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Abstract

We investigate the dynamics of the driven Jaynes-Cummings model, where a two-level
atom interacts with a quantized field and both, atom and field, are driven by an external
classical field. Via an invariant approach, we are able to transform the corresponding
Hamiltonian into the one of the standard Jaynes-Cummings model. Subsequently, the
exact analytical solution of the Schrödinger equation for the driven system is obtained
and employed to analyze some of its dynamical variables.
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1 Introduction

The Jaynes-Cummings model (JCM) is probably the most fundamental theoretical model in
quantum optics [1]. It is also the simplest exactly solvable model describing the interaction
between matter and electromagnetic radiation. The JCM consists of a single two-level atom
interacting with a single quantized mode of the electromagnetic field in a lossless cavity, under
the dipole and rotating wave approximations [2].

In the strong-coupling (or ultra-strong coupling) regime of matter-radiation interaction,
when the rotating wave approximation is not valid anymore, the corresponding model is
known as the Rabi model. It has been proved that the presence of the counter-rotating terms
in the corresponding (Rabi) Hamiltonian is responsible for richer dynamics [3, 4]. Although
numerical results have been known for a while, the Rabi model has only been recently solved
by Braak, through highly sophisticated analytical techniques [5].

In turn, over the years, the JCM has been exhaustively studied, extended and general-
ized. Such generalizations intend to address more involved and realistic aspects of the in-
teraction between atoms and fields, beyond the simplifications of the original model [6–9].
These include the generalized JCM (which incorporates multiple atomic levels [10–12] or
field modes [13, 14]), the dispersive JCM [15], models including nonlinear effects [16–18]
and losses [19,20], among others [21–25].

The standard JCM predicts that the atom and the quantized field become entangled, ceas-
ing to be individual systems and turning into a kind of “molecule” [26]. In fact, Alsing et
al. [26] demonstrated that in order to analyze this molecule, it is necessary to probe it in some
manner, and they showed that an external classical field is the natural way to do it. This leads
to a new generalization of the conventional JCM, referred to as the “driven Jaynes-Cummings
model” [26, 27]. In their article, Alsing et al. analyze two types of driving mechanisms; the
first involves the external classical field driving the cavity mode (which was experimentally
reported by Thompson [28] et al.), and the second involves the classical field driving the two-
level atom. In both cases, the eigenenergies and eigenstates of the system are determined.
However, we emphasize that nothing about the dynamical variables of the system (atomic
inversion, average photon number, etc.) is said in [26].

Additionally, Dutra et al. [27] also analyze the scenario in which the classical field drives
the atom only, discussing the necessary criteria for the model to have physical significance.
They also show how the driven JCM can be transformed into the standard one, enabling the
calculation of certain dynamic variables of the system.

In this study, we are interested in investigating the most general case of the driven Jaynes-
Cummings model, which allows for the simultaneous excitation of both, the atom and the
quantized field, by the presence of an external classical field. Our aim is to establish a method-
ology that enables the direct calculation of the dynamic variables of the driven system in a
straightforward manner, and not presented in [26]. Therefore, obtaining the solution of the
Schrödinger equation in the general driven case constitutes our main motivation and contri-
bution. In that respect, the present work represents also a generalization of [27]. Note also
that although we are studying the interaction between two fields (classical and quantum) with
a two-level atom, the Hamiltonian we solve may also appear in ion-laser interactions [29–31].

The paper is organized as follows: in Section 2, a detailed description of the model under
study is given, and the invariant approach is described. In Section 3, the time-dependent
Hamiltonian of the driven system is related to that of the conventional JCM, by means of
unitary transformations, and according to the invariant technique. In Section 4, the general
solution to the Schrödinger equation for the driven Hamiltonian is obtained. By choosing
specific initial conditions, for both the atom and the quantized field, the atomic inversion, the
average photon number, the Mandel Q parameter, and the entropy of the system are easily
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Figure 1: Scheme of a lossless cavity formed by perfectly reflecting mirrors (in shades
of gray). Within the space between the mirrors, a two-level atom with a transition
frequency ωeg interacts with a quantized field of frequency ωc (in shades of red).
Additionally, both the atom and the quantized field, are influenced by an external
classical field with frequency ω0. The classical field that drives the quantized field is
represented by the thick horizontal arrow in green, while the one that impinges on
the atom is depicted by a thin diagonal arrow in black.

determined (as examples of the dynamical variables) and studied from the general solution.
In Section 5, the dispersive regime is considered. Finally, in Section 6 the main conclusions
are presented.

