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Abstract

Multipole symmetries are of interest in multiple contexts, from the study of fracton
phases, to nonergodic quantum dynamics, to the exploration of new hydrodynamic uni-
versality classes. However, prior explorations have focused on continuum systems or
hypercubic lattices. In this work, we systematically explore multipole symmetries on
arbitrary crystal lattices. We explain how, given a crystal structure (specified by a space
group and the occupied Wyckoff positions), one may systematically construct all con-
sistent multipole groups. We focus on two-dimensional crystal structures for simplicity,
although our methods are general and extend straightforwardly to three dimensions. We
classify the possible multipole groups on all two-dimensional Bravais lattices, and on the
Kagome and breathing Kagome crystal structures to illustrate the procedure on general
crystal lattices. Using Wyckoff positions, we provide an in-principle classification of all
possible multipole groups in any space group. We explain how, given a valid multipole
group, one may construct a consistent lattice Hamiltonian and a low-energy field theory.
We then explore the physical consequences, beginning by generalizing certain results
originally obtained on hypercubic lattices to arbitrary crystal structures. Next, we iden-
tify two apparently novel phenomena: an emergent, robust subsystem symmetry on the
triangular lattice, and an exact multipolar symmetry on the breathing Kagome lattice
that does not include conservation of charge (monopole), but instead conserves a vector
charge. This makes clear that there is new physics to be found by exploring the conse-
quences of multipolar symmetries on arbitrary lattices, and this work provides the map
for the exploration thereof, as well as guiding the search for emergent multipolar sym-
metries and the attendant exotic phenomena in real materials based on nonhypercubic
lattices.
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1 Introduction

Multipolar symmetries have become a major topic of interest in condensed matter physics,
quantum dynamics, and quantum information. This began with the work of Pretko [1] identi-
fying conserved multipole moments as underlying the exotic phenomenology of fractons (for
reviews, see Refs. [2–4]). Subsequently, new field theories with fractonic excitations and gen-
eral multipole symmetry groups were written down and systematized [5,6]. The new thermo-
dynamic phases enabled by such symmetries and their spontaneous breaking remain topics of
active exploration [7–11]. In a parallel development, it was realized in Ref. [12] that imposing
multipolar symmetries on quantum dynamics could give rise to ergodicity breaking. This was
later explained in terms of Hilbert space shattering/fragmentation [13–15], a phenomenon
that has been observed experimentally [16, 17], which could be harnessed for both quantum
memories [13] and metrology [18], and which has been undergoing intensive exploration
[19–33]. In a third development, it was realized in Refs. [34, 35] that fractonic symmetries
could lead to new hydrodynamic universality classes. This has initiated yet another line of
research exploring novel hydrodynamics with multipolar symmetries [20, 36–44]. Common
to all these distinct research programs is the central role of multipolar symmetries.

Prior explorations of multipolar symmetries have largely been limited to either systems in
the continuum or on hypercubic lattices. It is worth noting that formulating the problem in the
continuum introduces certain pathologies – for instance, the dipoles and multipoles are not
quantized and there appear a continuous infinity of particle types and superselection sectors.
How to properly define the problem in the continuum is a program of ongoing research [45].
In practice, most works implicitly assume an underlying lattice. When lattice symmetries are
treated seriously, the problem is almost always formulated on a square or cubic lattice, with
rare exceptions (e.g., Ref. [46]). However, given the wide range of crystal structures, it is
natural to wonder what happens if we formulate the problem on an arbitrary crystal structure
that is not a hypercubic lattice. Multipolar symmetries are not purely internal, and mix with
spatial transformations [6], so the extension to arbitrary lattices is decidedly nontrivial. As a
simple example to illustrate this nontriviality, let us work in one dimension and imagine im-
posing dipole conservation, but not monopole conservation. This automatically implies that
the theory must lack translation invariance – the dipole moment is defined with respect to an
origin, and monopole charge may be freely added or removed at that origin without chang-
ing the dipole moment. Conversely, if we wish to retain translation symmetry, and conserve
dipole moment, then we must also conserve monopole moment (charge). What happens if we
move up from one dimension to higher dimensional lattices? How does the set of multipole
symmetries that can be consistently imposed depend on the choice of lattice? Are there quali-
tatively new phenomena that arise once we move away from continuum systems or hypercubic
lattices? These questions remain largely open, and could provide routes to the design of new
fracton phases on nonhypercubic lattices, to the realization of new kinds of nonergodic dy-
namics, and to the identification of new hydrodynamic universality classes. They would also
guide our search for such phenomena in real materials – since while multipolar symmetries
may emerge in the low-energy description of a real material, which multipolar symmetries
emerge would depend on the crystal structure of the material, which may not be hypercubic.

In this work, we undertake a systematic exploration of multipolar symmetries on arbitrary
lattices. We explain how, given a space group symmetry and a set of occupied Wyckoff positions
(which together determine the crystal structure), one may systematically construct all possible
consistent multipole symmetry groups to any desired order. While we work in two dimensions
for simplicity, the methods we develop are general and should extend to three (or higher)
dimensions mutatis mutandis. For all two-dimensional Bravais lattices, we exhaustively classify
all possible consistent multipole groups at order n = 1 (dipole), n = 2 (quadrupole), n = 3
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(octupole) and n = 4. We explain how the classification may be extended beyond Bravais
lattices to deal with bases and nonsymmorphic symmetries, thereby allowing us to access
arbitrary wallpaper groups. We also explain that the space group itself is not sufficient to
fully specify the problem. Instead, one needs the full crystal structure, which also involves
knowledge of the occupied Wyckoff positions. We illustrate the general framework by an
explicit computation of the consistent multipole groups up to order n= 2 on the Kagome and
breathing Kagome crystal structures. This gives an in-principle classification of all possible
multipole groups in any space group.

While the first part of this paper is essentially mathematical in nature, classifying the pos-
sible consistent multipole groups on various crystal structures, the second part of this paper
discusses the physical consequences. We begin by discussing how knowledge of the multipole
group may be used to write down effective low-energy field theories, and how these may be
discretized to yield effective Hamiltonians on the lattice in question. We then discuss how
this framework may be used to generalize certain results originally obtained on hypercubic
lattices. For instance, we present a general understanding of a minimal set of symmetries that
must be imposed to yield localization on arbitrary crystal lattices, generalizing the results of
Ref. [30,31]. Then we discuss two apparently novel phenomena that arise when we move be-
yond hypercubic lattices (a) an emergent robust subsystem symmetry on the triangular lattice,
and (b) an unusual situation arising on breathing Kagome, where one can obtain multipolar
conservation laws without conservation of monopole charge, but while retaining translation
symmetry (and also an emergent vector conserved charge). These two examples are not ex-
haustive, but illustrate that new physics can arise when one generalizes away from hypercubic
lattices. The systematic exploration of new physics arising from multipolar symmetries on ar-
bitrary crystal structures therefore promises to be a fertile territory for exploration, and this
paper provides the map.

This paper is structured as follows. We start by introducing the methodology for deriv-
ing multipole groups that are compatible with the space group of the lattice in Sec. 2. For
readers not interested in the technical details, we begin this section by presenting an intuitive
overview of the general procedure. We then apply the formalism to the five Bravais lattices
in two dimensions in Sec. 2.2, and to generic wallpaper groups in Sec. 2.3, where a number
of additional complexities arise. The second half of the paper is concerned with exploring the
consequences of the multipole groups found in Sec. 2. First, we describe how to construct
local Hamiltonians that are invariant under space group operations and conserve multipole
moments belonging to a particular multipole group in Sec. 3. Then, in Sec. 4, we extend some
classic results derived on hypercubic lattices to arbitrary crystal structures, and also present
two examples of interesting phenomena that can arise when one goes beyond simple hyper-
cubic lattices. We close with a discussion of our results in Sec. 5. Finally, some clarification
on notation. Throughout the paper, we use the physics convention for the dihedral group:
DM is the group of symmetries of a regular M -gon. Similarly, our notation for the irreducible
representations (irreps) of DM is set out in Appendix A.

2 Formalism for deriving lattice multipole groups

The goal of this section is to build a procedure that algorithmically determines the constraints
that space group symmetries place on lattice multipole groups. More precisely, suppose the
multipole group contains a particular polynomial shift symmetry f. Then we wish to deter-
mine: what additional polynomial shift symmetries must appear in the multipole group in
order to preserve the space group symmetry?
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We will first describe the general procedure. Then, we will implement it for all five Bravais
lattices in 2D, explaining several details and subtleties that arise in the different examples.
Finally, we will explain through examples several important concepts that appear when clas-
sifying multipole groups on a crystalline lattice with a basis. Using Wyckoff positions, we will
give an in-principle classification of all possible multipole groups in any space group.

2.1 General procedure

The input to our procedure is a space group S, its action on a given basis of the crystalline lattice
L, and a nonnegative integer n. The output is a list of all multipole groups M compatible with
the space group S (in the sense the quotient of M by its subgroup of pure polynomial shift
symmetries is S) that contain polynomial shift symmetries of degree at most n.

We place a scalar field φi(r) at each basis location in the crystalline lattice. Here i labels
a basis element of L, and, depending on the physics, r may either be the position of a lattice
site or a basis site; we will discuss the distinction in Sec. 2.3.3. In what follows, we assume
for simplicity that, given an element s ∈ S, the field transforms as

φi(r)
s
→ φs(i)(s(r)) , (1)

where s(i) is some permutation of the lattice basis elements and s(r) is some action on the
spatial coordinates. More generally, the field φ need not transform as a scalar under space
group operations. This more general case is easily incorporated into the formalism; we give an
example in which the field transforms as vector and discuss some consequences in Appendix B.
Under an infinitesimal polynomial shift symmetry f, we have

φi(r)
f
→ φi(r) +λ fi(r) , (2)

where the fi(r) are a collection of polynomials that we assume to have degree at most n, and λ
is the symmetry parameter. A symmetry under such a polynomial shift implies conservation of
the corresponding multipole moment. We demand that the set of polynomial shift symmetries
be closed under the action of the space group – a defining property of the multipole group [6].
Commuting s through the polynomial shift symmetry, we see that if f is in M, then M must
also contain

φi(r)→ φi(r) +λ
�

fs(i)(s(r))− fi(r)
�

. (3)

Given f, then, we must find its orbit under the space group. While this problem is well-posed,
the space group has infinite order, although it is finitely generated (e.g., there are an infinite
number of symmetry translations, but they are all generated by a finite set of basis vectors),
and the classification problem becomes awkward.1 However, in general, space group elements
act on spatial coordinates as

s(r) = Msr+ ts , (4)

where Ms is a matrix acting on the components of r and ts is some constant vector. Therefore,
if we replace s(r) with a modified transformation s̃ that acts as

s̃(r) = Msr , (5)

that is, we completely drop the translation, then applying this transformation to homogeneous
polynomial of degree k produces another homogeneous polynomial of degree k. We can there-
fore sort the set of homogeneous polynomials fi(r) into irreps of the finite group generated by

1The basic technical problem is the following. Consider the vector space spanned by monomials, equipped with
the natural inner product where different monomials are orthogonal. Then translations do not act as orthogonal
operators on that vector space. We would thus be forced to consider nonorthogonal representations of the space
group, which is a more challenging problem than the representation theory considered in this paper.
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(a), |a1 | ≠ |a2 |
W ≠ c/2, W★
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W

(b), |a1 | ≠ |a2 |
W = c/2

a1

a2

W

(c), |a1 | ≠ |a2 |
W = W★

a1

a2

W

(d), |a1 | = |a2 |
W = c/2

a1

a2

W

(e), |a1 | = |a2 |
W = c/3

Figure 1: Illustration of the five Bravais lattices in two spatial dimensions. The lattice
translation vectors a1 and a2 are denoted by black arrows, which make an angle
γ with one another. (a) Monoclinic, with point group C2, (b), (c) orthorhombic,
with point group D2 [in (c), 2|a2| cosγ⋆ = |a1|; alternatively, there exists rectangular
unit cell that is not primitive], (d) square, with point group D4, and (e) triangular
(γ= π/3), with point group D6.

the transformations
fi(r)

s̃
→ fs(i) (s̃(r)) , (6)

which is a straightforward task that can be done algorithmically. There are several ways to
accomplish this using standard group-theoretic methods. In Appendix A we outline both a
numerical method using character theory and an analytical method using Clebsch-Gordon
coefficients for discrete groups.

We call the group of modified transformations the “extended point group”; the reason for
the terminology is that this group evidently contains the point group but, for a nonsymmorphic
symmetry group, is in general larger than the point group. The extended point group is in fact
isomorphic to the quotient S/T , where T ⊂ S is the set of translations, but the extended
point group is implemented slightly differently because it discards both integer and fractional
translations.

This does not yet solve the problem, because under a true space group operation (i.e., in-
cluding translations), a representation of degree k will generically produce terms of all lower
degrees. However, the terms of degree k will stay within the representation we found earlier
because translations only produce terms of degree strictly less than k. Hence, under a true
space group operation, the representations of degree k “mix” with representations of degree
less than k, but do not mix with other representations of degree k. In fact, we show in Ap-
pendix C that for each representation of degree k, we may take an infinitesimal translation
by ts, which produces homogeneous polynomials of degree k−1 only (choosing to work with
infinitesimal translations merely corresponds to a change of basis). By iterating this procedure
on all representations of degree less than k, we find the full set of polynomials that appear
under these translation operations.

To summarize, we sort homogeneous polynomials into irreps of the extended point
group (6), and then see how they “mix” under the translation piece of each space group ele-
ment. Under (true) space group transformations, an element fof a fixed irrep produces other
elements of its irrep and linear combinations of its “descendant” irreps. If f ∈M, then the
entire irrep to which fbelongs, and all of the descendants of that irrep, must appear in M as
well.
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x y

x2 2xy y2

x3 3x2y 3xy2 y3

x4 4x3y 6x2y2 4xy3 y4

Figure 2: Mixing of monomials under lattice translations for the monoclinic and
orthorhombic Bravais lattice types. Every arrow means that some (infinitesimal)
translation acting on the monomial of higher degree generates the monomial(s) of
lower degree. That is, if a particular monomial is included in the multipole group,
compatibility with space group operations requires the multipole group to contain all
lower-order monomials that can be reached by following an arrow from the original
monomial. Linear combinations of degenerate irreps must be dealt with separately,
as described in the main text.

