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Abstract

We study two-dimensional spherical defects in d-dimensional Conformal Field Theories.
We argue that the Renormalization Group (RG) flows on such defects admit the existence
of a decreasing entropy function. At the fixed points of the flow, the entropy function
equals the anomaly coefficient which multiplies the Euler density in the defect’s Weyl
anomaly. Our construction demonstrates an alternative derivation of the irreversibility
of RG flows on two-dimensional defects. Moreover, in the case of perturbative RG flows
induced by weakly relevant deformations, the entropy function decreases monotonically
and plays the role of a C -function. We provide a simple example to explicitly work out
the RG flow details in the proposed construction.
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1 Introduction

The renormalization group (RG) flow provide a theoretical framework for isolating the degrees
of freedom which describe the low-energy phenomena. The idea is to simplify the theory by
ignoring its microscopic structure without affecting the low energy physics. In doing so, the
number of degrees of freedom decreases, and there has been a long-standing debate about how
to quantify this decrease. In 80’s, Zamolodchikov formulated and proved the c-theorem, which
makes this quantification precise for a wide class of 2-dimensional quantum field theories [1].
Starting from this work many results were obtained in various dimensions [2–20].

In this paper we study RG flows on two-dimensional defects. The defects have a long
story, both in two and higher dimensions – see for instance [21–38]. Defect RG flows were
also extensively studied in the literature [39–50]. There are a number of exactly established
results about the RG flows on line defects [51–54] and their higher dimensional generalizations
[55,56]. Recent examples and perturbative calculations in the context of defects cover a wide
range of systems and models [57–62]. Here we restrict our attention to the case where the
bulk QFT is a d-dimensional Euclidean conformal field theory, and the state is simply the flat
space vacuum state. We are interested to study RG flows when a two-dimensional spherical
defect is present in such a theory. In this setup, the defect changes along the RG flow, but the
bulk remains intact. The flow in this case is called a defect RG (DRG) flow.

The full conformal group SO(d+1, 1) is broken at the fixed points of DRG. Since a spherical
defect is conformally equivalent to a planar one, it preserves the subgroup SO(3, 1)×SO(d−2)
of the full conformal group. This symmetry pattern represents global conformal transforma-
tions on the two-dimensional planar defect and rotations around it. The theory at the fixed
point is called a defect CFT (DCFT).

In what follows, we introduce a renormalized defect entropy which is fixed by the char-
acteristic size of the defect. Our construction is similar to the one previously employed in the
context of entanglement entropy [63]. For a DCFT, it reduces to the dimensionless “central
charge” that multiplies the Euler density in the defect’s Weyl anomaly, whereas for a general
quantum field theory, it interpolates between the central charges of the UV and IR fixed points
as the radius of the spherical defect is varied from zero to infinity. Using the ideas introduced
in [53], we show that the renormalized defect entropy necessarily decreases from its initial
value along the DRG flow, thus providing an alternative proof for irreversibility of the DRG
flows on two-dimensional defects [55]. Furthermore, we argue that when the DRG flow is
induced by a sufficiently weak relevant deformation of the UV fixed point, the renormalized
defect entropy exhibits monotonic decrease and plays the role of a C-function throughout all
orders in perturbation theory.

The paper is organized as follows. In section 2 we review the derivation of the Ward
identities which are necessary for our needs. In section 3 we define the renormalized entropy
function, and use it to reproduce the sum rule as well as prove the irreversibility of DRG flows
on two-dimensional defects. In section 4 we provide an instructive example which explicitly
illustrates various details of DRG flows discussed in this paper. We conclude in section 5.

2 Ward identities

As a starting point, we review a higher dimensional generalization of the identities obtained
in [53]. Consider a p-dimensional defect D, embedded in a d-dimensional Euclidean bulk. For
simplicity, the bulk is assumed to be flat. The theory is governed by a DCFT action perturbed
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by a set of relevant defect operators Oi with scaling dimensions ∆i < p,

I = IDCFT + g i

∫

D
dpσ
Æ

γ̂Oi , (1)

where γ̂ac is the induced metric on the defect.
The bulk and defect stress-tensors, Tµν, T̂µν and the displacement operator Dµ are defined

through the variation of the effective action, W , with respect to the bulk metric gµν
1 and

embedding function Xµ (σ),

δW = −
1
2

∫

M
dd x
p

g δgµν〈Tµν〉+
∫

D
dpσ
Æ

γ̂ δXµ (σ) 〈Dµ〉

−
1
2

∫

D
dpσ
Æ

γ̂
�

δgµν〈T̂µν〉+ ...
�

. (2)

The total stress tensor, T tot
µν is defined by,

T tot
µν = Tµν + T̂µνδD , (3)

where δD denotes the delta function which restricts the bulk integrals to the defect, i.e., by
definition
∫

dd xδD =
∫

D d2σ
p

γ̂, or equivalently, the integral of the d-dimensional delta-
function over the defect satisfies,

∫

D δ = δD. By assumption, the bulk theory is conformal,
therefore Tµµ = 0.

In what follows, the indices a, b, .. will be used to denote the p tangential directions
eµa =

∂ Xµ
∂ σa . Similarly, the indices I , J , .. will be used to denote the d − p normal vectors, nµI .

The three physical quantities in (2) are related by Ward identities associated with the in-
variance of W under the bulk and defect reparametrizations. In the former case, the condition
δW = 0 is imposed under an infinitesimal diffeomorphism of the form xµ→ x ′µ = xµ − ξµ,

δxµ = −ξµ , δgµν =∇µξν +∇νξµ . (4)

By splitting the bulk into normal and tangential components, ξν = ea
νξa + nI

νξI , this gives the
following Ward identity (See Appendix A for details)

∇µTµνξν +δD
��

∇̂b T̂ ba − Da
�

ξa +
�

∇a T̂ aI − DI − K I
ab T̂ ab
�

ξI

�

= 0 , (5)

where ∇̂a is the covariant derivative on the defect.2

Likewise, the same condition, δW = 0, is imposed for infinitesimal reparametrizations of
the defect,3

δσa = −ζa , δXµ = eµaζ
a , δgµν = 0 . (6)

1We adhere to the conventions of [55,64], see [29] for alternative definitions. The ellipsis in the last line of (2)
encode variations associated with the normal derivatives of the bulk metric. These terms are irrelevant for the low
dimensional defects considered in this paper. Moreover, in general the first-order normal derivative terms have no
impact on the results for spherical defects.

