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Abstract

We examine the condensation and confinement mechanisms exhibited by a deformed
toric code model proposed in [Castelnovo and Chamon, Phys. Rev. B 77, 054433 (2008)].
The model describes both sides of a phase transition from a topological phase to a triv-
ial phase. Our findings reveal an unconventional confinement mechanism that governs
the behavior of the toric code excitations within the trivial phase. Specifically, the con-
fined magnetic charge can still be displaced without any energy cost, albeit only via the
application of non-unitary operators that reduce the norm of the state. This peculiar
phenomenon can be attributed to a previously known feature of the model: It maintains
the non-trivial ground state degeneracy of the toric code throughout the transition. We
describe how this degeneracy arises in both phases in terms of spontaneous symmetry
breaking of a generalized (1-form) symmetry and explain why such symmetry breaking
is compatible with the trivial phase. The present study implies the existence of subtle
considerations that must be addressed in the context of recently posited connections
between topological phases and broken higher-form symmetries.
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1 Introduction

The study of different phases of matter, and the transitions between them, is a cornerstone
of condensed matter physics. Over the past few decades, we have learned much about the
landscape of phases existing at zero temperature, including so-called topological phases of
matter [1–3]. These topological phases, which include fractional quantum Hall systems [4–6],
are characterised by long-ranged entanglement between their local degrees of freedom, which
cannot be removed by local unitary evolution over a finite time [3, 7, 8]. Because of this,
topological phases possess a ground state degeneracy that depends on the topology of the
manifold on which they reside and which is robust to local perturbations [9,10]. In addition,
the long-ranged entanglement allows topological phases to support exotic excitations with
novel exchange statistics. In 2+1d, these quasiparticles are known as anyons and have braiding
statistics that generalise those of bosons and fermions. Topological phases have been a subject
of intense research due to their potential applications in quantum computing and memory
[9, 11–15]. Because of these applications, in addition to the study of topological phases in
nature, there have been significant efforts to artificially construct topologically ordered states
[16,17].

Transitions between different topological phases are also of significant interest and illus-
trate how the unique properties of these phases can change and emerge. A particular class of
transitions, known as condensation-confinement transitions, intimately involve the exotic ex-
citations [18–22]. During a transition from one topological phase to another, or a transition to
a topologically trivial phase, some of the anyons of the original phase may condense, meaning
that their associated conserved charge is absorbed into the ground state, while other anyons
become confined, unable to move without dragging an energetically costly string [18, 19].
Such transitions may involve no local order parameter, instead being described by non-local,
ribbon-like quantities.

In recent years, a new perspective on topological phase transitions has emerged, build-
ing on the established Landau picture of symmetry-breaking phase transitions. It has been
proposed that, instead of conventional symmetries, higher-form symmetries may be a useful
descriptor of topological phases [23–27]. Unlike ordinary global symmetries, which act on
an entire slice of space-time, higher-form symmetries act on lower-dimensional manifolds, of
codimension two or greater in space-time. Furthermore, higher-form symmetries are topolog-
ical, in the sense that their action is unaffected by smoothly deforming the manifold on which
they are applied. Because of this lower dimensionality and topological nature, the charge for
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a higher-form symmetry is carried by extended objects, rather than local ones as for ordinary
(0-form) charge.

As an illustration of the connection between topological phases and 1-form symmetries,
consider the toric code, the simplest example of a non-trivial topological order. The logical
operators of the toric code are strings of σx and σz operators around the handles of the torus,
and they are the non-trivial 1-form symmetry operators. These operators commute with the
Hamiltonian and act on a lower-dimensional manifold. Furthermore, the 1-form symmetry
operators are topological, meaning that we can deform the manifold on which they are applied
without affecting their action, at least in the ground state manifold. These conditions define a
higher-form (in this case, 1-form) symmetry. However, these 1-form symmetries are broken in
the ground state manifold, as evidenced by the logical operators moving us from one ground
state to another. In fact, the order parameter (charged operator) for the Wilson loop 1-form
symmetry (the string of σz operators about one handle) is a ’t Hooft loop 1-form symmetry (a
string of σx about the other handle) and vice versa. This perspective on the toric code can be
extended to other topological phases, where the logical operators that change the ground state
by braiding anyons around a handle of the torus are non-trivial 1-form symmetries, and the
braiding relations between anyons allow different logical operators to act as charged operators
for each other. Together, these operators describe a pattern of spontaneous 1-form symmetry
breaking in the ground state manifold [27].

Although the framework that utilizes higher-form symmetries for analyzing topological
phases is still in the developmental stage, it holds significant promise for drawing upon estab-
lished concepts from traditional phase transitions to enhance our comprehension of topological
phases. However, to fully leverage these ideas, it is crucial to establish, in a rigorous manner,
the extent to which topological phases can be described as higher-form symmetry-breaking
phases and how this type of symmetry-breaking differs from that observed for ordinary (0-
form) symmetries. Therefore, a careful investigation and thorough characterization of the
relationship between topological phases and higher-form symmetries are essential for under-
standing of the topological phases of matter.

Our study presents potential complications to the currently established notions of conden-
sation and confinement, as well as to the 1-form symmetry perspective of topological phases.
To achieve this, we investigate the deformed toric code model proposed in [28], which pro-
vides exact expressions for the ground states across a phase transition. In Section 3.1, we
demonstrate that the confinement of anyons may not always be enforced energetically, as
non-unitary operators may exist that can transport the confined charge without dragging an
energetic string. However, this comes at the cost of reducing the norm of the state, such that
the norm becomes zero as the length of the transporting operator approaches infinity. This ob-
servation aligns with a view about confinement employed when studying topological phases
via tensor networks, as reported in prior studies [29–32], where the ground state is studied
directly, without a Hamiltonian.

In addition, as described in Section 3.2, the ’t Hooft loop satisfies a perimeter law even
beyond the phase transition, meaning that its expectation value 〈T (c)〉 in the ground state
decays as the length L(c) of the loop:

〈T (c)〉 ∼ e−aL(c) .

This is despite the apparent condensation of electric charge and confinement of magnetic
charge, which we might expect to result in an area law, for which the expectation would
decay with the area A(c) enclosed by the loop [33]:

〈T (c)〉 ∼ e−bA(c) .

The perimeter law for the ’t Hooft loop also indicates the spontaneous symmetry breaking
of a 1-form symmetry [27] (which is preserved exactly by the Hamiltonian). This is analogous
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to the long-ranged correlation of an order parameter for a regular symmetry breaking state,
while the area law is analogous to the decay of a correlator in the disordered phase [27]. In
Section 4, we discuss the connection between spontaneous symmetry breaking and topological
phases in more detail, pointing out why 1-form symmetry breaking can lead to indistinguish-
able ground states. The perimeter law for the ’t Hooft loop persists beyond the topological
phase, however, indicating that spontaneous symmetry breaking of the 1-form symmetry does
not always give a topological phase. We explain why the symmetry breaking alone does not
guarantee indistinguishability, and what additional conditions do ensure this property.

2 The deformed toric code

The deformed toric code model is an exactly solvable model, based on Kitaev’s toric code [9],
that was introduced by Castelnovo and Chamon in Ref. [28] and further studied in Refs.
[34–36] (with a related model discussed previously in Ref. [37]). By tuning a parameter
in the Hamiltonian, the model can describe either a topological phase (the toric code phase)
or a trivial one. This model is conveniently defined on a square lattice (although more gen-
eral graphs can also be employed) with Z2 variables on each edge, just like the regular toric
code. We will generally consider periodic boundary conditions, so that the lattice represents a
toroidal manifold. Similar to the toric code, the Z2 degrees of freedom interact through energy
terms at each vertex and plaquette, as shown in Figure 1. The vertex terms are given by

Qv(β) = e−β
∑

i∈star(v)σ
z
i −
∏

i∈star(v)

σx
i . (1)

Here β is the previously mentioned parameter which carries the model across a phase
transition, from a topologically ordered phase at low β to a topologically trivial one at high β .
At β = 0, the vertex terms are equivalent to those from the toric code (albeit with a constant
shift and rescaling from their usual presentation). At small β , an expansion of the exponential
indicates that the vertex term is equivalent to the toric code term plus an interaction with
an applied magnetic field along the z-direction [28]. At larger β , however, the term differs
significantly from the linear version. The σx part of the term, which is the same for all β , has
the effect of flipping the Z2 variables surrounding the vertex. Similar to the toric code, the
overall effect of Qv(β) is to ensure that the ground state contains all configurations related
by the vertex flips, although the exponential part means that this is done with a weight that
depends on the number of down spins.

On the other hand, the plaquette terms are the same as those used in the toric code:

Bp =
∏

i∈p

σz
i . (2)

This term has the effect of enforcing a “no-flux” condition on the low energy space, so that the
product of Z2 variables around each plaquette is +1.

The overall Hamiltonian is then given by

H(β) = −
∑

plaquettes, p

Bp +
∑

vertices, v

Qv(β) , (3)

so that at β = 0 the model is equivalent to the toric code.
Unlike for the regular toric code, at finite β the energy terms are not all commuting projec-

tors: the Qv(β) terms do not commute with each-other and are not projectors. Nonetheless,
the lowest eigenvalue of each Qv(β) is zero and the ground states minimise each Qv(β) indi-
vidually. As described in Ref. [28] and as we show in Appendix D for a more general version
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Figure 1: In the deformed toric code, the edges of the lattice host Z2 degrees of
freedom. The vertex term (left) acts on the edges adjacent to the vertex, while the
plaquette term (right) acts on the edges on the boundary of the plaquette.

of the model, this leads to the ground states taking the form

|GS(β)〉 ∝
∏

i

eβσ
z
i /2 |GS(0)〉 , (4)

where |GS(0)〉 is any toric code ground state. Note that this means that the ground state
degeneracy of the toric code (which is four on the torus) is preserved for all values of β , even
as we transition to the topologically trivial phase at large β (although the gap closes at the
critical point [38]). The product of exponentials given in Equation (4) weights the different
spin configurations according to the total number of down spins. Configurations with more
down spins (σz

i = −1) are given a smaller weighting in the ground state, while configurations
with more up spins will have a greater weighting. The different ground states can be labelled
by the product of spins around the handles of the torus, a fact which is maintained for any
value of β [39]. Because the spins are Z2 variables, this product is a parity and is given by
±1. At the extreme limit of β →∞, the toric code ground state with even parity about both
handles becomes the fully polarized state: a simple product state of up spins [39], because
the even-even parity sector already includes that polarized configuration and it is given the
greatest weight as β → ∞. On the other hand, the other ground states have odd parity
around at least one handle and so must have some down spins. This means that, as β →∞,
the ground state tends towards the configuration of spins that has fewest down spins while
still satisfying the parity condition, which means having a number of down spins comparable
to the linear extent of the lattice [39]. The weighting factor from Equation (4) will appear in
many future expressions, so following notation from Ref. [39], we define

S(β) =
∏

i

eβσ
z
i /2 . (5)

As mentioned previously, there is a phase transition in this model as we go from low to
high β . Evidence for this was given in Ref. [28], where the behaviour of the topological
entanglement entropy was studied. It was found that the topological entanglement entropy is
given by Stopo. = ln2 below a critical value of β (βc =

1
2 ln(1+

p
2)), but drops abruptly to zero

above this critical value. This implies that the model has a transition from a topological phase
(with non-zero topological entanglement entropy) to a trivial one. Further evidence of this
transition was given in Ref. [39], where it was demonstrated that the magnetic susceptibility
of the ground states diverges at the critical point. Furthermore, above the phase transition the
magnetizations of the different degenerate ground states differ by an amount proportional to
the linear extent of the lattice, indicating that the ground states are distinguishable above the
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transition. This contrasts with the situation in the topological phase, where no local operators
can distinguish between the ground states [2,9] (up to corrections that are exponentially small
in system size), meaning that the magnetization is the same for each ground state away from
the critical point.

While we will generally consider the Hamiltonian given in Equation (3), it is also possible
to generalise this Hamiltonian by allowing the variable β to vary over space or by modifying
the plaquette terms in addition to the vertex terms. Despite this inhomogeneity, the ground
states can still be constructed exactly. A detailed examination of this inhomogeneous model is
beyond the scope of this paper, but we briefly discuss some of its properties in Appendix D.

3 Condensation and confinement

One way in which topological phases can undergo a phase transition to a trivial phase, or
another topological one, is for some of the anyonic excitations to undergo a process called
condensation. During this process, the conserved topological charge carried by the excita-
tion is absorbed into the ground state and the excitations become trivial (often disappearing
entirely). Furthermore, excitations which had non-trivial braiding with these condensing ex-
citations in the topological phase are expected to become confined in the new phase, unable
to move without dragging an energetically costly string [18]. This is because these confined
excitations disturb the condensate as they move, with the string representing a location where
the topological symmetries of the original ground state is restored [18]. In this work, we
will examine the condensation and confinement in the deformed toric code from a variety of
perspectives.