2 The driven system and the invariant approach

Let us consider a system consisting of a two-level atom, with states denoted as |g〉 (ground
state) and |e〉 (excited state), having a transition frequency ωeg . The atom is placed within
a cavity (the reader may think of a cavity formed by perfectly reflecting mirrors) sustaining
a single quantized electromagnetic field mode with frequency ωc . Additionally, an external
classical field with frequency ω0 driving both the atom and the quantized field is considered.
This setup is depicted in Fig. 1. Furthermore, we assume that the coupling between the cavity
mode and the atom is significantly larger than the cavity damping and atomic decay rates,
enabling us to neglect their effects [27]. Based on these assumptions, and in the dipole and
rotating wave approximations, the time-dependent Hamiltonian describing the system can be
written as [26]

Ĥ =
ωeg

2
σ̂z+ωc â

†â+g
�

σ̂+â+ σ̂−â†
�

+ζ
�

σ̂−eiω0 t + σ̂+e− iω0 t
�

+ξ
�

âeiω0 t + â†e− iω0 t
�

, (1)

where the real parameters g, ζ and ξ are the coupling constants between the atom and the
quantized field, the external classical field and the atom, and the quantized and classical fields,
respectively. As usual, the creation and annihilation operators â† and â, satisfying the com-
mutation relation

�

â, â†
�

= 1, are considered for the quantized field, while the pseudo-spin
operators σ̂+ = |e〉 〈g|, σ̂− = |g〉 〈e|, and σ̂z = |e〉 〈e| − |g〉 〈g|, with the commutation relations
[σ̂+, σ̂−] = σ̂z and [σ̂z , σ̂±] = ±2σ̂±, describe the atomic part of the system.

It is possible to write an invariant Î satisfying [32,33]

d Î
d t
=
∂ Î
∂ t
− i[ Î , Ĥ] = 0 , (2)
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for the time-dependent Hamiltonian (1), in the form

Î =
σ̂z

2
+ â†â+α
�

âeiω0 t + â†e− iω0 t
�

, (3)

where α is a real constant to be determined. For Î to fulfill (2), it is necessary that α = ζ/g
and ξ = α(ωc −ω0), constrictions that prevent the classical and quantized fields to be on
resonance.
The time dependence of the invariant (3) can be eliminated by changing to a frame rotating
at frequency ω0, i.e.,

ÎT := T̂ Î T̂ † =
σ̂z

2
+ â†â+α
�

â+ â†
�

, (4)

where T̂ = exp [iω0 t(n̂+ σ̂z/2)], with n̂ = â†â the usual number operator. Furthermore, by
transforming (4) with the Glauber displacement operator D̂(α) = exp

�

α(â† − â)
�

[34], the
well-known constant of motion of the standard JCM is obtained [35]

ÎD := D̂(α) ÎT D̂†(α) =
σ̂z

2
+ â†â . (5)

The above result suggests that properly transforming the Hamiltonian (1), we can arrive at
the (solvable) Jaynes-Cummings Hamiltonian, as we show in the next section. It is important
to emphasize that if a classical field drives either only the atom or the quantum field, it is
not possible to write an invariant. Furthermore, it is noteworthy also to stress that when the
classical field solely drives the quantum field, even though a solution exists [26], it is actually
hardly useful to study the system dynamics.

3 Connection between the driven and the standard JCM

The dynamics of the system associated to the Hamiltonian (1) is governed by the Schrödinger
equation

i
∂ |ψ(t)〉
∂ t

= Ĥ |ψ(t)〉 . (6)

As we saw previously, we can move to a frame that rotates at frequency ω0. We propose
|ψ(t)〉= T̂ † |φ(t)〉; therefore, the resulting Schrödinger equation is

i
∂ |φ(t)〉
∂ t

= ĤT |φ(t)〉 , (7)

with

ĤT = T̂ĤT̂ † − i T̂∂t T̂
† =∆c n̂+

∆eg

2
σ̂z + g
�

σ̂+â+ σ̂−â†
�

+ ζ (σ̂− + σ̂+) + ξ
�

â+ â†
�

, (8)

where ∆c = ωc −ω0 and ∆eg = ωeg −ω0 represent the detunnings between the quantized
and the classical fields, and the atomic and the classical field frequencies, respectively.
If now we perform a unitary transformation such that |φ(t)〉 = D̂†(α) |χ(t)〉, we arrive to the
Schrödinger equation

i
∂ |χ(t)〉
∂ t

= ĤD |χ(t)〉 , (9)

where ĤD is given by

ĤD = D̂(α)ĤT D̂†(α) =∆c n̂+
∆eg

2
σ̂z + g
�

σ̂+â+ σ̂−â†
�

+α(α∆c − 2ξ)

