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Abstract

We propose that the underlying context of holographic duality and the Ryu-Takayanagi
formula is that the volume measure of spacetime is a probability measure constrained
by quantum dynamics. We define quantum stochastic processes using joint quantum
distributions which are realized in a quantum system as expectation values of products
of projectors. In anti-de Sitter JT gravity, we show that Einstein’s equations arise from the
evolution of probability under the quantum stochastic process induced by the boundary,
with the area of compactified space in the gravitational theory identified as a probability
density evolving under the quantum process. Extrapolating these and related results
in flat JT gravity found in [SciPost Phys. 15, 174 (2023)], we conjecture that general
relativity arises in the semi-classical limit of the evolution of probability with respect to
quantum stochastic processes.
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1 Introduction

Over the past few decades, there have been some significant clues as to the question of how
quantum theory and gravity can be brought together. Holographic duality [1–3]—positing a
dual relationship between certain quantum systems and gravitational theories in anti-de Sitter
space with one more spatial dimension—cast the problem of quantum gravity, at least in a
certain class of examples, into one of decoding the relationship that exists between a non-
gravitational quantum system and its gravity dual. The Ryu-Takayanagi [4, 5] formula shed
light on an important aspect of this relationship, which is that the gravitational description of
the quantum system is intimately connected to its information content.

In light of the fact that the Ryu-Takayanagi formula is a relation that holds between a special
(extremal) value of the codimension-two area in the gravitational theory, and an informational
quantity (quantum entropy) calculated from the density matrix of the quantum system, a
natural question that has been lurking all along is what problem the gravitational equations of
motion—or Einstein’s equations—themselves are solving relative to the quantum system, such
that a relation like the Ryu-Takayanagi formula could hold. Given the larger context described
above, to answer this question amounts to directly tracing the quantum origin of spacetime
and gravity in the setting of holographic duality; one could hope to extract from a consistent
answer a framework general enough to extend beyond gravity in anti-de Sitter space. Put
another way, we would like to “deconstruct” gravity, i.e. understand it in a sufficiently new
way such that it is subsumed as part of quantum theory, expressing some particular aspect of
quantum theory that we have not been able to articulate before.

In this paper, which is a continuation of the preceding [6], we propose a general solution
to this problem, presenting and extrapolating a complete analysis in the simple example of
Jackiw-Teitelboim (JT) gravity [7–9], in cases of both zero and negative cosmological con-
stant. We propose that the volume measure of spacetime in general relativity is in fact a
probability measure1 constrained with respect to a quantum stochastic process, with the latter
given by a sequence of joint quantum distributions over time governing a quantum observable.
We propose that Einstein’s equations arise in the semi-classical limit of an exact generator equa-
tion for the quantum stochastic process, which solves for probability measures consistent with
evolution with respect to joint quantum distributions of the process.

Our proposal for defining a quantum stochastic process is grounded in an analysis of certain
dynamical correlators that can be computed for an observable of a quantum system: expecta-
tion values of products of projectors (EVPP’s), of the form

qT1
(x1) = Tr

�

ρ eiHT1 P(x1)e
−iHT1

�

, qT2,T1
(x2, x1) = Tr

�

ρ eiHT1 P(x1)e
−iH(T1−T2)P(x2)e

−iHT2
�

, . . .
(1)

1We will use the term probability measure to refer to measures defined in the context of probability theory (as
opoosed to e.g. volume measures in general relativity) even when they do not integrate to 1, and reserve the term
probability distribution for probability measures that do integrate to 1.
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where x i are eigenvalues of the operator X corresponding to the observable, and P(x i) is the
projection operator onto the eigenspace of the Hilbert space with eigenvalue x i .

2,3 Let us first
clarify that although the EVPP’s involve projection operators, no measurement or collapse of
the quantum state is involved; the projectors are inserted only on one side of the density matrix.
The correlators can be viewed as quantum generalizations of joint probability distributions
defining a classical stochastic process, in the following sense. The q(n) ≡ qTn,...,T1

(xn, . . . , x1)
each sum to one and satisfy marginalization relations, properties following from the complete-
ness of projectors and Tr(ρ) = 1. However, for n≥ 2, they are generically complex rather than
positive, due to non-commutativity between the projectors at different times. We propose to
abstract these attributes from the EVPP’s of actual quantum systems and view them as defin-
ing a set of joint quantum distributions for an observable, which in turn define a quantum
stochastic process. Then such a process can be defined without needing to reference some
quantum system and its associated Hamiltonian and density matrix, a feature that allows it to
be relevant to quantum gravity beyond the anti-de Sitter setting.

Now, an important question which subsequently arises, is in which cases and how contact
can be made with joint probability distributions which are positive, starting from a quantum
stochastic process. This question is similar in nature to asking how contact can be made with
chaos starting from a quantum system [10–13]. Recall chaos is a dynamical phenomenon that
could be intrinsically defined only for classical systems; exponential divergence of trajectories
in phase space is a concept that only makes sense in the context of a continuum phase space
that is infinite. In trying to make contact with this notion starting from quantum systems, it
was found to be useful to examine a certain class of dynamical quantum correlators, out-of-
time-order correlators (OTOC’s), and to take the semi-classical limit [10,11].

In our case, we also have an intrinsically classical dynamical phenomenon we would like
to make contact with in quantum systems: a stochastic process with positive joint proba-
bility distributions. The joint quantum distributions we have defined in (1) and below are
analogous to OTOC’s in that they are dynamical quantum correlators which will be useful in
this regard. In similar spirit to the case of chaos, we propose that positive joint probability
distributions may be extracted from the semi-classical limit of joint quantum distributions,
as follows. If possible values of the observable of a quantum stochastic process are suffi-
ciently dense in its target space so that we may consider continuum joint quantum distribu-
tions qTn,...,T1

(d xn, . . . , d x1) which are invariant over infinitesimal volumes, and if there exists
a semi-classical limit of the joint quantum distributions, we can identify effective joint proba-
bility distributions pTn,...,T1

(d xn, . . . , d x1) in the strict classical limit, via leading saddle-point
evaluations of total integrals of joint quantum distributions over target space:

1=

∫

x1,...,xn

qTn,...T1
(d xn, . . . , d x1) ≈

leading sadd. pt. eval.

∫

x1,...,xn

pTn,...T1
(d xn, . . . , d x1) . (2)

This is because in the leading saddle-point approximation, an integral is evaluated along a
path of constant phase, so one can identify an effective positive integrand for a unit integral.

What is the connection to gravity of this contact we can make with a classical dynamical
phenomenon? In the case of chaos, once we know to how to make contact with it in quantum
systems, gravity can be shown to be associated with an extremal limit of maximal chaos, as
quantified by a maximal Lyapunov exponent [14]. Similarly, in the case of stochastic processes,
it seems there is an extremal limit of a stochastic process being locally Markov, that could be
associated to gravity emerging from quantum systems. Let us try to explain the connection
between Markovianity and gravity we have seen.

2For brevity we have written expressions assuming the Hamiltonian is time-independent.
3We are interested in observables broadly defined to include more than Hermitian operators, e.g. a normal

operator with eigenvalues in the complex plane rather than on the real line.
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In the case that a classical stochastic process has the Markov property, there is a sense in
which the action of any conditional probability µT2,T1

(d x2; x1) = pT2,T1
(d x2, d x1)/pT1

(d x1)
over finite time on a measure ν(d x1) can be obtained as the exponential of an infinitesimal
generator. The latter expresses the instantaneous time derivative of the action, and com-
pletely characterizes the process, including higher-order joint probability distributions. (In
the following, our explicit discussions will be related to the linear problem where conditional
probabilities including the kernel µT2,T1

do not depend on the measure they are acting on. We
will also mostly consider homogeneous processes for which joint probabilities and the kernel
µT2,T1

= µT2−T1
only depend on time differences.) Furthermore, if the process is sufficiently

“macroscopic”, meaning the probability kernel µT (d x2; x1) localizes in target space at small
times, the generator can be related to spatial derivatives of finite order in target space. This re-
lation is expressed by the well-known Fokker-Planck equation solving for probability measures
consistent with the stochastic process. See Section 3 of [6] for elaboration.

