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Abstract

The mode-coupling theory of the glass transition (MCT) has been at the forefront of fun-
damental glass research for decades, yet the theory’s underlying approximations remain
obscure. Here we quantify and critically assess the effect of each MCT approximation
separately. Using Brownian dynamics simulations, we compute the memory kernel pre-
dicted by MCT after each approximation in its derivation, and compare it with the exact
one. We find that some often-criticized approximations are in fact very accurate, while
the opposite is true for others, providing new guiding cues for further theory develop-
ment.
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1 Introduction

Predicting the dynamics of dense and supercooled liquids stands out as a large unsolved prob-
lem in classical physics. The most striking feature is that the dynamics exhibit an orders-of-
magnitude slowdown as the glass transition is approached, whilst the microstructure remains
almost unaltered. Concomitantly, complex two-step relaxation and stretched exponential be-
havior emerge in the density correlation functions, structural relaxation becomes increasingly
heterogeneous in space and time, and the Stokes-Einstein relation is violated [1,2]. The mode-
coupling theory of the glass transition (MCT) is widely considered to be the only first-principles
approach that can describe the dynamics of glass-forming liquids [3-8]. MCT is able to predict
the drastic increase of the relaxation time upon supercooling from solely structural informa-
tion as input, it provides an intuitive mechanism for the slowdown in terms of the cage effect,
and it makes precise predictions for the remarkable relation between exponents governing the
two-step relaxation process. During the last decades the theory has been successfully applied
to a wide range of different systems, e.g. those including confinement [9, 10], curved geome-
tries [11], self-propelling particles [12-20], molecular particles [21-25], polymers [26-30],
multiple particle species [31-34], external fields [35-37], aging [38-40], shear [41,42], con-
fluent cell layers [43,44], high dimensionalities [45-47], and re-entrant phenomena [48,49].
Even though MCT is by no means an exact theory, it is all-pervasive in theories of the glass
transition and arises naturally from many different theoretical approaches and perspectives.
For example, it is central to the scenario sketched by random first order transition theory [50],
and provides a clear connection between the theories of spin-glasses and structural glasses
[51-53]. In particular, schematic MCT is exact for some spin-glasses [51]. In a field-theoretic
setting, MCT can be derived as a self-consistent one-loop resummation [52,54-56], and has
been likened to a Landau theory [52,57] as well as a mean-field theory [46,50,58] for the glass
transition. Various kinetic-like approaches have also led to the same MCT equations [54,59].
Despite its successes and ubiquity, MCT is also criticized for failing to capture several key
qualitative and quantitative features of glassy dynamics. In particular, it typically overesti-
mates the glassiness of a material to a varying degree which depends on the specific sys-
tem studied [7, 60]. Additionally, the theory does not account for the so-called dynamic
crossover [61,62]. Specifically, MCT predicts that the structural relaxation time scales as a
power law with temperature and ultimately diverges at an ideal glass transition. In many
simulations and experiments of glass-forming liquids, this power law is indeed also observed,
but typically only at mildly supercooled temperatures; instead of diverging, the experimental
relaxation time eventually crosses over into an Arrhenius (exponential) scaling [63-66]. The
temperature at which this crossover occurs is usually referred to as the mode-coupling tem-
perature Tycr. The inability of MCT to predict the crossover to Arrhenius behavior renders
the theory generally only applicable at relatively weak degrees of supercooling [7, 62].
Interestingly, the crossover temperature Ty, like the theory it is named after, emerges re-
peatedly as an important and almost universal characteristic temperature for liquid dynamics
near the glass transition. In fact, apart from the Kauzmann temperature Ty and the experi-
mental glass transition temperature T, itself, the mode-coupling temperature is the only one
to appear so consistently. Physically, Ty,cr is often interpreted as the temperature below which
structural reorganizations become dominated by collective ‘activated’ or ‘hopping’ events in-
stead of non-cooperative relaxation [1,66-68]. Relatedly, around this crossover temperature,
the potential energy landscape manifestly loses all its delocalized unstable modes, suggest-
ing that the crossover is caused by a localization transition [69]. In the random first order
transition theory scenario, this is interpreted as a transition to a ‘mosaic’ of local metastable
states [50]. The above observations lead to the belief that the breakdown of MCT at Ty
coincides with a physical change in the behavior of glassy liquids. Consequently, a clear under-
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standing of this breakdown is vital in order to advance towards a more accurate, and ultimately
exact theoretical description of the glass transition.

Many attempts have been made to rectify MCT, but these have either been largely fruitless,
at least in a qualitative sense, or they have abandoned the first-principles approach in favor of
ad hoc corrections to change the predicted scenario. These efforts include (but are not limited
to) extended MCT [70,71], generalized MCT [72-75], and its off-diagonal cousin [76,77], and
more formal theories [78,79]. There is a large divide between these different approaches, not
only in the method by which they attempt to improve upon the theory, but also in the choice
of the specific MCT approximations they seek to address. The reason for this disunity of the
field is mainly that the various approximations made in the derivation of MCT are notoriously
unintuitive, technical, and uncontrolled, rendering it difficult to decide which approximation
should be improved in the first place. Given that there is no consensus on which of the MCT
approximations should be addressed, it is not surprising that there also exists no agreement
on the method by which to do so. Moreover, during the conception of the theory it has been
suggested that the MCT approximations should be treated as one entangled set [80]; While this
may be understandable from a purely technical point of view, it makes it even more obscure
how to move forward.

Here we present a fundamentally new approach to investigate the validity and failures
of MCT. Instead of heuristically comparing its predictions with experimental and simulation
observations (which has been the approach thus far [32, 60, 61, 81, 81-88]) we rigorously
disentangle the different MCT approximations made in the derivation of the theory to reveal
its inner workings. Arguably this approach has been deemed too challenging in the past due
to the technicalities involved, yet here we show that it is now clearly within computational
reach. Specifically, we identify and critically assess five different approximations within the
MCT derivation: (i) neglecting projected dynamics; (i) the projection on density doublets; (iii)
the diagonalization approximation; (iv) the factorization approximation; and (v) the convo-
lution approximation. We compute the relevant terms before and after applying each of these
approximations directly from simulations of a frequently used model liquid, unambiguously
judging their validity. Our approach thus exposes the anatomy of microscopic MCT, allowing
us to rule out a complete class of MCT improvements and providing much-needed guidance
for the development of a more accurate first-principles theory of the glass transition.