2The symbol ∇̂ is used to denote the covariant derivative on the defect, compatible with the induced metric,
∇̂aγ̂cb = 0. Refer also to the paragraph below (A.4).

3Finite reparametrizations of the defect are defined as follows,

σ̃a = σ̃a(σ) , X̃ µ(σ̃) = X µ(σ) , g̃µν
�

X̃ (σ̃)
�

= gµν
�

X (σ)
�

= gµν
�

X̃ (σ̃)
�

.

Employing this definition yields the conventional transformation for the induced metric on the defect,

h̃ac(σ̃) =
∂ X̃ µ(σ̃)
∂ σ̃a

∂ X̃ ν(σ̃)
∂ σ̃c

g̃µν
�

X̃ (σ̃)
�

=
∂ σb

∂ σ̃a

∂ σd

∂ σ̃c
hbd(σ) .

The infinitesimal diffeomorphism, σ̃a = σa − ζa, takes the form given in (6).

3
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Combined with (2), they imply Da ≡ eµa Dµ = 0, i.e., tangential displacements are trivial.
Now consider a dimensionless dilaton background, Φ (σ), localized at the defect [53].
By definition, the dilaton couples linearly to the trace of the defect stress-tensor, i.e.,
T̂ ≡ gµν T̂µν =

1p
γ̂

δW
δΦ , and under defect reparameterizations, it transforms as,

δΦ (σ) = −ζa∂aΦ (σ) . (7)

Hence, (2) takes the form

0= δW =

∫

D
dpσ
Æ

γ̂ δXµ (σ)Dµ +

∫

D
dpσ

δW
δΦ
δΦ=

∫

D
dpσ
Æ

γ̂ ζa
�

Da − T̂∂aΦ
�

.

As a result, in the presence of dilaton, we have Da = T̂∂aΦ.
A bulk CFT in d-dimensions is invariant under the full conformal group SO(d+1, 1). How-

ever, the conformal defect partially breaks it. In particular, a p-dimensional spherical confor-
mal defect is invariant under the subgroup SO(p + 1, 1) × SO(d − p) ⊂ SO(d + 1,1). The
first factor represents conformal group of the p-sphere. For p = 2, it has six generators,
SO(3, 1) ≃ SL (2,C). This group acts on the 3-dimensional ambient subspace hosting the
sphere. For simplicity, we parametrize this subspace by xµ, µ= 1, 2,3. The group SO(d − 2),
generates transformations in the transverse directions to the defect. In the conformal frame
where the defect is planar, SO(d − 2) represents ordinary rotations in the transverse space to
a flat defect. The six SL (2,C) conformal Killing vectors are given by,

ξ
µ

(a) =
1
2

�

δµa

�

R+
x2

R

�

− 2
xa xµ

R

�

, χ
µ

(a) = δ
µ

bε
bc

a xc , a, b, c = 1, 2,3 , (8)

where R is the radius of the sphere. The ξ’s are particular combinations of translations and
special conformal transformations which preserve the sphere, whereas χ ’s represent rotations.
It can be checked that (8) satisfy the conformal Killing equations in the bulk as well as on the
defect. Each such Killing vector gives rise to a conserved charge in the bulk,

Qξ =

∫

Σ

dd−1 x ΣµTµνξν , (9)

where Σ is a hypersurface.
Now consider the vacuum expectation value of Qξ provided that the hypersurface Σ wraps

around the spherical defect. By definition, when Qξ surrounds an operator, it transforms it,
i.e.,

〈Qξ〉= 〈δξD〉 , (10)

where δξD is a small change in the spherical defect induced by the conformal Killing vectors
(8). This change vanishes if the defect is conformal (DCFT), but we do not assume it in what
follows. In fact, the scale invariance is broken in the presence of fixed dilaton background.

The boundary conditions at infinity correspond to a conformal vacuum state. Since Qξ
annihilates it, and there are no other insertions in the path integral save the defect, we deduce
that for any Φ(σ),

0= 〈δξD〉= 〈Qξ〉=
∫

Σ

dd−1 x Σµ〈Tµν〉ξν = −
∫

D
d2σ



∇̂b T̂ ba − T̂∂ aΦ
�

ξa , (11)

where in the last equality we used Gauss’s theorem followed by (5) with ξI = 0 for the Killing
vectors (8), as well as tracelesness of the bulk stress tensor. Integrating by parts, yields

0= 〈δξD〉=
∫

d2σ



T̂ ba∇̂bξa + T̂∂ aΦ ξa

�

. (12)
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Next, recall that the conformal Killing vectors satisfy

∇̂aξb + ∇̂bξa =
2
p

�

∇̂ · ξ
�

γ̂ab

�

�

�

�

p=2
=
�

∇̂ · ξ
�

γ̂ab . (13)

Combining, we finally obtain

0= 〈δξD〉=
∫

d2σ
�1

2

�

∇̂ · ξ
�

+ ∂ bΦξb

�

〈T̂ 〉 . (14)

The dilaton couples linearly to the trace of the defect stress tensor, and therefore the right
hand side of (14) can be interpreted as a change in the defect due to a small variation in the
dilaton profile, δΦ∼ 1

2

�

∇̂·ξ
�

+∂ bΦξb. In particular, it follows from (14) that one can identify
two defects if their dilaton backgrounds are related by4

Φ∼ Φ+α
�

1
p
∇̂aξ

a + ξa∂aΦ

�

, α≪ 1 . (15)

Hence,

log ZΦ = log ZΦ+δΦ = log ZΦ +

∫

D
d2σ



T̂ (σ)
�

Φ
δΦ (σ) +O
�

δΦ2
�

, (16)

with δΦ defined in (15). Expanding around Φ = 0 results in a series of constraints. At O(Φ0)
we have,