As we will describe in Section 2, it is in fact possible to associate generators to a non-
Markovian process, such that they generate a local, Markovian approximation to the actual
process.4 Then given (2), we may postulate that a quantum stochastic process involving a
large number of degrees of freedom and having a semi-classical limit, and which is locally
Markovian to a sufficient degree,5 is characterized by a quantum generator equation expressing
the instantaneous time derivative of the action of its conditional quantum distribution

κT2,T1
(d x2; x1) =

qT2,T1
(d x2, d x1)

qT1
(d x1)

, (3)

on probability measures.
Let us write down such a generator equation assuming we have a linear problem where

the measure ν(d x) we are solving for does not itself enter the joint quantum distributions
qTn,...,T1

(d xn, . . . , d x1), and instead a sub-measure Dx which is non-dynamical factors out of
both as ν(d x) =Dx Φ(x) and qTn,...,T1

(d xn, . . . , d x1) =Dx1 · · ·Dxn qTn,...,T1
(xn, . . . , x1):

lim
T21→0+

∫

Dx1

∂T2
qT2,T1

(x3, x1)

qT1
(x1)

Φ(x1) = lim
T21→0+

lim
T32→0+

1
T32

×

 

∫

Dx1Dx2

qT3,T2,T1
(x3, x2, x1)

qT1
(x1)

∞
∑

|k|=0

Φ(k)(x13 = x12)
k!

(x2 − x3)
k −

∫

Dx1

qT2,T1
(x3, x1)

qT1
(x1)

Φ(x1)

!

.

(4)

Note we have denoted T ji = T j − Ti and in taking T21 → 0, we are taking the instantaneous
limit of the action of ∂T2

κT2,T1
on some arbitrary probability density Φ(x).

The above is precisely the situation that applies to the quantum stochastic process describ-
ing the “position” observable of the boundary of AdS JT gravity. The target space of the process
is two-dimensional anti-de Sitter space with a non-fluctuating measure Dx = d x

p
−g, over

which we can consider some probability density Φ(x). We obtain the joint quantum distribu-
tions of the process using EVPP’s in the quantum theory of the boundary [15], in a thermal state
and with parameters in an appropriate limit. The quantum stochastic process corresponding
to flat JT gravity can be obtained by taking their asymptotic limit at short distances.6 What we
find in these cases, is that Einstein’s equations of JT gravity are reproduced as components of
the above generator equation at leading non-vanishing order in the semi-classical limit, with
the probability density Φ(x) identified as the dilaton field or area of compactified space in JT

4Generically the Markovian approximation only replicates single-event distributions of the original process.
5Making the condition of local Markovianity precise is a problem we leave for the future.
6We compare all time/length scales to the AdS radius, set to 1.
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gravity! In other words, (4) reduces to

=⇒
semi-classical limit

lim
x1→x3

∂ Xµ

∂ l
∂ X ν

∂ l

�

∇µ∇ν − gµν∇2 − gµνΛ
�

Φ(x3) = 0 , (5)

where l(x3; x1) is an appropriately scaled geodesic distance to x3 from another point x1 at
time-like separation, and Λ is the cosmological constant. (In AdS2 we have set the radius of
curvature to be one so that Λ= −1.)

Normally, we would have derived the Einstein’s equations appearing as components of (5)
by varying the bulk action of JT gravity IJT[g,Φ] = 1

4π

∫

M d2 x
p
−g Φ(R− 2Λ) with respect to

the metric.7 Here, we have reconstructed the equations by considering an informational and
dynamical phenomenon in quantum theory, that of a quantum stochastic process constraining
probability, and identifying the constrained probability measure with the volume measure of
spacetime!

In [6], we showed that the asymptotic quantum stochastic process of AdS JT gravity at short
time scales, corresponding to flat JT gravity, is exactly Markovian in the classical limit—i.e. the
joint probability distributions it produces via (2) have the Markov property. Furthermore, we
showed that the flat asymptotics of joint quantum distributions in the generator equation (4)
lead to the derivative terms in (5). The full quantum stochastic process of AdS JT gravity is
no longer Markovian in the aforementioned sense. However, it is still apparently sufficiently
Markovian in a local sense so that it can be characterized by a generator equation. As we will
show in this paper, we can recover the full Einstein’s equations of AdS JT gravity including
the cosmological constant, by employing in (4) joint quantum distributions resulting from
Schwarzian dynamics at long time scales [15, 16].8 Roughly, this is possible because proper
time is renormalized in the regularized quantum theory of the boundary in which we compute
joint quantum distributions, and we can go to small renormalized (proper) times while staying
at long time scales, then interpolate to vanishing renormalized times as is necessary for the
generator equation.

It is natural to extrapolate the above results, and conjecture the following: general rela-
tivity arises in the semi-classical limit of the evolution of probability with respect to quantum
stochastic processes, with the volume measure of spacetime being a probability measure in the
target space of a quantum observable, evolving with respect to the stochastic process governing
the observable. We anticipate that for a quantum stochastic process to give rise to gravity in
this way, besides having possible values of the observable that are sufficiently dense in a multi-
dimensional target space, and joint quantum distributions with a semi-classical limit, it should
be Markovian in a local sense so as to be characterized by a generator equation.9 Generically,
in contrast to the linear case of JT gravity, the probability measure ν(d x) =

p
−g d x one is

solving for will simultaneously enter the joint quantum distributions of the process and evolve
under them, so that the generator equation is non-linear. We extrapolate that Einstein’s equa-
tions, also non-linear in the general case, will arise as components of such a generator equation
in the leading non-vanishing order in the semi-classical limit.

Sections in the rest of the paper are organized as follows: in Section 2, we give a proof
of concept that one can associate generators to a non-Markov process which give a local,
Markovian approximation to the actual process. In Section 3, we study the geometry and
dynamics relevant to the quantum stochastic process induced by the boundary of JT gravity at
long time scales, ultimately reconstructing Einstein’s equations from the generator equation of
the process, with the area of compactified space in the gravity theory identified as a probability

7The equations solve for Φ, a scalar field corresponding to the area of compactified space at a point. Meanwhile,
the two-dimensional metric g is fixed by varying with respect to Φ.

8The cosmological constant term in (5) is produced by the three-event joint quantum distribution in (4).
9We speculate that Markovianity is related to flatness of the associated spacetime, and the condition of local

(sufficient) Markovianity, with the locally flat characterization of spacetime manifolds.
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density evolving with respect to the process. In Section 4, we discuss various aspects of our
results as well as future directions for research.

2 Generators of a non-Markovian process

Here we work in the context of classical stochastic processes, and extract an observation
from [17]: that it is possible to associate generators to a non-Markovian process, such that
they generate a local, Markovian approximation to the actual process. (For a review of basic
concepts in probability theory that provide appropriate background, see Section 3 of [6].)

Recall that a Markov process is characterized by the semi-group property of its conditional
probabilities µT2,T1

(d x2; x1) = P(XT2
∈ d x2|XT1

= x1),

µT3,T1
(d x3; x1) =

∫

µT3,T2
(d x3; x2)µT2,T1

(d x2; x1) . (6)

The semi-group property implies that a generator can be defined which exponentiates to the
operator on measures induced by a probability kernel,

�

MT2,T1
ν
�

(d x2)=
∫

µT2,T1
(d x2; x1)ν(d x1);

heuristically, MT2,T1
∼ T e

∫ T2
T1

dT GT , GT = limT ′→T+ ∂T ′MT ′,T .
For a non-Markovian process, the semi-group property fails,

µT3,T1
(d x3; x1) =

∫

µT3,T2,T1
(d x3; x2, x1)µT2,T1

(d x2; x1)

̸=
∫

µT3,T2
(d x3; x2)µT2,T1

(d x2; x1) . (7)

However, the authors of [17] made the observation that the equality (6) continues to hold as
long as one is acting on a probability distribution on both sides, that is

∫

µT3,T1
(d x3; x1) pT1

(d x1) =

∫ ∫

µT3,T2
(d x3; x2)µT2,T1

(d x2; x1)pT1
(d x1) . (8)

This implies that if we consider a Markov process generated by the instantaneous time deriva-
tives of the conditional probabilities µT2,T1

of the non-Markovian process, and specify its prob-
ability distribution at some time pT1

(d x1) to be the same, its single-event distributions pT (d x)
will always agree with those of the non-Markov process. We may view the Markov process thus
constructed as a local approximation to the non-Markov process, in that we cannot distinguish
the two processes as long as we are considering single events in time. The multi-event dis-
tributions pTn,...,T1

(d xn, . . . , d x1), on the other hand, will generically not be replicated by the
Markov approximation.