3.1 Ribbon operators

The first way in which we consider the pattern of condensation and confinement is to examine
what happens to the original ribbon operators of the toric code as β is increased. The toric
code has two basic ribbon operators, electric and magnetic, which can be combined to give all
of the different excitations in the model [9]. The electric ribbon operator (illustrated in the
left side of Figure 2) is a string of σz

i operators along a path in the lattice and produces vertex
excitations at the two ends of the path:

L(t) =
∏

i∈t

σz
i . (6)

On the other hand, the magnetic ribbon operator (shown in the right side of Figure 2) is a
string of σx

i operators along a dual path (i.e., a path from plaquette to plaquette that bisects
the edges of the lattice) and excites the plaquette terms at the two ends of the dual path:

C(s) =
∏

j∈s

σx
j . (7)

Both of these ribbon operators have an additional property when acting on the ground
state, or an unexcited region of the lattice. They are topological, meaning that the result of
acting with the ribbon operator on the ground state is unchanged if we deform the ribbon
into a homotopic one (keeping the end-points fixed). This is a key property of the creation
operators for anyons and allows the anyons to have braiding relations that are insensitive to
local details.

Now consider what happens to these ribbon operators at finite β . The change to the Hamil-
tonian means that the commutation relations between the ribbon operators and energy terms
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Figure 2: The electric ribbon operator (left) is a string of σz operators acting along
a path in the direct lattice. The magnetic ribbon operator (right) is a string of σx

operators acting on the edges cut by a dual path.

are altered, which may change the pattern of excitations produced by the ribbon operators.
First consider the electric ribbon operator. Because the plaquette terms are unaltered as β is
increased, the electric ribbon operator still commutes with the plaquette terms (due to being
a product of σz operators) and does not produce any plaquette excitations. It also commutes
with the exponential terms in Qv(β), meaning that it still commutes with vertex terms away
from the ends of the ribbon (because it also commutes with

∏

i∈star(v)σ
x
i there). However, at

the two ends of the ribbon, the commutation relation with the Qv(β) terms is altered despite
commuting with the exponential terms. This is because the ribbon operator anti-commutes
with the product of σx

i and commutes with the exponential term, leading to the following
commutation relation:

Qv(β)L(t) |GS(β)〉=
�

e−β
∑

i∈star(v)σ
z
i −
∏

i∈star(v)

σx
i

�

L(t) |GS(β)〉

= L(t)
�

e−β
∑

i∈star(v)σ
z
i +
∏

i∈star(v)

σx
i

�

|GS(β)〉

= L(t)
�

2e−β
∑

i∈star(v)σ
z
i −Qv(β)
�

|GS(β)〉 . (8)

In the ground state space, Qv(β) |GS(β)〉= 0 and so

Qv(β)L(t) |GS(β)〉= L(t)2e−β
∑

i∈star(v)σ
z
i |GS(β)〉 . (9)

The state L(t) |GS(β)〉 is not generally an eigenstate of Qv(β) or an energy eigenstate. In fact,
it has an increasing overlap with the ground state as β increases, which we can see from the
fact that the magnetization is non-zero above the critical β [39], so the σz

i that make up the
ribbon operator acquire a non-zero expectation value. More precisely, the expectation value of
the ribbon operator can be mapped to a spin-spin correlation in the classical Ising model [28],
as we discuss further in the Supplemental Material, which is long-ranged above the critical
value of β and tends towards 1. This increasing expectation value indicates that the electric
excitations of the toric code join the ground state as β is increased, demonstrating that they
condense during the phase transition.

Next consider the magnetic ribbon operators. Once again, the plaquette terms are un-
changed as β is increased and so their commutation relations with the ribbon operator are
unaltered. Specifically, the ribbon operator commutes with the plaquette terms away from the
ends of the ribbon and anti-commutes with the plaquette terms at the two ends. On the other
hand, the commutation relations with the vertex terms are significantly different for finite β .
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The ribbon operator does not commute with the exponential terms in Qv(β) for any vertices
adjacent to the ribbon, leading to the following commutation relations for such vertices:

Qv(β)C(t) |GS(β)〉=
�

e−β
∑

i∈star(v)σ
z
i −
∏

i∈star(v)

σx
i

�

C(t) |GS(β)〉

= C(t)
�

e−β
∑

i∈star(v)σ
z
i e2β
∑

i∈star(v)∩t σ
z
i −
∏

i∈star(v)

σx
i

�

|GS(β)〉

= C(t)
�

e−β
∑

i∈star(v)σ
z
i (e2β
∑

i∈star(v)∩t σ
z
i − 1) +Qv(β)
�

|GS(β)〉

= C(t)e−β
∑

i∈star(v)σ
z
i (e2β
∑

i∈star(v)∩t σ
z
i − 1) |GS(β)〉 . (10)

This non-commutation with the adjacent vertex terms indicates that the magnetic ribbon oper-
ator may produce excitations along its length, suggesting that the magnetic charge is confined.

Despite this, however, there is a way to define a ribbon operator that moves magnetic
charge but which has no energy cost associated to its length. Consider the non-unitary operator

C̃(t) = S(β)C(t)S(β)−1 , (11)

which we will call the deformed magnetic ribbon operator. Note that the form of this operator
implies that it locally removes the condensate, applies the ordinary magnetic ribbon operator
and then replaces the condensate. This deformed magnetic ribbon operator has the following
commutation relations with the vertex terms:

Qv(β)C̃(t) = C̃(t)(
∏

j∈t∩star(v)

e2βσz
j )Qv(β) . (12)

While the deformed magnetic ribbon operator does not commute with the vertex terms, it
does satisfy the relation

Qv(β)C̃(t) |GS(β)〉= C̃(t)(
∏

j∈t∩star(v)

e2βσz
j )Qv(β) |GS(β)〉= 0 , (13)

where we used the fact that Qv(β) annihilates the ground state space in the last step. This
indicates that the deformed ribbon operator does not produce any vertex excitations along
its length when acting on the ground state. Because the deformed ribbon operator does still
move magnetic charge, this implies that it is possible to move magnetic charge without produc-
ing an energetically costly linking string. However, this conflicts with the standard intuition
that an excitation with non-trivial braiding relations with a condensing charge should become
energetically confined.

One resolution to this comes from the non-unitary nature of the deformed ribbon operator
and a connection to a tensor network description of topological phases. In Ref. [29], it is de-
scribed how anyons can be created from a tensor network description of a topological ground
state by applying so-called matrix product operators (MPOs). These operators act on the vir-
tual layer of the tensor network, modifying the nearby tensors. Analogous to the topological
property of ribbon operators, the MPOs possess a “pull-through” property, meaning that they
can be deformed in the virtual layer without affecting the state. This property is guaranteed
by a virtual symmetry possessed by the tensors. Significantly, it is possible to alter the ground
state while preserving the virtual symmetry and the MPOs, even across a phase transition. In
this case, the confinement of an anyon type can be diagnosed from its MPO. If the norm of the
state with the MPO inserted decays exponentially with its length (represented by a sub-unity
eigenvalue for the relevant transfer matrix), the anyon is said to be confined, because it is not
possible to produce an isolated anyon by inserting a semi-infinite MPO string. As the length of
the string tends to infinity (in the thermodynamic limit), the norm of the state becomes zero.
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This norm-based picture of confinement would seem to apply equally well to the non-unitary
(and therefore norm-nonconserving) ribbon operator we described earlier. In fact, by con-
structing a tensor network description of the deformed toric code, we verified that an MPO on
the virtual layer lifts to a deformed magnetic ribbon operator on the real layer, as we describe
in more detail in Appendix A. The deformed magnetic ribbon operator is topological when
applied on the ground state, reflecting the pull-through property of the MPO.

3.2 Topological charge measurement: ’t Hooft and Wilson loops

In addition to creating and moving the basic excitations, the toric code ribbon operators can be
used to study the behaviour of the conserved topological charge across the transition. This is
because the closed ribbon operators can be used to construct topological charge measurement
operators, which project onto states of definite topological charge [40]. In the case of the
toric code, these measurement operators are equivalent to the Wilson loops (which measure
magnetic charge) and the ’t Hooft loops (which measure electric charge), up to additive and
multiplicative shifts. The Wilson loop is a closed electric ribbon operator:

W (c) =
∏

i∈c

σz
i , (14)

while the ’t Hooft loop is a closed magnetic ribbon operator:

T (c) =
∏

i∈c

σx
i . (15)

These operators have eigenvalues of 1 for states in which they enclose no magnetic charge
(for the Wilson loop) or electric charge (for the ’t Hooft loop). On the other hand, they have
eigenvalues of −1 for states in which they enclose non-trivial magnetic or electric charge re-
spectively (such as a state in which they enclose a single excitation).

In the toric code ground state space, contractible Wilson and ’t Hooft loops both have a
constant expectation value of 1, independent of the length or area of the loop. This indicates
that the ground state possesses no magnetic or electric charge. As we deform away from the
toric code fixed point, one or both of these operators are expected to decay with the size of
the loop, either according to its length (which is called perimeter law) or its area (which is
called area law), implying the presence of some non-trivial charge in the ground state. For
the deformed toric code, we find that the Wilson loop satisfies a zero law 〈W (c)〉 = 1, which
reflects the fact that the exponential term in the Hamiltonian only includes σz operators, so
that there is absolutely no mixing of magnetic excitations into the ground state (even a small
amount of mixing would be expected to produce a perimeter law). On the other hand, the
’t Hooft loop satisfies a perimeter law for all non-zero values of β , as we show in Appendix
C. By contrast, if we had used a linear coupling to a magnetic field along z rather than the
exponential term of the deformed toric code to energetically punish down spins, the ’t Hooft
loop would have decayed with an area law [41], which is typically an indicator of confinement
of magnetic charge and condensation of electric charge (the Wilson loop would still satisfy a
zero law). It is possible that this perimeter law for the deformed toric code model reflects the
unusual (non-energetic) confinement of the magnetic charge which we discussed in Section
3.1. A perimeter law can also arise from the application of a magnetic field at an angle away
from the z axis, but then we would also expect the Wilson loop to satisfy a perimeter law rather
than a zero law [41].

The deformed magnetic ribbon operator can also be used to define a “deformed ’t Hooft
loop”:

T̃ (c) =
∏

i∈c

eβσ
z
i /2σx

i e−βσ
z
i /2 . (16)
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Similar to the Wilson loop, this has a zero-law expectation value in the ground state for a con-
tractible loop (indeed, the deformed ’t Hooft loop is topological in the ground state). However,
the interpretation of this operator is less clear. Rather than just measure electric charge like
the ’t Hooft loop, it also moves it around due to the exponential terms, and can be considered
as a ’t Hooft loop dressed with electric ribbon operators.

While we have so far considered contractible loop operators, which can be used to diagnose
charge condensation in a ground state, we can also construct non-contractible loop operators
which wrap around one or both of the handles of the torus. As we will see in the next section,
these have important consequences for the ground state degeneracy of the deformed toric
code.

4 Ground state properties and 1-form symmetry

4.1 Ground state structure

An interesting feature of the deformed toric code model is that it has the same non-trivial
ground state degeneracy above and below the phase transition [28, 39]. This is unusual be-
cause the degeneracy of the toric code, which depends on the manifold on which it is placed,
is tied to the topological nature of the phase and would typically be destroyed after a phase
transition to a trivial phase. To understand this ground state degeneracy, we note that a con-
venient basis for the ground state space is described by states of definite parity, which are
eigenstates of the Wilson loop operators around the two handles of the torus. That is, given
two Wilson loop operators

W (c1) =
∏

i∈c1

σz
i ,

W (c2) =
∏

i∈c2

σz
i ,

where c1 and c2 are closed paths around the two handles of the torus (the precise choice of
path does not matter due to the topological nature of the Wilson loops), we can define a basis
of ground states

{ | GS++(β)〉, | GS+−(β)〉, | GS−+(β)〉, | GS−−(β)〉 } ,

by

W (c1) |GSλ1λ2
(β)〉= λ1 |GSλ1λ2

(β)〉 , (17)

W (c2) |GSλ1λ2
(β)〉= λ2 |GSλ1λ2

(β)〉 . (18)

This basis is similar to one used for the regular toric code [9] (corresponding to β = 0)
and follows from the relationship between toric code ground states and deformed toric code
ground states:

|GSλ1λ2
(β)〉=

1
Æ

Nλ1λ2
(β)

S(β) |GSλ1λ2
(0)〉 , (19)

where S(β) commutes with the Wilson loops and therefore preserves their eigenvalues. Here
Nλ1λ2

(β) is a normalization factor that generally varies between ground states.
In the case of the toric code, these basis ground states are related by the actions of ’t

Hooft loop operators around the handles of the torus. Indeed, the ground state degeneracy
is a result of the anticommutation relation between the Wilson and ’t Hooft loops [9]. For
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finite β , however, the ’t Hooft loop does not commute with the Hamiltonian and does not
move us between these different ground states. Instead, that role is played by the deformed
’t Hooft loop defined in Equation (16), which still does not commute with the Hamiltonian
either but does preserve the ground state space. These deformed ’t Hooft loops obey the same
anticommutation relations with the Wilson loops as the regular ’t Hooft loops do in the toric
code. Namely, the deformed ’t Hooft loop T̃ (c̄2) applied on a dual path around one handle
anticommutes with the Wilson loop W (c1) applied around the other handle, but commutes
with the Wilson loop applied on the same handle:

W (c1)T̃ (c̄2) = −T̃ (c̄2)W (c1) , (20)

W (c1)T̃ (c̄1) = +T̃ (c̄1)W (c1) . (21)

This anticommutation relation means that applying the deformed ’t Hooft loop to a ground
state |GSλ1λ2

(β)〉 changes its eigenvalue with respect one of the Wilson loop operators:

W (c1)T̃ (c̄2) |GSλ1λ2
(β)〉= −T̃ (c̄2)W (c1) |GSλ1λ2

(β)〉

= −λ1 T̃ (c̄2) |GSλ1λ2
(β)〉 , (22)

W (c2)T̃ (c̄2) |GSλ1λ2
(β)〉= T̃ (c̄2)W (c2) |GSλ1λ2

(β)〉

= λ2 T̃ (c̄2) |GSλ1λ2
(β)〉 . (23)

Because the deformed ’t Hooft loop preserves the ground state space, this means that

T̃ (c̄2) |GSλ1λ2
(β)〉 ∝ |GS−λ1λ2

(β)〉 .

