(—0372,—0371,01,0273,03)X .

SU(2) gauge transformation acts as X — X U;, a, — UgauU; — iUgauU;. The critical theory
can be rewritten as:

. . N 1 2
L=Tr(d,X"+ia,X")(9,X —iXa,)+rTeX'X + 4—nTr[a Ada+ gia NaANal—L,, (65)

where a, is the abbreviation of aL T, withs =1,2,3.
The interaction term reads:

Line = gITIX X2+ Aon-n— A(n% + n%) - )L’(ng + ni) . (66)
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9.3.1 SO(5)xZ] symmetryatA=1"=0

At A = A = 0, there is a global symmetry SO(5). First, let us set A = A’ = A, = 0,
then the action is invariant under X — UX where U € U(4). To satisfy the con-
straint in Eq. 64, we need U'oy ® 7,U = 0, ® T,, which forms an Sp(4) group. Be-
cause X — —X is shared with the SU(2) gauge transformation, the global symmetry is
SO(5) = Sp(4)/Z,. The SO(5) group has 10 generators, which correspond to X — "X with
['=0yT3,03T9,00T1,01T9,03T1,00T2,01T1,03T3,09,071T3. This SO(5) symmetry rotates
the five dimensional vector n = (ny,ny,ns,n4,ns) = TtX (=037, —03T1,01,09T3,03)X.
More specifically, one can label the generator of SO(5) as L, witha < f and a, f = 1,2,3,4,5.
One can checkthatT' = 0yT3,057,,00T1,01T9,03T1,0¢T9,01T1,03T3, 09,0 T3 corresponds
to L1g, L13, L14, L1s, Lag, Log, Las, Lag, L3s, L4s up to a sign convention. Here L, generates an
SO(2) rotation in the (n,,ng) subspace. n-n is invariant under the SO(5) rotation and £
has the SO(5) symmetry with a finite A, as long as A = A’ = 0. There is also an anti-unitary
symmetry R7, so the final symmetry is SO(5) X Z2T A

9.3.2 0(4)x ZZT symmetry at A = A’

Consider the high symmetry line with A = A’ # 0 and g # 0, A # 0. The interaction term can
be rewritten as:

Lin = gTXX +(A+ AO)(H% + n% + ng + ni) + long . (67)

Then one still has an SO(4) symmetry which rotates the vector (n;, ny, ns,ngs). SO(4) has 4 gen-
erators, corresponding to X — eT9X with ' = 073,037,071, 03T1,00T,, 03T3. Meanwhile,
there is a Z, action from X — ei"”S%X, which acts as (ny, ny, ns, ng, ns) — (ny, ny, ng, —ng, —ns),
an improper rotation in the (n;, ny, n3, ny) space. Together we have a O(4) symmetry. Includ-
ing the anti-unitary symmetry R7, together the symmetry becomes O(4) x ZZT .

9.3.3 Duality under A «— A’

A special operation: X — e!™2%¢l%372% X corresponds to ®; — —i7,®], P, — ®,. This belongs
to a special element in the SO(4) group discussed in the previous subsection for A = A’. This
operation maps (ny, ny, n3, N4, n5) — (n3,n4,—Ny,—Ny,n3). It flips A.,, <> A,.,, but leaves
the action invariant at the special line A = A’. When A # 1/, it is no longer a symmetry.
Instead, it induces a duality which maps one critical theory with (A,1") to a different critical
theory with (1’,1). As shown below, the CSL-SC fixed point and the CSL-CDW,,, fixed point
on square lattice are related by this duality. This duality constrains the renormalization group
(RG) flow in the (A, 1) space to be symmetric under the reflection A «— A’. This duality
precisely corresponds to the duality between Eq. 40 and Eq. 56 with A, and A, exchanged.

9.4 Various fixed points in the SU(2)_; 2% theory

We now discuss possible fixed points in the SU(2)_; 2® theory. There is one obvious relevant
direction tuned by r. When r > 0, the CSL phase with & gapped occurs. When r < 0, ®
condenses and higgses the SU(2) gauge field, leading to a symmetry breaking phase. The
exact symmetry breaking pattern depends on the quartic term and there are various different
fixed points in the g, A, A, A’ space. g, A, terms are SO(5) invariant and presumably flow to
a fixed point value. They do not select the symmetry breaking pattern after r < 0. Therefore
one focuses on the (A, 1”) space.

“RT and U(1), do not commute.
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A schematic phase diagram and fixed points are shown in Fig. 6. First consider the triangu-
lar or Kagome lattice. Then Cg4 rotation guarantees A’ = 0. In this case, CSL-SC QCP must be
the fixed point at (A, A") = (A%,0) with A% > 0, shown as the blue point in Fig. 6(a). Similarly
there is a fixed point at A < 0 for CSL-CDW transition, shown as light blue point in Fig. 6(a).
The red point at (A, 1) = (0,0) is then a tri-critical point on triangular/Kagome lattice.

Next square lattice. We argue that the CSL-SC transition still corresponds to the same
fixed point as on triangular lattice for the following two reasons: (I) The CSL phase and SC
phase on square and triangular lattice are the same. So it is natural to expect that the QCP on
these two lattices are also the same. (II) As discussed in the U(1); 24 theory for the CSL-SC
transition, there is an SO(3) x O(2) symmetry, which is possible only when A’ = 0. Now that
the blue point is identified as the CSL-SC transition, we use the duality map A «— A’ to obtain
another fixed point at (A,4") = (0,A%) (the orange point in Fig. 6(a)), which corresponds to
the CSL-CDW,,, transition on square lattice. There should be a tri-critical point between CSL,
SC and CDW,, though not necessarily at the (4, A’) = (0,0) point. The tri-critical point, if
exists, most naturally occurs somewhere along the A = A’ line marked as the pink point. Note
that the RG flow constrained by the A «— A’ duality fixes this fixed point to be along the A = A’
line, so it has an O(4) symmetry rotating (ny, ny, ns, ny).

The light blue point is believed to describe the CSL-CDW transition on triangular/Kagome
lattice. According to the analysis in Sec. 8.3, it should also be the tri-critical point between
CSL, CDW,, CDW,,, on square lattice. Using the A « A" duality, we know there is another
fixed point labeled as the grey point. This should be the tri-critical point between CSL, SC,
CDW,. (see Sec. 8.4). The RG flow suggests a fixed point along the line A = A’ < 0. This
yellow point is exactly the CSL-CDW, critical point discussed in Sec. 8.2. This QCP has an
additional symmetry relating (n;,n,) to (ns,ns). The SU(2) theory enables one to make a
stronger statement that there is an O(4) symmetry rotating (n;, ny,ns,ny) and a self-duality
symmetry from A «— A’ for the CSL-CDW, QCP

The SU(2) theory offers a unified framework for all of the critical points and tri-critical
points discussed in previous sections using bosonic holons or Dirac fermions in U(1) theories.
The blue and orange points are known to be dual to the U(1); 21 theory. The blue, light
blue, orange, yellow and grey points can all be described by U(1)_, 2¢ theory in Eq. 40 and
Eq. 56 by tuning the easy-plane anisotropy term A. The red and pink point, however, are not
captured by the simple U(1)_, 2¢ theory. SU(2) theory proves to be the most convenient way
to describe these two tri-critical points.

