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Abstract

We establish the existence of a deformation of the usual Carter constant which is con-
served along the motion in a fixed Kerr background of a spinning test body possessing
the spin-induced quadrupole coupling of a black hole. The conservation holds pertur-
batively up to second order in the test body’s spin. This constant of motion is obtained
through the explicit resolution of the conservation constraint equations, employing co-
variant algebraic and differential relations amongst covariant building blocks of the Kerr
background. For generic spin-induced quadrupole couplings, which describe compact
objects such as neutron stars, we obtain a no-go result on the existence of such a con-
served quantity.
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1 Introduction

The Kerr geometry, which describes the spacetime outside an isolated rotating black hole ac-
cording to general relativity, possesses a hidden symmetry, not corresponding to any spacetime
isometry, responsible for the integrability of geodesic motion and for the separability of various
field equations. The spacetime possesses only two independent Killing vector fields, ξµ and ηµ,
generating the isometries of time-translation and rotation about the spin axis, leading to the
energy E = −ξµpµ and the axial component of angular momentum Lz = ηµpµ, respectively,
as conserved quantities for geodesic motion with momentum pµ, i.e. pν∇νpµ = 0. It was thus
rather unexpected when Carter [1] found a further nontrivial constant of the motion which is
quadratic in the momentum, of the form Q = Kµνpµpν, where Kµν = Kνµ is a Killing tensor
satisfying∇(µKν)ρ = 0, a generalization of the Killing equation∇(µξν) = 0. Adding the Carter
constant Q to E, Lz and m2 = −gµνpµpν (conserved for geodesics in any background), there
are four Poisson-commuting constants of motion, ensuring that geodesic motion in the Kerr
spacetime is a fully integrable dynamical system. This implies the absence of chaos in the mo-
tion, and it reduces the problem of solving for geodesic trajectories to the task of performing
one-dimension integrals.
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While the geodesic equation describes the motion of a structureless monopolar test body
in a fixed background spacetime, an important generalization is to allow the test body (while
still having negligible mass and thus negligible influence on the gravitational field) to have
a finite size and nontrivial structure. In the case where such an “extended test body” has a
size (length scale) l which is small compared to the radius of curvature R of the background,
l ≪ R, it is usefully characterized by a centroid worldline x = z(τ), with tangent vµ ≜ dzµ/dτ,
and a tower of gravitational multipole moments defined along the worldline. These begin
with the momentum pµ as the monopole and the spin (relativistic angular momentum) tensor
Sµν = −Sνµ as the dipole. Using only the fact that the body is described by a test stress-energy
tensor Tµν which is conserved within the background, ∇µTµν = 0, and certain definitions of
the multipole moments as spatial integrals of Tµν (which reduce locally to standard definitions
in special relativity), one can show that the monopole pµ and dipole Sµν must evolve along
the worldline according to the Mathisson-Papapetrou-Dixon (MPD) equations [2–4],

Dpµ

dτ
= −

1
2

Rµ
ναβ

vνSαβ + . . . , (1a)

DSµν

dτ
= 2p[µvν] + . . . , (1b)

reflecting local conservation of momentum and angular momentum, where the dots represent
corrections due to the quadrupole and higher multipole moments. These are to be supple-
mented by a condition of the form wµSµν = 0 for some timelike vector field wµ (setting to
zero the mass-dipole moment in the frame of wµ), which fixes a choice of centroid world-
line; a convenient choice is the Tulczyjew-Dixon condition pµSµν = 0 [5, 6]. Along with such
a condition, the pole-dipole MPD equations (Eqs. (1) with the dots dropped, neglecting the
quadrupole and higher corrections) provide a closed set of evolution equations for the world-
line z(τ) and the momentum pµ(τ) and spin Sµν(τ) along it, describing the motion of spinning
test body a background curved spacetime.

As shown by Dixon [4,7], and as was central to his construction of the multipole moments,
if the background has a Killing vector ξµ, then the quantity

Pξ = pµξ
µ +

1
2

Sµν∇µξν , (2)

is exactly conserved along any worldline when pµ and Sµν are evolved by the MPD equations
(1), to all orders in the multipole expansion, for arbitrary quadrupole and higher moments.
(See also, e.g., the earlier derivation by Souriau for the pole-dipole system [8], and the insight-
ful exposition by Harte [9].) Considering a background Kerr spacetime, one is then naturally
lead to wonder whether the hidden symmetry leads to conserved quantities for the MPD dy-
namics, including a generalization of the Carter constant to the case of spinning extended test
bodies.

This question was answered for the case of the pole-dipole MPD equations by Rüdiger
[10,11]. First he showed that the quantity QY = ∗Y µνSµν built from the Killing-Yano tensor Yµν
of Kerr is conserved, up to remainders quadratic in the spin tensor and quadrupolar corrections.
He further showed that there is indeed a generalized Carter constant of the form

Q(2) = Kµνpµpν + LµνρSµνpρ + . . . , (3)

which is conserved along (1) with pµSµν = 0, up to remainders quadratic in the spin ten-
sor and quadrupolar corrections that were not determined. A generalization of this result to
the Kerr-Newman (charged spinning black hole) spacetime was independently discovered by
Gibbons et al. [12] using a supersymmetric description of spinning particle dynamics. The
existence of these constants of motion has been shown by Witzany to allow the separation of a
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Hamilton-Jacobi equation for the pole-dipole system in Kerr, leading to analytic expressions for
the fundamental frequencies of the motion [13] using a Hamiltonian formalism for spinning
particles [14].

Our purpose in this paper is to explore whether such “hidden constants” exist for test bodies
with spin-induced quadrupole moments moving in a Kerr background. Dixon’s generalizations
of the equations of motion (1) to the quadrupolar order in the test body’s multipole expansion
read

Dpµ

dτ
= −

1
2

Rµ
ναβ

vνSαβ −
1
6

Jαβγδ∇µRαβγδ + . . . , (4a)

DSµν

dτ
= 2p[µvν] +

4
3

R[µ
αβγ

Jν]αβγ + . . . , (4b)

where Jµνρσ(τ) is the quadrupole tensor, having the same symmetries as the Riemann tensor,
and the ellipses here represent octupolar and higher corrections. As has been developed and
applied in a number of works (see e.g. [15–23]), the form of J appropriate to describe a spin-
induced quadrupole moment is given by

Jµνρσ = κ
3p · v
(p2)2

p[µSν]λS[ρλpσ] , (5)

where κ is a response coefficient controlling the magnitude of the quadrupolar deformation,
proportional to the square of the spin. Typical values for κ for a neutron star are in the range
4 to 8 [24], while for a black hole κBH = 1.

As the central results of this paper, we establish that two quantities, QY and Q(2), are
conserved up to cubic-in-spin or octupolar corrections,

dQY

dτ
=O(S3) ,

dQ(2)

dτ
=O(S3) , (6)

along the motion of a “quadrupolar test black hole”, governed by (4)–(5) with κ= 1 and with
the Tulczyjew condition pµS

µν = 0, in a background Kerr spacetime, for arbitrary orbital and
spin orientations. The first quantity QY is Rüdiger’s linear-in-spin constant, unmodified,

QY =
∗Y µνSµν , (7)

where ∗Y µν = 1
2ϵ
µναβYαβ is the dual of the Kerr spacetime’s nontrivial Killing-Yano tensor Y µν.

The second quantity Q(2) is quadratic in p and S and generalizes Rüdiger’s constant (3) to the
quadrupolar order for a test black hole; it is given explicitly by

Q(2) = YµρY ρνpµpν + 4ξλϵλµσ[ρYν]
σSµνpρ

−
�

gµρ
�

ξνξσ −
1
2

gνσξ
2
�

−
1
2

Yµ
λ
�

Yρ
κRλνκσ +

1
2

Yλ
κRκνρσ
�

�

SµνSρσ , (8)

where ξµ is the timelike Killing vector, and it reduces to the Carter constant Kµνpµpν=YµρY
ρ
ν pµpν

for geodesic motion when the test body’s spin is set to zero.
After reviewing details of the motion of quadrupolar test bodies in curved spacetime in

Sec. 2, we develop the constraint equations for the existence of the conserved quantities in
tensorial form in Sec. 3. In Sec. 4, we discuss covariant algebraic and differential relations
amongst basic fields, “covariant building blocks,” characterizing the Kerr geometry, which play
a central role in our solutions to the constraint equations. We use these to reduce the tensorial
constraint equations to a system of scalar equations in Sec. 5, and we derive our solutions
for the special black-hole case κ = 1 in Sec. 6. In Sec. 7, we investigate the case κ ̸= 1, for
non-black-hole bodies such as neutron stars with spin-induced quadrupoles, concluding that
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there is no solution to the constraints for κ ̸= 1. Finally we summarize our findings, some
aspects of their broader context, and future directions in Sec. 8.

We use the same conventions as adopted previously in [25]. The main results of this paper
have been crosschecked using Mathematica, which was also used to performed the numerical
evaluations of Section 7. The various notebooks can be found on the GitHub repository https:
//github.com/addruart/generalizedCarterConstant.

2 Quadrupolar test bodies in curved spacetime

In this section we review the motion of test-bodies in curved spacetime and we discuss the
problem of finding conserved quantities associated to the corresponding dynamical system.

2.1 Motion of test bodies in curved spacetime

Evolution equations. In General Relativity, the motion of an extended test body over a
curved background is described by the Mathisson-Papapetrou-Dixon (MPD) equations [2–4]:

Dpµ

dτ
= −

1
2

Rµ
ναβ

vνSαβ +Fµ , (9a)

DSµν

dτ
= 2p[µvν] +Lµν . (9b)

Here, vµ denotes the four-velocity of the test body, pµ its four-impulsion and Sµν its spin dipole
tensor. Fµ and Lµν are respectively the force and torque terms that include corrections to the
equations of motion due to quadrupole and higher moments. From now on, we assume that
τ is the proper time, yielding vµvµ = −1.

Taken alone, the MPD equations do not form a closed set of equations. Roughly speaking,
this comes from the fact that the MPD equations arise from the skeletonization of a compact
body stress-energy tensor above an arbitrary worldline belonging to the body’s worldtube [2].
They shall be supplemented by a so-called spin supplementary condition (SSC), which will play
the role of fixing this worldline [26]. In this paper, we choose to work with Tulczyjew SSC [5,6]

pµS
µν = 0 . (10)

Among other consequences extensively described in [25], enforcing this SSC allows in partic-
ular to express the dipole spin tensor solely in terms of a spin vector Sµ which is orthogonal
to the impulsion, Sµpµ = 0.

Spin-induced quadrupole approximation. We will consider only spin-induced multipole
moments and work in the quadrupole approximation, i.e. neglecting octupole and higher
moments. This is the relevant approximation for addressing spin-squared interactions: con-
sidering only spin-induced multipole terms, the 2n-pole scales as O(Sn), with S2 ≜ 1

2SµνS
µν.

At the level of the equations of motion, this corresponds to choose the force and torque
given by

Fµ = −1
6

Jαβγδ∇µRαβγδ , Lµν = 4
3

R[µ
αβγ

Jν]αβγ . (11)

The quadrupole tensor Jµνρσ possesses the same algebraic symmetries as the Riemann tensor.
We further particularize our study by considering only a quadrupole moment that is in-

duced by the spin of the body, discarding the possible presence of some intrinsic quadrupole
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moment. This spin-induced quadrupole can be shown to take the form (5) [15–23]. Here spe-
cialized to the case vαvα = −1 and at leading order in the spin expansion using Eq. (19), its
form reduces to

Jµνρσ =
3κ
µ

v[µSν]λS [ρ
λ

vσ] = −
3κ
µ

v[µΘν][ρvσ] , where Θαβ ≜ SαλSβ
λ

. (12)

Here κ is a free coupling parameter that equals 1 for a Kerr black hole and takes another value
if the test-body is another compact object, e.g. a neutron star.

