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Abstract

The coherent superposition of quantum states is an important resource for quantum
information processing which distinguishes quantum dynamics and information from
their classical counterparts. In this article we determine the coherence requirements to
communicate quantum information in a broad setting encompassing monitored quan-
tum dynamics and quantum error correction codes. We determine these requirements by
considering hybrid circuits that are generated by a quantum information game played
between two opponents, Alice and Eve, who compete by applying unitaries and mea-
surements on a fixed number of qubits. Alice applies unitaries in an attempt to maintain
quantum channel capacity, while Eve applies measurements in an attempt to destroy it.
By limiting the coherence generating or destroying operations available to each oppo-
nent, we determine Alice’s coherence requirements. When Alice plays a random strategy
aimed at mimicking generic monitored quantum dynamics, we discover a coherence-
tuned phase transitions in entanglement and quantum channel capacity. We then derive
a theorem giving the minimum coherence required by Alice in any successful strategy,
and conclude by proving that coherence sets an upper bound on the code distance in
any stabelizer quantum error correction code. Such bounds provide a rigorous quantifi-
cation of the coherence resource requirements for quantum communication and error
correction.
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1 Introduction

Protecting quantum superposition is essential for obtaining quantum advantage in simulation,
sensing, communication and computation. While noisy intermediate-scale quantum devices
have advanced this frontier [1–3] by improving the fidelities of quantum gates and qubits,
quantum error correction is conjectured to be essential in the long run. Similar to classi-
cal error protection, quantum error correction requires redundancy in the number of qubits
and other quantum resources such as entanglement. Thus, there has been a significant effort
towards developing quantum resource theories [4], which rigorously determine the nature
and quantity of a given quantum resource such as entanglement [5,6], non-locality [7,8], or
quantum coherence [9–13] (related to superposition [14, 15]). For example, entanglement
and coherence have been demonstrated as essential resources for performing quantum sens-
ing [12,16,17]. At the same time, any resource for any given quantum resource theory is useful
in some channel discrimination task [18–24]. Finally, Ref. [25] provided an error correction
protocol that consumes coherence as it corrects errors. While this protocol shows that coher-
ence can be used as a resource for error correction, it is not yet known if or how coherence is
necessary for quantum communication.

In this article, we determine the coherence resource requirements for quantum communi-
cation in a generic setting encapsulating both monitored many body quantum dynamics and
error correction protocols involving active feedback. In the first case, we investigate an ensem-
ble of hybrid circuits modeling a generic class of monitored quantum dynamics, and identify
phase transitions in their channel capacity [26–30]. By controlling the coherence generating
capacity of such circuits we are able to control the phase transition and extract the coherence
requirements for obtaining a finite channel capacity.

The hybrid circuit channels previously studied [31–71] are composed of a sequence of
random local unitaries and measurements which compete to drive the phase transition in the
channel capacity and entanglement properties. While the transition was first observed in the
scaling properties of entanglement [32–35], the manifestation of the transition in terms of
channel capacity allows us to investigate the information game shown in Fig. 1. In this game,
an agent Alice, having access to a set of qubits and a limited set of local unitary operations,
attempts to protect a quantum diary (i.e. an arbitrary quantum state) from Eve who attempts
to destroy it with the application of quantum measurements (for which Alice can record the
outcomes of). Alice wins, if at the end of the game there is a finite quantum channel capacity
and she is able to recover her diary, while she looses when the channel capacity is zero.

By limiting the coherence generating ability of Alice, we are able to identify the coherence
resources required by Alice to protect her quantum diary. To identify which operations are
coherence generating and which are destroying, we make use of the resource theory of co-
herence [10], which is a basis specific resource theory, that quantifies the amount of quantum
superposition in that basis. By using the relative entropy of coherence [9] as the resource
quantifier, and considering its dynamics in the information game played between Alice in Eve,
we uncover the coherence resources required by Alice to protect both classical and quantum
diaries.

Inspired by these results, we apply the intuition and tools developed studying the informa-
tion game to quantum error correction and find that the code distance of a stabilizer quantum
error correction code is bounded by the relative entropy of coherence in any basis.

1.1 Coherence requirements in communication games and quantum error cor-
rection

We first consider the limit of zero coherence, and confirm Alice can only protect classical infor-
mation. That is, we show that if Alice can only prepare coherence-free states, and only perform
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Figure 1: Cartoon hybrid circuit composed of unitaries (white) and measurements
(red), which can be viewed as an information game played between Alice and Eve.
In this game, Alice attempts to store her diary in a set of qubits and Eve attempts to
destroy her diary by measuring them (for instance, shining light on the qubits). To
protect her diary, Alice applies a set of unitaries in an attempt to protect her diary
from Eve’s measurements, which Eve can apply at a fixed rate relative to the rate
at which Alice can apply unitaries. Alice is allowed to capture the emitted light,
record the measurement outcomes, and knows the measurement basis Eve makes a
measurement in. In this way, Alice can keep track of the evolving state of the system,
such that she might be able to apply a unitary at the end of the game to recover her
diary. The measurement-induced phase transition occurs when random strategies are
played, and corresponds to a transition in the quantum channel capacity between the
initial state encoding Alice’s diary, and the final state at the end of the game. Alice
wins the game in the volume-law phase when the quantum channel capacity is finite,
while she loses the game in the area-law phase when the channel capacity is zero.

the free operations of the coherence resource theory, then she can only store and protect clas-
sical information from a set of errors introduced by Eve. If instead, Alice is given a state (with
coherence) encoding a quantum diary, then she can protect quantum information using coher-
ence non-generating unitaries (the free operations of the coherence resource theory) as long
as the measurements Eve performs in her attack are restricted to preserve coherence. Next, we
allow Alice to generate coherence and identify the minimum amount of coherence she must
maintain to preserve her quantum diary.

In this setting, we first consider the case in which Alice and Eve take random strategies
in order to sample the coherence requirements for a large class of monitored quantum dy-
namics. The first set of strategies result in a hybrid circuit composed of random controlled
not gates (CNOTs) and projective measurements which can either generate or destroy coher-
ence. This investigation finds that, even at arbitrarily weak measurements, Alice’s ability to
protect quantum information can undergo a transition tuned by the relative rate of coherence
destroying and generating measurements. Next, we allow Alice to use a limited rate, pR, of
coherence generating unitaries in her random strategy and identify the threshold rate of deco-
hering measurements, pc

m, below which she can protect her quantum diary. We find that the
threshold rate of decohering measurements pc

m increases linearly with pR (i.e. pc
m = αpR for

some constant α), indicating a greater capacity to protect her quantum diary given access to
more coherence generating unitaries. Finally, we identify bounds on the minimum coherence
Alice must preserve in her qubits under any strategy taken by her or Eve. While the phase tran-
sition occurring in random circuits demonstrates that coherence is a requirement for quantum
communication in monitored many body quantum dynamics, this bound provides a rigorous
quantification of that requirement.

This suggests that one could also identify a threshold amount of coherence required for
error correction. Indeed, we find such a relation between the relative entropy of coherence
(computed for a specific state in the quantum code space) and the code distance (the number
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of errors correctable by the stabilizer code). A weak formulation of this relation is that the
relative entropy of coherence of the maximum coherent state in the code space bounds the
code distance (Theorem 3 in Sec. 5). A stronger formulation can be obtained by considering
subspaces of the full code space since a bound on the code distance for a subspace is a bound
for the full code space. Using one such stronger constraint on the code distance, we show
that our bound reproduces the classical Singleton bounds when applied to Calderbank-Shor-
Steane (CSS) codes which are a type of quantum error correction code constructed from two
classical error correction codes [72–74].

Using our bound, we therefore provide a rigorous quantification of the coherence resource
requirements for constructing a quantum error correction code. Intuitively, this bound gives
the extra coherent resources required to encode a quantum state. While it is natural that the
coherence of the physical state must be greater than that of the encoded state, our bound shows
that the coherence is also constrained by the number of errors that one desires to correct. Thus,
it gives the amount of extra coherence required for error correction than required to simply
represent the state.

We begin in section 2 by reviewing the resource theory of coherence and one of its resource
quantifiers, the relative entropy of coherence. Then, we introduce the information game and
monitored quantum dynamics and discuss the unitary limit of such models. Then, in sec-
tion 3, we discuss the coherence-free limit, and show that Alice can only encode and protect
classical information in this limit. We elaborate on this result in sections 3.2 and 3.3 by dis-
cussing Alice’s ability to protect quantum information only using coherence non-generating
operations. In section 4 we investigate the dynamics of coherence induced by measurements
and show that, while Eve can always destroy Alice’s diary if she is restricted to using coher-
ence non-generating unitaries, Alice can protect a quantum diary if Eve accidentally generates
coherence by performing measurements in the wrong basis. Finally in section 5 we discuss
the coherence resource requirements for quantum communication: both the requirements for
Alice to protect her diary (section 5.1), and the requirements in quantum error correction code
design (section 5.2).

1.2 New perspectives on hybrid circuit dynamics

While our work primarily focuses on using hybrid circuit dynamics to understand the coherence
resource requirements for quantum communication, it also provides perspectives and results
interesting for the reader primarily interested in hybrid circuits dynamics and their transitions.

Classical circuits The first set of hybrid circuits we consider are similar to the classical dy-
namics discussed in Refs. [75–78] which show measurement-induced transitions in classical
information and chaos quantifiers. Similarly, we first consider in section 3.1, the dynamics of a
circuit composed of random CNOTs occurring at a fixed rate and random bit erasers occurring
at a rate, pe, relative to the rate of CNOTs, and find a classical purification transition. The clas-
sical purification transition is investigated by considering the dynamics of an initial classical
distribution of classical bit strings and observing that the late time entropy of that distribu-
tion undergoes a phase transition similar to the quantum purification transitions discussed in
Refs. [26]. Going beyond previous works, we show that this transition in a classical entropy
is the coherence-free limit of a more general class of dynamics. We then show in section 3.2
that if the initial state has quantum coherence, and the bit erasers are implemented using a
sequence of measurements that preserve coherence, then the transition can also be considered
as a quantum purification transition. We show in section 3.3 that the dynamics of the circuit
can be described by the dynamics of a classical code space.

Coherence controlled entanglement transitions The second set of hybrid circuits we
consider are composed of CNOTs and measurements which occur at a relative rate, pm, to the
CNOTs. We then randomly choose to measure in the X , Y or Z bases with probability px py
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Figure 2: Sketch phase diagram for a circuit composed of CNOTs, and vanishing rate
of measurements pm. In this circuit, we randomly choose to measure in the X , Y or
Z measurements with probability px py and pz = 1− px − py respectively (we define
∆x = (px−pz)/(1−py)). The phases labeled Z-classical and X -classical are area-law
phases in which superposition is vanishing in the Z and X basis respectively. Typical
states in these phases are therefore efficiently represented by a superposition of a
limited number of X or Z basis states. This is in contrast to the “quantum” phase
which shows volume-law entanglement, and is characterized by a large amount of
superposition as quantified by the relative entropy of coherence, both in the X and
Z basis.

and pz = 1− px − py respectively. For these circuits, the dynamics of the relative entropy of
coherence in the X and Z basis are particularly interesting because they constrain the amount
of entanglement in the system (see section 2.4). Furthermore, the dynamics of coherence are
analytically accessible both in the measurement-only limit pm →∞ and vanishing measure-
ment rate limit pm → 1/L2. In the first case, the coherence can be predicted exactly, but the
entanglement dynamics are trivial and the steady states are all product states.

In the second limit, of vanishing measurement rate, an entanglement transition can be
observed as a function of the relative probabilities of which Pauli operators are measured, py
and∆x = (px − pz)/(1− py). In this limit, the dynamics of coherence follow a Markov process
described by a random walk in the amount of information ‘known’ about the X and Z basis
states (see Fig. 7). By studying this walker we find that the superposition (coherence) in the X
basis increases at a rate py+pz−px . Thus, if px > py+pz , the amount of superposition in the X
basis vanishes, the state becomes classical in the X basis with no entanglement. Similarly in the
Z basis, if pz > px+py , the superposition in the Z basis vanishes, the state becomes classical in
the Z basis and entanglement is again not allowed to form. Thus, if we consider the entropy of
a state where we first take the infinite time limit and then the vanishing measurement rate limit
limpm→0 limt→∞ S, we find a transition in the entanglement S at the critical line |px − pz|> py .
This is summarized in Fig. 2, where we have a phase transition between states classical in the
X and Z basis, and quantum states with volume-law entanglement.

The random walk describing the dynamics of coherence is discussed in section 4 along with
the coherence controlled entanglement transition. Details about the Markovian dynamics of
coherence are given in appendix D.

What is quantum about the volume-law entangled phases? In the final section 5 we
find that there is a transition in the ability of Alice to protect a quantum code, controlled by the
rate at which she can generate coherence. In that section, Eve makes an attack with coherence
preserving bit erasers and a coherence destroying measurement, while Alice defends her diary
with CNOTs and a limited rate of phase gates. While in that section, we only discuss her
ability to protect a quantum diary, we show in section 6 that there is a transition between a
regime where Alice can only protect a classical diary to one where she can protect a quantum
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diary. The difference between the two phases provides an answer to what is quantum about
the entangling phase of the measurement-induced transitions discussed in Refs. [32–35] in
comparison to the classical transitions discussed in Refs. [75–78]. Here, the transition between
being able to protect a classical diary to being able to protect a quantum diary occurs as the
ability to correct both bit and phase errors as apposed to just bit errors. Thus, this answer to
what is quantum about the entangling phase of the measurement-induced phase transitions is
equivalent to the answer to what is quantum about quantum error correction codes [72, 79].
While classical error correction and the classical scrambling phases protect information from
just bit or just phase errors, the entangling phase and quantum error correction codes are
robust to both bit and phase errors.

2 Coherence in monitored quantum dynamics

2.1 Resource theory of coherence

In this paper, we determine how quantum error correction requires quantum superposition
and quantify exactly how much superposition is required. We do this using the quantum
resource theory of quantum coherence [9, 10], which we will outline in this section. We also
discuss in depth the relative entropy of coherence which provides an important and intuitive
quantification of coherent superposition.

Resource theories [4] provide a formal setting by identifying a set of resource free states
(product states for the resource theory of entanglement), a set of free operations (i.e. Lo-
cal Operations and Classical Communication ), and then asks what operations and tasks are
made available with the possession of a resource state (i.e. an entangled state). The resource
theory of coherence aims to quantify the resourcefulness of a state with coherent superpo-
sition in a given basis, and thus there is a different resource theory of coherence for each
basis D. The free states for the coherence in a basis D are the set of diagonal states satisfying
ρ = ρD ≡

∑

d∈D ρdd |d〉 〈d| where {|d〉} are the basis states of the basis D. Importantly, this
set of free states can not contain any pure states with quantum superposition in D since such
states would have off diagonal terms.