Although not shown in Fig. 6(a), the SC-CDW,, transition on square lattice and SC-CDW
transition on triangular/Kagome lattice are in the same universality class as the famous DQCP
between Neel order and VBS order with or without easy-plane anisotropy respectively. The
DQCP can be viewed as descendant from the tri-critical points (the red and pink fixed point).
Let us start from the red fixed point at A = A’ = 0 with a SO(5) symmetry. After r < 0O,
the CSL phase is higgsed and the theory should be reduced to a non-linear sigma model in
terms of i = (ny,ny, n3, ny,ns). It can be derived that the SU(2)_; Chern-Simons term leads
to a Wess-Zumino-Witten (WZW) term with level k = 1 for the non-linear sigma model in
terms of 7i [58], which exactly corresponds to the isotropic DQCP [2]. With an easy-plane
anisotropy, the SO(5) non-linear sigma model with WZW term reduces to an O(4) non-linear
sigma model with 6 = 7, corresponding to the easy-plane DQCP between CDW,, and SC.
This will be discussed in more details in Sec. 11.

The CDW,,-SC and CDW,,,,-CDW, transitions should be first order because there are only
three independent order parameters and there is no non-trivial Wess-Zumino-Witten term or
0 term for order parameters living on S? manifold in 2 + 1 dimension.
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Figure 6: (a)Fixed points of the SU(2) theory with N, = 2 bosons. On triangu-
lar and Kagome lattice, A’ = 0 is enforced by lattice symmetry. There is a duality
transformation A «— A’. The red point has SO(5) symmetry. Pink and bright yellow
points have O(4) symmetry.(b,c) plot phase diagram on square and triangular lattice,
respectively. The critical line or point has the same color as the fixed points in renor-
malization group(RG) flow of (a). Note that fixed points in the RG flow diagram
may correspond to phase boundaries (line) or the intersection points of 3 phases in
(b,c) depending on the lattice and symmetries. The green line in (b,c) separating
superconducting and CDW phases are described by isotropic or easy-plane DQCP not
displayed in the flow diagram (a). The dashed line represents first-order transitions.

10 CSL-SC and CSL-CDW,, transition: Duality between SU(2)_,
2% and U(1)_, 2¢ theory

We have shown that the blue and the orange fixed point in Fig. 6 describe the CSL-SC and
CSL-CDW,,, transition. Sec. 6 and Sec. 7 also discussed U(1) theories with 2¢ or 24 for the
same CSL-SC transition. The same is true for the CSL-CDW,,,, transition discussed in Sec. 8.
It is natural to expect these three theories are dual to each other at the blue and orange fixed
points in Fig. 6(a). The boson-fermion duality between the two U(1) theories have already
been demonstrated. Here we discuss the duality between the SU(2) 2® and U(1) 2¢ theories.
The duality between the SU(2) 2® and U(1) 21 was already proposed previously [58-60].
One interesting property about the CSL-SC and CSL-CDW,,, transition is the enlarged SO(3)
symmetry among (¢ o3¢, M(p)), which is not obvious in the U(1) 2¢ theory. This section
provides an understanding of this SO(3) symmetry in the U(1) 2¢ theory. The CSL-CDW, -
CDW,, tri-critical point also has SO(3) symmetry, simply from fine tuning to A = 0. An enlarged
SO(3) theory in the U(1) 2¢ theory with easy-plane anisotropy A > 0 in Eq. 40 or Eq. 56 is
more nontrivial.

Starting from the SU(2)_; 29 theory defined in Eq. 59, one obtains a U(1)_, 2¢ theory by
higgsing the SU(2) gauge field down to U(1) generated by 75. There are two different types
of the Higgs term:

M —m- 875759,

(D) M- (Red’ 07,9, Imd 07,8, 8 7,8),

where m is a three dimensional unit vector. These two groups are related by the duality
transformation X — e!"2% 93725 X or equivalently ¢, — —iT,®], P, — @, (see Appendix. B).
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The type I U(1) and type II U(1) Ansatz in Sec. 4 are obtained with /i = (0,0, 1) in the two
groups respectively. In the first group, other values of m can be generated from m = (0,0, 1)
with an SO(3) rotation generated by Ls4, L35, L4s, which rotate in the subspace of (ng, ng, ns).
On the other hand, m in the second group is generated from m = (0,0, 1) with a SO(3) rotation
in the subspace of (ny, n,, ng).

The SU(2)_; theory will flow to the U(1) 2¢ theory in Eq. 40 and Eq. 56 by adding the
Higgs term in the two groups respectively, corresponding to the CSL-SC and CSL-CDW,,, tran-
sition. The SU(2) theories at the fixed point (A,A") = (1*,0) and (A, 1) = (0, A}) are dual to
Eq. 40 and Eq. 56 respectively. There is a manifold of U(1) theories specified by the vector m
in the Higgs term rotated by SO(3) symmetry.

We discuss CSL-SC transition as an example. CSL-CDW,,, is in parallel as related by the
A «— A/ duality. For the CSL-SC transition, we propose the following duality:

. 1 1 2, 1
Lsy) =109, — 1a‘;’rs - lEAC;MTOO'O)q)alz —r|®|* + 4—7_ETr[a Ada+ gla ANaAa]— gAchc

—g|®"®|2—Aon-n+ A(nf + n%)
— Loy —hd'm- 5730
1
8m
—&(le1*)* + A1 Pleal?. (68)

1 2
= Lyaym =10, —ia, —i5A,0)0l” —rlel* + L-ada— o—AdA,

¢ = (¢1,92)T descends from & = (&;,%,)" after adding the Higgs term —h®'m - 57,®
on energetic grounds. For example, if m = (0,0, 1), we have ¢; = ®;,; and ¢, = ®},. The
probing field A, is omitted because the U(1), is not explicit in the U(1) theory for a ’generic
m, unless m = (0,0, £1).

Note that L) 7 is gauge equivalent to Ly ;) after a gauge transformation & — it 9.
Therefore the real manifold of U(1)_, 2¢ theories specified by a unit vector m, is RP? = §2/Z,
after one mods out the equivalence between /m and —. For any m, Ly(y)» reduces to the
U(1)_, 2¢ theory, albeit the symmetry actions are different as discussed in the following. The
implication of the duality is that all of these seemingly gauge nonequivalent theories flow to
the same IR fixed point, which is also the (A,1") = (A%,0) fixed point of the SU(2) theory
without Higgs term.