+ (ζ− gα) (σ̂− + σ̂+) + (ξ−α∆c)
�

â+ â†
�

.
(10)
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As before, setting

α=
ζ

g
, (11)

and ∆c = gξ/ζ, the last two terms in (10) are eliminated, and we obtain

ĤD = D̂ (ζ/g) ĤT D̂† (ζ/g) =∆c n̂+
∆eg

2
σ̂z + g
�

σ̂+â+ σ̂−â†
�

− ζξ/g . (12)

The last term above can be ignored, as it does not play any role in the dynamics of the system,
resulting in the standard Jaynes-Cummings Hamiltonian

ĤJCM =∆c n̂+
∆eg

2
σ̂z + g
�

σ̂+â+ σ̂−â†
�

. (13)

Finally, we can move to a frame rotating at frequency ∆c , via the transformation
Ŝ = exp [i∆c t(n̂+ σ̂z/2)], such that |χ(t)〉= Ŝ† |η(t)〉. The equation to solve is then

i
∂ |η(t)〉
∂ t

= ĤI |η(t)〉 , (14)

with the interaction Hamiltonian

ĤI =
∆

2
σ̂z + g
�

σ̂+â+ σ̂−â†
�

, (15)

where ∆=∆eg −∆c =ωeg −ωc .

4 Dynamics

The evolution operator associated to (15) is widely known [7,8,36,37], and can be expressed
as

ÛI = e− i tĤI =

�

Û11(t) Û12(t)
Û21(t) Û22(t)

�

, (16)

where

Û11(t) = cos
�

Ω̂n+1 t
�

− i
∆

2

sin
�

Ω̂n+1 t
�

Ω̂n+1
, (17a)

Û12(t) = − i gâ
sin
�

Ω̂n t
�

Ω̂n
, (17b)

Û21(t) = − i gâ†
sin
�

Ω̂n+1 t
�

Ω̂n+1
, (17c)

Û22(t) = cos
�

Ω̂n t
�

+ i
∆

2

sin
�

Ω̂n t
�

Ω̂n
, (17d)

and

Ω̂n =

�

∆2

4
+ g2n̂

�1/2

. (18)

Then, the solution of the initial Schrödinger equation (6) is given by

|ψ(t)〉= T̂ †D̂† (ζ/g) Ŝ†ÛI(t)D̂ (ζ/g) |ψ(0)〉 , (19)

since T̂ (0) = Ŝ(0) = 1̂, with 1̂ the identity operator. Recall that we have set ∆c = gξ/ζ, thus
there are only five free parameters out of the initial six parameters in the Hamiltonian (1).
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Figure 2: Atomic inversion W (t) corresponding to the initial condition
|ψ(0)〉= |β , e〉, using the following parameter values: ωc = 0.4, ωeg = 0.9, g = 1.0,
ζ = 0.7, ξ = 0.2, ω0 = ωc − gξ/ζ, and β =

p
8. In (a) the atomic inversion cor-

responding to the driven JCM is shown. In (b) the atomic inversion corresponding
to the conventional JCM is displayed. The black lines represent the analytical result,
while the green ones stand for the numerical solution obtained using QuTiP [38].

From now on, we set ω0 =ωc − gξ/ζ.
The general solution (19) allows to calculate and analyze the dynamical variables of the driven
system, enabling also a direct comparison with the standard JCM, as shown next. For the
sake of simplicity, we consider that the field is initially in a coherent state |β〉, where β is an
arbitrary complex number, while the atom is in the excited state |e〉; that is, our initial state
will be |ψ(0)〉= |β〉 ⊗ |e〉= |β , e〉.

