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Abstract

We combine matrix-product-state (MPS) and mean-field (MF) methods to model the real-
time evolution of a three-dimensional (3D) extended Hubbard system formed from one-
dimensional (1D) chains arrayed in parallel with weak coupling in-between them. This
approach allows us to treat much larger 3D systems of correlated fermions out-of-equilib-
rium over a much more extended real-time domain than previous numerical approaches.
We deploy this technique to study the evolution of the system as its parameters are tuned
from a charge-density wave phase into the superconducting regime, which allows us to
investigate the formation of transient non-equilibrium superconductivity. In our ansatz,
we use MPS solutions for chains as input for a self-consistent time-dependent MF scheme.
In this way, the 3D problem is mapped onto an effective 1D Hamiltonian that allows us
to use the MPS efficiently to perform the time evolution, and to measure the BCS order
parameter as a function of time. Our results confirm previous findings for purely 1D
systems that for such a scenario a transient superconducting state can occur.
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1 Introduction

Superconductivity (SC) has remained a phenomenon of great interest to researchers ever since
its discovery in 1911 by H. K. Onnes. Explaining SC in metals at low-temperature equilibrium
was already a challenge, taking more than 40 years until the Bardeen-Cooper-Schrieffer (BCS)
framework could explain it via a suitable MF theory. In the 1980s, SC at high critical temper-
atures Tc [1–4] was discovered, which seemed not to be described by BCS theory. In fact, its
theoretical description presents a still-ongoing challenge. It is believed that strongly correlated
electron motion is the underlying reason for this type of SC state. Many-body models such as
the Hubbard- [5–10] or the t-J -model [4,10–13] have been investigated to study this question.
In more recent developments, experiments claim to have detected transient,1 light-induced SC
states after pushing layered high-Tc materials out-of-equilibrium in pump-probe setups, even
above the equilibrium Tc [14–18]. One interpretation of these results is via the concept of
pre-formed pairs, namely that above Tc up- and down-spin electrons are still paired, up to the
so-called pseudogap (PG) temperature TPG. In this view, at temperature T with Tc < T < TPG,
the system cannot achieve SC order in equilibrium because the pre-formed pairs within each
layer lack inter-layer phase coherence. Thus, the pump-pulse is deliberately designed to in-
crease inter-layer coupling, and results in the observation of a seemingly SC response in the
optical conductivity, but only as long as T < TPG [16,17].

There are two possible objections to this particular interpretation of the experimental liter-
ature: (1) The reliance of experiments on the time-dependent optical conductivity as a probe
for nonequilibrium SC has been questioned. Paeckel et al. [19] recently showed that this mea-
sure lacks specificity for SC order and proposed alternative measurements, which would be
better suited to detecting the onset of the SC state in the dynamically evolving system. The
setup studied in the article of Paeckel et al. consists of a quench performed on a 1D extended
Hubbard system at T = 0 using a MPS description. This MPS approach, while unbiased and
highly accurate, is effectively restricted to 1D systems, especially when treating out-of-equilib-
rium dynamics. The question is thus if the findings of Paeckel et al. are specific to 1D, with its
strong quantum and thermal fluctuations, or whether they also apply to higher dimensional
systems. (2) This leads to the second objection: quantitative or even qualitative theoretical
understanding of the solid state high-Tc materials evolving under a pump-pulse probe, or even
a generalization of the setup of Paeckel et al. to a 3D system, has been lacking (even under-
standing the high-Tc materials in equilibrium still presents an enormous challenge). That is,
no one has been able to show even in principle whether the proposed scenario for interpret-
ing many solid-state experiments – initially phase-incoherent pairs of fermions dynamically
acquiring macroscopic coherence as inter-layer coupling is rapidly increased – is theoretically
possible, and, if so, under which conditions and on which time scales. While some numerical
work has been carried out towards this, [19–21], many basic questions about the mechanisms
that could lead to dynamically induced SC remain open. To a substantial degree, this is due to
the significant challenge of accurately capturing those system sizes and time scales required
to observe any emerging SC states.

1Termed “transient” because they have short lifetimes when induced above equilibrium Tc .
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The central question then becomes which class of algorithms has any chance of reaching
those regimes, thereby delivering the currently-lacking theoretical insight into how dynami-
cally induced SC develops and which microscopic conditions would be fundamentally required
for this. On their own, even in 1D, MPS methods may require exponentially increasing re-
sources as simulation time grows in order to maintain a set accuracy. This is due to the strong
growth in bipartite entanglement in these systems with time: for MPS approaches to be effi-
cient, this entanglement should not be too large. Furthermore, already for equilibrium calcu-
lations long-range interactions, which are needed to represent two-dimensional (2D) and 3D
systems in 1D, increase the entanglement dramatically. Hence, the time evolution of generic
2D and 3D systems are entirely out of reach for any brute-force MPS-based approach, as they
could not capture even the initial equilibrium state.

For such higher-dimensional systems, real-time non-equilibrium dynamical mean-field the-
ory (DMFT) could be a powerful alternative approach [22, 23]. For this technique, one or a
few lattice sites – the impurity or, respectively, the cluster – are retained explicitly, including
all interactions of the original, infinitely-large lattice. In DMFT, the effect of this remainder-
lattice on the cluster is mimicked via a free-electron bath that is coupling to it. The parameters
of this bath are fixed via self-consistency conditions. Solving these cluster-bath systems within
this self-consistency constraint is typically achieved by applying quantum Monte Carlo (QMC)
techniques in the real-time domain. These techniques suffer from a strong sign-problem, i.e.,
their numerical error grows exponentially as the cluster-size and the real-time domain, over
which the simulation runs, are increased. In practice, a few sites and time scales on the order
of the electron tunneling are accessible. Alternatively, MPS solvers can be used within such
real-time non-equlibrium DMFT; however, due to the long-range tunneling in these systems
between bath and cluster sites, and the strong growth of entanglement with time, these will
also be limited to a few sites and short times.

This leads us to the scope of the present paper: with current methods it seems practically
impossible to perform meaningful simulations of dynamically-induced SC in a 3D system. For
MPS methods, the growth of entanglement with system size and simulation time is immedi-
ately prohibitive; and for non-equilibrium real-time DMFT, the large clusters and long times
required to resolve the onset of a potentially weak SC order appear to be out of reach.