This procedure can be generalized to the case where f is an arbitrary linear combination
of elements from different irreps of the extended point group. We will see in the context of
various examples that this generalization can be subtle.

Before proceeding to examples, we comment that, for convenience, we have assumed that
the multipole group contains a polynomial shift symmetry for scalar fields, but the approach
would work equally well for, say, spins, e.g., rotating

Ŝ(r)→ eiŜz(r) f (r)Ŝ(r)e−iŜz(r) f (r) , (7)

where f (r) is some polynomial. We will elaborate further on this context in Sec. 3.1.

2.2 Bravais lattices

When working with Bravais lattices, there is no basis index i in, e.g., Eq. (1). As a result, the
procedure outlined above becomes straightforward. Extended point group operations (6) are
exactly point group operations, and so we just need to sort homogeneous polynomials into
irreps of the point group P. The “mixing” of irreps then comes from translations by lattice
vectors. We will find the possible multipole groups compatible with all five Bravais lattices in
two dimensions (depicted in Fig. 1), starting with the lattice that possesses the fewest sym-
metries. As we increase the size of the symmetry group, various additional complexities will
appear; while the formalism will remain unchanged, we will highlight some subtleties in its
implementation.

2.2.1 Monoclinic

We begin with the monoclinic Bravais lattice [Fig. 1(a)], whose point group is C2, with gen-
erator (x , y)↔ (−x ,−y). In crystallographic notation, which will be used throughout the
paper, the space group is p2. By inspection, each monomial xm yn (with m, n ≥ 0) of even
degree forms a trivial irrep of C2 and each monomial of odd degree forms the nontrivial one-
dimensional irrep of C2.

After sorting polynomials into irreps of the point group, we must determine what con-
straints translations put on the multipole group. Suppose that we include xm yn in the mul-
tipole group for a given pair of nonnegative m, n. As shown in Appendix C, we must also
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1

{x, y}

x2 + y2 x2 − y2 2xy

{x3, y3} {x2y, xy2}
{x3+3xy2,
y3+3x2y} {x3−3xy2,

y3−3x2y}

x4 + y4 x4 − y4 x2y2 x3y + y3x x3y − y3x

'

Figure 3: Mixing of irreps of the point group D4 by translation symmetry for the
square lattice. Every arrow means that some (infinitesimal) translation acting on
the polynomial(s) of higher degree generates the polynomial(s) of lower degree. All
multipole groups that contain a polynomial of degree n ≥ 2 must also include both
components of dipole, and charge. The two gray regions at order three indicate that
there are two alternative bases for cubic polynomial shift symmetries. The represen-
tations of the polynomials under the point group are given in Table 1.

include shift symmetries obtained by infinitesimal translations of xm yn along the lattice direc-
tions. Since there are two linearly independent translations and polynomial shift symmetries
can have any real (not just integer) coefficients, it suffices to choose the translations to be
along x and y (denoted Tx and Ty , respectively), even if the discrete lattice translations are
not orthogonal. Hence, including xm yn requires us to include xm−1 yn (if m> 0) and xm yn−1

(if n> 0) in the multipole group.
Iterating this procedure, we find that including xm−1 yn in the multipole group requires

xm−2 yn (if m > 1) and xm−1 yn−1 (if n > 0) to appear in the multipole group as well. Each
irrep of degree k therefore has a set of “descendants” of degree k − 1, and the descendants
have their own descendants, and so on. We can organize this information into a graphical
tree-like structure, presented in Fig. 2. The meaning is that if we include any one monomial
in M, then all of its descendants (i.e., any monomial that can be reached by following a series
of arrows starting at the original monomial) must also appear in M.

We now address an important subtlety. Each irrep of the point group is highly degenerate,
in the sense that any linear combination of even- (or odd-) degree monomials also forms an
irrep of C2. This is unimportant if we include in M a linear combination of polynomials
transforming under different irreps; in that case, we have to include both polynomials or
neither in the multipole group. For example, including x4 + 3x y2 as a generator in M also
forces us to include x4−3x y2 since one term is odd under rotations and one term is even. The
polynomials {x4 + 3x y2, x4 − 3x y2} span the same set of polynomials as {x4, 3x y2}, so we
can just include both monomials. To ensure the multipole group is closed under translations,
we should then include the descendants of both monomials.

However, if we include a linear combination of two identical representations, we may
only need to include the corresponding linear combinations of the descendants. For exam-
ple, x3 y+ x y3 only forces us to include the span of {3x2 y+ y3, x3+3x y2} (and lower-degree
descendants), not the span of {x3, y3, 3x2 y, 3x y2}. The tree in Fig. 2 is therefore still use-
ful for finding the possible multipole groups, but one must be careful when including linear
combinations of polynomials transforming under the same irrep of the (extended) point group.
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1

{x, y}

{x2 − y2,
2xy} x2 + y2

x3 − 3xy2 y3 − 3x2y
{y3 + x2y,
x3 + xy2}

{x4 − 6x2y2 + y4,
2(x3y − y3x)}

(x2 + y2)2
{x4 − y4,

2(x3y + y3x)}

Figure 4: Mixing of irreps of the point group D6 by translation symmetry for the
triangular lattice. Every arrow means that some (infinitesimal) translation acting on
the polynomial(s) of higher degree generates the polynomial(s) of lower degree. As
for the square lattice, all multipole groups that contain a polynomial of degree n≥ 2
must also include both components of dipole, and charge. The representations of the
polynomials under the point group are given in Table 2.

2.2.2 Orthorhombic

Next, we consider Bravais lattices of orthorhombic type, for which the point group is D2
[Figs. 1(b), (c)]. For simplicity we choose coordinates so that the point group is generated
by reflections about the y- and x-axes. Again, each monomial forms an irrep of the point
group. Choosing the generating mirror of D2 to send y ↔ −y , the monomial xn ym forms
the 1D irrep A(−1)n+m,(−1)m where the notation is set in Appendix A; to briefly summarize, the
first index is the eigenvalue under two-fold rotations [i.e., (x , y)↔ (−x ,−y)] and the second
index is the eigenvalue under the generating mirror.

For the rectangular Bravais lattice (space group pmm), the monomial xm yn transforms by
xm−1 yn (provided m> 0) under Tx and xm yn−1 (provided n> 0) under Ty . For the rhombic
Bravais lattice (space group cmm), the monomial xm yn transforms by xm−1 yn under Tx and
a linear combination of xm−1 yn and xm yn−1 (again, assuming m, n > 0) under translations
parallel to the other lattice direction. In both of these Bravais lattices, including xm yn in the
multipole group requires both xm−1 yn and xm yn−1 to appear in the multipole group as well.
Hence, the same sets of polynomial shift symmetries are allowed in the multipole group as
in the monoclinic Bravais lattice. We note, however, that there are now four one-dimensional
irreps for the orthorhombic lattices. At a given order, there are hence fewer irrep degeneracies
that need to be taken into account when considering mixing of irreps under translations than
for the monoclinic Bravais lattice.

2.2.3 Square

The square lattice’s point group is D4 [Fig. 1(d)], and its space group is p4m. In contrast to
the lower-symmetry Bravais lattices, sorting the square lattice polynomials into irreps from
first principles requires the use of systematic methods like those in Appendix A. See Table 1
for the representations under the point group. Mixing of these polynomials under translations
is depicted in Fig. 3.

Here, we find a further subtlety in dealing with degenerate representations of the ex-
tended point group. The four independent cubic polynomials sort into two copies of the two-
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Table 1: Polynomials up to degree n = 4 and their representations under the point
group D4 of the square lattice. The labels Aσν and Ek are defined explicitly in Ap-
pendix A. The descendants of each polynomial under translation mixing are also
listed.

Polynomial(s) Irrep Descendants Polynomial(s) Irrep Descendants

n= 0 n= 3
1 A++ {x3, y3} E1 x2 + y2, x2 − y2

{x2 y, y2 x} E1 x2 + y2, x2 − y2, x y
n= 1 n= 4

{x , y} E1 1 x4 + y4 A++ {x3, y3}
n= 2 x4 − y4 A−+ {x3, y3}

x2 + y2 A++ {x , y} x3 y + y3 x A−− {x3+3x y2, y3+3x2 y}
x2 − y2 A−+ {x , y} x3 y − y3 x A+− {x3−3x y2, y3−3x2 y}
x y A−− {x , y} x2 y2 A−− {x2 y, y2 x}

dimensional representation E1 of D4. Under translation, the quartic polynomial A−− irrep
x3 y + y3 x mixes with the cubic E1 irrep {x3 + 3x y2, y3 + 3x2 y}, while the quartic A+− irrep
x3 y− y3 x mixes with the cubic E1 irrep {x3−3x y2, y3−3x2 y}. The two degenerate E1 irreps
{x3+3x y2, y3+3x2 y} and {x3−3x y2, y3−3x2 y} span all cubic polynomial shift symmetries,
so it seems natural to make a tree structure like Fig. 2 using these two E1 irreps as a basis for
the cubic polynomial shift symmetries.

However, the quartic A++ irrep x4 + y4 mixes with {x3, y3}, which also transforms as the
E1 irrep of D4. We do not need to include another cubic irrep of D4. But the irrep {x3, y3} is a
linear combination of the irreps {x3 + 3x y2, y3 + 3x2 y} and {x3 − 3x y2, y3 − 3x2 y}. So the
translation mixing here does not respect the simple tree structure we attempted to make.

The conclusion here is that when there are degenerate irreps of a given degree, there is not
generally a “canonical” choice of basis for those irreps for which a tree structure like Fig. 2 is
unambiguous. For a given set of polynomials that we wish to include in M, compatibility with
the space group symmetry requires us to find the “tree” of descendants and include them in M,
which is a well-posed problem that can be solved algorithmically. However, that descendant
information cannot be neatly encoded for all choices of polynomials into a tree of the sort
shown in Fig. 2, because different “arrows” in the tree may require different basis choices.
One can check that, in the present case, it is not possible to build such a tree, which is why
Fig. 3 contains two equivalent bases shown in the shaded circles. Note, for example, that if
both x4 + y4 and x3 y + y3 x are in the multipole group, then the former forces us to include
{x3, y3} and the latter forces us to include {x3 + 3x y2, y3 + 3x2 y}, which do span all cubic
polynomials. However, including only one of these quartic polynomials in the multipole group
only requires us to include one E1 irrep of cubic polynomials, not all cubic polynomials.

2.2.4 Triangular

The final Bravais lattice to consider is the triangular lattice. The point group is D6 [Fig. 1(e)]
and the space group is p6m. There is no additional subtlety compared to the square lattice.
See Table 2 for the results, along with Fig. 4 for the translation mixing tree.

2.3 Beyond Bravais: Wallpaper groups

In the presence of a basis for the lattice, several things change compared to a pure Bravais
lattice. First, the space group can be any of the 17 wallpaper groups. Second, space group
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Table 2: Polynomials up to degree n = 4 and their representations under the point
group D6 of the triangular lattice. We choose the generating mirror r to send
y 7→ −y . The labels Aσν and Ek are defined explicitly in Appendix A. The descen-
dants of each polynomial under translation mixing are also listed.

Polynomial(s) Irrep Descendants Polynomial(s) Irrep Descendants

n= 0 n= 3
1 A++ x3 − 3x y2 A−+ {x2 − y2, 2x y}

n= 1 y3 − 3x2 y A−− {x2 − y2, 2x y}
{x , y} E1 1 {x3 + x y2, y3 + x2 y} E1 x2+ y2, {x2− y2, 2x y}

n= 2 n= 4
x2 + y2 A++ {x , y} (x2 + y2)2 A++ {x3 + x y2, y3 + x2 y}
{x2 − y2, 2x y} E2 {x , y} {x4 − y4, 2(x3 y + y3 x)} E2 all cubic

{2(x3 y − y3 x), x4 + y4 − 6x2 y2} E2 x3 − 3x y2, y3 − 3x2 y

symmetries can in general permute basis sites. Finally, polynomial shift symmetries do not in
general need to act in the same way on each basis site. The interaction of all of these features
leads to significant changes in the possible multipole groups. We will now give a few physically
interesting or physically motivated examples that illustrate some key points about multipole
groups. In particular, we give examples to illustrate the following facts:

1. The set of allowed multipole groups does not depend only on the space group, and
instead depends on the details of the action of the space group on the lattice basis. Using
the concept of Wyckoff positions, this action can be classified; we will give a procedure
to generate this classification in principle, but will not perform the explicit classification
for all 17 wallpaper groups.

2. In the presence of a basis, some multipole symmetry groups may look very unnatural
(particularly those generated by inhomogeneous polynomials), but are actually well-
motivated in certain physical contexts.

3. The extended point group may in general be larger than the point group, specifically
when the wallpaper group is nonsymmorphic.

a1

a2

� �

�

� �

�

� �

�

� �

�

� �

�

�

� �

�

Figure 5: Kagome lattice with space group p6m. The A, B, and C sublattices are la-
beled in red, blue, and green, respectively, but the sites are identical. The generating
mirror, which is chosen to send x 7→ −x , is denoted by the double gray line. The
lattice translation vectors, a1 and a2, are denoted by the black arrows.
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Table 3: Polynomials up to degree n = 2 and their representations under the point
group D6 of the Kagome lattice. We choose the generating mirror r to send x 7→ −x ,
and use the notation v0 = (1, 1,1)T , vx =

1
2(
p

3,−
p

3, 0)T , and vy =
1
2(−1,−1,2)T .

For the breathing Kagome lattice (for which the point group isD3), the irrep labels are
modified according to Eq. (16), but the polynomials and their descendants remain
unmodified.