∫

dpσ
1
p

�

∇̂aξ
a
�

〈T̂ (σ)〉0 = 0 , (17)

and at O(Φ1),
∫

dpσ ξa∂aΦ〈T̂ (σ)〉0 +
∫

dpσ1 dpσ2
1
p

�

∇̂ · ξ(σ1)
�

Φ(σ2)〈T̂ (σ1)T̂ (σ2)〉0 = 0 . (18)

For our purposes (18) is enough, and we ignore all the other identities.
Notice that the covariant derivative takes a simple form for the first three Killing vectors in

(8), i.e., ∇̂ξa (θ ,φ) = −2na (θ ,φ). where n̂ = (sinθ cosφ, sinθ sinφ, cosθ ) is a unit vector.
Choosing a dilaton profile of the form, Φ (θ ,φ)≡ nb (θ ,φ) for any b = 1,2, 3, and introducing
the following notation

∫

d2σ
p

γ̂≡
∫

S2 for brevity, the double integral in (18) becomes,

Iab =

∫

S2

∫

S2

na
1 nb

2




T̂ (n̂1) T̂ (n̂2)
�

. (19)

Due to the SO (3) invariance of the integration measure and the two-point function, we
deduce that Iab is an invariant bulk tensor, and therefore it is proportional to δab,

Iab =
1
3
δab

∫

S2

∫

S2

(n̂1 · n̂2)



T̂ (n̂1) T̂ (n̂2)
�

. (20)

Setting a = b = 3, i.e., Φ∝ cosθ , and evaluating the first term in (18), yields
∫

S2




T̂ (n̂)
�

=
1
2

∫

S2

∫

S2

(n̂1 · n̂2)



T̂ (n̂1) T̂ (n̂2)
�

. (21)

In fact, a similar expression also holds for higher dimensional spherical defects.

4Our analysis also holds in the case of a p-dimensional spherical defect. This is why a general p appears in (15).
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3 Irreversibility of the DRG flows

In this section we establish the irreversibility of DRG flows on the two-dimensional defects
through the use of renormalized defect entropy defined below. It is derived from the defect
F -function defined by

F = − log
ZD

ZCFT
, (22)

where ZCFT is the partition function of an ambient CFT without defect. The F -function is
dimensionless, and therefore it depends on the dimensionless couplings and dimensionless
combination µR, where µ is the floating cutoff scale.5

For a 2d defect of characteristic size R embedded in a flat Euclidean space, the F -function
at the UV fixed point of the RG flow takes the form6

FUV
DCFT
= c0 +

a0µ
2
UV

4π

∫

d2σ
Æ

γ̂ (23)

−
�

b0

24π

∫

d2σ
Æ

γ̂ R+
b1

24π

∫

d2σ
Æ

γ̂ Tr
�

K̃µK̃µ
�

�

log(µUVR) .

Here, R is the Ricci scalar of the defect, whereas K̃µac = Kµac− 1
2 γ̂acTr(Kµ) is the traceless part of

the defect extrinsic curvature Kµac . The constants in the above expression are functions of the
critical couplings. This ansatz is obtained by solving the Wess-Zumino consistency conditions
at the fixed points of the DRG flow [66–68]. Moreover, for a sphere in flat space K̃µac = 0, and
therefore (23) simplifies

FUV
DCFT

�

�

�

S2
= cUV + aUV(µUVR)2 −

bUV

3
log(µUVR) , (24)

where bUV = b0.
The F -function changes if a UV DCFT is subject to a relevant deformation. However, the

precise structure of the F -function away from the UV fixed point is not essential for our needs.
Our analysis relies on the existence of a cutoff scale µIR≪ µUV, where the theory is controlled
by the IR DCFT, and the F -function can be recast as (24) with µUV, cUV, aUV and cUV replaced by
their IR counterparts.

The first two terms in (24) are non-universal, because one can shift cUV by rescaling µUV,
whereas aUV can be arbitrarily changed by adding a finite local counterterm to the defect (cos-
mological constant). In contrast, bUV does not suffer from the ambiguities, it is universal and
satisfies bUV ≥ bIR for the UV and IR ends of the RG trajectory [55].7 In what follows, we
provide an alternative derivation of this inequality. Moreover, we prove that our construction
decreases monotonically along the DRG flows induced by weakly relevant deformations of the
UV DCFT leading to a C-function. To the best of our knowledge, this is the first perturbative
example of a C-function in the context of two-dimensional defects.8

To isolate the universal part of F , we define the renormalized defect entropy (RDE) as fol-
lows

S = −R∂R

�

1−
1
2

R∂R

�

F = 1
2

�

R2∂ 2
R − R∂R

�

F . (25)

This definition is motivated by the so-called Renormalized Entanglement Entropy in four space-
time dimensions [63]. The derivatives with respect to R are designed to eliminate the non-
universal terms, such that S = b0

3 at the fixed points of the DRG flows on spherical defects.

5By introducing suitable explicit factors of µ all couplings may be assumed to be dimensionless.
6There are additional contributions if the ambient Euclidean space is curved, see e.g., [65,66].
7 b1 is also universal, but we do not study it in this work.
8See also [69], where the ideas of entanglement [9,45,52] are used to build a proposal for the C-function.
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The Renormalized Entanglement Entropy is neither monotonic nor proved to be useful in es-
tablishing irreversibility of RG flows in four dimensions [63]. In contrast, as shown below, the
RDE introduced in (25) necessarily decreases between the two ends of the DRG flow.

Introducing a constant dilaton profile, one can rewrite (25) in an equivalent form

S =

��

1
2

d2

dΦ2
−

d
dΦ

�

F
�

Φ=0

=

∫

S2

〈T̂ (σ)〉 −
1
2

∫

S2

∫

S2

〈T̂ (σ1)T̂ (σ2)〉 , (26)

because by definition the dilaton is coupled to the trace of the defect stress tensor. Using the
constraint equation (21), we get

S = −
1

4R2

∫

S2

∫

S2

s2(σ1,σ2)〈T̂ (σ1)T̂ (σ2)〉 , (27)

where s2(σ1,σ2) = 2R2(1 − n̂1 · n̂2) is the square of the chordal distance between the two
points σ1 and σ2 on the surface of a two-dimensional sphere.