Similar to the freedom in choosing the free operations of an entanglement resource theory
(local unitaries v.s. Local Operations and Classical Communication), the resource theory of
coherence also has multiple choices of free operations [13]. In this work, we limit our consid-
erations to the free operations introduced in Ref. [9] called “Incoherent Operations”, therein
defined as the set of quantum channels where each Krauss operator of the quantum channel
takes diagonal states to diagonal states: Ekρ1Ek = ρ2 where it is required that ρ2 is diagonal
in the basis D if ρ1 is. Such a constraint ensures that states with superposition can not be
created by the set of Incoherent Operations, while at the same time is loose enough to allow
maps between different basis states as required for classical computation. This is in contrast
to other choices of free operations [10,13] such as strictly Incoherent Operations [80] which
do not allow for classical computations.

2.1.1 Relative entropy of coherence

Similar to how the resource theory of entanglement allows for a multitude of entanglement
monotones (i.e. Log-negativity, relative entropy of entanglement, . . . ), the resource theory of
coherence also has a multitude of resource quantifiers [4]. Here, we only consider the relative
entropy of coherence because it provides an intuitive quantification for the amount of coherent
superposition possessed by a given state. The relative entropy of coherence C(ρ, D) in a basis,
D, is defined for a state ρ as:

C(ρ, D) = S(ρD)− S(ρ) , (1)
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Table 1: Table showing which agent can apply the listed X -coherence generating op-
erations in the various sections of the paper. All other circuit operations occurring in
the hybrid circuit considered do not generate coherence in the X basis and are there-
fore Incoherent Operations in the X basis (free operations of the X basis coherence
resource theory).

Who can apply X -coherence
generating operations?

Section The operation

Neither Alice nor Eve 3 N/A
Eve only 4 Y and Z measurements
Alice only 5 Phase gates

where S(ρ) = −t r[ρ logρ] is the von Neumann entropy of a mixed state ρ and ρD is again
the diagonal part of ρ in the basis D. In this work, we will focus on the Hilbert space of L
qubits and consider two coherence resource theories: one in the computation basis (D = X
basis) with basis states |x〉= |x1, x2, . . . xL〉 and for which the Pauli X i operators are diagonal,
X i |x〉 = (−1)x i |x〉, and one (the D = Z basis) with basis states |z〉 = |z1, z2, . . . zL〉 in which
the Zi Pauli operators are diagonal. Below, we will refer to the relative entropy of coherence
simply as coherence C(ρ, D), and label these coherences in the D = X and D = Z bases as
Cx = Cx(ρ) = C(ρ, X ) and Cz = Cz(ρ) = C(ρ, Z) where the state is often implied by context.

For pure states, the coherence is equivalent to the Shannon entropy of the probability dis-
tribution for the measurement results P(d) = 〈d|ρ |d〉 pertaining to the basis D. Explicitly,
C(ρ, D) = H(P(d)) where H(P) is the Shannon entropy of a distribution P. Thus, the coher-
ence of a pure state is the amount of statistical entropy over which basis states the quantum
state |ψ〉 is a superposition in. For example, a single qubit polarized in the +Z direction is
an equal superposition of two X basis states, and thus has coherence Cx = 1, while a pure
state polarized in the X direction has zero coherence in the X basis Cx = 0. For mixed states,
consider the example of a product state of Nx bits polarized in the X basis, Nz bits polarized
in the Z basis, and M completely mixed bits each in a state ρi = (|0〉 〈0|+ |1〉 〈1|)/2. Such a
state has S(ρ) = M due to the M completely mixed bits, and H(P(x)) = Nz + M since both
the Z polarized bits and the completely mixed bits are completely uncertain about the X basis
states. Thus the coherence in the X basis is Cx(ρ) = Nz .

2.2 Monitored quantum dynamics as an information game

In this work, we investigate an information game (see Fig. 1) to determine the coherence re-
source requirements for quantum communication in monitored quantum dynamics. This game
involves two opponents, Alice and Eve, who compete by applying random unitary and mea-
surements in an attempt to maintain or destroy the quantum channel capacity of the resulting
hybrid circuit (see Fig. 1). Alice attempts to store and maintain a diary in the evolving set of
qubits by applying random unitaries, and wins when the resulting hybrid circuit has a finite
quantum channel capacity. While Eve attempts to destroy the diary by applying local Pauli
measurements and wins when the resulting hybrid circuit has zero quantum channel capacity.
By restricting the coherence resource generating or destroying operations of each opponent,
we learn about the coherence requirements for quantum communication by observing who
wins the information game.

A sensible study of a resource theory first starts with an investigation to what the resource
free states and operations can accomplished, and then studies the additional tasks achievable
with the aid of various resource generating operations. Our investigation follows this approach
guided by the coherence resource theory defined with the X Pauli basis: first in section 3, we
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Figure 3: An example of the random hybrid circuit studied in the text. Each gate has
an effect on the coherence in either the X or Z basis: preserves coherence in both
basis (white), generates coherence in X basis (blue), or destroys coherence in either
X or Z basis (red). At each step n, a CNOT gate is applied to two neighboring qubits
with probability pu = 1, a measurement in the X , Y and Z basis is performed at a
random site with probabilities pmpx , pmpy and pmpz respectively, a phase gate Rz is
applied with probability pR, and a bit eraser error occurs with probability pe. Time
is measured as t = n/L and since a CNOT is performed at each time step (pu = 1),
the circuit above shows t = 2 after 12= 2L random CNOTs have occurred.

consider games in which Alice and Eve are restricted to only perform Incoherent Operations;
then in section 4, we allow Eve to perform coherence generation operations; and then in
section 5 we also allow Alice to perform coherence generation operations.

By considering the set of all possible strategies Alice and Eve can take, we consider a large
class of monitored quantum dynamics. These dynamics include Hamiltonian dynamics in-
terspersed with measurements (Alice takes unitaries as the Trotterized evolution of a given
Hamiltonian), or a given unraveling of a Lindblad modeling a generic open quantum sys-
tem [47, 50, 81]. Thus, by identifying the coherence requirements for Alice to win the game,
we identify the coherence requirements for communicating quantum information in a large
class of dynamics.

We first approach this problem for the hybrid circuits generated by randomly chosen uni-
taries and measurements, and consider the dynamics resulting from Alice and Eve playing
“random strategies” in which they pick the unitaries and measurements they perform from a
random distribution. This is similar to approaches that use tools from random matrix theory to
study entanglement dynamics and quantum chaos using random unitary circuits [31,82–86].
Here, we also use randomness to derive general statements, and focus our investigation on
coherence requirements. Then in section 5.1.1, we derive lower bounds for the coherence
required for Alice to win regardless of the specific strategy she takes. In the main body of
the paper, we restrict Alice and Eve to apply Clifford operations, to allow for numerical and
analytic control over the problem. In section 6.1, we discuss and speculate on the coherence
resource requirements in games played with any choice of unitaries.
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2.2.1 Random hybrid circuit model

We first assume that Alice and Eve can only apply operations probabilistically, such that the
information game can be considered as a random circuit composed of a sequence of N steps,
where at each step, n, one of the following operations are performed with a given probability:

• CNOT on random site i controlling a neighboring site j = i±1 with probability pu .
Throughout the paper we set pu = 1 except in section 4.1. Such gates keep constant
the coherence in the X and Z bases, Cx and Cz , because they reversibly map Z basis
states

�

�zi , z j

�

to Z basis states
�

�zi , z j ⊕ zi

�

, and X basis states
�

�x i , x j

�

to X basis states
�

�x i ⊕ x j , x j

�

.

• measurement of a random Pauli operator Ai on a random site with probability
pm With probabilities pmpa, the Pauli operator A = (X , Y, Z) is chosen for a = (x , y, z)
respectively. The measurement destroys superposition in basis A and reduces the coher-
ence Ca(|ψ〉). Since the probabilities pa control the relative rate of measurement, we fix
py = 1− px − pz .

• phase gate Rz = exp (i(Zi + 1)π/4) with probability pR which can both increase and
decrease Cx , but keeps constant Cz; and

• classical bit erasers defined in section 3.2 occurring with probability pe.

After n = L steps, L CNOTs will have been applied (pu = 1), so we measure time in units of
L steps, t = n/L. An example random circuit is shown in Fig. 3, and which operations are
studied in which section is summarized in Table. 1. Since the CNOTs and X measurements
don’t generate coherence in the X basis, they are free operations for the coherence resource
theory in that basis. While projective measurements of the Yi or Zi Pauli operator force the i th

site to contribute 1 bit to the relative entropy of X coherence, possibly increasing coherence,
and are therefore not free operations of the X coherence resource theory. While our approach
focuses on the coherence in the X basis, their exists a duality for CNOT gates which allows
equal considerations for the coherence in the Z basis: a CNOT gate on site i controlling j in
the Z basis is equivalent to a CNOT gate on site j controlling site i in the X basis. This is
particularly useful in section 4 where we will discuss Cx and leave implicit the dual result for
Cz .

Finally, we assume that Alice knows the site and Pauli operator of all measurements per-
formed, and records all their outcomes. In this way, she can keep track of the pure state which
evolves in her qubits and potentially decode with a unitary operation at the end of the game.
To identify her capability to decode, we will consider information quantifiers computed on the
pure states and averaged over circuit realizations and possibly the measurement outcomes. For
an experiment to observe the information quantifiers for one of the pure state produced (cor-
responding to a fixed set of measurements) they must repeat the experiment multiple times
and wait for the same fixed set of measurement outcomes to occur again. This procedure,
called postselection, requires repeating the experiment a number of times exponentially large
in the number of measurements performed and is a known [31, 34, 35] obstacle for observ-
ing measurement-induced phase transitions. For the purposes of this work, this obstacle is
not particularly relevant, because 1) the circuits we consider can be simulated efficiently on a
classical computer, and 2) the goal of our work is to identify the role of coherence in quantum
communication as apposed to study quantum complexity.

2.3 Stabilizer state tools

All gate operations discussed in this article, and presented in the section 2.2.1, are either part
of the Clifford unitary group or are measurements of Pauli operators. This allows [72, 87] us
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to simulate the dynamics of these circuits efficiently using stabilizer states. Throughout, all
numerical results presented are averaged over O(2× 103) circuit realizations and all possible
measurement outcomes for each circuit. The latter is possible because while different mea-
surement outcomes, do result in different states, they do not result in different entanglement
entropies for Clifford circuits. The stabilizer state tools also provides us with a strong ana-
lytic method to make predictions about the dynamics of these circuits. The details of these
arguments are presented in the appendices.

2.4 Unitary limit of coherence non-generating dynamics

If Alice is limited in her ability to produce superposition states, then she will generally be
limited in what type of information she can encode. For example, even if Eve is not interfering
with her qubits, pe = pm = 0, then Alice is still limited in the amount of entanglement she can
generate if she is restricted to performing the free operations of either the X and Z coherence
resource theories. This constraint, previously understood in a general setting [88–92], takes
the following particularly useful form of the following theorem:

Theorem 1. Given any local Pauli basis D, over L qubits, and a pure state |ψ〉, the von Neumann
entanglement entropy S(ρr) for the reduced density matrix ρr = TrAc [|ψ〉 〈ψ|] of any subsystem
R is bounded by the coherence of the local Pauli basis:

S(ρr)≤ C(|ψ〉 , D) . (2)

Here a Pauli basis D is any basis diagonal in a set of chosen Pauli operators {Ai}with i ∈ (1 . . . L)
and Ai ∈ (X i , Yi , Zi).

Proof The proof is given by the set of inequalities C(|ψ〉, D)=H (P (d))≥H (Pr (dr))≥S (ρr)
where Pr (dr) is the marginal distribution of the P (d) defined on the subsystem R, S(ρ) is the
von Neumann entropy and H(P) is the Shannon entropy. The first inequality is because the
Shannon entropy of a bipartite distribution is greater than any of its marginals, and the second
inequality follows from the data processing inequality for the von Neumann entropy [93],
which states the von Neumann entropy is constant or increasing under any CPTP map. Here the
CPTP map is taking the diagonals of ρr in the Pauli basis dr : ρr→

∑

dr
|dr〉 〈dr | 〈dr |ρr |dr〉=ρdr .

The second inequality then follows from H(Pr(dr)) = S(ρdr)≥ S(ρr). □
Therefore, if Alice is only able to apply CNOTs (free operations in both the X and Z coher-

ence resource theory), then she will not be able to increase the coherences Cx or Cz , and the en-
tanglement of the states she can produce will be limited accordingly (i.e S(ρr)≤min(Cx , Cz)).
This constraint is explicitly revealed in the steady state entanglement of the random circuit
containing only CNOTs (pm = pe = pR = 0). In this circuit, the coherences Cx and Cz are
conserved quantities since the CNOTs neither increase nor decrease the coherence in the X or
Z basis. In conjunction with the above theorem, the conservation of Cx and Cz implies that
the von Neumann entropy of any subsystem is bound by the coherence Cx and Cz in the initial
state. If we consider an initial product state with Nx qubits polarized in the X direction and
Nz = L − Nx qubits polarized in the Z direction, we find that the coherences at all times is
Cx = Nz and Cz = Nx . At late times, the CNOTs gates drive the system through an exponen-
tially large in L number of states, most of which are maximally entangled subject to the bound
in Theorem 1. In addition to this bound, the entanglement entropy of any given subregion A of
the system is limited by the size of that subregion: S(ρr)≤ |A|. Combining these two bounds,
we predict that the entanglement entropy of a region between sites 1 and x is

S(x) =min(x , L − x , Cx , Cz) . (3)

This is confirmed in Fig. 4, where we show that the late time entanglement entropy, S(x) for
L = 64 site system with Cx ≤ Cz and demonstrate that the bound Cx ≥ S(ρr) is saturated for
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Figure 4: Late time entanglement distribution for the random CNOT circuit (pm = 0,
pR = 0 and pe = 0). For such a CNOT circuit, the coherence Cx is conserved, and the
coherence of the initial state is shown in the legend. At late times, the above entan-
glement distribution can be predicted under the assumption that the entanglement
in a region is maximized subject to the constraint given by Theorem 1.

any subsystem with size |A| ≥ Cx . In that figure, and in numerical results presented through
out the manuscript, statistical fluctuations due to circuit sampling are suppressed in system
size. This is a generic feature of entanglement growth [50,83] in random circuit models.

3 Communication in coherence limited random circuits

3.1 Alice protects a classical diary

We begin our investigation by considering what type of information Alice can protect if she only
has access to X coherence-free states, with Cx = 0, and is only able to apply Incoherent Oper-
ations in the X basis. From Theorem 1, she is unable to produce entangled states from pure
states (and more generally from mixed [92]), and is, therefore, unable to encode information
non-locally. Furthermore, she cannot even create superposition in the X basis and, therefore,
cannot encode quantum information locally. In this section, we will show that while she can-
not protect quantum information, she is able to encode and protect classical information given
that Eve is limited in the rate at which she can induce errors in Alice’s qubits.