4.1 Atomic inversion

The atomic inversion W (t) is a meaningful observable that indicates changes in the population
distribution of atoms and contains important statistical information of the field. It is defined as
the difference between the probability of the atom to be in its excited state and the probability
of it to be in its ground state. It can be calculated as the expected value of the operator σ̂z ,
namely, W (t) = 〈ψ(t)| σ̂z |ψ(t)〉. From (19), we get

W (t) =
∞
∑

n=0

Pn(γ)

�

cos2 (Ωn+1 t) +

�

∆2

4
− g2(n+ 1)

�

sin2 (Ωn+1 t)
Ω2

n+1

�

, (20)

where Pn is the probability of detecting n photons in the field, which is given by the Poisson
distribution

Pn(γ) = e−|γ|
2 |γ|2n

n!
, (21)

with γ= β +α, and α is given in (11). Besides,

Ωn =

�

∆2

4
+ g2n

�1/2

. (22)

It is important to note that the expression (20) differs from that of the conventional JCM
only in a shift in the probability distribution of photons: we go from Pn(β) in the usual JCM, to
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Pn(β+α) in the driven system. Then, the magnitude of the shift is determined by the couplings
ζ and g. Fig. 2 illustrates the aforementioned effect; Fig. 2(a) and Fig. 2(b) show the atomic
inversion W (t) in the driven and conventional JCM, respectively. For the chosen values of
the parameters, it is evident that the occurrence time of the first revival in the driven case
[Fig. 2(a)] increases with the value of α, in comparison with the conventional JCM [Fig. 2(b)].
In other words, as ζ (g) is increased (decreased), there is an observed displacement in time
at which the first revival occurs; from a physical point of view, this means that if the coupling
ζ between the classical field and the atom is far greater than that between the atom and the
quantized field g, the transitions may be suppressed by the interaction with the classical field.

4.2 Average photon number

It is crucial to analyze another observable: the expectation value of the number operator n̂,
namely 〈n̂(t)〉= 〈ψ(t)| n̂ |ψ(t)〉. By studying 〈n̂(t)〉, we can get a better understanding of the
statistical properties of the system, including the photon distribution and its relation with the
dynamics of the atom-field interaction. From (19), we obtain

〈n̂(t)〉= S1(t)− 2αRe [γexp (− i∆c t)S2(t)] +α
2 , (23)

where

S1(t) =
∞
∑

n=0

Pn (γ)
�

|γ|2
�

�

�V (n+2)
1 (t)
�

�

�

2
+ (n+ 1)2 g2
�

�

�V (n+1)
2 (t)
�

�

�

2�

, (24)

S2(t) =
∞
∑

n=0

Pn (γ)
�

V̄ (n+1)
1 (t)V (n+2)

1 (t) + (n+ 2) g2V (n+1)
2 (t)V (n+2)

2 (t)
�

, (25)

and

V (n)1 (t) = cos (Ωn t)− i
∆

2
sin (Ωn t)
Ωn

, (26)

V (n)2 (t) =
sin (Ωn t)
Ωn

, (27)

with the bar denoting complex conjugation, and Re [z]meaning the real part of z. It is relevant
to note that similar to the case of the atomic inversion (20), the probability distribution of the
number of photons in (23) undergoes a change when going from the conventional to the
driven JCM: Pn(β)→ Pn(β + α). Nevertheless, the resulting 〈n̂(t)〉 reveals a modification of
the Rabi frequency Ωn (this can be particularly seen in the shifts of the labels Ωn → Ωn+1,
Ωn→ Ωn+2 in the expressions for S1(t) and S2(t) above, through V (n)1 (t) and V (n)2 (t)), which
leads to a strikingly different behavior of the average photon number, in comparison to the
standard JCM. This fact is illustrated in Fig. 3; in Fig. 3(a) the average photon number 〈n̂(t)〉
in the driven JCM is shown, and in Fig. 3(b) the average photon number of the usual JCM is
depicted; the same values of the parameters used in Fig. 2 are employed. Unlike the usual JCM
[Fig. 3(b)], in which 〈n̂(t)〉 exhibits a behavior similar to the atomic inversion [Fig. 2(b)], the
driven JCM shows a completely different dynamics due to the direct influence of the external
classical field on the cavity mode that feeds it with photons.

In addition, in the driven JCM the average photon number shows the super revivals dis-
cussed in [27]; if we analyze 〈n̂(t)〉 at times larger than those of Fig. 3, it can be observed
[Fig. 4(a)] that 〈n̂(t)〉 shows a collapse, just as in the case of the conventional JCM [Fig. 3(b)],
though at larger times. Moreover, at even larger times [see Fig. 4(b)], the corresponding re-
vival can be appreciated. Such large-scale fluctuations (referred to as super revivals) were
previously noted and studied in [27], where the external classical field drives the atom only.
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Figure 3: Average photon number 〈n̂(t)〉 corresponding to the same initial condition
and parameters used in Fig. 2. In (a) and (b), the average photon number is shown
for the driven JCM and the standard JCM, respectively. The black lines correspond
to the analytical result, while the green ones represent the numerical result.