Note that (27) necessarily includes the contribution of the contact term, otherwise (21)
is not satisfied at the fixed points of the DRG flow, where the trace of defect stress tensor
vanishes up to an anomaly. In particular, while the two-point function is positive definite due
to unitarity of the theory, the contact term does not have a definite sign. Hence, the RDE is
not necessarily positive.

To isolate the contribution of the contact term, we evaluate (27) at the UV fixed point of
the DRG flow. To this end, we note that the UV DCFT satisfies,

〈T̂ 〉UV =
bUV

24π
R ⇒ 〈T̂ (σ1)T̂ (σ2)〉UV = −

bUV

12π
(R+∇2)

δ(σ1,σ2)
p

γ̂(σ1)
, (28)

where the contact term on the right is obtained by varying the anomaly term on the left with
respect to the induced metric on the defect. Substituting this expression into (27), yields the
expected result SUV =

bUV
3 . In particular, (27) can be written as follows

S =
bUV

3
−

1
4R2

∫

S2

∫

S2

s2(σ1,σ2)〈T̂ (σ1)T̂ (σ2)〉=
bUV

3
−π
∫

S2

s2(σ)〈T̂ (σ)T̂ (0)〉 , (29)

where the contact term is now excluded from the positive definite 〈T̂ T̂ 〉. In the second equality
we used invariance of the integrand under rotations of S2 to position σ2 at the south pole of
the sphere (σ2 = 0).

The integral on the right hand side of (29) is manifestly positive and finite, because the
sphere introduces a natural IR cut off, whereas the limit of coincident points, σ→ 0, is dom-
inated by the UV DCFT with vanishing T̂ , i.e., 〈T̂ T̂ 〉 = β iβ j〈OiO j〉, where β i ’s are the beta
functions of various couplings, whereas the renormalized operators Oi are associated with the
relevant deformations of the UV fixed point. Hence, 〈T̂ T̂ 〉 is less singular than 1/s4, and the
integral converges in this limit.

The RDE is a function of dimensionless couplings, g i , and µR. The natural choice for the
running scale is µ∼ 1/R,

S
�

µR, g i(µ)
�

�

�

�

µ∼1/R
= S
�

g i(R−1)
�

. (30)

Thus the value of S along the RG trajectory can be probed by varying the radius of the sphere.
In particular, taking the limit R → ∞, we establish the irreversibility of DRG flows on the
two-dimensional defects

bIR − bUV

3
= −π
∫

S2

s2(σ)〈T̂ (σ)T̂ (0)〉
�

�

�

R→∞
≤ 0 ⇔ bIR ≤ bUV . (31)

7

https://scipost.org
https://scipost.org/SciPostPhys.15.6.240


SciPost Phys. 15, 240 (2023)

The RDE might not be necessarily monotonic along the RG trajectory. To show it explicitly,
let us differentiate (30) with respect to R and use T̂ = β iOi ,

9

R
d

dR
S(g i) = −β i ∂

∂ g i
S
�

g i) = +πβ i ∂

∂ g i

∫

S2

s2 (σ)β jβ k



O j(σ)Ok(0)
�

= πβ iβ j
�

2
∂ β k

∂ g i
+ β k ∂

∂ g i

�

∫

S2

s2 (σ)



O j(σ)Ok(0)
�

= −2π2 β iβ jhi j . (34)

In the last equality we have defined the matrix hi j(g), which is analogous to the well-known
Zamolodchikov metric [1].

The beta functions vanish at the fixed points of the DRG flow, therefore ∂ β j/∂ g i likewise
the first term within parenthesis in (34) necessarily flip the sign along the flow. Similarly, the
second term within parenthesis does not exhibit a definite sign, because it explicitly depends
on the three point function. The upshot of this discussion is that the positive definiteness of
hi j and, consequently, the monotonicity of S is not evident. That said, the renormalized defect
entropy is monotonic for a large class of RG flows, as demonstrated in the next subsection.

3.1 Perturbative DRG flow

Consider a DCFT perturbed by a set of weakly relevant defect operators Oi with scaling di-
mensions ∆i = 2−εi where 0< εi ≪ 1. We choose the operators Oi such that at the UV fixed
point they satisfy

〈Oi(σ1)O j(σ2)〉UV =
δi j

s(σ1,σ2)2∆i
, (35)

〈Oi(σ1)O j(σ2)Ok(σ3)〉UV =
Ci jk

s(σ1,σ2)
∆i+∆ j−∆k s(σ1,σ3)

∆i+∆k−∆ j s(σ2,σ3)
∆ j+∆k−∆i

.

The above weakly relevant deformations give rise to a perturbative RG flow of the form [2,
70],10

β i = µ
d g i

dµ
= −εi g

i +πC i
jk g j gk +O(g3) , (36)

where the indices are raised and lowered with the Kronecker delta. In particular, the IR fixed
point is located in the vicinity of the UV DCFT and one can use conformal perturbation theory
to calculate ∆b = bIR − bUV. Substituting T̂ = β iOi into (31) and expanding around the UV
fixed point, yields

∆b = −3πβ iβ j

∫

d2σ
Æ

γ̂ s2(σ)
�

Z k
i Z ℓj 〈Ok(σ)Oℓ(0)〉UV

− gk

∫

d2σ′
Æ

γ̂ 〈Oi(σ)O j(0)Ok(σ
′)〉UV +O(g2)
�

, (37)

9We drop the anomaly term from T̂ , because it does not contribute to the connected correlator in (29). Note
also that the flow equation for S

�

µR, g i(µ)
�

can be derived from the Callan-Symanzik equation,

�

µ
∂

∂ µ
+ β i ∂

∂ g i

�

S
�

µR, g i(µ)
�

= 0 . (32)

The differential operator within parenthesis in (32) commutes with R ∂
∂ R , and therefore (32) follows from the

definition of S and the Callan-Symanzik equation for the F -function. Hence,

−β i ∂

∂ g i
S
�

g i) = µ
∂

∂ µ

�

�

�

µ∼1/R
S
�

µR, g i(µ)
�

. (33)

10See also next section.
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where Z k
i is the mixing matrix, which relates the renormalized Oi to its UV counterpart,

Oi = Z k
i OUV

k . We keep only linear terms within parenthesis in the above expression, because
the perturbative beta functions (36) are evaluated up to O(g2).