2 Exact theory of the dynamics of colloidal liquids

Let us first specify our system of interest. We consider the dynamics of a three-dimensional
colloidal fluid of N particles. The position r; of particle i evolves according to the overdamped
Langevin equation [89]

i, =CF+&,(0), (1)

in which { is the friction coefficient, F; is the potential force acting on particle i, and &;(t)
is a random force that satisfies (§,(t)) = 0, and (&,(t) - §j(t’)) = 6D(6;;6(t —t'), in which
Dy = kg T/ is the self-diffusion coefficient. We denote the thermal energy by kzT. For the
interaction term we use the repulsive Weeks-Chandler-Andersen potential (see Appendix B.1
for details). In order to assess the MCT approximations in the cleanest possible test case, we
avoid any potentially confounding effects due to polydispersity or non-additivity [81], and
hence we focus on a simple monodisperse system in the liquid regime.

The particle trajectories generated by Eq. (1) contain in principle the full dynamics of the

system, but one can equivalently consider the joint probability distribution P(ry,...,ry,t),
which specifies the probability density of finding a particle i in a volume dr; centered around
r; at time t. In equilibrium, when the probability density is time-independent, P(ry,...,ry)
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defines an ensemble average of some observable A as

<A)=Jdr1...dl‘NA(l‘l,...,I‘N)P(rl,...,rN). (2)
The probability density function formally evolves in time according to the Smoluchowski equa-
tion P(rq,...,ry,t) = QP(ry,..., Iy, t), in which  is the Smoluchowski operator
N
Q=) [DyV?—(7'V; - F]. 3)

i=1

This operator will become important when defining the MCT approximations below.

In the context of dense liquids and the glass transition, we are mainly interested in the
structural relaxation dynamics of the liquid. A standard probe for such structural relaxation is
the intermediate scattering function

1 T 1
F(k,t)= N <Pf§€ﬂ th> =N (prpx(D) - 4

Here py = Zj e®Ti is a density mode, i.e. the Fourier transform of the microscopic density

at wave vector k (k = |k|). The operator Q' is the Hermitian conjugate of the Smoluchowski
operator, which does not act on the probability distribution P in the definition of the ensemble
average. The initial condition of the intermediate scattering function is the static structure
factor S®(k) = F(k,t = 0), where we have added the superscript (2) to clarify that this
is a two-point density correlation function. Note that for isotropic liquids such as the one
considered in this work, F(k, t) and S®(k) depend only on the magnitude k of the wave vector.
Both F(k,t) and S®(k) can be readily obtained from scattering experiments or computer
simulations and are therefore also widely studied in theories and experiments of dense liquids
[90].

In order to obtain an exact equation of motion for the density modes py(t) and their associ-
ated correlation function F(k, t), we use the operator formalism of Mori and Zwanzig [91,92].
The basic principle is to decompose the space of dynamical variables into a resolved sub-
space, which is spanned by the density modes, and an unresolved subspace containing all
other dynamical variables. Briefly, we perform this decomposition by introducing a projec-

tor P = py) <p1tpk>_1 (plt that projects onto the space spanned by the density modes, and
the associated orthogonal projector @ = 1 —P. For technical reasons unique to Brownian
systems (elaborated in Appendix A), we also need a second exact projection step with the
projectors P’ = py) (pl’tﬂ‘rpkyl < pi’é(fr and Q' =1—"P’. The framework enables us to write a
generalized Langevin equation for the density modes such that the only coupling between the
resolved and the unresolved space is contained in the so-called fluctuating force Ry (t) and a
memory kernel K(t) that describes the time-autocorrelation function of the fluctuating force.
By multiplying the resulting equation with p(t) and taking an ensemble average, we find the
following equation of motion for the intermediate scattering function [8,93,94]:

9F(k,t) Dyk> ‘ dF(k, 1)
F(k,t dtK(k,t —7)———==0. 5
at +S(k)(,)+of(, 7) (5)
Here, the memory kernel is defined as
_ 1 x QTQ"t
K(k,t)= HDe <Rke Rk> . (6)
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In this representation, Q" = QQ’, and

. i er
R = Q0 py = —Dok?pcP(k)py + EZ“‘ Fj)elkn @)
j

is the fluctuating force, in which c¢®)(k) is the direct correlation function [90].

Equation (5) provides an exact description of the dynamics of a dense liquid. Explicitly, if
we would be able to compute the exact memory kernel K(k, t), the exact density correlation
function F(k,t) can be obtained. However, the kernel poses a major theoretical bottleneck,
since there exists no general theory that allows for an exact prediction of K(k, t). It is the aim
of mode-coupling theory to approximate this memory kernel such that it can be evaluated in
a self-consistent manner. The first difficulty in treating K(k, t) lies in the fact that the exact
kernel evolves according to a different differential equation than standard observables, that is,
it evolves with e 2"t instead of the standard ¢® . This means that it is non-trivial to compute
it either from theory or from standard particle-based simulations [95,96].

Nonetheless, it is possible to write an exact integral equation for the memory kernel by
using the Dyson operator identity [97]. The result is

t
K(k,t) =KQ1<(k,t)+f dtK(k,t —t)W(k,T), (8)

0
in which both K (k, t) and W (k, 7) are functions that evolve with standard Brownian dynam-
ics and can thus be measured directly from simulations. Their precise definitions are given in
Appendix A. Once these functions are measured, we can numerically solve the integral equa-
tion of Eq. (8) to find the exact memory kernel K(k,t) governing the full dynamics. This
exact kernel will serve as our benchmark in order to assess the quality of the various MCT

approximations.

As a consistency check, we have verified our procedure for obtaining the exact memory
kernel by inserting the calculated K(k, t) from Eq. (8) back into Eq. (5). The resulting F(k, t)
can then be compared to F(k, t) measured directly from the same simulations. This compar-
ison is made in Fig. 1, where the full lines are the direct measurement and the dashed lines
are the solutions of Egs. (8) and (5) at the location of the main peak of the structure factor.
These results show that the intermediate scattering function is indeed very faithfully recov-
ered by our procedure, confirming that the obtained K(k, t) is a very accurate reconstruction
of the exact memory kernel and thus an accurate benchmark for MCT. Numerical details of
this procedure are presented in Appendix B.2.