Polynomial(s) Irrep Descendants Polynomial(s) Irrep Descendants

n= 0 n= 2

v0 A++ (x2 + y2)v0 A++ {x , y}v0

{vx , vy} E2 {2x y, (x2 − y2)}v0 E2 {x , y}v0

n= 1

x vx + yvy A−+ {vx , vy} −(x2 − y2)vx + 2x yvy A+− {yvx + x vy , x vx − yvy}
yvx − x vy A−− {vx , vy} (x2 − y2)vy + 2x yvx A++ {yvx + x vy , x vx − yvy}
{x , y}v0 E1 v0 {vx ,−vy}(x2 + y2) E2 all linear

{yvx + x vy ,
x vx − yvy}

E1 {vx , vy}
{2x yvy + (x2 − y2)vx ,
− 2x yvx + (x2 − y2)vy}

E2
(x2 − y2)vy + 2x yvx ,
−(x2 − y2)vx + 2x yvy

2.3.1 Multipole groups are not a function of space group alone

The Kagome and triangular lattices both have space group p6m.2 One might reasonably ask
if the allowed multipole groups on the Kagome and triangular lattices are “the same.”

The naïve answer is immediately “no,” simply because there are more polynomial shift
symmetries for the Kagome lattice than the triangular lattice; on the Kagome lattice, one can
choose an independent polynomial shift symmetry on each of the three sublattices, whereas
there is only one choice of polynomial on the triangular lattice. However, the same argument
holds for three layers of the triangular lattice, and it is obvious that one can simply choose an
allowed triangular lattice multipole group on each of the layers independently (with the space
group operations acting simultaneously on all layers). We claim that the Kagome lattice does
not have this property; there are allowed multipole groups that are fundamentally distinct
from all triangular lattice multipole groups. To show this, we classify multipole groups on the
Kagome lattice.

The wallpaper group p6m is generated by four operations: a six-fold rotation C (we are
slightly overloading the letter C , which also labels the C site in the lattice basis; the mean-
ing should be clear from context), a reflection r, and two translations T1 and T2. With the
sublattices labeled as in Fig. 5, space group operations act as

C











φA(r)
φB(r)
φC(r)

=











φC(MCr)
φA(MCr)
φB(MCr) ,

r











φA(r)
φB(r)
φC(r)

=











φB(Mrr)
φA(Mrr)
φC(Mrr) ,

(8)

Tiφa(r) = φa(r+ ti) , (9)

where the six-fold-rotation and reflection matrices, MC and Mr , respectively, and the two
translation vectors, are given by

MC =

�

1
2 −

p
3

2p
3

2
1
2

�

, Mr =

�

−1 0
0 1

�

, (10)

t1 = a(1,0) , t2 = a
�p

3
2 , 1

2

�

, (11)

2The honeycomb lattice also has space group p6m, but we choose to work with the Kagome lattice because the
results are more generic.
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v0

v0{x, y}

v0{2xy,
x2 − y2} v0(x

2 + y2)

{vx, vy}

xvx + yvy yvx − xvy
{yvx + xvy,
xvx − yvy}

{2xyvy + (x2 − y2)vx,
−2xyvx + (x2 − y2)vy}

{vx, vy}(x2 + y2) −(x2 − y2)vx + 2xyvy
(x2 − y2)vy + 2xyvx

Figure 6: Mixing of irreps by translational symmetry for the Kagome (and breathing
Kagome) lattice(s). Every arrow means that some (infinitesimal) translation acting
on the polynomial(s) of higher degree generates the polynomial(s) of lower degree.
Unlike previous trees, there exist two disjoint hierarchical structures. Physically, this
means that there exist valid multipole groups that do not include total charge. The
shorthand notation v0 = (1, 1,1)T , vx =

1
2(
p

3,−
p

3,0)T , and vy =
1
2(−1,−1,2)T is

used for the vectors that span the three-dimensional space that corresponds to the
sublattice index. The representations of the polynomials under the point group are
given in Table 3.

with a the lattice constant. The point group is D6, the symmetries of a regular hexagon. The
polynomial shift symmetry irreps of the point group are given in Table 3, and the translation
dependences are shown in Fig. 6.

Indeed, every triangular lattice multipole group has a corresponding Kagome lattice mul-
tipole group that acts identically on all three sublattices. However, even constant polynomials
show new features. There are constant polynomials that form a 2D representation of the point
group, which cannot happen on the triangular lattice or several copies thereof. There are
therefore only four possible multipole groups with only constant polynomial shift symmetries
on the Kagome lattice; there are independent choices of whether to include each of the two
irreps, but those are the only possibilities. Compare this to three copies of the triangular lat-
tice, where any constant shift f = (a, b, c)T is a polynomial shift symmetry consistent with
the space group. Physically, this is very interesting; including {vx , vy} but not v0 means that
conserving a vector charge but not the total scalar charge is consistent with the point group
symmetry. We discuss the physical implications of this fact further in Sec. 4.4. Similarly, the
“dependency tree” in Fig. 6 does not decouple into multiple copies of the triangular lattice
tree.

We conclude that, while the Kagome lattice admits multipole groups identical to those of
the triangular Bravais lattice, it also allows multipole groups that are fundamentally different
from any multipole group on the Bravais lattice. The allowed multipole groups are therefore
not simply a function of the space group.

2.3.2 A classification procedure

We saw above that the way that space group symmetries permute different basis sites in the
lattice can substantially change the structure of the multipole group, and so the space group
alone does not determine the allowed multipole groups. For a given space group, any set
of basis sites can be decomposed into sets of independent, decoupled symmetry orbits; each
orbit type is called a Wyckoff position, and the number of atoms in the orbit is called the
multiplicity of the Wyckoff position. Wyckoff positions have been classified exhaustively for
all space groups in both 2D and 3D [47–52]. Since space group operations never mix lattice
sites with different Wyckoff positions, one can independently choose allowed polynomial shift
symmetries for each Wyckoff position.
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Hence, given a crystalline lattice, we can classify all possible multipole groups as follows.
First, identify the space group of the crystalline lattice. Then, decompose the set of atoms
in the unit cell into distinct Wyckoff positions. Next, for each Wyckoff position, compute the
allowed multipole groups as we did above. A multipole group is generated by the space group
operations and various polynomial shift symmetries that transform as direct sums of irreps of
the extended point group, one summand per Wyckoff position. If a polynomial shift symmetry
appears in M, so must its “descendants” under translations, which will be direct sums of the
descendants of each individual irrep summand.

Given a Wyckoff position, the problem of sorting polynomial shift symmetries into irreps
of the extended point group can be broken down further. First, one can determine the irrep
of the extended point group formed by the permutation action of the space group on the basis
sites. This is purely geometric information determined completely by the Wyckoff position.
Second, one can take pure polynomials, without any reference to the Wyckoff position, and
sort them into irreps of the extended point group. Finally, the irreps obtained in the prior two
steps are combined using the Clebsch-Gordon coefficients of the extended point group; see
Appendix A for details.

As an example of the above procedure, we can consider the classification problem for the
wallpaper group pm. Assuming, without loss of generality, that the point group D1

∼= Z2 is
generated by reflections x↔−x , there are three Wyckoff positions, shown in Fig. 7a. Wyckoff
position a is an atom placed at (0, y) for any y . Wyckoff position b is an atom at (1/2, y) for
any y . Wyckoff position c consists of a pair of atoms at (±x , y) for any y (here, x is interpreted
modulo the lattice constant in the x direction).

For atoms on either the a and b Wyckoff positions, polynomial shift symmetries do not
permute basis sites within the unit cell. The multipole group classification for these atoms can
be read off by inspection. The monomial xm yn forms a trivial (resp. nontrivial) irrep of Z2 if
m is even (resp. odd), and translations mix irreps in the same way as Fig. 2.

For atoms on a c Wyckoff position, the point group operation r interchanges the two basis
elements, that is,

r

�

φA(r)
φB(r)

�

→
�

φB(Mrr)
φA(Mrr)

�

. (12)

It is straightforward to see that irreps of the point group are given by transformations
�

φA(r)
φB(r)

�

→
�

φA(r)
φB(r)

�

+ xm ynvk , (13)

with v0 = (1,1)T and v1 = (1,−1)T . The irrep is trivial if m+ k is even and nontrivial if m+ k
is odd. Note that the permutation action on the basis sites is a direct sum of a trivial irrep
v0 and a nontrivial irrep v1, so the polynomial shift symmetries are just the (tensor) product
of one of these vk and the irrep formed by polynomials xm yn in the spatial coordinates. The
corresponding Clebsch-Gordon coefficients are trivial because the irreps involved are all one-
dimensional.

For a generic arrangement of atoms with space group pm, then, we choose a set of poly-
nomial shift symmetries that we wish to include. Each shift symmetry should be decomposed
into a linear combination of direct sums of irreps of the extended point group, with one (pos-
sibly zero) summand in the direct sum for each Wyckoff position in the lattice. The complete
symmetry orbit of the original polynomial shift symmetries then follows from the symmetry
orbit and translation mixing of each direct summand.

For example, suppose we have atoms at Wyckoff position a (call the corresponding field
φ(a)) and Wyckoff position c (call the corresponding fields φ(c)A,B). We could choose to include
the shift symmetry that transforms the a Wyckoff position by x2 y (trivial irrep of Z2) and
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(b)

Figure 7: Left: An example of a lattice belonging to the space group pm. Axes of
reflection are denoted by the double gray lines. The labels a, b, and c correspond
to the three types of Wyckoff position, with multiplicities one, one, and two, respec-
tively. Right: A lattice with space group pg. The dashed gray lines represent axes of
glide reflection since the two types of lattice site are (only) mapped onto one another
under the mirror x 7→ −x (supposing they were spatially coincident). The solid gray
lines represent lattice translations, which are parallel to the x- and y-axes.

transforms the c Wyckoff position by λyv1 (nontrivial irrep of Z2), where λ is some constant
with dimensions of length2:





φ(a)(r)
φ
(c)
A (r)
φ
(c)
B (r)



→





φ(a)(r)
φ
(c)
A (r)
φ
(c)
B (r)



+







x2 y

λy

−λy






. (14)

Under a mirror (as shown in Fig. 7a)

r





x2 y
λy
−λy



→





x2 y
−λy
λy



 , (15)

since the first entry forms a trivial irrep of Z2 and the last two entries form a nontrivial irrep of
Z2. Hence, the multipole group must also contain (x2 y,−λy,λy)T . We know the translation
descendants of each irrep (x2 y on the a Wyckoff position descends to x y, x , y, 1 and yv1 on
the c Wyckoff position descends to v1), but we must translate both irreps simultaneously to get
the descendants of the combination. Namely, (x2,±λ,∓λ)T are descendants, but (x2, 0, 0)T is
not a descendant.

We comment that the difference between the triangular, multi-layer triangular, honeycomb,
and Kagome lattices are exactly which Wyckoff positions are occupied; all of them have space
group p6m. According to the nomenclature in the Bilbao crystallographic server [48–50], the
triangular lattice consists of an atom at the a Wyckoff position, and the multi-layer triangular
lattice consists of multiple atoms at the a Wyckoff position. The honeycomb lattice has atoms
in the b Wyckoff position (which has multiplicity two), and the Kagome lattice has atoms in the
c Wyckoff position (multiplicity three). Space group p6m also has two multiplicity-six Wyck-
off positions, occupying one of which would generate the ruby lattice, and a multiplicity-12
Wyckoff position; the classification procedure for these Wyckoff positions using the techniques
developed herein is straightforward but tedious.

2.3.3 Scope of the classification and physical interpretation of symmetries

There is an important subtlety in the notation when we write Eq. (2). In the absence of basis
sites, there is no i index, and in the continuum, it is physically sensible to restrict our attention
to continuous f (r). On the lattice, however, there is no a priori physical reason to restrict to
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Figure 8: Breathing Kagome lattice, which belongs to the space group p3m1. The A,
B, and C sublattices are labeled in red, blue, and green, respectively, but the sites are
identical. The generating mirror, which is chosen to send x 7→ −x , is denoted by the
double gray line. The lattice translation vectors, a1 and a2, are denoted by the black
arrows. The C3 rotation center to which each basis site is associated is depicted by
a solid black circle. The zoomed circular inset illustrates the three vectors δi that
connect Bravais sites to basis sites.

continuous fi(r). Rather than writing something like Eq. (2), we could instead consider shift
symmetries where the field in question is shifted by an arbitrary number chosen independently
at each basis site. This is the most general possibility, but attempting to classify such functions
in any useful way is beyond the scope of this paper.

One natural way to restrict our attention to polynomial shift symmetries is to imagine
defining a polynomial shift symmetry f (r) on the entire plane (without reference to basis
sites), and then defining a shift symmetry on the lattice by restricting the domain of f (r) to
r that belong to the crystalline lattice. This is a completely reasonable possibility, and it is
included in our formalism. However, one could also define one polynomial fi(r) per basis site,
and then defining a shift symmetry on the lattice by restricting the domain of fi(r) to those
r that are an ith basis element. The latter is the approach we take in this paper because it is
more general; for a generic lattice with two basis elements A and B, one could not obtain, e.g.,
fA(r) = x and fB(r) = y by restricting the same finite-order polynomial to both the A and B
sublattices.