Under the Tulczyjew SSC, the spin tensor can be solely expressed in terms of a spin vector
defined as Sα ≜ 1

2ϵ
αβγδ p̂βSγδ. This relation can be inverted as

Sαβ = 2S[α p̂β]∗ , (13)

were we have introduced the Hodge duality A∗µν ≜
1
2ϵµνρσAρσ (which is here specialized to

the outer product of vectors, l[µmν]∗ ≜ 1
2ϵ
µνρσ lρmσ). One can show that this implies the

following decomposition for Θαβ :

Θαβ = ΠαβS2 − SαSβ , (14)

with Πα
β
≜ δα

β
+ p̂α p̂β the projector on the hypersurface orthogonal to the timelike unit vector

p̂α ≜ pαp
−pαpα

and S2 = 1
2SαβSαβ = SαSα. Moreover, one has the identities

Fµ = κ
2µ

p̂αΘβγ p̂δ∇µRαβγδ +O(S3) , (15a)

Lµν = 2κ
µ

Rναβγv
[µΘα]β vγ − (µ↔ ν) , (15b)

Lµνvν =
κ

µ

�

p̂µ p̂νRναβγ + Rµ
αβγ

�

Θαβ p̂γ +O(S4) =
κ

µ
ΠµνRναβγΘ

αβ p̂γ +O(S4) . (15c)

Conservation of the spin, mass; relation between four-velocity and impulsion. We define
the invariant and kinematic masses, respectively given by

µ2 ≜ −pαpα , m≜ −vαpα . (16)

Differentiating the SSC (10) yields

µ2vµ −mpµ =
1
2

SµνRνλρσvλSρσ −Lµνpν − SµνFν . (17)

Contracting this equation with vµ provides us with

µ2 = m2 +O(S3) . (18)

The expression of the 4-impulsion in terms of the 4-velocity reads as

pµ = µvµ −
1

2µ
SµνRνλρσvλSρσ +Lµνvν +O(S3) . (19)

In the quadrupole approximation, µ is no longer conserved at O(S2), since

dµ
dτ
= −vµFµ +O(S3) . (20)
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However, notice that, provided we assume1

D
dτ

Jαβγδ =O(S3) , (21)

one can still define a mass-like quantity, given by

µ̃≜ µ−
1
6

JαβγδRαβγδ , (22)

which is quasi-conserved, namely

dµ̃
dτ
=O(S3) . (23)

Moreover, one can perturbatively invert (19) to obtain an expression of the four-velocity in
terms of the impulsion and the spin:

vµ = p̂µ + (Dµν −
1
µ
Lµν)p̂ν +O(S3) , (24)

with

p̂α ≜
pα

µ
=

pα

µ̃
+O(S2) , Dµν ≜

1
2µ2

SµλRλνρσSρσ . (25)

Eq. (24) will play a central role when we will work out the conservation equations in the
following sections.

The spin magnitude S2 is exactly conserved [27]

d
dτ
(S2) = 0 . (26)

2.2 Searching for conserved quantities: Rüdiger’s procedure

In two papers published in the early 80s, Rüdiger described a scheme for constructing quan-
tities conserved along the motion driven by the MPD equations [10, 11]. The basic guideline
followed in his scheme was to enforce directly the conservation equation on a generic Ansatz
for the conserved quantity, and to subsequently solve the constraints obtained. This procedure
was extensively reviewed and discussed in [25]. We provide here a short summary of its main
steps, which would allow the reader to get familiar with our terminology and notations.

⋄ Step 1: postulate an Ansatz for the conserved quantity. The conserved quantity
should be a function of the dynamical variables pµ and Sµ. It is therefore a function
Q(xµ, Sµ, pµ). Assuming its analyticity, it can be expanded as

Q(xµ, Sα, pµ) =
∑

s,p≥0
s+p>0

Q[s,p](xµ, Sα, pµ) , (27)

with

Q[s,p](xµ, Sα, pµ)≜Q[s,p]α1...αsµ1...µp
(xµ)Sα1 . . . Sαs pµ1 . . . pµp . (28)

Expressions like this one – that is, tensorial quantities fully contracted with occurrences
of the impulsion and the spin – will often appear in the following computations. It
is useful to enable a distinction between them by introducing a grading allowing the
counting of the number of occurrences of both the spin vector Sµ and the impulsion pµ,
which is provided by the notation [s, p]. More generally, we define:

1This condition is automatically satisfied for the spin-induced quadrupole.
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Definition 1. A fully-contracted expression of the type

Tα1...αsµ1...µp
ℓα1

s . . .ℓαs
s ℓ
µ1
p . . .ℓ

µp
p , (29)

where ℓαs = Sα, sα (the relaxed spin vector sµ will be defined below) and ℓµp = pµ, p̂µ is
said to be of grading [s, p]. Equivalently, s (resp. p) will be referred to as the spin (resp.
momentum) grading of this expression.

Since we have only included the quadrupole term in the equations of motion but ne-
glected all the O

�

S3
�

terms, it is not self-consistent to look at quantities which are con-
served beyond second order in the spin magnitude. We therefore restrict our analysis to
Ansätze that contain terms of of spin grading at most equal to two. Historically, Rüdiger
didn’t consider the full set of possible Ansätze originating from this discussion, but only
the two restricted cases

Q(1) ≜
∑

p=1

Q[s,p] ≜ Xµpµ +WµνS
µν , (30)

Q(2) ≜
∑

p=2

Q[s,p] ≜ Kµνpµpν + LµνρSµνpρ +MµνρσSµνSρσ . (31)

We will refer to them as respectively the linear and the quadratic invariants in pµ. They
are homogeneous in the number of occurrences of pµ and Sµν they contain. As long
as we consider the MPD equations at linear order in the spin magnitude or at quadratic
order with the quadrupole coupling of the test body being the one of a black hole (κ= 1),
it turns out that considering only these two types of ansatzes will be enough to derive a
complete set of conserved quantities. However, a more general ansatz will be necessary
to consider arbitrary quadrupole couplings (κ ̸= 1), as discussed in Section 7.

⋄ Step 2: write down the conservation equation. We only require our quantity to be
conserved up to second order in the spin magnitude,

Q̇ ≜ vλ∇λQ
!
=O
�

S3
�

. (32)

⋄ Step 3: expand the conservation equation using the equations of motion. The next
step is to plug the explicit form of the Ansatz chosen in the conservation equation, and
to use the MPD equations (9) to replace the covariant derivatives of the impulsion and
of the spin tensor. The occurrences of the four-velocity are replaced by the means of Eq.
(24).

⋄ Step 4: express the conservation equation in terms of independent variables. The
presence of a SSC make the variables pµ, Sαβ not independent among themselves. We
turn to an independent set of variables in two steps: (i) we use the relation Sαβ=2S[α p̂β]∗

to replace all the spin tensors Sµν by the spin vectors Sµ and (ii) we replace the occur-
rences of the spin vector by the relaxed spin vector sα defined through

Sα = Παβ sβ . (33)

It allows to relax the residual constraint Sµpµ = 0 by considering a spin vector possessing
a non-vanishing component along the direction of the impulsion. Physical quantities will
be independent of this component. It is introduced in order to decouple the conservation
equation. For convenience, we scale the unphysical component of the relaxed spin vector
such that sαsα ∼ SαSα = S2. Notice that we have the useful identity

S[αpβ] = s[αpβ] ⇒ Sαβ = 2s[α p̂β]∗ . (34)
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⋄ Step 5: infer the independent constraints. The conservation equation takes now the
form of a sum of fully-contracted expressions of the type (29), involving only the inde-
pendent dynamical variables pµ and sα:

Q̇ =
∑

s,p≥0
s+p>0

T [s,p]α1...αsµ1...µp
sα1 . . . sαs pµ1 . . . pµp

!
=O
�

S3
�

. (35)

The conservation equation is then equivalent to the requirement that all the terms of
different gradings [s, p] vanish independently:

T [s,p]α1...αsµ1...µp
sα1 . . . sαs pµ1 . . . pµp

!
=O
�

S3
�

. (36)

sα and pµ being arbitrary, this is equivalent to the constraint equations

T [s,p](α1...αs)(µ1...µp)
!
=O
�

S3
�

. (37)

⋄ Step 6: find a solution and prove uniqueness. This final step is non-systematic. For
the simplest cases (linear invariant with black hole quadrupole coupling, quadratic in-
variant at first order in the spin magnitude), it will be sufficient to work only with the
tensorial constraints (37). However, for more involved cases (linear invariant with arbi-
trary quadrupole coupling, quadratic invariant at second order in the spin), the tensorial
relations will become so cumbersome that turning to another formulation of the prob-
lem will appear to be fruitful. This will be the purpose of the covariant building blocks
for Kerr introduced in Section 4.

3 Constraint equations: Tensorial formulation

In this section, we will apply the aforementioned procedure to derive the tensorial constraint
equations that should be obeyed for ensuring the conservation of the two quantities (30), (31).

3.1 Linear constraint

Following Rüdiger, we start from the Ansatz (30) for the linear invariant:

Q(1) ≜ Xµpµ +WµνS
µν . (38)

Notice that Wµν should be a skew-symmetric tensor. The time variation of (30) is given by

Q̇(1) = vλ
�

∇λXµpµ + Xµ∇λpµ +∇λWµνS
µν +Wµν∇λSµν

�

. (39)

Applying Rüdiger’s procedure, the conservation equation Q̇(1) =O
�

S3
�

reduces to the follow-
ing set of equations:

[0,2] : ∇µXν p̂µ p̂ν =O
�

S3
�

, (40a)

[1,2] : ∇µYανs
α p̂µ p̂ν −

1
2

XλR∗λνβρsβ p̂ν p̂ρ =O
�

S3
�

, (40b)

[2,2] :
κ

2µ
Xλ∇λRναβρsαsβ p̂ν p̂ρ + YµνL∗µν =O

�

S3
�

, (40c)

[2,4] :
�

∇λXµ − 2Wλµ
��

µDλν −L
λ
ν

�

p̂µ p̂ν =O
�

S3
�

. (40d)

Here, we have introduced the notation Yµν ≜W ∗µν. We therefore have the following proposi-
tion:

9
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Proposition 1. For any pair (Xµ, Wµν) satisfying the constraint equations (40) and assuming
the MPD equations (9) are obeyed, the quantity Q(1) (39) will be conserved up to second order in
the spin parameter, i.e. Q̇(1) =O

�

S3
�

.

Two independent classes of solutions to these constraint equations can be constructed:

⋄ For Xµ ̸= 0, the [0,2] equation (40a) requires that Xµ should be a Killing vector field,

∇(µXν) = 0 . (41)

In this case, making use of the Kostant formula

∇α∇βXµ = RµναβX ν , (42)

which holds for any Killing vector Xµ, the [1, 2] constraint (40b) reduces to

∇µ
�

Wαβ − 2∇αXβ
�

p̂µSαβ =O
�

S3
�

. (43)

It is clear that this constraint as well as the [2,4] constraint (40d) are solved by

Wαβ =
1
2
∇αXβ . (44)

A little more work is necessary to show that the remaining constraint Eq. (40c) also
holds for this value of Yαβ . At the end of the day, we have recovered the well-known
conservation of the quantity

Q(1) = Xµpµ +
1
2
∇µXνS

µν . (45)

The conservation can be shown to be exact and to hold at any order of the multipolar
expansion [7].