3 Approximations of the memory kernel

Having established the exact equation of motion and the exact memory kernel, we now pro-
ceed to assess the validity of various approximations made to the memory kernel within the
framework of MCT. In order to do so, we follow the standard MCT derivation [ 3, 8] and evalu-
ate the memory kernel after each main step in the derivation. For completeness we also present
the full derivation of MCT in Appendix A. Our key result is presented in Fig. 2, which shows the
obtained approximate memory Kkernels, as well as the corresponding intermediate scattering
functions, for the highest and lowest temperatures considered in this work. All comparisons
are made at the wave number corresponding to the main peak of the static structure factor, i.e.
k = 7.0. This wave number is chosen as it corresponds to the typical distance between nearest
neighbors, and hence to the typical cage size; Within MCT, this length scale governs the cage
effect and is deemed the most important for structural relaxation [98]. In the next subsections,
we discuss each of the MCT approximations in order of appearance in the derivation.


https://scipost.org
https://scipost.org/SciPostPhys.15.5.217

Scil SciPost Phys. 15, 217 (2023)

1.0
T =1.()
T=1.5
T=2.0
— T = 3.0
~
=2
~—
2
q3:0.5-
=2
S—
~
0.0 ' — ' '
107 10 1073 1072 10! 10° 10!
t

Figure 1: Intermediate scattering functions F(k, t) for our colloidal liquid as a func-
tion of time ¢ for different temperatures, evaluated at the location of the main peak
of the static structure factor (k = 7.0). The solid lines correspond to F(k, t) obtained
from direct simulation measurements, while the black dashed lines correspond to the
numerical solutions of the exact equations (5) and (8). This comparison serves to
validate our numerical procedure to extract the exact memory kernel via Eq. (8).

3.1 Neglecting projected dynamics
1
Nk2D,
erator e?' 2"t Unfortunately, the presence of the orthogonal projector Q" renders the time
evolution of the memory kernel physically non-intuitive and mathematically intractable, since
it does not behave in accordance to the same physical laws that underlie the normal Brownian
dynamics of microscopic observables (which evolve with e't). There exists some analytical
work for simple systems expanding e Q" in polynomials of Q”, which thus can be applied to
provide increasingly accurate expressions for the memory kernel [99,100]. However, within
mode-coupling theory, the approximation e €'t = ' (=)t » ¢2't js employed to keep the
theory tractable. We refer to this approximation as neglecting the projected dynamics. Note
that the neglect of P” in the propagator is also trivially required after the final MCT approxi-
mation is made (see Sec. 3.4) [3]. In the present work, however, we treat the neglect of P” as
the first explicit MCT approximation, as it can be imposed separately from later MCT approx-
imations. This first step implies that K(k, t) ~ Kq:(k, t) where Kq:(k, t) is the same function
that appears in the integral equation of Eq. (8) for the exact memory kernel.

Figure 2 shows both the exact memory kernel K(k, t) and the approximate kernel without
projected dynamics, Kqi(k,t), at the wave number corresponding to the main peak of the
static structure factor. It is clear that when t — 0, the two kernels become equal. While
this is mathematically trivial, it can also be physically understood by the realization that the
fluctuating force Ry resides in the subspace orthogonal to the density modes, implying that
projections onto the orthogonal subspace have no effect when applied directly. However, as t
increases, the influence of the part of the fluctuating force that evolves into the space spanned
by density modes grows, resulting in a slower initial decay of the true memory kernel compared

The exact memory kernel K(k,t) = <Rf(emg/tRk> is propagated in time using the op-
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Figure 2: The memory kernel and associated intermediate scattering functions for
our colloidal liquid at several steps in the derivation of mode-coupling theory. The
top panels show the memory kernels at T = 1.0 (left) and T = 3.0 (right) as a
function of time. Here, K is the exact memory kernel, Kg; is the kernel with un-
projected dynamics, Kofdiags Kgmets Kmet> and Kr(nzc)t are the memory kernels after the
doublet projection, diagonalization, factorization, and convolution approximations,
respectively. For the meaning of the error bar in the off-diagonal kernel, we refer
to Appendix B.2. The inset is a zoom-in of the final relaxation behavior. The bot-
tom panels show the intermediate scattering functions at the same temperatures as
a function of time according to each of the different memory kernels, obtained by
solving the corresponding generalized Langevin equation. The black dashed line in-
dicates the exponential relaxation that corresponds to a liquid with no memory. In
the bottom left figure, we show in the inset the intermediate scattering functions ob-
tained from K(t), Kr(nzc)t, and from a fully self-consistent solution, denoted as Fs(czrglct,
of the mode-coupling equations using only structure as input.

to the one with standard Smoluchowski dynamics. The results is that Kq:(k, t) corresponds to
more liquefied short-time dynamics than K(k, t).

Interestingly, the relaxation of the kernel K+ at long times is in fact slower than that of the
exact memory kernel, developing a very low shoulder that delays the final relaxation process.
This can be seen most clearly in the insets of Fig. 2. The corresponding intermediate scattering
functions Fq:i(k, t) reveal the same pattern, i.e. after an initially faster decay, they ultimately
relax over a longer time scale than the exact F(k, t) at both temperatures. This clearly implies
that the orthogonal dynamics are not simply “rescaled” regular dynamics, and that the neglect
of P” thus introduces a non-trivial modification of the full time-dependent dynamics.