The above provides theoretical underpinning for the following possibility: If a non-
Markovian process is locally Markovian in a sense such that the local Markov approximation we
have described is more powerful than expected, the generator equation involving generators
of the Markov approximation may be sufficient to characterize the entire process.

3 Quantum stochastic process in AdS JT gravity

We now consider the quantum stochastic process induced by the boundary of AdS JT gravity
that we introduced in [6]. That is, the observable of the process is the position of the boundary
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and takes values in ÞAdS2, and its joint quantum distributions are given by EVPP’s evaluated in
the quantum theory of the boundary,10

qTn,...,T1
(xn, . . . , x1) = tr

�

ρ eiHT1 |x1〉〈x1| e−iHT1 · · · eiHTn |xn〉〈xn| e−iHTn
�

=
〈xn|e−iHTn,1ρ|x1〉〈x1|eiHT21 |x2〉 . . . 〈xn−1|eiHTn,n−1 |xn〉

vol(fSL(2,R))
. (9)

The quantum theory is specified by the action of a particle with spin ν= −iγ,

S =

∫

dT
�

1
2

gµνẊ
µẊ ν + γωµẊµ

�

. (10)

See [6,15,18] for details.
Assuming a thermal quantum state with inverse temperature L, one finds that in the holo-

graphic limit where the two parameters γ and L are large, there is a precise renormalization
scheme in which the particle sees flat space at short distances i.e. it tends to follow smooth,
straight trajectories. (Note we set the AdS radius to be 1, and all comparisons of length and
time scales are with the AdS radius.) In this holographic renormalization scheme, the renor-
malized inverse temperature is given by

β =
L
γ

, (11)

and the energy of a particle takes possible values

E =
s2

2
, s ≥ 0 , (12)

with the density of states being given by

ρ(E) =
sinh(2πs)

2π2
. (13)

(The thermal density matrix is given by ρ =
∫

dE Z−1
β

e−βEPE , with the density operator PE ,
tr(PE) = ρ(E) encoding the density of states.) Using the energy parameter (12), the holo-
graphic limit can be expressed as

γ≫ 1 , γ2≫ s2 . (14)

In other words, small energies as parametrized above dominate the thermal ensemble for large
inverse temperatures L≫ 1.

The holographic limit was called the Schwarzian limit in [15] but in retrospect was misla-
beled, as a Schwarzian action describes the particle in this limit, but only at long time scales.
The actual dynamical regime described by the Schwarzian, consisting of the quantum system
in the holographic limit and at long time scales, will be important to us for the following
reason.

It turns out that the propagators or two-point functions of the boundary particle have a
closed-form expansion in the holographic limit (14), in large γ, only in two dynamical regimes
associated with distinct asymptotic geometries obtained from ÞAdS2. See Figure 1. One is the
regime at short time scales (corresponding to Tb≪ 1, or bare proper times much smaller than
AdS radius) in which the particle sees flat space. The other is at long time scales or Tb≫ 1, in

10We will be working in a dynamical regime in which only one boundary rather than both boundaries of ÞAdS2

are relevant, and accordingly, there is no factor of 1
2 in the trace defined in the quantum theory.
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Figure 1: Taking the holographic limit (14), two-point functions of the boundary
particle have a closed-form expansion in large γ only at i) short time scales, when
it sees flat space, ii) long time scales, when it sees the asymptotic near-boundary
geometry of ÞAdS2.

which the particle sees the asymptotic geometry near a boundary ofÞAdS2. In [6], the quantum
stochastic process induced by the dynamics at short time scales was analyzed from which we
derived Einstein’s equations of JT gravity in flat space. To see the cosmological constant, we
must include corrections to the asymptotic process at short time scales, but we only regain
analytic control of the dynamics at time scales much longer than the AdS radius, i.e. in the
Schwarzian regime.

Fortunately, the fact that proper times in the boundary quantum system are renormalized
as in (11) saves us. That is, the generator equation (4) involves taking renormalized (proper)
times to zero, and we can go to short renormalized times T = Tb/γ≪ 1 while staying at long
time scales 1≪ Tb, then interpolate to vanishing renormalized times T → 0. This interpolation
from long time scales corresponds to letting target points of the position observable approach
each other in the asymptotic near-boundary geometry of ÞAdS2, effective in the Schwarzian
regime. See Figure 2. We will show that utilizing the geometry and dynamics of the quantum
system in the Schwarzian regime as such, we can recover Einstein’s equations of JT gravity in
anti-de Sitter space with negative cosmological constant.

3.1 Geometry and dynamics in Schwarzian regime

Without loss of generality, we consider the asymptotic geometry M near the right boundary of
ÞAdS2, and a particle with spin ν = −iγ, for which the classical trajectory goes up on M. The
metric on M can be obtained from taking the near-boundary form of the metric on ÞAdS2—
given by ds2

AdS = (−dφ2+ dθ2)/ cos2 θ with −∞< φ <∞ and −π2 < θ <
π
2 —and using the

scaled radial coordinate φ′ = γ
�

π
2 − θ

�

,11

ds2
M =
−γ2dφ2 + dφ′2

φ′2
. (15)

Due to the scaling of the radial coordinate, the geometry in the radial direction is stretched
out and light cones are flattened, see Figure 2.

In considering the quantum stochastic process of the boundary particle in the Schwarzian
regime on M, and ultimately computing the generator equation (4), it is necessary to study

11The notation φ′ for the spatial coordinate is motivated by the fact that dφ
dT ≈ γ

�

π
2 − θ

�

= φ′ for a trajectory
φ(T ) near the boundary in the holographic limit.
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Figure 2: In the asymptotic near-boundary geometry of ÞAdS2 given by (15) with
γ →∞, light cones are flattened so that only relative regions 6 and its copies re-
main. In particular, the long-time dynamics in ÞAdS2 corresponding to regions 6 and
6′ extends to vanishing times, or arbitrarily close to reference point x ′.

the geometry of two and three points on M with some precision. In the following we relegate
the derivation of various geometric results to Appendix A.

Geometry of two points: Let us first note the relative coordinates associated with a pair of
points (x1; x2). An appropriate coordinate for measuring geodesic distance is given by

y12 =
2
Æ

φ′1φ
′
2

�

�

�sin
�

φ1−φ2
2

�

�

�

�

. (16)

It relates to the bare proper distance between the points on ÞAdS2 as 2γ/
p

z12 = y12+O
�

γ−2
�

,
z12 ∼ (geodesic distance)2. The remaining relative coordinate measures the direction from
which x1 approaches x2, which shifts under isometries fixing x2. Formally, it parameterizes
orbits of points under the isotropy group of the (left) action of fSL(2,R) on M.12 It is given by

u12 = cot
�

φ1 −φ2

2

�

φ′2 ∓

Æ

φ′1φ
′
2

sin
�

φ1−φ2
2

� , (17)

with upper sign (lower sign) for n′ even (odd), 2πn′ −π < φ1 −φ2 < 2πn′ +π. See Figure
3a for a depiction of its level curves.

Note that fixing the reference point x2, only the relative region 6 and its copies (defined
in [15]) remain in the asymptotic geometry M, demarcated by 2πn < φ1 −φ2 < 2π(n+ 1),
n ∈ Z. For our purposes of evaluating integrals in the generator equation (4) in the semi-
classical limit, only the relative region 6 (n = 0) and region 6′ (n = −1) come into play. In
particular, we are interested in short time scales and the limit of target points approaching
each other, in which the upper sign in (17) applies. Finally, we note the integration measure
over M can be expressed using relative coordinates (y, u)with respect to some reference point
as dvolM = γ16d y y−3du.

