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Abstract

We study the phase structure and charge transport at finite temperature and chemi-
cal potential in the non-Hermitian PT -symmetric holographic model of [1]. The non-
Hermitian PT -symmetric deformation is realized by promoting the parameter of a global
U(1) symmetry to a complex number. Depending on the strength of the deformation, we
find three phases: stable PT -symmetric phase, unstable PT -symmetric phase, and an
unstable PT -symmetry broken phase. In the three phases, the square of the condensate
and also the spectral weight of the AC conductivity at zero frequency are, respectively,
positive, negative, and complex. We check that the Ferrell-Glover-Tinkham sum rule for
the AC conductivity holds in all the three phases. We also investigate a complexified U(1)
rotor model with PT -symmetric deformation, derive its phase structure and condensa-
tion pattern, and find a zero frequency spectral weight analogous to the holographic
model.
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1 Introduction

Non-Hermitian Hamiltonian evolution has attracted increasing interest in various areas of
physics, including condensed matter, quantum information, and AdS/CFT, for reviews c.f. e.g.
[2, 3]. In condensed matter, it has been widely employed in describing open quantum sys-
tems [4], for example as effective models of the finite quasiparticle lifetime introduced by
electron-electron or electron-phonon interactions [5]. Furthermore, non-Hermitian descrip-
tions have been employed in Weyl semimetals [6–8], for delocalization transitions or vortex
flux line depinning in type II superconductors [9], as well as in the context of the interplay
between topology and dissipation [10,11]. In quantum information, non-Hermiticity has been
introduced to describe projective measurements on quantum circuits or many-body systems,
which turns out to be an efficient way to prepare entangled states [12–15] and conduct quan-
tum teleportation [16]. In AdS/CFT, it is also a potential route to a better understanding of
the holography of complex spacetime metrics and of quantum matter [17–21].

Non-Hermiticity does not necessarily lead to a complex energy spectrum and non-unitary
Hamiltonian evolution [3, 22, 23]. If a non-Hermitian Hamiltonian satisfies PT -symmetry,
namely the Hamiltonian is invariant under the combination of a generalized time-reversal T
and a generalized parity P transformation, it is possible that the spectrum remains real and
unitary evolution still holds in terms of a new inner product. PT -symmetric theories have
been extensively explored in the context of quantum mechanics [22, 23], quantum field the-
ory [3, 24–26], and even classical physics [27]. If an eigenstate of the Hamiltonian is also a
simultaneous eigenstate of the operator PT , then its energy is real. If it is not a PT eigen-
state but part of a PT doublet, it is in general mapped to another state by the action of PT ,
with complex conjugate energy. Most PT -symmetric Hamiltonians are found to be pseudo-
Hermitian, with eigenenergies appearing in complex conjugate pairs [28, 29]. The spectrum
of a PT -symmetric Hamiltonian can hence be real, partially complex, or completely com-
plex. If at least some energies are complex, the PT symmetry is spontaneously broken. A
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Figure 1: Phase diagram of the PT -symmetric model (4), with parameters d = 3,
m2 = −2, q = 1 and v = 3/2, at zero chemical potential µ = 0. The parameter
N2 ∈ R, defined in (13), determines the strength of the non-Hermitian deformation.

Table 1: The properties of the three phases of the model of [1].

Phase I Phase II Phase III
PT symmetry preserved preserved broken
(free) energy real real complex
scalar stability stable unstable unstable
vector stability stable stable stable

superfluid
density

positive negative complex

QC conductivity suppressed enhanced complex
FGT sum rule holds holds holds

NEC holds violated ill-defined

PT -symmetric Hamiltonian with a real spectrum can always be related to a Hermitian Hamil-
tonian via a similarity transformation [28, 30–32], the so-called Dyson map [33]. Recently,
it has been observed that PT symmetry also plays an increasingly important role in strongly
interacting systems relevant to holography, such as the Sachdev-Ye-Kitaev model [34–37] and
holographic quantum matter [1,38].

In this work, we will focus on the electric conductivity of the PT -symmetric non-Hermitian
model of [1]. Unitarity constrains transport phenomena in electron systems as well as in
holography, for example by constraining the shear and bulk viscosities η and ζ, as well as the
dissipative part of the electric conductivity Reσ to be positive semidefinite [39],

η≥ 0 , ζ≥ 0 , Reσ ≥ 0 . (1)

In the free Dirac fermion system with complex spectrum studied in [40], Reσ ≥ 0, and the
conductivity sum rule holds. In this paper, we are going to investigate transport in strongly
interacting non-Hermitian systems at zero or finite chemical potential via the AdS/CFT corre-
spondence, which will provide predictions for transport coefficients in strongly coupled and
correlated PT -symmetric systems. Different from standard computational approaches to in-
teracting fermionic systems, AdS/CFT does not rely on perturbation theory, and does not suffer
from the fermion sign problem.

In the model of [1], the non-Hermitian deformation is implemented by complexifying the
global U(1) symmetry that is spontaneously broken in the Einstein-Maxwell-scalar model of
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[41]. As reviewed in Sec. 2.1, this effectively decouples the source for the charged scalar
operator from its complex conjugate. This implements the Dyson map which connects a PT -
symmetric Hamiltonian with real spectrum with an ordinary Hermitian Hamiltonian.

In this work, we further investigate the phase structure in the presence of the non-
Hermitian PT -symmetric deformation at finite temperature and both at zero and finite chem-
ical potential. The phase diagram at zero chemical potential is shown in Fig. 1 and discussed
in detail in Sec. 2.3.2. The parameter N2 ∈ R, defined in (13), determines the strength of the
non-Hermitian deformation. At zero temperature and vanishing chemical potential, N2 > 0
is the PT symmetric phase, N2 = 0 the exceptional point, and N2 < 0 the PT broken phase
of [1], respectively. At zero chemical potential, there are three finite temperature phases in
the model of [1]: We not only reproduce the real solution in phase I and the pair of purely
imaginary solutions in phase II found in [1], but also numerically construct a pair of complex
conjugate solutions in phase III. The two complex conjugate solutions admit complex temper-
atures, and we check that their zero temperature limit approaches the two zero temperature
solutions already found in [1]. The transition between phases II and III is a consequence
of the competition between the thermal effect and the PT -symmetric breaking. The phase
diagram exhibits the typical characteristics of quantum criticality of the PT -symmetric excep-
tional point. The phase diagram at finite chemical potential, discussed in Sec. 2.3.2 and shown
in Fig. 4, is similar to the zero chemical potential case. We will comment on the interplay of
superconductivity and PT breaking in Sec. 5.

The main results of our work are the calculation of the AC electric conductivity from linear
perturbation theory, and the verification of the Ferrell-Glover-Tinkham (FGT) sum rule in each
phase. The AC conductivity itself shows an interesting structure in phases I, II and III: In
phase I the expectation value of the operator induces a positive superfluid density ρs that
leads to a ρsδ(ω) contribution to Reσx x and an associated 1/ω pole in Imσx x . In phase
II, the superfluid density turns negative, ρs < 0. In phase III, ρs itself becomes complex,
leading to a δ(ω) contribution and a 1/ω pole in both Reσx x and Imσx x . In general, the AC
conductivity in holographic systems consist of three different parts, describing the effects of
quantum criticality (incoherent transport), superconductivity, and coherent transport. They
all contribute additively to the low frequency conductivity [42–50],

σ(ω) = σi(ω) +σs(ω) +σc(ω) . (2)

The incoherent conductivity σi(ω) is defined as the part of the conductivity unrelated to ei-
ther momentum transport or condensation. Its ω → 0 limit is usually called the quantum
critical conductivity, σQ = σi(0). In the weakly coupled limit, σQ (and actually σi(ω)) orig-
inates from the momentum-conserving scattering between electrons and holes [51] and is
thus incoherent with the momentum flow, hence the name. The superconducting contribution
σs(ω) = ρsq

2 (πδ(ω) + i/ω) is induced by the condensation of normal state charge carri-
ers [52–55], where q is the charge of Cooper pairs. The coherent conductivityσc(ω) originates
from the charge flow that is coherent to the momentum flow. In the absence of momentum
relaxation, it has a πδ(ω) + i/ω contribution analogous to σs, as well as an analytic part.
As electric charge is conserved, the charge carriers could contribute to all three parts of the
conductivity by spectral weight transfer. As evident from Figs. 6, 7 and 8, we find that σQ is
reduced in phase I as compared to the AdS-Schwarzschild value σQ = 1, enhanced in phase
II, and becomes complex in phase III. In Sec. 4, we study a complexified U(1) rotor model
with the same PT -symmetric deformation as in [1], which reproduces the phases of the holo-
graphic model, and whose zero frequency spectral weight coincides with our results for the
holographic model of [1].

Finally, we checked the validity of the FGT sum rule in all three phases. In d = 3 (2+ 1
boundary dimensions), at high frequencies the AC electric conductivity calculated in an asymp-
totically AdS4 background tends to a constant Reσx x = 1 (in units of e2/h), due to the scale
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invariance of the ultraviolet (UV) fixed point. Following [56], we subtract this constant, after
which the FGT sum rule reads

∫ ∞

−∞
Re [σ(ω)− 1] dω= 0 . (3)

We take the integral in (3) over the whole real axis, as the symmetry of conductivity under the
transformation ω↔−ω may not hold in the presence of non-Hermiticity. The subtraction is
necessary for the integral to converge. The sum rule is expected to hold under the assumptions
of causality, unitarity, and charge conservation [56]. It has been verified in various holography
models [47,56–60] fulfilling these assumptions. Since PT -symmetric non-Hermitian systems
can break some of these assumptions, in particular unitarity in the PT -broken phase, we check
the validity of (3) in the holographic model of [1]. We find that the sum rule holds in all three
phases, even in the PT -broken phase.

This paper is organized as follows. In Sec. 2, we introduce the Einstein-Maxwell-scalar
theory with the non-Hermitian PT -symmetric source deformation of [1], and study its phase
structure at finite temperature and chemical potential. In Sec. 3, we calculate and discuss
the AC conductivity. In addition, we verify the sum rule in each phase. In Sec. 4, we study
a complexified U(1) rotor model with a PT -symmetric deformation. We find that its phase
structure and zero frequency spectral weight turn out analogous to our holographic model. In
Sec. 5, we present our conclusions and outline further research directions.

2 Non-Hermitian holography

In this section, we first introduce the PT -symmetric non-Hermitian model of [1], and review
its symmetries and the associated Dyson map, in Sec. 2.1. In Sec. 2.2, we present the equations
of motion and the Ansatz for the bulk fields that we will solve numerically in the remainder of
this section for both vanishing (Sec. 2.3) and finite (Sec. 2.4) chemical potential.