The SU(2) 2& theory at the (A, 1) = (1*,0) fixed point has a SO(3) x O(2) symmetry. The
SO(3) symmetry is also transparent in the U(1), 24 theory. Lattice symmetry like T;, T,, C, (or
Ce on triangular/Kagome lattice) are special elements in the SO(3). In contrast, the Ly
theory above does not have the SO(3) symmetry and the lattice symmetry explicitly for a
generic m. So how does one understand the symmetry in the U(1) theory? The answer is
that the SO(3) symmetry needs to act non-locally in the sense that it leaves the partition func-
tion invariant but not the action. It needs to transform the field ¢ in Ly(j) 5 to another
field ®g.; = U in a different theory L) r.m, Where R € SO(3) is generated accordingly
from U € SU(2).° In the low energy regime of the U(1) theory, one uses the CP! field vari-
able (¢1.7, go;;ﬁl) for each m, which are obtained by projecting to the two components of

lowest energy from the term —&'ii - §&. After an SO(3) rotation, (¢1.4, wz;ﬁl)T maps to
(Qol;ﬂ:R-ﬁu @;;iR.ﬁq)T'

Let us illustrate this procedure using one example with m = (0,0,1) and consider the
translation T; : —io; in the original SU(2) theory. Now, it will first transform m to —m
with &_5; = —io,®;. Then we map it back to m using &5 = it,®_5; = 0,7,9;. For
this particular example, the translation symmetry T; acts locally in the sense that it maps

SNote that 7 is defined in the northern hemisphere of S2. If R - 71 is in the southern hemisphere, we can map
it back to Ly ) _g.; by simply an additional transformation ®_g.; = iT;®g.;-
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® to the same U(1) theory specified by m = (0,0,1). Focusing on the low energy degree
(¢1,93) = (21,1, P,2), T; acts simply as o;. In the similar way one can see that T, acts as
—ioy,m = (0,0,1) —» m = (0,0,1). However, consider a different U(1) theory labeled by
m = (1,1,0), then T; needs to act non locally and it maps (1, ¢3) to the field of a different
U(1) theory labeled by m’ = (1,—1,0).

On square lattice, all of the lattice symmetries map m = (0,0, 1) to m = (0, 0, 1). Therefore
for the U(1) theory with m = (0, 0, 1), lattice symmetries act locally. Thus the U(1) theory can
be regularized by a lattice model, as derived from the parton mean field theory in Sec. 6.
A generic SO(3) rotation still acts non-locally, but it does not correspond to a microscopic
lattice symmetry. In contrast, on triangular lattice, the C¢ symmetry transforms m = (0,0, 1) to
m =(1,0,0) and then to m = (0, 1, 0), following the rule in Table. 2, since C¢ relates (ns, n4, ns)
to each other. The ¢ o, ¢ in the U(1) theory with these three different M correspond to these
three CDW orders. As a result, Cg needs to act non-locally in the U(1) theory with a generic
m, unless m = %(1, 1,1). But T; needs to act non-locally for m = %(1, 1,1). Therefore, on
triangular/Kagome lattice, one can not find any m such that the microscopic lattice symmetries
can act locally. This is consistent with the observation that there is no type I U(1) Ansatz on
triangular/Kagome lattice discussed in Sec. 4. It is impossible to derive the U(1) 2¢ theory for
the CSL-SC transition starting from a parton mean field construction on triangular/Kagome
lattice, because otherwise the lattice symmetry should act locally in the resulting theory.

A similar discussion can be made for the CSL-CDW,, transition following the
A > A’ duality At the fixed point (A,A") = (0,A%), we expect the duality
Lsy@) < Lsyz—hm-(Re®’o7,®,Imd" 01 7,®,8"73®), which again leads to a manifold of
U(1)_, 2¢ theory specified by /. The symmetry action is different. For example, the ¢ o, ¢
operator in the resulting U(1) theory correspond to the order parameter (n;, ny, ns) now for
m=1(1,0,0),(0,1,0),(0,0, 1) respectively. The SO(3) symmetry still needs to act non-locally,
mapping one m to a different M. However, in this case all lattice symmetries on square, tri-
angular and Kagome lattice act locally for m = (0,0, 1), since microscopically the SC order
(nq,n,) are very different from CDW, order ns and no microscopic symmetry can rotate ng
to mix with (ny,n,). Hence the U(1) 2¢ theory for the CSL-CDW,,, transition can be derived
from parton mean field theory on square, triangular and Kagome lattice.

11 DQCP between CDW and SC

We have discussed CSL-SC and CSL-CDW transitions on square and triangular/Kagome lattice.
Itis then interesting to ask whether there can be a direct transition between SC and CDW phase.
Both phases are symmetry breaking phases without fractionalization, so a direct transition
needs to be beyond Landau framework although nearby phases are conventional phases. In
this section we show that the SC-CDW,,,, on square lattice and SC-CDW transition on triangular
lattice are in the same universality class as the DQCP of easy plane or isotropic Neel to VBS
transition [1]. The key is that the topological superconductor can be understood as from
condensation of skyrmion. The CDW,,, or CDW order live on the manifold S! or $? and the
CDW phase is a Chern insulator with C = 2. Similar to the quantum Hall ferromagnetism, the
skyrmion defect of the S? order carries physical charge 2e and can be identified as a bosonic
Cooper pair. Condensation of these skyrmions will disorder the CDW order and lead to a
superconductor at the same time.

Skyrmion superconductor has been discussed from a quantum spin Hall insulator (QSHI)
[3,4]. There the resulting superconductor is topologically trivial. In contrast, the skyrmion
superconductor in our case still inherits the chiral central charge ¢ = 2 from the C = 2 Chern
insulator and is thus topologically equivalent to a d + id superconductor. Nevertheless the
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CDW-SC transition in the bulk is the same as the QSHI-SC transition if we ignore the edge
physics. Skyrmion superconductor was also proposed from a spin polarized Chern insulator
with C = 2 in moiré systems [8]. The physics is similar to our case and the skyrmion super-
conductor there, if possible, should also be topological with chiral central charge ¢ = 2.

Technically, the easiest way to describe this transition is to use CP! representation of the
SO(3) CDW order parameter. To obtain the topological superconductor,the CP! boson needs
to be in a bosonic integer quantum Hall insulator phase, instead of a trivial insulator. We start
from the type II U(1) Ansatz and the low energy boson field is ¢ = (@1, ¢,)T with G
represents the CDW order. Following the discussion in Sec. 7, we let these bosons enter a
bIQHE phase to provide a term —%nada term, which cancels the Chern-Simons term from the
fermionic spinons. Finally there is no Chern-Simons term for a,, anymore. Now one has gapped
bosonic holon ¢ excitations and the ground state is a Superconductor whose order parameter
is the monopole of the gauge field a. Then consider a transition between the bIQHE phase and
the superfluid phase for the boson ¢, which leads to the SC to CDW transition for the physical
system. The superfluid transition from bIQHE for bosons is the same as that from a trivial
insulator and is simply captured by condensation of ¢, so the SC-CDW transition is described
by the following critical theory:

. .1 1
L= |(a,u,_lau _IEO.SAT‘;[J)(IO|2 - %Acda_rhplz_g(“plz)z + 2'|(P1|2|902|2 . (69)

When r > 0, ¢ is gapped and one obtains the SC phase. Whenr < 0O and A > 0, ¢
condenses with easy-plane anisotropy, describing the Chern insulator phase with CDW,., order.
This is exactly the same critical theory for the easy plane DQCP between Neel and VBS order
on square lattice [1]. If A = 0, then this is the isotropic DQCP. When A > 0, naively the above
action can describe the transition between SC and CDW,, but this transition should be first
order. The above theory also has a self duality symmetry, which will be discussed in the next
section.