However, as we demonstrate in the following, it is possible to make a specific category of
3D fermionic systems amenable to real-time evolution via MPS techniques using a static MF
ansatz, by exploiting certain gaps in the excitation spectrum of these cases. In this way, it
is possible to capture strong correlations by using a MPS, and treat the full 3D system more
accurately than by applying a pure MF treatment. We show explicitly that our approach can
describe the dynamical emergence of SC from a state that is not SC to begin with in a PG-
like system, i.e., a system that has singlet-pairing of spinful fermions but with no initial phase
coherence of these pairs. In this, our method can address exactly the setup thought to be at the
heart of the solid state experiments, and for which we present here the first efficient many-body
numerics. Several of the authors have previously developed related approaches for systems
in equilibrium [24], reproducing physical behavior correctly at zero and finite temperature
compared to appropriate QMC simulations [25,26], with the overestimation of SC properties
due to the MF-component of our technique a constant one, and modest at that in 3D systems.
In these approaches, weakly coupled chains or ladders are stacked up into 3D cubic systems,
which thus have anisotropic tunneling — much stronger inside the 1D systems than in-between
them in the two orthogonal directions. For the case of fermions, the MF approximation can be
introduced if each of the constituent 1D systems has a gapped energy sector, such as a spin gap,
and thus single-fermion tunneling in-between 1D systems is suppressed in this weak-coupling
regime [25]. Just as for the equilibrium case [25], it is this crucial ingredient that allows
us to perform real-time evolution for a much higher number of correlated sites than non-
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equilibrium real-time DMFT, as well as extending the real-time domain enough to perform
a meaningful simulation of the dynamically-induced SC in a 3D system. Within this well-
behaved domain, we apply our real-time MPS+MF technique to study the time evolution of
the BCS order parameter after a fast ramp of the system from an insulating starting state into
a parameter regime where the system would be SC in equilibrium. As a consequence, we
observe the onset of a non-equilibrium SC state.

We note that the present work is focused purely on the algorithmic challenge of numer-
ically studying such state, which entails simulating many-body non-equilibrium systems of
fermions for system sizes and time scales that were previously inaccessible. As to how the
interrelated questions of validating our approach with alternative methods and applying it to
concrete experiments could be answered, we provide an outlook to that in the Conclusions.
Further, as shown in Sec. 3 and Fig. 2, the basic algorithm is completely generic, i.e., it is not
predicated on the dynamics of the system being of a specific type. Thus, our approach can be
immediately generalized to quasi 1D systems with, e.g., explicit periodic driving (i.e., Floquet-
type dynamics [27, 28]), or non-unitary dynamics as encountered in open quantum systems
(quantum trajectories [29] or full master-equation [30] for Markovian baths, hierarchy of pure
states (HOPS) [31] or projected purified MPS (ppMPS) enabled quantum trajectories [32] for
non-Markovian ones); MPS-approaches have extensive track records in all these domains, but
each of them would represent separate projects of their own and are thus not the subject of
the present work.

The paper is structured as follows: in Sec. 2, we recapitulate the MF ansatz for weakly
coupled Hubbard chains used in equilibrium, developed originally in [25]. In Sec. 3, we in-
troduce the extension to a self-consistent time-dependent MPS+MF scheme to study the time
evolution of a 3D extended Hubbard system, which consists of weakly coupled chains. In
Sec. 4, we present our results for the BCS order parameter and a detailed discussion of the
convergence behavior of the method when treating 3D arrays formed from chains, each up to
L = 30 lattice sites long. The time evolution of the SC order parameter shows indeed that in
both finite systems as well as the thermodynamic limit a transient SC state can be entered. We
further analyze the dependence of our results on the parameters of the simulations. In Sec. 5
we conclude and provide an outlook as to how the technique established in the present work
could be validated and applied to experiments. The appendices discuss further details on the
method at equilibrium, as well as further details of the simulations out-of-equilibrium.

2 Mapping of the 3D system onto a 1D self-consistent chain

As we aim to describe a 3D model system with a method that is mainly suitable for 1D, namely
MPS, we first need to identify a class of 3D models amenable to mapping onto an effective 1D
description. Following the work of Bollmark et al. [25,26], we focus on 3D systems constructed
out of gapped 1D fermions. We arrange these 1D systems, which extend in the x̂-direction, in
parallel into a square array in the ŷ− ẑ-plane, forming effectively a cubic lattice. We choose
fermion tunneling to be anisotropic in this lattice, denoted by t⊥ in the ŷ- and ẑ-directions.
Adapting from Bollmark et al. [25], we choose an extended Hubbard chain as the 1D building
block. The Hamiltonian constructed in this manner is illustrated in Fig. 1 and is given by

Ĥ = Ĥ0 + t⊥Ĥ⊥ , (1)
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x̂

ŷ
ẑ

↑↓. . . ↓ ↓ ↑ ↑ . . .

U

−t
V −µ

↑↓. . . ↓ ↓ ↑ ↑ . . .

t⊥

↑↓. . . ↓ ↓ ↑ ↑ . . .

... ···
... ···

Figure 1: Two-dimensional cross-section of the three dimensional model. For the
sake of clarity, the 3D extension of the system out of the plane is not shown here.
Each box denotes a lattice site. The sites are coupled into chains in x̂-direction, as
indicated by the thick lines between the boxes. Furthermore, all chains are weakly
coupled by the transverse hopping t⊥. This way, we obtain an extension in ŷ and
ẑ-direction.

with

Ĥ0 =− t
L−1
∑

n=1

∑

σ∈{↑,↓}

∑

{Ri}

�

ĉ†
n+1,Ri ,σ

ĉn,Ri ,σ
+ h.c.
�

−µ
L
∑

n=1

∑

σ∈{↑,↓}

∑

{Ri}

n̂n,Ri ,σ (2)

+ U
L
∑

n=1

∑

{Ri}

n̂n,Ri ,↑n̂n,Ri ,↓ + V
L−1
∑

n=1

∑

σ,σ′∈{↑,↓}

∑

{Ri}

n̂n+1,Ri ,σ n̂n,Ri ,σ′ , (3)

and

Ĥ⊥ = −
L
∑

n=1

∑

σ∈{↑,↓}

∑

{Ri}

∑

â∈{ŷ,ẑ}

�

ĉ†
n,Ri+â,σ ĉn,Ri ,σ

+ h.c.
�

. (4)