2.1 Action and symmetries

In the AdS/CFT correspondence, every continuous global symmetry of the dual field theory is
represented by a gauge symmetry in the bulk. Thus, while constructing the bulk theory, we
at least need a U(1) gauge symmetry whose gauge field encodes the conserved current on the
boundary. In addition, in order to implement the PT deformation of [1], a charged bulk field
is needed. We follow the previous works [1,38] and consider the scalar field to be minimally
coupled, with charge q under the U(1) symmetry. The holographic action reads

S =

∫

dd+1 x
p

−g
�

R+
d(d − 1)

L2
− D†

aφ̄Daφ −m2φ̄φ − vφ̄2φ2 −
1
4

FabF ab
�

, (4)

with Da = ∇a − iqAa and 16πGN = 1. In this paper we consider d = 3. The action (4) is the
Abelian-Higgs model [53,54]. It admits a local U(1) symmetry

φ→ φ eiα(x) , φ̄→ φ̄ e−iα(x) , Aa→ Aa + ∂aα(x)/q . (5)

The bulk action (4) is dual to a conformal field theory on the boundary with Hamiltonian HCFT.
The local U(1) symmetry of the bulk action corresponds to the global U(1) symmetry of the
boundary Hamiltonian HCFT. We identify the global U(1) symmetry with charge conservation.
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We consider the field φ dual to an operator O, and φ̄ dual to O†. We introduce sources M
and M̄ for these operators, which corresponds to a deformation of the original Hamiltonian
HCFT,

H = HCFT −
∫

dd−1 x (MO† + M̄O) . (6)

If both φ and φ̄ are related by complex conjugation, we have M∗ = M̄ , and the deformed
Hamiltonian (6) is Hermitian. The Gubser-Klebanov-Polyakov-Witten (GKPW) prescription
relates the partition functions of the bulk and boundary theory and in the large N and strong
coupling limit, it reduces to a saddle point approximation,

Z[M , M̄] = Tr
�

e−βHCFT+
∫

dd x(MO†+M̄O)
�

≈ e−Sren |φ→zd−∆M ,φ̄→zd−∆M̄ . (7)

Here we adopt standard quantization in which ∆ is the scaling dimension of O given by one
of the solutions of ∆(∆− d) = m2 L2, z is the radial coordinate, and z → 0 is the conformal
boundary. A nonzero source, either M or M̄ , breaks the U(1) symmetry (5) and thus, charge
conservation is violated on the boundary theory.

To explore non-Hermitian holography, we assume that the GKPW relation (7) still holds
even for M∗ ̸= M̄ , and hence φ⋆ ̸= φ̄, while the holographic dictionary φ↔ O, φ̄↔ O†

is preserved. Since H ̸= H†, there are different ways to define the time evolution. We start
with the Euclidean GKPW relation (7), in which the partition function is evaluated by the on-
shell action on an Euclidean spacetime. In holography, the time evolution is usually chosen as
follows:

〈O(τ)E〉= Tr[O(τ)Ee−βH]/Tr[e−βH] , O(τ)E = eτHOe−τH . (8)

In order to move to Lorentzian signature, one can perform a Wick rotation τ = i t on the Eu-
clidean spacetime. The observable O measured on the asymptotic boundary of the Lorentzian
spacetime at time t, has therefore the the expectation value

〈O(t)〉= Tr[O(t)e−βH]/Tr[e−βH] , O(t) = eiH tOe−iH t . (9)

Hence, the ordinary time evolution considered in holography is the analytical continuation of
the Euclidean time path integral in the GKPW relation, which is different from other frame-
works of non-unitary evolution in non-Hermitian systems [61,62]. In Sec. 5, we will comment
on the realization of these evolution schemes in holography. Nevertheless, if the theory has
time translational symmetry, the one-point functions in (8) and (9) will be time independent,
which is consistent with the construction of time-translational solutions in the bulk in this as
well as previous works [1,38].

On the other hand, the conjugation relation between the expectation values 〈O〉 and



O†
�

does not necessarily hold for H ̸= H†, since

〈O〉∗ = Tr[O†e−βH†
]/Tr[e−βH†

] ,



O†
�

= Tr[O†e−βH]/Tr[e−βH] . (10)

The generalization to M∗ ̸= M̄ can be implemented by the global complexified U(1) transfor-
mations

φ→ φ e−θ , φ̄→ φ̄ eθ , Aa→ Aa , (11)

M → Me−θ , M̄ → M̄ eθ , (12)

with θ ∈ C. Both the bulk action (4) and also the boundary condition in (7) are invariant
under (11) and (12). From the GKPW relation, the partition function is invariant under the
transformation (11) and hence, is only a function of the invariant of (11), namely

Z[M , M̄] = Z[e−θM , eθ M̄] = Z[N2] , N2 = M M̄ . (13)
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This means that each value of the invariant N2 labels a class of theories related by the com-
plexified U(1) transformation (12). Denoting the generator of the global U(1) transformation
as Q, the transformation (11) can be achieved via the similarity transformation

Hθ = eθQHe−θQ = HCFT −
∫

dd x (Me−θO† + M̄ eθO) , (14)

where the sources transform in the same way as in (12). So we call it the Dyson map as
well. Hθ will in general be non-Hermitian even though H is Hermitian. Then, the evolution
operator Uθ = e−iHθ t could be non-unitary even though the evolution operator U = e−iH t is
unitary. Still, the two evolution operators are similar via the Dyson map (14). The similarity
transformation preserves the trace and the eigenvalues, so it leaves the partition function (13)
invariant. Thus, all the theories with M M̄ ≥ 0 have entirely real eigenvalues, since they are
similar to a theory with M∗ = M̄ , whose Hamiltonian is Hermitian.

However, there are more general choices of M , M̄ with a real invariant N2, which can be
either N2 ≥ 0 or N2 < 0. Since M M̄ is invariant under the Dyson map (14), the case N2 < 0
can not be mapped to a Hermitian Hamiltonian by the Dyson map (14), which would require
N2 = M M̄ > 0. Thus, N2 = 0 is the exceptional point. We now show that in all these cases,
the holographic theory is PT -symmetric with a proper parity P . See App. A for a fermion
model example with PT symmetry.

Firstly, given a theory with M , M̄ ∈ R, it is PT -symmetric with the following transforma-
tion rules of P ,T and C [1,38]

A φ φ̄ i x1 t

P −A φ̄ φ i −x1 t
T A φ̄ φ −i x1 −t
C −A φ φ̄ i x1 t

(15)

without exchanging the sources M , M̄ . In other words, after the action of P , φ is sourced by M̄
and φ̄ is sourced by M ; after T , φ is sourced by M̄∗ and φ̄ is sourced by M∗. If M , M̄ ∈ R, then
both the bulk action and the boundary condition are invariant under this PT transformation.
A theory with M , M̄ ∈ R defines a ‘standard’ PT frame with respect to the complexified U(1)
transformation, as it entails a ‘standard’ definition of the PT transformation, defined in (15).

Secondly, given a theory with M , M̄ ̸∈ R, but M M̄ ∈ R, we can parameterize the sources as
M = M0 e−iθ ′ and M̄ = M̄0 eiθ ′ with M0, M̄0,θ ′ ∈ R. Then, this theory is exactly the image of
the theory with M0, M̄0 under the complexified U(1) transformation (12) with angle θ = iθ ′.
The former Hamiltonian H ′ is similar to the latter Hamiltonian H via H ′ = eiθ ′QHe−iθ ′Q. Since
H = PT HPT and PT QPT = Q [3], H ′ is invariant under a new P ′T transformation with
P ′ = e2θ ′QP . Starting from the ‘standard frame’ with M , M̄ ∈ R, in any other complexified
U(1) frame, there will be a correspondingly transformed definition of PT under which the
theory is invariant in this frame.

We conclude that each value of the invariant M M̄ = N2 ∈ R labels a class of PT -symmetric
theories related by the complexified U(1) transformation. Without loss of generality, we can
pick a representative in each class with a gauge1

M = M̄ = N . (16)

In this gauge, we will show that φ = φ̄ holds for the solutions in all three phases.

1In Ref. [1], the authors parameterized the complexified U(1) transformation (12) as eθ =
q

1+x
1−x and the

invariant as N 2 = (1 − x2) eM2, where x and eM are real numbers. Thus, changing x with fixed eM2 ̸= 0 in their
paper is simply changing N 2 along the real axis in our paper. Especially, their regions x2 < 1, x2 = 1, and x2 > 1
correspond to our regions N 2 > 0, N 2 = 0, and N 2 < 0, respectively.
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Now we discuss the PT symmetry of the solution. Similarly, to M M̄ labelling a class
of Hamiltonians, each profile of φφ̄ labels a class of solutions related by complexified U(1)
transformation (11) in the bulk. The PT transformation (15) maps φφ̄→ φ∗φ̄∗. Thus, given
a solution with φφ̄ ∈ R, the PT symmetry is preserved by the solution; given a solution with
φφ̄ ̸∈ R, the PT symmetry is spontaneously broken by the solution.

Last but not least, by setting θ = log(M∗/M̄) in the similar transformation (14), we get
Hθ = H†. Therefore, the Hamiltonian (6) is pseudo-Hermitian.

2.2 Equations and Ansatz

We now discuss in detail the equations of motion and the Ansatz for the background solution.
In our numerical calculation, we set the mass of scalar field to be m2 L2 = −2 and L = 1 to
ensure an analytic FG expansion near the conformal boundary. In addition, we choose the
coupling coefficient v = 3/2. The equations of motion read as follows,

Rab +
1
2

gab

�

d(d − 1)
L2

−m2φ̄φ − vφ̄2φ2
�

− D(aφD†
b)φ̄ +

1
2

�

1
4

gabFcd F cd − Fac Fb
c
�

= 0 ,

(17)

∇aF ab + iq
�

φD†bφ̄ − φ̄Dbφ
�

= 0 , (18)

DDφ −m2φ − 2vφ̄φ2 = 0 , (19)

D†D†φ̄ −m2φ̄ − 2vφ̄2φ = 0 . (20)

where we have made use of the on-shell trace of the Einstein equations.
In this paper, we investigate static and translationally invariant solutions for the back-

ground, and hence the following metric and gauge field Ansatz [1]

ds2 =
1
z2

�

−u(z)e−χ(z)d t2 +
dz2

u(z)
+ dx2

�

, A= A(z)d t . (21)

Since we choose m2 L2 = −2, the scaling dimension of the dual scalar operator can have
two cases∆= 1 or 2, which depends on the choice of quantization. Here we work in standard
quantization, and thus identify ∆ = 2. In this setup, the source is identified as the leading
coefficient in the asymptotic expansion form of the scalar field

φ = Mz + 〈O〉 z2 + · · · , φ̄ = M̄z +



O†
�

z2 + · · · (22)

If working in alternate quantization with ∆ = 1, one should do the exchange M ↔ 〈O〉 ,
M̄ ↔



O†
�

. Since neither P nor T exchanges the sources M , M̄ , the expansion after the P
transformation is

φ̄ = Mz +



O†
�

z2 + · · · , φ = M̄z + 〈O〉 z2 + · · · , (23)

and after the T transformation is

φ̄ = M∗z +



O†
�

z2 + · · · , φ = M̄∗z + 〈O〉 z2 + · · · (24)

Clearly, a nonzero source M or M̄ explicitly breaks the U(1) symmetry (5). For a static solution,
we note that the z component of the Maxwell equation (18) requires

φ∂zφ̄ − φ̄∂zφ = 0 . (25)

Thus, the Ward identity
∂µ 〈Jµ〉= iq
�

M



O†
�

− M̄ 〈O〉
�

= 0 , (26)
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vanishes. Jµ is the charge current and µ is the coordinate index on the boundary. The Ward
identity (26) can also be obtained by taking the derivative of (13) w.r.t. θ . The vanishing of
(26) in spite of the explicit U(1) symmetry breaking is due to the fact that the divergence of
the U(1) current is evaluated on a static solution.