3.2 Projection on density doublets

The next step in the derivation of mode-coupling theory is to project the memory kernel on the
space spanned by doublets of density modes. The motivation for this projection is that, next to
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the singlet density modes py which we have explicitly included as our resolved variables in the
Mori-Zwanzig formalism, the most important dynamic observables for structural relaxation are
products of two density modes pypy [101]. As we have not included them directly in the the-
ory, their effects must still be contained within the memory kernel, and can thus be extracted by
projecting it on the space of all density doublets fozy = pqpq/—< Parq pqpq/> < ParqPata >_1pq+q/.
The quantity QEle, contains only the part of the doublets that is orthogonal to the space of
density singlets f102]. This procedure is formally exact [74]. However, instead of the exact
transformation, we opt to project on doublets pqp that are not orthogonalized with respect
to the singlet subspace. This procedure is approximate (see Appendix A for additional details),
and we refer to it as the doublet projection approximation. After carrying out the projection,
we obtain what we call the off-diagonal memory kernel, which contains only contributions
originating from the space of density doublets,

p*Dy
4N3

Z Viea (pfl/p;‘;_q/pq(t)pk_q(t» Vicq - 9
qq

Kogtaiag(k, t) =

Note that here the density modes evolve in time with normal dynamics e* ¢. In the above, we
have introduced the vertex as

Yia = 2ikA;Do ; <p 4Pi-qPa'P k—q”>_1 <p q'P E—Q”Rk> ’ (10)

which can be interpreted as a static coupling constant for wave vectors k and q. The inverse
four-point structure factor

-1 -1
(8(4)) (q:k_q5 q//,k_q//)/N3 = <Pzpfz—qpq”pk—‘¥’> ’ (11)

appears here as the normalization of the density-doublet projector such that it is idempotent.

While the time-dependent off-diagonal four-point density correlation function in Eq. (9)
can be evaluated numerically, its static inverse is unfortunately more problematic. The reason
is that it is defined by the relation

1 -1
5 D (PPt PaPa) (Pl PePIPI,) = Bk Bk, + ik, Sl (12)
q:92

rendering the problem of finding it an intractably large linear algebra problem, if it exists at
all [102,103]. To proceed, we therefore simplify the vertices by neglecting the off-diagonal
terms, retaining only the terms in the sum for which q” = q and q” = k— q. This also causes
the normalization term to factorize, yielding,

N -1
Viig ™ ikpDq <pj1plt—qpqpk—q> <p:<1plt—qu> (13)
= (k- @)c?(q) +k- (k—q)cP(k—q)—kpc®(—k k—q,q), (14)

where we have introduced the direct correlation functions ¢® and ¢®). These can be related
to the corresponding structure factors as 1/S@(k) = 1 — pc®(k), and

5(3)(1(13 k2: k3)
S@(k;)S@(ky)S@(k3)

=1+ pZC(S)(kl,kz, k3) . (15)

Here, the three-point structure factor is defined as S®)(k;, ko, k3) = < P, Pk, pk3> /N.
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It is important to note that we have now made two independent approximations in this
step: the projection on density doublets and the diagonalization of the inverse four-point
structure factor in the vertex. We currently have no direct means to separate the effects of these
two approximations. Fortunately, however, there is a way in which we can indirectly estimate
the validity of the static diagonalization approximation in isolation, namely by considering the
t = 0 limit of the dynamic four-point correlations. We shall revisit this point in Sec. 4.

To assess the overall quality of this step, we measure the off-diagonal kernel of Eq. (9)
with the approximated vertices of Eq. (14) from our simulation data. The results in Fig. 2
clearly show that this step causes a significant overestimation of the memory, resulting in an
error in the relaxation time of an order of magnitude. The size of this error seems to increase
as the temperature is lowered, suggesting that the discrepancy might become more severe
as the glass transition is approached. Moreover, the shoulder that is already visible in the
memory kernel K+ is much more pronounced in the off-diagonal kernel. The presence of this
shoulder suggests that the relaxation of the off-diagonal memory kernel consists of a slow and
a fast relaxation process, where the slow process is spuriously causing an overestimation of
the structural relaxation time.

3.3 Diagonalization

Up to this point, we have expressed the approximate memory kernel in terms of static system
properties p, Dy, S (k), and S®(k;,k,,ks), and a time-dependent part given by the off-
diagonal four-point correlation function

FO(K;, Ky, k3, ke, 0) = {pis pi. P, (D1, (0)) /N . (16)

However, the off-diagonal form makes it inherently difficult to deal with this function [104—
106]. To proceed, we give two possible approaches. Firstly, one may construct a separate
equation of motion for F®, which can be solved self-consistently with Eq. (5). This approach
is called off-diagonal generalized mode-coupling theory [76,77]. The main drawback of this
idea is that the integrals involved are difficult to evaluate numerically within reasonable com-
putational time due to the large combinatorial space of wave vector arguments. The second
approach is much more common [107] and is also used in classical mode-coupling theory:
from the four-point function F®| all off-diagonal terms are neglected. Specifically, we keep
only two diagonal terms in the sum of Eq. (9), that is, the terms where q' = q and ¢ =k—q.
Thus, upon diagonalization only those remain and all other terms vanish:

p*Dy

Kgmct(k, t)= W

D [Vig? <p§;p§_qpq(t)pk_q(t)> - (17)
q

We stress that, similar to the diagonalization of the inverse four-point structure factor (S (4))_1
in the vertices, this technical approximation is uncontrolled.

The reason we choose to denote this memory kernel with the subscript ‘gmct’ is that this is
the same kernel that appears in the first equation of the Generalized Mode-Coupling Theory
(GMCT) hierarchy [73-75]. GMCT attempts to improve on MCT by retaining the diagonal
four-point function explicitly and constructing a new equation of motion for it (i.e. avoiding
factorization, which shall be treated in the next step, Section 3.4). Briefly, GMCT proceeds by
re-applying the Mori-Zwanzig formalism using density doublets as the resolved variables and
projecting the new fluctuating force on density triplets, yielding a six-point density correla-
tion function in the new memory kernel. In principle this scheme can be continued for arbi-
trarily many density modes, creating an infinite hierarchy which can be truncated or solved
self-consistently at arbitrary finite order. In this way, GMCT seeks to delay the factorization
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approximation of MCT. We note that in some works, the dynamic diagonalization and factoriza-
tion are collectively referred to as “the factorization approximation”, because the factorization
of a four-point function implies its diagonalization. For clarity we keep them separate here.

Figure 2 shows that the diagonalization approximation of the dynamic four-point density
correlation has a major effect on the predicted memory kernel: compared to the off-diagonal
kernel of the previous step, the kernel is reduced by approximately a factor of two, and the
time scale of relaxation is about an order of magnitude faster. This large effect of the diago-
nalization approximation can be seen as a confirmation that the approximation is inherently
uncontrolled, but at the same time it also partially corrects for the significant overestima-
tion error introduced in the previous step. Note also that the clear shoulder present in the
off-diagonal kernel has disappeared, suggesting that the two relaxation processes seen in the
decay of the off-diagonal memory can in fact be identified as a fast process characterized by
diagonal density decorrelations and a slow off-diagonal contribution.