Here, ĉ†
n,Ri ,σ

and ĉn,Ri ,σ
denote the fermionic creation and annihilation operators on site n and

for spin σ on a chain that is labeled by the 2D vector Ri in the ŷ− ẑ-plane. They obey the
anticommutation relations {ĉi , ĉ†

j } ≡ ĉi ĉ†
j + ĉ†

j ĉi = δi j and {ĉi , ĉ j }= {ĉ
†
i , ĉ†

j }= 0. The indices

i and j stand for different combinations of n,Ri , and σ. The operator n̂n,Ri ,σ = ĉ†
n,Ri ,σ

ĉn,Ri ,σ
is the particle number operator for the corresponding site, chain, and spin. We use open
boundary conditions and include a term for the chemical potential µ. The latter allows us to
control the number of particles in the system.

The only non-1D term is the transverse hopping Ĥ⊥. We are able to eliminate the beyond-
1D nature of this term through a combination of perturbation theory on the transverse hopping
and a MF decoupling of adjacent 1D systems. In the following we briefly recap the key steps,
a detailed derivation of this approach can be found in the publication of Bollmark et al. [25].

Since we are interested in a model system for SC, we specify U < 0 in the chain-Hamilto-
nian Eq. (3). This negative-U term gives rise to pairing of opposite-spin fermions already in
isolated systems at t⊥ = 0. This is expressed by the finite spin gap ∆Es and a finite pairing
energy ∆Ep of these isolated chains, defined as follows:

∆Es(N)≡ E0(1, N)− E0(0, N) , (5)

∆Ep(N)≡ 2E0

�

1
2

, N + 1
�

− E0(0, N)− E0(0, N + 2) . (6)
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Here, E0(Sz , N) denotes the ground-state energy of Hamiltonian Ĥ0 for a single chain-index at
total spin Sz and total number of fermions N . Thus,∆Es and∆Ep represent the minimal energy
required for flipping a spin inside a chain and for breaking up a pair on a chain by moving one
constituent to another chain in the full 3D system, respectively. From the definitions, it is easy
to see that ∆Es ≤∆Ep, and for our specific choice of 1D systems ∆Es =∆Ep. As outlined in
the following, ∆Ep becomes important in the actual numerical routine, directly entering the
effective Hamiltonian Eq. (13). In practice, we can determine ∆Ep from a single chain via an
extrapolation in the system size L→∞.

To carry out the second-order perturbation theory in Ĥ⊥ – specifically in t⊥/∆Ep – we
follow [33]. We sort the eigenenergies Ei,α of Ĥ0 (Ĥ0 |i,α〉= Ei,α |i,α〉) into manifolds. The
lowest-energy manifold with Ei,α=0, corresponds to those states in which each 1D system in
the array is balanced between up- and down-spins and thus has Sz = 0, and i indexes the
states within this manifold. That is, in this manifold there are no broken pairs. The high-
energy manifold Ei,α=1 is at least∆Ep above the low-energy manifold, corresponding to excited
states with at least one broken pair, i.e., where the pair-constituents have moved onto separate
chains. In the perturbative regime, we thus assume

|Ei,α − E j,α| ≪ |Ei,α − E j,β | , α ̸= β , (7)

to hold.
We therefore target a small transverse hopping strength t⊥ with respect to ∆Es and ∆Ep.

Introducing the projector onto the lowest-energy manifold P̂0 =
∑

i |Ei,0〉〈Ei,0|, the second-
order perturbation theory for Hamiltonian Eq. (1) yields:

Ĥ0
eff = P̂0Ĥ0 P̂0 −

t2
⊥

∆Ep
P̂0Ĥ2
⊥ P̂0 . (8)

Written explicitly, Ĥ2
⊥ is

Ĥ2
⊥ =

L
∑

n,m=1

∑

σ∈{↑,↓}

∑

{Ri}

∑

â∈{ŷ,ẑ}

�

ĉ†
n,Ri+â,σ ĉn,Ri ,σ

ĉ†
m,Ri+â,−σ ĉm,Ri ,−σ

+ h.c.
�

+
L
∑

n,m=1

∑

σ∈{↑,↓}

∑

{Ri}

∑

â∈{ŷ,ẑ}

�

ĉ†
n,Ri+â,σ ĉn,Ri ,σ

ĉ†
m,Ri ,σ

ĉm,Ri+â,σ + h.c.
�

(9)

=Ĥpair + Ĥexc . (10)

Within Eq. (10), we identify two contributions, namely a pairing term Ĥpair, which denotes
the hopping of electron-electron pairs of opposite spin between neighboring chains and an
exchange term Ĥexc, denoting the exchange of particles of the same spin between neighboring
chains.

In the following we use MF theory to eliminate the non-1D nature of Ĥ2
⊥. Here, we make

use of the relation

c(†)i c(†)j =
�

c(†)i c(†)j − 〈c
(†)
i c(†)j 〉
�

+ 〈c(†)i c(†)j 〉 , (11)

and assume
�

c(†)i c(†)j − 〈c
(†)
i c(†)j 〉
�

to be small. We, moreover, assume

〈ĉn,↑ ĉm,↓〉= 〈ĉn,Ri ,↑
ĉm,Ri ,↓

〉= 〈ĉn,Ri+â,↑ ĉm,Ri+â,↓〉 , (12)
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which means that all the chains are exact copies of each other. We end up with an effectively
1D expression for a Hamiltonian describing a higher-dimensional model, namely

ĤMF
eff = Ĥ0 −

L
∑

n,m=1

�

α∗n,m ĉn,↑ ĉm,↓ +αn,m ĉ†
m,↓ ĉ

†
n,↑

�

+
L
∑

n=1

∑

σ∈{↑,↓}

L−n
∑

r=1

�

β∗n,r,σ ĉ†
n+r,σ ĉn,σ + βn,r,σ ĉ†

n,σ ĉn+r,σ

�

, (13)

with

αn,m =
2zc t2

⊥

∆Ep
〈ĉn,↑ ĉm,↓〉 , and (14)

βn,r,σ =
2zc t2

⊥

∆Ep
v 〈ĉ†

n+r,σ ĉn,σ〉 , (15)

and thus identify αn,m with the MF-approximated pairing part of Eq. (10) and βn,r,σ with its
exchange part. Here, we introduced the coordination number zc , which denotes the number
of neighboring chains. In our case zc = 4, as the chains are assembled into a 2D square grid
in the ŷ− ẑ-plane. The parameters αn,m and βn,r,σ are the so-called MF parameters, meaning
they need to be calculated self-consistently for all times. The work in [25] explains this for the
ground state and for the finite-temperature equilibrium of the 3D system.