For simplicity consider the case with equal εi ’s, then

Zi j = δi j +
2πCi jk gk

ε
+O(g2) . (38)

Using (35), (36), (B.5) and (B.15), we obtain

∆b = −3π2εδi j g i
IR

g j
IR + 2π3Ci jk g i

IR
g j

IR gk
IR
+O(g4

IR
) = −π2εδi j g i

IR
g j

IR +O(g4
IR
)< 0 , (39)

where the couplings g i
IR

correspond to the IR fixed point of the DRG flow, and we used β i(gIR)=0
in the second equality to simplify the expression. If there is only one relevant deformation,
i.e., a single coupling gIR and one OPE coefficient C1, we obtain

β(gIR) = 0 ⇒ gIR =
ε

πC1
⇒ ∆b = −

ε3

C2
1

< 0 . (40)

Lastly, the matrix hi j in (34) is given by11

hi j = δi j +O(g) . (41)

Therefore, as long as the perturbative expansion remains valid, hi j retains its positive definite-
ness within a small neighborhood of the UV DCFT. Specifically, the RDE exhibits perturbative
monotonicity to all orders in the coupling constant and serves as a C-function, provided that
the DRG flow is generated by a sufficiently weak relevant deformation of the UV DCFT.

4 Example of the DRG flow

In this section we present a concrete and simple example of a DCFT, where the general concepts
of the previous sections can be explicitly illustrated. With this aim, consider a free massless
scalar field in a d-dimensional Euclidean bulk coupled to a two-dimensional defect D,

I =
1
2

∫

dd x ∂µφ0∂
µφ0 + g0

∫

D
d2σ
Æ

γ̂φ2
0 +

∫

D
d2σ
Æ

γ̂
�

Λ0 −
b0

24π
R
�

, (42)

where the last integral on the right hand side represents the geometric counterterms with Λ0
and R being the cosmological constant and Ricci scalar of the induced metric respectively.
This action is Gaussian with a space-time dependent mass term of the form, m2 = 2g0δD. We
employ the minimal subtraction scheme to absorb the divergences due to the presence of a
singular mass term.

Varying (42), yields

T tot
µν = ∂µφ0∂νφ0 −

1
2
δµν
�

∂ φ0

�2 −
d − 2

4(d − 1)

�

∂µ∂ν −δµν∂ 2
�

φ2
0 − γ̂µν
�

g0φ
2
0 +Λ0

�

δD , (43)

where the third term on the right hand side represents the well known improvement in the
bulk, and we used the following identities,

δγ̂ac = δgµνea
µec
ν , γ̂µν = γ̂ace

a
µec
ν .

11The first equality in (39) is applicable to any coupling g i along the DRG flow. Consequently, one simply applies
−β i ∂

∂ g i to the expression for ∆b/3 to derive hi j .
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Taking trace of T tot
µν , and using (3) along with the tracelessness of the bulk stress tensor,

T ≡ Tµµ = 0, yields

Ttot = T̂ δD =
d − 2

2
φ0∂

2φ0 − 2
�

g0φ
2
0 +Λ0

�

δD = (d − 4)g0φ
2
0δD − 2Λ0δD , (44)

where the last equality follows from the equation of motion operator,

E = −∂ 2φ0 + 2g0φ0δD = 0 . (45)

Hence, we finally obtain,
T̂ = (d − 4)g0φ

2
0 − 2Λ0 . (46)

To facilitate further analysis, we assume that d = 4−ε, i.e., the bare coupling g0 is weakly
relevant. In particular, conformal perturbation theory can be employed to relate g0 to the
renormalized coupling g at an arbitrary energy scale µ. To this end, we note that up to second
order in g0 the defect insertion in the path integral can be written as follows,

e−g0
∫

D φ
2
0 = 1− g0

∫

D
φ2

0(σ1) +
g2

0

2

∫

D

∫

D
φ2

0(σ1)φ
2
0(σ2) + . . . (47)

All scales are included in the above expression. To get the defect at a given scale µ, we integrate
out the distances in the range 0 ≤ ℓ ≤ µ−1. This calculation boils down to excluding a small
ball of radius µ−1 around φ2

0(σ1) in the second term on the right hand side of (47),

∫

D
φ2

0(σ1)φ
2
0(σ2) =

∫ σ12>µ
−1

D
d2σ2

Æ

γ̂φ2
0(σ1)φ

2
0(σ2) +

∫ 0≤σ12≤µ−1

D
d2σ2

Æ

γ̂
C φ2

0(σ1)

σd−2
12

+ . . . ,

(48)
where σ12 is the distance between the points σ1 and σ2 in the d-dimensional Euclidean space,
and C is the OPE coefficient at the Gaussian fixed point,

φ2
0(x)φ

2
0(0)∼

C
|x |d−2

φ2
0(0) + . . . (49)

The last term in (48) contributes to the renormalization of the coupling g0 in (47),

g(µ)µε = g0 −
πC
ε

g2
0 µ
−ε +O(g3

0) ⇒ g0 = gµε
�

1+
πC g
ε
+O(g2)
�

, (50)

where g is the dimensionless running coupling constant. Thus,

β = µ
d g
dµ
= −εg +πC g2 +O(g3) . (51)

Furthermore, the renormalized defect operator [φ2] can be obtained by differentiating
the partition function in the presence of D with respect to g and striping off the integral over
D. Indeed, the operator insertion obtained in this way is finite and differs from the φ2

0 by an
ascending series of poles in ε. In principle, the contribution of the total derivatives to [φ2]
could be missed, because we explicitly strip off the integral over the defect. However, in our
case total derivatives are not allowed by dimensional analysis. As a result, one gets

[φ2] =
d g0

d g
φ2

0 +
dΛ0

d g
−

d b0

d g
R

24π
⇒ φ2

0 =
�

d g0

d g

�−1�

[φ2]−
dΛ0

d g
+

d b0

d g
R

24π

�

. (52)

Combining, (46), (50), (51) and (52), yields

T̂ = β(g)[φ2] +A , (53)
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where A represents anomaly (identity operator), which is not essential for our needs. As
expected, T̂ is a finite operator, which needs no renormalization, and up to an anomaly term
it vanishes at the UV and IR fixed points, gUV = 0 and gIR =

ε
πC .

