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Abstract

We consider a rational six vertex model on a rectangular lattice with boundary conditions
that generalize the usual domain wall type. We find that the partition function of the
inhomogeneous version of this model is given by a modified Izergin determinant. The
proofs are based on the quantum inverse scattering method and its representation theory
together with elementary linear algebra.
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1 Introduction

A partition function is the central object in Statistical Mechanics. Computing the partition
function is often a difficult combinatorial problem that sometimes can be solved exactly, par-
ticularly in two dimensional lattices [1–3]. A prominent example is the six vertex model,
which can be defined on a rectangular lattice by assigning two possible states to each of its
edges (see Figure 1). The possible configurations around a vertex are constrained by the ice
rule. Boundary conditions must be imposed, and it turns out that they play an important role
in the nature of the mathematical representation of the partition function.

Different solvable boundary conditions have been considered for the six vertex model.
The most common are the torus, the cylinder and fixed boundary conditions like domain wall
and reflecting end, as well as mixtures of them. The first two types can be computed via the
diagonalization of an appropriate transfer matrix, which can in principle be done using Bethe
ansatz, as early noted by Lieb in his solution of the square ice [4]. On the other hand, fixed
boundary conditions like domain wall type admit a determinant representation [5, 6], so do
the reflecting end case [7]. In this paper, we will focus on fixed boundary conditions that
generalize the domain wall type.

The domain wall boundary condition for the six vertex model in the square lattice was
introduced by Korepin [5], where a recurrence relation for the partition function was found.
The solution of the recurrence was later given by Izergin [6] in the form of a determinant (see,
for example, the monograph [8] for details). The partition function on the rectangular lattice,
also called a partial domain wall boundary, was considered recently and it is also given by a
determinant [9].

Here we propose a generalization of the rational six vertex partition function on the rectan-
gular lattice with four arbitrary boundaries. In the language of the quantum inverse scattering
method, this partition function is given by certain expectation values of a string of modified
creation operators, which arise in the context of the modified algebraic Bethe ansatz (see for
instance [10–14] and references therein). The expectation values are associated with four
arbitrary wall states labeled with the compass directions (30). We argue that the partition
function satisfies a homogeneous system of linear equations, which follows directly from the
(modified) triangular representation theory of the Yangian Y (gl(2)) and Yang-Baxter algebra
via certain off-shell relations. We then show that the linear system is solved by a modified
Izergin determinant (89).

Let us recall that the partition function of the six vertex model with domain wall boundary
condition was shown to solve a system of functional equations [15] (see also [16]), as well as
a system of algebraic equations [17].

The linear system approach was recently discovered in the computation of scalar products
between on-shell and off-shell Bethe states [18]. Its powerfulness has been demonstrated in
the computation of on-shell/off-shell scalar products of Bethe states in the closed XYZ chain
[19] and in the open XXZ chain with general integrable boundaries [20]. Here we show that
it can also be used to compute partition functions opening a new avenue of possibilities.

This paper is organized as follows. In Section 2, we recall the definition of an arbitrary
vertex model on the rectangular lattice, its partition function with arbitrary twists and some
essential ingredients of the quantum inverse scattering method. In Section 3, auxiliary opera-
tors and the associated representation theory are studied in the rational six vertex case. Next,
in Section 4, we derive the homogeneous linear systems satisfied by the partition function and
construct the solution in the form of a modified Izergin determinant. Our concluding remarks
and further directions of research are presented in Section 5. Some technical details are given
in the appendices A and B.
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Notation. We use a shorthand notation for sets of variables and products over them.
For example, we denote a set of m variables u j by ū = {u1, . . . , um}. We usually leave the
cardinality implicit and note it as #ū = m. The removal of the i-th element of the set ū is
denoted ūi = ū\ui . For the product of a two variable function g(u, v) over the set ū we use,

g(z, ū) =
∏

x∈ū

g(z, x) , g(ū, z) =
∏

x∈ū

g(x , z) , g(ū, v̄) =
∏

x∈ū,y∈v̄

g(x , y) . (1)

We will also use such notation for the product of commuting operators

B(ū) =
∏

x∈ū

B(x) . (2)

If no product is involved, a vertical bar is used to indicate the multivariable function depen-
dency, e.g.,

s(u|ū) = s(u|u1, . . . , um) , r(ū|w̄) = r(u1, . . . , um|v1, . . . , vn) . (3)

The following functions will be used,

g(u, v) =
c

u− v
, f (u, v) =

u− v + c
u− v

, h(u, v) =
u− v + c

c
, h̃(u, v) =

u− v − c
c

. (4)

They satisfy the relations

f (u, v) = g(u, v) + 1= g(u, v)h(u, v) = g(v, u)h̃(v, u) . (5)

2 Partition function and quantum groups

In this section, we review some basic concepts in the theory of integrable vertex models, includ-
ing the operator formulation of the partition function with general open boundary condition.
The material in this section is valid for an arbitrary integrable vertex model with arbitrary
number of states.