Dynamics in Schwarzian regime: We recall from [15] that an fSL(2,R)-invariant two-point

function for a spin-ν particle on ÞAdS2 takes the general form Ψν(x; x ′) =
�

�

�

ϕ23
ϕ14

�

�

�

ν

f j(z), with a

12This isotropy group is generated by Λ0 −Λ2, whereas that for ÞAdS2 is generated by Λ2.
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a) b)

Figure 3: Depiction of a) level curves of relative coordinate u with respect to refer-
ence point, and b) points on the classical trajectory of a spin-ν particle, ordered in
increasing proper time.

spin prefactor multiplying a function of geodesic distance, indexed by relative region.13

The spin prefactor becomes trivial at short distances in the limit of flat space. However, it
is non-trivial in curved space, and we will be interested in the gauge-invariant product of spin
factors appearing in the three-event quantum distribution as

qT3,T2,T1
(x3, x2, x1)∼ Ψν(x3; x1)Ψ

ν(x1; x2)Ψ
ν(x2; x3)∼ eνϑ , (18)

expressed in the holographic limit γ →∞ and on the asymptotic geometry M. (Note that
in the case of the two-event quantum distribution, spin prefactors cancel.) In an integral
involving the three-event quantum distribution, this three-point spin-loop factor amounts to
an additional large phase as compared to the flat case, which yields in the semi-classical limit
a saddle-point configuration of three points that is appropriately curved.

Setting aside the spin prefactor, the radial part of two-point functions appearing in joint
quantum distributions of the boundary particle (9) as

〈x1|e−iHTρ|x2〉=
∫

dE
e−βE−iET

Z
PE(x1; x2) , 〈x1|eiHT |x2〉=

∫

dE eiET IE(x1; x2) , (19)

have the following holographic expansions in the Schwarzian regime:

�PE(x; 0) = γ−1 sinh2πs
2π2

¨

yK2is(−i y)
�

1+O(γ−2)
�

, in region 6′,

yK2is(i y)
�

1+O
�

γ−2
��

, in region 6 ,
(20)

�IE(x; 0) = γ−1 1
4π

¨

i y I2is(i y)
�

1+O(γ−2)
�

, in region 6′,

−i y I−2is(−i y)
�

1+O
�

γ−2
��

, in region 6 ,
(21)

where y is the invariant distance in (16). That is, the leading expressions in large γ found
in [15,16] are unchanged to subleading order.14 See Appendix B for the derivation. In order
to evaluate the generator equation (4) to leading non-vanishing order in large γ, we need
to expand the integrand of each integral to subleading order, which requires the increased
accuracy in (20), (21).

13The spin prefactor is gauge-dependent and here we have shown it in the tilde gauge [15]. Its expression
involves the coordinates ϕ1 = φ − θ +

π
2 , ϕ2 = φ + θ −

π
2 , ϕ3 = φ′ − θ ′ +

π
2 , and ϕ4 = φ′ + θ ′ −

π
2 , and

ϕkl = 2sin ϕk−ϕl
2 .

14In (20), we have factored out e−2πγ relative to the expression given in [15], since it is eliminated in the
denominator Z of the density matrix ρ after renormalization in the holographic limit.

10

https://scipost.org
https://scipost.org/SciPostPhys.16.1.012


SciPost Phys. 16, 012 (2024)

Geometry of three points: Let us consider two invariant15 quantities involving three points
(x1, x2, x3) that enter the three-event quantum distribution of a boundary particle on M: the
invariant distance y31, and the three-point spin-loop phase

ω= 2
�

φ′1
φ23

φ12φ31
+φ′2

φ31

φ12φ23
+φ′3

φ12

φ31φ23

�

, φi j = 2 sin
φi −φ j

2
, (22)

which relates to the spin-loop phase in ÞAdS2 defined in (18) as γϑ =ω+O(γ−2).
In the semi-classical limit the integrals in the generator equation (4) localize near the

classical trajectory of the boundary particle which goes up in proper time, that is to the relative
regions (x1; x2), (x2; x3) ∈ region 6’ and (x3; x1) ∈ region 6, with x2 and x1 approaching x3.
See Figure 3b. As such it is useful to obtain composition formulas for y31,ω in terms of relative
coordinates y12, y23 and u12, u32 that apply in the case that φ32,φ21 are small and positive.
Using inverted distance coordinates

li j = y−1
i j , (23)

we have

l31 = l12 + l23 + 2l12l23(u32 − u12) , (24)

ω= u32 − u12 +
l12 + l23

2l12l23
+

l2
12 + l2

23

2l12l23

1
(l12 + l23 + 2l12l23(u32 − u12))

. (25)

We will also make use of the composition formula for u31,

u31 = u21 +
l23(u32 − u12)

(l12 + l23 + 2l12l23(u32 − u12))
. (26)

3.2 Reconstruction of Einstein’s equations

As explained in the introduction, in order for a quantum stochastic process to possess a classical
limit consisting of a stochastic process with positive joint probability distributions, in addition
to its quantum observable having possible values that are dense in a target space, it is important
that its joint quantum distributions have a semi-classical limit so that their integrals can be
evaluated by the saddle-point method. Furthermore, we have proposed that if the quantum
stochastic process is Markovian or locally Markovian in its classical limit, we may expect a
quantum generator equation to characterize the entire process, just as a generator equation
involving the conditional probability kernel characterizes a classical Markov process.

In our quantum system consisting of the boundary degrees of freedom of JT gravity, the
semi-classical limit consists of taking the energy of the boundary particle (12) to be large, that
is

s2≫ 1 . (27)

Then the evaluation of integrals involving joint quantum distributions, including those in the
generator equation, proceeds by a double expansion: first we take the holographic limit (14),
expanding in large γ, then we take the semi-classical limit (27), expanding in large s with s/γ
small but finite (corresponding to the bare inverse temperature L being large but finite).16

15With respect to either left or right action of fSL(2,R).
16Since s/γ is finite we also express the second expansion as one in large γ, but it is important to distinguish the

two expansions, e.g. we will see the scaling of geometric variables change between the two expansions.
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In the semi-classical limit, we find that modified Bessel functions appearing in the two-
point functions (20), (21) have an expansion with leading exponential form,

�

K2is(±il−1)
∓iπI∓2is(∓il−1)

�

=
√

√ π

2
p

l−2 + 4s2
exp

�

∓
π

4
i ∓ i

p

l−2 + 4s2 ± 2is sinh−1 (2sl)
�

×
�

1±
i

24
3l−2 − 8s2

(l−2 + 4s2)3/2
+O

�

γ−2
�

�

. (28)

See Appendix B. Using this expansion, we can perform saddle-point evaluations of integrals in-
volving joint quantum distributions. Let us first note that the joint probability distributions ex-
tracted in this way in the classical limit via (2) do not exhibit the Markov property, unlike in the
case of JT gravity in flat space. Roughly, this is the statement that with the two-event probabil-
ity distribution being given by a Gaussian packet,

∫

Dx2Dx1 qT2,T1
(x2, x1) ≈

∫

Dl21 fT21
(l21),

fT (l) =
1

16l∗

Æ

α
2π e−

1
2α(l−l∗)2—α(β , T ) is a positive constant and l∗(β , T ) the saddle-point

displacement—the three-event probability distribution fails to factorize into a product of Gaus-
sian packets,

∫

Dx3Dx2Dx1 qT3,T2,T1
(x3, x2, x1) ̸≈

∫

Dl32Dl21 fT32
(l32) fT21

(l21), due to finite-
temperature effects in the quantum distribution qT3,T2,T1

. (Finite-temperature or infrared cutoff
effects are invisible in the local limit in which we zoom in near a point and spacetime is flat,
see [6]).

However, with the intuition that the quantum stochastic process in curved spacetime still
maintains a locally Markovian quality as the spacetime manifold can be sewn together from flat
patches, we proceed to evaluate the generator equation (4) involving its conditional quantum
distributions, that is, its two- and three-event quantum distributions with single-event quan-
tum distribution (coinciding with probability distribution) factored out. In order to evaluate
the equation to leading non-vanishing order in large γ, we find that the integrand of each in-
tegral needs to be twice-expanded to O(γ−1) accuracy (in the holographic, then semi-classical
limit), after which the saddle-point expansion needs to be employed up to sub-subleading
order in large γ. The computation becomes feasible with the help of a closed formula for
the saddle-point expansion of a multivariate integral derived in [6] and reproduced in (D.7)-
(D.10).

Before outlining the calculation, let us put Einstein’s equations of JT gravity shown in (5)
in the form that it will be recovered from the generator equation. That is, we write the metric
and ensuing covariant derivatives at a point x2 using coordinates l(x2; x1), u(x2; x1) relative
to a point x1 approaching x2. Details of the following derivation are provided in Appendix C.