This subtlety in notation can sometimes obscure the physical meaning of certain multipolar
symmetries. As an example which will become relevant in Sec. 4.4, we consider the classifi-
cation of multipole groups on the breathing Kagome lattice, shown in Fig. 8. The breathing
Kagome lattice has space group p3m1, with point group D3. The allowed multipole groups
for the breathing Kagome lattice are almost identical to those for the Kagome lattice. One can
check that the table for breathing Kagome can be obtained from Table 3 by simply replacing
the irrep labels:

E1,2

�

�

D3
= E1 , Aσ,ν

�

�

D3
= A+,ν , (16)

with identical translation mixing. The only difference in the allowed multipole groups is
that some irreps that are nondegenerate on the Kagome lattice become degenerate on the
breathing Kagome lattice, which allows us to take linear combinations of these newly de-
generate irreps without including both individual irreps. For example, (x2 + y2)v0 trans-
forms as A++ on both the Kagome and breathing Kagome lattice, while x vx + yvy transforms
as A−+ on Kagome and A++ on breathing Kagome. On the Kagome lattice, then, including
(x2+ y2)v0+(x vx + yvy) forces both (x2+ y2)v0 and (x vx + yvy) to appear in the multipole
group, along with their descendants {x , y}v0, v0, and {vx , vy}. However, on the breathing
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Kagome lattice, (x2 + y2)v0 + (x vx + yvy) transforms trivially under the point group, so only
its descendants {2x v0 + vx , 2yv0 + vy} and v0 need to appear in the multipole group.

Now consider the following polynomial shift symmetry:




φA(r)
φB(r)
φC(r)



→





φA(r)
φB(r)
φC(r)



+





x −δA · x̂
x −δB · x̂
x −δC · x̂



 , (17)

where δi is the displacement of the ith basis site from an associated Bravais lattice site, as
shown in Fig. 8, and the δi transform as vectors under symmetry operations. This shift sym-
metry is not, a priori, obviously physically meaningful. However, by inspection we can see
that this amounts to shifting each field by R · x̂, where R is the closest Bravais lattice site.
Physically, the presence of this symmetry means that the x component of the total dipole mo-
ment is conserved, where each field’s charge is weighted by the closest Bravais lattice site’s
position instead of the physical position of the charge itself. One situation where this is physi-
cally meaningful is as follows. Imagine placing a spin-3/2 f -like electron at the center of each
small triangle and a localized d electron at each vertex of the breathing Kagome lattice. With
a strong Ising-like interaction between the d and f electrons of the sort

ĤÏ = −Ŝ( f )z

�

Ŝ(d,A)
z + Ŝ(d,B)

z + Ŝ(d,C)
z

�

, (18)

on each triangle, one could imagine that the f electron’s spin is equal to the sum of the sur-
rounding d electron spins. When allowing d electrons to weakly interact between triangles,
the symmetry Eq. (17) means that (a component of) the dipole moment associated to the f
electrons is conserved.

2.3.4 Nonsymmorphic symmetries

When the space group is nonsymmorphic, namely when the space group is not a direct product
of a point group and translations, the extended point group becomes distinct from the point
group.

As an example, consider the space group pg, generated by translations and a glide consist-
ing of reflection about the x-axis (without loss of generality) combined with a half-translation.
An example lattice and its symmetries is given in Fig. 7b, where the two types of lattice site
are assumed to transform into each other under reflections about the x-axis only.

Using the same formalism and applying a glide, we obtain

φA,B(x)→ φB,A

�

Gx+ 1
2 (a1 + a2)
�

, (19)

where G = diag(1,−1). Now there is a nontrivial matrix acting on the coordinates rather than
simply a translation. The same formalism as earlier applies, but now instead of finding irreps
of the point group, we should find irreps of the extended point group Z2, which is generated
by the transformation

φA,B(x)→ φB,A (Gx) . (20)

This extended point group is isomorphic as a group to S/T where S is the space group and
T ⊂ S is the subgroup consisting of pure translations.

It is not hard to check that the irreps of the extended point group are xm ynvk, where
vk = (1, (−1)k)T with k = 0, 1. The irrep is trivial if n + k is even and nontrivial if n + k is
odd. After incorporating translations, it is straightforward to check that including xm ynvk in
the multipole group forces us to include xm′ yn′ vk for any 0 ≤ m′ < m, 0 ≤ n′ ≤ n. These
irreps form two decoupled copies of the tree in Fig. 2, one for each vk. The formalism we have
developed is therefore capable of constructing the allowed multipole groups to any desired
order on any lattice.
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3 Constructing models

Given a crystalline multipole group M, one would generally wish to construct models, both in
the continuum and on the lattice, with M symmetry in order to study the effect of these exotic
symmetries on interesting properties like their dynamics. In fact, as we will describe shortly,
there is reason to expect that some multipolar symmetries, particularly when the multipole
group is sub-maximal, can lead to highly interesting consequences like a sub-extensive number
of emergent conserved quantities at long wavelengths. Such models are also of interest to
guide the search for emergent multipolar symmetries in real materials. In this section we
explain how one may construct effective Hamiltonians and field theories given a multipole
group M.

3.1 Spin models

We can also view the polynomials that comprise the multipole groups M that we have con-
structed as corresponding to conserved multipole moments of a local charge density. The
construction of the multipole group ensures that we are able to write down Hamiltonians that
are invariant under the space group of the lattice and conserve these multipole moments.
Specifically, given spin-S degrees of freedom living on the sites of a lattice L, we would like to
construct tranlation-invariant Hamiltonians that conserve the multipole moments

Q̂[ f ] =
∑

i∈L
f (ri)Ŝ

z
i , (21)

of the local “charge density” Ŝz
i for all polynomials f (r) belonging to the multipole group

M. As we discussed in Sec. 2.3.3, in the presence of a basis, the weighting function f (r)
corresponds to an in-principle independent multipole moment on each basis site.

We now describe a systematic way to construct local Hamiltonians that conserve the mo-
ments (21) (with further details provided in Appendix D). The Hamiltonians are composed
of local “gates” ĥxα and their Hermitian conjugates. Gates are labeled by the index α (there
may be more than one type of gate compatible with the imposed conservation laws) and are
centered on x (which may or may not coincide with one of the basis sites). Hamiltonians built
from such gates take the general form

Ĥ =
∑

x,α

gα
�

ĥxα + ĥ†
xα

�

, (22)

where the gα are coupling constants. The gates ĥxα are local, acting on spins belonging to
a ‘cluster’ of spins C ⊂ L by incrementing or decrementing the z component of the spins by
integers nα(δ) in the vicinity of position x:

ĥxα =
∏

i∈C

�

Ŝsgn(nα(δi))
x+δi

�|nα(δi)|
. (23)

We will work exclusively with clusters of strictly finite support. This generic gate structure, or
a specific variant thereof, has previously been utilized in Refs. [14,30,36,42,43] to construct
Hamiltonians that conserve various moments of Ŝz

i . When evaluating the time evolution of
the charges (21) through their Heisenberg equation of motion, i∂tQ̂[ f ] = [Q̂[ f ], Ĥ], the co-
efficients nα(δ) that define the gate effect a discrete derivative Dα acting on the function f .
Importantly, the charge Q̂[ f ] will be a conserved quantity if the derivative Dα annihilates f
for all x, with this property being preserved under arbitrary perturbations (or operator inser-
tions in ĥxα, see Appendix D) that are diagonal in the Ŝz

i basis. Hence, we can systematically
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construct Hamiltonians of the form (22) that conserve a finite list of multipole moments f (r)
that form a multipole group M by identifying the possible discrete derivatives, specified by
{nα(δi)}, that annihilate all f (r), i.e., Dα f = 0. Producing a Hamiltonian that is invariant
under the space group from a given discrete derivative requires an extra step: One must find
the orbit of the discrete derivative under the action of the space group and include all such
operators as “gates” in Eq. (22) with equal weight gα (all such operators generated in this
manner from a valid discrete derivative are guaranteed to annihilate all polynomials belong-
ing to the multipole group). In this way, space group operations will then just permute the
gates, leaving Ĥ unchanged.

3.1.1 Constructing discrete derivatives

For a given multipole group, there are two handles that we can use to constrain the search for
possible discrete derivatives: (i) the local Hilbert space dimension through the spin, S, and
(ii) the size (and shape) of the cluster C . The size of the spin directly constrains the maximum
absolute integer change in Ŝz

i to be ≤ 2S, while reducing the size of the cluster C reduces the
dimension of the parameter space for the search; the total number of gates within a region of
size |C | is (2S + 1)|C |.

For convenience, we arrange the integers that define the gate into a ‘vector’ |nα), where
0 ≤ |nα| ≤ 2S. In this language, a judicious choice of origin3 allows us to write the action of
the discrete derivative as

(Dα f )(0) =
∑

i∈C

f (δi)nα(δi)≡ ( f |nα)
!
= 0 , (24)

while the group status ofM ensures that (Dα f )(x)will vanish for all x. Equation (24) therefore
states that any gate that is compatible with all conservation laws, specified by the integer
vector |nα), must be orthogonal to all vectors | f ) ∈ R|C | corresponding to polynomials that
belong to the multipole group. To touch base with continuum derivative notation natural for
field theoretic treatments, we can find the continuum derivative to which Dα coarse grains by
writing

(Dαg)(x) =
∑

i∈C

nα(δi)g(x+δi)

=
∑

n

n
∑

m=0

1
n!

�

n
m

�

(xn−m ym|nα)∂ n−m
x ∂ m

y g(x) , (25)

where, in the second line, we performed a Taylor expansion of the infinitely differentiable
function g(x) and replaced the sum over sites in the cluster with an inner product according
to Eq. (24). Hence, to find the overlap of Dα with continuum derivatives of the form ∂ m

x ∂
n
y ,

one simply has to evaluate the overlap between the vector |nα) that defines the discrete deriva-
tive and the vectorized monomial xm yn (weighted by the appropriate combinatorial factor).
Note that the reverse process – finding discrete derivatives from continuum derivatives – will
not in general produce valid discrete derivatives that annihilate all f . This failure can occur
when the multipole group is sub-maximal and a derivative of order m, strictly less than the
maximum polynomial degree n, annihilates all polynomials belonging to M. Requiring that
the discrete derivative coarse grains to the order-m derivative does not constrain its overlap
with derivatives of order ℓ > m. This spurious overlap with derivatives of order ℓ can then
prevent the order-ℓ polynomials from being annihilated by the discrete derivative. Indeed, this

3The group property of the multipole group allows us to shift the ‘origin’ at will: If ( f |nα) = 0 for all f ∈M,
then
∑

i∈C f (ri + t)nα(ri) = 0 for all t since f (ri + t) will generate a linear combination of polynomials belonging
to M.

19

https://scipost.org
https://scipost.org/SciPostPhys.15.6.235


SciPost Phys. 15, 235 (2023)

subtlety will be responsible for the interesting physical consequences that we discuss in Sec. 4.
One should therefore always solve Eq. (24) in order to find the correct discrete derivative
operators.

4 Physical consequences

We have explained how the possible multipole groups consistent with lattice symmetries may
be constructed on arbitrary lattices. We now illustrate the power of the above formalism by
exploring some physical consequences of multipolar symmetries. To this end, we pick one
striking phenomenon that has previously been discussed, and generalize it to arbitrary crystal
lattices, and also identify two remarkable phenomena that have not previously been discussed,
as far as we are aware, but which we encounter when we explore multipole groups on triangu-
lar and breathing Kagome lattices respectively. A common theme in many of these discussions
is the emergence of a (generally sub-extensive) set of conserved quantities at sufficiently long
wavelengths for certain sub-maximal multipole groups. We work in the continuum to motivate
the existence of these conserved quantities, and then identify examples with analogous behav-
ior on lattices that host degrees of freedom with strictly finite local Hilbert space dimensions,
subject to locality requirements.

4.1 General considerations – emergent symmetries

Given a scalar field φ (for simplicity) subject to some polynomial shift symmetries, the field φ
can only appear in a symmetry-respecting Lagrangian as Dαφ, where Dα is some derivative
operator that obeys

Dα f (x) = 0 , (26)

for all polynomials f (x) in the multipole group. The notation Dα is reserved for continuum
derivatives, in order to distinguish them from their discrete counterparts Dα. Consider a mul-
tipole group whose highest-degree polynomials are degree n; then any Dα of order (n+ 1) or
higher will solve the above equation. However, if the multipole group is sub-maximal, there
may exist some Dα of order m ≤ n that annihilate all polynomials belonging to the group.
As we will see, in some cases it may happen that the lowest-order Dα annihilate additional
polynomials g(x) that are not in the multipole group, although higher-order solutions will
generally not annihilate the additional polynomials. In this case, the additional polynomials
lead to additional quantities

Q[g] =
∫

d2x g(x)ρ(x) , (27)

where ρ(x) is the density operator of the scalar field, which are (emergently) conserved at
long wavelengths.

One of the simplest examples of this phenomenon is a theory on the square lattice (see
Sec. 2.2.3) that exhibits the following polynomial shift symmetries (see Ref. [43]):

f (x) ∈
�

1, x , y, x y, x2 − y2
	

. (28)

This is a valid multipole group; the polynomials x2− y2 and 2x y form distinct one-dimensional
irreps of the point group D4 (A−+ and A−−, respectively), and translation invariance requires
that charge and both components of dipole are also conserved (see the hierarchy in Fig. 3).
While this list of functions is annihilated by any third-order generalized derivative, all functions
are also annihilated by the two-dimensional Laplacian ∇2 = ∂ 2

x + ∂
2
y , which is second order

in derivatives and the only such operator. However, we may immediately observe that any
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harmonic function g(x), i.e.,∇2 g = 0, will also be annihilated by the lowest-order generalized
derivative∇2. Each such harmonic function g defines a quasi-conserved quantity via Eq. (27).
This infinite family of conservation laws is broken by higher-order, dangerously irrelevant
derivative corrections that cease to annihilate the harmonic functions.

4.2 Localization in discrete Laplacian models

It was recently shown in Ref. [30] that if the dynamics on a generic lattice is given entirely by
certain “discrete Laplacian” operators,4 then the system exhibits strong fragmentation lead-
ing to localization [13, 14]. In our language, such gates are of the form n∂ 2(0) = z and
n∂ 2(δ) = −1 for all vectors δ that connect a site to its z nearest neighbors (and the gate with
the signs of n∂ 2 flipped). We will see examples of these gates momentarily. Using the formal-
ism developed thus far, we are able to write down minimal valid multipole groups for which
discrete Laplacians are the smallest allowed gates. Therefore, if the gate sizes are restricted
to be the size of the discrete Laplacian and smaller, these symmetries are sufficient to enforce
strong shattering/fragmentation in two dimensions. We illustrate this by explicitly working
out the minimal necessary multipole group on the square and triangular lattices, although our
formalism could obviously be extended to obtain the minimal sufficient multipole group on
any lattice, in arbitrary dimensions.