2.1 R-matrix and Yang-Baxter equation

Let us recall the inhomogeneous vertex model on the m× n rectangular lattice from the quan-
tum group formalism (see Figure 1). A finite dimensional vector space denoted Vai

carry-
ing a free parameter ui , also called inhomogeneity, is associated with each line of the lattice
i = 1, . . . , m. Similarly, a finite dimensional vector space Vbi

with parameter vi is associated
with each column i = 1, . . . , n. Every vertex is labeled by a pair of variables (u, v) and it is
encoded by an invertible matrix Rab(u, v) (see Figure 2). The entries of this matrix are the
statistical weights of the model. Explicitly, we have,

Rab(u, v) =
∑

jk,ℓm

R jk,ℓm(u, v)(E jk)a ⊗ (Eℓm)b , (6)

where the (Ei j)a are standard basis matrices (that satisfy Ei j Ekl = δ jkEil) acting on the space
Va, and the sum is taken over ( j, k) ∈ {1, . . . , dim(Va)}2 and (ℓ, m) ∈ {1, . . . , dim(Vb)}2. One
imposes that this matrix is a solution of the Yang Baxter equation,

Rab(u, v)Rac(u, w)Rbc(v, w) = Rbc(v, w)Rac(u, w)Rab(u, v) , (7)

and therefore ensures the integrability of the model.
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(Va1
, u1)

(Va2
, u2)

...

(Vam−1
, um−1)

(Vam
, um)

Z b1...bn
a1...am

(ū|v̄) =

(Vb1
, v1) · · · · · · · · · (Vbn

, vn)

Figure 1: Inhomogeneous vertex model on the m× n rectangular lattice.

(Va, u)Rab(u, v) =

(Vb, v)

Figure 2: Graphical picture of a vertex and the R-matrix.

In the so-called auxiliary space formalism, we can write the matrix of the partition function
in the form,

Z b1...bn
a1...am

=

−→m
∏

i=1

−→n
∏

j=1

Rai b j
(ui , v j) , (8)

which is an endomorphism of Va1
⊗· · ·⊗Vam

⊗Vb1
⊗· · ·⊗Vbn

. The following exchange relations
follow from the Yang-Baxter algebra,

Rai ai+1
(ui , ui+1)Z

b1...bn
a1...ai ai+1...am

= Z b1...bn
a1...ai+1ai ...am

Rai ai+1
(ui , ui+1) , (9)

and

Rbi bi+1
(vi , vi+1)Z

b1...bi bi+1...bn
a1...am

= Z b1...bi+1 bi ...bn
a1...am

Rbi bi+1
(vi , vi+1) . (10)

We now assume that the R-matrix has the properties,

[Rab(u, v), BaBb] = [Rab(u, v), B̂a B̂b] = 0 , (11)

where B and B̂ are matrices in End(V ). Using the matrices B and B̂ we can add a twist to each
auxiliary space. This motivates the definition of a “quasiperiodic”, or twisted inhomogeneous
partition function, by taking the trace over each space, namely,

Zmn(ū|v̄|B|B) = tr
ā,b̄

 

(
n
∏

i=1

B̂bi
)(

m
∏

j=1

Ba j
)Z b1...bn

a1...am
(ū|v̄)

!

, (12)

where we used the shorthand notation (1,3). This definition generalizes the standard defi-
nition of the periodic partition function given by Ba = B̂a = 1Va

, that always satisfies (11)
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(Va, u)Ta(u|v̄) =

(Vb1
, v1) · · · · · · · · · (Vbn

, vn)
(Va1

, u1)

(Va2
, u2)

...

(Vam−1
, um−1)

(Vam
, um)

(Vb, v)

=

T̂b(v|ū)

Figure 3: Single row monodromy matrix (left) and single column monodromy matrix
(right).

(see e.g. Chapter 7.5 of [21]). It is easy to show that (12) is a symmetric function over
the sets ū or v̄. Moreover, if we relax the symmetric property for one set of variables, we
can introduce different twist matrices for each vector space. That is, the transformation
∏n

i=1 B̂bi
→
∏n

i=1 B̂(i)bi
breaks the symmetry over permutation of the set v̄ and the transfor-

mation
∏m

j=1 Ba j
→
∏m

j=1 B( j)a j
breaks the symmetry over permutation of the set ū.

2.2 Operator formalism and quantum group

We now express the matrix of the partition function (8) in terms of products of single row
monodromy matrices, either in the horizontal or vertical direction of the lattice.

The horizontal single row monodromy matrix is given by

Ta(u|v̄) =

−→n
∏

j=1

Rab j
(u, v j) , (13)

and can be represented as in the left panel of Figure 3. Is is clear that (8) can be written as,

Z b1...bn
a1...am

(ū|v̄) =

−→m
∏

i=1

Tai
(ui|v̄) . (14)

The single row monodromy matrix (13) satisfies the RTT relation,

Rab(ua, ub)Ta(ua|v̄)Tb(ub|v̄) = Tb(ub|v̄)Ta(ua|v̄)Rab(ua, ub) . (15)

It allows one to define the transfer matrix with an arbitrary twist Ba given by

B(u) = tr
a
(BaTa(u|v̄)) , (16)

which is represented on the left panel of Figure 4, and it is integrable since it leads to a family
of mutually commuting operators,

[B(u1), B(u2)] = 0 . (17)

5

https://scipost.org
https://scipost.org/SciPostPhys.16.1.009


SciPost Phys. 16, 009 (2024)

Ba(u) =

(Vb1
, v1) (Vb2

, v2)
· · · · · ·

(Vbn
, vn)

=

B̂b(v)

(Va1
, u1)

(Va2
, u2)

...