Next, we use the general formula (31) to evaluate the difference between the anomaly
coefficients at the UV and IR ends of the DRG flow on a spherical defect. In our example,
gUV = 0, thus the defect becomes trivial in the UV, and the anomaly vanishes. Substituting
(46) into (31), yields12

bIR = −3π

∫

S2

s2(σ1)



T̂ (σ1)T̂ (0)
�

�

�

�

R→∞

= −3π(d − 4)2 g2
0

�∫

S2

s2(σ1)



φ2
0(σ1)φ

2
0(0)
�

0 − g0

∫

S2

∫

S2

s2(σ1)



φ2
0(σ1)φ

2
0(σ2)φ

2
0(0)
�

0

�

R→∞

+O(g4
IR
) ,

(54)

where

〈φ0(σ1)φ0(σ2)〉=
Cφ

s(σ1,σ2)d−2
, Cφ =

Γ
� d−2

2

�

4π
d
2

,

〈φ2
0(σ1)φ

2
0(σ2)〉=

2C2
φ

s(σ1,σ2)2(d−2)
, (55)

〈φ2
0(σ1)φ

2
0(σ2)φ

2
0(σ3)〉=

8C3
φ

(s(σ1,σ2)s(σ1,σ3)s(σ2,σ3))d−2
.

In particular,

C = 4Cφ =
1
π2

, gIR = επ . (56)

The two integrals within parenthesis in (54) can be evaluated in a closed form, see Ap-
pendix B. Substituting (B.5), (B.15) and (50), yields13

bIR = −
3

8π3
ε2 g2

IR

�

π

ε
−

2 gIR

3ε2

�

+O(g4
IR
) = −

ε3

8
+O(ε4) . (57)

To check this result we perform an independent calculation of bIR based on the direct
calculation of the F -function. We have,

−F =
g2

0

2

∫

D

∫

D




φ2
0(σ1)φ

2
0(σ2)
�

0 −
g3

0

6

∫

D

∫

D

∫

D




φ2
0(σ1)φ

2
0(σ2)φ

2
0(σ3)
�

0 +O(g4
0) . (58)

Substituting (50), (55) and using (B.5), (B.10) of Appendix B, we obtain

−F =
g2(µR)2ε

2

�

1+
2g
πε

��

−
1

8π2
+O(ε)
�

−
g3(µR)3ε

6

�

−
2

3π3ε
+O(ε0)
�

+O(g4) . (59)

This expression is not finite in the limit ε → 0, because we did not include the contribution
of the geometric counterterm proportional to the integral of the Ricci scalar over the defect.14

12Note that for any g along the RG trajectory, the expression for S is manifestly finite in the limit ε→ 0, therefore
O(g4) terms are free of poles in ε, i.e., these corrections are at least O(ε4).

13This result agrees with (40) if the difference between the normalizations of φ2
0 and Oi is taken into account.

It follows from (35) and (55) that one should use C1 =
p

8 in (40) to compare with (57).
14It satisfies b0 =

g3

24π3ε
+O(g4), because from (42) and (59), we have (Λ0 = 0 in dimensional regularization),

−F = −
g3

72π3ε
+

b0

24π

∫

D
d2σ
Æ

γ̂R+O(g4,ε0) .
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This counterterm is a constant independent of R, and therefore it does not contribute to the
RDE (25). Substituting (59) into (25), setting µ= R−1, and taking the limit R→∞, gives

bIR = −
ε3

8
+O(ε4) , (60)

in full agreement with (57).

5 Conclusions

In this paper we defined the renormalised defect entropy (RDE) (25) to characterise RG flows on
the two-dimensional spherical defects embedded in a d-dimensional flat Euclidean bulk CFT.
By definition, the RDE is finite along the entire RG flow from the UV to the IR fixed points.
This construction is used to provide an alternative derivation of the sum rule (31), also known
as the defect b-theorem [55]. More interestingly, we argue that the RDE is monotonically
decreasing along the RG flows induced by weakly relevant deformations of the UV fixed point.
This result is quite surprising considering the fact that monotonicity of the non-perturbative
definition of RDE is not obvious.

The salient feature of the key identity (21) in our construction is that it can be generalized
to higher dimensional spherical defects (p > 2). However, for such defects, the integral of the
two-point function on the right hand side of (21) exhibits UV divergences. These divergences
are closely related to the new type of non-universal terms appearing in the partition function
for the higher dimensional defects. In particular, one has to modify the definition of RDE
to isolate the subleading universal contribution associated with anomaly. The corresponding
modification necessarily involves higher order derivatives of the partition function with re-
spect to R, such that the non-universal terms are suitably removed. The final pattern for the
higher dimensional RDE resembles the so-called renormalized entanglement entropy [63]. It
includes the uncharted higher point correlators of the defect stress tensor, which make non-
perturbative studies difficult. Even though it is hard to prove monotonicity or positivity of such
constructions in general, it would be interesting to explore them further.
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Hence, using (46) and (52), we recover the anomaly term in (53)

A= (d − 4)g0

� d g0

d g

�−1 d b0

d g
R

24π
= −
ε3

8
R

24π
+O(ε4) .

This result agrees with (57).

12

https://scipost.org
https://scipost.org/SciPostPhys.15.6.240


SciPost Phys. 15, 240 (2023)

A Conformal Ward Identities in the presence of defects

For the sake of completeness of the presentation, in this Appendix we reproduce a slight gener-
alization of the Ward identities obtained in [64] to account for defects of codimension higher
than one. We apply the identities to the special case of a spherical defect and recover (5).