4.2.1 Square lattice

For the square lattice, the minimal set of conserved multipole moments that is required to give
rise to localization and is compatible with space group symmetry is:

f (r) =
�

1, x , y, x y, x2 − y2
	

, (29)

which produces the discrete Laplacian gate

1

1

4

1

1 (30)

as the unique solution with smallest range. In (30), the color of a site denotes the sign of n(δi),
and the integer determines |n(δi)|, the combination of which determines the gate through
Eq. (23). Since x y and x2 − y2 transform as one-dimensional irreps of D4, we are able to
remove just one of them whilst maintaining a valid multipole group. However, removing x y
allows gates that correspond to discretizations of ∂ 2

x and ∂ 2
y separately. On the other hand,

removing x2− y2 permits lattice discretizations of ∂x∂y , which can be discretized on the sites
that surround a single plaquette, permitting operators with smaller range. The linear-order
polynomials are not required to eliminate the undesired gates, but are required by translation
symmetry.

4.2.2 Triangular lattice

On the triangular lattice, the set of multipole moments (29) is insufficient to fully constrain
the gate of smallest range to be uniquely determined; instead, there are two D3-symmetric
solutions with n(0) = z/2. This can be remedied by including an additional polynomial in the
multipole group:

f (r) =
�

1, x , y, x y, x2 − y2, x3 − 3x y2
	

, (31)

4While Ref. [30] does not require two dimensions or a translation-invariant lattice, we will specialize to crystal
structures that satisfy these requirements in the discussion that follows.
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which leads to the desired discrete Laplacian gate

1 1

1 1

1 16 (32)

as the unique solution. The polynomial y3 − 3x2 y can also be included in the multipole
group (31) without changing the fundamental solution (32). If y3 − 3x2 y is instead the only
third-order polynomial in the multipole group, then the allowed gates are no longer unique;
the same two solutions are permitted as for the set of multipole moments in Eq. (29).

4.3 Subsystem symmetries in 2D from O(1) symmetries

We now discuss the first of the apparently new phenomena that we discover by applying our
formalism, in this case to particular multipole groups on the triangular lattice. In particular,
we find that, for certain choices of the multipole group M, all gates up to a certain size –
parametrized by discrete derivatives – will additionally conserve (nonorthogonal) subsystem
symmetries along lines of the triangular lattice. In this way, if we restrict the support of the
possible gates, a finite list of conserved multipole moments on the triangular lattice will give
rise to a much stronger emergent subsystem symmetry, involving an O(L) number of emergent
conserved quantities for a lattice of linear dimension L.

We begin by considering the fourth-order polynomial f (x) = (x2+ y2)2, which transforms
according to the trivial representation, A++, of the point group D6 (see Table 2). The ‘descen-
dant’ polynomials of lower order k < 4 that must additionally be included for M to be closed
can be found in Fig. 4. We further suppose that the third-order polynomial f (x) = y3−3x2 y ,
which again transforms according to a one-dimensional irrep (A−+), is included in M. Note
that the addition of this extra polynomial does not require any new descendants beyond those
already included. Hence, our multipole group can be summarized as

f (x) ∈
�

(x2 + y2)2 + descendants, y3 − 3x2 y
	

. (33)

Despite the highest-order polynomial being of degree four, we are able to find a unique third-
order derivative that annihilates all polynomials: D1 = ∂ 3

x − 3∂x∂
2
y . If we had not included

f (x) = y3 − 3x2 y in M, we would additionally be able to introduce a second third-order
derivative, D2 = ∂ 3

y − 3∂ 2
x ∂y . We note in passing that the operator D1 also naturally appears

in the context of hydrodynamics in the presence of the point group D3, since it may be written
compactly as D1 = λi jk∂i∂ j∂k, with λi jk the third-order D3-invariant tensor [53,54].

At the level of continuum derivatives, the operator D1 on its own annihilates a much larger
family of functions than those belonging to M. This can be illustrated by considering functions
eik·x, on which D1 acts multiplicatively as∝ kx(kx +

p
3ky)(kx −

p
3ky). That is, any linear

combination of oscillatory functions that satisfy kx = 0 or kx = ±
p

3ky (i.e., those that do
not vary parallel to the triangular lattice directions, ex or ex ∓

p
3ey , respectively) will be

annihilated by D1. This leads to the same conservation laws as a subsystem symmetry: since
D1 will annihilate δ(y) and analogous functions for the other two lattice directions, charge is
conserved along every line that is parallel to each of the three lattice directions.

4.3.1 Lattice Hamiltonian

On the lattice, we can systematically construct discrete derivatives according to the procedure
outlined in Sec. 3.1.1. We will restrict our attention to regions of the triangular lattice con-
structed by finding all sites contained within a circle of radius ℓ. The origin will be arbitrary,
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but circles centered on sites will generate D6-symmetric clusters while those centered on trian-
gular plaquettes will generate D3-symmetric clusters, etc. Further, we will examine the most
highly constrained case corresponding to minimal on-site Hilbert space dimension: spin-1/2
degrees of freedom. Subject to these constraints, the solution with the smallest range is unique
and consists of spin raising and lowering operators acting around a hexagon (ℓ = 1+ ε, with
ε a positive infinitesimal):

D1 � (34)

where the red sites (say) correspond to spin raising operators, Ŝ+, and the blue sites to Ŝ−. We
omit the integer labels utilized in the gates (30) and (32) since we are working with spin-1/2
degrees of freedom. Hence, if (x, 1), . . . , (x, 6) label the spins around a hexagon surrounding
a lattice site x in a counter-clockwise direction [the colored sites in (34)], we have the “ring-
exchange” gate

ĥx = Ŝ+x,1Ŝ−x,2Ŝ+x,3Ŝ−x,4Ŝ+x,5Ŝ−x,6 , (35)

centered on sites, an interaction that is commonly found in the context of frustrated mag-
netism [55, 56]. The discrete derivative operator in Eq. (34), like the continuum derivative
to which it coarse grains (D1 = ∂ 3

x − 3∂x∂
2
y ), conserves charge along lines. From (34), we

observe that
∑

i∈γ n1(δi) = 0 for all lines γ that are parallel to the three triangular lattice
directions. Therefore, for every closed line connecting sites of the triangular lattice that is
parallel to one of the lattice directions, there exists a corresponding conserved charge. For a
lattice of L× L primitive unit cells (see Fig. 1), there are 3L such conserved charges, although
not all of these are independent. Hence, the behavior of the discrete derivatives mirrors that
of the continuum derivatives: in the discrete (continuous) case, the operator that annihilates
all polynomial moments with smallest range (with fewest derivatives) conserves charge along
lines parallel to lattice directions.

We may now enlarge the radius of the circle to look for discrete derivatives that annihi-
late the moments in (33) with larger range. Clearly, if the enlarged region includes multiple
hexagons of the form (34), we can form valid discrete derivatives by taking linear combinations
of the motif in (34) (as long as the resulting coefficients all satisfy the constraint |nα(r)| ≤ 1).
For instance, the operator

can be formed by taking a linear combination of solutions (34) on the central three sites form-
ing an ‘up’ triangle, and will exhibit precisely the same conservation laws as (34). As a result,
to find derivatives that do not preserve the constraint, we should restrict our search to oper-
ators that do not belong to the span of derivative operators of the form (34). The first such
operator appears at the radius ℓ satisfying 2ℓ=

p
19+ ε:

(36)

which ceases to conserve charge along lattice directions that are not parallel to x . Note that
derivative operators belonging to the orbit of (36) under symmetry operations will also be
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valid solutions. Further note that we present the derivative operator with the smallest support
by adding or subtracting operators of the form (34). The operator in (36) coarse grains to
the fourth-order continuum derivative∝ ∂x(∂ 3

y −3∂ 2
x ∂y). While the exact conservation law is

broken at the lattice scale by gates such as (36), in the long-wavelength limit, the subsystem-
symmetry-breaking gates are less relevant and lead to an infrared (IR) description in which
subsystem symmetry is broken only by higher-order, dangerously irrelevant corrections.

While we originally discovered this emergent subsystem symmetry on the triangular lattice,
it turns out that an analogous scenario can also be obtained on the square lattice. If we work on
the square lattice, with spin-1/2 degrees of freedom, and conserve x2n± y2n or {x2n+1, y2n+1},
for even and odd orders, respectively, then these polynomials (and their descendants) are all
annihilated by ∂x∂y , which has subsystem symmetry along lines parallel to the primitive lattice
vectors. The gate of minimal size that is compatible with the chosen multipolar symmetries is
then just ring exchange around a square plaquette, the consequences of which were discussed
in detail in Ref. [24]. Similar to the triangular lattice, there exist gates analogous to (36)
that break the microscopic subsystem symmetry, but in principle we could always add addi-
tional multipolar conservation laws to forbid the smaller subsystem-symmetry-breaking gates,
thereby ensuring that the smallest gate that breaks subsystem symmetry is larger than any
desired size.

4.3.2 Haar-random circuits

To test our prediction that subsystem symmetry emerges at sufficiently long length and time
scales, we perform simulations of Haar-random circuits that preserve the relevant conserved
quantities (33). In particular, we work with Haar-random gates that are large enough for
subsystem symmetry to be broken at the microscopic level, i.e., such that gates analogous
to (36) are included. For two-point correlation functions, we perform the Haar average exactly,
which gives rise to an effective stochastic automaton dynamics that can be simulated efficiently
[scaling as poly(L)] for large systems (similar mappings exist for other quantities evaluated
in Haar-random circuits, see, e.g., Refs. [57–60]). The mapping to automaton dynamics is
outlined in detail in Appendix E. To summarize briefly, the Haar-random circuit is mapped to
automaton dynamics that permits all symmetry-allowed transitions (with equal probability)
within a local region defined by the gate applied at each step.

As shown in Ref. [35], the Ward identity for charge conservation on the triangular lattice
in the presence of subsystem symmetry along lattice directions is

∂tρ + ∂1∂2∂3J = 0 , (37)

where the scalar current J is related to the charge density ρ via the constitutive relation
J = −λ∂1∂2∂3ρ at leading order, and the derivatives ∂1, ∂2, and ∂3 are directed along the
three triangular lattice directions. Equation (37) gives rise to the highly anisotropic decay
rate Γ (k) = λk6 cos2(3θ )/16, for density modulations of wave vector k, with (k,θ ) the polar
coordinates of k. That is, the decay rate Γ (k) has flat directions along θ = π/6+nπ/3 (arising
directly from subsystem symmetry) and scales with the sixth power of k. The Ward identity
(37) straightforwardly determines the correlation function of Ŝz

i through

〈Ŝz(r; t)Ŝz(0; 0)〉 ≃
1
3

S(S + 1)
1
L2

∑

k

eik·re−Γ (k)t , (38)

where the sum is over wavevectors k compatible with the periodic boundary conditions, and
the overline denotes an average over circuit geometries and of the gates over the circular uni-
tary ensemble (CUE), i.e., a Haar average. The function (38) is contrasted with the output
of the Haar-random circuit simulations in Fig. 9, which exhibit excellent agreement. There
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Figure 9: Comparison between the charge density autocorrelation function
Cz(r; t) = 〈Ŝz(r; t)Ŝz(0; 0)〉 obtained for a Haar-random circuit that conserves the
multipole moments (33) (left) and the corresponding hydrodynamic prediction (38)
(right). The correlation function is evaluated using an effective classical automaton
evolution that allows us to reach large systems and times. The spatial profile is illus-
trated at a fixed time, t = 5× 103, for a system of linear size L = 512.

is just one free parameter: the phenomenological subdiffusion constant λ. In the thermody-
namic limit, we find from (38) that Cz(r; t) decays slowly with distance as |r|−1/2 for r parallel
to one of the three triangular lattice directions, leading to distinctive sharp features that are re-
produced by the numerical simulations. The coincidence of the theoretical prediction (38) and
the random quantum circuit result verifies that the late-time behavior of correlation functions
under generic dynamics that conserves the moments in (33) is governed by an equation of mo-
tion that exhibits subsystem symmetry. That is, even though there is generically no subsystem
symmetry at the microscopic level, it nevertheless emerges at late times and long wavelengths
if we conserve the O(1) list of multipole moments in Eq. (33).

4.3.3 Discussion

It is known that sub-maximal multipole groups can exhibit additional emergent conservation
laws leading to unexpectedly slow dynamics controlled by dangerously irrelevant perturba-
tions. The U(1) generalization of Haah’s code is a central example of this [43]. Our formalism
can be used to construct many more models exhibiting such exotic physics on arbitrary lat-
tices. We have illustrated this by a particularly striking construction, where imposition of a
finite number of multipole moments on the triangular lattice leads to a robust emergent subsys-
tem symmetry broken only by gates acting on twenty four or more sites (a similar construction
can retrospectively be performed on the square lattice). If we limit the range of the gates such
that the subsystem symmetry becomes exact (albeit accidental), then we get the exotic lat-
tice consequences discussed in Ref. [24], including, for example, finite thickness ‘shields’ that
disconnect the system. If we allow for terms in the Hamiltonian with arbitrary range, then
the subsystem symmetry is eventually broken, but the subsystem-symmetry-breaking pertur-
bations are irrelevant such that long wavelength hydrodynamic behavior is still consistent
with subsystem symmetry (unless we specifically examine relaxation of subsystem symmetry
charges, in which case it will be controlled by dangerously irrelevant perturbations).