Notice that the complexified U(1) invariant combination is φφ̄ = M M̄z2 + · · · . As ex-
plained in detail in Sec. 2.1, in order to label the equivalence class of partition function Z[N2],
we define M M̄ = N2 with the condition N =

p

M M̄ ∈ C. Without loss of generality, we can
still rotate the sources to be M = M̄ = N utilizing the complexified U(1) transformation. By
this rotation, both the equations of motion and boundary condition are invariant under the
exchange of φ↔ φ̄. With (25), we can further consider the following Ansatz for the scalar
fields

φ = φ̄ = ϕ(z) ∈ C , (27)

where ϕ(z)2 = φφ̄ is invariant under the complexified U(1) transformation. The Ansatz
(21)(27) is invariant under the rescaling

(z, t, x)→ (λz, λt, λx) , (u, χ, A, ϕ)→ (u, χ, λ−1A, ϕ) . (28)

Substituting the above Ansatz into the equations of motion, we obtain four independent
equations

−
A2q2ϕ2eχz

u2
+χ ′ − zϕ′2 = 0 , (29a)

−
A2q2ϕ2eχz

2u2
+
−eχz4A′2 + 4ϕ2 − 2vϕ4 + 12(1− u)

4uz
−

1
2

zϕ′2 +
u′

u
= 0 , (29b)

ϕ

u2

�

A2q2eχ +
2u
z2

�

−
2vϕ3

uz2
+ϕ′
�

u′

u
−
χ ′

2
−

2
z

�

+ϕ′′ = 0 , (29c)

A′′ +
A′χ ′

2
−

2Aq2ϕ2

uz2
= 0 , (29d)

and one constraint [52]

QT =
1

4π
eχ/2
�

AA′ −
1
z2
(ue−χ)′
�

, (30)

whose value on the horizon will give the Hawking temperature T . The null energy condition
(NEC) is given by

T z
z − T t

t =
z2

u

�

A2q2ϕ2eχ + u2
�

ϕ′
�2�≥ 0 , (31)

which could be violated once ϕ2 becomes negative.
We consider the asymptotic boundary conditions

u= 1+
1
2

N2z2 + u3z3 + · · · , χ =
1
2

N2z2 +
4
3

N〈O〉z3 + · · · , (32)

A= µ−ρz + · · · , ϕ = Nz + 〈O〉 z2 + · · · ,

with µ the chemical potential, ρ the charge density, and u3 is related to the energy density,
and we have normalized the expectation value 〈O〉 according to the convention in [53]. So
〈O〉2 = 〈O〉



O†
�

is invariant under the complexified U(1) transformation. At finite tempera-
ture, we denote the horizon as zh and impose regularity there, namely,

u(zh) = 0 , χ(zh) = χh , A(zh) = 0 , ϕ(zh) = ϕh . (33)

The Hawking temperature is defined by

T = −
1

4π
e−χ/2u′|z=zh

, (34)
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where u′ refers to ∂zu(z). The entropy density is s = 4π/z2
h . From the holographic renormal-

ization given in App. F, which follows from [63–66], the grand canonical potential densityωG ,
free energy density f , and energy density ϵ can be formulated as

ωG = f −µρ = ϵ − Ts−µρ = −
1
3
(Ts+µρ + 2N 〈O〉) , (35)

which we find more convenient for numeric calculation. Following the rescaling transforma-
tion (28), both the sources and observables change as

(N , 〈O〉 ,µ, T, s,ϵ)→ (λ−1N , λ−2 〈O〉 , λ−1µ, λ−1T, λ−2s, λ−3ϵ) . (36)

Hence, it is convenient to rescale zh to be unit and parameterize the solutions with dimension-
less ratios (N2/T2, µ/T ). We present both the neutral case with µ = 0 and the charged case
with µ ̸= 0 in the following two subsections.

2.3 Neutral background

In this subsection, we construct and characterize the three different phases of the holographic
model (4) for vanishing chemical potential µ= 0, and finite PT deformation sourced by N/T .
We find three different phases, labelled by I, II and III. While the phases I and II have been
found already in [1], the finding of phase III is novel.

2.3.1 Fixed points and zero temperature solutions

Prior to our analysis at finite temperature, we examine the fixed point and RG structure at zero
temperature. In the neutral case with µ = 0, the Maxwell equations (29c) with the boundary
conditions A(0) = A(zh) = 0 are solved by A(z) = 0 globally.

We first analyze the fixed points structure and find the zero temperature solution. Accord-
ing to [52,67], the model (4) at zero chemical potential has three AdS4 fixed points,

UV : u= 1 , χ = 0 , ϕ = 0 , (37)

IR± : u= 1+
1
6v

, χ = 0 , ϕ = ±
1
p

v
. (38)

The UV fixed point is dual to an AdS4 space. Since ∆ = 2 < 3, the deformation in (6) is
relevant. The IR fixed points are dual to two AdS4 spaces with constant scalar field. The IR±
are related by the complexified U(1) transformation (11), which could be reached by the RG
flow triggered by a nonzero source N .

The interpolation between these fixed points is given by the solutions at zero temperature.
We can numerically solve the equations of motion (29) in the |N/T | ≫ 1 limit or directly work
in the domain-wall coordinate [52,67,68]. In Fig. 2, the solutions for the scalar field are plotted
in the complex ϕ2 plane, i.e. in an invariant way under the complexified U(1) transformation
(11). We find one real solution for N2 > 0 and two complex conjugate solutions for N2 < 0,
reproducing the result of [1]. Our numeric calculation yields the free energy density, which
coincides with the energy density at zero temperature, f ≈ 0.89N3 and

�

0.89N3
�∗

in the two
branches respectively. The free energy is real when N2 > 0 and imaginary when N2 < 0. The
real solution preserves the PT symmetry and the complex solutions break the PT symmetry.
We will see that they are, respectively, the zero temperature limits of phase I and phase III
defined in the next section. The real solution, illustrated by the blue RG flow in Fig. 2, preserves
NEC (31), and the RG flow accordingly satisfies the holographic c-theorem [69, 70]. On the
other hand, the complex solutions, illustrated by the green RG flow in Fig. 2, make the left-
hand side of the NEC (31) complex. So there is no meaning to the c-function derived from the
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Reφ2

Im
φ
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

Figure 2: The flows of ϕ(z)2 at zero temperature in the complex plane. They are
interpolating between the UV fixed point (purple point) and the two IR fixed points
(red point). The flow denoted by the blue curve satisfies the boundary condition
N2 > 0. The complex conjugate flows denoted by the two green curves satisfy the
boundary condition N2 < 0. The dashed curves denote some of the other flows
interpolating the two fixed points but not satisfying the boundary condition N2 ∈ R.

scale factor in the holographic c-theorem. But the resulting background geometry becomes
real AdS4 both in the UV and IR limit, in which the inequality for the central charges cUV ≥ cIR
as read from the scale factor is still fulfilled. At the exceptional point, the scalar decouples and
the background geometry is an AdS4 fixed point.

Besides these three solutions, there are families of solutions in the complex plane that
can interpolate the fixed points but do not satisfy the boundary condition N2 ∈ R. These are
related, via the complexified U(1) transformation (12), to the N2 ∈ R case.

2.3.2 Phase diagram at finite temperature

We also numerically solve the equations of motion (29) at finite temperature. In virtue of the
rescaling symmetry (28), we can fix the horizon radius to zh = 1. This allows to determine
the solutions as functions of only the radial coordinate z and the dimensionless ratio N/T . We
perform the numerical integration of the equations (29) with the boundary conditions (32)
and (33) at a specific value of N . The temperature T is determined from (34). We investigate
the phase structure by varying the values of N2, and plot the expectation value for the scalar
operator 〈O〉, free energy density f , and energy density ϵ in Fig. 3. We find the following
phase structure:

Phase I In the region N2 ≥ 0, we find one branch of real solutions, which manifestly preserves
the PT symmetry. The expectation value 〈O〉 is real and negative. The solution in the
N/T ≪ 1 limit coincides with the analytical approximation given in Sec. 2.3.3. The
solution in the N/T ≫ 1 limit asymptotes to the real solution at zero temperature given
in Sec. 2.3.1. In addition, NEC is also preserved for all values of N/T . The observed
increase in the energy density ϵ and the free energy density f with increasing N/T is
expected, since we introduce a source in the boundary field theory.

Phase II In the region (N/T )2c ≤ (N/T )2 < 0, there exist two branches of solutions with
real metric and imaginary scalar field values [1]. The expectation value 〈O〉 is purely
imaginary. Even though φφ̄ is negative, these solutions still preserve PT symmetry.
For v = 3/2, we numerically find a critical ratio (N/T )2c ≈ −3.6. As in [1], these two
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Figure 3: 〈O〉/N |T | (a), f /|T |3 (b), and ϵ/|T |3 (c) as multivalued functions of
N2/ |T |2, whose real (imaginary) part is denoted by solid (dashed) curves. The tra-
jectories of T/|N | in its complex plane are shown in panel (d). The results in phases
I, II, and III are represented by blue, orange, and green curves respectively.

branches are both unstable in the sector of scalar (At , Ax ,ϕ) perturbations. In addition,
NEC is violated in this case. Interestingly, the branch connected to phase I has a higher
free energy density, but a smaller energy density in comparison to the other branch.

Phase III In the region of (N/T )2 < (N/T )2c , we do not find any solution with real ϕ2 and
real metric. However, if we allow the fields to take complex values, we do find a pair
of complex conjugate solutions with complex ϕ2 and complex metric, for which PT
symmetry is spontaneously broken. We extract two complex conjugate temperatures
T, T ∗ from imposing regularity on the horizon. The solutions in the |N/T | ≫ 1 limit
asymptote to the two complex solutions at zero temperature discussed in Sec. 2.3.1.
The expectation value 〈O〉, free energy f , and energy density ϵ are complex. Also, the
left-hand side of NEC (31) becomes complex. From the quasi-normal mode (QNM)
analysis presented in App. (B), the two complex conjugate branches are also unstable.