12 Tri-critical point and self-duality

We have provided critical theories for CSL-SC, CSL-CDW and SC-CDW transitions.This section
discusses the tri-critical point at the intersection of these three phases. For square lattice we
only consider the CDW,,, order. For triangular/Kagome lattice we consider the isotropic CDW
order with SO(3) symmetry. The tri-critical points on square and triangular lattice correspond
to the pink and red fixed points in Fig. 6 for the SU(2) theory. There is a self-duality symmetry
from the A «— A’ transformation in the SU(2) theory. Here we provide alternative theories
with two U(1) gauge fields coupled to both 2¢ and 2.

We discuss the CSL-CDW,,,-SC tri-critical point on square lattice first. We start from the
type I U(1) Ansatz for the CSL phase.As discussed previously, when the holons go through a
plateau transition into IQHE, the system goes into an SC phase. While if the holons simply
condense with (@) o< (1,1)7, the condensation pattern breaks lattice symmetry and results
in a CDW,,, state. We see there are 2 different tuning parameters controlling transition into
either SC or CDW. Hence we arrive at a tri-critical point among CSL,CDW and SC.To formulate
the tricritical theory, we use two Dirac fermions to describe the CSL-SC transition as in Eq. 45.
Meanwhile we also keep track the bosonic holons ¢ and consider the mass of ¢ as another
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tuning parameter.® Putting them together, the following critical theory emerges:

- 1 - 11 1
L= 1#(—1)”“3” - b,uYu + EAr;,uO-BYM)w + m¢iwi - 4_7'C(§AC + a)d(EAc + Cl)

1 1 1 . 1 1
+ %bd(aAc +a)+ ﬂArdAr +1(9, —ia, — IEO'OAC;M - lEOBAr;M)cplz

2 1
—rlel* —g(lel*)? + Ay Ples* + —ada— —AdA, — L, (70)
471 81

where the first line describes the plateau transition of the bosonic holon and the second line the
condensation of the holon. The third line is from the integration of the fermionic spinons and
the stacking of the v = —2 IQHE phase. Interactions between ¢ and v L;,, will be specified
in the next equation.

With a simplification a

—a —%A

" " the tri-critical point theory is cast into:

c;us
s 1 = . 1 2 9
L= w(_lY,ua,u - b,uYu + EAT;HUBY‘H)Ip + Tml)ﬂl)i + |(au - lau - lEO-BAr;,u,)(Pl - r|90|
1 1 1 -
— (@) + Alo1 Ploal* + ——ada + ——(b—A)da + ——A.dA, — go(PpP)(¢" )
4 27 167
—&(p3Y)-(p'G9)—APosy)(p'os¢p), (71)

where ¢ = (¢, 9,)" and 1 = (Y1,15)". )
We have also included the interaction terms between 1) and ¢. A and A are easy-plane

anisotropy terms. When m < 0, one can integrate v and then integrate b, after which we
recover Eq. 56 for the CSL-CDW,,, transition. When r > 0, ¢ is gapped and one can integrate
a, and get the U(1), 2v theory for the CSL-SC transition in Eq. 52. In summary, m < 0,r >0
is the CSL phase, m > 0, r > 0 is the SC phase. r < 0 is the CDW phase regardless of the sign of
m. r = m = 0 corresponds to the tri-critical point. These are summarized in Fig. 7(b). When
A=A =0, this is the CSL-SC-CDW tri-critical point on triangular lattice, shown in Fig. 7(a).
When A > 0, 4 > 0, this is the CSL-SC-CDW,., tri-critical point. In this theory, 0T ~Pdy
correspond to the CDW order (ns, ng, ns).

In the SU(2) theory, these two tri-critical points have a self-duality which exchanges A. and
A,. Thus we believe the above tri-critical theory is also self dual to itself except the exchange
between A, and A,. One can derive this self-duality in the following way on square lattice. On
square lattice, starting from the type I U(1) Ansatz, then the CSL-SC transition is described by
the U(1)_, 2¢ theory. Alternatively one could let the holon ¢ goes through a plateau transition
and get a CDW,., order. Putting them together, the following tri-critical theory reads:

. 1 _ 1
L= w(_lY,uau - bu}/u - EAC;MO-BYH)V) + mwiwi + |(a,u —a, — IEOBAC;M)¢|2 - r|(p|2

1 1 1 1
_g(|90|2)2+7L|§01|2|902|2+ ada + (b_Ar)da+ ArdAr_ Achc
4m 27 8m 167

— 20 P )= g(PSY) - (¢ G 9) —A(Pposy) (¢ os9), (72)

where ¢ = (91, 92)" and ¥ = (Y1,1,)".

When r > 0 and ¢ is gapped, we recover Eq. 58 after integrating a. When m < 0, we
recover Eq. 40 after integrating ¢ and b. m < 0,r > 0 is the CSL phase. m > 0,r > 0 is the
CDW,, order. r <0 is the SC phase regardless of the sign of m. m = r = 0 is the tri-critical
point. This time @G ¢ ~ 1pF1 correspond to (n;,n,,ns). In the above we assume the easy
plane anisotropy terms A, A so the tri-critical point is between CSL-SC-CDW,.,. We believe

SThis is a bit unusual as the 2 relevant tuning parameters are expressed in different low energy degrees of
freedom, namely masses of v, ¢ respectively.
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Figure 7: The phase diagram summarizing the transitions between CSL,d+id SC and
CDW Chern insulator on triangular (a) and square lattices (b,c). (b,c) are described
by Eq (71) and Eq (72), respectively.

the A = A = 0 corresponds to the CSL-SC-CDW tri-critical point on triangular/Kagome lattice,
though now ¢ transforms non-locally under lattice symmetry. This means that both tri-critical
points on square and triangular/Kagome lattice have the self-duality at r = m = 0 of Eq. 71
and Eq. 72.