3.4 Factorization

The next and sometimes last step in the derivation of classical mode-coupling theory is to
factorize the diagonal four-point function in terms of a product of two-point functions,

p*Dy

Kk, )= 22 D Wal* (a0 PigPra(0)) (18)
q
2
p°D
= 2 M PF(@. OF (Ik—ql, ). (19)

q

We denote this memory kernel with the subscript ‘mect’ since it is the standard kernel that
is widely used in microscopic mode-coupling theory [5]. Notably, this kernel is expressed
in terms of the intermediate scattering functions F, and hence Eq. (5) now becomes a self-
consistent equation. In order to test the factorization approximation, however, we do not
solve Egs. (5) and (18) self-consistently, but rather we evaluate the kernel of Eq. (18) directly
from simulation data, similar to how the previous memory kernels were computed.

From Fig. 2 it can be seen that the data of Ky, are identical to those of Ky, within our
error margins. This forces us to conclude that, at least in the liquid regime, the factorization
approximation of diagonal density correlations is very accurate and can be employed without
caution. We have confirmed that <p1";1p1t2pkl(t)pk2(t)> and <p1’i1pk1(t)><pltzpk2(t)> show
similar agreement in our simulations.

The validity of the factorization approximation is, in fact, not very surprising, since there
exists a host of literature (e.g. [108]) showing that the four-point dynamic susceptibility
1Dk, ke, ) = (pf, Py, 1, (D91, (0)—( 5 1, (0) { P P, () scales as O(N)! whereas the
two terms on the right hand side scale with O(N?). The notion that relative fluctuations are
vanishingly small in the thermodynamic limit is typical in statistical physics. Since the fluctu-
ations captured in ¥ are a direct measure for the error of the factorization approximation,
one can readily infer that in the thermodynamic limit, the factorization approximation be-
comes exact. This statement holds throughout the supercooled phase as long as y* remains
finite, which simulations indicate it does [108-110] (mode-coupling theory predicts it to di-
verge only at the ideal glass transition, but to remain finite everywhere else [35]). In this light
itis hard to justify attempts to avoid or delay the factorization of four-point density correlations
in cases where one is willing to diagonalize them.

n fact, y, can be obtained by taking two functional derivatives of the free energy with respect to intensive
fields. This means that y, must extensive.
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3.5 Convolution approximation

The last approximation usually employed in the derivation of MCT is the convolution ap-
proximation for the vertices [111], which simplifies the required static input for the theory.
Although there are analytical results for the three-point direct correlation function ¢® of
hard particles [112], the theory becomes more tractable if it only requires two-point functions
as input. To this end, the convolution approximation is often made, setting ¢® = 0 [113]
(see [34,114,115] for notable exceptions). We add a superscript (2) to the mode-coupling
theory memory kernel K, (k, t) to indicate that structural triplet correlations are neglected.
Note that we could also have made this approximation at any earlier point in the theory, but
we conjecture that the effect of it is insensitive to when it is actually employed.

We show in Fig. 2 that the neglect of triplet correlations in the vertices only has a small
quantitative effect on the dynamics, very weakly increasing or decreasing the predicted mem-
ory kernel and intermediate scattering functions depending on the temperature. Note that the
lines for Ky (k, t), Kinee(k, t), and Kgc)t(k, t) lie very close together and are therefore hard to
distinguish. This is clear evidence that the inclusion of triplet correlations is unnecessary for
our colloidal liquid at the density and temperatures considered in this work.

The fact that the triplet correlations have no significant influence on the predicted dynamics
indicates that, at least in the liquid regime studied in this work, the microscopic structure is
still well described by two-point correlation functions only. In general, however, the validity
of the convolution approximation depends highly on the material and state point studied. For
example, the incorporation of triplet correlations is known to be more important for strong
network-forming systems than for fragile models such as the one studied here [115], and
supercooling to lower temperatures may also give rise to non-trivial higher-order structural
features [116-121].

4 Discussion

In this work we have explicitly resolved each of the main approximations comprising the stan-
dard mode-coupling theory of the glass transition, allowing us to unveil the effect of each
consecutive approximation on the predicted memory kernel for a model colloidal liquid. In
all cases, the approximate kernel could be benchmarked against the exact result, providing an
unambiguous test for the theory’s validity. Let us now discuss the relative importance of each
MCT approximation step. Our main results, summarized in Fig. 2, clearly show that, apart
from the factorization and convolution approximations, all approximations have a significant
and non-trivial effect on the memory kernel. Specifically, the first three approximations affect
both the absolute magnitude of the kernel and the time scales of decay, biasing the predictions
either towards more liquid-like or more glassy dynamics and imposing qualitatively different
decay patterns. Curiously, after the final MCT approximation is made, the predicted interme-
diate scattering function is closest to the exact dynamics, at least in the regime of dense (yet
not supercooled) liquids studied in this work. We also point out that the MCT approximations
which are virtually exact, i.e. factorization and convolution, are ironically the ones for which
the most attempts have been made in the past to circumvent them.

Our work identifies two key approximations that manifestly impact the memory kernel the
most, both of which involve neglecting off-diagonal four-point density correlations. Explicitly,
when going from Kgq: to Koggiag We neglect the static off-diagonal terms in the vertices, and
when going from Kgiag 10 Kgmee We neglect the dynamic off-diagonal terms. These two steps
coincide with a significant increase and decrease of the approximate memory kernel, respec-
tively. However, recall that the diagonalization of the static four-point function only applies
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to its inverse (5(4))_1 [see Eq. (14)], whereas for the dynamic case the diagonalization ap-
proximation is applied to the standard correlation function. We surmise that this causes the
two diagonalization approximations to have, in effect, opposite signs. The combined result of
both approximations is thus a cancellation of errors, either fortuitous or by design, which we
believe also underlies, at least in part, the success of standard MCT.