Thus, they are present in the general case as well, where the classical field drives also the
quantized cavity field, as can be clearly seen from Fig. 4.

Finally, it can be appreciated that the collapse in Fig. 4(a) occurs at 〈n̂〉 ∼ 13.44 (red dashed
line), while in the conventional case [Fig. 3(b)] it does occur at 〈n̂〉 = 8.5 [35]. Of course,
this is attributed to the classical driving field that, as mentioned, provides the quantized one
with photons, increasing 〈n̂(t)〉.

4.3 Mandel Q parameter

The Mandel Q parameter is defined as follows [39]:

Q =
〈n̂2〉 − 〈n̂〉2

〈n̂〉
− 1 , (28)

and it measures the deviation from a Poissonian distribution. In other words, it gives infor-
mation about the nature (sub- or super-Poissonian) of the quantized cavity field. For Q > 0
(Q < 0) we have a super (sub) Poissonian distribution of photons; for Q = 0, we have a Poisso-
nian distribution of photons. In Figure 5, we show the Mandel Q parameter as defined by (28)
for the driven JCM, as well as for the conventional case. It is seen that in both, the driven
and the conventional JCM, the field shows sub- and super-Poissonian features. In particular,
the driven case (a) presents a slower dynamics, which is in agreement with what has been
observed in the case of the average photon number 〈n̂(t)〉, due to the presence of the driving
classical field.

4.4 Entanglement and von Neumann entropy

Even when the quantized field and the atom are initially separate entities, while interacting
they become together a composed system; in other words, the initial separable state becomes
mixed. An accurate quantitative measure of the degree of mixing is obtained from the (von
Neumann) entropy of the system, defined as [35]

S = −Tr {ρ̂ ln ρ̂} , (29)
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Figure 4: Average photon number 〈n̂(t)〉 in the driven JCM for relatively large time.
The same initial condition and parameters of Fig. 2 were used. In (a) the collapse of
〈n̂(t)〉 can be clearly appreciated, while in (b) the collapse-revival is observed. The
black lines denote the analytical result, while the green ones represent the numerical
result.

with ρ̂ = |ψ(t)〉 〈ψ(t)| the density matrix of the composed system.
As the initial states of the field and atom are pure states (|ψ(0)〉 = |β , e〉), the corresponding
initial entropies of the quantum field and the atomic subsytems, SF and SA, are equal to zero.
In fact, as the initial state of the composed system is a pure (separable) state, the total entropy
S is zero as well. Furthermore, as the entropy of a closed system does not change in time, we
have S(t) = 0 for all t. From the Araki-Lieb theorem [2,35,36]

|SA− SB| ≤ S ≤ SA+ SB , (30)

it follows that SF (t) = SA(t). Therefore we can focus, for instance, on the entropy of the
atomic subsystem

SA = −TrA {ρ̂A ln ρ̂A} , (31)

where
ρ̂A = TrF {ρ̂} . (32)

Using basic properties of the trace, it is easy to show that the atomic entropy (31) is given by

SA = −λ1 lnλ1 −λ2 lnλ2 , (33)

with λ1 and λ2 the eigenvalues of the matrix ρ̂A.
Fig. 6 shows a comparison of the atomic entropy for the driven and standard JCM. It can be

observed that, in the driven case [Fig. 6(a)] the minimum entropy is displaced to larger values
of t (dashed red vertical line, at around t ∼ 11.5), with respect to the minimum entropy
(at around t ∼ 9.83) in the conventional JCM [Fig. 6(b)]. This in turn corresponds to the
displacement observed in the atomic inversion (Fig. 2) caused by the classical driving field.
At the minimum entropy, the quantum field and two-level atom subsystems behave nearly as
separate independent entities (see [36] and references therein). Also, the decreasing of the
entropy to its minimum is known to coincide with the collapse of W (t) (see for instance [35]
and compare time scales in Fig. 2 and Fig. 6). In other words, in the driven case [Fig. 6(a)] the
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Figure 5: Mandel Q parameter (28) in the driven JCM (a), and its comparison with
the conventional case (b). The same initial condition and parameters of Fig. 2 were
used. These plots correspond to numerical calculations, however the analytical ex-
pression is pretty straightforward to be obtained from the exact solution (6).

entropy takes longer time to reach its minimum value, in comparison with the conventional
case [Fig. 6(b)]. This is as well in agreement with the longer collapse observed in Fig. 2(a),
in comparison with Fig. 2(b), due to the classical driving field.