Both theories only have explicit U(1), x U(1), % Z, symmetry with Z, coming from either
translation T; or T,. In Eq. 71, one can see the mixed anomaly that dA. = 27 carries charge
1/2 under A, because one needs to attach ¢ to cancel the charge under a. Similarly dA, =27
carries charge 1/2 under A.. This mixed anomaly is crucial for the DQCP between SC and CDW
and it already exits at the tri-critical point. The self-duality relates order parameter (n,n,) to
(n3,n4) and suggests an enlarged O(4) symmetry when there is easy-plane anisotropy terms
A, 2. When A = A’ = 0, there is explicit SO(3)x O(2) symmetry in either theory. In Eq. 71
the SO(3) rotates (n3, n4,ns), while in Eq. 72 the SO(3) rotates (n,,n,,ns). The self-duality
then implies a SO(5) symmetry. Nevertheless, O(4) and SO(5) symmetries are not explicit in
the above form. To explicitly see the symmetry, we still need to use the SU(2) theory.

We plot phase diagrams for Eq. 71 and Eq. 72 in Fig. 7. The tri-critical critical theories
here are different from that of the SU(2) theory in Sec. 9. Let us take the square lattice as
an example. In the SU(2) theory, bosonic holons are in either trivial insulator and superfluid
phases. SC and CDW correspond to different condensation patterns of the superfluid phase
of the bosonic holon ®. In contrast, here we start from the U(1) Ansatz of the CSL. If we
start from the type I U(1) Ansatz, then CSL, SC and CDW,,, correspond to trivial insulator,
superfluid and bIQHE insulator of the bosonic holons ¢. If we start from type II U(1) Ansatz,
CSL, CDW,,, and SC correspond to trivial insulator, superfluid and bIQHE insulator of bosonic
holon ¢. One can clearly see the duality between type I and type II U(1) with exchange of
SC and CDW,,,.. For triangular and Kagome lattice, we only have type II Ansatz and can only
derive Eq. 71 from parton construction. But we believe it has a dual theory as Eq. 72, just the
lattice symmetry needs to act non-locally as discussed in Sec. 10.
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13 Honeycomb lattice: U(1) 1¢ theory and absence of symmetry
breaking order

We have shown various critical theories and proximate phases nearby a chiral spin liquid phase
on square, triangular and Kagome lattice. In contrast, on honeycomb lattice, we do not expect
a direct CSL-SC transition because there are two electrons per unit cell in the CSL phase of a
Mott insulator. On honeycomb lattice, the natural mean field Ansatz of the CSL phase is the
Haldane model with T; T, = T, T;. As a result there is only one single bosonic holon mode ¢,
which leads to a critical theory:

. 2 1
£=I(EH—laMMIz—r|<p|2—g|<p|4+4—nada—§Acda. (73)

In this case the r < 0 side is a symmetry Chern insulator with C = 2, simply described by
the Haldane model. The critical theory is known to be dual to a U(1) theory with one Dirac
fermion, an SU(2) theory with one boson and an SU(2) theory with one Dirac fermion [61,
62]. There is also an emergent SO(3) symmetry which rotates (V x a,Re(M ¢*), Im(Mp*)).
They represent the density fluctuation and the Cooper pair creation operators which transform
trivially under lattice symmetries. Gapless charge mode is expected at the QCP There is no
other symmetry breaking order parameter fluctuating at the QCP. One can clearly see that the
difference of the square, triangular and Kagome lattice arises from the projective translation
symmetry of the semion, which guarantees the existence of two bosonic modes in the U(1) 2¢
theory.

14 Experimental signatures

We discuss the possible experimental realization and signatures of the CSL-SC transition. Re-
cently CSL was observed numerically in triangular lattice Hubbard model in the intermediate
regime of U/t [32]. The next phase close to the CSL may be a superconductor [63] and a
CSL-SC transition as described by our paper can be naturally realized by reducing U/t. Band-
width tuned metal insulator transition has recently been observed in moiré superlattice based
on transition metal dichalcogenide(TMD) [44]. Although a CSL phase was not reported in the
current experiment, it may be found at lower temperature or a different parameter regime.
Therefore it may be interesting to search for CSL-SC transition in moiré materials. Here we
will provide experimental predictions in the critical regime, focusing on the transport at the
CSL-SC critical point. One can access the conductivity tensor from the U(1) 2¢ theory, U(1)
24) theory or SU(2) 2 theory, and we mainly use the two U(1) theories.

First, let us start with the U(1) 2¢ theory in Eq. 40. We will ignore A, as the transport
measured in the experiments is associated only with A,. In the original action a term —&ACdAC
was added coming from the stacking of v = —2 IQHE phase, which will be ignored because
the v = —2 IQHE phase is stacked only for simplicity and does not really exist. ¢; couples
toa+ %A and ¢, couples to a — %A. Translation symmetry acts as Ty : 1 — @3, Py — @7.
Integrating ¢4, 5, we get:

1 1
‘Ceff = ﬁa + 5 Z Z(Ax(w: q);Ay(C‘): q))(nll(wy q) + HZZ(wJ q)
w’q

— le(a)’ q) — Hz](w> q)) (Ay(_w’ —q)

where I1;; and II,, are from the conductivity tensor of ¢; and ¢,. II;,,II5; encode the drag
conductivity between ¢, and ¢,. Note that under T;, we have A — A ,a — —a, so that there is
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no crossing term between A and a. £, includes the terms for a,, which is not interesting for
physical transport.

We simply define I1(w, q) = %(l’[ll(co, q) + gy (w, q) —I15(w, q) — 5 (w, q)). It encodes
the conductivity tensor of the physical electron:

2 Op Ox y)
1(,q) = 5~ (-i) (_% ). (75)
0 and 0, are universal numbers. oy is the universal conductivity usually present in 2+1 d
CFT for bosons. There is no symmetry to forbid the Hall conductivity o,,,. However, note that
(da) = 0 on average and it does not couple to the physical gauge field A,, due to symmetry T;.
So we expect that o, should be very small even if it exist.

We can also derive the conductivity tensor from the U(1) theory with two Dirac fermions
in Eq. 52. Again we ignore A, and add back a term ginAchc. Integration of v leads to

Less= b (w, q) (0¢I+(axy—1)e)b( w —q)——AT(w q)—eA( w,—q)
AT = oy — il A = 0y —
+ 2A (a),q) oy eb( w,—q) + 2b (co,q) Py eA( w,—q), (76)

where AT = (Ay,A,) and b’ = (b

e= (_01 (1)).

Integration of b, leads to

Ax(—w:—Q)
Loy = Z(A (©,9),4,(0,9)) 5 -0 (w q)(Ay(_w,_q))’ (77)

x»by). I and € are 2 x 2 matrix. I is the identity matrix.

with

x -1 1
o(w,q)= (O'wl + (O'wy — 1)6) — Ee

Oy 1 ‘Tiy 1
= I+( ——)e. (78)
2 XYy\2 2 X¥Yy\2
U¢+(1_U¢) U¢+(1 O'w) 2

Compared to Eq. 75, we have the following constraint for the two dual theories, where
similar results are obtained in ref. [64]:
Gy
2 _ ~XYy2?
oy, + 1—0o " )

Og =

Xy 1

Y

O, = ——=. (79)
x 012p+(1—(7fpy)2 2

1—o0

We have argued that o, should be very small from the U(1) 2¢ theory. This will impose
non-trivial constraint for the theory with Dirac fermion.