First imagine that Alice prepares an X-basis state, |x〉, encoding some classical information
in a classical bit string x = (x1, x2, . . . xL) with bits xi ∈ (0, 1). Eve then begins an attack by
applying bit erasers at random sites, such that Alice’s i th bit evolves as xi → 0 when the bit
eraser is applied there. In this section, we model this attack using a local quantum channel with
Kraus operators E1,i = |0〉i 〈0|i and E2,i = |0〉i 〈1|i , where |0〉i and |1〉i are the eigenstates of X i .
In the next section we describe how this channel can be implemented using measurements.
Since this channel can only destroy coherence, it is a free operation of the X coherence resource
theory, and the coherence in the X basis will remain 0 after the random sequence of CNOTs and
bit erasers. Furthermore, these operations map X basis state to X basis state, and the evolution
of the qubits is described by a sequence of classical maps between X bit strings xn → xn+1.
Accordingly, these dynamics can be considered a classical limit of the hybrid quantum circuits
previously discussed.

We now consider the dynamics when random strategies are played, and identify the max-
imum rate at which Eve can create errors such that Alice is able to protect her classical diary
by applying the sequence of random CNOTs. For a specific choice of strategies, a classical
map x0 → xn = fn(x0) on the bit strings x0 describes how an initial basis state |x0〉 maps to
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Figure 5: Classical, Ix , and quantum, C, channel capacities of a random hybrid circuit
composed of CNOTs and coherence-maintaining bit erasers as a function of pe for
different lengths L shown in the legend. The random hybrid circuit is composed of
first a set of t = 40L CNOT gates followed by the hybrid circuit (pm = pR = 0) for
a time t = 10L. The channel capacities were computed via purification dynamics
with A = 10 ancillas. Depending on if the initial state has classical or quantum
correlations, the dynamics of the purity determine the classical channel capacity Ix
or the quantum channel capacity C. As discussed in the text, they are the same,
Ix = C, when we consider a channel composed of CNOTs and coherence-maintaining
bit erasers.

the basis state |xn〉, after n steps of the game. To estimate the average number of bits Alice
can store and recover, we assume the initial bit string is sampled from a uniform distribution
P0(x) = 2−L and evaluate the mutual information

Ix = H(Pn) +H(P0)−H(P0,n) , (4)

where, P0,n(x0, xn) = P0(x0)δ (xn − fn (x0)) is the joint distribution between initial, x0 and
final bit strings xn, Pn(xn) =

∑

x0
P(x0, xn) is the distribution of final bit strings, and H(P) is

the Shannon entropy of the distribution P. Via the noisy-channel coding theorem [94], this
gives a lower bound on the number of bits Alice can store, given the proper encoding and
decoding scheme.

In Fig. 5 we show the mutual information Ix averaged over 1000 games and demonstrate
that Alice can indeed protect classical information at long times, so long as the rate at which
Eve can attack her qubits is limited (i.e. pe < 0.1). At pe ≈ 0.1, the circuit undergoes a
phase transition from a finite channel capacity to vanishing channel capacity. For pe > 0.1,
the mutual information vanishes and Alice is unable to recover her diary from the late time
state xn.

3.1.1 Purification transition for classical circuits

This result was obtained numerically by studying the purification of an initially mixed state sim-
ilar to results for quantum channel capacity [26]. A similar approach was taken in Refs. [26–
30]. There, the measurement-induced phase transition in the quantum channel capacity of a
given circuit was equated to the purification dynamics of an initial mixed state evolved under
that same circuit. In the coherence-free circuits, a similar relation also holds for the classical
channel capacity. We derive this relation by introducing a set of ancilla bits, A, used to store |A|
classical bits of the initial state of the system and which do not undergo any dynamics as the
system, S, evolves under the random hybrid circuit. For studying the classical channel capacity
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this classical memory is achieved by initializing the system in the correlated state:

ρSA(n= 0) =
1
2A

∑

x∈Sa

|x , x , 0〉 〈x , x , 0| , (5)

where Sa is all 2A bit strings of length |A|, and |a, s1, s2〉 (equivalently 〈a, s1, s2|) is an X ba-
sis state of the system and ancilla with the ancilla bit string, a, the first |A| bits of the sys-
tem s1, and the last L − |A| bits of the system s2. Such a mixed state has system S, an-
cilla A and the joint system and ancilla A ∪ S in a mixed state with von Neumann entropy
S(ρS) = S(ρA) = S(ρAS) = |A|. Since the density matrix is diagonal in the X basis, the Shan-
non entropy for the X basis states is equivalent to the von Neumann entropy, and the mutual
information between system and ancilla is therefore Ix = |A|, reflecting the fact the ancilla re-
members perfectly the initial state of the system. After evolution of the random hybrid circuit,
the system-ancilla state evolves to

ρSA(n) =
1
2A

∑

x∈Sa

|x , fn ((x , 0))〉 〈x , fn ((x , 0))| , (6)

where |x , fn((x , 0))〉 is an x basis state with the ancilla in state a = x and the system is in
state (s1, s1) = fn((x , 0)). Such a state still has ancilla and joint entropy S(ρA) = S(ρSA) = |A|,
but with classical mutual information Ix = S(ρS) that depends on the channel capacity of the
classical evolution fn((x , 0)). If the channel capacity (classical mutual information) goes to 0,
then the entropy of the system S(ρS) = Ix also goes to 0 and the system purifies. While instead,
in the error protecting phase, the system remains mixed with S(ρS) = Ix > 0. The transition
between the two phases has been argued to be within the directed percolation universality
class [75,76].

3.2 Alice protects a quantum diary against coherence preserving errors

While in the last section, we concluded that Alice can not encode quantum information with-
out being able to generate X coherence, we can still ask if she can protect a state that already
is encoding quantum information. Specifically, we now investigate the restrictions that must
be placed on Eve’s bit eraser procedure such that Alice, given a quantum state with coherence
Cx > 0, can protect quantum information encoded in that state. While above we determined
that the random CNOTs allow memory of an initial X basis state, we are now interested if they
can also remember an arbitrary superposition of a set of the X basis states at late times. As
we will see below, this extra requirement translates to an extra requirement on how the bit
erasers are implemented.

If we take the quantum bit eraser with Kraus operators E1,i and E2,i , then they will destroy
coherence and quickly erase any superposition in the initial state. This is seen by the following
measurement implementation of these Kraus operators:

1. measure X i;

2. flip X i if xi = 1;

3. forget measurement outcome xi (don’t perform postselection);

which acts on the state |ψc〉=ψ1 |φ1, 1〉+ψ0 |φ0, 0〉 as:

|ψc〉 〈ψc| → |ψ1|
2 |φ1, 0〉 〈φ1, 0|+ |ψ0|

2 |φ0, 0〉 〈φ0, 0| . (7)
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Figure 6: Difference in quantum channel capacity C between the coherence-
maintaining bit eraser and coherence-destroying bit eraser for a system of L = 128
bits for pe = 0.02. After t = |A| = 10 coherence-destroying bit erasers are applied,
the coherence and quantum channel capacity approaches zero. For pe = 0.02 this
occurs at times t = 10/pe/L ≈ 4 as shown in the plot.

Notice, that while forgetting the measurement outcome is required to implement the Kraus
operators, the coherence is still destroyed if the measurement outcome is recorded and posts-
elected. We will refer to the channel without postselection as the quantum bit eraser, and the
channel with postselection as the coherence-destroying bit eraser.

This is in contrast to the coherence-maintaining bit eraser which is implemented by the
following sequence of measurements and unitaries:

1. measure Zi;

2. post select the outcome zi = 1;

3. measure X i;

4. flip X i if measurement outcome was xi = 1;

which has an action on the state |ψc〉 as:

|ψc〉 → (ψ1 |φ1〉+ψ0 |φ0〉)⊗ |0〉 , (8)

and preserves coherence so long as 〈φ1|φ0〉 = 0. For example, take |ψc〉 as the Bell state
|ψc〉 = (|00〉 + |11〉)/

p
2 which has one bit of coherence in the X basis when |00〉 and |11〉

are X basis states. After performing the coherence-maintaining bit eraser on the first site, the
state |ψc〉 becomes (|00〉+ |01〉)/

p
2 which still has Cx = 1. This is contrast to the coherence-

destroying bit eraser, for which the X1 measurements learns the X2 state of the first qubit and
reduces the coherence to Cx = 0.

The difference is revealed by considering the quantum purification transition which is di-
rectly related to a transition in the quantum channel capacity, and will allow us to identify
which bit eraser efficiently destroys quantum information. In the quantum purification tran-
sition, instead of initializing the system and ancilla with the classically correlated mixed state
in Eq. 5, the system is initialized in the entangled state:

|ψSA〉 (n= 0) =
1

2|A|

∑

x∈Sa

|a = x , s1 = x , s2 = 0〉 , (9)

such that the ancilla is now remembering the initial quantum state of the first |A| system bits.
Note that as in the classical case, the purpose of the ancilla is only to encode the initial state
and accordingly, no gates or measurements are applied to it as the hybrid circuit evoles. While
the system reduced density matrix still has no coherence, the system and ancilla together have
coherence Cx = |A| reflecting the encoding of quantum information; this is contrast to the state
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encoding of classical information in Eq. 5, which has Cx = 0. The quantum channel capacity
is then quantified by the coherent information [26], C = S(ρS)− S(ρSA), and so long as the
system-ancilla remains pure (as is the case for the coherence preserving and destroying bit
erasers) then S(ρSA) = 0 at all time such that the coherent information is C = S(ρS) = S(ρA).
Such a quantum channel capacity gives an upper bound on the number of qubits of the initial
quantum state recoverable from the final quantum state of the system [95–97].

For the coherence preserving bit eraser, the dynamics of the system reduced density matrix
is equivalent to that discussed in section 3.1 and thus give S(ρS) = Ix as before, but now
S(ρSA) = 0 such that C = S(ρS) = Ix . Thus, for the coherence preserving bit erasers, the
system protects quantum information as long as it protects classical information. In contrast,
for the coherence destroying bit eraser, the state ρSA loses X coherence after O(|A|) bit erasers,
and becomes an X basis state with zero entanglement between system and ancilla. Thus, the
system and ancilla purify, coherent information is lost C → 0, and Alice is unable to recover
her quantum diary. This distinction in the dynamics of the coherent information between the
two types of errors is shown in Fig. 6.

3.3 Dynamically evolving classical codes

Before continuing our discussion on the information game played between Alice and Eve, we
will first discuss how the above results in section 3.1 and section 3.2 are directly related to error
correction codes. We will first make the connection explicit by showing the dynamics above
can be interpreted as the dynamics of a classical code space and by describing how this code
space evolves. Then, we will argue that Alice’s classical diary is encoded in this space, while
her quantum diary would be a superposition over states in this space similar to the design of
the repetition code. This connection between the coherence-free hybrid circuits and repetition
codes, which can only correct bit errors, hints at the first connection between coherence and
the type of errors a code can correct. We will then continue discussing the information game
in section 4 where we allow Eve to apply coherence generating measurements.

The connection between error correction codes and the dynamics in the above
section is because the purification dynamics of the mixed state on Alice’s system
ρS = TrAρSA = TrA |ψSA〉 〈ψSA| map directly to the evolution of a classical linear code space.
In particular, we show that the reduced state of the system, ρS(n), discussed in section 3.1 and
section 3.2, can be written in the following form (See Appendix A.4 for proof):

ρS(n) =
1

2kn

∑

x

|x〉 〈x |
L−kn
∏

i=1

δ

 

∑

j

H x
i j(n)x j

!

,

where H x
i j(n) is an L − kn by L matrix describing the allowed x basis states in ρS(n), and

kn = S(ρS(n)). This expression shows that only basis states that satisfy the constraint
∑

j H x
i j(n)x j = 0 are allowed to occur in the evolving mixed state, and that these basis states

all have equal probability of occurring. Since this constraint has the same form as the parity
check matrix determining the code words in a classical linear code space [72], we can con-
sider the dynamics of the state ρS(n) as the dynamics of a classical linear code space, Kx(n),
composed of those code words. Remember here that a code space is defined as the set of bit
strings, Kx(n), that can be used to encode a message, and that the code space can be defined
by a check matrix, H x , as the set of bit strings satisfying the above constraint: x ∈ Kx(n) if
and only if

∑

j H x
i j(n)x j = 0 for all i.

When a random sequence of CNOTs is applied to the state, the different code words evolve
under the same random sequence of CNOT gates, and the difference between the code words,
measured by the Hamming distance d(x1, x2) =

∑

i

�

�x1,i − x2,i

�

� generically increases. On the
other hand, a bit eraser on the i th bit will decrease the Hamming distance between two code

16

https://scipost.org
https://scipost.org/SciPostPhys.15.6.250


SciPost Phys. 15, 250 (2023)

words with x1,i ̸= x2,i . If there are too many bit erasers, the Hamming distance between two
different code words will shrink to zero, and those two code words will become the same bit
string. When this occurs, the number of distinct code words, S(ρS), will decrease resulting
in the system purifying and a loss of channel capacity Ix = S(ρS). Thus, the loss of channel
capacity is equivalent to the shrinking of the evolving classical code space.

Finally, by considering the full ancilla and system state, we can see that Alice’s diary is
encoded in this classical code space. That is, any k bit classical message she wishes to encode
can be represented in her system by one of the classical code words in the evolving code space.
By considering the system and ancilla state in Eq. 6, we find that the initial basis state of the
system |(x , 0)〉 is mapped to the basis state | fn ((x , 0))〉 at a later time. Upon tracing out the
ancilla, we find | fn ((x , 0))〉must be an allowed basis state and lives in the classical code space
Kx(n). Thus, if Alice encodes a k bit message in initial state |(x , 0)〉, then that message will
become encoded in the evolving code space Kx(n). Similarly, Alice’s quantum diary would be
encoded on some superposition of code words in the evolving code space.

This is similar to how a quantum bit in the repetition code is encoded in the classical code
space with code words x1 = (111 . . . ) and x0 = (000 . . . ). Notice that in both the information
game and in the repetition code, bit flip errors can be corrected but only if they don’t include a
phase or decoherence error. In the information game, we showed the issue was Alice’s inability
to maintain and regenerate coherence, and by analogy we should expect coherence can also
provide a more general context for why the repetition code can’t correct phase errors. Below,
in section 5.2.1, we show that this more general context is the Theorem 3 which gives how
coherence bounds the code distance of a quantum error correction code.