(Vam−1
, um−1)

(Vam
, um)

Figure 4: Modified operators B(u) (left) and B̂(v) (right). The twists are represented
by the filled squares.

The partition function can then be written in the operator formulation,

Zmn(ū|v̄|B|B) = tr
b̄

�

(
n
∏

i=1

B̂bi
)B(ū)

�

. (18)

Similarly, we can consider the single column monodromy matrix defined by,

T̂b(v|ū) =

−→m
∏

i=1

Rai b(ui , v) (19)

(see right panel of Figure 3). It satisfies the RTT relation,

Rba(vb, va)T̂a(va|ū)T̂b(vb|ū) = T̂b(vb|ū)T̂a(va|ū)Rba(vb, va) , (20)

from which the additional family of mutually commuting operators

B̂(v) = tr
b
(B̂b T̂b(v|ū)) , (21)

with arbitrary twist B̂b can be obtained, by tracing over a given auxiliary space Vb, (See a
graphical representation in the right panel of Figure 4). A second reformulation of the matrix
of partition function follows from T̂ , namely,

Z b1...bn
a1...am

(ū|v̄) =

−→n
∏

i=1

T̂bi
(vi|ū) , (22)

and leads to the partition function in terms of the transfer matrix B̂(u),

Zmn(ū|v̄|B|B) = tr
ā

�

(
m
∏

i=1

Bai
)B̂(v̄)

�

. (23)

We have therefore two equivalent transfer matrix formulations (18) and (23) of the parti-
tion function (12). Depending on the nature of the twists {B, B̂}, we have different boundary
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〈w|
〈w|

...

〈w|
〈w|

|e〉
|e〉

...

|e〉
|e〉

|s〉
|s〉 · · · · · ·

|s〉
|s〉

|n
〉
|n
〉 · · · · · · |n
〉
|n
〉

Figure 5: Partition function in different geometries according to the nature of the
twist.

conditions for the partition function (see Figure 5). If both twists do not have rank one, we
have a torus type of partition function. If only one of the twists has rank one, we have a cylin-
der and if both satisfy this condition we have the plane. If one or both of the twists have rank
one, the trace reduces to matrix elements of the matrices B(ū) or B̂(v̄) (see next (29)).

Indeed, let us suppose that rank(B) = rank(B̂) = 1 and therefore that det(B) = det(B̂) = 0.
We can then find the following bi-vector formulation,

B = |e〉 ⊗ 〈w|=
∑

i j

wie j Ei j , B̂ = |n〉 ⊗ 〈s|=
∑

i j

nis j Ei j , (24)

where

|x〉=
∑

i

x i|i〉 , 〈x |=
∑

i

x i〈i| , (25)

for arbitrary labels x ∈ {w, e, n, s} and we use the relation |i〉⊗〈 j|= Ei j with |i〉 the vector with
1 at the row i and zero elsewhere, 〈 j| is its dual and 〈 j|i〉= δi j . It allows to rewrite operators
(16) and (21) as,

B(u) = tr
a
(BaTa(u|v̄)) = a〈w|Ta(u|v̄)|e〉a =

∑

i j

wie j t i j(u) , (26)

B̂(v) = tr
b
(B̂b T̂b(v|ū)) = b〈s|T̂b(v|ū)|n〉b =

∑

i j

sin j t̂ i j(v) . (27)

We recall that operators of this type arise in the modified Bethe ansatz [10], and can be seen
as a null transfer matrix as det(B) = det(B̂) = 0 [11]. They are represented in Figure 6.

Note that we have the trace identity

tr
a
(B̂aXa) = a〈s|Xa|n〉a , (28)

for any matrix X acting on vector space Va. Then, the general partition function can be rewrit-
ten into the forms of expectation values of product of operators,

Zmn(ū|v̄|B|B̂) = 〈S|B(ū)|N〉= 〈W |B̂(v̄)|E〉 , (29)

with

〈W |= 〈w| ⊗ · · · ⊗ 〈w| , |E〉= |e〉 ⊗ · · · ⊗ |e〉 ,
〈S|= 〈s| ⊗ · · · ⊗ 〈s| , |N〉= |n〉 ⊗ · · · ⊗ |n〉 ,

(30)

which can be interpreted as a partition function for the six vertex model with four arbitrary
walls. The form (29) is suitable to be treated within the quantum inverse scattering method
and linear algebra. For the full open case both forms are possible and there is no quantization
and no Bethe equations. We will see in the next section the rational six vertex case and its
determinant representations.
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〈w| |e〉Ba(u) =

(Vb1
, v1) · · · · · · · · · (Vbn

, vn) (Va1
, u1)

(Va2
, u2)

...