In addition to a universal conductivity, there also should be quasi long range fluctuation of
the CDW order at the CSL-SC critical point. The CDW fluctuation can persist to the supercon-
ductor phase and the CDW can be stabilized in the vortex core of the superconductor phase.
This can be tested by X-ray scattering and scanning tunneling microscope (STM) experiments.

We have restricted to the transition tuned by bandwidth with the density fixed at integer
filling. For the chemical potential tuned transition, we can still use the SU(2) theory in Sec. 9.
But now there is a term i$*3,® and we have z = 2. The fixed point should still be decided by
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the quartic terms (A, A”). On triangular lattice, the CSL-SC transition is still fixed at the A’ =0
axis by the Cg symmetry. If we assume that the chemical potential tuned CSL-SC transition
is the same on square and triangular lattice, then the transition on square lattice is at the
same fixed point and still has SO(3)x0(2) symmetry. The A «> A’ duality is still there and
the structure of the fixed points should remain the same as the z = 1 case. We should still
have a dual U(1) theory with 2¢ by adding Higgs terms to the SU(2) theory, though now it is
also z = 2. There is no obvious theory with Dirac fermion. We no longer expect a universal
conductivity, but the intertwinement of the SC and CDW order in the critical regime should
still exist.

15 Conclusion

In summary we present critical theories for transitions between chiral spin liquid, topological
superconductor and CDW Chern insulator. In the CSL to SC transition, the are also CDW orders
transforming under an emergent SO(3) symmetry. Such an intertwinement of an additional
symmetry breaking order is guaranteed by the LSM theorem at odd electron filling per unit
cell. We present the critical theories in three forms: U(1) theory with two bosons, U(1) theory
with two Dirac fermions and SU(2) theory with two bosons. Our work demonstrates the
duality between these three theories and possible experimental realizations of these interesting
CFTs. In the SU(2) theory, there are several fixed points decided by the quartic terms A, A/,
corresponding to bi-critical and tri-critical points with SO(5),0(4) or SO(3) x 0O(2) global
symmetry. There is also a duality transformation A «— A’ which exchanges the easy-plane CDW
order and the SC order. We offer a new perspective to understand the d + id superconductor
as from skyrmion condensation of the CDW order. The CDW-SC transitions are in the same
universality classes as the usual Neel to VBS DQCE but now both of them are proximate to a
CSL phase. The CDW-SC DQCP theories, along with the enlarged symmetry and self-duality,
are simply descendants of unified tri-critical theories. We also discuss possible experimental
realizations and detection of the CSL-SC transition.
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A SU(2),U(1) mean-field states for holons and symmetries

Here we list the solution for the SU(2) mean-field Ansatz for holons and the projective sym-
metry group of the holons.

A.1 Square lattice

The unit cell for the mean-field for holons eq (14) is enlarged to contain 2 sites A = (0, 0),
B = (1,0) connected by a horizontal bond. It translates into k space form in terms of
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Z = (ZA’]_,ZB’]_)T:

o — sink, —sink; +in(cos(k; + ky) + cos(ky, — k1)
k™ \ —sink; —in(cos(ky + ko) + cos(ky — k7)) —sink, '

(A1)

The Dirac nodes at (0,0(r)) are gapped out by a mass of order 27. For z, it differs by a minus
sign.

The holon dynamics at low-energy is dominated by the fluctuations around the lowest
energy states of Hy, located at Q) = (71/2,+7/2).The eigenvectors for z;,z, are

Q: (zLA,zLB) = (cos g,—sing) , (ZZ,A’ZZ,B) = (sing,cosg) ,

Q,: (zl’A,zLB) = (—sin g,cosg) , (ZZ,A:ZZ,B) = (cos g,sing) ,

at Q, o, respectively.
The symmetry actions on spinons and holons are projective, albeit the composite action
for electrons is a faithful representation. The actions on spinons read:

(A.2)

Ty (fr:.T’ fr,l)T - ierTz(fr‘:'r?l(Z),T’fr+?1(2)’l)T ?
C4 : (fgpfr,l)T - ierrz(fcr(r)’T)fC(r),l)T ’

RlT : (frTT:fr,l)T - ]CierTz(f};l(r),l:le(r),T)T > (A.3)
where K denoting anti-unitary operations and 71> matrices are Pauli matrices acting on
the spinor indices. The transformation for holons follows from those of spinons by requiring
the electron operators transform faithfully under the symmetries, i.e. ¥, — gr(r)¥p() s,
Zpp— gr(r) 1z r(r),b fOTr @ symmetry operation R with a site-dependent gauge transform gg(r).

The lattice translation along r; direction T, gives a momentum boost of (0, 77), i.e.

Ty 2 2102),r = 1(=1)"22102) 147, »

((I)l,q’z)T —>—i01(¢1,¢’2)T7 (A.4)
where we use o, to label the Pauli matrix that rotates & = ($,,®,). Translation along r, just
sends 2y(2) = %1(2),r+7, and at low-energy:

Ty : (q>1,<p2)T - —i01(‘1’1,‘1’2)T >
Ty (21,95)" = —io5(21,9,)" (A.5)
For C, rotation around a site e.g. at B sublattice with coordinate (1,0), one choice of

transform that leave the Ansatz invariant reads
—(—=1)", if mod(ry,2)=0,
21, — g(C4(r))z ,g(r)= A.6
1,r — 8(CA(r))z1,ca(r)> 8(1) {1, if mod (r,2)=1. (A.6)

The transform for z; differs by an overall minus sign to make the rotation of ® free of SU(2)
gauge transform.
It sends the low energy field as:

Cp:(®,8,)" — —03el792(dy, 8,)7 . (A.7)

For R;T,R, T, the holon fields are sent to (identical for 2z, 2,)
RioT 12, = (1) Kz 1) » (@1,2,5) = —(21,9,). (A.8)
To simplify our notation, we make a redefinition (®,®,)7 — e7“1™/4(®,,®,)", so that

the symmetry transformation now is: Ty : —i0y, Ty : 109, C4 : 02€'493,Ry 57T 1 i07.
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A.2 Triangular lattices

As a starting point, we consider the U(1) CSL mean field Ansatz. We define the coordinate to
be r = xa, + ya,. a, is along x direction, a, is along 120° direction.
Hy = t; Ti(r +?1)iei(%+9)f3\11(r) +h.c.
+ LU+ 7)) (—1) 11 G (r) + hec.
+ U (r + 7y +T)(—1)]ie 0 u(r) + hec. (A.9)
We then do a gauge transformation ¥(r) — el 2(n*m2)%y(r), and get the mean-field eq
7).