We now discuss the complex metrics and complex temperatures in phase III in detail. For
both solutions in phase III, the metric we calculate numerically has the following asymptotic
behavior

ds2→

¨�

−d t2 + dz2
�

/z2 , z→ 0 ,
1

−u′(zh)

�

−(zh − z)(4πT )2d t2 + dz2

zh−z

�

, z→ zh .
(39)

Here T ∈ C, Re(T )> 0, and we omit the spatial coordinates. From imposing regularity at the
horizon, the coordinate time t acquires a complex period, t ∼ t + iβ with β = 1/T . If we
define a new Euclidean time direction τ = i2πT t such that it has periodicity τ ∼ τ+ 2π, the
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metric becomes

ds2→

¨�

(β/2π)2dτ2 + dz2
�

/z2 , z→ 0 ,
1

−u′(zh)

�

4(zh − z)dτ2 + dz2

zh−z

�

, z→ zh ,
β ∈ C , Re(β)> 0 . (40)

We see that the line element on a boundary cut-off slice is now complex,

dτ2
bdy

ε2
=
β2dτ2

(2πε)2
, (41)

where τbdy is the boundary time and ε is the UV cutoff. Eq. (41) implies a complex inverse
temperature β in the partition function

Z(β) = Tr[e−
∫ β

0 dτbdyH] , β ∈ C . (42)

Complex metrics and complex time periods are not exotic in holography. In App. D, we review
the “double cone” geometry contributing to the spectral form factor, which also admits complex
line element on the boundary, and an interpretation involving a complex temperature.

The two complex conjugate solutions in phase III correspond to partition functions with
two complex conjugate inverse temperatures,

Z(β) = Tr[e−βH] , Z(β∗) = Tr[e−β
∗H] , β = 1/T ∈ C . (43)

Their related complex free energies and complex internal energies are shown in Figs. (3b) and
(3c). We further checked explicitly that the |β | →∞ limit of the two finite temperature solu-
tions in phase III approach the two zero temperature solutions of [1] discussed in Sec. 2.3.1.
Note that the zero temperature limit generally has to be taken along either of the two complex
trajectories shown in Fig. 3d corresponding to the two solution branches.

Our holographic interpretation involving complex temperatures in phase III also resolves
the following puzzle: The solutions in phase III have complex energies. However, since the
PT -symmetric Hamiltonian (6) in holography is pseudo-Hermitian, even in the PT -broken
phase, both the partition function Z(β), as well as the thermodynamic average of the energy
〈E〉, should be real for real β . This apparent contradiction is resolved by concluding that the
correct definition of the temperature must be complex in order to avoid a conical singularity at
the horizon, and hence both partition functions in (43) are complex conjugate to each other.

The emergence of complex temperatures in the PT -broken phase is also expected in PT -
symmetric non-Hermitian systems. This can be seen even in the two-level system analyzed
in detail in App. E, where we show that the free energy encounters a branch cut when the
temperature is lowered. When the branch cut appears, one should select one branch of the two
complex conjugate temperatures, as the PT -broken phase is entered. The zero temperature
limit is taken by fixing a nonzero argument of β and sending |β | →∞, which reduces both
the free energy and the average energy to one of the eigenenergies.

2.3.3 The probe limit

We can solve the scalar equation (29d) analytically when the source of the scalar field N in
is small compared to the temperature T . In this situation, the bulk geometry can be approx-
imated as an AdS4-Schwarzschild black hole with a scalar field ϕ in the probe limit, i.e. the
propagation of this field does not alter the bulk geometry to leading order in ϕ. The AdS4–
Schwarzschild solution is given by

u(z) = 1−
z3

z3
h

, χ(z) = 0 , zh =
3

4πT
. (44)
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Figure 4: Re[〈O〉2]/µ4 on the plane spanned by N2/µ2 and |T |/µ. The red curve
denotes the transition between phase II (right) and phase III (left).

The equation (29d) reduces to

ϕ′′(z) +
�

u′(z)
u(z)
−

2
z

�

ϕ′(z) +
2

z2u(z)
ϕ(z) = 0 . (45)

This equation admits a solution regular at the horizon,

ϕ(z) = Nz





2F1

�

1
3

,
1
3

;
2
3

;
z3

z3
h

�

−
2π3/2z 2F1

�

2
3 , 2

3 ; 4
3 ; z3

z3
h

�

Γ
�1

6

�2
Γ
�7

6

�

zh



 , (46)

with the asymptotic behavior

ϕ(z→ 0) = N z −
2π3/2N

zhΓ (1/6)
2 Γ (7/6)

z2 + · · · (47)

From the near boundary expansion, we find

〈O〉
N T
= −

p
2(2π)5/2

3Γ (1/6)2 Γ (7/6)
≈ −1.63 , (48)

which matches the numerical result given in Fig. 3a in the limit |N/T | ≪ 1.

2.4 Charged backgrounds

In this subsection, we discuss the case of finite chemical potential µ and derive the charged
background solutions numerically. Due to the relation (27) derived from the Maxwell equa-
tion, for a given solution at finite µ, the counterpart with −µ can be obtained just by changing
the sign of A, while keeping other fields fixed. So, and without loss of generality, we restrict
to the µ > 0 case.

From the background solutions, we study the phase structure in the (N2/µ2, |T |/µ) plane
numerically. This is shown in Fig. 4. In particular, we find that the global phase structure
above |T |/µ≈ 0.02 is similar to the neutral case in Fig. (1).

Below |T |/µ ≈ 0.02, the system has the superconducting instability of the U(1) scalar
field of [53, 54]. When N = 0, this is a second-order phase transition, while for N2 ̸= 0, the
transition becomes a cross-over, namely, the VEV 〈O〉 grows smoothly from a non-zero value
below the critical temperature. For the holographic superconductor, this crossover was studied
in [71]. Since the transition temperature is very small, we do not display it in Fig. 4.
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3 Conductivity and the sum rule

In this section, we study the linear response of the model (4), and derive the AC conductivity.
We consider the Kubo formula of conductivity

σµν(ω) =
GµνR (ω+ iε)

i(ω+ iε)
, (49)

GµνR (t) = −iθ (t)
Tr
�

e−βH[Jµ(t), Jν]
�

Tr
�

e−βH
� , Jµ(t) = eiH t Jµe−iH t , (50)

where GµνR is the retarded Green’s function, ε is a positive infinitesimal number, and the time
evolution is defined in (9). We will compute the longitudinal conductivity σ(ω) = σx x(ω)
with GR(ω) = G x x

R (ω) and check the validity of the sum rule numerically.
The complexified U(1) transformation (11) does not change the Maxwell field A. Thus,

the charge current operator 〈Jµ〉, and also its correlation function, are both invariant under
the Dyson map

Jµ = eθQ/2Jµe−θQ/2 , Tr[eiH t Jµe−iH t Jνe−βH] = Tr[eiHθ t Jµe−iHθ t Jνe−βHθ ] . (51)

This invariance also holds for the fermion model presented in App. A. In order to calculate
the conductivity from holography, we work in the gauge (16). In addition, notice that the
perturbation equation (59) relevant for the conductivity depends on the scalar fields via the
complexified U(1) invariant profile ϕ2 only. Therefore, in phase I, we expect the derivation of
the AC conducitivity to be equivalent to the Hermitian case. The invariance of Dyson map in
holography also supports our definition of evolution and Green function (50).

However, since the theory with N2 < 0 is not similar to a Hermitian theory via Dyson map
(14), the conductivity relation

σ(ω) = σ(−ω)∗ , (52)

may not necessarily hold in the N2 < 0 region. Remarkably, we will show that (52) is a
necessary condition in order for the sum rule to hold.

We firstly check the sum rule (3) by analyzing the properties of the retarded Green’s func-
tion of the charged current following [56]. As required by causality and the asymptotic be-
havior of the retarded Green’s function for the sum rule to hold, the following two conditions
must be met:

1. GR(ω) is analytical on the upper half plane and on the real axis,

2. lim|ω|→∞ GR(ω) = iω.

The first condition can be checked from the QNM spectrum in the holographic model, which
will be done at the end of this section. The second condition is related to the asymptotic be-
havior of GR(ω) in the high frequency limit, which for this model becomes the current Green’s
function of the AdS-Schwarzschild black hole without any scalar fields. By applying Cauchy’s
theorem, we have

GR(ω+ iε)− iω=

∫ ∞

−∞

dz
2πi

GR(z)− iz
z −ω− iε

, 0=

∫ ∞

−∞

dz
2πi

GR(z)− iz
z −ω+ iε

. (53)

Adding up the first integral and the complex conjugate of the second integral leads to the
spectral representation

GR(ω)− iω= lim
ε→ε

∫ ∞

−∞

dz
π

Im[GR(z)]− z
z −ω− iε

. (54)
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Setting ω= 0 and using the Cauchy principal value integral, we obtain the sum rule (3).
In order to check the sum rule numerically, we also need to introduce the integrated spec-

tral weight Sσ(Ω),

Sσ(Ω) =

∫ Ω

−Ω
(Re[σ(ω)]− 1)dω . (55)

In particular, notice that Sσ(∞) = 0 is exactly the sum rule (3). In the pure AdS-Schwarzschild
case, it vanishes exactly regardless of ω. A non-zero value of (3) would signal a severe break-
down of either causality, unitarity, or charge conservation, due to the P- and T -invariance
violation in the model (4).

3.1 AC conductivity

As the time evolution (9)(49) realized in AdS/CFT is of the same form as in the Hermitian
case, we follow the standard procedure to derive the conductivity within the AdS/CFT cor-
respondence [72] from linear gauge field perturbations. We consider the fluctuations of the
gauge field and metric component

δAx = a(z)e−iωt , δgt x = ht x(z)e
−iωt , (56)

in the equations (17)-(20). The only non-trivial equations come from the t x component of
the Einstein equations and the x component of the Maxwell equations, which read

az2A′ + h′t x = 0 , (57)

4u2z2a′′ + uza′
�

eχz4
�

A′
�2
+ 12u− 4ϕ2 + 2vϕ4 − 12

�

+ a
�

4eχω2z2 − 8q2uϕ2
�

+ 4ueχz2A′h′t x = 0 . (58)

The mix between a(z) and ht x(z) indicates a coupling of charge current and momentum.
Solving (57) for h′t x(z) and substituting it in (58), we get a single equation for a(z)

4u2z2a′′ + uza′
�

eχz4
�

A′
�2
+ 12u− 4ϕ2 + 2vϕ4 − 12

�

− 4a
�

eχz2
�

uz2
�

A′
�2 −ω2
�

+ 2q2uϕ2
�

= 0 . (59)

Imposing the ingoing boundary condition at the horizon

a(z) = (zh − z)−i ω
4πT b(z) , (60)

and requiring the regularity of b(z) near zh, we get the retarded Green’s function G x x
R (ω).