⋄ A second, independent solution may be obtained by considering Xµ = 0. In this case,
the constraint equations (40) reduce to

[1, 2] : ∇µYανs
α p̂µ p̂ν =O
�

S3
�

, (46a)

[2, 2] : YµνL∗µν =O
�

S3
�

, (46b)

[2, 4] : Wλµ
�

µDλν −L
λ
ν

�

p̂µ p̂ν =O
�

S3
�

. (46c)

Eq. (46a) enforces Yµν to be a Killing-Yano tensor, up to second order corrections in the
spin parameter:

∇(µYν)α =O
�

S2
�

. (47)

We consequently recover Rüdiger’s linear invariant [10],

QY = Y ∗αβSαβ , (48)

which is well-known to be conserved at linear order in the spin magnitude. The conser-
vation at second order assuming induced quadrupoles will be discussed in Section 5.1.
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3.2 Quadratic constraint

It is useful to decompose the quadratic quantity (31) as

Q(2) =Qlin +Qquad , (49)

where

Qlin ≜ Kµνpµpν + LµνρSµνpρ , Qquad ≜ MαβγδSαβSγδ . (50)

Here, the tensors satisfy the following identities

Kµν = K(µν) , Lµνρ = L[µν]ρ , Mαβγδ = M[αβ]γδ = Mαβ[γδ] = Mγδαβ . (51)

The linear-in-spin quantity Qlin has been extensively studied in [25]. At linear order in the
spin magnitude, the variation of Q(2) and the variation of Qlin coincide. It was shown to be
given by

Q̇lin = Q̇(2) = µ3Uµνρ p̂µ p̂ν p̂ρ + 2µ2⋆Vαµνρsα p̂µ p̂ν p̂ρ +O(S2) . (52)

The explicit expressions of the tensors Uµνρ and Vαµνρσ can be found in [25]. The conservation
conditions at zeroth and first order U(µνρ) = 0, ⋆Vα(µνρ) = 0 are unchanged by the presence
of quadrupolar terms in the MPD equations (9). In [25], we showed that, at first order in the
spin parameter, the only non-trivial stationary and axisymmetric solution to these equations
above a Kerr background was Rüdiger’s quadratic quasi-invariant, that will be referred to as
QR. This solution corresponds to

Kµν = YµλY λν , Lαβγ =
2
3
∇[αKβ]γ +

4
3
ϵαβγδ∇δZ , (53)

where Yαβ is Kerr’s Killing-Yano tensor and where we have defined the scalar Z ≜ 1
4 Y ∗
αβ

Y αβ .

We can compactly write LµνρSµνpρ =
�

ϵµνρσξλY λσ + ⋆Yµνξρ
�

Sµνpρ = 4ξλϵλµσ[ρYν]
σSµνpρ.

From this point, we will assume that the zeroth and first orders in the spin magnitude are
solved by Rüdiger’s solution (53), that is, we will always set Qlin =QR. This completely cancels
the O(S0) and O(S1) terms in the constraint equations. The presence of quadrupole terms in
the MPD equations (9) will only appear at quadratic order in S. Hence, we are left with only
one constraint, which is of grading [2,3]. The derivation of this quadratic constraint is too
long to be provided in the main text and can be found instead in Appendix A. We have now
demonstrated the following proposition:

Proposition 2. Any tensor Nαβγδ possessing the same algebraic symmetries as the Riemann tensor
and satisfying the constraint equation
�

4∇µNανβρ + 2κ∇[αM
(1)
|µ|ν]βρ + κ
�

gαµYλν − gµνYλα
�

ξκ
∗Rλκβρ

+
�

2κYαµξλ + (2−κ)
�

Yλµξα + Yαλξµ
�

+ 3κgαµ∇λZ
� ∗Rλνβρ − 3κgµν∇λZ ∗Rλαβρ

+ (3κ− 2)∇µZR∗ναβρ

�

sαsβ p̂µ p̂ν p̂ρ
!
=O(S3) , (54)

where2

M(1)
αβγδ
≜ KαλRλβγδ , (55)

gives rise to a quantity

Q(2) =QR +MαβγδSαβSγδ , Mαβγδ ≜ ∗N ∗αβγδ , (56)

which is conserved up to second order in the spin parameter for the MPD equations with spin-
induced quadrupole (9), i.e. Q̇(2) =O

�

S3
�

.

2This notation M(1)
αβγδ

will become clearer later on.
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Our next goal with be to find a way to disentangle the κ = 1 and the κ ̸= 1 problems.
Without loss of generality, we set

Nαβγδ =≜ NBH
αβγδ + (κ− 1)NNS

αβγδ . (57)

Because κ is a priori arbitrary, the constraint (54) turns out to be equivalent to the two inde-
pendent equations
�

4∇µNBH
ανβρ + 2∇[αM

(1)
|µ|ν]βρ +
�

gαµYλν − gµνYλα
�

ξκ
∗Rλκβρ +
�

2Yαµξλ +
�

Yλµξα + Yαλξµ
�

+ 3gαµ∇λZ
� ∗Rλνβρ − 3gµν∇λZ ∗Rλαβρ +∇µZR∗ναβρ

�

sαsβ p̂µ p̂ν p̂ρ =O(S3) , (58)

and
�

4∇µNNS
ανβρ + 2∇[αM

(1)
|µ|ν]βρ +
�

gαµYλν − gµνYλα
�

ξκ
∗Rλκβρ +
�

2Yαµξλ −
�

Yλµξα + Yαλξµ
�

+ 3gαµ∇λZ
� ∗Rλνβρ − 3gµν∇λZ ∗Rλαβρ + 3∇µZR∗ναβρ

�

sαsβ p̂µ p̂ν p̂ρ =O(S3) . (59)

In the continuation, we will refer to these two problems are respectively the “black hole prob-
lem” (κ = 1) and the “neutron star problem” (κ ̸= 1). Their resolutions are independent and
will be addressed separately. Notice that the overall quasi-conserved quantity is given by

Q(2) =QR + QBH + (κ− 1)QNS . (60)

The contributions QBH and QNS can be directly computed from the corresponding Nαβγδ tensor
through Eq. (56).

4 Kerr covariant formalism: Generalities

In this Section, we will show that the very structure of Kerr spacetime allows us to reduce the
differential constraint equations (40)-(58)-(59) to purely algebraic relations. It is then possible
to find a unique non-trivial solution to the black hole constraint (58), as will be demonstrated
in Section 6. It also enables to provide an algebraic way for solving the κ ̸= 1 linear and
quadratic problems (i.e. Eq. (40) and (59), respectively), as will be discussed in Section 7.

4.1 Covariant building blocks for Kerr

In Kerr spacetime, the constraint equations (40)-(58)-(59) can be fully expressed in terms of
the basic tensors that live on the manifold (that is the metric gµν, the Levi-Civita tensor ϵµνρσ
and the Kronecker symbol δµν) and of three additional tensorial structures: the timelike Killing
vector field ξµ, the complex scalar

R≜ r + ia cosθ , (61)

and the 2-form

Nαβ ≜ −iGαβµνl
µnν . (62)

We use the convention ϵt rθφ = −1 as in [25]. Here, lµ and nν are the two principal null
directions of Kerr:

lµ ≜
1
∆

�

r2 + a2, ∆, 0, a
�

, nµ ≜
1

2Σ

�

r2 + a2, −∆, 0, a
�

, (63)
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and G γδ

αβ
is (four times) the projector

G γδ

αβ
≜ 2δ[γα δ

δ]
β
− iϵ γδ

αβ
. (64)

Notice that we have the property

Nαβ =
2
ξ2
(∇[αRξβ]∗ + i∇[αRξβ]) . (65)

The Killing-Yano and Riemann tensors can be written algebraically in terms of these objects:

Yαβ = −
1
2
RNαβ + c.c. , Rαβγδ = M Re

�

3NαβNγδ − Gαβγδ
R3

�

. (66)

Moreover, they obey the following closed differential relations,

i∇αR= Nαβξ
β , i∇γ
�

RNαβ
�

= Gαβγδξ
δ , i∇αξβ = −

M
2

�

Nαβ
R2
−

N̄αβ
R̄2

�

. (67)

All the derivatives appearing in the constraints can consequently be expressed in terms of
purely algebraic relations between the covariant building blocks.

4.2 Some identities

Let us first derive some useful identities. Many of them can be found in [28,29]. We have the
algebraic identities

NαβNβ
γ
= −gαγ , Nαβ N̄αβ = 0 . (68)

Notice that this first relation yields

NαβNαβ = 4 . (69)

Both Nαβ and G γδ

αβ
are self-dual tensors:

N ∗αβ = iNαβ , ∗G γδ

αβ
= G∗ γδ

αβ
= iG γδ

αβ
. (70)

This leads to the relations

∗Rαβγδ = R∗αβγδ = −M Im

�

3NαβNγδ − Gαβγδ
R3

�

, N̄ ∗αβ = −iN̄αβ . (71)

Given the identities just derived, the only non-trivial contraction of the 2-form that can be
written is

hµν ≜ N α
µ N̄να . (72)

It is a real, symmetric and traceless tensor:

hµν = h(µν) = h̄µν , hµµ = 0 . (73)

Using the previous identities, one shows that

Z = −1
2

Im
�

R2
�

. (74)
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This yields

∇αZ = −Re
�

RξλNλα
�

. (75)

The Killing tensor can be written as

Kµν = −
1
2

�

Re
�

R2
�

gµν +
�

�R2
�

�hµν
�

. (76)

Its trace is simply

K = −2Re
�

R2
�

. (77)

Other useful identities include

NλκGλκβρ = 4Nβρ , NλκḠλκβρ = N̄λκGλκβρ = 0 ,

N̄λκḠλκβρ = 4N̄βρ , hαλNλβ = N̄αβ . (78)

4.3 Basis of contractions

Our goal is now to rewrite Eqs. (40)-(58)-(59) as scalar (that is, fully-contracted) equations
involving only contractions between the Kerr covariant building blocks and the dynamical
variables sα and p̂α. We define

S2 ≜ sαsα , P2 ≜ −p̂α p̂α , A≜ sα p̂α . (79)

We will naturally set P2 = 1 at the end of the computation, but we find useful to keep this
quantity explicit in the intermediate algebra. Notice that once the Tulczyjew-Dixon spin sup-
plementary condition has been enforced, the quantity A will only depend upon the arbitrary
part of the relaxed spin vector sα, which is colinear to the linear momentum p̂µ. Since this
contribution to the spin vector is unphysical, the quantity A is expected to disappear from
any physical expression evaluated under TD SSC, but can nevertheless appear in intermediate
computations.

We further define the following quantities at least linear in either p̂µ or sµ,

A≜ Nλµξ
λ p̂µ , B ≜ Nαµs

α p̂µ , C ≜ Nλαξ
λsα , D ≜ hλαξ

λsα , E ≜ −ξα p̂α , (80a)

Es ≜ −ξαsα , F ≜ hλµξ
λ p̂µ , G ≜ hαµs

α p̂µ , H ≜ hµν p̂µ p̂ν , I ≜ hαβ sαsβ . (80b)

Because of the algebraic identities derived above, these scalars form a spanning set of scalars
built from contractions among the Kerr covariant building blocks. Any higher order contraction
between building blocks will reduce to a product of the ones provided in the above list with
coefficients that may depend upon M , a and R. The quantities A, B, C are complex while the
others are real. Notice that we don’t have to include ξ2 in our basis of building blocks, since
it is a function of R and M ,

ξ2 = −1+ 2M Re
�

R−1
�

. (81)

It can consequently be written in terms of the other quantities.
We further define the following quantity independent from M :

J ≜ ξα(hαβ + gαβ)ξ
β =

2a2 sin2 θ

r2 + a2 cos2 θ
, (82)

where the last expression is evaluated in Boyer-Lindquist coordinates. We can now use J as
a Kerr covariant substitute for a: we will consider in what follows quantities built from (80),
the complex scalar R, the mass M and J .
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Table 1: Spanning set of elements with (s, p)± grading with s+ p = 1 and s+ p = 2.