(Vam−1
, um−1)

(Vam
, um)

|s〉

|n
〉

=

B̂(v)

Figure 6: Modified operators when rank(B) = rank(B̂) = 1.

j

j

j j

v

u = u−v+c
c

a-type vertex

j

j

k k

v

u = u−v
c

b-type vertex

j

k

j k

v

u = 1

c-type vertex

Figure 7: The nonzero Boltzmann weights a, b and c of the six vertex model.

3 Rational six vertex model case: auxiliary operators and triangu-
lar representation theory

All considerations so far are valid for vertex models having an arbitrary number of states
per edge. For concreteness, in the following we only consider the symmetric (zero field) six
vertex model, with 2 states in all edges of the lattice and therefore Vai

= Vb j
= C2. The three

possible nonzero Boltzmann weights, called type a, b and c, are represented in Figure 7. The
corresponding R-matrix is given by

Rab(u− v) =
u− v

c
Iab + Pab , (31)

with Iab the identity operator and Pab the permutation operator on C2 ⊗C2. It is one of the
simplest solution of the Yang-Baxter equation (7) and can be used to define the Yangian Y (gl2),
as we briefly recall in Appendix A.

Let us introduce additional operators A(u) and D(u). First consider the two zero determi-
nant 2 by 2 matrices in bi-vector form, where the notations are adopted as in (25),

A= |a〉 ⊗ 〈ã|=
∑

i j

ãia j Ei j , (32)

D = |d〉 ⊗ 〈d̃|=
∑

i j

d̃id j Ei j . (33)
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They satisfy det(A) = det(D) = 0 by definition. Then, we have the operators,

A(u) = tr
a
(AaTa(u)) = 〈ã|Ta(u)|a〉=

∑

i j

a j ãi t i j(u) , (34)

D(u) = tr
a
(DaTa(u)) = 〈d̃|Ta(u)|d〉=

∑

i j

d j d̃i t i j(u) . (35)

Imposing the relations

BaAbPab = BaAb , (36)

PabBaDb = BaDb , (37)

which are equivalent to the constraints ã j = w j and d j = e j , where normalizations were
absorbed in the free parameters a j and d̃ j , we obtain the following exchange relations,

A(u)B(v) = f (v, u)B(v)A(u) + g(u, v)B(u)A(v) , (38)

D(u)B(v) = f (u, v)B(v)D(u) + g(v, u)B(u)D(v) . (39)

They directly follow from the definition of {A(u), D(u), B(u)} as linear combinations of the
Yangian generators t i j(u) (see appendix A), and can also be calculated directly from (A.7)
multiplying by AaBb, taking the traces over the spaces Va and Vb, and finally using relations
(36).

From linear combination of the results of Theorem A.1, we can find the action of these
operators on the general states (30). We find the following action of such operators on the
general states (30),

A(u)|N〉= aNλ1(u)|N〉+ cN B(u)|N〉 , (40)

D(u)|N〉= dNλ2(u)|N〉+ fN B(u)|N〉 , (41)

with

aN =
〈a|σy |e〉〈w|n〉
〈n|σy |e〉

, cN =
〈a|σy |n〉
〈e|σy |n〉

, dN =
〈e|σy |n〉〈w|σy |d̃〉

〈w|n〉
, fN =

〈d̃|n〉
〈w|n〉

, (42)

and

λ1(u j) = h(u j , v̄) , λ2(u j) =
1

g(u j , v̄)
. (43)

Note that we have the relations

aN + tr(B)cN = tr(A) , dN + tr(B) fN = tr(D) . (44)

Similarly, the action of such operators on the general dual states (30) is given by,

〈S|A(u) = aSλ2(u)〈S|+ cS〈S|B(u) ,
〈S|D(u) = dSλ1(u)〈S|+ fS〈S|B(u) , (45)

with

aS =
〈a|σy |e〉〈s|σy |w〉

〈s|e〉
, cS =

〈s|a〉
〈s|e〉

, dS =
〈s|e〉〈d̃|σy |w〉
〈s|σy |w〉

, fS =
〈s|σy |d̃〉
〈s|σy |w〉

, (46)
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and the relations

aS + tr(B)cS = tr(A) , dS + tr(B) fS = tr(D) . (47)

For further convenience, we introduce the parameter β given by,

β =
aS

aN
=

dN

dS
=
〈w|σy |s〉〈e|σy |n〉
〈e|s〉〈w|n〉

= −
tr(Bσy B̂ tσy)

tr(BB̂)
, (48)

that also satisfies,

tr(Bσy B̂ tσy) + tr(BB̂) = tr(B) tr(B̂) . (49)

4 Linear system and modified Izergin determinant formula

In this section, we derive a linear system for the partition function following the method pro-
posed in [18]. The first step is to note that the exchange relations (38) imply the following
multiple actions,

A(ui)B(ūi) =
m+1
∑

j=1

f (ū j , u j)

h(ui , u j)
B(ū j)A(u j) , (50)

D(ui)B(ūi) =
m+1
∑

j=1

f (u j , ū j)

h(u j , ui)
B(ū j)D(u j) , (51)

for a set ū= {u1, . . . , um+1} which includes an extra parameter um+1.
Next, we act with (50) on the general states {|N〉, 〈S|}. For convenience, consider the

quantities,

FA = 〈S|(A(ui)− cSB(ui))B(ūi)|N〉 , (52)