From the Kubo formula (49), we get

σ(ω) =
a′(0)

i (ω+ iε) a(0)
. (61)

The infinitesimal shift ε accounts for the delta peak at ω = 0 in the real part of the conduc-
tivity, which is essential for examining the validity of the sum rule (3). In the high frequency
limit, namely ω ≫ |T | ,µ, |N |, the conductivity approaches σ → 1, as expected for the AdS-
Schwarzschild geometry that governs the UV, while the low frequency behavior depends on the
IR geometry. The low-frequency behavior is governed by the Kramers-Kronig (KK) relation,
with two contributions denoted by ρn and ρs in such a way that

σ(ω) = (ρsq
2 +ρn)
�

πδ(ω) +
i
ω

�

+ regular terms , (62)

where ρs is the superfluid density and ρn is the normal charge density. Next, we present the
numerical results of the AC conductivity on both the neutral and charged backgrounds and
further analyze the asymptotic behaviors at high and low frequencies.

16

https://scipost.org
https://scipost.org/SciPostPhys.16.1.004


SciPost Phys. 16, 004 (2024)

Figure 5: ρsq
2/T as a function of 〈O〉2 /T4 in phases I (ρs > 0) and II (ρs < 0)

with µ= 0. Phase III, where ρsq
2/T becomes complex and is not shown in this plot,

extends from the phase II at ρsq
2/T ≈ −1.3.

3.2 Numerical results

We first calculate the conductivity on the neutral background, i.e. µ = 0. The conductivity σ
shown in the left panels of Figs. 6, 7 and 8 correspond to phase I, II and III respectively. The
right panels of these figures show the convergence of the integral (55), which is used to check
the validity of the sum rule.

In the high frequency limit, there exists a common asymptotic behavior for all phases,
σ(ω) → 1, or GR(ω) → iω for ω →∞. This is exactly the conductivity for the asymptotic
AdS-Schwarzschild background in the UV regime. In the right panels of Figs. 6, 7 and 8, we
also observe that the integral Sσ(Ω) in (55) always exhibits a power-law decay at Ω/|N | ≫ 1,
which confirms that the sum rule always holds. As an independent check, we also show that
the sum rule holds from the quasi-normal modes spectrum at the end of this section.

In the low frequency limit, the conductivity agrees with our expectation (62) with ρn = 0
due to the neutrality of the background. We extract ρs from fitting the numerical conductivity
and show it as a function of the square of the condensate 〈O〉2 in Fig. 5. In particular, we find
ρs ∼ 〈O〉

2 /T3 for small 〈O〉2. Therefore, the low frequency behavior of conductivity varies
with the particular phase considered, with the following properties:

Phase I In this phase, we find that Imσ can be approximated as ρsq
2/ω with ρs > 0 at low

frequencies. Due to the form (62), the conductivity satisfies the relation (52), as required
by Hermiticity. In addition, the regular part of σ(ω) fulfills Reσ < 1. This is required
by the existence of a positive weight of the δ(ω) function due to the sum rule.

Phase II In this phase, Imσ can still be approximated as ρsq
2/ω at small ω, except that now

ρs < 0. Since ρs ∈ R, the conductivity still satisfies the relation (52). Furthermore, we
observe that the analytical part of σ(ω) fulfills Reσ > 1, which is also required by the
existence of a negative weight of the δ(ω) function in the sum rule.

Phase III In this phase, we find that σ ≈ iρsq
2/ω at small but nonzero ω with ρs ∈ C.

Our numerical analysis finds that ρs ∈ C, and hence both Reσ and Imσ have 1/ω
behavior. Consequently, the conductivity does not satisfy the relation (52). Instead, the
conductivity on the one branch of the background is mapped to the one on its conjugated
branch under the change ω → −ω by (52). This requires to include δ(ω) in both the
real and imaginary parts as well.

The PT symmetry is preserved in phases I and II, but broken in phase III. This breaking
leads to the emergence of the complex weight ρs and thus, to the breaking of the symmetry
(52) of the conductivity under the reflection ω→ −ω. Still, the sum rule always holds. The
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Figure 6: Left: The conductivity in phase I as a function ofω/T . The real (imaginary)
part is denoted by solid (dashed) lines. Right: The integral spectral weights (55) as
functions of the frequency bound.
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Figure 7: The conductivity and its integral in phase II.

analytical study of conductivity in the probe limit N ≪ T in App. C also confirms the sum rule
and shows that the superfluity density is proportional to the scalar field source, ρs∝ N2.

We also investigated the conductivity for finite chemical potential µ. By inspecting Fig. 9,
we can observe, as we dial N/µ, a competition between the superfluid density ρs and normal
charge density ρn in the low frequency limit (62) in phase II. The weight ρsq

2 + ρn can be
either negative or positive. Nevertheless, the sum rule always holds, as illustrated in the right
plot of Fig. 9. The combination of ρsq

2 +ρn also appears in phases I and III numerically.

3.3 Sum rule from quasi normal mode

We already observe the power law decay of the integral Sσ(Ω) numerically in last subsection.
In this subsection, we doubly check the first condition for the sum rule, stability, namely GR(ω)
being analytic both on the upper half plane and the real axis. The poles of GR(ω) are given
by the QNMs of the (Ax , gt x) components [57]. For our numerical analysis, we arrange the
differential equation (59), the boundary conditions (60) and a(0) = 0 together as a linear
differential operator D of the form

D[a(z)] = 0 . (63)

If the determinant of (63) vanishes for a set of frequencies, we found a QNM. One can write
the operator D as a matrix and calculate the 1/det[D]. In Fig. 10, we plot this quantity as
a function of the complex frequency, and infer that there is no pole on the upper half plane
and the real axis. This shows that the retarded Green’s function GR(ω) is analytic both on the
upper half plane and the real axis. Therefore, the first condition for the sum rule mentioned
in Sec. 3 is satisfied. By combining it with the asymptotic condition GR(ω) = iω for |ω| →∞
due to the UV fixed point, we independently confirm that the sum rule holds in all the phases.
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Figure 8: The conductivity and its integral in phase III.
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Figure 9: The conductivity and its integral in phase II at finite charge. The spike
in the yellow curve in the right panel is due to the integral (55) going through a
zero at some finite cutoff frequency Ω, which in the log-log plot leads to an apparent
divergence.

4 Field theory: U(1) rotor model

To better understand phase III, in which the complex superfluity density emerges in the PT -
symmetric holographic model, in this section, we construct an effective model in field theory
which reproduces the phase transitions and the zero frequency spectral weight of conductivity
found in the holographic model. We start from a U(1) rotor model with a charged scalar
φ coupled to a gauge field Aµ. Then, we allow the scalar field φ to be independent from
its complex conjugate φ̄, such that the original U(1) symmetry is complexified. We refer to
this model as the complexified U(1) rotor model. After this, we break the complexified U(1)
symmetry and also Hermiticity by introducing the PT -symmetric deformations. Its action in
Minkowskian signature takes the form

Sφ = −
∫

dd x
�

DµφD†µφ̄ + V (φ, φ̄) + M̄φ +Mφ̄
�

, V (φ, φ̄) = rφφ̄ +
1
2

uφ2φ̄2 , (64)

where Dµ = ∂µ− iqAµ, φ and φ̄ are two independent fields, r is the mass square, u is coupling
constant, and M , M̄ are two independent sources, respectively. So this model is an analogue of
the holographic model (4). Following (15), the application of T transforms φ↔ φ̄, i↔−i,
and the application of P transforms φ↔ φ̄. Letting Aµ = µd t and considering a static and
translational invariant solution to the scalar fields, the saddle point φs, φ̄s of the potential
satisfies the following equations

rµφs + uφ2
s φ̄s +M = 0 , rµφ̄s + uφ̄2

s φs + M̄ = 0 . (65)
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Figure 10: 1/det[D] in the complex ω/T plane in phase I, II, and III (from left to
right), where the color denotes the argument and the shading denotes the absolute
value of 1/det[D]. The white points denote the poles. The three plots correspond
to (N2/µ2, T/µ) = (6.2, 2.4), (−6.2,2.4), (−100,2.4+ 0.1i), respectively.

where rµ = r − q2µ2 stands for the effective mass square. Similar to the holographic model,
we can consider the complexified U(1) transformation,

M → Me−θ , M̄ → M̄ eθ , θ ∈ C . (66)

Then, the saddle point solution follows the transformation rules

φs→ φs e−θ , φ̄s→ φ̄s eθ , (67)

such that the on-shell action is invariant. This transformation preserves M M̄ and ρs = 2φsφ̄s,
which enables us to choose M = M̄ = N ∈ C without loss of generality. Once N ̸= 0, the
equations give φs = φ̄s = ϕs. Finally, the on-shell action can be related to a PT -symmetric
action via the complexified U(1) transformation if M M̄ = N2 ∈ R.

We restrict to the u> 0 case, in order for the potential to be bounded from below for real
φ,φ̄. When N = 0, the action admits the global U(1) symmetry

φ→ φ e−iα , φ̄→ φ̄ eiα . (68)

If we set rµ < 0, the effective potential of ϕs looks like a Mexican hat with three extrema on
the real axis. Then the U(1) symmetry will be broken spontaneously by the nonzero solution.
However, in holographic approach (4), we consider an explicit breaking of the U(1) symmetry
under the transformation (5). Thus, in order to establish an analogy to the holographic model,
we consider rµ > 0. This entails that there is only one saddle point of the potential V (φ, φ̄)
on the real axis. To break the U(1) symmetry explicitly and trigger nonzero solution, we turn
on the source N .

Around the resulting saddle point, we consider phase fluctuationsφ=ϕse
−iα and φ̄=ϕse

iα.
The action in the small α expansion is then given by

Sα ≈ −
1
2
ρs

∫

dd x
�

(∂µα− qAµ)(∂
µα− qAµ)−m2α2

�

, (69)

where ρs = 2ϕ2
s plays the role of the superfluid density and the mass square of pseudo-

Goldstone is
m2 = N/ϕs . (70)

To study the dynamic stability around a saddle point ϕs, we consider a general fluctuation
φ = ϕs+δφeikµxµ , φ̄ = ϕs+δφ̄eikµxµ with kµ = (ω, k⃗) and extract their effective mass square
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Figure 11: The movement of the saddle point solution ϕs (left) and superfluid con-
densate ρs (right) in the complex plane when N2 decreases from 30 to −30 and
rµ = 2, u = 1. The blue dots, orange dots, and green dots denote phase I, phase II,
and phase III, respectively. The transition between phase I and phase II happens at
N2 = 0 and the transition between phase II and phase III happens at N2

c = −1.18.

matrix M2. The linear perturbation equation in the frequency-momentum domain is

0=
�

(kµσ0 − qAµσ3) · (kµσ0 − qAµσ3) +M2
�

δφ⃗

=
�

(−ω2 + k2 + rµ + 2uϕ2
s )σ0 + uϕ2

sσ1 − 2µωσ3

�

δφ⃗ , (71)

where δφ⃗ =

�

δφ,
δφ̄

�

, M2 =

�

r + 2uϕ2
s uϕ2

s
uϕ2

s r + 2uϕ2
s

�

, k2 = k⃗ · k⃗ .