Since the present work aims to test and benchmark the real-time dynamical version of
MPS+MF itself, in the following we are working with the simplest possible version of the
Hamiltonian Eq. (13). We neglect the exchange term βn,r,σ and allow only for site-independent
onsite pairing, meaning αn,m ≡ αn,n ≡ α. This leads to

ĤMF
eff = Ĥ0 −
∑

n

�

α∗ ĉn,↑ ĉn,↓ +αĉ†
n,↓ ĉ

†
n,↑

�

, (16)

with

α=
1
L

2zc t2
⊥

∆Ep

L
∑

n=1

〈ĉn,↑ ĉn,↓〉 . (17)

In this last expression we are adapting the evaluation of the order parameter α to the open
boundary conditions. Obtainingα from an average across the entire system removes the spatial
variation that is solely due to these open boundaries.

Regarding the reliability of the partial MF decoupling in the two perpendicular weak-tun-
neling directions, we expect that properties like the order parameter will inevitably be over-
estimated, as in any MF theory. For the equilibrium case, several of the authors demonstrated
that the MPS+MF approach produces the correct physics compared against QMC, in regimes in
which the latter approach is quasi-exact, in a negative-U Hubbard model on a 2D square lattice
with anisotropic tunneling [25]. That work also shows that the error in Tc for the SC within
the MPS+MF framework is a quasi-constant one in t⊥ over a significant range. Moreover, at
zero temperature, the overestimation of the SC order parameter becomes systematically better
as t⊥ decreases. We also point out that the degree of overestimation decreases strongly as the
dimensionality of the system grows, as expected from the concurrent decrease of quantum
and thermal fluctuations, which our MF-treatment partially neglects. In equilibrium, we know
this due to work by some of the present authors [26], applying the MPS+MF framework to 3D
lattice-bosons, which yields much more modest overestimations of key quantities such as Tc
for superfluidity compared to the 2D case.2 Naturally, the good performance of the MPS+MF

2While the 2D case concerned lattice fermions, these had strong onsite attraction, and would thus be close to
effective hard-core bosons with residual nearest-neighbour repulsion.
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framework in equilibrium systems and especially in 3D by itself does not guarantee compa-
rable performance to the non-equilibrium systems studied here. The question is thus how
the framework could be validated independently. Unfortunately, while the performance for
equilibrium systems could be checked in-depth for bosons, and in limiting cases for fermions,
using QMC-techniques, there are no other classical computational methods that can currently
reach the system sizes and time scales of the framework shown in this work. But this would
be essential for any meaningful comparison to our approach, as is clear from the data shown
in Sec. 4. There, it is plain that dynamically induced SC from a non-SC starting state will only
build up over time scales that are well over an order of magnitude larger than t−1, and that for
3D systems could only set in at O(102) sites, given the SC healing length will be on the scale of
several sites at least in x̂-direction, and well larger than that in the two other directions. If the
linear dimension of the cluster dropped below these scales, the small size could easily preclude
any SC. As discussed in Sec. 1, the existing alternatives could not reach such time and length
scales due either to the growth of entanglement entropy (for techniques based solely on MPS),
or the fermionic sign problem (for QMC-based ones), even for special or limiting cases. For-
tunately, there is a powerful alternative for checking the performance of the scheme free from
these constraints, discussed in detail in Sec. 5, which applies to that subclass of models limited
to purely on-site interactions. For these, existing experiments on ultracold atomic lattice gases
already offer all the features that would be required to independently verify the predictions
of the dynamical MPS+MF framework. For the scope of the present work, that leaves internal
consistency checks, which are done as part of the case study in Sec. 4.

3 MPS+MF-Algorithm for self-consistent time evolution

The expectation values needed to compute the MF parameter α in Eq. (17) are calculated
using a self-consistent scheme for both the time evolution and for the ground-state search
of our model system. In this section a schematic description of the time-evolution routine is
presented, which is one of our main results. The algorithm is based on the work of H. Strand
et al. published in [34], where a non-equilibrium version of real-time DMFT for bosons is
introduced. Our work incorporates this real-time scheme into a MPS framework and adapts it
to 3D lattices of correlated fermions built from weakly coupled 1D systems. All results obtained
in the following were generated with Ian McCulloch’s matrix product toolkit [35] using its
time-evolving block decimation (TEBD) implementation. Note that the described algorithm
is not limited to TEBD, but also other MPS based time-evolution methods [36] can be used
instead. The initial ground states from which the time evolution proceeds were generated from
a self-consistent scheme introduced by Bollmark et al. in [26], which is also briefly described
in App. A.

At the beginning of each time step, we start with a state |ψ(t1)〉 at time t1, which we
already have obtained before (either as a previous step or as initial state). From this state, we
measure the value of the MF parameter α(t1). Now, we guess which value α might take after
one discrete time step dt. In this work, at the start of the self-consistency iterations for each
time step, we just assume that the α value does not change at all. In any case, the guess for α
at t2 = t1 + dt, is labeled αguess(t2). Then, we evolve the system from t1 to t2 using the mean
of α(t1) and αguess. From the resulting tentative |ψ(t2)〉 we can once again measure the MF
parameter αnew(t2). Next we calculate the distance between the measured and the guessed
value and compare it to a chosen precision ϵ,

�

�αnew(t2)−αguess(t2)
�

�< ϵ , with ϵ≪ 1 . (18)

For all data shown in this work, we have set ϵ = 10−12. If Eq. (18) is fulfilled, we keep the
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State |ψ(t1)〉 with α(t1)

Guess αguess(t2 = t1 + ∆t) = α(t1)