FD = 〈S|(D(ui)− fSB(ui))B(ūi)|N〉 , (53)

and compute their actions to the left and to the right taking into account (45,40). We obtain,

tr(B)
χ

m+1
∑

j=1

�

−βλ2(ui)δi j +λ1(u j)
f (ū j , u j)

h(ui , u j)

�

Zmn(ū j|v̄|B|B̂) = Zm+1n(ū|v̄|B|B̂) , (54)

tr(B)
χ

m+1
∑

j=1

�

λ1(ui)δi j − βλ2(u j)
f (u j , ū j)

h(u j , ui)

�

Zmn(ūi|v̄|B|B̂) = Zm+1n(ū|v̄|B|B̂) , (55)

where

χ = 1− β =
tr(B̂) tr(B)

tr(BB̂)
. (56)

In the case m= n the following theorem was proven in [11],

Theorem 4.1.

Zn+1n(ū|v̄|B|B̂) = tr(B)
n+1
∑

j=1

g(u j , ū j)λ1(u j)λ2(u j)Znn(ū j|v̄|B|B̂) . (57)
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Now, define a vector X⃗ = (X1, . . . , Xm+1)
t with X j = Znn(ū j|v̄|B|B̂). Using (57) in (54,55)

for m= n, we obtain the following homogeneous linear systems,

LAX⃗ = 0 , LD X⃗ = 0 , (58)

where the matrices LA, LD with dimension (n+ 1)× (n+ 1) have entries given by

(LA)i j = −βλ2(u j)δi j + g(u j , ū j)YA(u j|ūi) , (59)

(LD)i j = λ1(u j)δi j − g(u j , ū j)YD(u j|ūi) , (60)

with

YA(u j|ūi) = h̃(u j , ūi)λ1(u j)−χλ1(u j)λ2(u j), (61)

YD(u j|ūi) = βh(u j , ūi)λ2(u j) +χλ1(u j)λ2(u j) , (62)

where we used (44,47) for the constants.
Each homogeneous system in (58) has a nontrivial solution if det(LA,D) = 0 which im-

plies that rank(LA,D) ≤ n. To prove that the determinants vanish, we define the nonsingular
(n+ 1)× (n+ 1) matrix W with entries,

Wi j =
g(u j , ū j)

g(u j , w̄i)
, (63)

where a new set of arbitrary pairwise distinct parameters w̄ = {w1, . . . , wn+1}, that will be
specified later, is introduced. The determinant of W is given by the ratio of determinants of
the Vandermonde type,

det(W ) =
∆(w̄)
∆(ū)

, ∆(ū) = (
∏

i< j

g(ui , u j))
−1 . (64)

Now, we define the products L̃A =W LA and L̃D =W LD. Using the relations,

n+1
∑

k=1

Wik = 1 ,
n+1
∑

k=1

Wikh̃(u j , ūk) = h̃(u j , w̄i) ,
n+1
∑

k=1

Wikh(u j , ūk) = h(u j , w̄i) , (65)

that can be proven using contour integral for appropriate rational functions (see [22]), we
find,

(L̃A)i j = g(u j , ū j)

�

−β
λ2(u j)

g(u j , w̄i)
+λ1(u j)h̃(u j , w̄i)−χλ1(u j)λ2(u j)

�

, (66)

(L̃D)i j = g(u j , ū j)

�

λ1(u j)

g(u j , w̄i)
− βλ2(u j)h(u j , w̄i)−χλ1(u j)λ2(u j)

�

. (67)

Let i = n+ 1. We set w j = v j − c for j ̸= n+ 1 in the A system and w j = v j for j ̸= n+ 1 in the
D system. We also define wn+1 = w. Then, we find, respectively,

(L̃A)n+1 j|w j=v j−c,wn+1=w = g(u j , ū j)λ1(u j)λ2(u j)(1− β −χ) = 0 , (68)

(L̃D)n+1 j|w j=v j ,wn+1=w = g(u j , ū j)λ1(u j)λ2(u j)(1− β −χ) = 0 , (69)

from which it follows that det(LA) = det(LD) = 0. For the other rows 1≤ i ≤ n, we have

(L̃A)i j = h̃(vi , w)g(u j , ū j)λ1(u j)λ2(u j)
�

− β g(u j , vi − c) + g(u j , vi)
�

, (70)

(L̃D)i j =
g(u j , ū j)

g(vi , w)
λ1(u j)λ2(u j)

�

− β g(u j , vi − c) + g(u j , vi)
�

. (71)
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After renormalization with appropriate diagonal matrices,

(T̃A)i j =
δi j

h̃(vi , w)
, (T̃D)i j = g(vi , w)δi j , (72)

we find the same transformed linear system for both A and D systems, namely,

(L̃)i j = g(u j , ū j)λ1(u j)λ2(u j)
�

−
β

h(u j , vi)
+ g(u j , vi)

�

. (73)

Then, from Cramer’s solution of the homogeneous linear system and relations (43), it follows
that,