Following [64], we extend (2) to include an extra term coupled to the normal derivatives
of the metric,

δW = −
1
2

∫

M
dd x
p

g δgµν 〈Tµν〉+
∫

D
dpσ
Æ

γ̂ δXµ (σ)



Dµ
�

−
1
2

∫

D
dpσ
Æ

γ̂
�

δgµν〈T̂µν〉+∇Iδgµν〈ÂIµν〉+ ...
�

. (A.1)

In principle, there could be additional terms coupled to higher order normal derivatives of the
metric. However, they vanish at the fixed points of DRG provided that p < 4. Moreover, even
if the first additional term of this kind is present, we argue that the Ward identity (5) is not
modified in the special case of spherical defect.

The bulk diffeomorphism xµ→ x ′µ = xµ − ξµ yields

δgµν =∇µξν +∇νξµ , δX u = −ξµ . (A.2)

Together with (A.1) it results in the following Ward identity,

0=

∫

M
dd x
p

g ξν∇µTµν −
∫

D
dpσ
Æ

γ̂
�

ξµDµ +∇µξν T̂µν +∇I∇µξνÂIµν
�

. (A.3)

Thereafter, we split every vector ξν into components that are tangential and normal to the
defect, using the tangent frame eµa =

∂ Xµ
∂ σa and a normal frame nµI .

ξν = ea
νξa + nI

νξI , ∇µ = ea
µ∇a + nI

µ∇I . (A.4)

In all further computations, we will make the following assumptions for the tangent and
normal frames: ∇I nJ = ∇I ea = 0. This assumption corresponds to a particular choice of fo-
liation in the vicinity of the defect, because nµJ and eµa become bulk fields. In the case of a
generic two-dimensional defect embedded within a curved ambient space, this type of folia-
tion might not necessarily exist. However, it can be readily established for a two-dimensional
spherical defect in flat space, which is a central focus of our paper. To achieve this, one simply
needs to adopt spherical coordinates in the three-dimensional ambient space that encloses the
sphere, while employing Cartesian coordinates for the remaining d − 3 dimensions.15 The
Ward identities remain unaffected by the choice of foliation; hence, our results are applicable
for all geometries that admit a foliation of the above type.

To evaluate the above expression, we make use of the following identities,

∇aeb
ν = −nI

νK
b
Ia , ∇anI

µ = K I
abeb
µ , (A.5)

15The flat metric in these coordinates takes the form ds2 = dr2 + r2
�

dθ 2 + sin2 θdφ2
�

+ δi j d x i d x j . The defect
is characterized by r = R and x i = 0. As a result, the normal frame extends into the bulk field with nµr ∂µ = ∂r

and nµi ∂µ = ∂i for i = 4, 5, ..., d. Likewise, the tangent frame extends into the bulk field, giving eµ
φ
∂µ =

R
r ∂φ and

eµ
θ
∂µ =

R
r ∂θ .Upon direct calculation, we find ∇r eµ

θ
=∇r eµ

φ
=∇r nµr =∇r nµi = 0, and similarly for the derivative in

the direction of nµi . The useful non-zero Christoffel symbols are Γθ ,rθ = −Γr,θθ = r, Γφ,rφ = −Γr,φφ = r sin2 θ , and
Γφ,θφ = −Γθ ,φφ =

1
2 r2 sin(2θ ).

13

https://scipost.org
https://scipost.org/SciPostPhys.15.6.240


SciPost Phys. 15, 240 (2023)

where Kab are the extrinsic curvatures of the defect manifold D. Using these identities, we
obtain

∇µξν = ea
µeb
ν∇aξb − ea

µnI
νK

b
Iaξb + ea

µnI
ν∇aξI + ea

µeb
νK I

abξI + nI
µeb
ν∇Iξb + nI

µnJ
ν∇IξJ ,

(A.6)

∇I∇µξν = ea
µeb
ν∇I∇aξb − ea

µnJ
ν

�

ξb∇I K
b
Ja + K b

Ja∇Iξb

�

+ ea
µnJ
ν∇I∇aξJ

+ ea
µeb
µ

�

∇I K
J
abξJ + K J

ab∇IξJ

�

+ nJ
µeb
ν∇I∇Jξb + nJ

µnK
ν∇I∇JξK . (A.7)

Substituting equations (A.6),(A.7) into (A.3) yields,

δW =

∫

M
dd x
p

g ξν∇µTµν +

∫

D
dpσ
Æ

γ̂
�

− Daξa − DIξI − T̂ ab∇aξb + T̂ IaK b
Iaξb

− T̂ Ia∇aξI − T̂ abK I
abξI − T̂ Ia∇Iξa −∇IξJ T̂ I J − ÂIab∇I∇aξb + ÂIaJ K b

Ja∇Iξb

− ÂIaJ∇I∇aξJ − ÂIabK J
ab∇IξJ − ÂI J b∇I∇Jξb − ÂI JK∇I∇JξK + . . .

�

. (A.8)

To proceed, change the order of∇I∇a to∇a∇I and then integrate by parts over the defect
submanifold. Using the identity

�

∇µ,∇ν
�

ξρ = −R σ
ρµνξσ =R σ

ρ µνξσ, one arrives at,

δW =

∫

M
dd x
p

g ξν∇µTµν (A.9)

+

∫

D
dpσ
Æ

γ̂
��

∇a T̂ ab − Db +∇a + T̂ IaK b
Ia + ÂIacR b

c aI −∇c

�

ÂIabK c
Ia

�

�

ξb

+
�

∇a T̂ Ia − DI − T̂ abK I
ab + ÂJabR I

b aJ + ÂJabK c
JaK I

cb

�

ξI

+
�

− T̂ Ia +∇bÂI ba
�

∇Iξa +
�

− T̂ I J − ÂIabK J
ab

�

∇IξJ

− ÂI J b∇I∇Jξb − ÂI JK∇I∇JξK + . . .
�

.

Since ξb,ξI and their normal derivatives are completely independent, their coefficients must
separately vanish. This leaves us with the following Ward Identities,

∇b T̂ ba − Da + Ka
I b T̂ I b −∇c

�

K c
I bÂI ba
�

+R a
c bI Â

I bc = 0 ,

∇a T̂ aI − DI − K I
ab T̂ ab +
�

R I
b aJ + K c

JaK I
cb

�

ÂJab = 0 ,

∇aÂIab − T̂ I b = 0 ,

T̂ I J + ÂIabK J
ab = 0 ,

ÂI J b = ÂI JK = 0 .