More precisely, by using the fact that the regular ’t Hooft loop is unitary and so the constant
of proportionality is one (up to a phase) for the β = 0 case, we have

T̃ (c̄2) |GSλ1λ2
(β)〉= S(β)T (c̄2)S(β)

−1 |GSλ1λ2
(β)〉

= S(β)T (c̄2)S(β)
−1 1
Æ

Nλ1λ2
(β)

S(β) |GSλ1λ2
(0)〉

=
1
Æ

Nλ1λ2
(β)

S(β)T (c̄2) |GSλ1λ2
(0)〉

=

√

√

√

N−λ1λ2
(β)

Nλ1λ2
(β)
|GS−λ1λ2

(β)〉 . (24)

A similar result holds for T̃ (c̄1), except that it introduces a minus sign to the other eigen-
value. We see that the deformed ’t Hooft loop operators move us between the basis ground
states, but with a potential normalization factor because the deformed ’t Hooft loops are not
unitary. While we have started with the existence of this basis, the anticommutation can also
be used to argue for that basis in the first place. Because the Wilson loop operators commute
with the Hamiltonian and each-other, we can simultaneously diagonalize them, meaning that
we always have a ground state labelled by some pair of eigenvalues λ1,λ2. By applying the
deformed ’t Hooft loops, we then generate ground states labelled by all the other possible pairs
of eigenvalues, which gives us fourfold degenerate ground states.

So far, this reasoning is identical to that for the regular toric code [9], except for the
presence of normalization factors in Equation (24). For any finite system size and finite β ,
these normalization factors are non-zero, although they may tend to zero or infinity in the
thermodynamic limit. Indeed, in Appendix B, we use a mapping between the normalization of
the ground states and the classical Ising partition function [28] to show that the normalization
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Figure 3: We plot the ratio of the odd-even and odd-odd normalization factors to the
even-even normalization factor as a function of β for a 30 by 30 system. For systems
with equal horizontal and vertical dimensions the even-odd factor is the same as the
odd-even factor. The left figure shows the ratio and the right figure shows the natural
logarithm of the ratio. We see a transition from a constant value (of 1) below the
phase transition (at βc ≈ 0.44) to exponential decay above the phase transition.

factor is approximately one in the topological phase, indicating that the deformed ’t Hooft
operator acts approximately unitarily in the topological phase, but rapidly drops towards zero
in the trivial phase. This is illustrated in Figure 3, where we plot the ratio of the normalization
factors of the odd-even (λ1λ2 = −+) and odd-odd (λ1λ2 = −−) ground states to the factor for
the even-even (λ1λ2 = ++) ground state. Because the non-unitarity reflects the confinement
of the magnetic particle, the ratio dropping to zero (or rising to infinity) in the trivial phase
is associated to the impossibility of infinitely separating two confined magnetic particles in
the thermodynamic limit. We may worry that, because the ratio of normalization factors goes
to zero (or infinity) in the thermodynamic limit, some of the states that are related by the
action of the deformed ’t Hooft operator may become ill-defined in that limit. However, this
does not seem to be the case as we can construct all the ground states through Equation (19),
with the operator S(β) not mixing the ground states labelled by the eigenvalues of the Wilson
operators.

To summarize, the deformed toric code has the same ground state degeneracy as the reg-
ular toric code for all β , despite the model describing a trivial phase above a critical value
of β [28]. Furthermore, the ground state space admits a basis labelled by eigenvalues of the
Wilson loop operators, just like for the toric code [39]. However, the operators that move us
between these basis states are the non-unitary deformed ’t Hooft loops, rather than the regular
’t Hooft loops.

4.2 1-form symmetry breaking picture

This unusual ground state degeneracy in the trivial phase gains additional significance in light
of recent discussions of higher-form symmetries. As explained in the introduction, a con-
nection has recently been established between topological phases and spontaneous symmetry
breaking of 1-form symmetries [26, 27]. Higher-form symmetries are generalized versions of
symmetries, where the symmetry acts on a lower dimensional (closed) subspace, rather than
across all of space. They possess the same type of composition law as regular symmetries,
so that two higher-form symmetries applied on the same position combine via group multi-
plication. However, higher-form symmetries must also satisfy a topological condition, so that
the manifold on which we apply a higher-form symmetry can be deformed smoothly without
affecting the action of the symmetry. Like regular symmetries, we say that objects on which
the higher-form symmetries act non-trivially are charged and we can decompose this action in
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terms of irreps of the group that describes the composition of the higher-form symmetries on
a particular manifold. However, these charged objects will generally be extended rather than
local. This combination of familiar properties along with new features makes higher-form
symmetries appealing to work with and potentially useful for the description of topological
phases.

To understand how higher-form symmetries may be useful for topological phases, consider
how higher-form symmetries appear in 2+1d lattice models. In this context, we are most in-
terested in 1-form symmetries, which are defined on closed manifolds of one lower dimension
than the spatial manifold [25], meaning closed ribbons. The charged objects for the 1-form
symmetry are also extended objects and in the simplest case are also defined on ribbons. Given
a 1-form symmetry S(c) and charged operator V (r), the two operators satisfy a commutation
relation of the form [27]

S(c)V (r) = eiφ(c,r)V (r)S(c) , (25)

where eiφ(c,r) is a phase which depends on how r and c intersect in the lattice and which is
a representation of the 1-form symmetry group. This is completely analogous to the relation-
ship between a 0-form symmetry and its order parameter: the order parameter transforms
under a non-trivial representation of the symmetry group. Just like for a 0-form symmetry,
if the expectation value of that order parameter is non-zero in a ground state, then the state
spontaneously breaks the 1-form symmetry.

This picture can be immediately translated to the toric code fixed point. Indeed, the logi-
cal operators that we used to describe the ground state space in Section 4.1 are simply 1-form
symmetries and order parameters. The Wilson loops are 1-form symmetries on the ground
state space: they are operators that are defined on ribbons, which commute with the Hamil-
tonian and which are topological. The ’t Hooft loops then act as order parameters for the
Wilson loops, with the anti-commutation relation between them reflecting the Z2 nature of
each 1-form symmetry (i.e., the phase eiφ(c,r) = ±1). The ground state space then contains
both symmetric and symmetry-breaking states. We therefore see that the ground state degen-
eracy of the toric code, originating from the non-commutativity of the logical operators, can
equivalently be described by 1-form symmetry breaking, with the Wilson loops acting as the
1-form symmetry. While we have treated the Wilson loops as the 1-form symmetry and the ’t
Hooft loops as the order parameter, we can equally reverse these roles because they both sat-
isfy the conditions for 1-form symmetries. As we will discuss later, this duality is important for
protecting one of the defining properties of topological phases and this is where the deformed
toric code differs from the undeformed model.

To some extent, we can still interpret the deformed toric code in terms of 1-form sym-
metries. The Wilson loop operators are still topological and commute with the Hamiltonian,
so they are 1-form symmetry operators. The ’t Hooft loop operators are not, however, be-
cause they neither commute with the Hamiltonian nor are topological on the ground state
space. The expectation value of the contractible ’t Hooft loop operators does satisfy a perime-
ter law, which can be taken as an indicator for spontaneous breaking of the Wilson loop 1-form
symmetry [27]. A clearer picture of the symmetry breaking can be obtained by considering
the non-contractible deformed ’t Hooft loop operators. These operators, while they are topo-
logical and preserve the ground state space, are not unitary. However, they obey the same
anti-commutation relations with the Wilson loops as the ’t Hooft loops and so can act as order
parameters, which do not need to be unitary. While the basis ground states |GSλ1λ2

(β)〉 de-
fined in Equation (19) are symmetric under the 1-form symmetry and so have zero expectation
value for the deformed ’t Hooft loops, a general ground state will have some finite expectation
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value:
∑

λ1,λ2

a∗λ1λ2
〈GSλ1λ2

(β)|T̃ (c̄2)
∑

λ′1,λ′2

aλ′1λ′2 |GSλ′1λ′2(β)〉

=
∑

λ1,λ2

a∗λ1λ2
〈GSλ1λ2

(β)|
∑

λ′1,λ′2

aλ′1λ′2

√

√

√

N−λ′1λ′2
Nλ′1λ′2

|GS−λ′1λ′2(β)〉

=
∑

λ1,λ2

a∗λ1λ2

∑

λ′1,λ′2

aλ′1λ′2

√

√

√

N−λ′1λ′2
Nλ′1λ′2

δ(λ1,−λ′1)δ(λ2,λ′2)

=
∑

λ1,λ2

a∗λ1λ2

∑

λ′1,λ′2

a−λ1λ2

√

√

√

Nλ1λ2

N−λ1λ2

δ(λ1,−λ′1)δ(λ2,λ′2)

=
∑

λ1,λ2

a∗λ1λ2
a−λ1λ2

√

√

√

Nλ1λ2

N−λ1λ2

, (26)

where δ(λ2,λ′2) is the Kronecker delta. This implies that the ground state space exhibits
spontaneous symmetry breaking of the Wilson loop 1-form symmetries, which is reflected in
the expectation value of the deformed ’t Hooft loops. This is further indicated by the fact that
general ground states are not symmetric under the Wilson loop 1-form symmetries. However,
we know that above a critical value of β , the deformed toric code is in a trivial phase. Therefore
we need to distinguish between degeneracy from spontaneous 1-form symmetry breaking in
the ground state space and true topologically protected degeneracy.

4.3 Conditions for indistinguishability

To understand this distinction, we must first understand the key features of topologically pro-
tected degeneracy. Topological phases are characterised by indistinguishable degenerate (or
nearly degenerate) ground states, which cannot be connected by any local operators. In-
stead, the different ground states are connected by non-local ribbon-like operators. It has
been claimed [26, 27] that this is equivalent to the picture of symmetry breaking of 1-form
symmetry, for which the ground states are connected by 1-form symmetry operators. The in-
distinguishability of the degenerate topological ground states is then a consequence of being
connected by these 1-form symmetry operators. Here we aim to expand on this argument
and demonstrate some caveats, illustrating these with the example of the deformed toric code
model.

Firstly, we give a definition for the notion of indistinguishability, as it pertains to the ground
states of topological phases. There are two key ingredients to this indistinguishability (as
described in Ref. [42], for example):

1. Any local operator has the same expectation value in each ground state:

〈GS 1| Ô |GS 1〉= 〈GS 2| Ô |GS 2〉 , (27)

2. Two orthogonal ground states cannot be connected by any local operator:

〈GS 1| Ô |GS 2〉= 0 . (28)

In fact, these two properties are related, in that if one of them holds for the entire ground
state space then the other will too. However, when considering a particular basis of states
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(such as the symmetry broken states), the two are distinct. This is important because ordinary
symmetry broken states might also satisfy the second condition. For example the two fully
polarised states that are the ground states of the zero field Ising model are connected by flip-
ping every spin simultaneously, not by local operators. However, they obviously have different
expectation values for the magnetization and so are distinguishable by local operators in that
sense. In addition, the symmetric and antisymmetric linear combinations of the two symmetry
breaking ground states, which are also ground states, can be connected by local operators by
measuring the magnetization.