(s, p)± Spanning set Real dimension of the spanning set
(1,0)+ C 2
(1,0)− D, Es 2
(0,1)+ A 2
(0,1)− E, F 2
(2,0)+ I , S, (1,0)+ × (1, 0)+, (1,0)− × (1, 0)− 8
(2,0)− (1,0)+ × (1, 0)− 4
(1,1)+ G, A, (1, 0)+ × (0, 1)+ , (1,0)− × (0,1)− 10
(1,1)− B, (1, 0)+ × (0,1)−, (1,0)− × (0, 1)+ 10
(0,2)+ H, P , (0,1)+ × (0, 1)+, (0,1)− × (0,1)− 8
(0,2)− (0,1)+ × (0, 1)− 4

4.4 A Z2 grading

We now define a Z2 grading {, } as follows. We note that the determining equations for the
covariant building blocks for Kerr from Eq. (61) to Eq. (78) are invariant under the following
Z2 grading: {gαβ}= {M}= {xµ}= {∇µ}= {R}= {Z}= {Gαβγδ}= {hµν}= {Kµν}= +1 and
{Nαβ}= {ξα}= {Yαβ}= −1.

Further assigning {sµ}= {pµ}= +1, we deduce that

{A}= {C}= {G}= {H}= {I}= +1 , {B}= {D}= {E}= {Es}= {F}= −1 . (83)

Since the constraints (58), (59) have grading +1, the odd quantities will have to be combined
in pairs in order to build a solution to the constraint.

We define the (s, p)± grading of an expression as the s numbers of sα and p number of
p̂α factors in the expression with the sign ± indicating the Z2 grading. The complete list of
the lowest s + p = 1 and s + p = 2 grading spanning elements is given in Table 1. The list of
spanning elements of grading (s, p)± for s + p ≥ 3 is obtained iteratively by direct product of
the lower order basis elements. For example, the independent real terms of grading (2,1)+

are obtained from (2, 0)+× (0, 1)+, (2, 0)−× (0,1)−, (1,1)+× (1,0)+ and (1,1)−× (1,0)− with
duplicated elements suppressed.

Of prime importance for solving the linear and quadratic constraint equations will be the
elements of gradings (2, 2)+ and (2, 3)+. Their respective spanning sets contain 118 and 284
elements, which are explicitly listed in the appended Mathematica notebooks.

4.5 The α-ω basis

We note that the covariant building blocks all depend on R through real and imaginary parts
of expressions containing fractions of R and R̄. We find therefore natural to define the objects
(n, p ∈ Z and K = 1, A, B, C , . . . , J or any combination of these objects):

α
(n,p)
K ≜ Re

�

KR̄n

Rp

�

, ω
(n,p)
K ≜ Im

�

KR̄n

Rp

�

. (84)

They satisfy the following properties:

α
(n,p)
iK = −ω(n,p)

K , ω
(n,p)
iK = α(n,p)

K , α
(n,p)
K̄
= α(−p,−n)

K , ω
(n,p)
K̄
= −ω(−p,−n)

K . (85)

Moreover, one has

|R|2α(n,p)
K = α(n+1,p−1)

K , Re
�

R2
�

α
(n,p)
K =

1
2

�

α
(n,p−2)
K +α(n+2,p)

K

�

,

α
(n,p)
RkK
= α(n,p−k)

K , α
(n,p)
R̄kK
= α(n+k,p)

K . (86)
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The same properties hold with ω instead of α. Finally, α and ω are linear in their subscript
argument with respect to real-valued functions. Let us denote ℓµ = p̂µ or sµ. Then, for any
T ≜ Tµ1...µk

ℓµ1 . . .ℓµk , we define the operator ∇̂ as

∇̂T ≜ p̂λ∇λ
�

Tµ1...µk

�

ℓµ1 . . .ℓµk . (87)

Making use of the identities

∇̂Rn = inRn−1A , ∇̂R̄= −inR̄n−1Ā , (88)

we get the following relations:

∇̂α(n,p)
K = α(n,p)

∇̂K
+ nω(n−1,p)

KĀ
+ pω(n,p+1)

KA , ∇̂ω(n,p)
K =ω(n,p)

∇̂K
− nα(n−1,p)

KĀ
− pα(n,p+1)

KA . (89)

We use dimensions such that G = c = 1. Given the large amount of definitions, we find
useful to summarize the mass dimensions [, ] of all quantities in order to keep track of the
powers of the mass M that can arise. We have the following mass dimensions [∇µ] = −1,
[gµν] = [ξα] = [Nαβ] = [Gαβµν] = 0, [xµ] = [M] = [R] = [Yαβ] = 1 and [Kαβ] = [K] = 2.
We deduce

[X ] = 0 , [α(n,p)
X ] = [ω(n,p)

X ] = n− p , (90)

where X is any function of the set A, B, C , D, E, Es, F, G, H, I defined in Eqs. (80).

5 Kerr covariant formalism: reduction of the constraints

5.1 Linear constraint

In this section, we will reduce the linear constraint equations in the case where Yµν is Kerr
Killing-Yano tensor. Using the explicit form of Lµν as defined in (15b) and expressing the
quantity L∗µνY

µν in terms of covariant building blocks we find after evaluation

L∗µνY
µν = 0 , (91)

and therefore the [2,2] constraint is automatically fulfilled. The [2,4] constraint can be rewrit-
ten

−µYαβ p[αDβ]∗λ p̂λ + Yαβ p[αLβ]∗λ p̂λ =O
�

S3
�

. (92)

A direct computation shows that

µYαβ p[αDβ]∗λ p̂λ = −
3M
2

�

AH +P2G
�

ω
(1,3)
B , (93)

Yαβ p[αLβ]∗λ p̂λ = −
3κM

2

�

AH +P2G
�

ω
(1,3)
B . (94)

Using these identities and defining κ≜ 1+δκ, the [2,4] constraint takes the very simple form

−
3M
2
δκ
�

AH +P2G
�

ω
(1,3)
B =O
�

S3
�

. (95)

It is automatically fulfilled for the test body being a black hole, because δκ = 0 in this case.
However, if the test body is a neutron star, δκ ̸= 0 and the [2,4] constraint is not obeyed
anymore. Therefore, QY is not anymore a constant of the motion at second order in the spin
in the NS case.
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A way to enable the [2,4] constraint to be solvable in the neutron star case is to supplement
the Ansatz for the conserved quantity with a term

Q(1)NS = δκMαβµγδSαβSγδpµ . (96)

The conservation equation will then acquire a correction given by

Q̇(1)NS = δκvλ∇λ
�

MαβµγδSαβSγδpµ
�

(97)

= δκp̂λ∇λMαβµγδSαβSγδpµ +O
�

S3
�

(98)

= 4δκp̂λ∇λNαβµγδsα p̂β sγ p̂δpµ +O
�

S3
�

, (99)

where Nαβµγδ = ⋆M⋆
αβµγδ

. In our scalar notation, it corresponds to supplement the [2,4]
constraint with a term 4δκ∇̂N , with N being of grading [2, 3]. The constraint to be solved
then takes the simple form

∇̂N =
3M
8

�

AH +P2G
�

ω
(1,3)
B . (100)

It is useful to summarize the discussion by the two following statements:

Main result 1. Rüdiger’s linear invariant QY = Y ∗
αβ

Sαβ is still conserved for the MPD equations

at second order in the spin magnitude for spin-induced quadrupoles, i.e. Q̇Y = O
�

S3
�

provided
that δκ= 0, i.e. if the test body possesses the multipole structure of a black hole.

Preliminary result 1. Any tensor Nαβµγδ possessing the algebraic symmetries

Nαβµγδ = Nγδµαβ = N[αβ]µγδ = Nαβµ[γδ] ,

and satisfying the constraint equation

∇̂N =
3M
8

�

AH +P2G
�

ω
(1,3)
B , (101)

will give rise to a quantity

Q(1) =QY +δκMαβµγδSαβSγδpµ , Mαβµγδ =
∗N ∗αβµγδ , (102)

which is conserved up to second order in the spin parameter for the spin-induced quadrupole MPD
equations (9), i.e. Q̇(1) =O

�

S3
�

, regardless to the value taken by δκ.

5.2 Quadratic constraint

5.2.1 Some identities

Before going further on, it is useful to notice that all the covariant building blocks combina-
tions that will appear in our equations will not be linearly independent. Actually, a direct
computation shows that

2|B|2 + 2AG +P2 I −S2H = 0 , (103a)
�

AH +P2G
�

ω
(1,3)
C =
�

AG +P2 I
�

ω
(1,3)
A −
�

AF +P2D
�

ω
(1,3)
B

+
�

A2 +P2S2
�

ω
(1,3)
Ā
+
�

AE +P2Es

�

ω
(1,3)
B̄

, (103b)

ω
(1,3)
ĀB2 = −|B|

2ω
(1,3)
A −
�

AF − EG + EsH +P2D
�

ω
(1,3)
B . (103c)
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Moreover, let us mention that the identities

ω
(0,k)
K α

(n,p)
L =

1
2

�

ω
(n,p+k)
K L −ω(n−k,p)

K̄ L

�

, (104)

Re
�

R2
�

Im
�

K
R4

�

=
1
2

�

ω
(0,2)
K +ω(2,4)

K

�

,

|R|2 Im
�

K
R4

�

=ω(1,3)
K , (105)

will be useful in the following computations.

5.2.2 Reducing the M(1) contribution

Our goal is here to compute the contribution

DM≜ 2∇[α|M
(1)
µ|ν]βρsαsβ p̂µ p̂ν p̂ρ , (106)

in some details, as a proof of principle of the computations to follow, which will not be devel-
oped in full details. Noticing the identity

∇µKαβ = 2ϵλρµ(αY λ
β)ξ

ρ , (107)

we get

∇µM
(1)
ανβρ

= Kαλ∇µRλνβρ +∇νZR∗µαβρ −
�

Yµνξλ + gµν∇λZ + Yλµξν
�

R∗λαβρ

+ (2ξνYλα − 2ξλYνα + gαν∇λZ)R∗λµβρ +
�

2gµνYκα − gανYκµ
�

ξλR∗λκβρ . (108)

Making use of Eq. (108), one can show that

DM=
�

2Kµλ∇[αRλ
ν]βρ +∇νZR∗αµβρ +

�

2ξνYλµ + gµν∇λZ
�

R∗λαβρ (109)

−
�

Yλαξµ + ξαYλµ + gµα∇λZ
�

R∗λνβρ +
�

gµαYκν − gµνYκα
�

ξλR∗λκβρ

�

sαsβ p̂µ p̂ν p̂ρ .

Using the various identities derived above, the relations of Appendix B and performing some
simple algebra, one can express this contribution in terms of linearly independent quantities
as

DM= −
M
4

�

A2 +P2S2
�

�

5ω(0,2)
A + 4ω(1,3)

Ā
+ 3ω(2,4)

A

�

−
M
2

�

AE +P2Es

�

�

ω
(0,2)
B −ω(1,3)

B̄
− 3ω(2,4)

B

�

+
3M
2

�

2AF − EG + EsH + 2P2D
�

ω
(1,3)
B −

9M
4
ω
(0,2)
AB2 −

15M
4
ω
(2,4)
AB2 . (110)

5.2.3 The black hole constraint equation

Making use of the notations introduced above, the constraint equation (58) can be written as

4∇̂NBH +DM+ Υ =O
�

S3
�

, (111)

where

Υ ≜
�

�

gαµYλν − gµνYλα
�

ξκ
∗Rλκβρ +
�

2Yαµξλ +
�

Yλµξα + Yαλξµ
�

+ 3gαµ∇λZ
� ∗Rλνβρ

− 3gµν∇λZ ∗Rλαβρ +∇µZR∗ναβρ

�

sαsβ p̂µ p̂ν p̂ρ . (112)
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Using the scalar basis introduced above and the identities (103) yields

Υ =
M
2

�

A2 +P2S2
�

�

3ω(0,2)
A +ω(1,3)

Ā

�

+
M
2

�

AE +P2Es

�

�

8ω(0,2)
B − 3ω(1,3)

B̄

�

+
3M
2
ω
(0,2)
AB2 +

9M
2
|B|2ω(1,3)

A −
3M
2

�

AF +P2D
�

ω
(1,3)
B . (113)

In summary, Eq. (111) can be written as

∇̂NBH = ΥBH , (114)

with the source term

ΥBH = −
DM+ Υ

4
. (115)

5.3 The neutron star constraint equation

Repeating the very same procedure, the neutron star constraint (59) reduces to the scalar-like
equation

∇̂NNS = ΥNS , (116)

with source

ΥNS =
3M
16

�

A2 +P2S2
�

�

ω
(0,2)
A +ω(2,4)

A + 2ω(1,3)
Ā

�

−
3M
8

�

AE +P2Es

�

�

ω
(0,2)
B +ω(2,4)

B

�

+
15M
16

�

ω
(0,2)
AB2 +ω

(2,4)
AB2

�

+
15M

8
ω
(1,3)
ĀB2 +

3
4

M
�

AF +P2D
�

ω
(1,3)
B . (117)

6 Solution for the quadratic invariant in the black hole case

We will now try to find a quadratic conserved quantity for the δκ = 0 case. This corresponds
to find a solution to the black hole constraint equation (114). In order to reach this goal, we
will postulate an Ansatz for the fully-contracted quantity N appearing in the left-hand side
of Eq. (114) and then use the covariant building blocks formulation to constrain the Ansatz
coefficients.