The mean-field composes of 2-site unit cells denoted as sublattice A,B. In the basis
(Za(k), Zp(Kk)), we get

N Z,(K)
— (7t f A
Hy = (2}, Z}()A(K) ( ZB(R)) , (A10)
where
h(k) = 2ty cos@sin(—%kx+‘/7§ky) 2ty cos O sink, —2it, cochos(%kx+‘/7§ky)
2ty cos O sink, + 2it; cos 6 cos(%kx + ‘/7§ky) —2t, cosf sin(—%kx + ‘/T§ky)
—2t,sinf7; COS(—%kx + ?ky) —2tp sinf cosk, T3 + 2ity sinf sin(%kx + ‘/7§ky)

—2tp, sin O cosk, T4 — 2ity, sin@sin(%kx +‘/7§ky) 2ty sin9T3cos(—%kx+ ‘/Tgky) .
(A.11)

When taking 6 = 0, the mean-field is invariant under SU(2), with symmetry transforma-
tion:

Ty W(r) - (—1)2 0+ 7)),

Ty: U(r) > U(r+7,),

i(i)2¥(Ce(r)) mod (r5,2) =1,

—(=1)"1()2¥(Ce(r))  mod (ry,2)=0,
(1) (R(r)) mod (ry,4)=0,1,

RT: ()= {—(—1)mp(R(r)) mod (ry,4) = 2,3. L)

Cg: ¥(r)— {

The holons hop in the same Ansatz as the spinons, with the k space Hamiltonian reads,
Hy(k) = sinkyn® —sinkyn® —cos(k; + ky)n?, (A.13)

where k; , are coordinates in reciprocal space spanned by b, ,, that satisfies b; -a; = 278;;. 0
rotates A, B sublattices.

There are 2 holon minima at Q » = (7/2,+m/2), with states of minimal energy denoted
as ® = (®1,®,), at Q; ,, respectively. They transform as

T,:® —> —i0?,

Ty:® — —ioc3®,

.03+09+07

Ce:®—oelSe B 39,
RT : & e_i%(1 01)® (A.14)
1P — —io,)®, .
NG} !
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where o rotates two valleys Q .
For the U(1) Ansatz on triangular lattices discussed in section 4, the projective symmetry
group for the spinons reads:

Ty: wr - (_1)r2¢r+?1 P
TZ : /lljr - ,l/)l""r/l:z >

Coirp — T1Yc,r ' (Cer)y mod2=0, (A15)
—(—1)%xityape,,  (Cer), mod2=1,
those for the holons in terms of (21,2 )T are the same for the spinon symmetry transforms.
There are 2 holon minima at Q; , = (7/2, £/2) for each holon species, respectively [46].
The flux is translation invariant but breaks naive Cg rotation defined by eq (A.14). Note com-
pared to SU(2) invariant Ansatz, the additional hopping for small 6 projects to the lowest-
energy holon states to be 0.
Denote the states of minimal energy as ® = (®;,®,), at Q; 5. They transform as

T1:<I>—>—i0'1<1>,
Ty:®—> —io3?,
iﬂ —i og3t+og9+0] il
Co:P—e31qe 3 39,
RT 8= T (1) (A.16)
1P - —i0,)®, .
/2 1

where o rotates two valleys Q .

A.3 Kagome lattices

The projective symmetry group on the spinons act as

T,:fi— (—1)R1+R2fi+§l ,
Ty fi = fiug,
Cos : fi = G(Cg(1))fc (1), (G(Cs(1)) in fig. 8(a)),
RT : f; = Gr(R(1))fr(i), (Gr(R(1)) in fig. 8(b)). (A.17)

For the holons z they hop in a similar Ansatz as for spinons from eq (13), with the Ansatz
differ by a negative sign (for purely imaginary hopping) for z; 5. This results in a degenerate
line of lowest-energy states in the Brillouin zone. To simplify the case, we focus on a degen-
erate pair of momentum points Q; , = (0,+7/4) and do not require the states at Q , to the
lowest energy, since we are concerned about the symmetry properties of the resulting electron
Hamiltonian, not energetics. The holons condense at states at Q; , with a condensation value
of @, ,; for z;, respectively.Note that the lowest-energy state wavefunctions of z, , are related
by ¥1(Q;) = (Q5_;)*. For a generic CSL Ansatz with NNN hopping, the lowest-energy states
for holons reads,

P1(Q1) = (7712, V26, i, —e7>1/12,0, 1),
lpl(QZ) = (_6_5”{/12: O) i) _e—5i7'f/12’ _‘/Eeiﬂ'/6’ 1) ) (A~18)

independent of NNN hopping.
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Figure 8: (a)The gauge transform for Cg; where the red dot denotes —1 gauge
transform and no point denotes trivial gauge transform. With the 2 x 2 cell en-
closed by the parallelogram, the gauge transform carries a (7, ) momentum, i.e.
gauge transform is invariant upon translation by 4 units of primitive lattice vec-
tors. (b) Gauge transform for R7, with a 2 x 2 unit cell. (d) The electron pair-
ing(spin singlet) and hopping amplitude when condensing holons at low-energy
fields &, = &5, = &1, = —®,,, = 1, which makes ®T'1,0,& = —2.The corre-
sponding BCS Hamiltonian is translation invariant, though pairing breaks inversion.

The PSG on low-energy holon fields at Q; ,, arranged in the form & = (®4.1, 7., 5.1, 97 .,),
since (z7,23) transform as a vector under the SU(2) gauge group, reads as

T,:® > 10,9,
Ty:®—i039,

.01+09+03

Ce : d — oMo T 5 n/3<1>,

_O'3+O'1

RT :® — ei%
V2

(A.19)

B Details in the SU(2) theory

Here we list more details about the SU(2) 2 theory in Sec. 9 and its global symmetry. First,
let us consider the square lattice. Because the Cy4 rotation: & — —ie'+?3%0®, the most generic
action is:

L= Z (3, — iazrs — iALOOTO — iALU3TO)<I>a|2 +r|®)?
a=1,2

1 2
+—TrlaAnda+ —iaNaANal—L;,,
4T 3
Line =g|®|* + 2. > 817102+ 2, > 87002 + Ao5/0 0302
i i
+ A D 107708 + Ay D 18770382, (B.1)
L,J i

where a’,s = 1,2,3 is an SU(2) gauge field and 3}, = >,._, ;5. A, is the physical probing
field. We have used the symmetry transforms above to simplify the possible quartic interaction.
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Using identities of

Dllerie =" o700,
i i

Yllefrio et =—2>"|oT0.0* +3l078|2, (B.2)
i,j i

we further simplify the quartic terms to

Line =gl@T@2 + 2, Y [870,02 + 2, ) [0 7i050 > + A5]0T 0502 (B.3)
i i

With some algebra, we can show that:

Do tios02 = (@7 0,7,2) (87 057,®) + (87 03®)%. (B.4)

1

Then in terms of n = (ny, ny, n3, ny, ns5) = (Red’ 047,8, IMd" 0,7,8, 87019, 870,®, 870 3®),
we can rewrite the quartic terms to be:

L, =gldT®%+ Al(ng + ni + ng) + Az(n% + ng + ng) + Agng . (B.5)

Note that the C, rotates n3 — ny,nq — —n3 and thus forbids terms like n3 —nZ and nsn,.
We will group the interaction into the form:

Lin =g|®"®%+ Aon-n+ A(n% + n%) + A’(n% + nﬁ). (B.6)

On triangular and Kagome lattice, because (ns, n4, ns) can be rotated to each other by Cg,
we must have A’ = 0. When A or A’ vanishes, there is a SO(3) x O(2) global symmetry. At
special line A = A/, there is a O(4) symmetry. When A = A’ = 0, the symmetry is further
enlarged to be SO(5). To see these enlarged symmetries, it is more convenient to use the 4 x 2
matrix field X introduced in Sec. 9.3.