The constructions we present herein are interesting for multiple reasons. Firstly, of course,
there is the exotic quantum dynamics and hydrodynamics discussed above. Next, Haah’s code
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is a particularly interesting example of a fracton phase [61–65], which continues to challenge
several emerging paradigms (see, e.g., Refs. [66–68]). The U(1) generalization of Haah’s code
appears to inherit its exotic properties from a sub-maximal multipole group. We have provided
a route to the construction of a multitude of sub-maximal multipole groups on arbitrary lattices.
Going back from U(1) to Z2 might then provide a whole family of models analogous to Haah’s
code, opening a new chapter for the field. Finally, subsystem symmetry itself is of interest
[45,69–74], but is extremely unlikely to arise exactly in a microscopic Hamiltonian. We have
provided a general construction for how subsystem symmetry may be emergently obtained
from a finite number of conservation laws, which may also be useful for uncovering subsystem
symmetries in real materials.

4.4 Vector conserved quantities

In Sec. 2.3.3 we identified multipole groups for the breathing Kagome lattice (Fig. 8) that
did not require conservation of the z component of total magnetization

∑

i Ŝz
i (i.e., did not

require conservation of monopole charge). Here, we show that these multipolar conservation
laws instead produce an emergent two-component vector conserved charge density, and that
the smallest lattice derivatives additionally conserve moments of this vector density related to
holomorphic complex functions.

Consider the following list of multipole moments, which, according to Table 3, generate a
valid multipole group on the breathing Kagome lattice:

fa(r) ∈
�

vx , vy , xδvx − yδvy , xδvy + yδvx

	

, (39)

where xδ ≡ x−δx , with δx shorthand for the sublattice-dependent vector shift that appears in
Eq. (17) (analogously for yδ). While the list of multipole moments in Eq. (39) looks somewhat
unnatural, we are able to rewrite all position dependence of the polynomials in terms of the
nearest Bravais lattice sites as

fa(R) ∈
�

vx , vy , Rx vx − R y vy , Rx vy + R y vx

	

, (40)

where R corresponds to the position of the C3 rotation center associated with the three sites
(see Fig. 8), which are labeled by the index a. That is, when evaluating multipole moments,
sites are weighted according to the position of the rotation center to which they are associ-
ated. This point is discussed in further detail and motivated physically in Sec. 2.3.3. Unlike
the examples considered thus far, this multipole group does not require conservation of total
charge, which would correspond to conserving the moment specified by fa = v0 = (1,1, 1)T .
In what follows, it will be convenient to introduce the following set of unit basis vectors {e(a)}
for the triangular lattice

e(1) =
�

+
p

3
2 , 1

2

�

, e(2) =
�

−
p

3
2 , 1

2

�

, e(3) = (0,−1) . (41)

Since the three vectors are related to one another by C3 rotations, they satisfy
∑

a e(a) = 0.
Note that this choice permits us to rewrite the conservation laws in terms of a two-component
quantity Fk(R) via fa(R) = e(a)k Fk(R). In terms of Fk(R), the conservation laws simplify to

Fk(R) ∈
��

1
0

�

,

�

0
1

�

,

�

Rx
R y

�

,

�

R y
−Rx

��

. (42)

Recall that the functions fa(R) define conserved charges via Q̂[ f ] =
∑

R,a fa(R)Ŝz
R,a. Rewriting

these conserved charges in terms of Fk(R), we have

Q̂[F] =
∑

R,k

Fk(R)ρ̂k(R) , (43)
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where we have introduced the operators ρ̂k(R)≡ e(a)k Ŝz
R,a, which live on the Bravais lattice site

R. The conservation laws in (39) and (40) therefore imply that, while the total scalar charge
Q̂[1] =
∑

R,a Ŝz
R,a is not conserved, it is nevertheless possible to define an operator ρ̂k(R) living

on Bravais lattice sites with four conserved multipole moments:
∑

R

ρ̂k(R) ,
∑

R

R · ρ̂(R) ,
∑

R

R× ρ̂(R) . (44)

This follows from substituting (42) into (43). For convenience, we defined the two-
dimensional cross product as the z component of the conventional three-dimensional cross
product. Note that ρ̂k(R) indeed transforms as a vector under point group operations. Specif-
ically, C3 rotations, under which ρ̂k 7→ Ckℓρ̂ℓ, since three-fold rotations permute the spins
associated to a given Bravais site (Ckℓ is the rotation matrix for θ = 2π/3), and the generating
mirror x 7→ −x , under which ρ̂x 7→ −ρ̂x and ρ̂y 7→ ρ̂y .

As shown in Sec. 3.1, we can construct lattice Hamiltonians that satisfy these conservation
laws by finding (discrete) derivatives that annihilate the list of conserved functions in Eq. (39)
[or, equivalently, Eq. (42)]. While any second-order derivative will annihilate the polynomials
in Eq. (42), there also exists a particular solution composed of first-order derivatives. Namely,
the derivative operators (∂x ,−∂y) and (∂y ,∂x) will also annihilate all moments Fk(R). How-
ever, these lowest-order derivatives additionally conserve a much larger family of functions
beyond the finite list in Eq. (42). Any two-component function gk(r) that satisfies

−∂x gx + ∂y g y = 0 , (45a)

∂y gx + ∂x g y = 0 , (45b)

will be annihilated by the first-order derivative operators that we have identified. These equa-
tions are simply the Cauchy-Riemann equations whose solutions define the holomorphic func-
tions. Hence, any holomorphic function will be annihilated by the pair of first-order deriva-
tives (∂x ,−∂y) and (∂y ,∂x). In particular, the conserved first-order moments

∑

R R · ρ̂(R) and
∑

R R × ρ̂(R) appearing in Eq. (42) correspond to the holomorphic functions g(z) = z and
g(z) = iz, respectively, where the x (y) component is recovered from the real (imaginary)
part of the complex-valued function g(z). More generally, the first-order derivatives will an-
nihilate all functions spanned by g(z) = zn and g(z) = izn for n ∈ N0. Such holomorphic
conserved charges also arise in the context of hydrodynamics in the presence of a triangular
point group when the current tensor transforms in the vector representation of D3 [53].

4.4.1 Lattice Hamiltonian

To put the theory on a lattice comprised of spin-1/2 degrees of freedom, we are tasked with
finding discrete derivatives defined by a set of integer coefficients nα(δ) satisfying |nα(δ)| ≤ 1
that annihilate the list of functions in Eq. (39). Explicitly, for a cluster C composed of Bravais
sites R and basis sites a, we require that (Dα f )(x) =

∑

i∈C nαai
(∆i) fai

(x+∆i) = 0, where ∆i
is the displacement between the Bravais site associated with the site i and the center of the
cluster x (see Appendix D for further details). As before, we will consider clusters defined by
finding all sites contained within a circle of radius ℓ. Considering first a single ‘down’ triangle,
we find the solution

D0 � (46)

which adds or subtracts charge from the three sites associated to a given Bravais lattice
site. The derivatives can also be expressed in terms of their action on discrete Fi(R) via
(Dα f )(x) =
∑

I∈C ,a e(a)k nαa(∆I)Fk(x +∆I), where the index I labels the Bravais lattice sites
(we assume that the cluster C encompasses all a associated with each included Bravais site).
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We may therefore define the discrete derivative (D̃αF)(x) =
∑

I∈C ñαk(∆I)Fk(x+∆I), i.e., we

define a set of coefficients ñαk(∆)≡
∑

a e(a)k nαa(∆)which are associated to Bravais lattice sites
(the coefficients ñα may no longer be integer valued). Note that the gate D0 in (46) leaves
ρ̂i unchanged since the basis vectors e(a) sum to zero (equivalently, D̃0 is the trivial derivative
operator with ñαi = 0). Next, we enlarge our search to include regions of that lattice that in-
clude up to three ‘down’ triangles. We find nontrivial solutions centered on both ‘up’ triangles
and on hexagonal plaquettes

D1 � D2 � (47)

The gates related to (47) by C3 rotations are also valid solutions, which allows us to construct
a Hamiltonian that is invariant under the space group. Up to these symmetry-equivalent so-
lutions [and addition or subtraction of the solution in (46)], the gates in (47) are unique,
although considering clusters of increasing size will eventually yield solutions that are linearly
independent from (46) and (47). Upon coarse graining, the derivative operators D̃1 and D̃2
become precisely the operator (∂x ,−∂y) identified previously, i.e.,

D̃1 ∼
1
2

�

p
3

1

11
,

2

11

�

→
p

3
2 (∂x ,−∂y) , (48a)

D̃2 ∼
1
2

�

p
3

1

11

,
2

11

�

→
p

3
2 (∂x ,−∂y) , (48b)

where the sites depicted now correspond to the triangular Bravais lattice formed by the cen-
ters of ‘down’ triangles. Their C3-rotated variants coarse grain to a linear combination of
(∂x ,−∂y) and (∂y ,∂x). Hence, as shown in Appendix D, the equations that define which func-
tions are conserved by the Hamiltonian are precisely discrete versions of the Cauchy-Riemann
equations (45), whose long-wavelength solutions will give rise to (approximate) holomorphic
conserved charges. In a similar manner to Sec. 4.3, even allowing for terms in the Hamiltonian
with arbitrary range, the derivative operators that break holomorphic charge conservation are
irrelevant. As a result, long-wavelength relaxation is determined by an equation of motion
that preserves the holomorphic charges discussed herein.

4.4.2 Discussion

We have identified an exotic and (as far as we know) hitherto unknown possibility – a con-
served multipole group that does not conserve monopole charge – and have identified a con-
crete realization on the breathing Kagome lattice. We have pointed out that this multipole
group conserves an emergent vector charge, plus all holomorphic functions of this vector
charge. This constitutes a new and exotic class of problem, for which exploration of the ther-
modynamics and dynamics promises to be a particularly interesting challenge for future work.
It also provides a ‘proof of principle’ of qualitatively new physics that is only accessible on
nonhypercubic lattices, and thus can only be accessed through our formalism, or something
analogous.

5 Conclusions

We have presented an algorithmic procedure by means of which one may construct all con-
sistent conserved multipole groups to any desired order on arbitrary crystal lattices, and may
further construct the minimal continuum field theory and lattice Hamiltonian consistent with
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said conservation laws. The procedure for constructing consistent multipole groups is as fol-
lows: given a space group, compute the extended point group and sort polynomials in the
spatial coordinates into irreps. Then, for each Wyckoff position, decompose the permutation
action of the extended point group on the basis sites into irreps. Using Clebsch-Gordon coeffi-
cients, combine the above irreps into irreps of the full extended point group. Finally, compute
the translation mixing. This method is dimension- and lattice-independent, and can thus be
applied to arbitrary crystal lattices. As such, it provides a complete in principle classification
of the multipolar problem on arbitrary lattices. The procedure is labor intensive, so we have
only carried it out for a representative set of lattices in two dimensions (all two dimensional
Bravais lattices, plus Kagome and breathing Kagome). However, extension to, e.g., all 230
space groups in three spatial dimensions would be straightforward, albeit tedious. An explicit
classification for all known crystal structures would be a worthwhile challenge for future work.

We have explored some interesting physical consequences using our construction. As a
warmup, we have identified the minimal set of symmetries required to get localization from
strong fragmentation on the square and triangular lattices (using a method that could be gen-
eralized to any lattice). We have also identified two phenomena that do not appear to have
been appreciated before. One involves an emergent subsystem symmetry arising from imposi-
tion of a finite number of multipolar conservation laws. The second new phenomenon has no
known analog on hypercubic lattices whatsoever – it turns out that on the breathing Kagome
lattice, one can define a consistent multipole group that does not include monopole. Thus, one
can write down consistent translation invariant Hamiltonians that conserve certain multipole
moments of charge, but do not conserve total charge itself! Nevertheless, these models do
conserve an emergent ‘vector’ charge, as well as all holomorphic functions thereof. This con-
stitutes a striking and novel scenario, deserving of more detailed exploration in future work.

Our formalism opens up new directions for multiple lines of research. At the most ba-
sic level, it provides a guide to the construction of new fracton models on nonhypercubic
lattices.5 Particularly interestingly, it allows us a way to identify consistent sub-maximal mul-
tipole groups. Given that the sub-maximal group appears to be the ‘secret ingredient’ that
endows Haah’s [U(1)] code with its uniquely exotic properties, it offers a route to the con-
struction of a whole family of models analogous to Haah’s code, on lattices other than cubic.
Haah’s code is the least well understood fracton model, challenging many paradigms [66–68],
and construction of a family of models analogous to Haah’s code might open up new direc-
tions for research into fracton phases. Given that Haah’s code has interesting properties as a
quantum memory [75,76], such models may also be useful for quantum information. On an-
other front, subsystem symmetries are of considerable current interest [45,69–71], but given
that subsystem symmetries involve infinitely many conservation laws, it is not clear how such
symmetries could arise in nature. We have provided constructions through which imposition
of a finite number of multipolar conservation laws can lead to the emergence of subsystem
symmetry, which could help guide the search for realizations of subsystem symmetries in na-
ture. (It should be noted, however, that multipolar symmetries other than dipolar are already
challenging to realize, as discussed in Ref. [13]). On a third front, our explorations have led us
to discover new phenomena that have no known analog on (hyper)cubic lattices – for instance
the possibility of having systems that do not conserve charge, but do conserve certain multipole
moments of charge. This opens a new direction for the study of fracton phases and associated
phenomena on general lattices, and demonstrates that there is qualitatively new physics to be
found. Furthermore, our work can guide the search for fracton physics and associated phe-
nomena in real materials – many of which are not based on square or cubic lattices. Note that
crisp experimental diagnostics for fracton phases have been identified in Refs. [77–79].

5Strictly, construction of a fracton model requires identification of a consistent multipole group followed by
gauging of the polynomial shift part thereof.
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Finally, we have thus far limited ourselves to systems where all symmetries of the Hamilto-
nian are preserved. It would be very interesting to examine spontaneous symmetry breaking
of crystalline multipole groups. Either the space group part or the polynomial shift part of the
symmetry could be broken, and the interplay between discrete spatial symmetries and contin-
uous polynomial shift symmetries could lead to interesting effects. One could even consider
exotic possibilities like breaking a spatial symmetry and a polynomial shift symmetry but pre-
serving the product. An exploration of such exotic symmetry breaking phenomena is an(other)
interesting challenge for future work.
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A Group theory

Since our results rely heavily on sorting polynomials into irreps of finite groups, such as DM ,
we briefly list their irreps and summarize the notation that we use to denote them.