Znn(ū|v̄|B|B̂) = φ(v̄)
detn(M)
detn(C)

. (74)

Here φ(v̄) is some symmetric function in v̄, and

Mi j = (L̃)
(n+1)
i j

g(u j , v̄)

g(u j , ū j)
= h(u j , v̄)

�

− β
1

h(u j , vi)
+ g(u j , vi)

�

, (75)

are the entries of the reduced matrix (L̃)(n+1)
i j corresponding to the matrix L̃ with the n+1 row

and column removed. We also introduced a Cauchy matrix with elements

Ci j = g(ui , v j) , (76)

that have the well known determinant,

det
n
(C) = g(ū, v̄)∆(ū)∆′(v̄) . (77)

Here ∆′(ū) = (
∏

i> j g(ui , u j))−1 which is similar to ∆(ū) in (64).
We finally need to fix the normalization in v̄. This is done by comparing the asymptotic

limit ū → ∞ from the determinant formula (74) and from the definition of the partition
function (29). The later follows simply from the asymptotic of the B(u) operator due to the
R-matrix (31),

lim
u→∞

B(u) =
�u

c

�n
tr(B) + · · · , (78)

which leads to,

lim
ū→∞

�

Znn(ū|v̄|B|B̂)/(ū/cn)n
�

= (tr(B̂) tr(B))n + · · · (79)

On the other hand, we have to take the asymptotic limit on the determinant form (74). To do
that we use the inverse of the Cauchy determinant, see e.g. [22], given by,

C−1
kl = g(ul , vk)

g(v̄k, vk)g(ul , ūl)
g(ū, vk)g(ul , v̄)

, (80)

that satisfies the following summation rules,

n
∑

l=1

C−1
il g(ul , v j) = δi j , (81)

and

n
∑

l=1

C−1
il

1
h(ul , v j)

=
g(vi , v̄i)h̃(v j , v̄ j)

g(ū, vi)h(ū, v j)h(vi , v j)
. (82)
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It follows that (74) can be put into the form,

Znn(ū|v̄|B|B̂) =
φ(v̄)

g(ū, v̄)
det

n

�

−βδi j +
f (ū, vi) f (vi , v̄i)

h(vi , v j)

�

. (83)

Then, we can take the infinite limit for the set ū and find

lim
ū→∞

Z/(ū/cn)n = φ(v̄)det
n

�

−βδi j +
f (v j , v̄ j)

h(vi , v j)

�

+ · · · (84)

It follows from (B.8) and Lemma 4.1 in [23], namely, from the identity

∑

f (ūi, ūii) =

�

n
p

�

, (85)

where the sum is taken over partition of the set ū into two sets {ūi, ūii} with fixed size ūi = p,
ūii = n− p. From Newton binomial formula it follows

lim
ū→∞

Z/(ū/cn)n = φ(v̄)χn + · · · (86)

Comparing (86) with (79) we find,

φ(v̄) =

�

tr(B̂) tr(B)
χ

�n

, (87)

that leads to

Znn(ū|v̄|B|B̂) =
tr(B)n tr(B̂)n

χn
λ2(ū)K

(β)
nn (ū|v̄) , (88)

where K(β)nn is the modified Izergin determinant (B.1) for m= n, with λ2(ū) = (g(ū, v̄))−1.
Finally, using the limits of the modified Izergin determinant in Proposition (B.1), the for-

mula (88) can be extended for values of m ̸= n. For m> n, we use the limit (B.5) to eliminate
one v j , while for n > m we use the limit (B.6) one u j . Comparing with operator form (29),
we can find the general case m, n,

Zmn(ū|v̄|B|B̂) =
tr(B)m tr(B̂)n

χn
λ2(ū)K

(β)
mn (ū|v̄) , (89)

that can be expressed in two possible forms,

Zmn(ū|v̄|B|B̂) =
tr(B)m tr(B̂)n

χn
λ2(ū)det

n

�

−βδ jk +
f (ū, v j) f (v j , v̄ j)

h(v j , vk)

�

, (90)

and

Zmn(ū|v̄|B|B̂) =
tr(B)m tr(B̂)n

χm
λ2(ū)det

m

�

δ jk f (u j , v̄)− β
f (u j , ū j)

h(u j , uk)

�

. (91)

Furthermore, due to the properties of the modified Izergin determinant in Proposition (B.2),
we have the additional presentations as sum over partitions of the set v̄,

Zmn(ū|v̄|B|B̂) =
tr(B)m tr(B̂)n

χn
λ2(ū)

∑

v̄⇒{v̄I ,v̄II}

(−β)#v̄II f (ū, v̄I) f (v̄I, v̄II) , (92)

or over the set ū,

Zmn(ū|v̄|B|B̂) =
tr(B)m tr(B̂)n

χm
λ2(ū)

∑

ū⇒{ūI ,ūII}

(−β)#ūI f (ūII, v̄) f (ūI, ūII) . (93)
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5 Conclusion

Using the triangular representation theory of the modified operators (26,34) together with the
exchange relations (50), we found linear systems that characterize, up to normalization, the
partition function of the inhomogeneous rational six vertex model on the rectangular lattice
with two arbitrary twists {B, B̂} of rank rank(B) = rank(B̂) = 1. Due to symmetry, only one of
the eight generic boundary parameters associated with the compass states (30) is free, that is,
the partition function can be written solely in terms of the parameter β , up to normalization
by tr(B)m tr(B̂)n.