Now suppose that we have two ground states that are connected by a 1-form symmetry
operator: |GS 1〉 and |GS 2〉= S(c) |GS 1〉. For any local operator Ô, we have

〈GS 2| Ô |GS 2〉= 〈GS 1|S(c)†ÔS(c) |GS 1〉 . (29)

It is possible that the support of the local operator Ô intersects with the ribbon c, and
so may fail to commute with the 1-form symmetry operator. However, the 1-form symmetry
operator is topological on the ground state space, and so may freely be deformed to a position
c′ such that it does not intersect with Ô. Then we have

〈GS 2| Ô |GS 2〉= 〈GS 1|S(c′)†ÔS(c′) |GS 1〉

= 〈GS 1|S(c′)†S(c′)Ô |GS 1〉

= 〈GS 1| Ô |GS 1〉 . (30)

We therefore see that spontaneous symmetry-breaking of the 1-form symmetry guaran-
tees that the symmetry-broken states satisfy the first condition for indistinguishability: they
have the same expectation value for any local operator. However, the spontaneous symmetry
breaking is not enough to guarantee the second condition. Furthermore, it only guarantees
the first condition on the symmetry-broken states, not a linear combination of them (such as
the symmetric states) and so need not hold for the entire ground state space.

Now suppose that there is a second 1-form symmetry S̃(r)which acts as an order parameter
for the first, in the sense that the symmetry-broken states are eigenstates of the second 1-form
symmetry with different eigenvalues:

S̃(r) |GS 1〉= eiθ1 |GS 1〉 ,

S̃(r) |GS 2〉= eiθ2 |GS 2〉 .

Then for a local operator Ô, the matrix element between the two ground states can be written
as

〈GS 2| Ô |GS 1〉= ei(θ2−θ1) 〈GS 2|S†(r)ÔS(r) |GS 1〉 ,

where we can choose the position of r to ensure that S(r) does not overlap with Ô and so
commutes with it. Then

〈GS 2| Ô |GS 1〉= ei(θ2−θ1) 〈GS 2|S†(r)S(r)Ô |GS 1〉

= ei(θ2−θ1) 〈GS 2| Ô |GS 1〉 , (31)

where the last line follows from unitarity of the 1-form symmetry. Given that the two eigen-
values are different, this equality can only hold if

〈GS 2| Ô |GS 1〉= 0 , (32)

from which we see that having a second 1-form symmetry as an order parameter guarantees
that the symmetry-broken states also satisfy the second ingredient of indistinguishability. Note
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that to obtain this result, we had to use the topological nature of the 1-form symmetry order
parameter in addition to its unitarity.

With the second 1-form symmetry guaranteeing that both indistinguishability properties
are satisfied by the symmetry-broken states, the same properties are guaranteed for any linear
combination of these states. For example, an arbitrary combination α |GS 1〉+β |GS 2〉 satisfies

(α∗ 〈GS 1|+ β∗ 〈GS 2|)Ô(α |GS 1〉+ β |GS 2〉) = |α|2 〈GS 1| Ô |GS 1〉+ |β |2 〈GS 1| Ô |GS 1〉

+α∗β 〈GS 1| Ô |GS 2〉+ β∗α 〈GS 2| Ô |GS 1〉 .

We have already seen that the cross-terms are zero and the diagonal matrix elements are the
same for each ground state, giving us

(α∗ 〈GS 1|+ β∗ 〈GS 2|)Ô(α |GS 1〉+ β |GS 2〉) = (|α|2 + |β |2) 〈GS 1| Ô |GS 1〉 ,

which is just equal to 〈GS 1| Ô |GS 1〉 for a normalized state. A similar result holds for the
second indistinguishability property.

We have seen that indistinguishability is guaranteed by having two 1-form symmetries
that act as order parameters for each-other. Simply having a spontaneously broken 1-form
symmetry is not enough to guarantee indistinguishability. We can apply this idea to the toric
code, which does have indistinguishable ground states. The 1-form symmetries that protect
this property are the ’t Hooft and Wilson loops around opposite handles, both of which are
1-form symmetries and which anti-commute with each-other. The ’t Hooft loops act as the
order parameters for the Wilson loops and vice-versa, meaning that the toric code satisfies the
condition for indistinguishability that we laid out above. This can be thought of as a mixed ’t
Hooft anomaly between the two 1-form symmetries, corresponding to the non-trivial braiding
of the anyons.

This idea also allows us to explain the non-trivial degeneracy that is present in the de-
formed toric code even above the transition to a trivial phase. As described earlier, the de-
formed toric code has spontaneous symmetry breaking of a 1-form symmetry on both sides
of the phase transition. This symmetry breaking gives rise to the ground state degeneracy in
both the topological and the trivial phases across the topological phase transition. However,
the order parameter for this symmetry breaking (the deformed ’t Hooft loop) is not itself a
1-form symmetry and so the symmetry breaking does not guarantee that the ground states are
indistinguishable (in the anomaly language, we no longer have the mixed ’t Hooft anomaly
because one of the symmetries is explicitly broken). Below the phase transition, we expect
the robustness of topological order to perturbations to protect the indistinguishability anyway.
The ’t Hooft loop 1-form symmetry should persist in some form in the low energy space as an
emergent symmetry, which is robust [43]. Furthermore, as discussed in Section 4.1 (with proof
given in Appendix B), the deformed ’t Hooft loop acts in an approximately unitary way and so
can be treated as an approximate 1-form symmetry in the topological phase, meaning that it
protects indistinguishability. However, no such protection extends to the trivial phase. This can
be verified by examining the properties of the ground states, as reported in Ref. [39]. Below the
phase transition all of the ground states have approximately the same value of magnetization,
but above it these values differ [39], indicating that the ground states are distinguishable. This
provides a concrete example of the caveats to the connection between spontaneous breaking
of 1-form symmetries and topological phases.

We should note that the non-topological spontaneous symmetry breaking, meaning sym-
metry breaking that does not result in indistinguishable ground states, is fragile almost by
definition, unlike for the topological phase. If we add an arbitrary but infinitesimal local per-
turbation to the Hamiltonian, which will select the ground state with lowest expectation value
for that perturbation, it will always select one of the symmetric states (if it induces any splitting
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at all), rather than a symmetry breaking state. This follows from the fact that the symmetric
states are not connected by any local operator, meaning that the expectation value of any local
operator for any linear combination of the symmetric states only depends on the (modulus
squared) of the amplitude for each symmetric state (because cross terms are zero) and will
be minimised in one of the symmetric states. For example, given two symmetric states |+〉
and |−〉, we have 〈+| Ô |−〉 = 0 (from Equation (32)) and so the expectation value for Ô in
the state α |+〉 + β |−〉 is |α|2 〈+| Ô |+〉 + |β |2 〈−| Ô |−〉, which is minimised by taking α = 1
or β = 1 depending on which matrix element is smaller. This indicates that, at first order in
degenerate perturbation theory, a symmetric state is always selected by any local perturbation
which induces a splitting. In addition, there must always be a local operator that induces such
a splitting, otherwise the states would satisfy both conditions for indistinguishability (i.e., the
symmetric states would have the same expectation value for all local operators as well as not
being connected by an local operators).

5 Application to other commuting projector models

While we have been considering a deformed version of the toric code so far, other commuting
projector models admit similar deformations [30]. Suppose we start with a Hamiltonian

H =
∑

j

h j ,

where the h j are local commuting projectors which can be independently satisfied and let |Ω〉
be one of its ground states. Then for invertible and positive operators si acting on individual
degrees of freedom, the state

�∏

i si

�

|Ω〉 is a ground state of the Hamiltonian

H̃ =
∑

j

S( j)−1h jS( j)
−1 , (33)

where
S( j) =
∏

i∈Support(h j)

si . (34)

Because S( j) is a product of Hermitian terms on different sites, S( j) is Hermitian and so is
S( j)−1. This means that the energy terms S( j)−1h jS( j)−1 are also Hermitian, as we require.

The fact that this Hamiltonian does indeed support the ground states
�∏

i si

�

|Ω〉 for a
general initial commuting projector model can be proved in the same way as Ref. [28] did
for the deformed toric code model. The ground state |Ω〉 satisfies h j |Ω〉 = λmin

j |Ω〉 for all
j, because the Hamiltonian is made up of commuting local terms that can be independently
satisfied. In addition, the h j are projectors, so λmin

j = 0 for all j, meaning that h j |Ω〉= 0. Even
if a term h j is not a projector then we can add a constant to them so that its lowest eigenvalue
is zero to obtain the same result. Then

S( j)−1h jS( j)
−1
�

∏

i

si

�

|Ω〉= S( j)−1h j

�

∏

i /∈Support(h j)

si

�

|Ω〉

= S( j)−1
�

∏

i /∈Support(h j)

si

�

h j |Ω〉

= 0 , (35)

where we used the fact that h j automatically commutes with si outside of its support. This
indicates that
�∏

i si

�

|Ω〉 is an eigenstate of the new local terms S( j)−1h jS( j)−1 with eigen-
value 0. Furthermore, S( j) is positive and so S( j)−1 is also positive. Together with h j being
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Hermitian and having zero as its smallest eigenvalue, this implies that S( j)−1h jS( j)−1 also has
zero as its smallest eigenvalue. Therefore

∏

i si |Ω〉 is a ground state of the new Hamiltonian.
As an example, consider how the deformed toric code [28]would arise from this formalism.

We start with the regular toric code, but we shift the energy terms so that their minimum
eigenvalues are zero:

H =
∑

v

(1− Av) +
∑

p

(1− Bp) ,

for Av =
∏

i∈star(v)σ
x
i and Bp =
∏

i∈pσ
z
i . Then we take si = eβσ

z
i /2, so that the (unnormalized)

ground states are S(β) |GS(0)〉 =
�∏

i eβσ
z
i /2
�

|GS(0)〉. The deformed Hamiltonian is then
given by

H̃(β) =
∑

v

�

∏

i∈star(v)

e−βσ
z
i /2
�

(1−
∏

j∈star(v)

σx
i )
�

∏

i∈star(v)

e−βσ
z
i /2
�

+
∑

p

�

∏

i∈p

e−βσ
z
i /2
�

(1− Bp)
�

∏

i∈p

e−βσ
z
i /2
�

.

Then e−βσ
z
i /2 commutes with every term except σx

i , for which σz
i →−σ

z
i under commutation,

giving
H̃(β) =
∑

v

(e−β
∑

i∈star(v)σ
z
i −
∏

j∈star(v)

σx
i ) +
∑

p

�

∏

i∈p

e−βσ
z
i
�

(1− Bp) .

This expression differs from the deformed toric code Hamiltonian given in Equation (3) only
in that there is a factor of

∏

i∈p e−βσ
z
i at the front of the plaquette term (along with a constant

shift). However, this does not change the ground states, which satisfy Bp = 1.
A significant question is whether the deformation described by Equation 33 is always

enough to ensure the presence of deformed ribbon operators, similar to those that we found
for the deformed toric code. Suppose that the undeformed commuting projector model has a
ribbon operator R(t) which is topological and only excites the energy terms at the end-points
of t. Then we define a deformed ribbon operator by

R̃(t) =
�

∏

j∈Support(R(t))

s j

�

R(t)
�

∏

j∈Support(R(t))

s−1
j

�

. (36)

Because the operators s j commute with R(t) for j outside the support of R(t) and so the factors
of s j and s−1

j would cancel, we can extend the products over j in the support of R(t) to a product
over all degrees of freedom, giving us

R̃(t) =
�

∏

j

s j

�

R(t)
�

∏

j

s−1
j

�

. (37)

Then we apply this deformed operator on a deformed ground state (
∏

i si) |Ω〉, or on the
unexcited region of a general state, so we have

R̃(t)
�

∏

i

si

�

|Ω〉=
�

∏

j

s j

�

R(t)
�

∏

j

s−1
j

��

∏

i

si

�

|Ω〉

=
�

∏

j

s j

�

R(t) |Ω〉 .

Then because R(t) is topological on the undeformed state |Ω〉 (as long as we do not deform it
over any excitations) we can deform t to t ′ to obtain

R̃(t)
�

∏

i

si

�

|Ω〉=
�

∏

j

s j

�

R(t ′) |Ω〉 ,
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and reversing all the steps we get

R̃(t)
�

∏

i

si

�

|Ω〉= R̃(t ′)
�

∏

i

si

�

|Ω〉 ,

That is, the deformed ribbon operator is topological when acting on the deformed ground
state. This automatically means that it cannot excite any energy terms away from the end-
points of t, because we can deform the ribbon away from local energy terms without affecting
its action. We can also show this more directly by applying energy terms to the state

R̃(t)
�

∏

i

si

�

|Ω〉=
�

∏

i

si

�

R(t) |Ω〉 .

For an energy term h̃ j = S( j)−1h jS( j)−1, we have

h̃ jR̃(t)
�

∏

i

si

�

|Ω〉= S( j)−1h jS( j)
−1
�

∏

i

si

�

R(t) |Ω〉

= S( j)−1
�

∏

i /∈Support(h j)

si

�

h jR(t) |Ω〉 .

For undeformed energy terms h j which commute with the original ribbon operator R(t), we
have h jR(t) |Ω〉 = R(t)h j |Ω〉 = 0, meaning that h̃ jR̃(t)

�∏

i si

�

|Ω〉 = 0 and so the energy term
h̃ j is unexcited. In other words, the deformed ribbon operator can only excite the deformed
energy terms that correspond to the terms that the undeformed ribbon operator excites in the
undeformed model.