Switching from absolute coordinates Xµ = (φ2,φ′2) to the relative coordinates (l, u), we
are interested in the asymptotics of the metric (15) as x1 approaches x2 at distances short
compared to the AdS radius, that is γl ∼ (bare proper distance) ≪ 1. Expanding in small
l ≪ γl ≪ 1, we confirm the leading behavior of the metric is flat, ds2 ≈ 16(−γ2dl2 + l2du2),
with corrections suppressed by γ−1 and γl. To retain the curvature of the metric as γl → 0,
we should include corrections to the leading behavior suppressed by γl and γ2l2 . Assuming
x1 approaches x2 from below,

ds2 ≈ 16
�

−γ2dl2 + l2
�

1− 4γ2l2
�

du2 + 4γ2l2dldu
�

, (29)

using which we obtain that at leading order in γ,

lim
l→0

∂ Xµ

∂ l
∂ X ν

∂ l

�

∇µ∇ν − gµν∇2 − gµνΛ
�

Φ(X )≈ lim
l→0
γ2
�

1
l2
∂ 2

u −
2
l
∂u − 16

�

Φ(l, u) . (30)

Since the tensorial components ∂ Xµ
∂ l
∂ X ν
∂ l have independent dependences on u which measures

the direction of x2 relative to the approaching x1,17 for (30) to vanish regardless of the di-
rection of approach, each tensorial component of Einstein’s equations should hold. We will

17For example, ∂ φ2
∂ l = 4φ′2, liml→0

∂ φ′2
∂ l = 4φ′2u.
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indeed find that the generator equation (4) reduces to the right-hand-side of (30) being zero,
with the constrained probability density Φ(x) in the quantum problem identified with the area
of compactified space Φ(x) solved for by Einstein’s equations!

We give a complete account of the evaluation of the generator equation (4) in Appendix
D. Here we outline some key steps involved, using the three-integral on the right-hand-side

∫

Dx1Dx2

qT3,T2,T1
(x3, x2, x1)

qT1
(x1)

Φ(x1)

=

∫

Dx1Dx2
〈x3|e−iHT31ρ|x1〉〈x1|eiHT21 |x2〉〈x2|eiHT32 |x3〉

〈x1|ρ|x1〉
Φ(x1) . (31)

Let us first clarify the fixing of “gauge” or the directional coordinate u appearing in (30).
The expectation value 〈x1|ρ|x1〉 is infinite; it can be calculated as

1=

∫

Dx1 Tr(ρ |x1〉〈x1|) =
∫

Dx1
〈x1|ρ|x1〉

vol(fSL(2,R))
⇒ 〈x1|ρ|x1〉= vol(K(x1)) , (32)

where K(x1) is the isotropy group fixing x1 of the left action of fSL(2,R) on M. Thus the effect
of division by qT1

(x1) inside an integral is to fix a directional coordinate u defined relative to
the point x1 at T1—recall the discussion leading to (17). We fix the gauge invariantly across
both sides of (4), by fixing the coordinate u of the point at T2 relative to the point at T1. That is,
inside the three-point integral (31) we set 〈x1|ρ|x1〉−1 = δ(u21 − u) and inside the two-point
integrals, 〈x1|ρ|x1〉−1 = δ(u31 − u), for some constant u.

Next, let us consider the holographic expansion of the integrand in (31). Taking into
account (20), (21) and the spin-loop phase (22), then restricting to our region of interest
(x3; x2), (x2; x1) ∈ region 6 to which the integral will localize in the semi-classical limit, the
integral becomes

∫

16dl12du12

∫

16dl23du23δ(u21 − u)

∫

ds s
e−(β+iT31)s2/2

Z
sinh2πs

2π2
l−1
31 K2is

�

il−1
31

�

×
∫

ds1 s1eiT21s2
1/2

i
4π

I2is1

�

il−1
12

�

∫

ds2 s2eiT32s2
2/2

i
4π

I2is2

�

il−1
23

�

e−iωΦ(l31, u31)
�

1+O
�

γ−2
��

.

(33)

Note we have specified the position x1 of Φ with relative coordinates (l31, u31), the point
x3 being fixed. Anticipating that in the semi-classical limit we will be able to use decom-
position formulas (24), (25), (26) for l31, u31, and ω, we change variables of integration as
(l12, u12, l23, u23)→ (l12, u21, l23, u32 − u12) which introduces a Jacobian

∂ (l12, u12, l23, u23)
∂ (l12, u21, l23, u32 − u12)

=
φ′3
φ′1

1
cos(φ1 −φ3)

= 1− 4u31l31 +O
�

l2
�

. (34)

The Jacobian is trivial in flat space, with the O(l) correction coming from curvature of space-
time. Holding γl ∼ (bare proper distance) fixed, l ∼ γl

γ ∼ O(γ−1), and we only need to retain
O(γ−1) corrections in order to obtain the generator equation to leading non-vanishing order.
This formalizes our intuition that curvature and Einstein’s equations are determined at second-
order displacement from a point, or one order of displacement beyond the flat approximation.
Curvature effects at O(γ−1) also enter the integrand of (33) in the following way. We adapt
the Taylor expansion of Φ(x1) appearing in (4) to relative coordinates, and expand Φ(l31, u31)
about l31 = l21, u31 = u21. This involves solving for ∆x1 = x1 − x̄1 such that l31̄ = l21 and
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u31̄ = u21, and subsequently the displacement of relative coordinates

∆l31 = l13 − l12 + 2 (l13 − l12) (l13u31 − l12u21) +O
�

l3
�

,

∆u31 =
l13

l12
(u31 − u21) +

1
l12

�

(l13u31 − l12u21) (l12u21 − 2l13u21 + l13u31) + (l13 − l12)
2φ′23

�

+O
�

l2
�

.
(35)

The subleading terms in l are again curvature corrections to flat spacetime, and result in O(γ−1)
terms in the Taylor expansion

Φ(l31, u31) = Φ(l21, u21) +∆l31Φ
(1,0)(l21, u21) +∆u31Φ

(0,1)(l21, u21)

+
1
2
∆l2

31Φ
(2,0)(l21, u21) +∆l31∆u31Φ

(1,1)(l21, u21) +
1
2
∆u2

31Φ
(0,2)(l21, u21) + · · ·

(36)

Finally, we take the semi-classical limit, using the expansion (28) for two-point functions
and composition formulas (24), (25), (26), and evaluating the integral by expansion about its
saddle-point,

s∗ = s∗1 = s∗2 =
2π
β

, l∗12 =
1

2s∗
sinh

�

s∗T21

2

�

, l∗23 =
1

2s∗
sinh

�

s∗T32

2

�

,

u∗32 − u∗12 = s∗

�

tanh
�

s∗T21

2

�

+ tanh
�

s∗T32

2

��

. (37)

With s/γ being small but finite, that is s ∼ O(γ) in the semi-classical expansion, we note that
coordinates u32 − u12, u21 which were O(1) in the holographic expansion recover their bare
scaling O(γ).18 Having expanded to O(γ−1) in the holographic limit, we again expand to
O(γ−1) in the semiclassical limit, taking this new scaling into account. The result is that terms
remaining in the three-integral (31) after cancellation by those in the two-integrals of (4) give

0=
�

lim
x ′→x
−

i
32

�

1
l2
∂ 2

u −
2
l
∂u − 16

�

Φ(l, u)
�

(x;x ′)∈region 6
, (38)

with u fixed and arbitrary, where we have relabeled x3 = x , and l = l(x; x ′), u = u(x; x ′).19

But from (30), these are nothing but Einstein’s equations of JT gravity with negative cosmologi-
cal constant, with probability densityΦ(x) identified as the dilaton field or area of compactified
space in the gravity theory!