6.1 The Ansatz

Let us consider the following Ansatz

NBH
αβγδ ≜

4
∑

A=1

ΛAN (A)
αβγδ

, (118)

where ΛA are arbitrary coefficients and where

N (A)
αβγδ
≜ ∗M∗(A)

αβγδ
. (119)

The quantity M(1)
αβγδ

has been defined in Eq. (55), and we introduce

M(2)
αβγδ
≜ Y λαYσγRλβσδ , M(3)

αβγδ
≜ gαγξβξδ , M(4)

αβγδ
≜ gαγgβδξ

2 . (120)
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Using the identities derived in Appendix B, one can show that the directional derivatives
of the N (A) are given by

∇̂N (1) =
M
4

�

A2 +P2S2
�

�

ω
(0,2)
A + 2ω(1,3)

Ā
+ 3ω(2,4)

A

�

−
M
2

�

AE +P2Es

�

�

5ω(0,2)
B − 2ω(1,3)

B̄
+ 3ω(2,4)

B

�

−
9M
2
|B|2ω(1,3)

A

−
3M
2

�

AF − EG + EsH +P2D
�

ω
(1,3)
B +

9M
4
ω
(0,2)
AB2 +

15M
4
ω
(2,4)
AB2 , (121a)

∇̂N (2) = −
M
4

�

A2 +P2S2
�

ω
(0,2)
A +

M
2

�

AE +P2Es

�

ω
(0,2)
B −

3M
4
ω
(0,2)
AB2 , (121b)

∇̂N (3) =
M
2

�

�

S2P2 +A2
�

ω
(0,2)
A +
�

AE +P2Es

�

ω
(0,2)
B

�

, (121c)

∇̂N (4) = M
�

S2P2 +A2
�

ω
(0,2)
A . (121d)

6.2 Solution to the constraint

We will now look for a solution to the black hole constraint equation (114) using the Ansatz
(118), i.e. we are seeking for specific values of the parameters ΛA such that Eq. (111) is
fulfilled. More explicitly, one therefore requires

4
∑

A=1

ΛADN(A) − ΥBH
!
= 0 . (122)

The left-hand side of this equation takes the form of a first order polynomial, homogeneous in
the ten linearly independent elements (as it can be shown through a direct computation)

ω
(0,2)
A , ω

(0,2)
B , ω

(0,2)
AB2 , ω

(1,3)
A , ω

(1,3)
B , ω

(1,3)
Ā

, ω
(1,3)
B̄

, ω
(2,4)
A , ω

(2,4)
B , ω

(2,4)
AB2 .
(123)

Because all the combinations of these elements implied in the constraint equation are linearly
independent, all the coefficients appearing in front of these expressions should vanish inde-
pendently.

All the terms do not appear in all the contributions, as depicted in Table 2. In order to fix
the values of the Ansatz coefficients, let us proceed along the following sequence:

⋄ ω(1,3)
A term: this contribution reads

3M
�

−6Λ1 +
3
2

�

|B|2ω(1,3)
A . (124)

Table 2: Structure of the distribution of the different types of contractions in the
various contribution to the black hole constraint equation.

ω
(0,2)
A ω

(0,2)
B ω

(0,2)
AB2 ω

(1,3)
A ω

(1,3)
B ω

(1,3)
Ā

ω
(1,3)
B̄

ω
(2,4)
A ω

(2,4)
B ω

(2,4)
AB2

DN(1) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DN(2) ✓ ✓ ✓
DN(3) ✓ ✓
DN(4) ✓
ΥBH ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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One therefore requires

Λ1 =
1
4

. (125)

⋄ ω(1,3)
Ā

, ω(1,3)
B̄

, ω(1,3)
B , ω(2,4)

A , ω(2,4)
B and ω(2,4)

AB2 terms: their coefficients consistently van-

ish when (125) is fulfilled.

⋄ ω(0,2)
AB2 term: this contribution reads

3M
�

3Λ1 −Λ2
1
4

�

ω
(0,2)
AB2 . (126)

Using (125), this yields

Λ2 =
1
2

. (127)

⋄ ω(1,3)
Ā

, ω(1,3)
B̄

and ω(1,3)
B terms: their coefficients consistently vanish when Eqs. (125)

and (127) are fulfilled.

⋄ ω(0,2)
B term: this contribution reads

M
�

AE +P2Es

�

�

−10Λ1 + 2Λ2 + 2Λ3 +
7
2

�

ω
(0,2)
B . (128)

Using (125) and (127), this yields

Λ3 = −1 . (129)

⋄ ω(0,2)
A term: this contribution reads

M
�

A2 +P2S2
�

�

Λ1 −Λ2 + 2Λ3 + 4Λ4 +
1
4

�

ω
(0,2)
A . (130)

Using Eqs. (125), (127) and (129), this finally yields

Λ4 =
1
2

. (131)

In conclusion, the Ansatz (118) gives a coherent solution to the constraint equation (114) only
if

Λ1 =
1
4

, Λ2 =
1
2

, Λ3 = −1 , Λ4 =
1
2

. (132)

More explicitly, it corresponds to set

Mαβγδ = −gαγ

�

ξβξδ −
1
2

gβδξ
2
�

+
1
2

Y λ
α

�

Y κ
γ Rλβκδ +

1
2

Y κ
λ Rκβγδ

�

. (133)
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6.3 Uniqueness of the solution

We now address the uniqueness to the non-trivial solution (133) to the constraint (114) de-
rived above. If one adds an additional piece to our Ansatz, it will satisfy an homogeneous
equation since all source terms have been cancelled by the Ansatz. Demonstrating uniqueness
of the non-trivial solution (133) therefore amounts to prove that

∇(µNν|(αβ)|ρ) = 0 , (134)

does not admit any non-trivial solution in Kerr spacetime. We call such a tensor field a Young
tableau (2,2) Killing tensor. A trivial Killing tensor is defined as a Killing tensor which is
given by a cross-product. Such a trivial Killing tensor would add to the quadratic conserved
quantity a product of conserved quantities that are already defined. There is only trivial Killing
tensor of symmetry type (2, 2) namely Nµναβ = YµνYαβ which correspond to add the product
(QY )2 defined in (48) to the quadratic conserved quantity. We checked explicitly by solving
the partial differential equations analytically using a Mathematica notebook that no non-trivial
such tensor exists in a perturbative series expansion in a around a = 0 assuming that it only
depends upon r and θ .

6.4 Summary of the results

Let us summarize the results we have obtained about the quadratic invariants. Our discussion
can be compactified in the two following propositions:

Main result 2. The quadratic invariant

Q(2)BH =QR +
�

−gαγ

�

ξβξδ −
1
2

gβδξ
2
�

+
1
2

Y λ
α

�

Y κ
γ Rλβκδ +

1
2

Y κ
λ Rκβγδ

��

SαβSγδ , (135)

is conserved for the MPD equations at second order in the spin magnitude for spin-induced
quadrupole, i.e. Q̇(2)BH = O

�

S3
�

provided that δκ = 0, i.e. if the test body possesses the mul-
tipole structure of a black hole. Here, QR = Kµνpµpν + LµνρSµνpρ with Lµνρ given in Eq. (53)
is Rüdiger’s quadratic invariant [11,25].

Preliminary result 2. Any tensor Nαβγδ possessing the same algebraic symmetries than the Rie-
mann tensor and satisfying the constraint equation

∇̂N = ΥNS , (136)

where the source term ΥNS is given in Eq. (117) will give rise to a quantity

Q(2) =Q(2)BH +δκMαβγδSαβSγδ , Mαβγδ =
∗N ∗αβγδ , (137)

which is conserved up to second order in the spin parameter for the spin-induced quadrupole MPD
equations (9), i.e. Q̇(2) =O

�

S3
�

, regardless to the value taken by δκ.

We notice that ΥNS

�

�

a=0 = 0 in the Schwarzschild case by explicit evaluation of (117). A
direct consequence is that the deformation of Rüdiger’s quadratic invariant constructed in the
black hole case is still quasi-conserved for arbitrary κ:

Main result 3. In Schwarschild spacetime (a = 0), the deformation of Rüdiger’s quadratic in-
variant Q(2)BH given in Eq. (135) is still conserved for the MPD equations up to O(S3) corrections
for arbitrary (κ ∈ R) spin-induced quadrupole.

Notice that the conservation does not hold for Rüdiger’s linear invariant QY . The Kerr case
a ̸= 0 will be further discussed in Section 7.
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Table 3: Source terms for the various constraint equations ∇̂N = Υ studied in the
paper.

PROBLEM SOURCE TERM Υ EQUATION Υ
�

�

a=0 SOURCE GRADING

NS linear invariant Υlin (101) ̸= 0 [2,4]+

BH quadratic invariant ΥBH (116) ̸= 0 [2,3]+

NS quadratic invariant ΥNS (117) 0 [2,3]+

7 Neutron star case around Kerr: A no-go result

We summarize in Table 3 the three constraint equations discussed previously. They all take
the form

∇̂N = Υ , (138)

with Υ being of grading [s, p]+. It implies that N should be of grading [s, p− 1]+.
Let {Ka} be a basis of linearly independent and dimensionless functions build from the

(manifestly real) functions A,P2,S2, Re A, Im A, . . . , Re C , Im C , D, . . . , I . Given that N is di-
mensionless and given the structure of the source terms Υ , we propose the following Ansatz,

N =
∑

a

∑

(k,l)∈Z2

KaM l
�

C (k,l)
a f (k,l)

a (J)α(k,k+l)
1 + D(k,l)

a g(k,l)
a (J)ω(k,k+l)

1

�

. (139)

Here, Ck,l
a and Dk,l

a are numerical coefficients and f k,l
a (J) and gk,l

a (J) are smooth functions of
J .

We can work with dimensionless quantities by first introducing the dimensionless variables

r̃ =
r
M

, ã =
a
M

. (140)

We notice that the Ka’s are left unchanged and do not depend anymore on M , whereasR≜MR̃,
with R̃≜ r̃ + iã. This yields

α
(n,p)
1 = M n−p Re

� ¯̃R
R̃

�

≜ M n−pα̃(n,p) , ω
(n,p)
1 = M n−p Im

� ¯̃R
R̃

�

≜ M n−pω̃(n,p) . (141)

Each derivative of the term present in the Ansatz scales as M−1 times a manifestly dimension-
less quantity. All the source terms appearing earlier can be written as Υ = M−1Υ̃ , with Υ̃ being
an dimensionless quantity. This implies that Eq. (139) reduces to

N =
∑

a

∑

(k,l)∈Z2

Ka

�

Ck,l
a f k,l

a (J)α̃
(k,k+l) + Dk,l

a gk,l
a (J)ω̃

(k,k+l)
�

, (142)

which contain only terms that are explicitly independent of M . We can further define ∇̃=M∇̂
the dimensionless derivative operator and the constraints take the dimensionless form ∇̃N= Υ̃ .