5.1 Quantum double models

One interesting class of commuting projector Hamiltonians that we can study using this for-
malism is Kitaev’s quantum double model [9]. The quantum double model is a generalisation
of the toric code, where the directed edges of a lattice are labeled by the elements of a general
discrete group, rather than Z2 as for the toric code

The Hamiltonian is then a sum of commuting projector terms, with one for each vertex
and plaquette:

H = −
∑

v

Av −
∑

p

Bp . (38)

The plaquette term enforces flatness on the plaquettes: Bp is one when the path element
around the plaquette is 1G and zero when the path element is non-trivial. That is

Bp = δ( ĝp, 1G) , (39)

where ĝp is the path label of the path around the plaquette and δ is the Kronecker delta.
The vertex term is a sum of gauge transforms:

Av =
1
|G|

∑

g∈G

Ag
v , (40)

where Ag
v acts on the edges i attached to v according to

Ag
v : gi =

¨

g gi , if i points away from v,

gi g
−1 , if i points towards v.

(41)

For an Abelian group, there are |G|2 ground states on the torus. These are in one-to-one
correspondence with the topological charges, or types of excitations. There are |G| pure electric
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excitations, one for each irrep of G. There are also |G| pure magnetic excitations, one for
each element of G. These magnetic and electric charges are independent, so a general dyonic
excitation can have any value of charge and magnetic flux, leading to |G|2 types of anyon.
For a non-Abelian group the picture is slightly more complicated. Firstly, the magnetic flux is
only conserved within a conjugacy class. Secondly, the electric charge an excitation can carry
depends on its magnetic flux: instead of carrying irreps of the full group, the excitations carry
irreps of the centralizer of the magnetic flux label. This leads to fewer types of topological
charge, but they have internal spaces allowing for non-Abelian statistics.

Having briefly described the quantum double model [9], we next consider how we should
deform it in order to have a phase transition while maintaining the ground state degeneracy.
For the toric code, Ref. [28] takes the linear σz

i term that would cause the condensation phase
transition and exponentiates it to obtain the filtering term S(β). During the phase transition,
all of the electric excitations are condensed and the magnetic ones are confined. For the quan-
tum double model, there are more possibilities because we can condense a subset of the electric
excitations or magnetic ones. The ways to do so are described in Ref. [40]. For example, to
condense the magnetic excitations in a subgroup H, we would add a term− α

|H|
∑

h∈H Lh
i , where

Lh
i multiplies the label of edge i by h and α is a coupling coefficient. We see that the Lh

i term
generates non-trivial fluxes (and also confines electric excitations labelled by irreps that are
non-trivial in this subgroup).

Instead of condensing the magnetic excitations, in order to compare to our work on the
toric code, it will be more convenient to consider condensing electric excitations (and so con-
fining magnetic ones). To do so Ref. [40] introduces a subgroup M and a term

T M
i = δ( ĝi ∈ M) =

∑

m∈M

δ( ĝi , m) , (42)

which is added to the Hamiltonian with a negative coefficient. This term is clearly Hermi-
tian and a projector. For simplicity, we will take M to be a normal subgroup (these are Case
I systems in Ref. [40]). In this case there is a simple interpretation of the term T M

i as a
string tension, which has the effect of confining magnetic excitations with label outside of M
and condensing electric excitations labelled by irreps that are trivial in M when it becomes
large enough [40]. For example, if we take M to be the trivial subgroup {1G } we can see
that the term promotes the trivial state where all of the edges are labeled by 1G , condens-
ing all of the electric excitations and confining all of the magnetic ones. For the Z2 case,
which corresponds to the toric code, and denoting the identity element by +1, we see that
T M

i = δ( ĝi ,+1) = (σz
i +1)/2. This matches the familiar linear field term up to a constant shift

and rescaling.
Now instead of introducing T M

i as a linear term, we use it as a filtering term as described
at the start of Section 5. That is, we introduce the Hamiltonian

H̃(β) =
∑

j

S( j)−1h jS( j)
−1 , (43)

where S( j) =
∏

i∈Support(h j)
si(β) for

si(β) = eβT M
i /2 . (44)

This Hamiltonian will have ground states S(β) |GS(0)〉, where |GS(0)〉 is a ground state of the
undeformed Hamiltonian and

S(β) =
∏

i

si(β) .
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The energy terms h j of the original Hamiltonian are 1 − Av and 1 − Bp, where we have
shifted the terms to ensure that 0 is their lowest eigenvalue. This gives us

H̃(β) =
∑

v

�

∏

i∈star(v)

e−βT M
i /2
�

(1− Av)
�

∏

i∈star(v)

e−βT M
i /2
�

+
∑

p

�

∏

i∈p

e−βT M
i /2
�

(1− Bp)
�

∏

i∈p

e−βT M
i /2
�

.

The plaquette terms are diagonal in the group element (configuration) basis, as are the
T M

i . This allows us to commute the exponential terms together to get

H̃(β) =
∑

v

�

∏

i∈star(v)

e−βT M
i /2
�

(1− Av)
�

∏

i∈star(v)

e−βT M
i /2
�

+
∑

p

�

∏

i∈p

e−βT M
i
�

(1− Bp) .

Now, just as we discussed for the toric code, the exponential term
∏

i∈p e−βT M
i in front of

(1 − Bp) does not affect the ground states with Bp = 1, so we can remove that exponential
term and the constant shift to obtain a different Hamiltonian with the same ground states (or
at least one that shares the ground states of the form S(β) |GS(0)〉),

H(β) =
∑

v

�

∏

i∈star(v)

e−βT M
i /2
�

(1− Av)
�

∏

i∈star(v)

e−βT M
i /2
�

−
∑

p

Bp .

Unlike for the toric code case, bringing the second factor of e−βT M
i /2 to the front of the

vertex term does not greatly simplify the term, so we will leave the vertex terms in this form.
We will mostly be interested in the ground states rather than the Hamiltonian anyway. By the
general reasoning from Section 5, the states

S(β) |GS(0)〉=
�

∏

i

si(β)
�

|GS(0)〉 , (45)

are ground states of this Hamiltonian, where |GS(0)〉 is a ground state of the undeformed
quantum double model.

One significant feature we found for the deformed toric code is that the ’t Hooft loop ex-
pectation value obeys a perimeter law even beyond the phase transition to the trivial phase (as
we prove in Appendix C). As we show here, a similar result holds for these deformed quan-
tum double models, with the closed undeformed magnetic ribbon operators corresponding
to fluxes outside the subgroup M (which we expect to be confined) obeying a perimeter law
while those corresponding to fluxes in M (which we expect to be unconfined) obey a zero law.
To see this, consider the expectation value of a contractible closed magnetic ribbon operator
Ch(σ) in one of these ground states. Here σ is a ribbon, which is described by a direct path
and a dual path (an example of such a closed ribbon is shown in Figure 4). The direct path
starts at some vertex, which we call s.p(σ), and passes along the edges of the lattice. The dual
path starts at a plaquette adjacent to s.p(σ) and passes along the dual lattice, cutting through
the edges of the lattice. The magnetic ribbon operator acts on the edges along the dual path
according to [9]

Ch(σ) : ĝi =

¨

g(s.p(σ)− vi)−1hg(s.p(σ)− vi) ĝi , if i points away from direct path,

ĝi g(s.p(σ)− vi)−1h−1 g(s.p(σ)− vi) , if i points towards direct path.

Then the expectation value for the closed ribbon operator is

〈Ch(σ)〉=
〈GS(0)|S(β)Ch(σ)S(β) |GS(0)〉
〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)| (
∏

i eβT M
i /2)Ch(σ)(
∏

i eβT M
i /2) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉
.
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direct path

dual path

s.p(σ)

Figure 4: A simple example of a closed ribbon. The yellow vertex is the start-point,
s.p(σ), which is at the start of the direct path (the green path), while the blue arrow
is the dual path. The magnetic ribbon operator alters the edge label of the edges cut
by the dual path.

In order to evaluate (or put limits on) this expression, we need to know the commutation
relations between Ch(σ) and T M

i . We have

T M
i Ch(σ) = δ( ĝi ∈ M)Ch(σ)

= Ch(σ)δ((Ch(σ) : ĝi) ∈ M)

=



























Ch(σ)δ(g(s.p(σ)− vi)−1hg(s.p(σ)− vi) ĝi ∈ M) , if i ∈ σ and points

away from direct path,

Ch(σ)δ( ĝi g(s.p(σ)− vi)−1h−1 g(s.p(σ)− vi) ∈ M) , if i ∈ σ and points

towards direct path,

Ch(σ)δ( ĝi ∈ M) , otherwise.

This means that Ch(σ) commutes with T M
i for i /∈ σ. Now, we separate two different

cases, one where h is in the subgroup M and one where it is not. If h ∈ M , then so is
g(s.p(σ)− vi)−1h±1 g(s.p(σ)− vi) because M is normal. This means that

δ(g(s.p(σ)− vi)
−1hg(s.p(σ)− vi) ĝi ∈ M) = δ(m′ ĝi ∈ M) ,

for some m′ ∈ M and so

δ(g(s.p(σ)− vi)
−1hg(s.p(σ)− vi) ĝi ∈ M) = δ( ĝi ∈ M) ,

from the subgroup property. A similar result holds for

δ( ĝi g(s.p(σ)− vi)
−1h−1 g(s.p(σ)− vi) ∈ M) .

Therefore Ch(σ) commutes with all T M
i for h ∈ M and so commutes with all of the eβT M

i /2 in
S(β). This means that, for an element m ∈ M , we have

〈Cm(σ)〉=
〈GS(0)|S(β)Cm(σ)S(β) |GS(0)〉
〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)|S(β)2Cm(σ) |GS(0)〉
〈GS(0)|S(β)2 |GS(0)〉

.
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Then Cm(σ) acts trivially on the ground state for a contractible closed ribbon σ:

Cm(σ) |GS(0)〉= |GS(0)〉 .

Therefore,

〈Cm(σ)〉=
〈GS(0)|S(β)2 |GS(0)〉
〈GS(0)|S(β)2 |GS(0)〉

= 1 .

In other words, the ’t Hooft loops for fluxes in the group M satisfy a zero law, which matches our
expectation that these fluxes are unconfined from the linear term case considered in Ref. [40].

Now consider the case where the flux label h is outside of M . In this case
g(s.p(σ)− vi)−1hg(s.p(σ)− vi) is also outside of M and so

δ(g(s.p(σ)− vi)
−1hg(s.p(σ)− vi) ĝi ∈ M) = δ( ĝi ∈ qh,i M) ,

for some non-trivial coset qh,i M . We therefore have

T M
i Ch(σ) =

¨

Ch(σ)δ( ĝi ∈ qh,i M) , if i ∈ σ,

Ch(σ)δ( ĝi ∈ M) , otherwise,

where qh,i can depend on the orientation of i as well as the path from the start-point of σ to
the edge. This gives us an expectation value for the ’t Hooft loop of

〈Ch(σ)〉=
〈GS(0)| (
∏

i eβT m
i /2)Ch(σ)(
∏

i eβT M
i /2) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)| (
∏

i /∈σ eβT m
i )(
∏

i∈σ eβT m
i /2)Ch(σ)(
∏

i∈σ eβT M
i /2) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)| (
∏

i eβT m
i )(
∏

i∈σ e−βT m
i /2)Ch(σ)(
∏

i∈σ eβT M
i /2) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)| (
∏

i eβT m
i )(
∏

i∈σ e−βδ( ĝi∈M)/2)Ch(σ)(
∏

i∈σ eβδ( ĝi∈M)/2) |GS(0)〉
〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)| (
∏

i eβT m
i )(
∏

i∈σ e−βδ( ĝi∈M)/2)(
∏

i∈σ eβδ( ĝi∈q−1
h,i M)/2)Ch(σ) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉
.

Then Ch(σ) |GS(0)〉= |GS(0)〉 from the properties of the undeformed model and so

〈Ch(σ)〉=
〈GS(0)| (
∏

i eβT m
i )(
∏

i∈σ e−βδ( ĝi∈M)/2)(
∏

i∈σ eβδ( ĝi∈q−1
h,i M)/2) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉

=
〈GS(0)|S(β)2(
∏

i∈σ e−βδ( ĝi∈M)/2+βδ( ĝi∈q−1
h,i M)/2) |GS(0)〉

〈GS(0)|S(β)2 |GS(0)〉
.