A.1 Irreducible representations of DM

Let r denote reflection through a fixed symmetry axis of an M -gon, and let C denote a rotation
through an angle θM = 2π/M about the center of the M -gon. The group DM can then be
written as

DM =



C , r
�

�C M = r2 = I, rC r = C−1
�

. (A.1)

The irreps of DM depend on whether M is even or odd. For even M , there are four one-
dimensional irreps and M/2−1 two-dimensional irreps. We use the following notation for the
four one-dimensional irreps:

Aσν(C) = σ , Aσν(r) = ν , (A.2)

with σ,ν ∈ {1,−1}. The two-dimensional irreps are indexed by an integer k = 1, . . . , M/2−1,
and are denoted

Ek(C) =

�

cos kθM − sin kθM
sin kθM cos kθM

�

, Ek(r) =

�

−1 0
0 1

�

. (A.3)

When M is instead odd, the two one-dimensional irreps A−+ and A−− are removed, leaving
the two irreps A++ and A+−.

A.2 Sorting polynomials into irreps

There are two algorithmic ways to sort polynomial shift symmetries into irreps of the extended
point group. The first method is a simple one to perform on a computer. Fix a Wyckoff position
of multiplicity w. By construction, each extended point group operation maps a collection of
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w homogeneous polynomials of degree n to another collection of homogeneous polynomials
of degree n, so we may restrict our attention to the case where all basis sites transform via
a homogeneous polynomial of degree n. The set of all such transformations is spanned by
the transformations fi(r) = δi,i0 xm yn−m for all i0 = 1,2, . . . , w and m = 0,1, . . . , n. Viewing
these transformations as a basis |i0, m〉 for the set of polynomial shift symmetries under con-
sideration, it is easy to compute directly how extended point group operations act on these
transformations. For example, for n= 2 on the honeycomb lattice, rotations take

C |1, 2〉= C

�

x2

0

�

=

�

0
�

1
2 x +

p
3

2 y
�2

�

=
1
4
|2,2〉+

p
3

2
|2, 1〉+

3
4
|2, 0〉 . (A.4)

This gives us a matrix representation of each extended point group operation. Given such
a matrix representation M(g) for g ∈ G, where G is the group in question, and given the
characters χℓ(g) where ℓ labels a representation of G, one can construct the projector Pℓ onto
the representation ℓ via the formula

Pℓ =
1
|G|

∑

g∈G

χℓ(g)M(g) . (A.5)

The eigenvectors of this projector with eigenvalue 1 are a basis for the polynomials which
transform under the given representation ℓ. One can then convert this into any convenient
basis.

The second method is analytical and uses the Clebsch-Gordon coefficients of the extended
point group. First, one can decompose the polynomials {x , y} into irreps of the pure coordinate
transformations r→ sr. All higher-order polynomials are formed as (tensor) products of some
of these irreps with themselves; using Clebsch-Gordon coefficients, one can decompose those
tensor products into irreps of these pure coordinate transformations. For example, under
the extended point group D4, {x , y} forms the two-dimensional representation E1. Hence
quadratic polynomials all appear in the tensor product E1 ⊗ E1 = A++ ⊕ A+− ⊕ A−+ ⊕ A−−.
Using the Clebsch-Gordon coefficients, we find that the A++ representation is x2+ y2, the A−−
representation is 2x y , the A−+ representation is x2− y2, and the A+− representation is 0 (and
thus not present). This procedure can then be iterated; cubic polynomials are formed from
(tensor) products of the linear polynomials and quadratic polynomials, and so on. A similar,
related approach is to restrict polynomial representations of O(2) to representations of DM via
“branching rules” [80,81].

This is the complete classification procedure if the lattice is a Bravais lattice. In the pres-
ence of a basis, we notice that the permutation action of the extended point group on the fields,
and in particular on each Wyckoff position, also produces a (not necessarily irreducible) rep-
resentation of the extended point group. This representation is also the representation formed
by constant polynomial shift symmetries (since the coordinate transformation does nothing to
constant shift symmetries) and can be decomposed straightforwardly into irreps, potentially
using the projector method as above. The overall action of the extended point group on the
fields is the tensor product of this permutation action with the action of pure coordinate trans-
formations. Hence the decomposition into irreps consists of choosing a permutation irrep (i.e.,
constant polynomial shift symmetry), tensoring with a coordinate transformation irrep (i.e.,
a polynomial), and using Clebsch-Gordon coefficients to decompose the tensor product into
irreps. For example, on the honeycomb lattice the permutation action is represented as the
A++ ⊕ A−− representation of D6, where the A++ represents sublattice-even shift symmetries
and A−− represents sublattice-odd symmetries. Hence, each irrep of the extended point group
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is just the tensor product of the irreps formed by pure polynomials (which are identical to
those of the triangular lattice) with one of these permutation irreps. Since the permutation
irreps are all 1D, the Clebsch-Gordon coefficients are very simple

A.3 Clebsch-Gordon coefficients for DM

For convenience, we list the Clebsch-Gordon coefficients for DM in the reflection eigenbasis.
One derivation is given in Ref. [82] in the rotation eigenbasis. We make a notation change for
this appendix; instead of referring to the one-dimensional irreps of DM as Aσ,ν, we will refer to
them as Aµ,ν for µ= 0, M/2, where µ= 0 corresponds to σ = +1 and µ= M/2 corresponds to
σ = −1. This notation makes several of the Clebsch-Gordon coefficients significantly simpler.

We first give the rules for which representations appear in the tensor product:

Aµ,ν ⊗ Aµ′,ν′ = Aµ+µ′,νν′ , (A.6)

Aµ,ν ⊗ Eµ′ = Eµ+µ′ = E−(µ+µ′) , (A.7)

Eµ ⊗ Eµ′ =



















A0,+ ⊕ A0,− ⊕ E2µ , µ= µ′ ̸= M
4 ,

A0,+ ⊕ A0,− ⊕ AM/2,+ ⊕ AM/2,− , µ= µ′ = M
4 , if M even ,

AM/2,+ ⊕ AM/2,− ⊕ Eµ−µ′ , µ+µ′ = M
2 , and µ ̸= µ′ ,

Eµ+µ′ ⊕ Eµ−µ′ , else .

(A.8)

The Clebsch-Gordon coefficients themselves are only nontrivial when at least one repre-
sentation involved is 2D. We label the basis for a 2D irrep Eµ as |µ;±〉 where the generating
mirror r acts as

r |µ;±〉= ±|µ;±〉 . (A.9)

Suppose the 1D irrep Aµ,ν acts on the 1D vector space spanned by |Aµ,ν〉. Then the coefficients
for Aµ,ν ⊗ Eµ′ are,

|µ+µ′;+〉= |Aµ,ν〉 ⊗ |µ′,ν〉 , (A.10a)

|µ+µ′;−〉= |Aµ,ν〉 ⊗ |µ′,−ν〉 . (A.10b)

Before giving the coefficients for Eµ⊗ Eµ′ , we recall that Eµ = E−µ; in the formulas that follow,
we take the convention µ′ > 0 and µ takes whatever sign is appropriate to produce the value
of µ+µ′ in question. When considering Eµ⊗ Eµ′ , one generally must consider both µ and −µ
to obtain all possible irreps in the product. For Eµ ⊗ Eµ′ , we have

|Aµ+µ′,ν〉=
1p
2

�

|µ;+〉 ⊗ |µ′;ν〉 − ν sgn(µ) |µ;−〉⊗ |µ′;−ν〉
�

, (A.11)

when µ and µ′ satisfy µ+µ′ ∈
�

0, M
2

	

, and

|µ+µ′;ν〉= 1p
2

�

|µ;+〉 ⊗ |µ′;ν〉 − ν sgn(µ) |µ;−〉⊗ |µ′;ν〉
�

. (A.12)

B Vector charge theory

In the main text, we assume that the fields in question transform as scalars under space group
operations. This need not be the case; here, we show how the multipole group classification
problem is modified if the field is not a scalar. In particular, this is necessary to produce a
multipole symmetry group that, when gauged, produces the (2+1)D symmetric tensor vector
charge theory [1,83,84] with Gauss’ Law

∂i Ei j = ρ j . (B.1)
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Suppose that we have a square lattice with two sites per unit cell, one on each bond of the
square lattice. We call the fields on the x/y-directed bondsφx/y(r). Take the space group to be
p4m, with point group D4, and assume that the fields transform under point group operations
as

C :

�

φx(r)
φy(r)

�

→
�

φy(MCr)
−φx(MCr)

�

, (B.2a)

r :

�

φx(r)
φy(r)

�

→
�

−φx(Mrr)
φy(Mrr)

�

, (B.2b)

where C is a four-fold rotation, and the generating mirror r sends x ↔ −x . The minus
signs on the field are the new, crucial ingredient; we have assumed that φi transforms like
a vector under D4. The constant polynomial shift symmetries (1, 0)T and (0, 1)T now trans-
form as the 2D irrep E1 of D4; the only way to conserve total charge while staying consistent
with the space group is to conserve a vector-valued charge, where the components are the
φx charge and φy charge. This is indeed a conserved charge of the vector charge theory, as
expected, and it is quite different from the case where the fields are simply permuted under
point group operations. At degree one, the polynomial shift symmetries in question are all
one dimensional; labeling representations of D4 as in Appendix A, they are (x ,−y)T (A++),
(x , y)T (A−+), (y, x)T (A+−), and (y,−x)T (A−−). Choosing the multipole group to be gen-
erated by (y,−x)T , (1, 0)T , and (0,1)T (the first set of polynomials generates the latter two
via translations) produces the usual vector charge theory, which conserves the corresponding
charges
∫

d2r (r×ρ)z and
∫

d2rρ.

C Discrete vs continuous translations

Given some vector of polynomials fi(r) in the multipole group, consider performing any dis-
crete translation that could appear as part of a space group operation:

fi(r)→ fi(r+ ℓai) , (C.1)

where ai is a lattice translation (that may in general depend on i) and ℓ is any integer that
represents the number of times the discrete translation in question is being performed. We
require that fi(r + ℓai) is also in the multipole group for every ℓ in order to have a closed
multipole group. Listing out these polynomials is in general very tedious, as they will generally
contain monomials of all degrees less than the degree of fi(r) (call this degree n). We claim
that the collection of polynomials spanned by fi(r+ℓai) for all ℓ is the same as the collection of
polynomials spanned by the procedure discussed in the main text, namely where we formally
take ℓ infinitesimal, generate a collection of polynomials of degree n− 1, and then repeat the
process for the newly generated polynomials.

Without loss of generality, let ai be oriented along the x-axis; for a general direction, all
partial derivatives may be replaced by directional derivatives. The power series expansion of
a polynomial f of finite degree yields

f (r+ ℓai) =
n
∑

j=0

(ℓ|a|) j

j!
∂ j

∂ x j
f (r) . (C.2)

The highest term n is the maximum power of x appearing in f , which is, of course, bounded
from above by the degree of f . Observe that ∂ j f /∂ x j always contains a term involving xn− j yk

(for some fixed power k) but never any terms involving a larger power of x . Therefore, the n+1

33

https://scipost.org
https://scipost.org/SciPostPhys.15.6.235


SciPost Phys. 15, 235 (2023)

polynomials ∂ j f /∂ x j are linearly independent as elements of the vector space of polynomials
over R. We claim that this set of n + 1 polynomials spans the same subspace as the set of
f (r + ℓai) for all integer ℓ. Equation (C.2) immediately shows that the span of the latter
set is contained in the span of the former. To see the other way around, consider the n + 1
polynomials given by ℓ = 1, 2, . . . , n + 1. Writing these polynomials in the basis given by
∂ j f /∂ x j , we obtain a set of vectors









1 11 12 · · · 1n

1 21 22 · · · 2n

...
...

...
. . .

...
1 (n+ 1)1 (n+ 1)2 · · · (n+ 1)n









. (C.3)

This is a Vandermonde matrix with nonzero determinant since no two of its rows are equal.
Therefore, it is invertible, and its inverse is a basis transformation that expresses the ∂ k f /∂ x j

as a linear combination of the f (r + ℓai) with our chosen values of ℓ, so the span of the
derivatives is contained in the span of the translates. In particular, ∂ f /∂ x is in the span of the
translates. By symmetry, ∂ f /∂ y is as well.

We summarize the above argument as follows: given a lattice translation ai , the directional
derivative (ai · ∇) j fi for all j span the same space of polynomials as the translates fi(r+ ℓai)
for all ℓ. It remains to show that given another lattice translation a′i , the mixed derivatives
(ai ·∇) j(a′i ·∇)

k fi spans the same space of polynomials as fi(r+ℓai+ma′i). We can simply repeat
the above argument, but applied to (a′i · ∇)

k fi . Then we can conclude that (ai · ∇) j(a′i · ∇)
k fi

spans the same polynomials as (a′i ·∇)
k fi(r+ℓai). Applying the same argument again, we see

that the latter spans the same polynomials as fi(r+ ℓai +ma′i), as desired.