4 Measurement induced dynamics of coherence

In the previous section, both Alice and Eve were restricted to applying Incoherent Operations in
the X basis, and depending on whether Eve performed a coherence-destroying or coherence-
maintaining bit eraser, Alice was able to protect a quantum diary. In this section, we will
allow Eve to make Y and Z measurements which are not Incoherent Operations in the X
basis and can potentially increase the coherence in Alice’s system. While this would not be an
optimum strategy for Eve, she may not have control over which basis she measures in and we
can therefore investigate if Alice can take advantage of coherence generating measurements.
Below, we find that this is the case, and show that Alice can protect a quantum diary when
Eve performs Y measurements at a sufficiently high rate py > |px − pz|.

We start by investigating how the coherence of a pure state evolves under such a random
hybrid circuit generated by Alice and Eve playing random strategies. For Alice to be able to take
advantage of the coherence generated by the measurements, then the steady state coherence
in the X and Z basis, Cx and Cz , must scale with system size. Otherwise, the entanglement will
be constrained, via Eq. 3, to be sub-extensive, Alice will only be able to encode information
locally, and her diary will be susceptible to local errors.

4.1 Measurement only limit

We begin by considering the dynamics in the measurement-only limit (pu = pR = pe = 0 and
pm = 1) for an initial product state with Nx , Nz and Ny = L − Nx − Nz qubits polarized in
either the X , Z or Y directions respectively. In this limit, the evolving state remains a product
state, but with a different number of qubits polarized in a given direction. States of this form
have Ny + Nz qubits uncertain in the X direction and therefore have Cx = Ny + Nz = L − Nx
qubits of X coherence. Similarly for the coherences in the Z and Y directions: Cz = L − Nz
and Cy = L − Ny = L − Cx − Cz .
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The coherences then evolve according to how the number of qubits polarized in a given
direction is randomly updated after a given measurement. At each step, n, a random mea-
surement is made and the number of qubits polarized in a given direction, Nα, can change by
at most one. Whether they change or not depends on the type of measurement made and the
probability that measurement is made on a site polarized in a direction different from the mea-
surement basis. That probability depends only on the value of Nα before the measurement and
so the stochastic process for which Nα are updated is Markovian. The conditional probabilities
of this process are derived in Appendix D.1 and lead to the following rate equation:

∂mN x(m) = px
L − N x

L
−
�

pz + py

� N x

L
, (10)

with similar equations for N y and N z , and where the overlie in Nα refers to averaging over
circuit realizations. Importantly, the rate at which N x increases or decreases depends on the
number of qubits already polarized in the X direction. This follows from the fact that the effect
of a measurement depends on the polarization of the bit it is applied to: X measurements only
increase Nx if they are applied to a Y or Z polarized bit. The steady state solution to these
dynamics predicts that the average steady state density of α polarized qubits is equal to pα
as intuitively expected: Nα = pαL or equivalently for the coherences Cα = (1− pα) L. Thus,
if the dynamics of coherence in the measurement-only limit were robust to the addition of
unitary gates, Alice may be able to make use of the volume-law coherence to encode states
non-locally.

4.2 Random walk of coherence in weak measurement limit

Unfortunately for Alice, this is not the case as shown by studying the weak measurement
limit where the measurement rate pm is so small that the system maximizes entanglement with
respect to the bounds given by coherence (c.f. Eq. 3). In this limit, the coherence dynamics
again becomes Markovian because, as we show in Appendix D.2, every measurement changes
the coherence in the X , Y or Z basis independently from the current coherence in the system.
Roughly, this can be expected because any time a measurement occurs in this limit, each qubit
will be in a maximally mixed state (as long as min(Cx , Cz) > 1) and a measurement on any
qubit is guaranteed to have an uncertain outcome and change the state and coherence. This is
in contrast to the measurement-only limit where the effect of a measurement strongly depends
on the current coherences in the system. This limit occurs when, between measurements, there
are enough CNOTs performed to guarantee that a sequence of CNOTs can entangle any two
distinct qubits within the system. This will occur after n = O(L2) CNOT gates and thus we
require that pm < 1/L2.

In Appendix D.2, we derive the Markov stochastic process for Nx and Nz , where instead of
being the number of qubits polarized in the X or Z direction, Nx = L − Cx and Nz = L − Cz
are now, more generally, the number of bits of information that can be specified about the X
or Z basis states. Where as Cx(z) gives the entropy, or the number of uncertain bits, of a given
state’s distribution in the over the X (Z) basis, Nx = L − Cx give the lack of entropy, or the
number of bits known about the basis states. We find that the stochastic process is a biased
random walk in the (Nx , Nz) plane, subject to the bounds 0 ≤ Nx(z) ≤ L and Nx + Nz ≤ L and
is described in Fig. 7. The direction of the drift velocity of the walker is determined by the
relative rates of the measurements and yields the rate equations:

∂mN x(m)∼ px − pz − py , (11)

∂mN z(m)∼ pz − px − py .
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Figure 7: Cartoon of the random walk in the information known about the X and
Z basis: Nx = L − Cx and Nz = L − Cz respectively. A measurement in the X , Y or
Z direction occurs with probability px , py , and pz , creating jumps in information
known about each basis Nx and Nz as shown. The walker can not go above the line
Nx + Nz = L because the incompatibility between the X and Z observables restrict
the total amount of information known about the X and Z bases. The walker lo-
calizes in one of the corners of the plane depending on which which measurement
rate dominates (shown in red, yellow and blue). When Y measurements dominate,
information about the X basis and Z basis is lost and the walker localizes in the
(Nx , Nz) = (0,0) corner. While when Z or X measurements dominate, information
about the X or Z basis becomes maximum and the walker localizes in the respective
corners.

These rate equations predict that when px > pz + py , the probability distribution for the
walker localizes around the point (Nx , Nz) = (L, 0) with a localization length proportional to
λ ∼ 1/(px − pz − py). Since the rates of the Markov process are constants, the localization
length does not depend on system size such that N x = L − cλ and so the average coherence
C x = cλ becomes an area-law, where the constant c depends on the detailed features of the
walker distribution. In this limit the evolving quantum state is mostly classical in the X basis
and, by Theorem. 1, can only support area-law scaling of entanglement. Thus, Alice will not
be able to encode quantum information non-locally and her diary will be susceptible to local
errors. Similarly, when pz > px + py , the walker localizes around the point (Nx , Nz) = (0, L);
the coherence Cz → 0; states become classical in the Z basis; and volume-law states are again
forbidden. Again, Alice will not be able to protect a quantum diary.

In the region px > pz + py , the walker becomes less localized as px is decreased, until
the point px = pz + py at which the localization length diverges and the walker distribution
becomes uniformly distributed along the Nz = 0 axis. At this critical point of the random walk,
the coherence in the Z direction remains maximal Cz ∼ L, while the average coherence in the
X direction becomes C x = N x = L/2 giving rise to the possibility of volume states and the
ability of Alice to protect quantum information. Decreasing px further, the walker becomes
localized around the point (Nx , Nz) = (0, 0) where both coherences are scaling with volume
and volume-law entangled states will be allowed. In this limit, py > |px − pz|, Alice has access
to volume-law coherence and can potentially use it to protect a quantum diary.

These three limits are summarized in Fig. 2, where we describe the regions of the
�

py ,∆x = (px − pz)/(1− py)
�

plane where Cx → 0 (X-classical states appear), Cz → 0 (Z-
classical states appear) and where both coherences scale with the volume of the system (region
labeled “Quantum”). In this “Quantum” region, volume-law entangled states are possible and,
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Figure 8: (a) Steady state half cut entanglement, S(x = L/2), and (b) coher-
ence, Cx , for the hybrid circuits with a sequence of random CNOTs and X , Y
and Z measurements for the small measurement rate of pm = 0.01 (pR = 0 and
pe = 0). In these figures ∆x parameterizes the imbalance between X and Z mea-
surements ∆x = (px − pz)/(1 − py). These figures show the critical line (white),
|∆x | = py/(1− py), which is predicted by the competition between coherence loss
and growth rates as discussed in the text. Due to the duality between the X and Z
bases, dynamics are the same for ∆x →−∆x . For the ∆x > 0 side of the duality, the
coherence in the Z basis, Cz , is greater than Cx and does not constrain the entangle-
ment. These figures were computed with L = 128 and averaging over 2000 circuit
realizations.

as we show in the next section, Alice is able to protect quantum information.

4.3 Entanglement criticality at finite measurement rate

While the above discussion relies on assumptions valid only when pm < 1/L2, it appears to
qualitatively capture numerical simulations for finite pm = 0.01. In Fig. 8, we plot the X
coherence, Cx , and half cut entanglement entropy, S(L/2), in the (py ,∆x) plane and find both
have a sharp change at px = py + pz . When py > |px − pz|, we observe both Cx > L/2 and
Cz > L/2, while instead when py < |px − pz|, one of the coherences drops below L/2 consistent
with the above predictions for pm < 1/L2. This sharp change in coherence is accompanied by a
transition from volume-law entanglement, S(L/2)∼ L, in the region py > |px − pz| to area-law
entanglement in the region py < |px − pz|. Furthermore, we observe in Fig. 10, and discuss
further in section 4.4, that in the quantum phase, py > |px − pz|, Alice is able to protect a
quantum diary with a number of qubits scaling with system size. The main difference from
the weak measurement limit, where pm vanishes in the infinite size limit (i.e. pm → 1/L2),
is that the coherences remain volume-law throughout the phase diagram. We explain this
discrepancy by deriving, in appendix D.3, a phenomenological rate equation for the finite
measurement rate pm that interpolates between the measurement-only limit and vanishing
measurement limit.

This rate equation is constructed by introducing a length scale ξ, associated to the typical
distance at which two qubits might be entangled. More precisely, it is the typical length [30] of
a stabilizer (see appendix D.3), and scales with the half cut entanglement entropy S(L/2)∼ ξ.
Under this assumption, we derive a rate equation for the dynamics of the coherence:

∂mN x = px

�

1−
�

N x

L

�ξ�

− pz

�

1−
�

N z

L

�ξ�

− py

�

1−
�

L − N x + N z

L

�ξ�

. (12)

In a volume-law phase, this length diverges with system size, S(L/2) ∼ ξ ∼ L, such that
the phenomenological rate equation is equivalent to Eq. 11 as L → ∞. If py > |px − pz|
then the steady state of this rate equation is consistent with the assumption of a volume-law

20

https://scipost.org
https://scipost.org/SciPostPhys.15.6.250


SciPost Phys. 15, 250 (2023)

Figure 9: a) Half cut entanglement entropy S(L/2) v.s. imbalance between X and
Z measurements ∆x = (px − pz)/(1 − py). The ∆x = 1/3 critical point predicted
by py = |px − pz| is confirmed by the b) Anti-podal mutual information I2 and b)
triparitite mutual info I3 as discussed in the text. Different lines correspond to the
system sizes shown in the legend. In this figure pm = 0.01, py = 1/4 and pR = pe = 0.

phase. Instead, if py < |px − pz|, then Eq. 11 predicts that the coherence and entanglement
entropy becomes area-law, such that ξ ∼ S(L/2) must scale as constant with system size.
Thus, when py < |px − pz| only area-law entanglement is consistent, and the predictions for
the entangling phases at pm → 1/L2 hold at finite pm. The main difference is that ξ is now
finite when py < |px − pz|, such that the rate Eq. 12 predicts volume-law coherence consistent
with numerical simulation.

In Fig. 9, we confirm precisely the prediction for the critical point py = |px − pz|
when measurements in the Y direction are fixed at a rate py = 1/4. There, we ob-
serve a transition between area-law and volume-law entanglement at the critical point
|∆x | = |px − pz|/(1 − py) = 1/3 as predicted. Near the critical point, ∆x ≈ 1/3, we find
entanglement scaling logarithmically with system size which creates finite sizes obstacles [98]
to an accurate determination of the critical point. Accordingly, we consider the anti-podal
mutual information, I2, and the tripartite mutual information, I3, to obtain circumvent these
finite size effects as done in Refs. [26,30]. The anti-podal mutual information is computed as
I2 = S

�

ρR1

�

+ S
�

ρR3

�

− S
�

ρR1∪R3

�

, where the regions Rn contain the sites from (n − 1)L/4
to nL/4. This quantity is a constant when the entropies follow either volume or area-law, but
scales logarithmically with L if the entropies of the different subregions scale logarithmically.
Thus, it is highly sensitive to the logarithmic scaling of entanglement at the critical point, and
a sharp peak identifies the ∆x = 1/3 critical point in Fig. 9. Interestingly, it also suggests
the volume-law phase has a logarithmic correction to the entanglement scaling; we leave for
future work the task of identifying the origins of this correction.

The tripartite mutual information also shows the ∆x = 1/3 critical point and is computed
as I3 = 4S (R1)− 2S

�

R1
⋃

R2

�

− S
�

R1
⋃

R3

�

, which is equivalent to the form in Ref. [26] due
to translational invariance. The triparitite mutual information goes to 0 in the area-law phase,
follows a volume-law in the volume-law phase, and it goes to a constant independent of system
size at the critical point. Fig. 9 shows this behaviour with different curves for different system
sizes L crossing at the critical point, ∆x = 1/3.

4.4 Transition in channel capacity

We have shown that when Eve applies a sufficiently high rate of Y measurements, Alice is
able to produce and maintain volume-law entangled states at late times. We now investigate
if this ability also allows her to protect a quantum diary. As in section 3.2, we investigate Alice’s
ability to protect a quantum diary of |A|= L qubits using the purification dynamics of an initial
mixed state with with entropy S(ρ0) = L. At late times, the entropy of the system is again
equivalent to the coherent information between the initial and final system states, S(L) = C.
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Figure 10: a) This figure shows the quantum channel capacity C, computed by the
purification dynamics, at a time t = 5L, for the same circuits studied in Fig. 9. It
shows a transition at ∆x ≈ 1/3 (marked by a black vertical dashed line), the lo-
cation of the critical point determined by the competition of coherence generating
and coherence destroying measurements py > |px − pz|. b) Coherence for the same
circuit but with an initial pure state. The coherence crosses Cx = L/2 at the critical
point ∆x = 1/3 as predicted by the rate Eq. 12.

Thus, when the system purifies, Alice looses her diary, while when it remains mixed, Alice can
recover S(L) = C qubits of her diary. We consider a circuit with pm = 0.03 and py = 1/4 fixed,
and study its purification dynamics as a function of ∆x . In Fig. 10, we observe a transition
between the protection and loss of the quantum diary occurring at a critical point ∆x ≈ 1/3,
the point at which Alice gains access to volume coherence in the pm → 1/L2 limit. Thus,
the ability of Alice to protect a quantum diary, is accurately predicted from the condition that
Eve’s measurements give Alice access to large coherence, Cx > L/2. This provides evidence
for a connection between quantum communication and coherence. In Appendix E, we give a
first numerical analysis of the critical behaviour of the transition presented in this section, but
leave for future work a detailed investigation into the critical dynamics induced by the complex
interplay between coherence and entanglement. Finally, we note that the usual measurement
induced transition, tuned pm, remains so long as py >

�

�px − py

�

�.