Before further discussion in the next section, let us take stock of the physical content of
the generator equation (4) employing joint quantum distributions given by EVPP’s (1). Em-
phatically, it is not solving for the actual probability distribution of the observable X in state ρ.
This is given by the single-event distribution qT (d x) = Dx Tr

�

ρeiHT P(x)e−iHT
�

; in our sys-
tem we have a thermal state and the corresponding probability density qT (x) = qT (d x)/Dx ,
qT (x) = q(x) = Tr(ρ |x〉〈x |) is uniform and vanishingly small, a natural consequence of the
quantum state respecting the isometry of the target space. (This is to be contrasted with the
probability density Φ(x) solving the generator equation, which is finite and has a non-trivial
profile.) Neither is the generator equation redundant with the Schrodinger equation express-
ing the time evolution of the quantum state; if it were, in our case it would simply express that

18That is, their scaling with respect to coordinates in ÞAdS2 rather than the asymptotic geometry M.
19Terms of order three or higher in the Taylor expansion (36) do not contribute to this result at leading non-

vanishing order in γ, producing terms of O(T 2
32). However, they can contribute at higher orders in the large γ

expansion, because the saddle-point expansion strips away increasing powers of l23, or T32.
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Figure 4: Semi-classically, the probability at a point of the black hole solution can
only flow to inside of light-cones (shown in green). Thus in the two-sided black
hole solution, the effective area at a point outside the left (right) horizon consists of
probability for the left (right) boundary particle to be there, whereas the effective
area inside the horizon is probability for either the left or right particle to be there.

a thermal quantum state does not evolve in time, [H,ρ] = 0. Rather, the generator equation is
the quantum generalization of an evolution equation involving conditional probabilities, and
asks the question, “Assuming some probability measure exists, is it compatible with evolution
according to conditional quantum distributions associated with the dynamics of the quantum
observable?”—its solutions are probability measures answering in the affirmative.

We can apply this understanding that the generator equation is solving for consistency—
rather than existence—of probability,20 to the black hole solution in anti-de Sitter JT gravity.
Recall that we derived a generator equation (hitherto known as Einstein’s equations) from the
dynamics of a single boundary particle in a thermal state. Yet we know the black hole solu-
tion satisfying the equation is associated with two boundary particles. This is possible as the
generator equation does not specify which, if any, particles are contributing to the probability
at a given point; it is simply solving for a probability measure, which if it existed, would be
consistent with the measure itself evolving according to thermal dynamics. In the case of the
black hole solution, we know that the probability in the solution is attributable to two distinct
particles in a finely-tuned entangled state where each is in a thermal state [19]. Furthermore,
we can recognize that there is a qualitative distinction between the dilaton field—or effective
spacetime area—inside and outside the black hole horizon, when understood as probability
density. The effective area at a point outside the horizon consists of probability for a single
particle—the boundary particle outside the horizon—to be there, whereas the area at a point
inside the horizon consists of probability for either of the two boundary particles to be there.21

See Figure 4.
As emphasized in [6], it is in fact not necessary for a quantum stochastic process to be

defined by EVPP’s of a quantum system—its mathematical definition only requires a sequence
of joint quantum distributions which each sum to one and satisfy marginalization relations
with respect to each other—nor is a probability solution to the generator equation of a process
with locally Markovian classiclal limit required to be attributable to a configuration of actual
quantum systems. This allows our framework to extend to quantum gravity beyond the anti-
de Sitter setting, in which a gravitational theory is associated with quantum systems residing
at the time-like boundary of anti-de Sitter space. In [6] we saw this mechanism at work in
the case of flat JT gravity, where the (Markovian) quantum stochastic process giving rise to a
generator equation was one consisting of joint quantum distributions obtained by taking an

20Relatedly, recall that we are solving for probability measures which do not have to integrate to 1.
21This is true as along as we are in the semi-classical limit in which the flow of particle probability is confined

to inside of light-cones.

15

https://scipost.org
https://scipost.org/SciPostPhys.16.1.012


SciPost Phys. 16, 012 (2024)

asymptotic limit of those of a boundary quantum system of anti-de Sitter JT gravity—and thus
divorced from the dynamics of the said quantum system.

4 Conclusion

Let us try to further enunciate the physical significance of a generator equation as we have
defined it, in particular by making a precise comparison between the generator equation (4)
using EVPP’s (1) of a quantum system, and the Schrodinger equation expressing the time evo-
lution of the density matrix of the quantum system, d

dTρ(T ) = −i [H,ρ(T )]. We will be using
notation applicable to the more general case in which a sub-measure Dx does not simul-
taneously factor out of joint quantum distributions qTn,...T1

(d xn, . . . d x1) and the probability
measure ν(d x).

The left-hand-side of the generator equation involves the time derivative of the two-event
quantum distribution,

∂T2
qT2,T1

(d x3, d x1) = Tr
�

ρeiHT1 P(d x1)e
−iH(T1−T2)i [H, P(d x3)] e

−iHT2
�

. (39)

Recall that in probability-theoretic language, we are representing events of a quantum sys-
tem with projection operators, e.g. the event that “observable X assumes value in the range
(x1, x1+d x1) at time T1” with the projection operator eiHT1 P(d x1)e−iHT1 in the Heisenberg pic-
ture.22 (As mentioned in the Introduction, we are not concerned with making measurements
on the quantum state which would involve its collapse, but rather studying joint quantum dis-
tributions associated with logical conjunctions of prescribed events at different times, in the
coherent and unmeasured quantum state ρ.23) Thus (39) divided by qT1

(d x1) expresses the
time evolution of the event that “X assumes value in (x3, x3 + d x3) at time T2” conditioned on
the event that “X assumes value in (x1, x1 + d x1) at time T1” while in the quantum state ρ,
or more precisely, the time-derivative of the corresponding conditional quantum distribution,
(3). This kernel then acts upon the assumed probability measure for X , ν(d x1).

On the right-hand-side of the generator equation, we take the time-derivative
after acting with the conditional quantum distribution on the measure; we have
∂T2
(QMT2,T1

ν)(d x3) = ∂T2

∫

x1
κT2,T1

(d x3; x1)ν(d x1).24 Mathematically, the equation
is non-trivial because differentiation and integration do not commute when the in-
tegrand is not continuous in the relevant region, and this is the case at hand as
limT21→0 κT2,T1

(d x3, x1) ∝ δ(x3 − x1). Physically, the equation is expressing a consistency
condition for some probability measure ν to be evolving with respect to conditional quantum
distribution κT2,T1

, and can be understood as the quantum equation of motion for time evolu-
tion of the latter, encapsulated by (39), transferred to the measure in the instantaneous limit
T2 → T1. (In JT gravity, it is necessary to express the derivative on the right-hand-side as we
have done in (4)—inserting an intermediate point at time T2 using the marginalization relation
qT3,T1

(d x3, d x1) =
∫

x2
qT3,T2,T1

(d x3, d x2, d x1)—in order to factor out 〈x1|ρ|x1〉 ∼ qT1
(d x1)

consistently between the two sides of the equation as a coordinate’s worth of volume, where
the coordinate is of the point at T2 relative to that at T1.)

Thus once the quantum stochastic process at hand satisfies the first-order condition of its
observable having possible values that are dense in target space, so that a continuum approxi-
mation is possible, the equation holds as a formal constraint on probability measures evolving

22See Appendix A of [6] for further elaboration.
23In contrast to the classical case, the logical conjunction of events is ordered and not necessarily an event—the

product of projectors P1 · · · Pn is a projector only if the projectors P1, · · · , Pn commute amongst themselves. This is
the reason we cannot associate a joint probability distribution, only a joint quantum distribution.

24We are denoting by QM the quantum Markov operator that maps measures forward in time with kernel κ.
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with respect to it. Yet it is only if the joint quantum distributions of the process have a semi-
classical limit and we work in that limit, that the equation can probe the local “shape” of joint
quantum distributions, resulting in a local constraint. (Of course, independently of whether
the equation is local or non-local, it may not possess any solutions at all.) Furthermore, it is
only in the case of the process being Markovian or locally Markovian, that the equation can
be expected to have any relation to characterizing or reconstructing the quantum stochastic
process at finite times, in particular its higher-order joint quantum distributions.25

We have reached the overwhelming conclusion that from the point of view of quantum the-
ory, the volume measure of spacetime should be understood as a probability measure evolving
and thus constrained with respect to some quantum stochastic process.

Let us comment on the relation between our work and known facets of AdS/CFT, including
the Ryu-Takayanagi formula which served as a motivation for our work. Note in deriving
our results we did not make any use of AdS/CFT relations. The latter are UV/IR relations
between quantities in a microscopic theory and an effective gravity theory at low energies.
In contrast our starting point for constructing the gravity theory—that spacetime is the target
space of a quantum observable, and the volume measure is a probability measure for it—were
already relations at the level of the low-energy theory. As such, in their current form, they are
best understood not as “new entries in the holographic dictionary”, but as relations we have
conjectured should hold generally between spacetime and corresponding quantum degrees of
freedom, in a bottom-up sense quantized theory of gravity. It is an interesting problem to try
to “lift” our results to the UV-IR setup of AdS/CFT duality; we are trying to address this in
current work in progress.