7.1 Perturbative expansion in a of the constraint equations

Instead of addressing the non-linear problem in a we will perform a perturbative series in a.
For any smooth function f of a, we define

( f )n ≜
dn f
dan

�

�

�

�

a=0

. (143)
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The constraint equation then becomes an infinite hierarchy of equations
�

∇̃N
�

n = Υ̃n , ∀n≥ 0 . (144)

Let us describe the n = 0 and n = 1 equations. Since J ∝ a2, the functions f k,l
a (J) and

gk,l
a (J) do not contribute and can be set to one without loss of generality.

n = 0 equation. Noticing the identities

ω̃(k,k+l)

�

�

�

�

a=0

= α̃(k,k+l+1)
A

�

�

�

�

a=0

= α̃(k−1,k+l)
Ā

�

�

�

�

a=0

= 0 , (145)

α̃(k,k+l)

�

�

�

�

a=0

= r̃−l , ω̃
(k,k+l+1)
A

�

�

�

�

a=0

= −pr r̃−(l+1) , ω̃
(k−1,k+l)
Ā

�

�

�

�

a=0

= pr r̃−(l+1) , (146)

and making use of Eq. (89), the n= 0 constraint becomes
∑

a

∑

(k,l)∈Z2

C (k,l)
a

��

∇̃Ka

�

0 r̃−l − l(Ka)0pr r̃−(l+1)
�

=
�

Υ̃
�

0 . (147)

It does not depend on the terms involving ω’s contributions. Moreover, denoting

C (l)a ≜
∑

k∈Z
C (k,l)
a , (148)

this equation can be further simplified to
∑

a

∑

l∈Z
C (l)a

��

∇̃Ka

�

0 − l(Ka)0pr r̃−1
�

r̃−l =
�

Υ̃
�

0 . (149)

n = 1 equation. Following an identical procedure and denoting

D(l)a ≜
∑

k∈Z
(2k+ l)D(k,l)

a , (150)

the n= 1 constraint equation can be shown to take the form

∑

a

∑

l∈Z

§

C (l)a

��

∇̃Ka

�

1 − (Ka)1l pr r̃−1
�

r̃−l

− D(l)a

��

∇̃Ka

�

0 x + (Ka)0
�

pθ − (l + 1)pr x r̃−1
��

r̃−(l+1)
ª

= (Υ̃ )1 . (151)

Numerical evaluation. Eqs. (149) and (151) have been numerically evaluated using Math-
ematica in order to try to fix the values of the coefficients C (l)a and D(l)a that would enable a
possible solution to the neutron star cases. We have only looked for “polynomial” solutions to
these equations, i.e. solutions for which the coefficients of the ansatz are non-vanishing only
over a finite interval [lmin, lmax]. Given the size of the expressions involved, the only compu-
tationally reasonable solving method available to us was the following: let us denote N the
number of terms present in the left-hand side of (149) (resp. (151)) for a given [lmin, lmax]. Eq.
(149) (resp. (151)) was then evaluated N +1 times at different random values of its variables
and parameters, resulting into a linear system of N +1 algebraic equations in N variables (the
coefficients C (l)a and D(l)a ) that was then solved using the built-in numerical equation solver of
Mathematica.
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This procedure has been proof-tested by reproducing the coefficients corresponding to
the black hole quadratic invariant from the source term ΥBH. It has then been used to at-
tempt to find a solution to both the linear and the quadratic neutron star problems, with
[lmin, lmax] = [−10,100]. No solution has been found, discarding a priori the existence of
polynomial-type solutions.

In the Mathematica notebooks appended as supplementary material, the interval of l is
reduced to [lmin, lmax] = [0, 5] in order to reduce the computational time for the interested
reader. The four notebooks related to this section are:

⋄ Quadratic_BH_LO_final.nb: check of the numerical evaluation of the n = 0 equa-
tion: reproduction of the black hole quadratic invariant from ΥBH;

⋄ Linear_NS_LO_final.nb: attempt of finding a polynomial solution to the n= 0 equa-
tion for the neutron star linear problem (source term Υlin);

⋄ Quadratic_BH_NLO_final.nb: check of the numerical evaluation of the n= 1 equa-
tion: reproduction of the black hole quadratic invariant from ΥBH;

⋄ Quadratic_NS_NLO_final.nb: attempt of finding a polynomial solution to the n= 1
equation for the neutron star quadratic problem (source term ΥNS).

8 Discussion and Outlook

The main results obtained in this paper are as follows. At second order in the spin magnitude
and for spin-induced quadrupole with black hole-type coupling (κ= 1): (i) the linear Rüdiger
invariant QY is still quasi-conserved and (ii) a deformation of Rüdiger’s quadratic invariant
Q(2)BH exists such that the deformed Rüdiger’s quadratic invariant is also quasi-conserved. Fi-
nally, (iii) the quasi-conservation of the deformed quadratic invariant can only be extended to
arbitrary coupling (κ ̸= 1) around the Schwarszchild spacetime (a = 0).

All our attempts to find solutions to the constraint equations in the case of an arbitrary
spin-induced coupling in generic Kerr spacetime have failed. Let us notice that, even if some-
one would succeed in solving them, the quasi-invariants so obtained would not be of direct
astrophysical interest. This arises from the fact that, except in the special case where the test
body is itself a black hole, the spin-induced term is not the only contribution to the quadrupole.
Tidal-type contributions will also arise which will break the quasi-conservation obtained for
spin-induced quadrupoles only.

Various extensions of this work would be interesting to explore. Firstly, one could inves-
tigate whether deformations of the quasi-invariants studied in this paper still exist at higher
orders in the multipolar expansion for black-hole-type couplings. At the next cubic order in
the test black hole’s spin, which includes its octupole moment, the appropriate equations of
motion have been argued to be fixed without ambiguity from appropriate symmetries and
after matching to the stationary Kerr solution as at the spin-squared/quadrupolar level, see
e.g. [30]. One could then construct ansätze for deformations of the hidden-symmetry con-
stants, and search for solutions that are conserved assuming such equations of motion at this
order. At even higher orders, the same considerations alone do not fix the equations of motion,
due to the relevance of quadratic-in-curvature couplings at fourth order in spin, but one could
still proceed analogously with parametrized equations, perhaps even obtaining constraints on
the equations of motion from the existence of conservation laws.

Another possible direction would be to understand the link between the existence of these
quasi-conserved quantities and the separability of the associated Hamilton-Jacobi equation at
second order in the spin magnitude, thus pushing the analysis of Witzany [31] to the next order
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in the multipole expansion. This would also enable to compute the corresponding shifts in the
fundamental frequencies of the action-angle variables description of the finite size particle,
which are of direct relevance for modeling EMRIs involving spinning secondaries. It would
also be enlightening to explore the relationship between the new constants for test black holes
in Kerr found in this paper and those for arbitrary-mass-ratio binary black holes at second-
post-Newtonian order (including the spin-induced quadrupole effects) found by Tanay et al. in
Ref. [32], ensuring the integrablity of the system at that order. Finally, if the structure of the 4-
dimensional Kerr covariant building blocks can be generalized to higher dimensions and more
generic spacetimes, it could bring new insights on hidden symmetries of such spacetimes [33].
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A Derivation of the quadratic quantity constraint

The aim of this appendix is to provide a derivation of the reduced expression (54) for the
constraint of grading [2, 3] for the quadratic conserved quantity (31).

Let us denote by 〈 f 〉(n) the terms contained in f that are homogeneous of order O(Sn). We
now take for granted the validity and uniqueness of the solution (53), as well as the vanishing
of the O(S0) and O(S1) terms in Eq. (52). The O(S2) constraint equation takes the form




Q̇
�

(2) =



Q̇R

�

(2) +



Q̇quad
�

(2)
!
= 0 . (A.1)

We will compute these two contributions separately.

A.1 Terms coming from Qquad

Using Eqs. (9b), (18) and (19), the variation of Qquad along the trajectory is given by

Q̇quad =
D
dτ

MαβγδSαβSγδ + 2
DSαβ

dτ
MαβγδSγδ (A.2a)

= vλ
�

∇λMαβγδSαβSγδ + 4MαβγλSαβ pγ
�

+O(S3) (A.2b)

= p̂λ
�

∇λMαβγδSαβSγδ + 4MαβγλSαβ pγ
�

+O(S3) (A.2c)

=∇λMαβγδ p̂λSαβSγδ +O(S3) . (A.2d)

Recalling that Sαβ = 2s[α p̂β]∗, we obtain the following equation in terms of the independent
variables sα and pµ:




Q̇quad
�

(2) = 4∇µ∗M∗
α β

ν ρ
sαsβ p̂µ p̂ν p̂ρ = 4∇µNανβρsαsβ p̂µ p̂ν p̂ρ . (A.3)
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A.2 Terms coming from QR

One can perform the splitting



Q̇R

�

(2) =



Q̇M D
R

�

(2) +



Q̇Q
R

�

(2) . (A.4)

Here, the “monopole-dipole” terms Q̇M D
R are those that where already present in [25]:

Q̇M D
R ≜ µ

2Dλρ∇λKµν p̂µ p̂ν p̂ρ −
µ

2
LµνρSµνRρ

αβγ
p̂αSβγ + 2µ2 LµλρDλν p̂µ p̂νpρ (A.5a)

= 4µ∗W ∗α β

µν ρ
sαsβ p̂µ p̂ν p̂ρ +O(S3) , (A.5b)

where (see Eq. (73) of [25])

∗W ∗αβγδϵ = −
1
2
∗LαβλR∗λγδϵ . (A.6)

The relaxed spin vector sα is defined from Sα ≜ Πα
β

sβ where the part of s aligned with p is left
arbitrary, but is assumed (without loss of generality) to be of the same order of magnitude.

The tensor Lαβγ is defined in Eq. (53). In order to simplify Eq. (A.6), we have on the one
hand

∗ϵαβλρ∇ρZ = −2gλ[α∇β]Z . (A.7)

On the other hand,

∇[αKβ]∗λ = 2Yλ[αξβ] + 3gλ[αY ρ
β
ξρ] = 3Yλ[αξβ] + gλ[α∇β]Z , (A.8)

where ξα = −1
3∇λY ∗λα is the timelike Killing vector associated with the Killing-Yano tensor.

Gathering these pieces together, we obtain the reduced expression

∗W ∗αβγδϵs
αsβ p̂µ p̂ν p̂ρ = −

�

R∗λγδϵYλ[αξβ] +∇[αZR∗
β]γδϵ

�

sαsβ p̂µ p̂ν p̂ρ . (A.9)

The monopole-dipole piece is consequently given by



Q̇M D
R

�

(2) =
�

2
�

Yλµξα − Yλαξµ
�

R∗λνβρ − 2∇µZR∗ναβρ
�

sαsβ p̂µ p̂ν p̂ρ . (A.10)

The “quadrupolar” terms Q̇Q
R are the ones induced by the presence of the quadrupole,

namely

Q̇Q
R ≜ 2µKµν p̂µFν −µLλρ∇λKµν p̂µ p̂ν p̂ρ − 2µLµλρLλν p̂µ p̂ν p̂ρ +µLµνρLµν p̂ρ . (A.11)

Considering only the spin-induced quadrupole (12) and making use of the identities (15a)
to (15c) as well as the explicit form of the tensor Lµνρ (53), we obtain the reduced expression




Q̇Q
R

�

(2) = κ
�

Kµλ∇λRναβρ −∇λKµνR
λ
αβρ −

4
3
∇[αKλ]νR

λ
µβρ −

8
3
ϵαγρλ∇λZRγ

µβν

�

Θαβ p̂µ p̂ν p̂ρ .