5 Coherence requirements for quantum communication

5.1 Alice’s coherence generating requirements

In sections 3 and 4 we found that if Alice is constrained in her ability to generate coherence,
then she can only protect quantum information if Eve is restricted in her ability to destroy
coherence. In section 3, we found that Eve must not apply coherence-destroying bit erasers,
while in section 4 she must apply a sufficient ratio of Y measurements to X and Z measure-
ments py > |px − pz|. Thus, if Eve is able control which operator she makes a measurement
of, she could choose to always measure the X basis (px = 1) and quickly destroy X coherence
and Alice’s quantum diary. Alice is therefore required to dynamically regenerate coherence in
the system as it evolves. A simple way of doing this is by adding a finite rate of phase gates
Rz which can generate coherence in the X basis. We now show that this solution works when
random strategies are played and allows Alice to protect against the coherence-maintaining
bit flip errors and coherence destroying X measurements.

The dynamics for a fixed error rate pm + pe = 0.05, with py = pz = 0 and px = 1, are
displayed in Fig. 11, and show that for a sufficient rate of phase gates pR > 0.1 the system can
protect any ratio pm/pe = rd/(1 − rd) of X -measurements (dephasing errors) to bit erasers.
For pR < 0.1, the system can protect only a fixed fraction of bit flip errors and this fraction
is related to when the steady state coherence reaches Cx ≈ L/2 (also shown in Fig. 11).
This correspondence demonstrates the necessity of quantum coherence to maintain a finite

22

https://scipost.org
https://scipost.org/SciPostPhys.15.6.250


SciPost Phys. 15, 250 (2023)

Figure 11: Quantum channel capacity C for a diary encoding |A|= 10 qubits (panel a)
and X basis coherence Cx (panel b) at time t = 10 for a circuit composed of CNOTs,
single bit phase gates occurring at a rate pR, and two types of attack operations oc-
curring at a rate pm+ pe = 0.05: X measurements occur at a rate pm = 0.05∗ rd (i.e.
px = 1 and py = pz = 0) while coherence-maintaining bit erasers occur at a rate
pe = 0.05(1− rd). Panel a) demonstrates a transition between zero and finite quan-
tum channel capacity for sufficiently large rate of coherence generating phase gates.
Panel b) shows that this transition is associated with a sharp change in coherence Cx .
The color scheme in the panel b) is chosen such that Cx = L/2= 64 is black.

quantum channel capacity. Furthermore, this demonstrates that coherence can be preserved
simply by the addition of a sufficient rate of single qubit coherence generating gates.

5.1.1 Coherence requirements for any of Alice’s strategies

We now consider the setting in which Alice does not take a random strategy, but instead can
make any specific choice of unitaries from the Clifford group. We will also assume that Alice
takes turns with Eve in applying their choice of operations, and that Eve is allowed to apply at
most an integer number, M , of local Pauli measurements in her turn. Again, we assume Alice
knows the basis Eve makes measurements and also the outcome of those measurements.

The coherence requirements on Alice are different depending on whether Eve declares
where she will make measurements at the beginning of her turn or not. When Eve does
declare this, Alice can encode a diary of L − M bits with only swap operations (incoherent
operations in any local basis). She achieves this by encoding her state on L−M of the bits and
during her turn swapping the remaining M bits to the locations Eve will measure. If Eve does
not announce where she will measure, Alice will have to ensure a measurement on any qubit
won’t measure her encoded state and reduce her channel capacity. Equivalently in the purifi-
cation picture [26], Alice must ensure that Eve can not reduce the evolved purity below her
desired channel capacity S(ρn)≥ C. For ρn taken as a stabilizer state, the condition for a Pauli
measurement to reduce the entropy of a state ρn translates to a condition on the coherence
of the evolving density matrix ρn. In Appendix B, we derive this condition as the following
theorem:

Theorem 2. Given a local Pauli basis D, any stabilizer mixed state ρ with entropy S(ρ) and rela-
tive entropy of coherence CD(ρ), there exists a sequence of M > CD(ρ) local Pauli measurements
that reduce the entropy of ρ (the state after measurement, ρ′, has entropy S(ρ′)< S(ρ)).

Thus, if Alice is unable to maintain a coherence of Cx(ρn) ≥ Mx in her circuit, then Eve can
use the Mx measurements guaranteed by Theorem. 2, to reduce the entropy S of Alice’s mixed
state. If Alice is limited in this way, then Eve can, in at most L steps purify Alice’s state and
reduce the quantum channel capacity to zero. Since Eve could make a measurements in any
local Pauli basis, then Alice must maintain a coherence CD > M in all local Pauli bases D. This
holds for any strategy Alice might take, not knowing where Eve will apply her measurements.
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5.2 Coherence requirements for stabilizer error correction codes

In the previous sections we observed that on the one hand, Alice can protect classical informa-
tion by maintaining a classical code space with a large Hamming distance between the code
words of the classical code space. On the other hand, we observed that for Alice to protect
quantum information, she was required to maintain a large amount of superposition between
different basis states (i.e. a large volume-law coherence). In classical error correction codes,
the Hamming distance between any two code words is related the number of bit flip errors
that can be corrected (i.e. the code distance) [72]. This, along with previous results studying
the role of quantum coherence in channel discrimination tasks [18–23], suggests quantum co-
herence is related to the code distance of quantum codes. In this section, we formalize these
expectations by presenting Theorem 3 that states the code distance of any stabilizer quantum
error correction code is bounded by the coherence of its maximally coherent state for any lo-
cal Pauli basis. We then explain how this bound can be made tighter by considering different
sub-codes, and discuss the relevance of this bound to the information game discussed in the
previous section. Finally, we conclude this section with an application of the bound to CSS
codes.

The theorem applies to [[N , k, d]] stabilizer codes that use N qubits to detect up to d errors
on a quantum code space of dimension 2k. The code space, P, is defined by a set of N−k Pauli
check operators {gi} that constrain the states that can live in the code space, |ψ〉 ∈ P, by the
constraint gi |ψ〉= |ψ〉 for all i ∈ (1 . . . N − k).

Theorem 3. Given a local Pauli basis D, the code distance d of a [[N , k, d]] stabilizer code, P, is
bounded by the coherence of the maximally coherent stabilizer state in the code space:

d ≤max
ψ∈P

C(|ψ〉 , D)≡ CPD . (13)

Here, a local Pauli basis D is any basis that, on each site i, one of the Pauli operators
Ai ∈ (X i , Yi , Zi) is diagonal. A proof of this theorem is given in Appendix C and is constructed
by identifying an undetectable error composed of d = CPD measurements of a subset of the
Pauli operators Ai defining the Pauli basis D. Intuitively, such an error can be constructed
because any state in the code space has at most CPD coherence. Therefore, the coherence
of such a state can be reduced to 0 in at most CPD dephasing errors (measurements), thus
destroying all phase information the state might have encoded in the basis states of the Pauli
basis D.

Notice that, while this bound is expressed in terms of the maximum coherent stabilizer
state of the code space, it is actually tighter. The tighter bound can be obtained by applying
the theorem to any subspace of the code space. Then, since an error for any subspace of the
code space is an error for the whole code space, the coherence of the maximum coherent
state of the subspace bounds the code distance. This way the bound is actually closer to the
coherence of the second least coherent stabilizer code state. This is seen by constructing a basis
of stabilizer states which span the full code space and ordering them by the coherence. The
tightest bound comes from the subspace formed from the two least coherent stabilizer basis
states. Within this subspace, the maximum coherence is at most 1 bit more than the second
least coherent basis state, and thus the tightest bound is obtained using that basis state.

5.2.1 Application to Alice-Eve information game

Applying such a bound to the game played between Alice and Eve is difficult because there
is no static code space that we can apply the bound to. Nonetheless, we can use the intuition
from CPD ≥ d to understand why the transition line in Fig. 11 is linear. Our approach will
first identify an effective code distance, de f f ; then it will provide an estimate on the relevant
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coherence, CPD, limiting Alice’s ability to protect her diary; and finally use CPD = de f f to
identify the critical line. Thus, we first note that the error rate, pm + pe, generated by Eve is
fixed in the pm versus pR plane of Fig. 11. This allows us to assume the maximum number
of errors that might need to be corrected is some constant de f f = K that does not depend on
pm or pR. Then, as argued in the previous section, the coherence in the X basis was limit-
ing Alice’s quantum channel capacity and so we derive the pm v.s. pR phase boundary using
CPD = Cx(pm, pR) = K: when the steady state coherence in the X basis Cx(pm, pR) is suffi-
ciently large, Cx(pm, pR)≥ de f f = K , then Alice can protect her quantum diary, otherwise, she
can’t and her channel capacity drops to zero. Following similar arguments as in Appendix D.3,
we propose the following rate equation for Cx :

∂mCx = pR − px

�

1−
�

Nx

L

�ξ
�

. (14)

Solving for the steady state, we find that the critical phase gate rate is given by
pR = px

�

1− (1− K/L)ξ
�

, and for a fixed L we find the critical phase gate rate scales lin-
early with px as observed in Fig. 11. For increasing L, the number of errors per time step
increases linearly with L such that the effective code distance, K , should also scale linearly
with L. Thus, the proportionality of the critical line pR ∼ px does not change with increase L
as we have confirmed numerically.

5.2.2 Application to the L-bit repetition code

The application to such a bound for a stabilizer error correction code is much simpler than for
the information game since the theorem now applies directly. We first consider the simplest
quantum error correction code, the repetition code [72,79] which is the quantum generaliza-
tion of the simple classical coding procedure of repeating a message multiple times. The code
space for the L-bit repetition code is spanned by the X -basis states |00 · · ·0〉 and |11 · · ·1〉, and
can correct up to (L − 1)/2 bit flip errors but zero X -dephasing errors. The application of the
theorem is done by considering the state (|00 · · ·0〉+ |11 · · ·1〉)/

p
2 which has maximum X

coherence of Cx = 1 in the code space. Thus d ≤ 1 and the repetition code can correct up to
(d − 1)/2 = 0 X -dephasing errors. While the fact the repetition code can not correct phase
errors is obvious, the application of Theorem 3 shows that this inability is because the code
lacks the ability to produce states with coherence in the X basis.

5.2.3 Application to CSS codes

While the above examples are rather simple, they show coherence provides a unifying and
general view for certain requirements when designing quantum error correction codes. In this
section, we show that this general context provided by the coherence bound is related to the
generality of the singleton bound for classical error correction codes. The classical Singleton
bound [72] is a bound d ≤ L−k+1 on the code distance, d, for any classical code determined
strictly from the size of the code space 2k and the number of physical bits used in the code,
L. The relation to the coherence bound comes from applying Theorem 3 to the CSS quantum
error correction codes which are codes constructed using two classical codes Kx with an kx bit
code space, and Kz with a kz bit code space defined on L physical bits. These codes compose
a large class of stabilizer error correction codes [72,99], and are useful for constructing codes
will good asymptotic properties [100].

To apply the coherence bound, we recall that a basis for the CSS quantum code space can
be constructed by using the dual code Kz

⊥ with code space of size L − kz . The code words,
x , of the dual code are the bit strings of length L generated by the transpose of parity check
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matrix Hz
i j of the code Kz:

x = Gz
⊥z = (Hz)T z , (15)

for all bit strings z of length kz . Using these code words of the dual code, Kz
⊥, the 2k=2kx−(L−kz)

distinct stabilizer basis states for the CSS code can be easily written [72] in the X basis as:
�

�x +Kz
⊥

�

=
1

q
�

�Kz
⊥

�

�

∑

y∈Kz
⊥

|x + y〉 , (16)

for all distinct x ∈ Kx/Kz
⊥. This shows immediately that the coherence of each basis state is

Cx = log2(
�

�Kz
⊥

�

�) = L − kz . We can then bound the code distance by considering the maximal
coherent state for a single bit logical subspace spanned by states

�

�x +Kz
⊥

�

and
�

�x ′ +Kz
⊥

�

such
that x + y ̸= x ′ for all y in Kz

⊥. The maximum coherent state of this subspace is the super-
position |ψ〉 = (

�

�x +Kz
⊥

�

+
�

�x ′ +Kz
⊥

�

)/
p

2 which has coherence Cx = L − kz + 1. Thus the
coherence bound for the code distance is L− kz+1> d which retrieves the classical Singleton
bound of Kz which is used to correct phase errors [72]. A similar analysis in the Z basis will
retrieve the classical Singleton bound for the Kx code space with L − kx + 1> d.

6 Discussion and Outlook

In this work, we have determined the coherence resource requirements for quantum com-
munication, both for stabilizer error correction codes and for monitored quantum dynamics
modeled by an information game. The game involved Eve applying measurements in an at-
tempt to destroy Alice’s quantum diary, and Alice recording the measurements (their location,
polarization and outcome) and applying unitaries in an attempt to protect her diary. By con-
sidering the purification dynamics of the associated circuits, we determined Alice’s ability to
protect her diary and found that her access to coherence or coherence generating operations
allowed her to protect either classical information or quantum information. When Alice is
limited in her access to coherence, she can only protect classical information, while if she has
access to coherence or coherence generating operations she can protect quantum information.

This is summarized in Fig. 12, which shows a figure similar to Fig. 11 in which a purifica-
tion transition in Alice’s quantum channel capacity depicted. In contrast to Fig. 11, we show
what type of information she is capable of protecting given a certain type of attack by Eve and
a maximum rate, pR, at which she can apply a coherence generating operations. The main
difference is that, in Fig. 12, we treat pR as a limit on her ability to generate coherence, rather
then the rate she actually applies the coherence generating operation (for instance, a phase
gate). This is relevant because when Alice applies a phase gates, she generate quantum noise
in the X basis states, which looks like an error from the perspective of the classical channel.
Specifically, the classical channel capacity is the mutual information between an initial dis-
tribution of X basis states and the final distribution of X basis states. Thus, a phase gate is a
quantum error because it generates quantum uncertainty (i.e. coherence) in the X basis states.
As a trivial example, if Alice first prepares a X basis state on a qubit, then applies first a phase
gate, and finally makes a measurement in the X basis, the final state of the qubit will be un-
correlated with the initial state. The effect on classical channel capacity due to the application
of phase gates was more deeply investigated in Ref. [76].