σ1,2,3 are Pauli matrices and σ0 is the 2× 2 identity matrix. The zeros of the determinant of
the coefficient matrix

det=ω4 − 2ω2(k2 + rµ + 2q2µ2 + 2uϕ2) + (k2 + rµ + uϕ2)(k2 + rµ + 3uϕ2) , (72)

determine the frequencies of zero modes. A stable saddle point requires real zeros, i.e. ω2 ≥ 0
and vice versa. Thus, when rµ > 0, u > 0, only those saddle points with rµ + 3uϕ2

s ≥ 0 are
stable.

We always find three saddle points in the complex plane because of the quartic potential.
Their movement depending on the value of N2 is shown in Fig. 11. One of the saddle points re-
mains a spectator, which does not merge with the others throughout the domain of parameters
we study. We find three different phases as follows:

Phase I When N2 ≥ 0, there is one real solution ϕs with ρs > 0, and two complex conjugate
values of ϕs with ρs ∈ C. Only the real solution is stable.

Phase II When N2
c < N2 < 0, there are three imaginary values of ϕs with ρs < 0. Only the

solution connected to the real solution in phase I is stable.

Phase III When N2 < N2
c , there is one imaginary ϕs with ρs < 0 and two complex conjugate

values of ϕs with ρs ∈ C. All solutions are unstable.

The transition between phase II and phase III is due to the collision of two imaginary saddle
points, which is analogous to the case in the holographic model. Going along those unstable
directions, φ and φ̄ will travel to another saddle point, move circularly or even flow to infinity.

In all phases, the U(1) current is

Jµ = −
δSα
δAµ

= −ρsq(∂
µα− qAµ) . (73)
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The Kubo formula in frequency-momentum space is

Kµν(ω, k⃗) =
δ 〈Jµ(k)〉
δAν(k)

= −ρsq
2
�

ηµν −
kµkν

k2 +m2

�

. (74)

The superfluid conductivity along the x direction is

σs(ω) =
K x x(i(ω+ iε), k⃗ = 0)

i(ω+ iε)
= ρsq

2
�

πδ(ω) +
i
ω

�

. (75)

The integral of the spectral weight is
∫ ∞

−∞
Reσs(ω)dω= πρsq

2 , (76)

which depends on the sources M and M̄ via ρs only. Notice that from (76), no actual violation
of the sum rule can be deduced, as we are considering the phase fluctuation at quadratic order
in (69) and ignoring the existence of loop corrections coming from both phase and absolute
value (Higgs mode) fluctuations, which is the reason for the absence of the normal (not su-
perconducting) contribution to the conductivity. In summary, the rotor model (64) reproduces
the behavior of the condensate in all three phases found in the holographic model (4).

5 Conclusions

In this work, we studied the solution structure and AC conductivity for the non-Hermitian
holographic model of [1], both at zero and at finite density. The solution space we examined
consisted of the two sources of the U(1) complex scalar operator M and M̄ , the temperature
T , and chemical potential µ. The PT -symmetric non-Hermitian deformation consists of effec-
tively decoupling M and M̄ , where in the usual Hermitian setup, M̄ is the complex conjugate
of M . The PT deformation switches on sources for the scalar operators 〈O〉 and




O†
�

, which
in the Hermitian case also are complex conjugate to each other. Both operators receive expec-
tation values, i.e. condensates 〈O〉 and




O†
�

. Note that the sources M and M̄ break the U(1)
symmetry explicitly, and not spontaneously as in the holographic superconductor of [41].

Within the explored solution space, there are two PT -symmetric phases at finite tempera-
ture with real (phase I) and imaginary (phase II) condensates, respectively, which have already
been constructed in [1]. The finite temperature solutions in phase II approach the exceptional
point in a zero temperature limit in which the ratio N/T is held fixed. We furthermore calcu-
lated the free energy in phase II (c.f. Fig. 3b), and in this way identified the thermodynamically
dominant solution branch. Since the exceptional point in the holographic model [1] is exactly
AdS4, the phase diagram Fig. 1 suggests that phase II is actually part of a quantum critical
region at finite temperature, which emanates from the quantum critical exceptional point at
zero temperature.

We also presented and discussed in detail the emergence of aPT -broken finite temperature
phase with complex condensates (phase III). We checked that our finite temperature solutions
approach, in the zero temperature limit, the complex conjugate pair of extremal solutions
constructed in [1]. A peculiar feature of our finite temperature solutions in phase III is that the
metric sourced by the scalar field also becomes complex, while it remained real in phases I and
II. Requiring the absence of a conical singularity at the horizon implies that the temperature
acquires an imaginary part in phase III. While a complex temperature seems puzzling at first,
as discussed in App. D, a similar phenomenon appears in the double cone geometry of JT
gravity. In addition, we quantified the transition point from phase II to phase III, which occurs
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at a critical value of (N/T )c ≈ −3.6. We note that in general, this value is a function of
the conformal dimension ∆ = 2, the charge of the scalar field q = 1, and the coefficient of
the quartic term in the action v = 3/2. For future work, it will be interesting to explore the
parameter space (∆, q, v) thoroughly in order to further analyze the phase structure of PT
deformed holographic Einstein-Maxwell-scalar theory [52, 73]. In addition, following [74]
and analysing quantum critical points from the top-down perspective should be insightful as
well.

Although the phase diagram in Fig. 1 is calculated in a holographic model, the overall
phase structure with phase I, II, III is reminiscent of a quantum phase transition of a pseudo
Hermitian system, where the PT symmetry is spontaneously broken due to collision between
the two lowest energy eigenstates prior to any other states. Consider the energy eigenvalues
{Ei} as functions of the strength of the PT -symmetric deformation N2. For N2 ≥ 0 case,
Ei ∈ R and satisfies Ei < Ei+1, while for N2 < 0 case, E0 = E∗1 = x + i y ∈ C in which x , y ∈ R.
The partition function is

Z =
∑

i=0

e−βEi = 2e−β x cos(β y) +
∑

i=2

e−βEi = 2e−β x cos(β y) + Z ′′ .

For small−N2 > 0, we have Ei ∈ R for any i ≥ 2 and then Z ′′ > 0. Furthermore, for sufficiently
low temperature T = 1/β , e−β x > Z ′′. Thus there are supposed to exist lines in the N2 v.s. T
plane satisfying Z = 0. The line with highest temperature will be the boundary between phase
II and III, above which the system is in phase II with Z > 0 and F ∈ R, and below which it is
in phase III with Z < 0 and F ∈ C, depending on the branches of β . As an example, the same
phase structure was also observed for the simple two-level system in App. E.

Furthermore, we calculated the AC conductivity for each of the three phases and observed
a shift of spectral weight to a delta function at zero frequency as a function of the PT breaking
parameter N . Zero frequency spectral weight can be induced by the condensation of charged
operators as well as by normal charge densities, with the latter being absent at zero chemical
potential. We found that the zero frequency spectral weight induced by the condensate is
positive in phase I, negative in phase II, and complex in phase III, leading to a delta function
and a 1/ω pole in both Reσ and Imσ. Still, in all three cases, a mode analysis in the (Ax , gt x)
channel related to the longitudinal charge transport shows that the Kramers-Kronig relations
hold, as all quasinormal modes are in the lower half frequency plane. Moreover, the quantum
critical conductivity, which is the DC limit of the real analytic part of the AC conductivity, is
suppressed in phase I and enhanced in phase II, as compared to the value σQ = 1 (in units
of e2/h) for the AdS-Schwarzschild solution [75]. We also extracted the quantum critical
conductivity in phase III, finding a complex value for σQ due to the breakdown of the relation
(52) In contrast, if (52) holds, the imaginary part of σQ always vanishes. We also observe
that the FGT sum rule always holds from two perspectives: 1) as a direct integral of the real
part of the AC conductivity, and 2) from the analysis of the quasi-normal mode spectrum.
The sum rule holds both in the PT -symmetric and broken phases, and also at finite chemical
potential, and is in essence responsible for the suppression or enhancement of the quantum
critical conductivity due to the spectral weight in the δ(ω) pole. We would like to stress again
that the sum rule holds in [40] due to a quite different reason: the U(1) symmetry remains
unbroken and the charge conservation holds dynamically. Also the AC conductivity in [40]
exhibits a hard gap at zero temperature, in contrast to the holographic superconductor [73].

We also constructed and analyzed a complexified U(1) rotor model with an analogous
PT -symmetric deformation from effective field theory principles. By tuning the sources of the
scalar operators, we find real, imaginary and even complex solutions. The nonzero sources
break the U(1) symmetry explicitly, and pseudo-Goldstone bosons with a finite mass appear.
We studied the AC conductivity in all phases of the rotor model. We found an analogous shift
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of spectral weight to the delta functions at zero frequency as in the holographic model. The
spectral weight is given by the condensates. The rotor model also admits some differences to
the holographic model: First, from (76), we find that the apparent violation of sum rule in all
phases, as we only consider the phase fluctuation around the saddle point in the rotor model,
instead of solving the whole model, including the absolute value of the scalar field. Second,
as evident from the left panel of Fig. 11, in all three phases, the rotor model has one or more
additional complex solution compared to the holographic model Fig. 3. However, this does
not necessarily mean that the holographic model has another solution that we possibly missed
in our numerical analysis. As all the properties of the solutions of the holographic model are
reproduced by at most two solutions of the rotor model, it looks as if the additional solution in
the rotor model is just a spectator which does not play any role in the universality argument.

For future work, it will be interesting to investigate PT -symmetric non-Hermitian versions
of superconductivity in holography [76], and compare to recent field theory studies [77–83], as
well as to holographic hydrodynamics [71]. Another interesting route is to further investigate
PT -symmetric deformations of SYK-type models, following [84–89]. We also studied the shear
viscosity on the holographic background, and found that the KSS bound [90] is still saturated,
as expected for an asymptotically AdS background. However, η/s could behave non-trivially if
we combine higher derivative corrections with PT symmetric non-Hermicity [91,92]. Finally,
it will be interesting to calculate the quantum critical conductivity from kinetic theory in a
PT -symmetric Dirac metal along the lines of [93], in order to understand how sensitive is the
suppression/enhancement feature we found in the holographic model to the coupling strength.

Moreover, it is interesting to study the entropy of the non-Hermitian model in holography.
The pseudo entropies for non-Hermitian transition matrices of were studied [94–97]. In non-
Hermitian systems, the transition matrices were considered as |L0〉 〈R0| instead of |R0〉 〈R0| or
|L0〉 〈L0| as its convenience in path integral [98, 99], where |R0〉 and 〈L0| are the right and
left eigenvectors with lowest real part of energy, respectively. Based on our analysis, when
the ground state energies become a complex pair in the PT-broken phase, we could obtain the
transition matrix |L0〉 〈R0| by taking 1

Z e−βH in the limit |β | →∞ with a fixed imaginary angle
of β , which is exactly the zero temperature limit considered in this paper. Remarkably, we
indeed found a solution with complex metric in phase III including the zero temperature limit
in Sec. 4. So we could obtain an extremal area taking complex values according to the RT
formula, which agrees with the pseudo entropy could take complex values [96].