As already mentioned in the introduction, it is well known that standard MCT has the
general tendency to overestimate the glassiness of a system. Our results of Fig. 2 now allow
us to expose precisely which step in the MCT derivation is responsible for this overestimation,
namely Koqiag- Recall that at this step the projection onto density doublets is introduced, com-

bined with our diagonalization of (8(4))_1. Unfortunately, we are currently unable to directly
separate the effects of these two approximations due to the great computational difficulties

associated with evaluating the off-diagonal version of (5(4))_1. However, we can provide in-
direct evidence that the static diagonalization, rather than the projection on doublets itself, is
the more likely cause of the overestimation error of Koggi,e- Briefly, we find that the diagonal-
ization of the dynamic four-point function introduces a change in the predicted memory kernel
of around 50% at t — 0 (comparing Koggiag With Ko at T = 1.0). We expect that employing
this same approximation to the inverse four-point correlation function in each vertex should
introduce at least a similar error in the opposite direction (going from K t0 Kofiag)- This is
also consistent with what we observe in Fig. 2, leading us to believe that the main source of
error in MCT ultimately stems from the neglect of off-diagonal density correlations.

In contrast to the method by which we have evaluated the MCT memory kernel, which
is to use the intermediate scattering function F obtained from simulations, the usual way to
solve MCT is to do so self-consistently. That is, the two-point correlation function F that ap-
pears in K., is chosen such that it satisfies equation (5) with K, as memory kernel. This
self-consistency effectively magnifies the error made by MCT, since any small error propagates
iteratively through both the kernel and F itself. From the main results in Fig. 2 we can already
infer that self-consistent MCT should yield an overestimation of the intermediate scattering
function as compared to our directly calculated F,,. To see this, we write K., = K,([F ] and
note from our results that F., > F for all times, at least at low temperatures. It follows that
Koot Finet] > Kt [F ], and hence the overestimation error will be further increased in subse-
quent self-consistent iterations until convergence is reached. To numerically confirm that this
is indeed the case, we show the self-consistent MCT solution Fs(czrzlct in the inset of the bottom
left panel of Fig. 2. Explicitly, for our system at T = 1, self-consistent MCT predicts a relaxation
time of T, = 0.6, whereas our measurements give 7, = 0.3 for MCT, and the true relaxation
time is only 7, = 0.2. In addition to this overestimation, the self-consistency property also
gives rise to the prediction of a spurious divergence of the relaxation time. Overall our main
results thus understate the severity of the errors made by self-consistent MCT.

Using our results, we have argued that there is little reason to attempt to improve MCT
by delaying or avoiding the factorization approximation specifically. Nevertheless, such at-
tempts have had significant success in recent years in the form of (diagonal) generalized mode-
coupling theory, as it typically improves upon the quantitative predictions of MCT [73-75,122,
123]. In hindsight, we believe that these improvements are again fortuitous consequences of
another cancellation-of-errors effect. In order to solve the equation of motion for the diago-
nalized four-body correlator < pltpjipk(t)pq(t)>, several additional approximations are made
within GMCT, whose effects seem to partially cancel the errors made by the standard MCT,
yielding quantitatively improved results. If, within GMCT, an exact equation of motion for
diagonal four-body correlators in terms of the intermediate scattering function was employed,
the theory would reproduce the factorization approximation in the thermodynamic limit and
therefore the results of GMCT would be equivalent to that of MCT.
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5 Conclusion and outlook

In conclusion, we have unveiled the effect of each of the approximations that enter the mode-
coupling theory derivation. Our results explicitly show that the success of standard MCT is
rooted in a remarkable cancellation of errors, as conjectured earlier from a different perspec-
tive [124]. We have found that the diagonalization approximation in the statics and dynamics
has the most significant impact on the predicted dynamics, as alluded to earlier [106]. It
is clear from our results that any attempt to improve this approximation by including off-
diagonal density correlations should treat both the statics and dynamics on an equal footing
lest the predictions of the theory may be worsened.

In future research we aim to apply our methods to a more supercooled system in order to
evaluate whether our conclusions hold when the glass transition is approached. Preliminary
results suggest that they do. Similarly, it is still an open question to what degree our findings
depend on the type of dynamics studied and on the fragility of the material in question. We be-
lieve that more work in this direction should inform a more systematic approach to improving
one of the most promising theories of the glass transition.

One can envision several routes toward a more quantitative dynamical theory of the glass
transition based on the Mori-Zwanzig approach. Firstly, the effects of the projected dynam-
ics can be dealt with rigorously in a self-consistent manner. Indeed, it is not hard to express
W(k, t) directly in terms of F(k, t) and its derivatives, which can then be used in conjunction
with Eq. (8) to include the effects of projected dynamics. Secondly, in order to include off-
diagonal four-point correlations into the theory, novel numerical schemes may be employed,
especially efficient integration and inversion routines, to evaluate the off-diagonal memory
kernel [106]. To alleviate the computational costs, one may also seek to restrict the full wave
vector space to only the most important off-diagonal correction terms. In this regard, includ-
ing e.g. only the wave vectors corresponding to the main peaks of S [121] might already
provide a reasonable improvement. Finally, formal diagrammatic corrections to MCT have
been derived [54, 78]. Numerical integration or analytic analysis of the diagrams involved
may provide invaluable new insights in the microscopic dynamics of the glass transition.
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A The memory kernel equation

In order to write an equation of motion for the intermediate scattering function F(k, t), we
separate the evolution of it into a part that propagates in the space spanned by the density
modes, and a space orthogonal to it. This we do by multiplying by 1 = P + Q, in which
P = px) (pltpk>_1 <plt is the projector onto the space spanned by the density modes, and
Q =1—"P its orthogonal complement. This yields

dF(k,t) 1,/ , . T

5 =ﬁ<pkﬂ‘(7>+ Q)e™  py) (A-D
_ KDy F(k, t)+ td K,oq(k, t — T)F(k, T)
T s T, S TR )

where we have used the Dyson decomposition identity,
) t
et = ' +f d7e? A=IQiPe?'T (A.2)
0

and introduced the reducible memory kernel K,.4(k, t)= m <R;‘(e QQTQtRk>. Here R, = Q0 py
is the fluctuating force.