(A.10)

For a p-dimensional spherical defect and flat bulk with R= 0, there is only one normal direc-
tion to the sphere with a non-vanishing extrinsic curvature, Kab =

gab
R . However, its contribu-

tion to the first equation in (A.10) vanishes with the use of the third equation. Thus we simply
have

∇b T̂ ba = Da . (A.11)

B Useful integrals

In this Appendix we evaluate various integrals on a p-dimensional spherical defect of radius
R. These integrals are used in the main body of the text. It is convenient to describe the metric
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on Sp through the use of stereographic projection on Rp. In these coordinates the metric is
conformally flat,

γ̂acd xad x c =
4R2

(1+ |x |2)2
δacd xad x c , |x |2 = δac xa x c . (B.1)

In particular, the chordal distance between the two points on Sp takes the form

s(x1, x2) = 2R
|x1 − x2|

(1+ |x1|2)1/2(1+ |x2|2)1/2
. (B.2)

We start from the following double integral

I1 =

∫ 2
∏

i=1

dp x i

Æ

γ̂(x i)
1

[s(x1, x2)]2α
. (B.3)

Note that the integral over x1 is independent of x2, because the integrand is invariant under
rigid rotations of the sphere. Hence, we can set x2 = 0 without changing the answer. As a
result, we obtain

I1 =

∫ 2
∏

i=1

dp x i

Æ

γ̂(x i)
1

[s(x1, 0)]2α
= R2(p−α)2

1+p−2απ
p+1

2

Γ
� p+1

2

�

∫

dp x1

(1+ x2
1)

p−α|x1|2α
, (B.4)

where in the second equality we used (B.1), (B.2) and integrated over x2. Using spherical
coordinates to perform the remaining integral, yields

I1 = R2(p−α)2
1+p−2απp+ 1

2 Γ
� p

2 −α
�

Γ
� p+1

2

�

Γ (p−α)
. (B.5)

Next we calculate

I2 =

∫ 3
∏

i=1

dp x i

Æ

γ̂(x i)
1

[s(x1, x2)s(x2, x3)s(x3, x1)]
p−ε . (B.6)

Let us carry out the integrals over x1 and x2 first. Due to the manifest invariance of the
integrand under the rotations of the sphere, the final result is independent of x3, and therefore
we can set x3 = 0. Thus the integral over x3 gives the volume of Sp,

I2 =
2π

p+1
2 Rp

Γ
� p+1

2

�

∫ 2
∏

i=1

dp x i

Æ

γ̂(x i)
1

[s(x1, x2)s(x2, 0)s(0, x1)]
p−ε (B.7)

= (2R)3ε
21−pπ

p+1
2

Γ
� p+1

2

�

∫ 2
∏

i=1

dp x i
1

(|x12||x2||x1|)
p−ε

1
��

1+ x2
1

� �

1+ x2
2

��ε , x12 = x1 − x2 .

To simplify the double integral, we apply inversion |x1,2| → |x1,2|−1,

I2 = (2R)3ε
21−pπ

p+1
2

Γ
� p+1

2

�

∫ 2
∏

i=1

dp x i
1

|x12|p−ε
1

��

1+ x2
1

� �

1+ x2
2

��ε . (B.8)

Using the standard Feynman parametrization to integrate over x1, yields

I2 = (2R)3ε
21−pπ

2p+1
2 Γ
�

ε
2

�

Γ
� p+1

2

�

Γ
� p−ε

2

�

Γ (ε)

∫

dp x2

∫ 1

0

du
(1− u)

p−ε−2
2 u

ε
2−1

�

1+ x2
2

�ε
(1+ (1− u)x2

2)
ε
2

. (B.9)
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Integrating over the Feynman parameter u, and then using the spherical coordinates to carry
out the remaining integral over x2, we obtain

I2 = R3ε
8π

3(p+1)
2 Γ
�

− p
2 +

3ε
2

�

Γ (p) Γ
�1+ε

2

�3 . (B.10)

Finally, we evaluate a triple integral of the form

I3 =

∫ 3
∏

i=1

dp x i

Æ

γ̂(x i)
s(x1, x2)2

[s(x1, x2)s(x2, x3)s(x3, x1)]
(p−ε) . (B.11)

As before, the rotational symmetry can be used to set x3 = 0,

I3 =

∫ 3
∏

i=1

dp x i

Æ

γ̂(x i)
s(x1, x2)2

[s(x1, x2)s(x2, 0)s(0, x1)]
(p−ε)

=
21−pπ

p+1
2

Γ
�

p+1
2

� (2R)3ε+2

∫ 2
∏

i=1

dp x i
1

(1+ x2
1)1+ε(1+ x2

2)1+ε |x12|p−ε−2|x2|p−ε|x1|p−ε
, (B.12)

where in the second equality we used (B.1), (B.2). Next, we apply inversion |x1,2| → |x1,2|−1

to simplify the double integral

I3 =
21−pπ

p+1
2

Γ
�

p+1
2

� (2R)3ε+2

∫ 2
∏

i=1

dp x i
1

(1+ x2
1)1+ε(1+ x2

2)1+ε |x12|p−ε−2
. (B.13)

Introducing Feynman parametrization to integrate over x1, yields

I3 = (2R)3ε+2
21−pπ

2p+1
2 Γ
�

ε
2

�

Γ
� p+1

2

�

Γ
� p−ε−2

2

�

Γ (ε+ 1)

∫

dp x2

∫ 1

0

du
(1− u)

p−ε−4
2 u

ε
2

�

1+ x2
2

�1+ε
(1+ (1− u)x2

2)
ε
2

. (B.14)

Integrating now over the Feynman parameter u, and then using spherical coordinates to cal-
culate the integral over x2, we obtain

I3 = (2R)3ε+2
π3p/2+121−2εΓ
�3ε

2 + 1− p
2

�

Γ (ε/2)

Γ (1+ ε) Γ
�1+ε

2

�2
Γ (p)

. (B.15)
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