Finally, in this paper, we use the standard GKPW relation (7) in Euclidean time and analyti-
cally continue it to Lorentzian time (9). This defines a particular holographic time evolution in
the presence of the PT deformation. Alternatively, some studies [61,62,100] consider a Her-
mitian density matrix ρ such as the Gibbs state ρ∝ e−βHCFT , and define real time evolution as
e−iH† tρeiH t with the non-Hermitian Hamiltonian H. Correspondingly, the Heisenberg picture
of an operator O becomes O(t) = eiH† tOe−iH t , and the expectation value will in general be
time-dependent,

〈O(t)〉= Tr[eiH† tOe−iH tρ] . (77)

Obviously, this is different from the holographic construction considered here and in
[1], where the background solutions are all static, i.e. time-independent. Also, the
evolution in (77) will not be invariant under the complexified U(1) transformation, as
eθQH†e−θQ ̸= (eθQHe−θQ)† for a general θ ∈ C. To compute the expectation value (77) with
ρ∝ e−βHCFT and the non-Hermitian Hamiltonian H in (6) in holography, we could first pre-
pare an Euclidean black hole at temperature 1/β without sources, next apply a quench on one
side with HCFT +

∫

dd−1 x (MO† + M̄O) for time t and a quench on the conjugate side with
HCFT+
∫

dd−1 x (M̄∗O†+M∗O) for time t, then measure the observable O, and finally glue the
two sides together following [101,102]. We leave it for future work [103].

24

https://scipost.org
https://scipost.org/SciPostPhys.16.1.004


SciPost Phys. 16, 004 (2024)

Acknowledgments

We thank Daniel Areán, Matteo Baggioli, Sebastian Grieninger, Ren Jie, Viktoriia Kornich, Karl
Landsteiner, Ronny Thomale and Björn Trauzettel for useful discussions.

Funding information The work of Z. Y. X., D. R. F., Z. C. and R. M. was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project-ID
258499086—SFB 1170 “ToCoTronics” and through the Würzburg-Dresden Cluster of Excel-
lence on Complexity and Topology in Quantum Matter - ct.qmat Project-ID 390858490—EXC
2147. The work of Y. L. is funded through a PhD scholarship of the Studienstiftung des
deutschen Volkes. D.R.F. is also supported by the Dutch Research Council (NWO) project
680-91-116 (Planckian Dissipation and Quantum Thermalisation: From Black Hole Answers
to Strange Metal Questions), the FOM/NWO program 167 (Strange Metals) and through the
grants SEV-2016-0597, PGC2018-095976-B-C21 and “María Zambrano para la atracción de
talento” CA3/RSUE/2021-00898. Z. Y. X. also acknowledges support from the National Natu-
ral Science Foundation of China under Grants No. 11875053 and No. 12075298. Z. C. is also
funded by China Scholarship Council.

A A fermion model with PT symmetry

In this appendix, we will give a simple model with PT symmetry, and to be specific, consider
the 1+ 1 dimensional Hamiltonian of fermion as in [104],

H =

∫

d x
�

−iψ̄ /∇ψ+ NO1

�

=

∫

d x
�

−iψ̄ /∇ψ+ NO† + NO
�

, (A.1)

O1 = ψ̄ψ , O5 = ψ̄γ5ψ , O1 = O† +O , O5 = O† −O , (A.2)

with N ∈ R and ψ̄ = ψ†γ0. In 1+ 1 dimensional spacetime, the conventions are adopted as
follows,

γ0 = σ1 , γ1 = iσ2 , γ5 = γ0γ1 = σ3 , (A.3)

where σ1,2,3 are Pauli matrices. To relate it to the PT symmetry in the main text, one can
consider a redefinition of operators as the last step of (A.1). The actions of P and T transfor-
mations on the fermion are

Pψ(x , t)P = γ0ψ(−x , t) , Pψ̄(x , t)P = ψ̄(−x , t)γ0 , (A.4)

T ψ(x , t)T = γ0ψ(x ,−t) , T ψ̄(x , t)T = ψ̄(x ,−t)γ0 . (A.5)

The transformations on the scalar and pseudo-scalar are the following,

PO1(x , t)P = O1(−x , t) , PO5(x , t)P = −O5(−x , t) , (A.6)

PO(x , t)P = O†(−x , t) , PO†(x , t)P = O(−x , t) , (A.7)

T O1(x , t)T = O1(x ,−t) , T O5(x , t)T = −O5(x ,−t) , (A.8)

T O(x , t)T = O†(x ,−t) , T O†(x , t)T = O(x ,−t) . (A.9)

So obviously, the Hamiltonian H is Hermitian and also satisfies P and T symmetries, respec-
tively

H = H† = PHP = T HT . (A.10)
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Furthermore, we consider the the charge transformation and chiral transformation

ψ→ e−iϕψ , ψ→ e−iθ ′γ5
ψ , (A.11)

respectively. The theory is invariant under the charge transformation for general N and is
invariant under the chiral transformation when N = 0. The charge current and axis current
corresponding to these symmetries are respectively

jµ = ψ̄γµψ , jµ5 = ψ̄γ
µγ5ψ , (A.12)

both of which are Hermitian. Although the chiral symmetry is broken when N ̸= 0, the Ward
identity still vanishes, i.e.




∂µ jµ5
�

= iN 〈O5〉= iN 〈PO5P〉= −iN 〈O5〉= 0 , (A.13)

where 〈X 〉 denotes Tr[X e−βH]. It shares the same feature as the holographic Ward identity
(26).

To construct non-Hermitian PT -symmetric Hamiltonian, one can define the Dyson map as
the chiral transformation with the generator being the (rescaled) axis charge

Q = −
1
2

∫

d xψ†γ5ψ . (A.14)

So the Dyson map transforms the scalars as the following forms [104]

eθQOe−θQ = eθO , eθQO†e−θQ = e−θO† , (A.15)

with θ ∈ C. Ultimately, the Dyson map transforms the Hamiltonian H into a non-Hermitian
one

Hθ = eθQHe−θQ

=

∫

d x
�

−iψ̄ /∇ψ+MO† + M̄O
�

=

∫

d x
�

−iψ̄ /∇ψ+m1O1 +m2O5

�

, (A.16)

where

e−θN = M = m1 +m2 , eθN = M̄ = m1 −m2 , tanhθ = m2/m1 . (A.17)

Now we realize that the Dyson map corresponds to a complexified U(1) transformation, which
is analogous to (12). Consequently, both M M̄ = N2 and eθQO†Oe−θQ = O†O are invariant un-
der the complexified U(1) transformation. The original theory has the non-negative invariant
N2. However, we could generalize it to the whole real axis R. The source terms in Hθ share
the same form as the holographic model (4) and rotor model (64).

One can check that both of the currents in (A.12) commute with Q. Thus, their transports
are invariant under the Dyson map.

The Hθ with M M̄ = N2 ∈ R is invariant under the combination of another Pθ and T
transformations. We define a new parity Pθ as

Pθ = e2ImθQP . (A.18)

Hθ is non-Hermitian but is PθT -symmetric, namely

H†
θ
̸= Hθ , PθT HθPθT = Hθ , (A.19)

where we have used PT QPT =Q [3].
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B Instability analysis

We study the stability of the solution in holography by examining the QNM. Following [1], we
only consider the perturbation on the matter fields, as this set will provide a consistent set of
equations alone. The following Ansatz of perturbations is introduced

δA= (at(z)d t + ax(z)d x)e−iωt+ikx , δφ = −δφ̄ = δϕ(z)e−iωt+ikx , (B.1)

so that the perturbation on energy-momentum tensor vanishes, that is δTµν∼φδφ̄+φ̄δφ=0.
The perturbation equations are

kue−χz2a′x +ωz2a′t + 2quϕe−χδϕ′ − 2δϕque−χϕ′ = 0 , (B.2)

keχωat

u2
+ ax

�

eχω2

u2
−

2q2ϕ2

uz2

�

+ a′x

�

vϕ4

2uz
−
ϕ2

uz
+

3(u− 1)
uz

�

+ a′′x +
2δϕkqϕ

uz2
= 0 , (B.3)

kqϕax

u
+

qϕeχωat

u2
+δϕ′′ +δϕ

�

u
� 2

z2 − k2
�

+ eχω2

u2
−

2vϕ2

uz2

�

+δϕ′
�

vϕ4

2uz
−
ϕ2

uz
+

u− 3
uz

�

= 0 . (B.4)

From applying local gauge transformation, we find that

at = −ω , ax = k , δϕ = qϕ(z) , (B.5)

is always a solution. To calculate the QNM on the asymptotic boundary, we require zero sources
up to the gauge transformation (B.5), namely

qat(0)ϕ
′(0) +ωδϕ′(0) = qax(0)ϕ

′(0)− kδϕ′(0) = 0 . (B.6)

Near the horizon, we impose ingoing boundary conditions and find the following expansions

at = (zh − z)−iω/(4πT )+1
�

−
kaxh + 2qδϕhϕh

1/ (4πT ) + i/ω
e−χh/2 +O(zh − z)

�

, (B.7)

ax = (zh − z)−iω/(4πT ) (axh +O(zh − z)) , (B.8)

δϕ = (zh − z)−iω/(4πT ) (δϕh +O(zh − z)) , (B.9)

where the two coefficients axh and δϕh are determined by the asymptotic boundary conditions
(B.6).

Given a background solution, frequency ω and momentum k, we can transform the QNM
of the perturbation equations (B.2) and the boundary conditions (B.6)(B.7) into the null vector
of a matrix D̃. By finding the poles of 1/det D̃ in the complex ω plane with a given k, we can
find the QNM. We show the most important pole in Fig. 12, where the frequency ω could
cross the upper half plane at low momentum, which would signal the onset of the instability.
However, we find that this mode triggers a shift on the chemical potential with at(0) = δµ.