B.1 Action in terms of the matrix field X

We have X = (Xl) with
X

1 [, 9,
X - a,l a,z) , (B.7)
V2 (—‘1’2;2 <I’2;1
under the constraint

X:; = TZXGTZ . (BS)

One can derive these equations:

T Lot T t Lot t
X! X, = 5(<1>a<1>b +9,9,),  TX[73X, = g(q’a‘i’b —%,%,), (B.9)
TeX)(—i7))Xp, =Im®liT,®,,  TrX!(—iTy)X, =Redlit ). (B.10)
Then we can derive:

dTouTe® =TrX'X, TrXTo,X = 87039, (B.11)
TrX'o X =070,®8, TrXT0,7.X =870, (B.12)
TrX (=03 71)X = Im®] 057,92, TrX (—0375)X =Red] 0572, (B.13)
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TrXTO'zx = O, TrX-i-O'O’l’ngX = O, TrX-i-Uo)l’ng’zx. (B.14)

The five symmetry breaking order parameters now can be rewritten as:

(nl, ny, N3, Ny, ns) = (Re<I>TO'2’Cz<I>, Im@To'zfz‘b, (I).' U]q), <I>"O'2<I>, 4’."03@)
=TrX' (=037, —0371,01,0573,03)X .

SU(2) gauge transformation acts as X — X U;, a, — Ugangr - iUgauU;. The critical theory
at (A=A’ = A3 = 0 can be rewritten as:

. . n 1 2
L=Tr(0,X" +ia,X")(0,X —iXa,)+rTeX'X + 4—Tr[a Ada+ gia ANaAal—L;,, (B.15)
T

where q,, is the abbreviation of azrs withs =1, 2, 3.
The interaction term is now:

Lins =8TX'X + Aon-n + A(nf + n%) + A’(ng + ni) . (B.16)

B.2 Higgs term

We also discuss the Higgs term needed to reach the U(1) theory from SU(2) theory.
It is easy to derive:

TeX 73X, 75 = %(CI)ZT3¢‘b +®! T48,). (B.17)
Then we obtain:
11,0 =TrX 1,X 75, 305730 =TrX 03715X 75, (B.18)
dTo1T3® =TrX 0,73X 75, 30,738 =TrX 0,X 15, (B.19)
Re®dT07:® =—TiX"0y1:X713, ImdTo7;9=TrX"0,7,X75. (B.20)

Under the duality transformation X — e'*24¢'93724X, TrX'0373X T3 — —TrX' 13X 75,
TrXT0173X T3 = TrX 01711 X T3, TiXT0,X T3 — —TrX 01 7,X 75.

C Monopole quantum numbers in U(1)_, 2¢ theory for CSL-SC
transition

Monopoles in the U(1)_, Chern-Simons theory with 2¢ are dressed with 2 units of gauge
charges to be gauge-invariant. We consider

oTeoipMi(i=1,2,3), (C.1)

. 0 1). . . . . .
where € =ioy = 1 o/ the antisymmetric tensor and is used to make symmetric combi-

nations of two gauge charges . The dressed charges ¢! eo; ¢ transform identically as p'o; ¢,
which carry the quantum numbers of order parameters (ny, n,, ns) . To identify monopoles that
transform as the remaining two order parameters (n3, n4), we consider the composite operator
which is singlet under the SO(3) symmetry transforming (n;, n,, ns):

M= (¢"6,0) (pTedIM'. (C.2)

Since the dressed gauge charges now preserve symmetries, we need only to concern about
the Berry phase or symmetry transforms of the bare flux M. The berry phase for rotation
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@
®

Figure 9: The holon center that determines monopole M, symmetry transforms
in CSL-SC transition on square lattices.Close, open circles represent holons with +
gauge charge, respectively, with -, x sign indicating a holon of the ¢, , species.

symmetries can be inferred from the atomic limit of the holons [65]. q units of gauge charges
located at the rotation center contribute to the angular momentum of the monopoles from the
Ahronov-Bohm effects, i.e. [, = q. We remark that the atomic limit of holons that preserves
space group symmetries and gauge-invariant (total gauge charge 0) is not unique, e.g. the
vacuum state is a trivial example. This is due to the fact that we are dealing with an effective
low-energy theory after integrating out chern bands from the fermionic spinons. We show in
fig. 9 a symmetric atomic limit for U(1)_, theories on square lattices that describe CSL-SC and
CSL-CDW transitions. Monopoles carry CDW, d + id SC order parameters in these two cases,
respectively. Close and open circles represent + gauge charges, respectively, and they sum to
zero as required by gauge invariance.

We now elaborate on the case for CSL-SC transition listed in table 4.

Note that /\/l('l changes to an anti-monopole under translations or C, as the symmetry
actions exchanges ¢, < (3 in section 4, with opposite charge of a. There is hence a phase
ambiguity for the symmetry actions that send /\/lc'l — M, from a U(1) phase attachment to
M. We fix the phase by fixing e.g. the T; action as simply sending M('l — M with a trivial
sign. The relative sign of symmetry actions among T; 5, C, is meaningful and can be further
determined by finding the atomic limit of the holon state that obeys the symmetries in table 4,
as shown in fig. 9.

The translation

Ty =CyaCop Ty, (C.3)

where Cyy 45 is the four-fold rotation around the plaquette center of A, B plaquettes, i.e. oc-
cupied by ¢, 5 charges, respectively in fig. 9(a). Since ¢, 5 carry 1 unit of charge for a, the
holons with charge 1 act as a source of angular momentum of +1 for the monopole. The
monopole hence obtains a factor —1 from C4AC4_B1 in eq (C.3). We thus obtain T, action. For
site-center rotation Cy, it is related to translation by

C4 == T1C4A. (C.4)

Cy4 contributes a factor of i for the monopoles and we arrive at C4 action for monopoles in
table 4.

For the action R; 7 on monopoles, since it exchanges ¢, ¢; with an additional anti-unitary
time reversal action, it sends a monopole to itself up to an arbitrary phase factor. Therefore
we obtain the symmetry actions for gauge-invariant operators in U(1)_, theory.
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