5 Dispersive model

In this section we analyze the dispersive interaction for the general driven case, this means
that |∆| ≫ g is considered. In turn, the importance of the dispersive regime lays on a couple
of facts. First, in such a regime the solution |ψ(t)〉 of the Schrödinger equation (6) simpli-
fies considerably due to the condition |∆| ≫ g. On the other hand, and more importantly,
the dispersive regime is quite useful to obtain, both theoretically and experimentally, highly
non-classical (entangled) states of light [7,36] (see also [24,25] and references therein). Par-
ticularly, Schrödinger cat states can be straightforwardly constructed, as we shall show in the
following.

Starting from (9), with ĤD = ĤJCM, we propose the infinitesimal rotation |χ(t)〉= R† |ϕ〉,
with R̂ = exp[µ(σ̂+â − σ̂−â†)], and µ ≪ 1 a parameter to be determined. The effective
(diagonal) Hamiltonian Ĥeff = R̂ĤJCMR̂† is then

Ĥeff =

�

∆c +
2g2

∆
σ̂z

�

n̂+

�

∆eg +
2g2

∆

�

σ̂z

2
+

g2

∆
, (34)

where we have set µ = g
∆ , and dropped all the powers of µ greater than two; this is deeply

related to what is known as small rotations approach [40]. Consequently, the state vector is

|ψ(t)〉= T̂ †D̂† (ζ/g) R̂†Ûeff(t)R̂D̂ (ζ/g) |ψ(0)〉 , (35)

where Ûeff = e− i tĤeff .
In this section a more general initial condition is considered for the atom: a superposition

of the excited and ground states [7]

|ψ(0)〉= |β〉 ⊗
1
p

2

�

|e〉+ eiφ |g〉
�

, (36)
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Figure 6: Entropy SA(t) corresponding to the same initial condition and parameters
used in Fig. 2. In (a) and (b) the entropy is shown for the driven and standard JCM,
respectively. These plots correspond to numerical calculations, however the analyt-
ical expression is pretty straightforward to be obtained from the exact solution (6),
(see also Ref. [35]).

with 0 ≤ φ < 2π. Besides, as we have supposed that µ≪ 1, we can take R̂ ≈ 1̂. After some
straightforward calculations, the state |ψ(t)〉 of the system is found to be

|ψ(t)〉=
e− iΘ

p
2

�

Λeiα Im(κ+) |(κ+ −α)e− iω0 t〉 ⊗ |e〉+ eiφΛ̄eiα Im(κ−) |(κ− −α)e− iω0 t〉 ⊗ |g〉
�

,

(37)
where Θ = g2 t

∆ + α Im(β), Λ = exp[− i t(
ωeg

2 +
g2

∆ )], κ± = (β + α)exp[− i t(∆c ±
2g2

∆ )], and
Im(z) denotes the imaginary part of z. The state in (37) is an entangled (highly mixed) state
of the quantum field and the two-level atom. It is a generalization of the Schrödinger cat
states studied in sections 4.8 and 10.5 of Ref. [7]. Also, the initial condition (36) can be
easily implemented experimentally, as explained in [7]. Moreover, despite the more involved
initial condition used in this section, it is pretty straightforward to obtain the rather simple
expression (37) in the large detunning limit ∆≫ g.

6 Conclusions

Using an invariant approach as a preamble, we have shown that the theoretical driven Jaynes-
Cummings model can be transformed into the standard one through a pair of unitary transfor-
mations. This in turn allows to obtain the exact analytical solution of the Schrödinger equation
for the driven system, as well as the corresponding dynamical variables. Some examples of in-
terest were given: atomic inversion, average of the number of photons in the electromagnetic
field, and subsystem entropies. The classical driving field has shown to have notorious effects
in such dynamical variables.

The present work constitutes then a generalization of the method established in [27],
where it is considered that the classical field drives the atomic system only. Also, it repre-
sents a further step with respect to Ref. [26], as our solution serves to obtain the dynamical
variables of the driven system in a straightforward manner, a result that is not present in the
approach in [26]. In addition, the atom in the studied driven system is susceptible to be used
as a catalyst, as described in Ref. [41], this will be reported elsewhere.
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In all the cases, the analytical results had proven to be in good agreement with the numer-
ical calculations. Also, they reduce to those of the standard Jaynes-Cummings model in the
appropriate limit.
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