(A.12)
Thanks to the orthogonality condition pαSα = 0, we can substitute Θαβ in this expression with
θαβ defined as

θαβ = ΠαβS2 − sαsβ . (A.13)

After a few algebraic manipulations and making use of Bianchi identities, we obtain




Q̇Q
R

�

(2) = κ
�

�

∇ν
�

KµλRλαβρ
�

+∇νKµλRλαβρ − (ν↔ α)
�

+
4
3
∇[αKµ]λRλνβρ−

16
3
∇λZ gµ[ν

∗Rλ
α]βρ+

8
3
∇µZ ∗Rναβρ
�

θαβ p̂µ p̂ν p̂ρ . (A.14)
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It is possible to further reduce this expression. It is useful to first derive some properties of
the dualizations of Riemann tensor in Ricci-flat spacetimes. For any tensor Mabcd with the
symmetries of the Riemann tensor, one has

∗M∗αβ
µν
= −6δαβab

[µνcd]M
cd

ab . (A.15)

In Ricci-flat spacetimes, this yields for the Riemann tensor,

∗R∗αβγδ = −Rαβγδ . (A.16)

Moreover, dualizing this equation one more time gives rise to the identity

R∗αβγδ =
∗Rαβγδ . (A.17)

Using Rαβγδ = Rγδαβ , we also deduce

R∗αβγδ = R∗γδαβ . (A.18)

Notice that we also have the identity

∇λRλαβγ = 0 . (A.19)

Making use of the properties of the Riemann tensor and of the identity ∗Rλαβρ gαβ = 0, we get
the additional relations

Rλαβρθ
αβ p̂ρ = −Rλαβρsαsβ p̂ρ , (A.20a)

∗Rλαβρθ
αβ p̂ρ = −∗Rλαβρsαsβ p̂ρ , (A.20b)

Rλνβρθ
αβ p̂ν p̂ρ = Rλνβρ

�

gαβS2 − sαsβ
�

p̂ν p̂ρ . (A.20c)

This allows to express



Q̇Q
R

�

(2) in terms of the independent variables as




Q̇Q
R

�

(2) = −κ
�

�

∇ν
�

KµλRλαβρ
�

+∇νKµλRλαβρ − (ν↔ α)
�

+
4
3
∇[αKµ]λRλνβρ

+
�

4
3
∇σKµλRλ σν ρ +

2
3
∇µKσλRλ σν ρ

�

gαβ+
16
3
∇λZ gµ[ν

∗Rλ
α]βρ −

8
3
∇µZ ∗Rναβρ
�

sαsβ p̂µ p̂ν p̂ρ .

(A.21)

The quantity into brackets appearing in the second line of this expression is actually vanishing:

�

4
3
∇σKµλRλ σν ρ +

2
3
∇µKσλRλ σν ρ

�

p̂ν p̂ρ =
2
3

�

2∇σKµλ +∇µKσλ
�

Rλ σν ρ p̂ν p̂ρ (A.22a)

=
2
3

�

∇σKµλ +∇λKσµ +∇µKλσ
�

Rλ σν ρ p̂ν p̂ρ = 0 ,

(A.22b)

which follows from the definition of Killing tensors.

A.3 Reduced expression

We can now write down the complete expression Q̇(2) = Q̇M D
R + Q̇Q

R + Q̇
quad. Gathering all the

pieces (A.3), (A.10), (A.21), we get

Q̇(2) =
�

κ∇α
�

KµλRλνβρ
�

+∇ν
�

4Nαµβρ − κKµλRλαβρ
�

−κ∇µKνλRλαβρ +
2κ
3
∇[µKλ]αRλνβρ

+ 2
�

Yλµξα − Yλαξµ
�

R∗λνβρ −
16κ

3
∇λZ gµ[νR

∗λ
α]βρ + 2
�

4κ
3
− 1
�

∇µZR∗ναβρ

�

sαsβ p̂µ p̂ν p̂ρ

+O(S3) . (A.23)
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In order to further simplify this expression we first derive some additional useful identities.
One has

∇µKνλRλαβρ p̂µ p̂ν = Yσµ∇λYσνR
λ
αβρ p̂µ p̂ν . (A.24)

We obtain the relation

∇µKνλRλαβρ p̂µ p̂ν =
�

�

Yλµξα − Yαµξλ
� ∗Rλνβρ − gανYλµξκ

∗Rλκβρ
�

p̂µ p̂ν . (A.25)

In a similar fashion, one can prove that

∇[µKλ]αRλνβρ p̂µ p̂ν =
�

3
2

�

Yαµξλ + Yλαξµ
� ∗Rλνβρ −

3
2

gµνYλαξκ
∗Rλκβρ

+
1
2

gαµ∇λZ ∗Rλνβρ −
1
2

gµν∇λZ ∗Rλαβρ −
1
2
∇µZ∗Rανβρ
�

p̂µ p̂ν .

(A.26)

When the dust settles, we are left with

Q̇(2) =
�

4∇µNανβρ + 2κ∇[αM
(1)
|µ|ν]βρ + κ
�

gαµYλν − gµνYλα
�

ξκ
∗Rλκβρ

+
�

2κYαµξλ + (2− κ)
�

Yλµξα + Yαλξµ
�

+ 3κgαµ∇λZ
� ∗Rλνβρ − 3κgµν∇λZ ∗Rλαβρ

+ (3κ− 2)∇µZR∗ναβρ

�

sαsβ p̂µ p̂ν p̂ρ +O(S3) , (A.27)

where M(1)
αβγδ
≜ KαλRλ

βγδ
. This precisely yields the constraint equation (54).

B Reducing the constraints with the covariant building blocks: In-
termediate algebra

B.1 Some identities

A bit of cumbersome (but straightforward) algebra leads to the following identities written
most shortly in the α-ω formulation,

Yαµs
α p̂µ = −α(0,−1)

B , (B.1a)

∇µZ p̂µ = −α(0,−1)
A , (B.1b)

R∗ναβρsαsβ p̂ν p̂ρ = 3Mω(0,3)
B2 +M
�

A2 +P2S2
�

ω
(0,3)
1 , (B.1c)

∇λZR∗λαβρsαsβ p̂ρ =
3M
2

�

Esω
(0,2)
B − Dω(1,3)

B

�

+M
�

S2α
(0,−1)
A −Aα(0,−1)

C

�

ω
(0,3)
1 , (B.1d)

∇λZR∗λνβρsβ p̂ν p̂ρ =
3M
2

�

Eω(0,2)
B − Fω(1,3)

B

�

+M
�

Aα(0,−1)
A +P2α

(0,−1)
C

�

α
(0,3)
1 , (B.1e)

YαλR∗λνβρsαsβ p̂ν p̂ρ = −MAω(0,2)
B +

M
2

�

Aω(1,3)
B̄
− 3Gω(1,3)

B

�

, (B.1f)

YµλR∗λνβρsβ p̂µ p̂ν p̂ρ = MP2ω
(0,2)
B −

M
2

�

P2ω
(1,3)
B̄
+ 3Hω(1,3)

B

�

, (B.1g)

YµλR∗λαβρsαsβ p̂µ p̂ρ = −MAω(0,2)
B +

M
2

�

Aω(1,3)
B̄
− 3Gω(1,3)

B

�

, (B.1h)

ξλR∗λνβρsβ p̂ν p̂ρ = −3Mω(0,3)
AB +M
�

EsP2 + EA
�

ω
(0,3)
1 , (B.1i)

YλκR
∗λκ
βρsβ p̂ρ = 4Mω(0,2)

B , (B.1j)
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YαλξκR
∗λκ
βρsαsβ p̂ρ =

M
2

�

ESω
(0,2)
B − 3Dω(1,3)

B

�

+M
�

Aω(0,−1)
C −S2ω

(0,−1)
A

�

α
(0,3)
1 , (B.1k)

YνλξκR
∗λκ
βρsβ p̂ν p̂ρ =

M
2

�

Eω(0,2)
B − 3Fω(1,3)

B

�

−M
�

Aω(0,−1)
A +P2ω

(0,−1)
C

�

α
(0,3)
1 , (B.1l)

ξλYακR
∗λ κ

ρβ
sαsβ p̂ρ = M
�

S2ω
(0,2)
A + Esω

(1,3)
B̄
−Aω(1,3)

C̄

�

+
M
2

�

3Iω(1,3)
A +S2ω

(1,3)
Ā

�

, (B.1m)

ξλYβκR
∗λ κ

νρ
sβ p̂ν p̂ρ =

3M
2

�

Aω(0,2)
A + Gω(1,3)

A

�

+M
�

Eα(0,−1)
B +P2α

(0,−1)
C

�

ω
(0,3)
1 . (B.1n)

Let us turn to identities involving covariant derivatives of the Riemann tensor. Making use of
the identities (67) enforces the fundamental relation:

Rανβρ;µ = M∇µRe

�

3(RNαν)(R)Nβρ −R2Gανβρ
R5

�

= −M Im
§

R−4
�

5Nµλξ
λ
�

3NανNβρ − Gανβρ
�

− 3
�

Gανµλξ
λNβρ + NανGβρµλξ

λ
�

+ 2Nµλξ
λGανβρ

�ª

. (B.2)

It leads to the following ‘differential-to-algebraic’ identities:

∇µRανβρsαsβ p̂µ p̂ν p̂ρ = 3M Im
�

R−4
�

5AB2 − 2B
�

AE +P2ES

�

+ A
�

S2P2 +A2
��	

,

(B.3a)

Kαλ∇µRλνβρsαsβ p̂µ p̂ν p̂ρ = −
3M
2

Re
�

R2
�

Im
�

R−4
�

5AB2 − 2B
�

AE+P2ES

�

+A
�

S2P2+A2
��	

−
3M
2
|R|2 Im
�

R−4
�

5A|B|2 + A(P2 I +AG)− B
�

GE − DP2
�

− B̄
�

AE +P2Es

��	

, (B.3b)

Kνλ∇µRλαβρsαsβ p̂µ p̂ν p̂ρ =
3M
2

Re
�

R2
�

Im
�

R−4
�

5AB2 − 2B
�

AE +P2ES

�

+ A
�

S2P2 +A2
��	

+
3M
2
|R|2 Im
�

R−4
�

5A|B|2 + A
�

AG −S2H
�

+ B
�

EsH +AF + ĀB − AB̄
�

− B̄
�

AE +P2Es

��	

, (B.3c)

Kµλ∇αRλνβρsαsβ p̂µ p̂ν p̂ρ =
3M
2
|R|2 Im
�

R−4
�

C
�

P2G +AH
�

− B(EG +AF) + B
�

ĀB − AB̄
��	

. (B.3d)

B.2 Ansatz terms for the quadratic invariant.

We provide here the explicit form of the terms constituting the Ansatz for the black
hole quadratic invariant in terms of the covariant building blocks. We use the notation
N (A) ≜ N (A)

µανβ
sαsβ p̂µ p̂ν (A= 1, . . . , 4).

N (1) = −M |B|2α(1,2)
1 +

M
4

�

3
�

α
(0,1)
B2 +α(2,3)

B2

�

+
�

A2 +P2S2
�

�

α
(0,1)
1 +α(2,3)

1

��

, (B.4a)

N (2) = −
M
4

�

�

A2 +P2S2
�

α
(0,1)
1 +α(0,1)

B2

�

, (B.4b)

N (3) =
1
4

�

−
�

A2 +P2S2
�

+ E
�

ES2 − ESA
�

− ES

�

ESP2 +AE
��

+
M
2

�

A2 +P2S2
�

α
(0,1)
1 ,

(B.4c)

N (4) =
1
2

�

A2 +P2S2
�

�

2Mα(0,1)
1 − 1
�

. (B.4d)
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B.3 Derivatives of the scalar basis.