Because Eq. (A.1) is difficult to work with numerically, it is customary to perform a second
projection with projector operator P’ = py) < pl’zﬂ'rpk>_1 ( pthT in order to change the form of
the time integral into one that is more stable [93]. After invoking the Dyson decomposition
identity again in the form

t
eQQTQr — eQn"‘Q’Qt + f dTeQn"‘Q(f—f)QQTP/QengQT ) (A.3)
0
we find .
Kred(k: t) = K(k) t) - J dTKred(k, t - T)K(ka T) > (A-4)
0

in which K(k, t) = Nk12 By <R§e9$‘Q,QtRk> is the irreducible memory kernel. In Laplace space,

Egs. (A.1) and (A.4) can be straightforwardly combined to give in real space

0F(k,7) _
ot

OF(k,t) Dyk?
(,)Jr o

2t S(R) 0. (A.5)

F(k,t) +J dtK(k,t —7)
0

In the main text, we have introduced Q" = Q’Q to simplify notation.
To confirm that we have not yet made any approximations, we can use the Dyson identity
one last time,

t
o't _ 0t —J d7e' A1 — 9/ Q) (A.6)
0

to find an integral equation for the irreducible memory kernel, yielding

t
K(k,t) =Km-(k,t)+j dtK(k,t —t)W(k,7), (A.7)
0

in which we introduce the fluctuating force auto-correlation function

Ko (k, £) = (Nk2Dy) ™! (Rieﬂ“RQ , (A.8)
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and the correlation function between the fluctuating force and Q7 py,

W(k, t) = (Nk2Dy)™" (p;;sz*eﬂ”RQ . (A.9)

Since the latter two quantities evolve in accordance with the standard evolution operator
et we can measure them directly from particle resolved Brownian dynamics simulations.

The results are shown in Fig. 3. The first of the two can be rewritten as

_1(B o't pc(k) aft 2 2 aft
Kqi(k,t) = N (m <h1te hk> _2T <p1te hk> + Dok“ (pc(k)) <pl’ie pk> , (A.10)
in which we have introduced hy =1, j(k- Fj)eik'ri. We denote this quantity as Ko+ seeing that
it is equivalent to the irreducible memory kernel K evolving with the Smoluchowski operator
Q' instead of with Q"Q’Q. Similarly, for W(k, t) we can write

W(k,t) = ]% (% <h1te9'thk> —HPTCU() <p1temthk> + Dok?pc(k) <p1’ieﬂ'tpk>) . (A1)
The latter two equations show that these functions have many terms in common (in fact,
their definitions differ only by a Q), which is reflected in their remarkably similar decay as
presented in Fig. 3(c,d). Additionally, it can be shown that both the memory kernel itself and
its time integral should scale with k? for small k [3,125]. While Eq. (A.10) does show the
correct scaling for the kernel itself, on first glance it does not for its time integral (each term
scales with k°). Nevertheless, together with Eq. (A.11) and (A.7), the correct scaling should
be recovered. Thus we expect that the k®-scalings of each of the terms in the time integral of
Eq. (A.10) cancel to yield an overall correct k? proportionality. The low wavelength limit is an
interesting regime, but we leave it for further study here. Its investigation in more supercooled
systems could shed light on the failure of MCT to produce a breakdown of the Stokes-Einstein
relation.

Now that we have measured the functions W (k, t) and Kq;:(k, t), we can solve the integral
equation Eq. (8) numerically, and insert the result into Eq. (5). The intermediate scattering
function found by this method can be compared to one directly measured from the same sim-
ulations. This comparison is made in Fig. 1.

In order to derive the mode-coupling equation, we follow the main text and start with
the irreducible memory kernel K(k, t) = Nk12D0 <Rf(eleQtRk>. As a first step, we replace the
orthogonal dynamics with standard dynamics, yielding

_ 1 % Q¢
Koi(k,t) = T, <Rke Rk> . (A.12)
The second step is to project on density doublets,
Kosrding(k, ) = ;<R*P VPR, ) (A.13)
offdiag\ "> t)= NkZDO K/ 2€ 2%k [ » .
in which the projection operator P, projects on the space of all density doublets, i.e.
1 -1
Pa=7 Y. PP <pf;pf;2pk3pk4> (pi;p;; : (A.14)
ki kykky

The prefactor is included to prevent over-counting. Substituting (A.14) into (A.13), we find

1 -1 i
K(k,t) ~ —2ZZ(Ripklpk2)<p§1pﬁzpk3pk4> <pf;3pii4€” tpkflpk;>
16Nk2Dy 4~ 4
* * -t * *
“(pipipien) (PuriRe). (419
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Figure 3: Time-correlation functions as a function of time t at the peak of the static
structure factor ko = 7.0 obtained by direct simulation measurement. Panel (a)
shows the correlation between the density modes py and the momentum averaged
longitudinal stress hy, and (b) displays the auto-correlation function of that stress. In
(c) and (d) we show W (k, t) and Kq:(k, t) which together determine the irreducible
memory kernel as expressed by Eq. (8) of the main text. The data are extracted from
Brownian dynamics simulations of a Weeks-Chandler-Andersen system at number
density p = 0.95 for four different temperatures above the crystallization transition.

Inserting the definition of the Smoluchowski operator and integrating by parts, it is not
hard to show that

. s k2SB)(—ky, —ky, Ky +ky)
(pi. Py Ric) = —DoN i, [(lq-k)s<2>(k2)+(kz-k)s(”(kl)— L2 17

S@)(k)
(A.16)
This leads us to define the vertex
N? -1
Vi = 2 <p3p§_qpppk_p> (A.17)
p

5(3)(_13: P— k: k) ]

X [(f( P)SA(k—p)) + (k- (k—p)SP(p) —k SR

so that the memory kernel reduces to

1 Dyp?

Koffdiag(k: t) = Z N3

*

"
Vk,q’ <p:;/p1t_q/en tpqpk—q> Vk,q . (A.18)

aq’
Next, we neglect all the off-diagonal elements of the inverse four-point structure factor in
the vertex, keeping onlyp=qand p=k—q:

2

N N —1| A A
Vg™~ (PaPi-gPaPi-a) [(k- QS (Ik—q)) + (k- (k—q)sP(q)— k

$¥(—q,q—k k)
S@)(k)

(A.19)

This approximation is fully uncontrolled. We then factorize the diagonal inverse structure
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factor into the product of two two-point functions, yielding

Vieg & %s@)(q)—ls@uk— a) (A.20)
A , $®)(—q,q—k,k)
. @) Me (e — (2) _ > >
x [(k QS (k—ql) + (k- (k—q))s**(q) —k SO ]
= (k- @)c®@(Q) + k- (k—q)cP(k—q]) —kpc®(—q,q—k k). (A.21)

As we discuss in the main text, this step is exact in the thermodynamic limit. Lastly, we do a
convolution approximation of $®, neglecting ¢®®, and find

Vig ~ (k- @c®@(q) + k- (k—q)c@(k—q)), (A.22)

where we have used the definition of the direct correlation function 1/5® (k) = 1—pc®) (k). To
arrive at the final mode-coupling theory equation, the dynamical off-diagonal memory kernel
can be diagonalized and factorized as indicated in the main text.