Thus, the circuits in Fig. 11 have zero classical channel capacity in the whole phase dia-
gram, because Alice is applying phase gates. If instead, she were to not apply the phase gate
and attempt to encode classical information, she could protect a classical diary. Therefore, in
Fig. 12, we imagine pR as the rate at which she could apply phase gates, and we observe the
transition is from an ability to protect classical information to an ability to protect quantum
information.
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Figure 12: Alice’s coding capabilities in various regions of parameter space with
pz = py = 0 and px = 1. In all figures, we consider Eve’s attacks to be
coherence-maintaining bit erasers (at a rate pe) and X measurements (at a rate
pm = perd/(1− rd), and we give Alice the option to apply phase gates up to a rate
pR. a) For pR = 0, Alice can only encode a quantum diary if Eve does not apply co-
herence destroying measurements (red line at rd = 0), otherwise Alice can protect
a classical diary as long as pe is sufficiently small. b) In this figure pm = 0 and so
Alice can always protect a quantum diary as long as she can protect a classical diary.
When pR = 0, we retrieve the limit discussed in section 3.2 where only coherence-
maintaining bit erasers are applied. c) In this figure pe = 0.05− pm as in Fig. 11, but
now Alice has the choice to apply phase gates or not. The figure shows the transition
to quantum error correction as in Fig. 11, but now if she chooses not to apply phase
gates she can protect classical information so long as pe < 0.1.

6.1 Generality

While here, we have considered circuits composed only of Clifford circuits, we expect our
results to hold when the coherence-generating operation is chosen from a universal gate set.
While above, we only considered a phase gate as the coherence-generating gate, many other
gates can play a similar role. In fact, a two-qubit gate, chosen randomly using the Haar mea-
sure, produced, on average,

∑4
k=2 1/k ≈ 1.08 bits of relative entropy of coherence in any basis

when acting on a pure state [101]. Similarly, phase gates produce 1 bit of relative entropy of
coherence in the X basis when acting on an X -polarized qubit, and thus, it seems natural that
a similar transition to that discussed in section 5.1 would occur if phase gates are replaced by
randomly chosen two-qubit gates. The main difference will be that the fluctuations of coher-
ence will be different, and the critical properties of the phase transition will change, similar to
previously studied random circuits [32,34,36,98]. Testing this expectation and investigating
the difference in fluctuations could be a fruitful direction for future work.

Future research might also find it interesting to study the coherence requirements of Alice
in the setting in which she can apply non-Clifford gates. We suspect a similar bound as in
Theorem 2 to hold. Intuitively, this theorem is related to the fact that a quantum uncertainty
of CD(ρ) bits, of the basis states D, can be reduced to zero by CD(ρ) measurements on the
basis D. For stabilizer states, this uncertainty is distributed evenly across 2CD(ρ) basis states,
so the theorem follows naturally. For non-stabilizer states, the uncertainty is distributed un-
evenly across potentially more states. In this case, a rare measurement outcome may increase
or decrease the number of measurements required to reduce the quantum uncertainty. It is
therefore likely that the bound only holds on average or in the limit of a repeated number of
states, n, whose quantum uncertainty is reduced after nCD(ρ)measurements. The alternative
is that magic [102,103], a resource quantifying how much a state is not a stabilizer state, can
substitute the resource of coherence in this setting. It would, therefore, be interesting for fu-
ture work to confirm this intuition. Here, it is important to note that all of our results hold for
coherence in a local basis, and we do not expect our results to easily generalize to coherence
in a global basis.
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It could also be interesting to study the role of coherence in bases specified by a symmetry
relevant to the unitary dynamics. Specifically, one might consider a generalization of the dy-
namics investigated in Refs. [56,57,69,104], which studied dynamics that preserved a global
symmetry. One could instead include unitaries that break the symmetry but that are still inco-
herent operations in a basis labeled by the conserved charges. In this case, coherence between
different charge sectors would remain suppressed, but the dynamics would allow for classical
fluctuations of the conserved charge.

6.1.1 Possible speed up for classical simulations

Another interesting setting, is to consider circuits that simulate a given Lindblad unraveling
of a specific open system dynamics. In this case, there could also be an entanglement transi-
tion tuned by the relative rate at which the unitary part of the dynamics generates coherence
and the dissipative part destroys coherence. In this case the channel capacity of the specific
unraveling won’t be particularly interesting, but the entanglement transition from area law
to volume law entangled states would be a transition in the ability of classical computers to
simulate the open system dynamics [47,50,81]. In this setting, our results suggest a heuristic
for simulating Lindblad dynamics: use an unraveling which minimize the coherence in a given
local Pauli basis. By doing this, entanglement growth will be suppressed possibly allowing for
longer classical simulations using matrix product states (MPS). As shown in Section 4, cer-
tain dynamics can show a transition to area law entanglement for arbitrarily weak coupling to
an environment (measurement rate). If such a transition occurred by choosing between two
different unravelings of the Lindblad, then this heuristic would lead to an exponential speed
up by choosing the right unraveling: In one unraveling, entanglement would growth linearly
in time, and classical representations of the late time states would require memory growing
exponentially in system size. While in another unraveling, suppression of coherence would
ensure late time area law entanglement, such that memory requirements would only grow
linearly in system size.

6.2 Perspective on the entangling phase

From a different perspective, this transition in the capacity to protect either quantum or clas-
sical information provides an answer to what is quantum about the entangling phase of the
measurement-induced entanglement transitions. This question is raised by transitions in clas-
sical information quantifiers observed in the classical circuits of section 3, and Refs. [75–78].
One answer was given in Ref. [76], which showed quantum gates (i.e. quantum noise), such
as the phase gate, are an instability to the ordered classical phases. Another answer is given
by Fig. 11, which shows that in the quantum phase, quantum information is protected from
both bit and phase errors (coherence destroying errors).

Thus, the answer to what is quantum about the measurement-induced entanglement tran-
sitions is equivalent to the question, what is quantum about quantum error correction codes.
In both cases, it is a stability to both bit and phase errors. Also, in both cases, the extent to
which both are stable to X or Z errors corresponds to the amount of X or Z coherence re-
spectively. It is only when the phase, or quantum code space, contains states with both X or
Z coherence will they be stable to X or Z errors. In the case of measurement-induced phase
transitions, this fact is reflected in a volume-law to area-law phase transition corresponding to
a critical loss of either X or Z coherence (cf. Section 4.2). While in the case of quantum error
correction codes, the Singleton bound on the code distance for X or Z bit errors in a CSS code
corresponds to the coherence bound on the code distance applied to either the X or Z basis.
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6.3 Future directions

The coherence bound may also provide a useful design principle for quantum error codes
targeting a given experiment. For example, while generating coherence in any given basis can
be achieved by single qubit operations, generating it for all local Pauli basis requires entangling
gates and is therefore more difficult. Thus experiments will generally be limited in the amount
of coherence they generate in some basis. By identifying this limit on coherence, one could
identify a maximum code distance the experiment could produce, and focus on constructing
codes with a code distance less than that.

Our work therefore provides interesting directions in both the design of systems protecting
quantum information and the relation between classical and quantum information dynamics.
While here, we have studied the classical limit of quantum gate operations, it could also be in-
teresting to study how coherence brings one away from the classical limit of chaotic dynamics
of continuous systems. In the present work, spreading and scrambling of quantum informa-
tion was done by controlled gate operations, but one may also be interested in the natural
scrambling of information present in both classical and quantum chaotic systems [105–117].
Since here coherence distinguished between classical and quantum dynamics, it might also
be possible that it can elucidate results connecting classical to quantum chaos [118–120]. Fi-
nally, one may also think to use random circuits to investigate how resources quantified by
other resource theories [4], like asymmetry, non-gaussianity, contextuality or incompatability
are required for quantum or classical communication. A similar procedure taken here might be
useful but where Alice and Eve are instead constrained to use the free operations of a different
resource theory. In conclusion, our results can provide a new perspective on the connection
between classical and quantum information scrambling, and their relation to communication
technologies.
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A Properties of stabilizer states

Definition 1. A stabilizer mixed state, ρ on L qubits, with von Neumann entropy S(ρ) is
defined using a group S generated by a set of Ns = L − S(ρ) operators which are strings of single
site Pauli operators {gi}:

ρ =
L−S(ρ)
∏

i=1

1+ gi

2
. (A.1)
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We use the stabilizer check matrix, Ci j which is a L − S(ρ) by 2L + 1 matrix, where the rows
index the generators and the columns specify the form of the generator:

gi = (−1)Ci,2L+1

L
∏

j=1

X
Ci, j

j

2L
∏

j=L+1

Z
Ci, j

j . (A.2)

The stabilizer check matrix has entries from the field F2 = (0, 1), and act in a vector space
defined over that field, where multiplication and addition are performed modulo 2. The set of
all Pauli string operators that commute with the elements of S are called the centralizer of S.
This set forms a group C(S) where p ∈ C(S) if pgi = gi p for all gi ∈ S. It will be important to
consider the set, C−S, of Pauli strings operators contained in the centralizer but not contained
in the stabilizer group.

A.1 Representations of stabilizer states

A stabilizer mixed state is defined by its stabilizer group, S, and can have different represen-
tations based on the different choices of generators gi of that group [72]. Changes between
representations, often called gauges, can be made by changing a generator, gi by group mul-
tiplication

gi → g ′i = Rgi , (A.3)

where the group element R ∈ S/gi is taken from the group, S/gi , generated by all the gener-
ators of S not including gi . If we write R= (−1)r2L+1

∏L
j=1 X

r j

j

∏2L
j=L+1 Z

r j

j , then such a proce-

dure changes the stabilizer check matrix, by adding the vector r to the i th row of the stabilizer
check matrix Ci j (again all operations performed modulo 2) [72]. Thus different represen-
tations of the stabilizer state correspond to different stabilizer check matrices all related to
each other by row operations. Gaussian elimination will be a useful tool to find convenient
representations of the stabilizer state when proving lemma 5.

A.2 Measurements on stabilizer states

The measurement of a Pauli string, O on a stabilizer mixed state, can have three possible
effects:

• No effect: Occurs when ±O ∈ S, since the stabilizer state is already an eigenstate of the
measurement operator O.

• O changes the state and reduces the entropy. In this case, O is added to the generators
of the stabilizer state, and occurs when O in the centralizer of S but not in S: O ∈ C(S)
and O /∈ S.

• O changes the state, but not the entropy. This case occurs when [O, gi] ̸= 0 for at least
one of the generators gi and it requires a non trivial update to the stabilizers state.

In the last case, updating the state is performed [72] by:

1. Changing the representation of the stabilizer state to one in which only one generator
g ′1 does not commute with O.

2. Replacing the generator g ′1 with the new generator O.
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A.3 Coherence of stabilizer states

We now prove the lemmas and theorem discussed in the text, and in particular, we prove
Theorem 6 which gives an expression for the relative entropy of coherence for a stabilizer
state. To be as general as possible, it is useful for us to define

Definition 2. A local Pauli basis is as any basis that, on each site i, one of the Pauli operators
Ai ∈ (X i , Yi , Zi) is diagonal.

The basis states, {|s〉}, of a local Pauli basis are defined by a given bit string s = {α1,α2 · · ·αL}
obtained after performing a projective measurement on L Pauli operators {Ai}:

Ai |s〉= (−1)αi |s〉 , (A.4)

where αi ∈ (0, 1). We will also define H(p(x)) = −
∑

x p(x) log(p(x)) to be the Shannon
entropy of a distribution p(x).

We will often find it useful to use a generalization of the following property of measur-
ing a stabilizer states discussed in appendix A.2: the outcome of measuring a Pauli operator,
Ai ∈ (X i , Yi , Zi) is either certain (P(αi = 0) = 1 or P(αi = 1) = 1), or uncertain with proba-
bility P(αi) = 1/2, where αi ∈ (0,1) defines an eigenvalue, (−)αi , of Ai . When applied to a
sequence of measurements on the Pauli operators {Ai} defining a Pauli basis, we obtain the
following theorem:

Lemma 4. Given a stabilizer mixed state ρ, the probability, P(s) for the bit string, s, resulting
from a measurement on a local Pauli basis A, is uniform over 2nu bit strings where nu = H(P(s))
is the number of uncertain measurement outcomes in a sequence of measurements A1, A2 . . . AL .
i.e. P(s) = 2−nu if the bit string is one of the 2nu allowed bit strings or P(s) = 0 if not.

Proof: From Born rule, the probability:

P(s) = Tr

�

∏

i

D(Ai = αi)ρ

�

= Tr

�

(
∏

i(−1)αi Ai + 1)
2

ρ

�

,

where Ai is the single site Pauli operator on the i th site defining the local Pauli basis A, and
∏

i D(Ai = αi) is the projector to the basis state |s〉. We can compute this probability P(s)
sequentially by performing a sequence of projective measurements on the i th site:

ρi = D(Ai = αi)ρi−1D(Ai = αi) , (A.5)

where ρ0 = ρ and ρL = P(s) |s〉 〈s| is the projected Pauli basis state with normalization
P(s) = Tr(ρL).

The probability distribution P(s)will depend on whether the probability distribution of the
individual measurements

pi(αi) = Tr[D(Ai = αi)ρi−1D(Ai = αi)]/Tr[ρi−1] , (A.6)

are certain or uncertain. There are four options for the outcome of the i th projection on the
i th stabilizer state with stabilizer group Si:

1. Ai ∈ Si; pi(αi) ∈ (1, 0) and the measurement outcome is certain. In this case ρi = ρi−1
or ρi = 0 depending on αi = 0 or 1 respectively, and the measurement outcome of Ai is
certain.

2. −Ai ∈ Si; pi(αi) ∈ (1,0) and the measurement outcome is certain. This is the same case
as 1) but projection onto a different outcome ρi = ρi−1 if αi = 1 and ρi = 0 if αi = 0.
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3. Both Ai ∈ C(Si)−Si and −Ai ∈ C(Si)−Si; pi(αi) = 1/2 and the measurement outcome is
uncertain: in this case ρi = D(Ai = αi)ρi−1D(Ai = αi) = D2ρi−1 = Dρi−1 independent
of αi . Here D(Ai = αi)≡ D.

4. Ai /∈ C(Si); pi(αi) = 1/2 and the measurement outcome is uncertain. In this case, we
can choose a representation of Si such that only one generator g j does not commute,
[g j , Ai] ̸= 0 . Furthermore, since g j and Ai are non commuting Pauli operators we have
g jAi = −Ai g j , and can compute:

((−1)αi Ai + 1)
�

1+ g j

�

((−1)αi Ai + 1)

8
=

1+ (−1)αi Ai

4
, (A.7)

such that the state ρi is the stabilizer state with the j th term in the product of Eq. A.1
replaced by (1+ (−1)αi Ai)/2 and normalization such that pi(αi) = 1/2.