Do 1 time step,
evolve |ψ(t1)〉 with αrun = (α(t1) + αguess(t2))/2

State |ψ(t2)〉

Measure αnew(t2)

Check: |αnew(t2)− αguess(t2)|
?
< ε

Update:
t2 → t1,

|ψ(t2)〉 → |ψ(t1)〉,
αnew(t2)→ α(t1)

Discard |ψ(t2)〉,
set αguess(t2) = αnew(t2)

YES NO

Figure 2: Self consistency loop for one time step. As the MF-parameter α(t) depends
on the state |ψ(t)〉 itself, a continuous yet self-consistent adjustment of it is required.
Our scheme achieves this at each discrete time step the algorithm advances, by try-
ing to evolve with an equally weighted average of the current value of α(t) and an
updated α-value, which, in the first attempt is just a heuristic guess. If the measured
α-value of the new state thus evolved does not match the updated α-value (very
likely in the early loops) up to some pre-defined precision ϵ, the wavefunction is dis-
carded, and a new attempt is made, this time with the just-measured α-value as the
new guess for the updated α.

state |ψ(t2)〉 and proceed with the next time step. Otherwise, we discard |ψ(t2)〉 and repeat
the time step using the mean of α(t1) and αnew(t2). The loop is repeated until Eq. (18) is
fulfilled. A schematic of the algorithm is depicted in Fig. 2.

4 Transient superconductivity after a fast ramp of the nearest-
neighbor interaction

In this section, we present our results using the self-consistent MPS+MF scheme and find that
in the extended Hubbard model Eq. (1) the BCS order parameter for SC grows in time and
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Table 1: List of values for the chemical potential µ to obtain half filling for U = −4.0
and V = ±0.25 for various system sizes L.

L 12 20 30

µ(V = −0.25) -2.44 -2.47 -2.48
µ(V = 0.25) -1.66 -1.63 -1.62

begins to oscillate around a finite value on the treated time scales. This indicates the formation
of transient SC, which is the second main result of this paper. In the following, all parameters
are measured in units of the hopping parameter t ≡ 1.

More specifically, we follow Paeckel et al. [19] and tune the system’s parameters from
an insulating charge-density wave (CDW) phase into a SC phase. However, we find that the
sudden quench performed in [19] is numerically more challenging3 within the self-consistent
scheme (see App. B), so we instead perform a fast ramp.

In order to check the equilibrium phases of the 3D model we use the self-consistent
MPS+MF approach to compute the ground states using the routine introduced by Bollmark et
al. [26] for different parameters and measure the expectation value of the MF parameter α.

We find that for t⊥ = 0.2, U = −4 and V = 0.25 the system possesses the main properties
of a CDW phase relevant for us, i.e., we find alternating occupation of the lattice sites by the
electrons and a vanishing value of α. For U = −4 and V = −0.25 instead, the system is SC,
as here α∼ 10−1 becomes finite and density oscillations less pronounced. These are the same
parameters treated by Paeckel et al. in [19] for the purely 1D system. Hence, we perform a fast
ramp by tuning the values of the nearest-neighbor interaction from V = 0.25 to V = −0.25 as
further detailed below.

Since the effective Hamiltonian Eq. (16) depends on the MF parameter α(t) the question
of how to choose αini := α(t = 0) arises. For the CDW system α = 0 and it is hence difficult
for it to grow with the method outlined in Fig. 2. Because of this, unless otherwise noted, our
default value for this work is αini = 10−4/dt, where dt is the size of the discretized time step of
the simulation. Such a small yet finite value is justified by the fact that any system will either
have a microscopic fraction of pairs in the center-of-mass zero-momentum state to begin with,
or such a fraction is generated during the ramp or quench. Scaling αini inversely in dt ensures
that simulations with different dt agree over long times, see Fig. 3.

The MF term of the Hamiltonian causes the effective model to be no longer particle-number
conserving, hence, we need to adjust the value of the chemical potential µ corresponding to
the system size and to the onsite repulsion U in order to fix the average density of the total
system. From the ground-state calculations we find the values of µ that are listed in table 1. We
keep the values of µ, determined in this manner, fixed throughout the whole time evolution
in order to keep our algorithm simple and stable. However, we still need to keep track of
the overall density of our system during the time evolution to check if this assumption of a
time-independent chemical potential is justified. Indeed, for our simulations, the value of the
density is preserved to a good accuracy over the time scales treated by us (see Figs. 3 and 4). In
general, however, it might be necessary to also include a variation of µ into the self-consistency
scheme.

4.1 Time evolution of the BCS order parameter and of the total energy

In the following, we investigate the time evolution of the BCS order parameter α(t) (see
Eq. (17)) and of the total energy E(t) of the system. The latter cannot be expected to remain

3Instant quenches are amongst the most demanding use-cases for any real-time MPS-based simulations.
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Figure 3: Evolution of the considered parameters in time during and after a ramp
on a 30-site system. The plots at the bottom ((c) and (f)) show the nearest-neighbor
interaction, which decreases from V = 0.25 to V = −0.25 during a time window of
∆tramp = 3.0. Graphs (a) and (b) show the evolution of the MF parameter α split up
into magnitude and phase. Graphs (d) and (e) show the evolution of the total energy
per site of the system and of the total density. The inset in (d) shows the evolution of
the energy per site after V was decreased. The dip towards the end of the evolution
coincides with the rapid increase in |α(t)|, and signals the system overall lowering
it’s energy by entering a SC state. The legend is valid for all plots. All the data shown
here were obtained with a bond dimension of χ = 250, an initial guess of the MF
parameter of αini = 10−4/dt, and the chemical potential was taken from table 1. We
compare the ramp scenario (solid violet and dashed green) with an evolution during
which we keep the nearest neighbor interaction at V = 0.25 constant (dotted blue).
Even though this state is given the same initial α-value as a seed as in the ramp
scenario, α(t) rapidly decays and remaining at near-constant and near-zero values.
This shows that no SC state develops without a quench to parameters corresponding
to SC in equilibrium. For this calculation we chose a time step of dt = 0.01.

constant as the MF term changes the Hamiltonian Eq. (16) during evolution. In addition, we
monitor the total density of the system, which should stay at a value of ρ = 1 (half filling)
during the whole time evolution.