We can find a simple limit for this expression by expanding the undeformed ground state in
terms of the group element basis:

|GS(0)〉=
∑

{ gi }

a{ gi } |{ gi }〉 ,

where the value of the coefficients a{ gi } will not matter for this discussion. Then the numerator
in the expression for the expectation value is given by

〈GS(0)|S(β)2
�

∏

i∈σ
e−βδ( ĝi∈M)/2+βδ( ĝi∈q−1

h,i M)/2

�

|GS(0)〉

=
∑

{ g ′i },{ gi }

a∗{ g ′i }
a{ gi } 〈{ g ′i }|
�

∏

i

e
∑

i βδ(gi∈M)
��

∏

i∈σ
e−βδ(gi∈M)/2+βδ(gi∈q−1

h,i M)/2� |{ gi }〉 ,
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where we have used the fact that all the operators in this expression are diagonal in the group
element basis to replace all the operators with their eigenvalues. Then we can use the orthog-
onality of the basis vectors to obtain

〈GS(0)|S(β)2
�

∏

i∈σ
e−βδ( ĝi∈M)/2+βδ( ĝi∈q−1

h,i M)/2

�

|GS(0)〉

=
∑

{ gi }

|a{ gi }|
2
�

∏

i

e
∑

i βδ(gi∈M)
��

∏

i∈σ
e−βδ(gi∈M)/2+βδ(gi∈q−1

h,i M)/2� .

Next, note that each term in the sum is non-negative (because it is a product of exponen-
tials, which are positive for real arguments, with |a{ gi }|

2). In addition,

e−βδ(gi∈M)/2+βδ(gi∈q−1
h,i M)/2

is bounded from below by e−|β |/2. Therefore,
∑

{ gi }

|a{ gi }|
2
�

∏

i

e
∑

i βδ(gi∈M)
��

∏

i∈σ
e−βδ(gi∈M)/2+βδ(gi∈q−1

h,i M)/2�

≥
∑

{ gi }

|a{ gi }|
2
�

∏

i

e
∑

i βδ(gi∈M)
�

e−|β |Lσ/2 ,

where Lσ is the length of the ribbon σ. We can also write the denominator in the expression
for the expectation value as

∑

{ gi }

|a{ gi }|
2
�

∏

i

e
∑

i βδ(gi∈M)
�

.

Therefore, the entire expectation value satisfies the inequality

〈Ch(σ)〉 ≥
e−|β |Lσ/2
∑

{ gi } |a{ gi }|
2
�∏

i e
∑

i βδ(gi∈M)
�

∑

{ gi } |a{ gi }|2
�∏

i e
∑

i βδ(gi∈M)
�

≥ e−|β |Lσ/2 . (46)

This indicates that the expectation value can decay at most as quickly as the length of the
closed ribbon and so the ’t Hooft loop satisfies a perimeter law, just like for the deformed toric
code.

6 Conclusion

In this study, we have investigated the behavior of anyonic excitations in a deformed toric code
model that allows for a transition from a topological phase to a trivial phase. Previous studies
of this model focused solely on ground states and neglected anyonic excitations. In addition,
to better understand the relationship between 1-form symmetry and topological order in this
model, we examined the behaviors of the Wilson loop and ’t Hooft loop operators across the
transition.

Our analysis revealed that magnetic excitations in both the topological and trivial phases
can be described using a non-unitary deformed magnetic ribbon operator. We found that the
electric charges condense across the transition as we may expect, but the accompanying con-
finement of the magnetic charges is less obvious. There exist non-unitary magnetic ribbon
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operators that move magnetic charges without any energy cost in both phases. However, ap-
plying a semi-infinite non-unitary ribbon operator to separate magnetic charges in the trivial
phase results in a wave function with a zero norm in the thermodynamic limit, which provides
an alternative mechanism for confinement. This indicates that the condensation and confine-
ment of the topological charges still provides a useful way to characterise the transition to the
trivial phase. Our study provides a deeper understanding of the behavior of anyonic excita-
tions in the deformed toric code model and demonstrates that we must consider this alternate
confinement mechanism of magnetic charges in the trivial phase.

Another way in which we examined the condensation and confinement is through the Wil-
son and ’t Hooft loops, which act as topological charge measurement operators. We found that
the Wilson loop obeys a zero law on both sides of the transition, meaning that its expectation
value in the ground state does not decay with the size of the loop. On the other hand, the
’t Hooft loop obeys a perimeter law on both sides, with its expectation value decaying expo-
nentially with the length of the loop. While this suggests that electric charge is present in the
ground state (implying some degree of condensation), we might expect an area law in the triv-
ial phase (which we would obtain if we applied a linear magnetic field [41]). This implies that
these loop operators are not good descriptors for the phase transition or the condensation in
this case. As we showed in Section 5.1, this holds not just for the deformed toric code model,
but also for other deformed quantum double models.

Another feature of the model is that there are four degenerate ground states on the torus
in both sides of the transition. While this was known previously, we have interpreted this as a
pattern of 1-form symmetry breaking. This appears to be in contradiction to the idea that the 1-
form symmetry breaking immediately corresponds to a topological order. We have argued that,
in order to have a topological order (indistinguishable degenerate ground states), one needs
the presence of an additional 1-form symmetry that acts as an order parameter for the other 1-
form symmetry. This can be thought of as a mixed ’t Hooft anomaly that is directly related to the
non-trivial braiding of anyons. In the deformed toric model, the topological phase (β < βc)
has an emergent mixed ’t Hooft anomaly akin to the original toric code model, where the
deformed ’t Hooft loop acts both as an emergent 1-form symmetry and an order parameter
for the Wilson loop. On the other hand, the trivial phase (β > βc) loses such an anomaly
as the deformed ’t Hooft loop ceases to be a 1-form symmetry, even though it still leads to
spontaneous symmetry breaking of the Wilson loop 1-form symmetry. Hence the spontaneous
symmetry breaking of the Wilson loop 1-form symmetry alone does not necessarily lead to
topological order. Instead, the presence of a mixed ’t Hooft anomaly associated with both 1-
form symmetries (Wilson and ’t Hooft) is crucial for the emergence of topological order. We
speculate that this would be the case for all higher-form symmetries in gapped systems.

The findings of this study raise intriguing questions about the relationship between higher-
form symmetry breaking and topological phases. Future research could explore this relation-
ship in greater detail, particularly in more generic models, given that the model studied here is
finely tuned. Specifically, it is still being determined whether the type of confinement or spon-
taneous symmetry breaking observed in this study would be present in more generic models.

In Section 5, we pointed out that the deformed toric code can be generalized to many
different commuting projector models, as well as different types of deformation. One way
to extend the deformed toric code model is to allow for inhomogeneous deformations (see
Appendix D), meaning that different parts of the lattice could have parameters on either side
of the phase transition. In this case, the ground states can still be found exactly. Studying this
model further could improve our understanding of the phase transition and boundary modes.
In addition, it may be possible to change the spatial dependence of the parameter with time
in order to control the behaviour of the excitations.
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Another promising avenue for future research is to examine a similar model based on the
X-cube model. Such “deformed X-cube” models have already been constructed from both the
Hamiltonian [44] and tensor network [45] perspectives and can be tuned between four phases:
stacks of decoupled toric codes, a 3+1d toric code, the X-cube model and the trivial param-
agnet. It would be interesting to study the fate of the generalized symmetries during these
deformations. These future investigations could help shed light on the behavior of topological
phases and higher-form symmetries in more complex and varied models.
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A Tensor network description

As we described in Section 3.1, the confinement present in the deformed toric code model
appears similar in character to the confinement described in Ref. [29] in the tensor network
formalism. In fact, Ref. [29] uses tensor networks to study filtered toric code states, which
match the (even-even) deformed toric code ground state for a particular family of parameters.
Here we will reproduce the tensor network representation of the deformed toric code ground
state and demonstrate that the Matrix Product Operators (MPOs) in the tensor network, which
produce anyons, are equivalent to the non-unitary deformed magnetic ribbon operators in the
Hamiltonian description.

In a tensor network, a physical state is represented by a layer of tensors. These tensors
have two types of indices: physical and virtual. The virtual indices lie in the layer of ten-
sors and facilitate the matrix multiplication of the tensors when summed over (we can think
of these as edges or legs connecting the tensors). Contracting these indices gives a quantity
which depends only on the physical indices, and represents the amplitude for that configura-
tion of physical indices in the overall state. For example, the physical indices could label a
configuration of spins, and the amplitude for that configuration of spins in the overall state is
obtained by matrix multiplication of the tensors, contracting over the virtual indices. For a 1d
tensor network, for instance, the amplitude for a configuration |{ i }〉 in a state described by
tensors T in

αn,αn+1
would be

〈{ i } |ψ〉=
∑

{αn }

N
∏

n=1

T in
αn,αn+1

. (A.1)

While the space occupied by the physical indices is fixed by the local degrees of freedom
in the physical system, the virtual indices exist in a different space. The number of values
which these indices can take is called the bond dimension. Often a tensor network state is
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Figure 5: A visual representation of the toric code tensor network. The upper layer
is the physical layer, consisting of the spins of the toric code, while the lower layer
includes the virtual degrees of freedom which are contracted to obtain the ground
state. The spins on the boundaries of alternating plaquettes (shaded) in the physical
layer are grouped and connected to the tensors (blue spheres).

only an approximation to a desired ground state and increasing the bond dimension improves
this approximation. However, in the case of the deformed toric code, the ground state can be
represented exactly by a tensor network and the bond dimension required is only two.

In order to construct the tensor network for the deformed toric code, we first consider the
representation of the ordinary toric code (see, e.g., Ref. [46]). As shown in Figure 5, the spins
on alternating plaquettes are grouped and connected to a tensor, with the neighbouring tensors
connected by virtual legs in a square lattice. This means that each tensor has four physical
indices, corresponding to the four spins on the plaquette, and four virtual indices connecting
them to the tensors representing diagonally adjacent plaquettes. The tensor is then given by

Ai1,i2,i3,i4
α1,α2,α3,α4

= δ(i1,α2α
−1
1 )δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(i4,α1α

−1
4 ) . (A.2)

Here the i variables are physical indices and the α variables are virtual indices. Both types
take the values ±1, with Z2 group multiplication. We can think of the physical indices as
connecting two adjacent virtual indices: in order to go from one virtual index to the next, we
must multiply it by the appropriate physical label. If this condition is satisfied for all indices,
the tensor is one, otherwise it is zero. Because each physical index describes the change in
virtual index, the tensor has a symmetry where we can multiply each virtual index by −1
without affecting the value of the tensor:

Ai1,i2,i3,i4
−α1,−α2,−α3,−α4

= δ(i1, (−α2)(−α1)
−1)δ(i2, (−α3)(−α2)

−1)δ(i3, (−α4)(−α3)
−1)δ(i4, (−α1)(−α4)

−1)

= δ(i1,α2α
−1
1 )δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(i4,α1α

−1
4 )

= Ai1,i2,i3,i4
α1,α2,α3,α4

. (A.3)

This virtual symmetry gives rise to an MPO, which crosses the virtual legs of tensors and
modifies the affected tensors by replacing the index for the crossed leg with its negative. That
is, if the MPO crosses tensor

Ai1,i2,i3,i4
α1,α2,α3,α4

,
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Figure 6: The matrix product operator (red) has the pull-through property, meaning
that it can be deformed over a tensor without affecting the state. This means that
the left and right diagrams represent the same state.

on the leg labelled by α1, we should replace the tensor with

Ãi1,i2,i3,i4
α1,α2,α3,α4

= Ai1,i2,i3,i4
−α1,α2,α3,α4

.

Importantly, the MPO should not be regarded as changing the virtual index itself like a
regular operator might. Because α1 is a dummy index, changing the variable directly to −1
from +1 has no effect. Instead the MPO changes the tensor on one side of the leg (not both),
giving a different coefficient once α1 is contracted. The virtual symmetry of the tensors gives
the MPO a “pull-through” property, meaning that we can deform the position of the MPO across
the tensor, as shown in Figure 6. That is, if we apply the MPO on leg 1 we obtain

Ai1,i2,i3,i4
−α1,α2,α3,α4

= Ai1,i2,i3,i4
−(−α1),−α2,−α3,−α4

= Ai1,i2,i3,i4
α1,−α2,−α3,−α4

, (A.4)

which is equivalent to applying the MPO on legs 2, 3 and 4.
We can see the effect of the MPO on the physical state by examining the modified tensor

in more detail. We have

Ai1,i2,i3,i4
−α1,α2,α3,α4

= δ(i1,α2(−α1)
−1)δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(i4, (−α1)α

−1
4 )

= δ(−i1,α2α
−1
1 )δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(−i4,α1α

−1
4 )

= A−i1,i2,i3,−i4
α1,α2,α3,α4

. (A.5)

We see that applying the MPO swaps the coefficient for configuration |i1, i2, i3, i4〉 with
|−i1, i2, i3,−i4〉. This is exactly the action of a σx operator applied on the physical edges 1 and
4. Extending this to a longer MPO, the MPO in the virtual layer corresponds to a magnetic
ribbon operator (which is a product of σx terms along aa ribbon) on the physical layer. The
electric ribbon operator, by contrast, is equivalent to locally modifying the tensors at the two
ends of the ribbon operator.