We can then find the probability of a measurement outcome P(s) from the probability of the
i th measurement outcome pi(αi):

P(s) = Tr[ρL] = pL(αL)Tr[ρL−1] =
L
∏

i=1

pi(αi) , (A.8)

which is either 2−nu or 0 where nu is the number of uncertain measurement outcomes in
the sequence. Furthermore, whether a measurement outcome is certain (case 1 and 2) or
uncertain (case 2 or 3) depends only on the measurement being performed, Ai , and not the
previous measurement outcome, α j for j ≤ i. Thus we find that regardless of the bit string
being projected s, the number of uncertain outcomes is the same. We conclude that P(s) is a
uniform distribution (for all P(s) ̸= 0 we have P(s) = 2−nu) with entropy H (P (s)) = nu □.

Notice that since this gives us the entropy of P(s) such that we can easily compute the
relative entropy of coherence in the basis A as:

C(ρ, A) = H (P (s))− S(ρ) = nu + Ns − L , (A.9)

where Ns is the number of independent generators in the stabilizer group S.
To easily obtain the number nu of uncertain outcomes, we find the following stabilizer

representation useful:

Lemma 5. The CSS “gauge” For a given stabilizer mixed state, there exists a representation,
called the CSS gauge, in which the stabilizer check matrix takes the following form:





G x
x 0 sx

0 Gz
z sz

G x
y Gz

y s y



 , (A.10)

where the rows of G x
y are linearly independent, and where the rows of Gz

y are also linearly indepen-
dent. In Eq. A.10, G x

x is a Nx by L matrix defining, along with the column sx , a set of generators
{g x

i } composed solely of X i operators; Gz
z is a Nz by L matrix defining, along with the column sz ,

a set of generators {gz
i } composed solely of Zi operators; while G x

y and Gz
y are L−S(ρ)−Nx −Nz

by L matrices that together with the column s y define a set of generators {g y
i }.

In this gauge, there are a set of Nx generators {g x
i } defined via the matrix G x

x composing

only X Pauli strings: g x
i = (−1)s

x
i
∏

j X
(Gx

x )i, j
j . Similarly there are a set of Ny generators {gz

i } de-
fined via the matrix Gz

z composed only of Z Pauli strings, while the remaining L−S(ρ)−Nx−Nz
generators are products of both X and Z Pauli operators.
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Proof: We first note that, as discussed in appendix A.1, row operations applied to the
stabilizer check matrix correspond to multiplication of the generators gi by elements of S/gi ,
such that different representations of the stabilizer group S are related by row operations
applied to the stabilizer check matrix. The proof then proceeds by construction. First start
with a generic stabilizer check matrix

�

g x
1 gz

1 s1
�

, (A.11)

where g x
1 and gz

1 are L − S by L matrices. If gz
1 has Mz < L − S(ρ) linearly independent rows,

then by Gaussian elimination on the columns j = L + 1 . . . 2L, will obtain a new matrix with
�

g x
x 0 sx

g x
2 gz

2 s2

�

, (A.12)

where gz
2 has Mz linearly independent rows and g x

x has Nx = L−S(ρ)−Mz rows. Furthermore
since the generators are independent and do not contain I or −I , the rows of g x

x must be lin-
early independent such that the check matrix can not contain a row with all 0s in the columns
1 . . . 2L. Now the combined set of rows from both g x

x and g x
2 may also have only Mx < L−S(ρ)

linearly independent rows, such that Gaussian elimination can eliminate Nz = L−Mx rows of
g x

2 . Applying that Gaussian elimination on Eq. A.12 we obtain the CSS gauge Eq. A.10 □.
We can now derive the relative entropy of coherence of Stabilizer states for the coherence

in the X and Z basis’s:

Theorem 6. The coherences in the X and Z basis of a stabilizer state are determined by number
the of rows Nx , Nz and Ny of the matrices g x

x , gz
z and g x

y of the CSS gauge:

Cx = Ny + Nz ,

Cz = Ny + Nx .
(A.13)

Proof: The coherences are given as Cx = H(P(x))−S(ρ) and Cz = H(P(z))−S(ρ), where
in the CSS gauge the von Neumann entropy is easily given as S(ρ) = L−Nx −Ny −Nz . With-
out loss of generality we focus finding the Shannon entropy Hx = H(P(x)) using the above
Lemma 4, and counting the number of uncertain measurements for a sequence of measure-
ments Ai = X i . To do this, we prove there exists a permutation of the sequence of measure-
ments, {X i} → {XJ(i)} such that measurements of the J(i) = 1 . . . (Nz + Ny) bits fall into case
4) in the proof for Lemma 4; the measurements of the J(i) = Nz + Ny + 1 . . . L − Nx bits fall
into case 3); and the rest have zero uncertainty in the measurement outcome (case 1 or 2).
Given such a result, we have nu = L − Nx = Hx and Cx = Ny + Nz .

Such a sequence can be found by Gaussian eliminating the columns L + 1 . . . 2L of the
rows Nx + 1 . . . L − S(ρ) of the stabilizer check matrix in the CSS gauge, such that the check
matrix has the from in Eq. A.12, but with gz

2 in upper triangular form. If we take J(i), for
i = 1 . . . Nz+Ny to be the left most site for which the generator i+Nx has a ZJ(i) Pauli operator
in it ( min J(i) such that (gz

2)i,J = 1), we will ensure that [XJ(i), ZJ(i)] ̸= 0 for the measurements
i = 1 . . . Nz + Ny , and that they of case 4) above.

After this first sequence Nz + Ny measurements, the stabilizer group Si=Nz+Ny
will only

contain operators that contains X Pauli operators, and since the previous case 4) measurements
don’t change the number of independent generators we have S(ρi=Nz+Ny

) = S(ρi=0). Thus,
the remaining measurements fall into case 1, 2 and 3 outlined in the proof of Lemma 4. The
measurements that fall into case 1 and 2 don’t change the state or the entropy, and so we can
choose the measurements J(i) for i = (Nz + Ny) . . . Nz + Ny + S(ρ) to be the measurement
that falls into case 3, such that the state loses one bit of entropy after each measurement
S(ρi+1) = S(ρi)−1. After this set of S(ρ)measurements we will then have S(ρi) = 0, and the
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state as an X basis state such that all subsequent measurement will have zero uncertainty in
the outcome. Thus we have found the sequence J(i) we set out to. In the case of pure states,
we have Cx = Ny + Nz = L − Nx and Cz = Ny + Nx = L − Nz . □

A.4 Coherence free stabilizer states

In section 3.3, we claimed that a stabilizer state with zero coherence in the X basis has the
form

ρS(n) =
1

2kn

∑

x

|x〉 〈x |
L−kn
∏

i=1

δ

 

∑

j

H x
i j (n) x j

!

,

where kn = S(ρ) and H x
i j is the kn by L matrix defining the generators of the stabilizer state

g x
i =

∏

j X
H x

i j

j . This equality follows first from Theorem 6, which shows that such a state,
which has Ny = Nz = 0 has zero coherence in the X basis, Cx = 0. This implies that the
density matrix ρS(n) is diagonal X basis such that it can be written as

ρS(n) =
∑

x

|x〉 〈x | P(x) . (A.14)

Finally, we have that

P(x) = 〈x |ρS(n) |x〉 (A.15)

=
L−S(ρ)
∏

i=1

1+ 〈x | gi |x〉
2

=
L−S(ρ)
∏

i=1

1+ (−1)
∑

j H x
i j x j

2

= 2S(ρ)−L
L−S(ρ)
∏

i=1

δ

 

∑

j

H x
i j x j

!

.

B Coherence requirement for Alice

In this section we prove Theorem 2 used in the main text to describe Alice’s coherence re-
quirements to maintain a finite channel capacity.

Theorem 2. Given a local Pauli basis D, any stabilizer mixed state ρ with entropy S(ρ) and rela-
tive entropy of coherence CD(ρ), there exists a sequence of M > CD(ρ) local Pauli measurements
that reduce the entropy of ρ (the state after measurement, ρ′, has entropy S(ρ′)< S(ρ)).

Proof: Without loss of generality, take the local Pauli basis D, to be the logical basis for the
logical operators X i . The proof proceeds by construction, and uses both the rules for stabi-
lizer measurement given in section A.2, and the state represented in the CSS gauge given by
Lemma 5, to identify the M measurements that reduce the entropy of state ρ. By Theorem 6,
the CSS gauge for the state ρ has Ny + Nz = Cx(ρ) and Nx = L − S(ρ)− Cx(ρ). Preforming
Gaussian elimination on the matrix

�

Gz
z

Gz
y

�

, (B.1)

will give the row operations to transform the Ny +Nz generators, {gz
i }∪{g

y
i } to have a unique

left most site ki such that only one of the generators in this set has a Pauli operator Zki
at site
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ki ([gi , Xki
] ̸= 0). To guarantee some of the M−Cx(ρ)measurements reduce the entropy of ρ,

choose Cx = Ny +Nz of the measurements to be of the operator Xki
on these unique left most

sites. According to the rules in section A.2, the entropy of the state will remained the same
after these measurements, but those Ny+Nz generators will be replaced with the Xki

operators,
such that state following those measurements will have N ′x = L−S(ρ). If M−Cx < S(ρ), then
the remaining measurements, can be chosen to be a set of {X i} that can not be represented by
the N ′x generators (X i ∈ C(S) and X i /∈ S). According to the rules in section A.2, the entropy
of state will be reduced by M − Cx . In the case S(ρ) ≤ M − Cx , S(ρ) of the measurements
can be chosen in the same way, but now result in a purified state such that the remaining
M − Cx − S(ρ) of the measurements don’t change the purity of the state □.

C Proof of the coherence bound on the code distance

The coherence bound on the code distance for stabilizer codes is proven by making use of
two properties of stabilizer states. The first is the lemma 4, which states the distribution of bit
strings, P(s) for given Pauli basis is uniform over 2H(P(s)) allowed bit strings (P(s) = 1/2H(P(s))

if s is allowed or P(s) = 0). The second useful property of stabilizer states is

Lemma 7. Given a local Pauli basis D, any Pauli stabilizer state |ψ〉 can be reduced to a product
state in M = C(|ψ〉 , D) measurements.

Proof: Without loss of generality, take the local Pauli basis D, to be the logical basis for
the logical operators X i . Now imagine applying each measurement operator X i in order from
i = 1 to i = L. Since the state |ψi〉 after measurement of X i−1 is a stabilizer state, either
X i |ψi〉= ±|ψi〉 and the measurement outcome is certain, or the measurement outcome is ±1
with probability 1/2 and the measurement is completely uncertain. After all measurements
are performed the state is in a product state, but the measurements whose outcomes were
certain, did not need to be made as they didn’t affect the state. Thus only the number of
uncertain measurements nu(s) = M are needed to reduce the state to a product state. From
Lemma 4, nu = H(P(s)), and since the state |ψ〉 is a pure state, we have nu = C(|ψ〉 , D) □.

Treating such a sequence of M measurements as an error on a state |ψ〉 encoding a set of
logical qubits, we can then prove the desired theorem:

Theorem 3. Given a local Pauli basis D, the code distance d of a [[N , k, d]] stabilizer code, P, is
bounded by the coherence of the maximally coherent stabilizer state in the code space:

d ≤max
ψ∈P

C(|ψ〉 , D)≡ CPD . (C.1)

Proof: Without loss of generality choose D = X as the basis diagonal with respect to the
Pauli {X i} operators. Then choose a complete set of logical Pauli operators Z̃n and X̃n acting
on the code space, such that the basis states of the code, |ψn〉, diagonal with the logical Z̃n
operators, contain the maximally coherent stabilizer state |ψ1〉 (i.e. C(|ψ1〉 , X ) ≥ C(|ψ〉 , X )
for all stabilizer states |ψ〉 in the code space). From lemma 7, the states |ψn〉 can be reduced to
a product state in the computational basis with at most CPD measurements. Thus, there exists
a projector Psn

, for each basis state |ψn〉, with weight Cx ,n = Cx(|ψn〉)≤ CPD, that reduces that
basis state |ψn〉 to a X basis state in Cx ,n measurements: Psn

|ψn〉 = 2−Cx ,n/2 |xn, sn〉 where xn
are the value of the bits not projected by Psn

and sn are the values of the Cx ,n bits specified by
the projector.

We now prove that one of the Psn
, which has weight M ≤ CPD, must be an error and thus

d = M ≤ C(P, D). We use proof by contradiction and assume all Psn
are correctable. This

implies the error correction condition [72] for all Psn
≡ Pn:

〈ψi| PnPm

�

�ψ j

�

= αnmδi j . (C.2)
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This condition for n = m = 1, such that P1 is the X basis projector associated to the maxi-
mum coherent stabilizer state |ψ1〉, implies that all basis states must have the same coherence
CPD. First choosing i = 1, the condition implies α11=〈ψ1| P2

1 |ψ1〉=〈ψ1| P1 |ψ1〉=P(s1) = 2−CPD

from lemma 4. For i ̸= 1 the condition 2−CPD = 〈ψi| P1P1 |ψi〉 implies P1 |ψi〉 = 2−CPD/2
�

�ψ′i
�

where
�

�ψ′i
�

is a stabilizer state normalized to 1. Then from lemma 4, either
�

�ψ′i
�

is an X
basis state and |ψi〉 has coherence CPD, or

�

�ψ′i
�

has some finite coherence C ′ > 0 such that
Cx ,i = CPD + C ′ > CPD. The second option is not valid from the assumption that CPD is the
coherence of the maximal coherent stabilizer state, and so all basis states |ψi〉 must have co-
herence Cx ,i = CPD. Since

�

�ψ′i
�

must have zero coherence, the projector P1 ≡ Ps1
, projects all

basis states |ψn〉 to a product state |xn, s1〉.
Furthermore, from the error correction condition at n= m= 1 we have




x i , s1

�

�x j , s2

�

= δi j
such that the states P1 |ψi〉 are all orthogonal to each other. Now choose |ψ2〉 to be the state
obtained by flipping Z̃1 of the first logical bit for the state |ψ1〉, and consider the stabilizer
state state |+〉 = (|ψ1〉+ |ψ2〉)/

p
2 obtained by applying a logical Hadamard gate to the first

logical bit. Projecting |+〉 by P1 gives us a stabilizer state P1 |+〉= (|x1, s1〉+ |x2, s1〉)/2(CPD+1)/2

which has coherence 1 because of the required orthogonality between |x1, s1〉 and |x2, s1〉. But
this implies |+〉 has coherence CPD + 1 which is a contradiction with the assumption |ψ1〉 is
the maximally coherent stabilizer state. Thus the error correction condition can not hold for
all Pn and the code distance d = Cx ,m ≤ CPD. □

D Measurement induced Markovian dynamics of coherence

D.1 Markovian dynamics of coherence in measurement-only circuits

In the main text, we discussed that the dynamics of coherence in the measurement-only limit
are Markovian, and that they are described by the number of qubits polarized in the X , Z , and
Y directions, Nx , Nz , and Ny = L − Nx − Nz respectively. The Markov chain is defined by the
conditional probabilities P(Nx(n), Nz(n)|Nx(n − 1), Nz(n − 1)) for Nx and Nz at step n given
them at step n− 1. To determine the conditional probabilities, first consider the event of an
X i measurement. If the measurement is made on a site polarized in the X direction, the state
does not change, but if it is made on a site polarized in Y direction, the X direction is learned
and Y direction is forgotten: Nx → Nx + 1 and Ny → Ny − 1. Given that a X i measurement
is made, the probability this occurs is Ny/L. A similar thing happens if a Z polarized bit is
measured, which occurs with a probability Nz/L, thus we have:

P (Nx + 1, Nz|Nx , Nz) = px
Ny

L
, (D.1)

P (Nx + 1, Nz − 1|Nx , Nz) = px
Nz

L
,

P (Nx , Nz + 1|Nx , Nz) = pz
Ny

L
,

P (Nx − 1, Nz + 1|Nx , Nz) = pz
Nx

L
,

P (Nx − 1, Nz|Nx , Nz) = py
Nx

L
,

P (Nx , Nz − 1|Nx , Nz) = py
Nz

L
,

for the non-zero conditional probabilities. Using these conditional probabilities, a rate equa-
tion can then be derived for the average density of X polarized qubits after m measurements
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N x(m) =
∑

Nx
Nx P(Nx(m)) as

∂mN x(m) = px
L − N x

L
− (pz + py)

N x

L
, (D.2)

with similar equations for N y and N z . The steady state solution to these dynamics predicts
the average steady state density of α polarized qubits is equal to pα as intuitively expected:
Nα = pαL or equivalently for the coherences Cα = (1− pα)L.