Since we find fast ramps to have lower errors over the simulated time windows than in-
stantaneous quenches, we linearly decrease the value of the nearest-neighbor interaction V
from V = 0.25 to V = −0.25 within a time window of ∆tramp = 3.0. A more detailed discus-
sion of the effect of the size of the time window ∆tramp can be found in App. B. In Fig. 3
we see the results for a 30-site system for an evolution up to time tend = 50. Since α(t) is
complex-valued we show the evolution of the magnitude |α(t)| and of the phase ϕ(t) of the
order parameter in Figs. 3 to 5. We find that |α(t)| grows up to time t ∼ 45 to a value of
approximately |α| ≈ 0.06, which is clearly non vanishing and hence indicates the formation of
a non-equilibrium SC state. In contrast, if we consider a time evolution without a quench or
ramp, i.e., V = 0.25 during the whole evolution, the value of α stays unchanged at an order
of magnitude of 10−5 throughout the whole time evolution as can be seen by the dotted blue
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Figure 4: Evolution of SC order-parameter α, energy per site E/L, and density ρ in
time during and after a ramp for sizes L = 12,16, 20,30. Magnitude and phase of α
are shown in (a) and (b), respectively. The inset in (a) shows the time at which the
first local maximum in |α| occurs plotted against the inverse of the system size 1/L.
Both the linear and the quadratic fit suggest a finite and comparable value of tSC in
the limit L→∞. Evolution of the total energy of the system and the total density are
shown in (c) and (d). All data were obtained with a bond dimension of χ = 500, an
initial guess of the MF parameter of αini = 10−4/dt, a ramp time window∆tramp = 3,
and the chemical potential was taken from table 1.

lines in Fig. 3. The phase ϕ(t) decreases as long as V is decreasing, then oscillates around
a value of approximately ϕ(α)/π≈ −0.8 and seems to increase again slightly when |α| has
reached its maximum. We interpret this behavior as an expression of a Josephson effect in-be-
tween 1D chains to the extent it can be captured by a single 1D system with time-evolving MF
amplitudes. As a kernel of SC order manifests itself in the different chains of the 2D array the
macroscopic phases of SC states, within each chain, will be initially uncorrelated, then start
aligning via the Josephson effect. With density fluctuating within each individual chain the
Josephson effect will keep the phase fluctuating while the system finds a new equilibrium after
the rapid ramp, as Fig. 3b shows.

In Fig. 3d we show the evolution of the total energy per site E(t)/L and in Fig. 3e the
deviation of the total density ρ(t) from the desired value ρtarget = 1. We find that this devia-
tion is of the order of 3 · 10−5 or smaller for all the times treated, indicating that keeping the
chemical potential µ fixed leads only to small errors. The total energy per site E/L behaves as
expected during the ramp and decreases almost linearly for the duration of the ramp. After-
wards, we first observe a nearly constant behavior, then a strong decrease until a minimum at
time t ≈ 45, shown in the inset of Fig. 3a. We read the behavior of E(t)/L, especially at long
times, as the system starting to further lower its energy through condensing Cooper pairs, as
the drop in E(t)/L coincides markedly with the onset of a finite value of α(t). We also study
the effect of system size, to make certain the dynamical onset of SC would survive in the ther-
modynamic limit. In Fig. 4 we compare the results for different chain lengths L. From these,
we extract the instant tSC, at which |α(t)| reaches its first maximum. The data of the 12-site
system shows the onset of oscillation for |α(t)| around a finite value, indicating a dynamically
induced SC phase (longer-time simulations for L = 12 further confirm this, as shown in Figs. 5
to 7 for times up to tmax = 100). The inset of Fig. 5a displays an extrapolation in inverse chain
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Figure 5: Evolution of the MF parameter α split up into its magnitude (a) and its
phase (b) for different initial guesses αini in a 12-site system. We see that the reduc-
tion of αini induces merely a shift in the data, at least up to time tSC at which the
first maximum of |α| occurs. The inset in (a) shows tSC vs. αini and a linear fit on
a semilogarithmic scale. This shows that tSC grows merely logarithmically with αini.
The data shown was obtained with χ = 500 and dt = 0.01, a ramp time window
∆tramp = 3, and µ was taken from table 1. We stress that the evolution of |α| up to
the first maximum at tSC is nearly identical for different αini up to a shift, as high-
lighted by the logarithmic scale. Beyond tSC, curves for different αini oscillate around
closely similar averages, and any deviations of the α(t)-curves from each other are
due to the inevitable finite-size effects, which will naturally depend on the values
of αini.

length 1/L of tSC. In order to see whether tSC diverges we performed a quadratic and a linear
fit, both indicating a finite value in the limit L →∞. Since for the larger system sizes |α(t)|
starts to oscillate at around the maximal time reached by us, it is difficult to obtain a finite-size
extrapolation of the value of the SC order parameter. In order to do so, one needs to extend
the simulations for the larger systems to substantially longer times, which is beyond the scope
of this paper.

4.2 Accuracy of results and sensitivity to simulation parameters

The results so far were all obtained using the same parameters for the self-consistency cycle.
In the following we study how sensitive the results are on parameters like the initial guess
of the MF parameter αini (see Sec. 3), the bond dimension of the MPS calculations, or the
discrete time step dt. To study these effects, we focus on the 12-site system in order to reach
the longest time scales.

Figure 5 shows the evolution of the magnitude and phase of α(t) for different initial values
αini. Decreasing the value of αini induces a shift of tSC to later times. In order to further analyze
this, we plot the value of tSC against the value of αini in the inset of Fig. 5a. Speaking to the
soundness of our MF approximation, we find that tSC increases only very weakly with αini,
i.e., logarithmically. While this indicates a diverging time for the onset of SC order in the limit
αini→ 0, this is merely consistent with αini = 0 being an unstable fix point of the dynamic MF
algorithm in the regime we ramp into. But any finite value, even a microscopic one, will yield
dynamically induced SC order in finite time when ramping into the SC parameter regime.
Furthermore, as argued at the outset of Sec. 4, on general physical grounds there will always
be some electron pairs whose center-of-mass momentum is zero.