Having considered the original toric code, we now examine the deformed toric
code. We can construct the appropriate tensor network state by applying the operator
S(β) =
∏

edges i eβσ
z
i /2, which is a product of single-spin operators, to the toric code tensor

network, as shown in Figure 7. This has the effect of modifying the tensors to

Ai1,i2,i3,i4
α1,α2,α3,α4

(β) = eβ(i1+i2+i3+i4)/2δ(i1,α2α
−1
1 )δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(i4,α1α

−1
4 ) , (A.6)
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Figure 7: We can obtain the tensor network for the deformed toric code from that of
the regular toric code by applying an additional layer of tensors (smaller red spheres),
which act as single spin operators eβσ

z
i /2 on the physical degrees of freedom.

which now gives different weights to the different configurations satisfying the Kronecker delta
conditions. This tensor still satisfies the same virtual symmetry

Ai1,i2,i3,i4
α1,α2,α3,α4

(β) = Ai1,i2,i3,i4
−α1,−α2,−α3,−α4

(β) . (A.7)

This leads to the network supporting the same MPO as the toric code state: an MPO which
modifies affected tensors by flipping some of the virtual indices. However, the effect of this
MPO on the physical state is not the same. If we apply the MPO on leg 1 of the tensor as
before, we obtain the new tensor

Ãi1,i2,i3,i4
α1,α2,α3,α4

(β) = Ai1,i2,i3,i4
−α1,α2,α3,α4

(β)

= eβ(i1+i2+i3+i4)/2δ(−i1,α2α
−1
1 )δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(−i4,α1α

−1
4 )

= eβ(i1+i4)eβ(−i1+i2+i3−i4)/2δ(−i1,α2α
−1
1 )δ(i2,α3α

−1
2 )δ(i3,α4α

−1
3 )δ(−i4,α1α

−1
4 )

= eβ(i1+i4)A−i1,i2,i3,−i4
α1,α2,α3,α4

(β) . (A.8)

Instead of being equivalent to the application ofσx
i operators, this is equivalent to applying

a series of eβσ
z
iσx

i = eβσ
z
i /2σx

i e−βσ
z
i /2 operators. This is the same as the deformed magnetic

ribbon operator from Equation (11), so we see that the deformed ribbon operator can be in-
terpreted as the MPO arising from the preserved virtual symmetry of the underlying tensor
network. This allows us to relate the non-unitary nature of the ribbon operator to the con-
finement described in Ref. [29]. Above the phase transition, the norm of the state obtained by
applying a semi-infinite MPO into the tensor network is zero, implying confinement [29]. Sim-
ilarly, the deformed ribbon operators are non-unitary and so can reduce the norm of the state.
This effect becomes relevant at β above the phase transition, allowing a form of confinement
without energetic cost.

B Mapping to Ising model

As described in Ref. [28], there is a relationship between the deformed toric code model and the
2d classical Ising model, such that the expectation values of many operators in the deformed
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toric code are equal to expectation values of quantities in the finite temperature Ising model.
To see why this is so, consider the ground state wavefunction, which is a sum of closed (dual)
loop configurations. For the even-even ground state, which has no non-contractible loops, we
can treat the loops as domain walls. To do so, we introduce Ising spin variables (taking values
±1) at the vertices of the lattice, which we denote by θv , such that the toric code variable
σz

i = θs(i)θt(i), where s(i) and t(i) are the two ends of edge i. That is, a down spin (σz
i = −1)

separates domains with different Ising spin values. This assignment of Ising spins is consistent,
as long as the toric code down spins form closed contractible loops (i.e., there are no magnetic
fluxes present and we are in the even-even sector). However, the assignment of Ising spins to
a toric code configuration is not unique, as multiplying every Ising spin by −1 gives the same
toric code configuration. Any physical toric code property is the same for either Ising spin
assignment, however, so this does not affect any expectation values that we wish to calculate.
This redundancy can be regarded as a global gauge Z2 symmetry.

We can use this mapping to relate the Hamiltonian itself to a quantum Ising-like model
(especially in the low β case, where we obtain the Ising model in a transverse field) [28,47],
at least in the subspace where the plaquette terms are satisfied. However, for our purposes it
is more useful to instead relate the ground state to the classical Ising partition function at zero
field for all β [28]. Under this mapping of variables, the deformed toric code ground state,
which is given by

|GS(β)〉 ∝
∑

loop configurations, a

∏

edges, i

eβσ
z
i /2 |a〉 ,

becomes

|GS(β)〉=
1
p

Z(β)

∑

Ising configurations, {θv }

∏

edges, i

eβθs(i)θt(i)/2 |{θv }〉 , (B.1)

where
Z(β) =
∑

{θv }

∏

i

eβθs(i)θt(i) =
∑

{θv }

e
∑

i βθs(i)θt(i)

can be recognised as the Ising model partition function, with β playing the role of the Ising
coupling divided by the temperature. If we wish to calculate the expectation value of some
operator which is a function of σz operators in the deformed toric code, we can relate the
expectation value to one in the Ising model [28]:

〈 f ({σz
i })〉= 〈GS(β)| f ({σz

i }) |GS(β)〉

=
2

Z(β)

∑

loop configurations, a

〈a|
∏

j

eβσ
z
j /2 f ({σz

i })
∑

loop configurations, b

∏

i

eβσ
z
i /2 |b〉

=
2

Z(β)

∑

loop configurations, a,b

δ(a, b) 〈a| f ({σz
i })
∏

i

eβσ
z
i |a〉

=
1

Z(β)

∑

Ising configurations, {θv }

f ({θs(i)θt(i) })e
∑

i βθs(i)θt(i)

= 〈 f ({θs(i)θt(i) })〉Ising , (B.2)

where the factor of two before switching to Ising variables is to account for the two-to-one
mapping from Ising variables to physical toric code configurations.

In particular, note that the electric ribbon operator L(t) =
∏

i∈t σ
z
i is mapped to the quan-

tity
∏

i∈t

θs(i)θt(i) = θs(t)θe(t) ,

where s(t) and e(t) are the vertices at the start and end of the path t respectively, because
there are two copies of θv for each intermediate vertex (one from each adjacent edge on the
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Figure 8: A convenient reference state for the odd-even sector. The solid lines repre-
sent down spins and the dashed lines represent up spins.

path), which cancel. This means that the expectation value of the electric ribbon operator is
equal to the expectation value of the two Ising spins at the ends of the path, i.e., to a correlation
function. We know that well below the phase transition (high temperature in the Ising model)
this correlation function tends to zero at large distances, while well above the phase transition
(low temperature in the Ising model) this correlation function tends to a positive value, due
to the behaviour of the magnetization [48, 49]. This demonstrates that the electric ribbon
operator is absorbed into the ground state at high β , as we claimed in Section 3.1.

Because the mapping to the Ising model relies on only having closed loop configurations,
there is no counterpart to the σx

i operator in the Ising description. However, it is still possible
to use the Ising description for combinations of σx

i operators that do not produce open strings,
such as toric code vertex operations A−v =

∏

i∈star(v)σ
x
i . This vertex operator maps onto an

Ising spin flip operation. However, we must be careful when calculating expectation values of
such operators, because they do not commute with the weight

∏

i eβσ
z
i .

So far, we have considered the even-even ground state of the toric code and its deformed
variant. However, it is possible to use a similar picture to describe the other ground states in
terms of the Ising model, but with different boundary conditions. In order to do so, we must
first define a reference state, which is just a configuration in the desired topological sector
(even-even, odd-even, etc.). Any other configuration in the same sector as the reference state
can be obtained by applying toric code vertex transforms. Because these transforms are self-
inverse, at each vertex v we either apply a transform A−v or apply the identity operator A+v = I .
Therefore we can label each configuration by the sequence of transforms we need to apply
in order to reach it from the reference state [28]. The variable describing whether we apply
a transform at each vertex or not then becomes an Ising spin in our new description. If we
apply a transform on the vertex to obtain the configuration, the Ising spin is−1. If we apply the
identity, the Ising spin is+1. For an Ising spin θv , we then denote the relevant transform by Aθv

v .
One small subtlety to this is that the product of all vertex transforms is equal to the identity,
meaning that multiplying all Ising spins by −1 is trivial in the toric code space and so there
are two Ising configurations that give the same toric code configuration (just as we discussed
previously for the even-even case). However, because no physical quantity is different between
the two equivalent configurations, we are free to average over these or have some convention
for removing one as preferred.

Now consider the odd-even sector, where the parity around the horizontal handle of the
torus is odd and the parity around the vertical one is even. A convenient reference state for
this sector is shown in Figure 8. The (un-normalised) ground state for the odd-even sector is
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given by

|GS−+(β)〉=
∑

{θv }

eβ
∑

i σ
z
i /2
∏

v

Aθv
v |ref.〉

=
∑

{θv }

eβ
∑

i σ
z
i ({θv })/2
∏

v

Aθv
v |ref.〉 , (B.3)

where σz
i ({θv }) is the eigenvalue of σz

i for the state |{θv }〉 =
∏

v Aθv
v |ref.〉. We therefore

need to determine the relationship between the Ising variables {θv } and the toric code spin
σz

i ({θv }). To do so, we first label each vertex with co-ordinates (x , y). The lattice is periodic,
so for horizontal size Nx and vertical size Ny we have Nx +1= 1 and Ny+1= 1. We also label
the edges with the direction ( x̂ or ŷ) and the leftmost (for horizontal edges) or lowermost (for
vertical edges) vertex (x , y) attached to that edge. In the reference state shown in Figure 8,
which has all θv = 1 (or all θv = −1) by definition of θv , we have

σz
x̂ ,(x ,y)({+ }) =

¨

−1 , if x = Nx ,

+1 , otherwise,
(B.4)

and
σz

ŷ ,(x ,y)({+ }) = +1 , for all (x , y) . (B.5)

We can use this to find the toric code spin for an arbitrary set of θv . We know that applying
a vertex transform on either vertex adjacent to an edge flips the spin on that edge, while no
other vertex transform affects it. Therefore σz

î,(x ,y)
({θv }) = θ(x ,y)θ(x ,y)+î σ

z
î,(x ,y)

({+ }). The

toric code spin corresponding to a general Ising configuration is then given by

σz
î,(x ,y)

({θv }) =

¨

−θ(x ,y)θ(x ,y)+î , if x = Nx and î = x̂ ,

θ(x ,y)θ(x ,y)+î , otherwise.
(B.6)

This allows us to write the ground state from Equation (B.3) as

|GS−+(β)〉=
∑

{θv }

eβ(
∑Nx

x=1

∑Ny
y=1 θ(x ,y)θ(x ,y+1)+

∑Ny
y=1(−θ(Nx ,y)θ(1,y)+

∑Nx
x=1 θ(x ,y)θ(x+1,y)))/2

∏

v

Aθv
v |ref.〉 .

(B.7)
The norm of this state is then equal to

Z−+(β) = 2
∑

{θv }

eβ(
∑Nx

x=1

∑Ny
y=1 θ(x ,y)θ(x ,y+1)+

∑Ny
y=1(−θ(Nx ,y)θ(1,y)+

∑Nx
x=1 θ(x ,y)θ(x+1,y))) ,

where the factor of two arises from the fact that there are two Ising configurations for each toric
code configuration, and these configurations should not be treated as orthogonal. Apart from
this factor of two, this norm is equal to an Ising partition function with antiperiodic-periodic
boundary conditions, as given in Refs. [50] and [51]. Similarly, the norms for the even-odd and
odd-odd ground states are given by the partition function for the Ising model with periodic-
antiperiodic and antiperiodic-antiperiodic boundary conditions respectively. There are exact
expressions for these partition functions, which are (for β ≥ 0)

Z++(β) = Co + So + Ce − Se ,

Z+−(β) = Co − So + Ce + Se ,

Z−+(β) = Co + So − Ce + Se ,

Z−−(β) = −Co + So + Ce + Se ,
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Figure 9: We plot the logarithm of the partition function ratio as a function of system
size for two values of β , one below the transition and one above it. We see that the
logarithm tends towards zero below the transition (as we expect from Figure 3), but
drops approximately linearly with system size above the transition, implying that the
partition function ratio decays exponentially with system size.

where

Co = 2Nx Ny

Nx
∏

p=0

Ny
∏

q=0

�

cosh2(2β)− cos
�

(2p+ 1)π
Nx

�

sinh(2β)− cos

�

(2q+ 1)π
Ny

�

sinh(2β)

�1/2

,

(B.8)

So = 2Nx Ny

Nx
∏

p=0

Ny
∏

q=0

�

cos2(2β)− cos
�

2pπ
Nx

�

sinh(2β)− cos

�

(2q+ 1)π
Ny

�

sinh(2β)

�1/2

, (B.9)

Ce = 2Nx Ny

Nx
∏

p=0

Ny
∏

q=0

�

cos2(2β)− cos
�

(2p+ 1)π
Nx

�

sinh(2β)− cos

�

2qπ
Ny

�

sinh(2β)

�1/2

,

(B.10)

Se = 2Nx Ny sgn(1− sinh2(2β))