The solution of the linear system and, therefore, the partition function on the rectangular
lattice is given by a modified Izergin determinant (89). For specific values of the parameters,
one can recover known examples in the literature, for example, the partial domain wall parti-
tion function [9] or the Izergin-Korepin determinant (m= n, s1 = 0, s2 = 1, e1 = 0, e2 = 1 and
n1 = 1, n2 = 0, w1 = 1, w2 = 0) [5,6].

For future problems, it is interesting to consider the linear system approach to the com-
putation of the partition function of the six vertex model with reflecting boundary conditions,
related to the reflection algebra [24], which has been extensively studied [7, 25–29]. Also
in this context, the linear system approach may find applications in the connection between
certain scalar products of modified Bethe states and q-Racah polynomials [30].

Another intriguing problem is to study the trigonometric six vertex model (associated with
the XXZ chain) under anti-periodic boundary conditions. The first step here would be to find
appropriate modified operators and off-shell relations, which are not yet known for this model,
despite recent developments (see [31–33] and references therein).

It is also important to investigate higher rank vertex models, initially those based on the
sl(n) algebra [34]. In this case, the off-shell relations and, therefore, the associated linear
systems are more intricate (see [35–37]).
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A Basics about the Yangian Y(g l2)

In this appendix, we review some basic facts about the Yangian of gl2 denoted Y (gl2) (see e.g.
the monograph [21,38] for details), as formulated in the quantum inverse scattering method.
Let us introduce the monodromy matrix

T (u) =

�

t11(u) t12(u)
t21(u) t22(u)

�

, (A.1)

whose elements are given by the formal series in u,

t i j(u) = δi j +
∞
∑

r=1

t(r)i j u−r , (A.2)
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where t(r)i j are the generators of the Yangian Y (gl2) subject to the defining RTT relations

Rab(u− v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u− v) , (A.3)

where R is the six vertex R-matrix (31). They encode exchange relations for the elements
t i j(u), for instance,

t11(u)t12(v) = f (v, u)t12(v)t11(u) + g(u, v)t12(u)t11(v) , (A.4)

t22(u)t12(v) = f (u, v)t12(v)t22(u) + g(v, u)t12(u)t22(v) , (A.5)

t12(u)t12(v) = t12(v)t12(u) , (A.6)

where the rational functions f , g in the formal variables u, v are given by (4).
Let us note that (A.3) can be rewritten as

[Ta(u), Tb(v)] = g(v, u)Pab(Ta(u)Tb(v)− Ta(v)Tb(u)) . (A.7)

We consider finite dimensional representations of the Yangian [39] from (13). Highest and
lowest weight representations can be respectively constructed from vectors |0〉 and |0̂〉 with
actions,

Ta(u)|0〉=
�

λ1(u) t12(u)
0 λ2(u)

�

a
|0〉 , (A.8)

Ta(u)|0̂〉=
�

λ2(u) 0
t21(u) λ1(u)

�

a
|0̂〉 . (A.9)

The dual analogs 〈0| and 〈0̂| have actions,

〈0|Ta(u) = 〈0|
�

λ1(u) 0
t21(u) λ2(u)

�

a
, (A.10)

〈0̂|Ta(u) = 〈0̂|
�

λ2(u) t12(u)
0 λ1(u)

�

a
. (A.11)

In particular, for the 6 vertex case, we have the highest and lowest vectors,

|0〉= ⊗n
j=1

�

1
0

�

, 〈0|= ⊗n
j=1

�

1, 0
�

,

|0̂〉= ⊗n
j=1

�

0
1

�

, 〈0̂|= ⊗n
j=1

�

0, 1
�

,

(A.12)

and the weight functions λi(u) are given by (43).
The following theorem provides the modified version of the actions (A.8,A.9,A.10,A.11).

Theorem A.1. The action of the entries of the monodromy matrix on an arbitrary vector

|X 〉= |x〉 ⊗ · · · ⊗ |x〉 , with |x〉=
� x1

x2

�

, (A.13)
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with x1 ̸= 0 are given by

t11(u)|X 〉= λ1(u)|X 〉 −
x2

x1
t12(u)|X 〉 , (A.14)

t22(u)|X 〉= λ2(u)|X 〉+
x2

x1
t12(u)|X 〉 , (A.15)

t21(u)|X 〉=
x2

x1
(λ1(u)−λ2(u))|X 〉 −

� x2

x1

�2
t12(u)|X 〉 , (A.16)

and with x2 ̸= 0 are given by

t11(u)|X 〉= λ2(u)|X 〉+
x1

x2
t21(u)|X 〉 , (A.17)

t22(u)|X 〉= λ1(u)|X 〉 −
x1

x2
t21(u)|X 〉 , (A.18)

t12(u)|X 〉=
x1

x2
(λ1(u)−λ2(u))|X 〉−

� x1

x2

�2
t21(u)|X 〉 . (A.19)