In Fig. 3 we compare two different discretized time steps, dt = 0.005 and dt = 0.01, re-
spectively. The results are nearly identical, only a small deviation of the total density, which
agrees up to ∼ 10−5, can be seen in Fig. 3e.
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Figure 6: Evolution of (a) the magnitude of the MF parameter |α| and (c) the to-
tal energy E for two different bond dimensions χ1 = 500 and χ2 = 1000 in a 12-
site system. (b) and (d) show the difference δO,χ1,χ2

between the observables we
measure for these two different bond dimensions. All calculations were done with
αini = 10−4/dt, a ramp time window ∆tramp = 3, and dt = 0.01.

Regarding the discarded weight of our simulations, we find that even for the smallest bond
dimension these values stay below 10−6 within the time domains we consider. Nevertheless,
we examine the dependence of our results on the MPS bond dimension χ. For this purpose
we compute the deviation of the value of an observable O for two different values of χ,

δO,χ1,χ2
= |O(χ1)−O(χ2)| . (19)

At any fixed value of αini and dt we find this to be the most reliable estimator for the accuracy
of our combined MPS+MF approach (assuming the latter parameter is chosen to be sufficiently
small) and focus in the following on this quantity.

In Figs. 6 and 7 we present results for the observables |α(t)| and E(t) obtained with two
different bond dimensionsχ1 = 500 andχ2 = 1000 for the 12-site system, and forχ = 250 and
χ = 500 for the 30-site system, respectively, and also the difference of the respective results.
For the larger system it was necessary to substantially reduce the values of χ, since otherwise
the numerical expenses would exceed the available resources. We find that the deviation of the
results is∼ 10−6 for the values of |α(t)| and∼ 10−4 for the total energy E(t), in the case of the
12-site system. For both observables, this is small compared to the order of magnitude of the
observables themselves, so that we conclude these values of χ suffice to provide quantitatively
accurately results, within the dynamical MPS+MF framework.

For the 30-site system, however, the deviation is∼ 10−3 for |α(t)| and∼ 10−2 for E(t). This
is rather large in comparison to the order of magnitude of the observables themselves. The
data obtained from these calculations is hence only trustworthy in regards to the qualitative
physics, but for the larger chain lengths one needs a larger bond dimension to obtain a better
quantitative convergence of the results.
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Figure 7: Analog to Fig. 6 but for a 30-site system and for bond dimensions χ1 = 250
and χ2 = 500.

5 Conclusion

This work presents a self-consistent real-time MPS+MF approach for investigating the time
evolution of a 3D extended Hubbard model after a fast ramp. By combining perturbation the-
ory with a MF ansatz, we construct an effective 1D Hamiltonian Eq. (13) capable of capturing
the dynamical build-up of SC correlations for this 3D model system, when quenching or rapidly
ramping into a Hamiltonian parameter regime corresponding to SC order in equilibrium. This
approach is generic to any 3D system composed out of gapped 1D systems of fermions, as long
as coupling between 1D systems is sufficiently weak for single-fermion tunneling in-between
1D systems to be suppressed. For concrete demonstration of the performance of this approach,
we chose systems of 1D extended Hubbard chains, arranged in parallel in a 2D square array,
forming a 3D system with weak interchain tunneling t⊥, negative onsite repulsion U , and
nearest-neighbor interaction V along each chain.

We benchmark the self-consistent algorithm introduced on the simplest possible version
Eq. (16) of the resulting effective MF Hamiltonian, only taking onsite pairing into account
and neglecting the particle-hole terms Eq. (15). We test our approach on systems where each
chain is up to L = 30 sites long. Using this algorithm we compute the time evolution of the
BCS order parameter for SC order α(t), as a direct indicator of dynamically induced SC. The
results show that SC order sets in after a fast ramp from V = 0.25 to V = −0.25, where the
initial V -value realizes an insulating CDW state, and the final value would correspond to SC
order at equilibrium. These results are broadly comparable to previous 1D results [19] and
represent a best-case scenario, in which double occupancies already present in the CDW help
to form the non-equilibrium SC state after the ramp.

Performing infinite-size extrapolations and studying the effect of the microscopic initial
kernel of SC order αini shows that dynamically induced SC is not merely a trivial size effect,
but actually present in the thermodynamic limit, and even the smallest yet finite magnitude
for αini will result in establishing order within a finite window of time. At the same time, we
find that resource requirements increase substantially with chain length L, but several tens of
sites and time frames between one and two orders of magnitude in units of inverse fermion
tunneling t−1 are accessible already with the modest resources employed for the present proof-
of-principle work.
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The present work presents multiple avenues for interesting and potentially valuable fol-
low-up work. One of these would be to move towards a regime that is physically more realistic
as far as solid state systems are concerned, in which the pair-binding energies ∆Ep would be
significantly smaller than in the present work. This would entail either lowering U , or work-
ing directly with a 1D model offering repulsively mediated pairing, such as a doped two-leg
Hubbard ladder [37, 38]. This would require retaining more particle-particle terms Eq. (14)
than we have done for the present proof-of-principle, as well as incorporating the particle-hole
terms Eq. (15) into the self-consistent time-evolution step, see Fig. 2. This would be straight-
forward, as a generic ansatz for the first iteration of these terms is practically imposed by the
physics of these 1D systems. As detailed in, e.g., [39], both classes of terms decay with an ex-
ponential envelope function characterized by the spin-correlation length, which in turn is easy
to obtain from static correlators via density-matrix renormalization group (DMRG) [40,41] cal-
culations for the isolated systems. Finally, we observe that while in the present work the initial
state was a pure zero-temperature one, extensions of our new approach to finite temperature
would be entirely straightforward. Being ultimately MPS-based, it can tap into practically all
previous refinements of MPS-numerics, such as the simulation of non-equilibrium dynamics
of finite-temperature states that minimizes the growth of entanglement with time [42].