D From discrete derivatives to spin Hamiltonians

D.1 Bravais lattice

Consider a given discrete derivative Dα on a Bravais lattice defined by its action on discrete
functions (Dα f )(x) =

∑

i∈C nα(δi) f (x+ δi). The real coefficients nα(δi) are associated with
site i, which is displaced by δi from the center of the cluster of sites C (which we take to be
∑

i∈C δi). Note that x, the displacement of the center of the cluster, might not be centered
on sites of the Bravais lattice (e.g., x may correspond to the plaquettes or the bonds of the
lattice). The positions x+δi always correspond to Bravais lattice sites, however. Suppose that
the coefficients nα(δ) are all integer valued (perhaps by removing a common factor). If the
integer-valued coefficients satisfy |nα(δ)| ≤ 2S, we can then define a Hamiltonian using the
discrete derivative Dα acting on spin-S degrees of freedom:

Ĥ =
∑

x

ĥxα + ĥ†
xα , (D.1)

where we have defined the local “gate” ĥxα associated to the discrete derivative Dα acting on
the sites belonging to the cluster C centered on x

ĥxα =
∏

i∈C

�

Ŝsgn(nα(δi))
x+δi

�|nα(δi)|
. (D.2)

The sign of the coefficients, sgn(nα(δ)) ∈ {+, 0,−} (where sgn0= 0), determine whether the
site δ in the cluster is associated to a spin raising or lowering operator. Turning the prob-
lem around, given spin-S degrees of freedom, the restriction |nα(δ)| ≤ 2S can impose strong

34

https://scipost.org
https://scipost.org/SciPostPhys.15.6.235


SciPost Phys. 15, 235 (2023)

constraints on the discrete derivatives that form valid Hamiltonians. In the most highly con-
strained case – spin-1/2 degrees of freedom – the permitted derivative operators must satisfy
nα ∈ {−1,0, 1} only. The utility of the construction in (D.1) is that the Hamiltonian conserves
the moments of “charge” defined by functions f that are annihilated by the discrete derivative
Dα. Explicitly, consider the putatively conserved operator Q̂[ f ], which weights the z compo-
nent of spin according to the function f (r)

Q̂[ f ] =
∑

r

f (r)Ŝz
r . (D.3)

This corresponds to the f (r) moment of the local “charge density” Ŝz
r , with total charge

Q̂[1] =
∑

r Ŝz
r being recovered for the unit function f (r) = 1. Making use of the commu-

tation relations [Ŝz
i , (Ŝsgn n

j )|n|] = nδi j(Ŝ
sgn n
i )|n| (n ∈ Z) for spin-S degrees of freedom, we find

that

[Q̂[ f ], Ĥ] =
∑

x

�

∑

i∈C

nα(δi) f (x+δi)

�

�

ĥx − ĥ†
x

�

(D.4a)

≡
∑

x

(Dα f )(x)
�

ĥx − ĥ†
x

�

. (D.4b)

That is, the commutator between Q̂[ f ] and the Hamiltonian in (D.1) composed of local
gates effects a discrete derivative on f . Hence, any function f satisfying Dα f = 0 defines
a corresponding conserved charge ∂tQ̂[ f ] = 0. In particular, if the coefficients nα(δ) satisfy
∑

i∈C nα(δi) = 0, then Dα will annihilate the unit function f (r) = 1 and total charge Q̂[1] will
be conserved by dynamics generated by (D.1). Note that the arguments can also be applied in
reverse: Given a Hamiltonian of the form (D.1), one can identify a family of conserved charges
Q̂[ f ] by solving the equations Dα f = 0.

D.2 Introducing a basis

Now consider introducing a q-spin basis at each site of the Bravais lattice labeled by an index
a = 1, . . . , q. The action of a discrete derivative is still (Dα f )(x) =

∑

i∈C nα(δi) f (x+δi), where
δi is now the displacement of the basis site i from the center of the cluster C . However, we
can alternatively index the derivative coefficients and the function f according to Bravais sites
and a basis index. In this case, the discrete derivative may be written

(Dα f )(x) =
∑

i∈C

nαai

�

∆I(i)
�

fai

�

x+∆I(i)
�

, (D.5)

where x+∆I(i) corresponds to the position of a Bravais site and I(i) labels the Bravais lattice
site associated to site i. That is, the vectors ∆I are displacements of the Bravais sites from the
center of the cluster (now defined as

∑

I∈C ∆I , which is identical to q−1
∑

i∈C ∆I(i) if C contains
all basis sites associated with each Bravais site). Note that this is merely a reparametrization
of the discrete function. Specifically, we are not assuming that the function depends only on
the position of the Bravais site. For example, in the labeling scheme employed in (D.5), the
function f (r) = r2 would become fa(R) = (R + δa)2, where δa is the vector that connects
Bravais site R to basis site ra. In this language, the putatively conserved quantities Q̂[ f ] are
now parameterized by a function fa(R) that depends on both the Bravais lattice site R and the
index a:

Q̂[ f ] =
∑

R,a

fa (R) Ŝ
z
R,a . (D.6)
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Again, we stress that whether f (r) is a function of r or R(r) is a choice that is determined by
the physics of the problem, but both cases are handled by the notation in (D.6). Suppose that
the Hamiltonian now comprises multiple gates labeled by the integer α

Ĥ =
∑

x,α

gα
�

ĥxα + ĥ†
xα

�

, (D.7)

with coupling constants gα. Repeating the calculation that led to (D.4a), we find that the time
evolution of the charge Q̂[ f ] is determined by

∂tQ̂∝
∑

x,α

gα

�

∑

i∈C

nαai
(∆I(i)) fai

(x+∆I(i))

�

�

ĥxα − ĥ†
xα

�

, (D.8)

which implies that Q̂[ f ] is a conserved quantity under dynamics generated by (D.7) if all
discrete derivatives annihilate the function fa(R).

D.3 Additional symmetries

Note that the Hamiltonians in Eqs. (D.1) and (D.7) possess additional symmetries, as pointed
out in, e.g., Refs. [14, 30]. For instance, the parity operator Π̂x ≡

∏

i eiπŜx
i commutes with

the Hamiltonians (D.1) and (D.7) since Π̂x has the effect of interchanging Ŝ+i with Ŝ−i , i.e.,
Π̂x Ŝ±i Π̂x = Ŝ∓i , therefore interchanging the gates ĥxα ↔ ĥ†

xα. We may, however, add any
perturbation that is diagonal in Ŝz

i basis to the Hamiltonian while maintaining the conserved
operators (D.3) and (D.6), since this will not affect the commutators in Eqs. (D.4a) and (D.8).
Because the discrete symmetry Π̂x anticommutes with Ŝz

i , it only remains a conserved quantity
if the perturbation consists of an even number of Ŝz

i operators. The anticommutation of Π̂x

and Ŝz
i also implies that Π̂x and the multipole moments Q̂[ f ] anticommute. Hence, if Π̂x does

commute with the Hamiltonian, the sectors with quantum numbers {Q[ f ]} and {−Q[ f ]}, for
all f that are conserved by Ĥ, will have precisely the same spectrum.

D.4 More general Hamiltonians

As noted in the previous subsection, the Hamiltonians (D.1) and (D.7) will conserve the same
family of charges Q̂[ f ] if they are subjected to arbitrary perturbations that are diagonal in
the Ŝz

i basis. In fact, the statement is more general: even the gates ĥxα themselves can be
‘decorated’ by operator insertions that commute with Ŝz

i . To illustrate this, consider a one-
dimensional lattice (with no basis) that hosts a theory conserving only total charge

∑

i Ŝz
i . The

smallest gate of the form (D.2) that can be written down is simply ĥi,1 = Ŝ−i Ŝ+i+1, which hops
‘charge’ one unit to the right. The next smallest operator of the form (D.2) is ĥi,2 = Ŝ−i−1Ŝ+i+1,
which hops charge two units to the right. However, taking the product of two adjacent gates
ĥi−1,1ĥi,1 = Ŝ−i−1Ŝ+i Ŝ−i Ŝ+i+1 differs from ĥi,2 by the operator Ŝ+i Ŝ−i on the central site (physically,
a hop of two units to the right cannot be exactly decomposed into two sequential hops, since
charge on the central site may interfere with the sequential hopping process). Since Ŝ+i Ŝ−i
commutes with Ŝz

i , the operators ĥi−1,1ĥi,1 and ĥi,2 effect exactly the same discrete derivative
(∼ ∂x) and therefore possess the same conserved quantities. As a result, the gates that we
identify using the methods described in the main text are ‘canonical’ in the sense that they
conserve all relevant f (x) and all such diagonal operator insertions are absent; more complex
gates can then of course be constructed by introducing such diagonal operators.
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E Haar-random circuits and automaton dynamics

In the main text we confirmed that random circuits that conserve the finite list of multipole
moments in Eq. (33) exhibit subsystem symmetry at long wavelengths. Here, we provide
extra details pertaining to these simulations. In particular, we show how the Haar-random
circuits can be simulated efficiently by mapping to an effective automaton-like time evolution
controlled by a ‘transfer matrix’.

We work with spin-1/2 degrees of freedom that live on the sites of an L×L triangular lattice
satisfying periodic boundary conditions. Acting on these degrees of freedom, we consider a
quantum circuit with a random geometry composed of Haar-random gates acting on clusters
of sites. That is, rather than the standard “brickwork” geometry of gates, the location of each
gate is chosen at random from a uniform distribution over the lattice (and one unit of time is
defined as an extensive number of such random gate applications). For a given cluster acting
on a region ℓ, the unitary gate has the following structure

Ûℓ = 1ℓ̄ ⊗
⊕

α

uα , (E.1)

where ℓ̄ is the region of the lattice complementary to the gate region ℓ, and uα is an nα × nα
random unitary matrix. The gate (E.1) is decomposed into blocks labeled by α according
to their symmetry quantum numbers. That is, all states |α, mα〉 (where mα = 1, . . . , nα)
are eigenstates of the multipole charges Q̂[ f ] for f belonging to the multipole group,
Q̂[ f ] |α, mα〉 = Q[ f ] |α, mα〉, and have the same eigenvalues Q[ f ] for all f . Since all Q̂[ f ]
are diagonal in the Ŝz

i basis, we may take the decomposition (E.1) to be in the basis defined
by product states of the form ⊗i |bi〉, with |bi〉 ∈ {|0〉 , |1〉} the eigenstates of Ŝz

i on site i, i.e.,
Ŝz

i |b〉= (−1)b |b〉.
We now show how Haar-averaged two-point correlation functions map onto stochastic

automaton dynamics, at least for operators that are diagonal in the Ŝz
i basis. The derivation is

similar to that of Ref. [60], except that we work with states rather than vectorized operators,
which makes the correspondence with automaton dynamics more crisp. Consider an infinite-
temperature two-point correlation function of the form

Ci j(t) = Tr
�

ρ̂Ŵ †(t)ÔiŴ (t)Ôj

�

, (E.2)

where the time evolution operator Ŵ (t) is given by a product of microscopic random uni-
taries (E.1), and ρ̂ = 1/D is the infinite-temperature density matrix (D being the total di-
mension of the many-body Hilbert space). We work with operators whose expectation value
vanishes at infinite temperature, Tr(Oi) = 0, and the overline denotes ‘Haar averaging’, i.e.,
averaging each block belonging to the gate (E.1) over the unitary group U(nα) with respect to
the Haar measure. The corresponding ensemble of matrices is the circular unitary ensemble
(CUE). If the operators are diagonal in the Ŝz

i basis, it is convenient to evaluate the trace in
this basis:

Ci j(t) =
1
D

∑

s,s′
Oi(s
′)Oj(s)〈s′| Ŵ (t) |s〉 〈s| Ŵ †(t) |s′〉 , (E.3)

where s and s′ represent eigenstates of Ŝz
i . The quantity that is averaged over in Eq. (E.3) is

interpreted as the probability that the system transitions from state s to s′ after evolving the
system for a time t:

Ps′s(t)≡
�

�〈s′| Ŵ (t) |s〉
�

�

2
. (E.4)

Suppose that each microscopic gate application is associated with a time τ (i.e., L2τ = 1
defines one unit of time). If a gate was applied on the region ℓ to evolve the system from time
t −τ to t, then, inserting two resolutions of identity,
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Ps′s(t) =
∑

s1,s2

〈s′| Ûℓ |s1〉 〈s2| Û
†
ℓ
|s′〉 × 〈s1| Ŵ (t −τ) |s〉 〈s| Ŵ †(t −τ) |s2〉 . (E.5)

Note that, since each gate is drawn from an independent distribution, the CUE average has
decomposed into two separate averages. Since the gate (E.1) acts as the identity outside of
ℓ, we immediately observe that the matrix elements enforce that the states s1 and s2 must
coincide in ℓ̄. We now perform the average on the top line exactly using the one-fold Haar

channel: for each block, Φ[A]≡ ÛÂÛ† = d−1 Tr[Â]1 [85] (with d the dimension of the random
matrix Û)

〈s′| Ûℓ |s1〉 〈s2| Û
†
ℓ
|s′〉= 〈s1|s2〉ℓ̄
∑

α

1
nα
〈s2| P̂α |s1〉ℓ 〈s

′| P̂α |s′〉ℓ , (E.6)

where the subscripts ℓ and ℓ̄ denote the region of the lattice on which the inner products are
evaluated, nα is the number of states in the symmetry block α, and P̂α is the projector onto
block α. Since the projectors can also be chosen to be diagonal in the Ŝz

i basis, each term under
the summation vanishes if |s1〉ℓ or |s2〉ℓ does not belonging to the block α. If both belong to
the block α, then the two states must coincide. We can therefore eliminate s2 from (E.5) and
simplify (E.6) to give

Ps′s(t) =
∑

s1

T ℓs′s1
Ps1s(t −τ) , (E.7)

where we defined the ‘transfer matrix’

T ℓs′s =
∑

α

1
nα
〈s| P̂α |s〉ℓ 〈s′| P̂α |s′〉ℓ . (E.8)

The evolution from s→ s′ can therefore be decomposed into a sequence of such transfer ma-
trices, each of which incorporates the effect of a gate application. The transfer matrix (E.8) is
the state version of the operator transfer matrix derived in Ref. [60]; it checks which block the
input state belongs to and sends it to a mixture of all other local states belonging to the same
block with uniform probability determined by the size of the block: 1/nα. The correlation
function (E.2) can then be evaluated efficiently by performing a stochastic automaton time
evolution, where Ŝz

i eigenstates |s〉 are sent to other eigenstates |s′〉 according to the transi-
tion probabilities determined by the transfer matrix (E.8). To make sure that the gate (36)
(which microscopically breaks the subsystem symmetry) is included in the circuit, we work
with clusters of sites of radius ℓ satisfying 2ℓ=

p
19+ ε, centered on bonds of the lattice.
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