A direct computation gives the following identities

∇̂S2 = ∇̂P2 = ∇̂A= 0 , (B.5a)

∇̂A= −i
�

E2 +P2ξ2
�

R−1 +
iM
2

�

P2

R2
+

H

R̄2

�

− iA2R−1 , (B.5b)

∇̂B = i
�

AE +P2Es

�

R−1 − iABR−1 , (B.5c)

∇̂C = i
�

Aξ2 − EEs

�

R−1 +
iM
2

�

G

R̄2
−

A
R2

�

− iACR−1 , (B.5d)

∇̂D = 2Eω(0,1)
C̄
− 2ξ2ω

(0,1)
B̄
+Mω(0,2)

B̄
+ 2Dω(0,1)

A , (B.5e)

∇̂E = 0 , (B.5f)

∇̂Es = −Mω(0,2)
B , (B.5g)

∇̂F = 2Eω(0,1)
Ā
+ 2Fω(0,1)

A , (B.5h)

∇̂G = 2Gω(0,1)
A + 2Eω(0,1)

B̄
+ 2P2ω

(0,1)
C̄

, (B.5i)

∇̂H = 2ω(0,1)
A H + 2P2ω

(0,1)
Ā

, (B.5j)

∇̂I = 2S2ω
(0,1)
Ā
+ 4Esω

(0,1)
B̄
− 4Aω(0,1)

C̄
+ 2Iω(0,1)

A . (B.5k)

B.4 Directional derivatives of the Ansatz terms

We aim to compute the contributions ∇̂N (A). Let us proceed step by step. First, we compute
N (A)
αβγδ

for each A= 1, . . . 4. In Ricci-flat spacetimes, using the identity (A.16), we obtain

N (1)
αβγδ

= −
1
2

KRαβγδ +M(1)
[αβ]γδ , (B.6)

where K ≜ Kαα. Moreover, noticing that

∗M(2)
αβγδ

= Yλ[α
∗Rλ
β]σδYσγ = −R∗ λ

σδ[α Yβ]λYσγ , (B.7)

and using the symmetries of the Riemann tensor, we can write

N (2)
ανβρ

= −Yλ[α
∗R∗λ σ

ν][β Yρ]σ . (B.8)

In Ricci-flat spacetimes, this boils down to

N (2)
ανβρ

= Yλ[αRλ σ

ν][β Yρ]σ . (B.9)

The two last computations are more straightforward and give

N (3)
αβγδ

=
1
2

N (4)
αβγδ
− ξ[αgβ][γξδ] , N (4)

αβγδ
= −gα[γgδ]βξ

2 . (B.10)

We shall evaluate the following covariant derivatives:

∇µ
�

KRανβρ
�

sαsβ p̂µ p̂ν p̂ρ =
�

∇µKRανβρ + K∇µRανβρ
�

sαsβ p̂µ p̂ν p̂ρ . (B.11)
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Using (107) the first term of the right-hand side of (B.11) can be written

∇µKRανβρsαsβ p̂µ p̂ν p̂ρ =
§

4
�

ξλYαµ + ξµYλα − ξαYλµ
�

R∗λνβρ

+ 2
�

gαµ(2Yλνξκ − Yλκξν) + gµν(2ξλYκα + ξαYλκ)
�

R∗λκβρ

ª

sαsβ p̂µ p̂ν p̂ρ (B.12a)

= 4
�

�

ξλYαµ + ξµYλα − ξαYλµ
�

R∗λνβρ +
�

Yλκξ[α + 2ξλYκ[α
�

gµ]νR
∗λκ
βρ

�

sαsβ p̂µ p̂ν p̂ρ .

(B.12b)

Gathering the two pieces above yields

∇µN (1)
ανβρ

sαsβ p̂µ p̂ν p̂ρ =
�

Kλ[αRλ
ν]βρ;µ −

1
2

K∇µRανβρ −
1
2
∇µZR∗ανβρ

−
1
2

�

∇λZ gµν + Yλµξν
�

R∗λαβρ +
1
2

�

∇λZ gµα + 3Yλµξα + Yµαξλ

+ 2Yαλξµ
�

R∗λνβρ − 2
�

Yλκξ[α + ξλYκ[α
�

gµ]νR
∗λκ
βρ

�

sαsβ p̂µ p̂ν p̂ρ .

(B.13)

On the other hand,

∇µN (2)
ανβρ

sαsβ p̂µ p̂ν p̂ρ =∇µ
�

Yλ[αRλ σ

ν][β Yρ]σ
�

sαsβ p̂µ p̂ν p̂ρ (B.14a)

=∇µ
�

YλαRλ σ

νβ
Yρσ
�

p̂µs[α p̂ν]s[β p̂ρ] (B.14b)

=
�

2∇µYλαYρσRλ σ

νβ
+ YλαYρσ∇µR

λ σ

νβ

�

p̂µs[α p̂ν]s[β p̂ρ] (B.14c)

=
�

2ϵµλακξ
κYρσRλ σ

νβ
+ YλαYρσ∇µR

λ σ

νβ

�

p̂µs[α p̂ν]s[β p̂ρ] (B.14d)

=
1
2

2ϵµλακξ
κYρσRλ σ

νβ
sα p̂µ p̂νs[β p̂ρ]+Yλ[α|∇µR

λ σ

|ν][β Yρ]σsαsβ p̂µ p̂ν p̂ρ

(B.14e)

=
�

1
2

YαλξµR
∗λ
νβρ −

1
2

YµλξνR
∗λ
αβρ −

1
2

�

gµνYακ + gαµYνκ
�

ξλR∗λ κ

ρβ

+
1
2

gµνξλYρκR
∗λ κ

αβ
+

1
2

gαµξλYβκR
∗λ κ

νρ
+ Yλ[α|∇µR

λ σ

|ν][β Yρ]σ

�

sαsβ p̂µ p̂ν p̂ρ .

(B.14f)

Finally, one has

∇µ
�

ξ(αξβ)
�

= 2∇µξ(αξβ) . (B.15)

In Ricci-flat spacetimes, Eq. (157) of [25] boils down to the identity

∇αξβ = −
1
4

R∗αβγδY γδ . (B.16)

All in all, we obtain the relations

∇µ
�

ξ(αξβ)
�

=
1
2
ξ(αR∗

β)µγδY γδ , ∇µ
�

ξ2
�

=
1
2
ξλR∗λµγδY γδ . (B.17)
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This yields

∇µN (3)
ανβρ

sαsβ p̂µ p̂ν p̂ρ =
�

1
2
∇µN (4)

ανβρ
−∇µ
�

ξ[αgν][βξρ]
�

�

sαsβ p̂µ p̂ν p̂ρ (B.18a)

=
�

1
2
∇µN (4)

ανβρ
+

1
2
ξ[αgν][ρR∗

β]µγδY γδ
�

sαsβ p̂µ p̂ν p̂ρ (B.18b)

=
�

1
2
∇µN (4)

ανβρ
+

1
4
ξ[αgµ]νR

∗
βργδY γδ
�

sαsβ p̂µ p̂ν p̂ρ , (B.18c)

as well as

∇µN (4)
ανβρ

sαsβ p̂µ p̂ν p̂ρ = −gα[β gρ]ν∇µ
�

ξ2
�

sαsβ p̂µ p̂ν p̂ρ

= −
1
2

gα[β gµ]νξλR∗λργδY γδsαsβ p̂µ p̂ν p̂ρ . (B.19)

Let us now use the preceding relations to write down the desired contribution in the co-
variant building blocks language. We will demonstrate the procedure on the A= 1 term, which
turns out to be the most involved to compute. The computations of the others contributions
will not be detailed in this text. One has
�

Kλ[αRλ
ν]βρ;µ −

1
2

K∇µRανβρ
�

sαsβ p̂µ p̂ν p̂ρ

=
15M

4

�

ω
(0,2)
AB2 +ω

(2,4)
AB2

�

+
3M
4

�

S2P2 +A2
�

�

ω
(0,2)
A +ω(2,4)

A

�

−
3M
2

�

AE +P2Es

�

�

ω
(0,2)
B +ω(2,4)

B

�

−
3M
4

�

P2 I −S2H + 10|B|2 + 2AG
�

ω
(1,3)
A

−
3M
4

�

P2D− EG + EsH +AF
�

ω
(1,3)
B +

3M
2

�

AE +P2Es

�

ω
(1,3)
B̄
−

3M
2

Im
�

ĀB
�

α
(1,3)
B .

(B.20)

Using the various identities derived above in Eq. (B.13) allows to write

∇̂N (1) =
15M

4

�

ω
(0,2)
AB2 +ω

(2,4)
AB2

�

−
3M
2

�

ω
(0,3)
B2 α

(0,−1)
A +ω(0,3)

AB α
(0,−1)
B

�

+
M
4

�

A2 +P2S2
�

�

ω
(0,2)
A + 2ω(1,3)

Ā
+ 3ω(2,4)

A

�

−
M
2

�

AE +P2Es

�

�

5ω(0,2)
B − 2ω(1,3)

B̄
+ 3ω(2,4)

B

�

−
3M
4

�

10|B|2 + 2AG +P2 I −S2H
�

ω
(1,3)
A − 3M
�

AF − EG + EsH +P2D
�

ω
(1,3)
B

−
3M
2
ω
(0,0)
ĀB
α
(1,3)
B . (B.21)

Making use of the relations (103) allows to express DN(1) in terms of linearly independent
contributions. When the dust settles down, we are left with

∇̂N (1) =
M
4

�

A2 +P2S2
�

�

ω
(0,2)
A + 2ω(1,3)

Ā
+ 3ω(2,4)

A

�

−
M
2

�

AE +P2Es

�

�

5ω(0,2)
B − 2ω(1,3)

B̄
+ 3ω(2,4)

B

�

−
9M
2
|B|2ω(1,3)

A −
3M
2

�

AF − EG + EsH +P2D
�

ω
(1,3)
B

+
9M
4
ω
(0,2)
AB2 +

15M
4
ω
(2,4)
AB2 . (B.22)
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[33] V. P. Frolov, P. Krtouš and D. Kubizňák, Black holes, hidden symmetries, and complete inte-
grability, Living Rev. Relativ. 20, 6 (2017), doi:10.1007/s41114-017-0009-9.

35

https://scipost.org
https://scipost.org/SciPostPhys.15.6.226
https://doi.org/10.1007/978-3-319-18335-0_19
https://doi.org/10.1088/0264-9381/32/8/085008
https://doi.org/10.1088/0264-9381/32/8/085008
https://doi.org/10.1088/0264-9381/32/19/195010
https://doi.org/10.1007/JHEP09(2015)219
https://doi.org/10.1103/PhysRevD.92.104003
https://doi.org/10.1103/PhysRevD.104.029902
https://doi.org/10.1086/306732
https://doi.org/10.21468/SciPostPhys.12.1.012
https://doi.org/10.1007/BF01609434
https://doi.org/10.1143/PTPS.189.126
https://doi.org/10.1088/0264-9381/32/8/085008
https://doi.org/10.1088/0264-9381/32/8/085008
https://doi.org/10.1103/physrevd.100.104030
https://doi.org/10.1103/PhysRevD.103.064066
https://doi.org/10.1007/s41114-017-0009-9

	Introduction
	Quadrupolar test bodies in curved spacetime
	Motion of test bodies in curved spacetime
	Searching for conserved quantities: Rüdiger's procedure

	Constraint equations: Tensorial formulation
	Linear constraint
	Quadratic constraint

	Kerr covariant formalism: Generalities
	Covariant building blocks for Kerr
	Some identities
	Basis of contractions
	A Z2 grading
	The - basis

	Kerr covariant formalism: reduction of the constraints
	Linear constraint
	Quadratic constraint
	Some identities
	Reducing the M(1) contribution
	The black hole constraint equation

	The neutron star constraint equation

	Solution for the quadratic invariant in the black hole case
	The Ansatz
	Solution to the constraint
	Uniqueness of the solution
	Summary of the results

	Neutron star case around Kerr: A no-go result
	Perturbative expansion in a of the constraint equations

	Discussion and Outlook
	Derivation of the quadratic quantity constraint
	Terms coming from Qquad
	Terms coming from QR
	Reduced expression

	Reducing the constraints with the covariant building blocks: Intermediate algebra
	Some identities
	Ansatz terms for the quadratic invariant.
	Derivatives of the scalar basis.
	Directional derivatives of the Ansatz terms

	References