C Analytic conductivity in the probe limit

We aim here to derive an approximate expression of the conductivity and study the sum rule
on the neutral background with small source. For this, we disregard the normalizable mode
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Figure 12: The unstable QNMs in phase II and III (from the left to the right) with
N/|T |= 1.71, 2.15 respectively.

in the near boundary for the scalar field in the equation (59), so that ϕ ≈ Nz.2 Adopting the
notation 2q2N2 ≡ k2 and rescaling zh→ 1, we rewrite (59) as

a′′ +
u′

u
a′ +

�

ω2

u2
−

k2

u

�

= 0 , (C.1)

where k2 is positive (negative) in phase I (phase II). The solution of this differential equation
is expressed in terms of the Heun function Hl(a, q;α,β ,γ,δ; z)

a(z) = c(1− z)
−iω

3 (z − z0)
−iω
3z2

0 (z − z2
0)
−iω
3z0 Hl

�

−z0,−
k2

z2
0 − 1

;0, 2,1−
2iω

3
, 1−

2iω
3z0

;
1− z
1− z2

0

�

,

(C.2)
where c is an integration constant and z0 =

−1+
p

3i
2 . The retarded Green’s function and the

conductivity are found to be

GR(ω) =
1

3(z2
0 − 1)





3H ′l

�

−z0,− k2

z2
0−1

; 0, 2, 1− 2iω
3 , 1− 2iω

3z0
; 1

1−z2
0

�

Hl

�

−z0,− k2

z2
0−1

; 0, 2, 1− 2iω
3 , 1− 2iω

3z0
; 1

1−z2
0

� +
iω(z5

0 − z3
0 + 2z2

0 − 2)

z3
0



 ,

(C.3)
and

σ(ω) = 1+
1

p
3− 3i





2H ′l
�

1−i
p

3
2 ,− 2ik2

p
3−3i

; 0, 2, 1− 2iω
3 , 1− 4ω

3
p

3+3i
; −2ip

3−3i

�

ωHl

�

1−i
p

3
2 ,− 2ik2

p
3−3i

; 0, 2, 1− 2iω
3 , 1− 4ω

3
p

3+3i
; −2ip

3−3i

�



 , (C.4)

where the prime in the numerator denotes the z-derivative. In the low frequency limit, the
conductivity takes the form

σ(ω)≈ 2N2q2
�

πδ(ω) +
i
ω

�

+ regular terms . (C.5)

This result is compatible with (62) at T → 0 (notice that this implies ρn→ 0), and the leading
term of ρs takes 2N2.

The limit we take in this section is equivalent to |k| ≪ 1, within this constraint we found
out that the sum rule still holds. As can be seen from Fig. (13), in the high frequency regime,
the integrated spectral weight (55) decreases in power law (left) and there is no pole in the
upper-half plane and the real axis of the complex frequency (right). This justifies the two
conditions from [56].

2We thank Jie Ren for helpful discussions and comments.

28

https://scipost.org
https://scipost.org/SciPostPhys.16.1.004


SciPost Phys. 16, 004 (2024)

0.001 0.010 0.100 1 10 100

10
-4

0.001

0.010

0.100

ω

1

2
N
∫ -

ω
ω

d
Ω

(R
e
[σ

(Ω
)]
-

1
)

k=0.01

k=0.03

k=0.05

k=0.07

k=0.09

(a) Weight W (ω) vs. frequency ω. (b) Poles (white points) in the com-
plex frequency plane for k = 0.01.
The color denote the phase.

Figure 13: (a) Integral weight Sσ(Ω)/N as a function of the frequency. From the
scaling-law decay at large ω, the second condition of the sum rule is proved. (b) No
poles on the upper-half plane and the real axis of complex frequency, this proves the
first condition of the sum rule. Both figures correspond to phase I.

D Complex temperature of the double cone geometry

Complex metrics and complex time periods are not rare in holography. We take the double
cone geometry in [17] as an example, where the bulk theory is JT gravity and the boundary
theory is a 0+1 Schwarzian action with a Hermitian Hamiltonian H. The double cone geometry
is dual to the ramp of the spectral form factor (SFF) of the boundary theory

Tr[e−(β+iT )H]Tr[e−(β−iT )H] , β , T ∈ R , (D.1)

which has complex inverse temperatures β + iT and β − iT . The ramp in the connected part
of SFF is contributed by a semiclassical double cone geometry, with metric

ds2 = −
�

sinhρ + i
β

T
coshρ
�2

d t̃2 + dρ2 , t̃ ∼ t̃ + T̃ , T̃ ∈ R , (D.2)

where the periodicity T̃ defined in [17], is the auxiliary inverse temperature parameterizing
the solutions that contribute to the ramp. For the right factor Tr[e−(β−iT )H] in (D.1), the
induced metric on the right UV cutoff slice of the double cone geometry satisfies the boundary
condition

dτ2
bdy

ε2
= −
�

eρε

2

�

1+ i
β

T

��2

d t̃2 . (D.3)

Upon identification of T = 1
2εeρε T̃ , this agrees with a complex period in τbdy ∼ τbdy+β − iT ,

where a possible real factor was absorbed into T̃ . In summary, both of the line elements in (41)
and (D.3) are complex, and hence the coordinates τ in (41) and t̃ in (D.3) play the similar
roles.

E A two-level system with PT symmetry

Here we review the non-Hermitian two-level model with PT symmetry and discuss the PT
symmetry breaking at finite temperature. Consider a non-Hermitian Hamiltonian of two-level
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Figure 14: The real part of free energy Re(F) on the N2-T plane. The black curves
denote the phase boundaries.

system
H = σ1 + i
p

1− N2σ3 , (E.1)

where N2 ∈ R andσ1,3 are Pauli matrices. It is PT -symmetric with P = σ1 being parity and T
being the complex conjugate. The eigenvalues are E± = ±N . They are real when N2 ≥ 0 and
imaginary when N2 < 0. So the PT symmetry is spontaneously broken at zero temperature
when N2 < 0.

Consider the canonical ensemble e−βH at finite temperature T = 1/β . The partition func-
tion, free energy, energy, and average entropy are respectively

Z = 2cosh (βN) , (E.2)

F = −
1
β

log (2cosh (βN)) , (E.3)

E = −N tanh (βN) , (E.4)

S = log (2 cosh (βN))− βN tanh (βN) . (E.5)

We plot ReF on the N2-T plane in Fig. 14. We call the region of N2 ≥ 0 phase I, in which the
spectrum and the free energy are both real. The region of N2 < 0 and |N |< πT/2 is phase II,
in which the spectrum is complex but the free energy remains real. The region of N2 < 0 and
|N |> πT/2 is phase III, in which the spectrum is complex and the free energy encounters the
first branch cut along the real axis of β at βN = π/2, as shown in Fig. 15. β must deviate from
the real axis and continue to the upper or lower half plane such that F takes complex conjugate
values on the two half planes. The phase structure presented in Fig. 14 is analogous to that
in the holographic model as shown in Fig. 1. The emergence of complex temperature on the
phase boundary between phases II and III also evokes the complex solutions with complex
temperatures, as we find in holography.

Furthermore, in order to get the eigenvalues E± from the canonical ensemble in the
zero-temperature limit, we could introduce an imaginary angle to the inverse temperature
β = |β | (1± iε) with ε > 0 and send |β | →∞. Taking the branch from analytical continua-
tion, we get the two eigenvalues from both free energy F and average energy E,

F →±N , E→±N . (E.6)

Similar limit behavior appears in the holographic model where the N2/ |T |2 → −∞ limit of
the solutions in phase III gives the zero temperature solutions.
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Figure 15: Free energy F on the complex plane of β at N = iπ/2. The white segments
are branch cuts. The argument arg(F) is denoted by color.

F Holographic renormalization

By using the holographic renormalization in [105,106], we can determine the thermodynamic
quantities including the grand potential density ωG , charge density ρ, energy density ϵ, and
pressure p. We follow the same approach as in [92,107]. Firstly, in order to derive the on-shell
action Son−shell, we need the extrinsic curvature Kµν and scalar K , which are defined by

Kµν =
1

2
p

gzz
∂zγµν , K = Kµνγ

µν , (F.1)

where γµν is the induced metric on a constant z slice, where µ,ν stand for the (t,x) indexes.
Inserting the on-shell relation for the Ricci scalar,

R= 2V + D†
aφ̄Daφ , V = −

d(d − 1)
L2

+m2φ̄φ − vφ̄2φ2 , (F.2)

into the action (4) and after some further manipulations, we arrive at3

Son−shell =

∫ zh

zΛ

d4 x∂z

�

−
2
3

�p

−γK
�

−
1
3

A
�p

−gF z0
�

�

+ 2

∫

zΛ

d3 x
p

−γK , (F.3)

where the first term is split into two surface integrals on the boundary and horizon from Gauss
theorem. The action (F.3) diverges when zΛ→ 0. This can be canceled by adding the following
boundary counterterms (we set ∆= 2)

Sct =

∫

z=zΛ

d3 x
p

−γ
�

4+φφ̄
�

, (F.4)

so that the renormalized action Sren in (7) reads

Sren = lim
zΛ→0

[Son−shell + Sct] . (F.5)

Near the boundary (z→ 0), the bulk fields read

φ = Mz +φ2z2 + · · · , φ̄ = M̄z + φ̄2z2 + · · · ,

u= 1+
M M̄

2
z2 + u3z3 + · · · , χ =

M M̄
2

z2 +
2
3
(Mφ̄2 + M̄φ2)z

3 + · · · , (F.6)

A= µ+ a1z + · · ·

3In this section, as well as in the whole work, we employ GN =
1

16π units.
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To express the horizon integral in (F.3) in terms of the boundary data, we evaluate the con-
straint equation (30) on the boundary and horizon, namely

1
4π

�

−µρ + 2(Mφ̄2 + M̄φ2)− 3u3

�

=
Ts
4π

, (F.7)

where T is the black hole temperature and s is the entropy density. Finally, we express the
renormalized action (F.5) in terms of the boundary data, obtaining

ωG = u3 − (Mφ̄2 + M̄φ2) . (F.8)

The remaining thermodynamic quantities can be determined by considering variations of the
of the renormalized action with respect to the boundary sources

〈Tµν〉= −2 lim
z→0

1
z2

�

−
p

−γΠµν +
δSc t

δγµν

�

, (F.9)

〈O〉= − lim
z→0

z

�

−
p

−g gzz∂zφ +
δSc t

δφ̄

�

, (F.10)

〈O†〉= − lim
z→0

z
�

−
p

−g gzz∂zφ̄ +
δSc t

δφ

�

, (F.11)

〈Jµ〉= − lim
z→0

�p

−g gzz gµαFzα

�

, (F.12)

where Πµν = Kµν − γµνK is the Brown-York tensor. Evaluating the expressions (F.9)-(F.12) at
the boundary by means of the expansions (F.6) yields

〈T00〉= ϵ = −2u3 +Mφ̄2 + M̄φ2 , (F.13)

〈T ii〉= p = −u3 +Mφ̄2 + M̄φ2 , (F.14)

〈O〉= φ2 , (F.15)



O†
�

= φ̄2 , (F.16)

〈J0〉= ρ = −a1 , (F.17)

From here, we notice that the pressure p = −ωG , as expected. In addition, the Ward identity
for the trace of the stress tensor reads

〈Tµµ〉= ηµν〈Tµν〉= M



O†
�

+ M̄ 〈O〉 , (F.18)

which has the expected form. Furthermore, after combining (F.13) and (F.14), we find the
Gibbs-Duhem relation

ϵ + p = −3u3 + 2(Mφ̄2 + M̄φ2) = µρ + Ts , (F.19)

where we have made use of the constraint (F.7), as well as of (F.17).
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