If, instead, we had projected on the set of doublets orthogonal to the space of singlets

9 -1
QELSI, = PgPq — <pz+q,pqpq/> <pé+q,pq+q/> Pq+q» We would have found

D0p2 * * % Qfe 8(3)((],1(—(1) * % Q'
4N3 Zqu’ <pq’pk—q’e Pqpk—q>_ SOk <pQ’pk—q’e pk>
q.9

s®(q',k—q) af
T s <Pfi€ thPk—q> +

Kogtaiag(k, t) =

S®(q k—q)S®(q.k—q) / , g,

(A.23)

in which the vertices contain the normalization factor of the orthogonalized projection opera-
tor. When the diagonalization approximation is applied to this expression, the last three terms
become subdominant relative to the diagonal four-point intermediate scattering function, and
can be neglected, simplifying the expression to that given in Eq. (17). The omission of the
last three terms, together with our use of a factorized normalization of the projection opera-
tor mathematically constitute the error of what we have referred to as the doublet projection
approximation.

B Numerical details

B.1 Brownian dynamics simulations

The results from this work are obtained from trajectories of Brownian dynamics simulations
performed with the LAMMPS software package [126]. We use a purely repulsive single-
component system of Weeks-Chandler-Andersen type, characterized by the pair interaction

potential
U(r)=4e[(%)12—(%)6]+6, (B.1)

for r/o < 2Y/6 and U(r) = 0 for all other r. Here, r is the inter-particle distance, o = 1
describes the particle size and € = 1 is the interaction strength. All results are presented in
terms of these units. The simulations contain N = 2000 particles confined within a cubic box
with number density p = 0.95 and periodic boundary conditions. At the lowest temperature
studied, kz T = 1, this system has a liquid-solid coexistence region for p € (0.96,1.03) [127],
which we just stay below.
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We integrate the Brownian equations of motion, Eq. (1), using a time step of At = 107°
and friction coefficient { = 1. First, we equilibrate the system for 107 time steps and we subse-
quently run an equal number of steps for production. During the production run, we save the
particle positions on a quasi-logarithmic grid in order to compute the time-dependent quanti-
ties. For each of the 4 temperatures studied, we run 50 independent simulations, allowing us
to take proper ensemble averages.

B.2 The exact memory kernel

In order to solve the integral equation (8) to find the exact memory kernel, we first obtain
Kqi(k,t) and W(k,t) at k = 7.0 from the simulation trajectories. To do so, we straightfor-
wardly evaluate their definitions, Egs. (A.10) and (A.11), whereby we average over all 50 in-
dependent simulation trajectories, over all allowed wave vectors in the range k € (7.0 £0.1),
and over a small number of time origins. Because the evaluation of Eq. (8) is highly sensitive
to noise, we additionally apply a locally estimated scatterplot smoothing (LOESS) filter with
polynomial degree 2 and a smoothing parameter of 0.1 [128]. The resulting smoothed func-
tions are inserted in a discretized version of Eq. (8), for which we have used a non-equidistant
Simpson’s rule on a logarithmic grid [129]. The memory kernel is subsequently found by
solving the resulting system of equations.

To validate the obtained memory kernel, we insert it into Eq. (5), which is solved by the
method presented by Fuchs and coworkers [130]. The resulting intermediate scattering func-
tion is compared with the measured one in Fig. 1.

B.3 Off-diagonal memory kernel

To simplify the computation of the off-diagonal memory kernel, Eq. (9), we write it as

2

Kogag(ks 0) = 222 (81, 008K, ) ®.2)
in which B(k,t) = Zq Pq(t)Pr—q(t)Vi q- We compute this function B(k, t) at the peak of the
static structure factor for all t by explicitly performing the sum over all allowed wave vectors q
up to some cutoff k.. The auto-correlation function of the result yields the off-diagonal mem-
ory kernel. We have found that the cutoff required for convergence of this memory kernel is
much larger than that needed for diagonal memory kernels. In particular, the cutoff chosen
for this memory kernel is temperature dependent and given by k. = 83.0,84.7,86.2,88.3 for
T =1.0,1.5,2.0,3.0, respectively. These values are obtained by computing the off-diagonal
memory kernel as a function of this cutoff from one set of simulation trajectories and perform-
ing a sinusoidal fit to the data. This procedure is illustrated in Fig. 4. The one-sided error bars
in Fig. 2 are set equal to the amplitude of the fitted sine wave, providing an overestimation of
the convergence error in the off-diagonal memory kernel.

The triplet correlation function ¢®(k, q) appearing in the vertices contributes significantly
only for small values k and q [113]. Therefore we set it equal to zero for values of ¢ > 10.0,
saving computation time and decreasing the amount of noise. For simulations closer to the
glass transition, where triplet correlations may play a more dominant role, it might be nec-
essary to increase this cutoff, or forgo it completely. We use the same cutoff for the triplet
correlations in the diagonalized kernels.

B.4 GMCT and MCT memory kernels

The diagonal memory kernels Koy, K, and Kr(nzc)t converge faster than the off-diagonal one.

This allows us to decrease the cutoff wave number of the sums in their definitions to k., = 40.0,
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Figure 4: The off-diagonal memory kernel as a function of the cutoff value in the sum
from the definition of B(k, t) for different values of t at T = 1.0. The high k., data
is sinusoidally fitted to estimate the maximal convergence error. The vertical dashed
line indicates the cutoff used in this work.

equal to that used in many numerical implementations of the standard MCT equations. The
convergence error decreases as t increases, because the intermediate scattering function, and
thereby the integrand, decays as F(k, t) ~ e~Dok’t for small t and large k. We estimate that at
t = 1072 and t = 1072, the relative convergence errors are at most 5% and 0.2%, respectively.
For smaller t, the error is larger, but the influence of the memory kernel on the dynamics at
such short time scales is negligible.
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