With the above refinements, our approach opens new and potentially exciting avenues
for advancing the understanding of dynamically induced SC in solids jointly with the domain
of analog quantum simulation. Existing experiments with ultracold atomic lattice gases of
fermions in 3D already offer the capability of realizing arrays of weakly coupled negative-U
Hubbard chains initially in the analogue of the PG regime. Results from ref. [25] (c.f. Fig. 11a
there) illustrate that with today’s experimental control over the parameters of these lattice-
gas experiments such a regime can practically always be found. That is, inside each chain up-
and down-pseudospin atoms would be paired, with an associated pairing energy ∆Ep, from
the effective attractive on-site interaction, but the coupling t⊥ between these chains would be
deliberately chosen to be too weak for the 3D array to enter the SC regime at the working tem-
perature of the experiment. In this manner, these analog quantum simulators would mimick
the basic presumed initial conditions of the layered high-Tc compounds in pump-probe exper-
iments on dynamically induced SC. However, there would be two key differences to the solid
state: the active sub-units would be 1D chains instead of 2D planes, and as a result of that
these analog quantum simulations would be amenable to be modeled by quantitative many
body numerics, i.e., the approach developed in the present work and incorporating some of
the refinements laid out in the preceding paragraphs, in a way that the solid state experiments
are not. Then t⊥ would be quenched or rapidly increased to a value that at equilibrium would
correspond to the SC regime, analogous to other types of experimentally performed rapid pa-
rameter changes (c.f. [43, 44] and references therein). Any SC emerging dynamically from
this change in t⊥ could be directly tracked in real time and unambiguously via the coherence
peak of paired atoms, which would constitute direct proof of the onset of SC off-diagonal
long-range order in these 3D ultracold atomic lattice gases [45]. The dynamical MPS+MF
framework developed here could then be used to directly model these experiments, ascertain-
ing whether any predicted onset of dynamically induced SC qualitatively and quantitatively
matches the observations. It would further allow to check whether the natural choice for ini-
tializing αini, the residual pairing correlations measured experimentally for the initial non-SC
state, would yield the correct time scale for SC to emerge dynamically. This modeling would
thus serve the dual purpose of validating the numerical framework itself, which would be nec-
essary as there is currently no alternative classical numerical approach that could approach the
system sizes, time scales and temperatures accessible to our dynamical MPS+MF approach.
In this way, comparison between experiment and our theory framework would also advance
the field of analog quantum simulation of demanding non-equilibrium many-body problems.
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Once these comparisons work sufficiently well, a natural extension would be to advance to
experiments in which 2D planes of negative-U Hubbard models are initially weakly coupled
with a t⊥-term, s.t. one would again start in a PG-regime, but this time even closer to the
basic physics at the root of the experiments of the layered high-Tc materials. Anchored by the
previous experiments on the quasi 1D arrays and the quantitative comparison made possible
by the theory framework developed here, the outcomes of such a second stage of experiments
could provide a strong input to the ongoing discussion as to how to interpret experiments on
dynamically induced SC in layered high-Tc materials.
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A Self consistent ground-state search

As mentioned in Sec. 4 of this paper, we are making use of the self-consistent ground-state
search developed by Bollmark et al. [25, 26]. Here a brief description of this algorithm shall
be given.

Basically, a ground-state search in MPS language is an optimization problem solved via
DMRG. However, in our case we are dealing with the special case that not only the state |ψ〉
has to be optimized but that we also do not know all parameters of the Hamiltonian as one of
the parameters, namely α, depends on the ground state itself. This is why we need to adjust
this parameter iteratively during the ground-state search until self consistency is reached, as
in any other MF-based approach. By introduction of the α-term in our MF-Hamiltonian, the
model loses the particle-number conservation of the original 3D Hamiltonian. Thus, not only
α but also the chemical potential µ has to be adjusted during the ground-state search.

At the inception of the iterative procedure α and µ must be guessed, however crudely.
Then, we perform a DMRG-based ground-state search for this set of parameters, yielding a
candidate for a ground state. Now, we need to check if the density is at the desired value and
if α is consistent. First, we measure the density ρcurrent of the state we just calculated and
compare it with the density ρtarget we are targeting. If the condition

|ρcurrent −ρtarget|
|ρtarget|

< ϵρ , with ϵρ ≪ 1 , (A.1)

is fulfilled, we keep the chemical potential µ we plugged in, if not, a routine that involves
interpolation and extrapolation is used to determine a new chemical potential which is applied
from this point on. Second, we measure the value of the MF parameter α from the candidate
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Calculate αnew from ground state

Check if α is converged:

|α− αnew| / |α|
?
< εα or |αnew|

?
< εα

Did we loop at least
3 times?

Found self consistent ground state!

Do an extrapolation-
routine on α

find new αnew

NO
YES

NOYES

YES

NO

Figure 8: Self consistency loop for the ground-state search. As the MF-parameter α
depends on the ground state itself, it has to be adjusted after each DMRG step. As
the effective Hamiltonian, furthermore, is no longer particle number conserving we
also need to update the chemical potential µ continuously.

state and check if it is converged via the condition

|αini −αnew|/ |αini|< ϵα , or |αnew|< ϵα . (A.2)

If this condition is fulfilled, we keep α, if not, we once again use a routine that involves ex-
trapolation in order to find a new and better value for α. Finally, we are either done if both
conditions Eqs. (A.1) and (A.2) are fulfilled or we repeat the whole routine using now the new
values we obtained for α and µ as a starting point.

A schematic of the self-consistent ground-state search is depicted in Fig. 8.

B Effect of the time window for the ramp

In Sec. 4 it was mentioned that a ramp appeared to be numerically more stable than an instan-
taneous quench. For a more detailed explanation of this statement, we compare the accuracy
of the data we measure for the MF parameter |α| for a quench and a ramp in Fig. 9.

Changing V either through an instantaneous quench or through a fast continuous ramp,
the latter of which we have used throughout the main text, we evolve our system up to times
of tend = 15. In both cases we compare the variance between the α data for two different bond
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Figure 9: Comparing an instantaneous quench (left hand side) with a fast ramp
in finite time (right hand side). Top row showing the time evolution of |α| for two
different bond dimensions χ = 500 and χ = 1000 in a 12-site system, bottom row
showing the difference between the two bond dimensions. We gain an accuracy of
the order of 102 via the fast ramp, as opposed to the instant quench.

dimensions χ, as it was done in Sec. 4.2 as a check of accuracy. We find that difference is two
orders of magnitude smaller for the ramp compared to the case of the instantaneous quench.
This is why we chose to use ramps for all our calculations presented in this paper.
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