D.2 Coherence dynamics in weak measurement limit

In this section we derive the conditional probabilities for the Markov process in the weak mea-
surement limit pm ∼ O(1/L2), arguing why, in this limit, each measurement has an uncertain
outcome and changes the state. We again make use of stabilizer state tools, and in particular
the CSS gauge of a stabilizer state discussed in appendix A.3. As discussed there, this repre-
sentation of the stabilizer state has two parity check matrices G x

x and Gz
z with N x and N z rows

respectively. The generators specified by these check matrices, are all strings of all X (Z) Pauli
operators and therefore constrain N x(z) bits of information about the X (Z) basis states that
make up the stabilizer state. Theorem 6 then shows that the X (Z) coherence of a stabilizer
pure state is equal to the number of bits not known about the X (Z) basis (Cx(z) = L − Nx(z)).
Using this theorem, we can therefore focus on the conditional probabilities for the number of
bits of information specified about the X and Z basis (Nx and Nz) instead of the coherences
directly. Notice that this is a generalization of the procedure for the measurement-only limit
where the number of bits known about the X (Z) basis states is equal to the number of physical
qubits polarized in the X (Z) basis.

We are therefore interested in obtaining the conditional probabilities
P(Nx(n), Nz(n)|Nx(n − 1), Nz(n − 1)), and can determine them by determining the effect of
an X i measurement on site i. The measurement can either act trivially on the state, if |ψ〉
is an eigenstate of X i (i.e. [X i , g j] = 0 for all generators g j), or it can change the state (i.e.
[X i , g j] ̸= 0 for at least one g j). To determine the probability that a measurement of X i acts
trivially on the state, we first note that after n= O(L2) random CNOTs, each generator g j will
have Pauli operators randomly distributed across the whole system. In the CSS gauge, the g x

generators all commute with X i , while the gz and g y generators have, after n= O(L2) random
CNOTs, an equal probability of containing the Zi Pauli operator. Therefore we estimate the
probability that the measurement of X i changes the state is ≈ 1− (1/2)L−Nx , and approaches
1 in the thermodynamic limit as long as the coherence Cx = L − Nx is O(L).

When [X i , g j] ̸= 0 for some g j , the measurement of X i changes the stabilizer state and we
must identify how the stabilizer state is updated. If the measurement outcome is x i , then the
updated state will obey (−1)x i X i |ψ〉= |ψ〉, and we find that (−1)x i X i is a new generator of the
stabilizer state with Nx → Nx + 1. Then, to ensure all g j are commuting such that the state is
a valid stabilizer state, we must, as described in appendix A.2, first change the representation
of the stabilizer state so only one gk is non-commuting, and then remove it from the set of
generators. The net effect is to replace the non commuting generator gk with the measurement
operator (−1)x i X i . Such an update can only be performed while at the same time maintaining
the CSS gauge if one of the {gz

j } generators is chosen to be replaced (See Appendix D.4 for
why). This results in Nz → Nz−1, and reflects the fact, that after the measurement, the qubit i
is in a superposition state of Zi basis states such that the coherence in the Z basis, Cz = L−Nz ,
has increased by one bit. Overall, we find that the X i measurement on a maximally entangled
state increases the number of bits known about the X basis states by 1 and decreases the
number bits known about the Z basis states by 1: Nx → Nx + 1 and Nz → Nz − 1. The effects
of Yi and Zi measurements are determined similarly (See Appendix D.4), and we find that the
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non-zero conditional probabilities for the Markov chain are given as:

P(Nx + 1, Nz − 1|Nx , Nz) = px ,

P(Nx − 1, Nz + 1|Nx , Nz) = pz ,

P(Nx − 1, Nz − 1|Nx , Nz) = py ,

(D.3)

for Nx and Nz away from the Markov chain’s boundaries: Nx ≥ 0, Nz ≥ 0 and Nx + Nz ≤ L.
The second boundary condition is because the number of generators allowed in the stabilizer
state can not exceed L. The transition rates at the boundary are similarly determined and are
shown in Fig. 7. We can therefore consider the dynamics of (Nx , Nz) as a two dimensional
random walk and derive the diffusion equation for the evolution of P(Nx , Nz , m) = P(x , z, m)
as

∂mP = (py + pz − px)∂x P +(py + px − pz)∂z P +1/2(∂ 2
x + ∂

2
z )P − (px + pz − py)∂x∂y P , (D.4)

which has drift velocity (py + pz − px) x̂ + (py + px − pz)ẑ leading to the rate Eq. 11 dis-
cussed in the main text. Notice that special care must be taken on the Nz = 0 (and Nx = 0
by symmetry) boundaries. At Nz = 0 boundary the conditional probabilities are given as
P(Nx + 1,0|Nx , 0) = px and P(Nx − 1,0|Nx , 0) = py and result in the diffusion equation

∂mP(z = 0) =
�

�

py + pz − px

�

∂x +
1
2
∂ 2

x

�

P(z = 0) .

The steady state solution on this boundary gives the localization length λ ∼ 1/(py + pz − px)
in the x direction as discussed in the main text.

D.3 Finite measurement rate dynamics

The two limits discussed above offer solutions for the steady state coherence in two extremes:
1) pm/pu→∞, in which the probability that a measurement of X i is uncertain depends on the
number of bits known about the X basis; and 2) pm/pu→ 1/L2 in which the probability of an
uncertain measurement outcome depends only on the rates px , pz and py . When px > py + pz
these two extremes are distinguished by volume-law v.s. area-law coherence in the X basis.
This suggest the possibility of a coherence transition as a function of measurement rate pm.
This possibility is ruled out by the Clifford simulations shown in the top panel of Fig. 13, which
only shows volume-law coherence. Thus, the weak measurement limit, pm < 1/L2 is a finite
size effect and does not exist as L→∞ for finite pm.

To access the finite measurement rate limit, we first note that the two extremes discussed
above correspond to two distinct structures of the generators in the late time stabilizer states:
1) when pm/pu → ∞ and gi are single site Pauli operators, and 2) when pm/pu → 1/L2

and the generators gi have extent scaling with system size. To interpolate between these two
limits and access the finite pm dynamics, we make the assumption that the generators of the
stabilizer state have instead a finite extent ξ and are centered at sites evenly spaced throughout
the chain. We proceed as before and determine the probability that the measurement of X i
changes the state and the coherence. This occurs if one of the generators gi does not commute
with X i , which under the above assumption, is only possible for generators centered at most
ξ sites away. If we take βx as the probability one of these generators commutes with X i , then
the probability all generators commute with support on site i is βξx . Thus the probability a
measurement of X i is uncertain and obtains information about the X basis is 1− βξx , yielding
the rate equation

∂mN x = px(1− βξx )− pz(1− βξz )− py(1− βξy ) . (D.5)
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Figure 13: Steady state coherence Cx as a function of pm and ∆x = (px − pz) for
py = pR = pe = 0. The top figure shows volume-law coherence Cx for ∆x = 0.5
obtained via Clifford simulations. It shows no evidence of a phase with area-law
coherence for finite pm. The bottom figure shows the steady state coherence Cx for
different values of pm and a system size L = 32. The colored dots are data computed
via Clifford simulations, while the solid lines correspond to the predictions using the
coherence rate equations derived in the text. The three black lines correspond to the
rate equation Eq. 12 where the lengths scales ξ= (2.7,5, 8) are found by best fit for
the Clifford simulation data at pm = (0.06,0.01, 0.0025) respectively.

In the weak measurement limit, we expect ξ∼ L→∞, since the generators are assumed
to have extent over the entire system. This is consistent with the fact that in the limit ξ→∞,
Eq. D.5 reproduces the weak measurement rate equation Eq. 11 for py = 0. If instead we
work in the measurement-only limit,the stabilizer state becomes a product state with ξ = 1.

If we choose βx =
N x
L , βx =

N z
L and βy =

L−Nx−N z
L , then the rate equation Eq. D.5 will have

the form of Eq. D.2. Therefore, we have a single phenomenological parameter ξ to interpolate
between the two extreme limits of strong and weak measurement. The steady state coherence
for a given ξ is then given by the following implicit equation ∂mN x = 0, which can be solved
numerically. Numerical solutions for Cx = L − N x are shown in the bottom panel of Fig. 13,
and agree well with Clifford simulations of Cx when∆x > 0.1 for a single choice of the length
scale ξ.

D.4 Markov chain effects of Z and Y measurements

Above, in section D.2, we presented the conditional probabilities, Eq. D.3 for the Markov chain
in the weak measurement limit and derived the contribution from the X i measurements. That
derivation relied on the fact that the measurement of X i can only be performed on a stabilizer
state while maintaining the CSS gauge if one of the {gz

j } generators is used to perform gaussian
elimination. This is seen as follows. First, all generators which do not commute with X i contain
a Zi Pauli operator. Since there are generally O(L) {gz

j } operators, with stabilizer extent L, at

least Cz > 1 of them is likely to contain Zi . This is also true of the {g y
j } generators, but if one

of them, say g y
k , is used to perform the gaussian elimination of Zi , the Nz {gz

i } generators will
all contain the X Pauli string of the g y

k operator used for elimination. After this procedure, g x
y
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will then contain Cz−1 linear dependent rows and the state will not be in the CSS gauge. This
does not occur if one of the {gz

j } generators is uses for elimination.
The derivation of the contribution from Z measurements is exactly the same as the first

due to the duality between X and Z measurements in the stabilizer gauge. The contribution
from Y measurements occurs because it becomes, with high probability, a generator in {g x

j }
and another in {gz

j } will not commute with the Yi measurement in the L→∞ limit. Thus one
generator (say the one in {g x

j }), will have to eliminate the other ({gz
j }) leading to Nz → Nz−1

and Ny → Ny +1. Then the row in g x
x used for elimination will be replaced with Yi leading to

Nx → Nx − 1 and Ny → Ny + 1. Thus for a Y measurement Nx and Nz both decrease by 1 as
in the third equation in Eq. D.3.

Figure 14: Scaling collapse for tripartite mutual information I3. Data for the different
system sizes cross at ∆x = ∆c

x = 0.333 ± 0.005 confirming the ∆x = 1/3 critical
point predicted by the dynamics of coherence. The curves collapse for ν= 1.2±0.05
where the error source is sampling error from the finite, O(2000), circuit realizations
performed which we estimate to be∆I3 ≈ 0.5. Here we do not show lines for L ≤ 128
owing to non-universal finite size effects causing a slight drift in the apparent critical
point. For example, the curves for L = 128 and L = 256 cross at ∆c

x = 0.35.

Figure 15: Scaling collapse for the coherent information, C, occurring at three dif-
ferent times t = 5L, 15L and t/L = 40 as labeled in the figure. In this figure
∆c

x = 0.33 ± 0.02, ν = 1.09 ± 0.05 and β = 0.65 ± 0.05, where the variation in
the exponents arises from both sampling error as in Fig. 14 and from variations in
the best fit critical parameters at the three different times. The length critical expo-
nent, ν is compatible by a single standard deviation with the one obtained in Fig. 14
for the tripartite mutual information.
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E Critical properties of the coherence controlled entanglement
transition

In section 4, we presented a phase transition controlled by the relative rate of X , Y and Z mea-
surements of a circuit composed of CNOTs and measurements at a fixed overall measurement
rate pm = 0.01. The phase transition was observable in the half cut entanglement entropy at
late times, S(L/2), the biparitite, I2, and tripartite, I3, mutual informations and the coherent
information, C between the initial and final state of the system. These quantities identified a
critical point of ∆c

x = (px − pz)/(1− py) = 1/3 when py = 1/4, and px + pz = 1− py . In this
appendix, we determine the length critical exponent, ξ ∼ (∆x −∆c

x)
−ν and the exponent β

for the coherent information, C ∼ (∆x −∆c
x)
β .

To identify these critical exponents, we make the following scaling hypothesis

I3(∆x) = f
��

∆x −∆c
x

�

L−ν
�

,

C(∆x) = Lβ/νg
��

∆x −∆c
x

�

L−ν
�

,
(E.1)

and find that data from our numerical simulations confirms these hypothesises in Fig. 14 and
Fig. 15. Under this scaling hypothesis, Ie and C collapse to a single polynomial function of p for
different L and t. The critical parameters are determined by optimizing a fit to this polynomial.
This gives the critical parameters,∆c

x = 0.33±0.02, ν= 1.09±0.05 and β = 0.65±0.05 with
an optimal residual of 10−2 for the tripartite mutual information Ie, and an optimal residual
of 10−3 for the coherent information C. These exponents are distinct from the critical expo-
nents found for the transition described in Ref. [26,98], where the transition is controlled by
a competition between measurements and unitaries. This is in contrast to the current setting
in which the transition is controlled by a competition between coherence generating measure-
ments and coherence destroying generating measurements. In particular, Ref. [26] finds the
coherent information exponent as β = 0, which is not compatible with the critical properties
we observe in the present scenario.

The critical exponent ν = 1.09 is consistent with directed percolation which describes
the classical transition discussed in section 3 and in Refs. [75, 76]. Future work could find
it interesting to better understand if the transition is in the directed percolation universality
class or not. An obstacle to this is apparent large finite size effects occurring in these circuits
as discussed in the caption of Fig. 14.
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