We conclude with some further questions and open problems.
One that is important in terms of completing our theory is a precise characterization of

classical stochastic processes that are locally Markovian, and thus of quantum stochastic pro-
cesses having a locally Markov classical limit. More generally, we would like to have a good
understanding of the precise conditions under which a quantum stochastic process gives rise
to gravity and spacetime.

We would also like to be able to investigate examples in which the quantum genera-
tor/gravitational equations are non-linear, and to arrive at a direct probabilistic interpreta-
tion of the metric and gravitational action. Relatedly and perhaps as a prior step, one could
try to incorporate matter excitations on top of the thermal state in our analysis, and attempt
to understand the signifiance of the energy-momentum tensor in relation to spacetime being
composed of probability.

Another direction of improvement would be to formulate the quantum stochastic process
in AdS JT gravity that we have studied using microscopic correlators in the Sachdev-Ye-Kitaev
(SYK) model [12, 20–22]. One can imagine, for example, of being able to compute stringy
corrections to Einstein’s equations in the gravity theory corresponding to the SYK model, after
understanding how fermionic correlators of the model naturally “latch onto” our generator
equation involving correlators in the quantum theory of the boundary of AdS JT gravity. In
this respect, it is useful that we have found Einstein’s equations can be recovered entirely from
the Schwarzian regime, as this is the dynamical regime in which one has analytic control of
correlators in the SYK model.

Finally, but not of least conceptual interest, is the problem of deriving the Ryu-Takayanagi
formula from our identification of the volume measure of spacetime as a probability measure.
It is clear that at minimum this would involve understanding, say in the context of AdS JT
gravity, a rationale for normalizing the probability density/dilaton function with respect to
the density matrix of the boundary quantum system.

25Intuitively, we are equating this reconstruction of the stochastic process with obtaining an entire spacetime
(probability) manifold from a local equation.
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A Asymptotic geometry near boundary ofÞAdS2

The asymptotic geometry M near a boundary of ÞAdS2 has the metric (15), with time coordi-
nate φ inherited from global ÞAdS2 and radial coordinate φ′ = γ(π2 ∓ θ ) near the boundary
θ = ±π2 . Without loss of generality, we work with the geometry near the right boundary
θ = π

2 .
Besides global coordinates (φ,φ′), an alternative set of coordinates which will be of use

to us are the Poincaré coordinates

q = tan
φ

2
, q′ =

φ′

2cos2 φ
2

. (A.1)

These parametrize the asymptotic near-boundary geometry of a Poincaré patch of globalÞAdS2,
see Figure 5a.

A.1 Geometry of two points (x1, x2)

The relative coordinate y12 given in (16), which measures geodesic distance, can be derived
by expressing the distance coordinate z12 = ϕ13ϕ24/ϕ12ϕ34 inÞAdS2—where ϕ1 = φ1−θ1+

π
2 ,

ϕ2 = φ1 + θ1 −
π
2 and ϕ3 = φ2 − θ2 +

π
2 , ϕ4 = φ2 + θ2 −

π
2 are coordinates of x1 and x2,

respectively, and ϕi j = 2sin
ϕi−ϕ j

2 —in terms of global coordinates on M,

ϕ1 = φ1 +
φ′1
γ

, ϕ2 = φ1 −
φ′1
γ

, ϕ3 = φ2 +
φ′2
γ

, ϕ4 = φ2 −
φ′2
γ

, (A.2)

then expanding in large γ:

2γ
p

z12
= y12 +O

�

γ−2
�

, y12 =
2
Æ

φ′1φ
′
2

�

�

�sin
�

φ1−φ2
2

�

�

�

�

. (A.3)

The relative coordinate u12 given in (17) measures the direction of x1 relative to x2. Let us
first recall that the relativistic light-cone in ÞAdS2 flattens in M as in Figure 2, after which only
the relative regions 6(n), n ∈ Z remain, demarcated by 2πn < φ1 −φ2 < 2π(n+ 1). Then we
observe that u12, being an analogue in the deformed geometry of the relative Schwarzschild
time t12 in ÞAdS2, will be spacelike in each region. To derive the expression (17), we proceed
as follows.
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a) b)

Figure 5: Depiction of a) a Poincare patch of the asymptotic space M, and level
curves of its spatial coordinate q′, and b) the map fixing u12, which maps x1 to a
point with same spatial Poincaré coordinate as the base point (φ = 0,φ′ = 1).

The group fSL(2,R) can be parametrized with three “Euler angles” [23]

g(ξ,ϕ,ϑ) = eϕΛ0 eξΛ1 e−ϑΛ0 , ξ≥ 0 . (A.4)

We can represent elements of the group as fractional maps on the complex plane,
�

a b
c d

�

z =
az + b
cz + d

, ∀z ∈ C , (A.5)

where the generators of the group are given by the fractional maps

Λ0 =
1
2

�

i 0
0 −i

�

, Λ1 =
1
2

�

0 1
1 0

�

, Λ2 =
1
2

�

0 i
−i 0

�

. (A.6)

Then the space AdS2 consists of the product of two unit circles, z1 = eiϕ1 , z2 = eiϕ2 where the
phases ϕ1,ϕ2 relate to global coordinates on ÞAdS2 as ϕ1 = φ − θ +

π
2 ,ϕ2 = φ + θ −

π
2 . We

work with the space M by embedding it in ÞAdS2,

ϕ1 = φ +
φ′

γ
, ϕ2 = φ −

φ′

γ
, (A.7)

and keeping only first-order corrections in large γ. Then we find the isotropy subgroup of
fSL(2,R) fixing the base point (φ = 0,φ′ = 1) is parametrized as

h(u) = eu(Λ0−Λ2) , (A.8)

while the group element
g(φ,φ′) = elnφ′Λ1 e−φΛ0 , (A.9)

takes an arbitrary point (φ,φ′) to the base point. Consequently, the isotropy subgroup fixing
an arbitrary point x2 is given by

K(x2) = {g(φ2,φ′2)
−1h(u)g(φ2,φ′2)|u ∈ R} . (A.10)

Now, given (x1; x2), we fix u12 by requiring that the transformation h(u12)g(φ2,φ′2)—
which maps x2 to the base point, ex2 = ( eφ2 = 0, eφ′2 = 1)—maps x1 to a
point with same spatial Poincaré coordinate q′ (see (A.1)) as the base point, that is
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eφ′1/
�

2cos2 eφ1
2

�

= eφ′2/
�

2cos2 eφ2
2

�

= 1
2 . See Figure 7. Also using that y12 must be preserved

by the transformation, 2
Æ

φ′1φ
′
2/
�

�

�sin
�

φ1−φ2
2

�

�

�

�= 2
Ç

eφ′1/
�

�

�sin
eφ1
2

�

�

�, we solve for φ̃1, eφ′1 and find

u12 = cot
�

φ1 −φ2

2

�

φ′2 ∓

Æ

φ′1φ
′
2

sin
�

φ1−φ2
2

� . (A.11)

The correct branch cuts that preserve relative regions are given by

2πn′ −π < φ1 −φ2 < 2πn′ +π , n′
�

even: upper sign,

odd: lower sign.
(A.12)

Note that there is a branch cut at the center of each relative region 6(n); this is consistent
with the deformation from ÞAdS2 to M, see Figure 2. The first term in (A.11) corresponds to
the directional relative coordinate t12 =

1
2 ln

��

�ϕ14ϕ24/ϕ13ϕ23

�

�

�

in ÞAdS2 which parameterizes

orbits of points under the isotropy group H(x2) of the action of fSL(2,R) on ÞAdS2 (cf. (A.10)):

γt12 = cot
�

φ1 −φ2

2

�

φ′2 +O(γ−2) . (A.13)

From (A.3) and (A.13), we see that the bare scaling of relative coordinates y12, u12, that
is, their scaling with respect to coordinates on ÞAdS2 as opposed to those on the asymptotic
geometry M, are given by y12, u12 ∼ O(γ).

A.2 Geometry of three points (x1, x2, x3)

Let us derive composition formulas for the invariant distance

y13 = y31 =
2
Æ

φ′1φ
′
3

�

�

�sin
�

φ1−φ3
2

�

�

�

�

, (A.14)

and three-point spin-loop phase (22) that were given in (24), (25). The formulas can be
checked directly using the definitions of variables l12, l23, and u12, u32. But to derive them in
the first place, we proceed as follows.