Similarly, we can find the action on the dual vector

〈X |= 〈x | ⊗ · · · ⊗ 〈x | , with 〈x |= ( x1, x2 ) , (A.20)

with x1 ̸= 0

〈X |t11(u) = λ1(u)〈X | −
x2

x1
〈X |t21(u) , (A.21)

〈X |t22(u) = λ2(u)〈X |+
x2

x1
〈X |t21(u) , (A.22)

〈X |t12(u) =
x2

x1
(λ1(u)−λ2(u))〈X |−

� x2

x1

�2
〈X |t21(u) , (A.23)

with x2 ̸= 0

〈X |t11(u) = λ2(u)〈X |+
x1

x2
〈X |t12(u) , (A.24)

〈X |t22(u) = λ1(u)〈X |−
x1

x2
〈X |t12(u) , (A.25)

〈X |t21(u) =
x1

x2
(λ1(u)−λ2(u))〈X | −

� x1

x2

�2
〈X |t12(u) . (A.26)

Proof. These relations can be proven in the following way. Let us introduce an invertible matrix
X such that X |0〉= |x〉 with the form,

X =

�

x1 α

x2 β

�

. (A.27)

Then due to the gl(2) invariance of the Yangian we have [Ta(u), Xa
∏n

i=1 X bi
] = 0 and it

follows that,

Ta(u)|X 〉= Ta(u)
�

n
∏

i=1

X bi

�

|0〉= Ta(u)Xa

�

n
∏

i=1

X bi

�

(Xa)
−1|0〉 (A.28)

= Xa

�

n
∏

i=1

X bi

�

Ta(u)|0〉(Xa)
−1 . (A.29)
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From the representation theory of the Yangian (A.8,A.9), we have,

Ta(u)|0〉=
�

λ1(u) 0
0 λ2(u)

�

a
|0〉+

�

0 1
0 0

�

a
t12(u)|0〉 . (A.30)

It follows that,

Ta(u)|X 〉= Λa(u)|X 〉+ Ea

�

N
∏

i=1

X bi

�

t12(u)|0〉 , (A.31)

with

det(X )Λa(u) = Xa

�

λ1(u) 0
0 λ2(u)

�

a
(Xa)

−1 (A.32)

=

�

x1βλ1(u)− x2αλ2(u) −x1α
�

λ1(u)−λ2(u)
�

x2β
�

λ1(u)−λ2(u)
�

x1βλ2(u)− x2αλ1(u)

�

a
, (A.33)

and

det(X )Ea = Xa

�

0 1
0 0

�

a
(Xa)

−1 =

�

−x1 x2 (x1)2

−(x2)2 x1 x2

�

a
. (A.34)

Then after some linear algebra we express
�∏N

i=1 X bi

�

t12(u)|0〉 in terms of t12(u)|X 〉 and |X 〉
we find the desired actions. The left actions can be proven similarly and we omit it here.

B Modified Izergin determinant

We recall some basic properties of the modified Izergin determinant (see [12, 13] for more
details). The modified Izergin determinant can be defined as follows.

Definition B.1. Let ū = {u1, . . . , um}, v̄ = {v1, . . . , vn} and z be a complex number. Then the
modified Izergin determinant K(z)mn(ū|v̄) is defined by

K(z)mn(ū|v̄) = det
n

�

−zδ jk +
f (ū, v j) f (v j , v̄ j)

h(v j , vk)

�

. (B.1)

Alternatively the modified Izergin determinant can be presented as

K(z)mn(ū|v̄) = (1− z)n−m det
m

�

δ jk f (u j , v̄)− z
f (u j , ū j)

h(u j , uk)

�

. (B.2)

The proof of the equivalence of representations (B.1) and (B.2) can be found in [40].
In the particular case z = 1 and #ū= #v̄ = n, the modified Izergin determinant turns into

the ordinary Izergin determinant, that we traditionally denote by Kn(ū|v̄),

K(1)nn (ū|v̄) = Kn(ū|v̄) . (B.3)

It also follows from (B.2) that

K(1)mn(ū|v̄) = 0 , for m< n . (B.4)

Additional properties of the modified Izergin determinant needed here are given in the
following propositions.
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Proposition B.1. We have the limits,

lim
v j→∞

K(z)mn(ū|v̄) = (1− z)K(z)mn−1(ū|v̄ j) , (B.5)

lim
u j→∞

K(z)mn(ū|v̄) = K(z)m−1n(ū j|v̄) . (B.6)

Proposition B.2. We have the sum formulation,

K(z)mn(ū|v̄) =
∑

v̄⇒{v̄I ,v̄II}

(−z)#v̄II f (ū, v̄I) f (v̄I, v̄II) , (B.7)

where the sum is taken over all partitions v̄⇒ {v̄I, v̄II}, and

K(z)m,n(ū|v̄) = (1− z)n−m
∑

ū⇒{ūI ,ūII}

(−z)#ūI f (ūII, v̄) f (ūI, ūII) , (B.8)

where the sum is taken over all partitions ū⇒ {ūI, ūII}.
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