×
Nx
∏

p=0

Ny
∏

q=0

�

cos2(2β)− cos
�

2pπ
Nx

�

sinh(2β)− cos

�

2qπ
Ny

�

sinh(2β)

�1/2

. (B.11)

As explained in Section 4.1, the action of the non-contractible deformed ’t Hooft loop op-
erators depends on ratios of these partition functions. In Figure 3 in Section 4.1, we plot
these ratios for different values of β . We see that below the phase transition, the ratios are
all approximately one, indicating that the deformed ’t Hooft loop is acting unitarily on the
ground state subspace. Above the phase transition, the ratio drops sharply towards zero (ex-
ponentially, as shown in the right side of Figure 3 where the logarithm of the ratio is plotted)
indicating that the operator acts highly non-unitarily. In addition, above the phase transition
the ratio of the partition function decays exponentially with system size, as shown in Figure 9,
which reflects the norm-based confinement of the excitation moved by the deformed ’t Hooft
loop.
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C Perimeter law for ’t Hooft loop

In Section 3.2, we claimed that the expectation value for the ’t Hooft loop obeys a perimeter
law, decaying with the length of the loop rather than the area. In this section, we will prove that
result. Denoting the ’t Hooft loop applied on a closed (dual) loop c by T (c), the expectation
value is given by

〈T (c)〉=
〈GS(β)| T (c) |GS(β)〉
〈GS(β)|GS(β)〉

=
〈GS(0)|S(β)T (c)S(β) |GS(0)〉
〈GS(0)|S(β)2|GS(0)〉

. (C.1)

The ground state is a linear combination of closed (dual) loop configurations, weighted by
the length of the loop, so we can write this expectation value as

〈T (c)〉=

∑

loop configs. a

∑

loop configs. b e−β L(a)e−β L(b) 〈a| T (c) |b〉
∑

loop configs. a

∑

loop configs. b e−β L(a)e−β L(b)〈a|b〉
. (C.2)

The operator T (c) flips the edges along a dual loop c, meaning that there is a one-to-one
mapping between loop configurations before and after the action of the operator. By defining
the configuration |T (c) : b〉= T (c) |b〉, we can write the expectation value as

〈T (c)〉=

∑

loop configs. a

∑

loop configs. b e−β L(a)e−β L(b)〈a|T (c) : b〉
∑

loop configs. a

∑

loop configs. b e−β L(a)e−β L(b)〈a|b〉

=

∑

loop configs. a

∑

loop configs. b e−β L(a)e−β L(b)δ(a, T (c) : b)
∑

loop configs. a

∑

loop configs. b e−β L(a)e−β L(b)δ(a, b)

=

∑

loop configs. a e−β L(a)e−β L(T (c):a)

∑

loop configs. a e−2β L(a)
. (C.3)

Now, because T (c) acts as a bijective mapping between loop configurations, we can write
∑

loop configs. a f (a) =
∑

loop configs. T (c):a f (a) =
∑

loop configs. a f (T (c) : a) and so

∑

loop configs. a

f (a) =
1
2

∑

loop configs. a

( f (a) + f (T (c) : a)) .

Therefore

〈T (c)〉=

∑

loop configs. a e−β L(a)e−β L(T (c):a) + e−β L(T (c):a)e−β L(a)

∑

loop configs. a e−2β L(a) + e−2β L(T (c):a)
. (C.4)

Then, writing L(a) + L(T (c) : a) = 2 L̄(a) and |L(a)− L(T (c) : a)|=∆L(a), we obtain

〈T (c)〉=

∑

loop configs. a 2e−2β L̄(a)

∑

loop configs. a e−2β L̄(a)(e−β∆L(a) + eβ∆L(a))

=

∑

loop configs. a e−2β L̄(a)

∑

loop configs. a e−2β L̄(a) cosh(β∆L(a))
. (C.5)

Now consider cosh(β∆L(a)). The largest∆L(a) can be is the length L of the ’t Hooft loop.
Because every term in the denominator is positive, this means that the denominator satisfies
the inequality

∑

loop configs. a

e−2β L̄(a) cosh(β∆L(a))≤ e−2β L̄(a) cosh(β L) .
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The overall expectation value therefore satisfies the inequality

〈T (c)〉 ≥

∑

loop configs. a e−2β L̄(a)

∑

loop configs. a e−2β L̄(a) cosh(β L)
=

1
cosh(β L)

. (C.6)

This means that the expectation value of the ’t Hooft loop decays at most as fast as the
length of the loop for large loops (〈T (c)〉 ≥ e−|β |L). In fact, for large (positive) β we expect that
the dominant contribution to both numerator and denominator will come from configurations
with few down spins near the ’t Hooft loop, for which ∆L(a)≈ L and so the bound should be
nearly saturated:

〈T (c)〉 ≈
1

cosh(β L)
. (C.7)

D Inhomogeneous deformed toric code

So far, we have considered the case where we deform the toric code equally across all of space.
However, the ground states can be determined exactly even if the parameter β varies spatially.
This leads to ground states of the form

|GS({βi })〉 ∝ e
∑

i βiσ
z
i /2 |GS(0)〉 , (D.1)

for Hamiltonians of the form

H({βi }) = −
∑

plaquettes, p

Bp +
∑

vertices, v

Qv({βi }) , (D.2)

where
Qv({βi }) = e−

∑

i∈star(v) βiσ
z
i −
∏

i∈star(v)

σx
i . (D.3)

This can be further generalized by swapping some of the exponentials in the ground state
expression for similar expressions involving σx

i :

|GS({βi } , {γ j })〉 ∝ e
∑

i∈S1
βiσ

z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉 , (D.4)

where S1 and S2 are disjoint sets of edges. Note that for each edge, we apply at most one expo-
nential term, which avoids the non-commutativity of the exponentials in σz

i and σx
i . To build

a Hamiltonian which has these ground states, we must modify both the vertex and plaquette
terms of the toric code:

H({βi } , {γ j }) =
∑

plaquettes, p

(e−
∑

j∈p γ jσ
x
j −
∏

j∈p

σz
j ) +
∑

vertices, v

(e−
∑

i∈star(v) βiσ
z
i −
∏

i∈star(v)

σx
i )

:=
∑

plaquettes, p

Rp({γ j }) +
∑

vertices, v

Qv({βi }) . (D.5)

To verify that this Hamiltonian has ground states given by Equation (D.4), we first show
that the eigenvalues of Qv({βi }) and Rp({γ j }) are non-negative, following the approach used
in Ref. [28] for the homogeneous case. We have

Qv({βi })2 = (e
−
∑

i∈star(v) βiσ
z
i −
∏

i∈star(v)

σx
i )

2

= e−
∑

i∈star(v) 2βiσ
z
i + (
∏

i∈star(v)

σx
i )

2 − [
∏

i∈star(v)

σx
i ]e
−
∑

i∈star(v) βiσ
z
i − e−
∑

i∈star(v) βiσ
z
i

∏

i∈star(v)

σx
i

= e−
∑

i∈star(v) 2βiσ
z
i + 1− (e−
∑

i∈star(v) βiσ
z
i + e+
∑

i∈star(v) βiσ
z
i )
∏

i∈star(v)

σx
i ,
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where we used the relation σx
i e−βσ

z
i = e+βσ

z
iσx

i . Then we can write this as

Qv({βi })2 = (e
−
∑

i∈star(v) βiσ
z
i + e+
∑

i∈star(v) βiσ
z
i )e−
∑

i∈star(v) βiσ
z
i

− (e−
∑

i∈star(v) βiσ
z
i + e+
∑

i∈star(v) βiσ
z
i )
∏

i∈star(v)

σx
i

= 2cosh(
∑

i∈star(v)

βiσ
z
i )(e
−
∑

i∈star(v) βiσ
z
i −
∏

i∈star(v)

σx
i )

= 2cosh(
∑

i∈star(v)

βiσ
z
i )Qv({βi }) .

For any eigenstate |ψ〉 of Qv({βi }), with eigenvalue λ, we therefore have

Qv({βi })2 |ψ〉= λ2 |ψ〉= 2 cosh(
∑

i∈star(v)

βiσ
z
i )λ |ψ〉 .

This implies that either λ = 0 or λ |ψ〉 = 2cosh(
∑

i∈star(v) βiσ
z
i ) |ψ〉, meaning that Qv({βi })

shares its non-zero eigenvalues with 2 cosh(
∑

i∈star(v) βiσ
z
i ). Because the eigenvalues of

cosh(
∑

i∈star(v) βiσ
z
i ) are all positive for real β , this means that the eigenvalues of Qv({βi })

are non-negative. A similar result holds for Rp({γ j }) which has the same algebraic structure
(but with σz and σx swapped). As a result, if we find a state which has Qv({βi }) = 0 for all v
and Rp({γ j }) = 0 for all p then it is an eigenstate of each energy term with minimum energy
and so is a ground state.

Now we can verify that the claimed ground states from Equation (D.4) satisfy these con-
ditions. We have

Qv({βi }) |GS({βi } , {γ j })〉

∝Qv({βi })e
∑

i∈S1
βiσ

z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉

= (e−
∑

i∈star(v) βiσ
z
i −
∏

i∈star(v)

σx
i )e
∑

i∈S1
βiσ

z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉

= (e−
∑

i∈star(v) βiσ
z
i −
∏

i∈star(v)

σx
i )e
∑

j∈star(v) β jσ
z
j /2e
∑

i∈S1 /∈star(v) βiσ
z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉

= (e−
∑

i∈star(v) βiσ
z
i e
∑

j∈star(v) β jσ
z
j /2 −
∏

i∈star(v)

σx
i e
∑

j∈star(v) β jσ
z
j /2)

× e
∑

i∈S1 /∈star(v) βiσ
z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉

= (e−
∑

i∈star(v) βiσ
z
i /2 − e−
∑

j∈star(v) β jσ
z
j /2
∏

i∈star(v)

σx
i )

× e
∑

i∈S1 /∈star(v) βiσ
z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉

= e−
∑

i∈star(v) βiσ
z
i /2(1−
∏

i∈star(v)

σx
i )e
∑

i∈S1 /∈star(v) βiσ
z
i /2e
∑

j∈S2
γ jσ

x
j /2 |GS(0)〉

= e−
∑

i∈star(v) βiσ
z
i /2e
∑

i∈S1 /∈star(v) βiσ
z
i /2e
∑

j∈S2
γ jσ

x
j /2(1−
∏

i∈star(v)

σx
i ) |GS(0)〉 .

Then we note that
∏

i∈star(v)σ
x
i acts as the identity on any toric code ground state |GS(0)〉 and

so
(1−
∏

i∈star(v)

σx
i ) |GS(0)〉= 0 .

This means that
Qv({βi }) |GS({βi } , {γ j })〉= 0 ,
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for all vertices v. Following exactly the same reasoning (and noting that S1 and S2 are disjoint
sets so the two exponential factors in the ground state expression commute), we also have
Bp |GS({βi } , {γ j })〉 = 0 for all plaquettes p, indicating that |GS({βi } , {γ j })〉 is indeed a
ground state.

Now consider how the original toric code ribbon operators act in this new model. Due
to the exponential factors involving both σx and σz , neither the electric nor magnetic ribbon
operators will produce isolated excitations at the ends of the ribbons. However, just as we did
for the magnetic ribbon operator in the homogeneous case, we can define deformed ribbon
operators that only produce excitations at the ends of the ribbons when acting on the ground
state, with the caveat that these operators are non-unitary. Defining

S({βi }) =
∏

i∈S1

eβiσ
z
i /2 , (D.6)

and
R({γi }) =
∏

i∈S2

eγiσ
x
i /2 , (D.7)

we can write the deformed magnetic ribbon operator as

C̃(t) = S({βi })C(t)S({βi })−1 , (D.8)

and the deformed electric ribbon operator as

L̃(t) = R({γi })L(t)R({γi })−1 . (D.9)

In terms of local operators, these ribbon operators can be written as

C̃(t) =
∏

i∈t

eβiσ
z
i /2σx

i e−βiσ
z
i /2 , (D.10)

and
L̃(t) =
∏

i∈t

eγiσ
x
i /2σz

i e−γiσ
x
i /2 , (D.11)

where we define βi = 0 for i outside of S1 and similarly γi = 0 for i outside of S2. Both
of these ribbon operators are topological and so the closed versions of these operators have
expectation values that satisfy a zero-law, being independent of length or area. However,
the open ribbon operators do not necessarily produce energy eigenstates and are expected
to be poor descriptions of the basic excitations when the γ or β variables are large (due to
condensation).

It is interesting that we can construct exact ground states even with a spatially varying
parameter, especially because we can tune this parameter over space so that it crosses a phase
transition. The fact that an excitation can be confined in one region of space and unconfined
in another could potentially be used to trap excitations and to braid them in a predictable
way. However, we note that the form of the Hamiltonian seems to be rather fine tuned and the
ground state properties at large βi and γi are unlikely to be robust as they are in the topological
phase.
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