We fix x2 to be the base point, x2 = (φ2 = 0,φ′2 = 1), and invert the formulas

y12 =
2
Æ

φ′1
�

�

�sin φ1
2

�

�

�

, u12 = cot
�

φ1

2

�

∓

Æ

φ′1
�

�

�sin φ1
2

�

�

�

,

y23 =
2
Æ

φ′3
�

�

�sin φ3
2

�

�

�

, u32 = cot
�

φ3

2

�

∓

Æ

φ′3
�

�

�sin φ3
2

�

�

�

,

(A.15)

to solve for φ1,φ′1, φ3,φ′3. We choose branch cuts corresponding to configurations of three
points that are relevant in the semi-classical limit at small proper times, that is, φ21,φ32 small
and positive (negative), applying to the case of the quantum particle having spin ν (-ν).26

These are
q

φ′1 =
y12

2
q

1+ (u12 ∓
y12
2 )2

, ∓ sin
�

φ1

2

�

=
1

q

1+ (u12 ∓
y12
2 )2

,

q

φ′3 =
y32

2
q

1+ (u32 ±
y32
2 )2

, ± sin
�

φ3

2

�

=
1

q

1+ (u32 ±
y32
2 )2

,
(A.16)

26In particular, sinceφ21,φ32 are small in magnitude, we choose the upper sign in formulas for u12, u32 in (A.15),
which apply when −π < φ1 −φ2,φ2 −φ3 < π.
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with upper (lower) signs corresponding to φ32,φ21 small and positive (negative). Plugging
into (A.14) and (22), we obtain the general formulas

y31 =
1
2

y12 y23

(±(u32 − u12) + (y12 + y23)/2)
,

±ω= ±(u32 − u12) +
y12 + y23

2
+

y2
12 + y2

23

4
1

(±(u32 − u12) + (y12 + y23)/2)
.

(A.17)

(A.18)

Meanwhile, composition formulas for

u31 = cot
�

φ3 −φ1

2

�

φ′1 −

Æ

φ′3φ
′
1

sin
�

φ3−φ1
2

� , (A.19)

can be obtained in the same way,

u31 = u21 +
y12(u32 − u12)

2 (±(u32 − u12) + (y12 + y23)/2)
. (A.20)

Note all composition formulas are invariant under the left-action of fSL(2,R) fixing x2 or x1,
which manifest as translations in u32, u12 and u31, u21, respectively.

B Two-point functions in Schwarzian regime

Here we study two-point functions of the boundary particle of JT gravity in the Schwarzian
regime, or in the holographic limit and at long time scales. In the holographic limit,

γ≫ 1 , s2≪ γ2 , (B.1)

the particle likes to be near the boundary of ÞAdS2, i.e. its single-particle wavefunctions are
localized there. Furthermore, over long time scales,

Tb≫ 1 , (B.2)

it stays in the near-boundary region, i.e. its two-point functions also localize to near the bound-
ary. Thus in the Schwarzian regime, we are reduced to studying the dynamics of the particle
in the asymptotic geometry near the boundary of ÞAdS2, the spacetime M defined in (15).

B.1 Exact two-point functions in Schwarzian regime

In order to obtain two-point functions in the Schwarzian regime, we take the limit γ →∞
of the exact two-point functions of JT gravity found in [15], in region 5,6 and their copies—
these are the regions remaining in the asymptotic geometry, the asymptotic space near the
right (left) boundary of ÞAdS2 dividing into regions 6(n) (5(n)) after fixing a reference point
(see Figure 2). In the following we will be showing formulas in regions 5, 6′, 5′, 6, to which
two-point functions localize in the semi-classical limit.27

27These are the results we will be using in our calculation of the generator equation of the quantum stochastic
process of the particle. However, formulas in other copies of regions 5,6 can be found in a similar manner.
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As can be found in Sections 4.2 and 5.2 of [15], the radial part of two-point functions
corresponding to the density operator P and propagator I are given by

�PE(x; 0) = ρ(E)

¨

Γ (λ+ ν)Γ (1−λ+ ν)Aλ,ν,ν(w
−1) , in region 5, 6′,

Γ (λ− ν)Γ (1−λ− ν)Aλ,−ν,−ν(w
−1) , in region 5′, 6 ,

�IE(x; 0) =
1

(2π)2



















Γ (λ+ ν)Γ (1−λ+ ν)Aλ,ν,ν(w
−1)

+Γ (λ− ν)Γ (1−λ− ν)Aλ,−ν,−ν(w
−1)e2πiλ , in region 5, 6′,

Γ (λ+ ν)Γ (1−λ+ ν)Aλ,ν,ν(w
−1)e2πiλ

+Γ (λ− ν)Γ (1−λ− ν)Aλ,−ν,−ν(w
−1) , in region 5′, 6 ,

(B.3)

(B.4)

where

ρ(E) = (2π)−2 sinh(2πs)
(cosh(2πγ) + cosh(2πs))

, (B.5)

is the exact density of states in JT gravity, λ = 1
2 + is is the energy parameter (cf. (12)) and

ν= ∓iγ the spin of the particle, and

w=
z

z − 1
, (B.6)

is an invariant distance coordinate on ÞAdS2.
In order to expand in large γ, it is useful to switch from the basis of functions

Aλ,±ν,±ν(w
−1) =

�

w−1
�±ν �

1−w−1
�λ

F
�

λ± ν,λ± ν, 1± 2ν; w−1
�

, (B.7)

where F(a, b, c; z) is the regularized hypergeometric function, to the basis

Bλ,ν,ν(w
−1) =

�

w−1
�±ν �

1−w−1
�λ

F
�

λ± ν,λ± ν, 2λ; 1−w−1
�

,

B1−λ,ν,ν(w
−1) =

�

w−1
�±ν �

1−w−1
�1−λ

F
�

1−λ± ν, 1−λ± ν, 2(1−λ); 1−w−1
�

,
(B.8)

so that ν only appears in the first two arguments of hypergeometric functions:

Γ (λ+ ν)Γ (1−λ+ ν)Aλ,ν,ν(w
−1)

=
π

sin2πλ

�

Γ (λ+ ν)
Γ (1−λ+ ν)

Bλ,ν,ν(w
−1)−

Γ (1−λ+ ν)
Γ (λ+ ν)

B1−λ,ν,ν(w
−1)
�

. (B.9)

Then we use the series representation
�

1
2

x
�c−1

F

�

A+
c
2

, A+
c
2

, c;
x2

4A2

�

= Ic−1(x)
�

1+
1
A

� x
2

�2�

+O
�

1
A2

�

, (B.10)

which converges for
�

�

�

x2

4A2

�

�

� < 1, and which can be obtained by expanding each term in the

hypergeometric series on the left-hand-side; Iα(x) is the modified Bessel function of the first
kind.

Without loss of generality, let us fix ν= −iγ. Applying (B.10) to (B.8) and also noting the
large-γ expansion

Γ (λ+ ν)
Γ (1−λ+ ν)

= eπsγ2is
�

1+O(γ−2)
�

, (B.11)

and that of 2γ/
p

z in (A.3), we have

Γ (λ+ ν)
Γ (1−λ+ ν)

Bλ,ν,ν(w
−1) =

1
2γ

�

2γ
p

z

�

e2πs I2is

�

i
2γ
p

z

�

�

1+O
�

γ−2
��

=
y

2γ
e2πs I2is(i y)

�

1+O
�

γ−2
��

. (B.12)
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Finally, using the modified Bessel function of the second kind Kα(x) =
π

2sinπα (I−α(x)− Iα(x)),

Γ (λ± ν)Γ (1−λ± ν)Aλ,±ν,±ν(w
−1) =

y
γ

K2is (∓i y)
�

1+O
�

γ−2
��

. (B.13)

In particular, we find the Schwarzian propagators found in [15,16] are unchanged to sublead-
ing order in large γ,

�PE(x; 0) = e−2πγγ−1 sinh2πs
2π2

¨

yK2is(−i y)
�

1+O(γ−2)
�

, in region 5, 6′,

yK2is(i y)
�

1+O
�

γ−2
��

, in region 5′6 ,

�IE(x; 0) = γ−1 1
4π

¨

i y I2is(i y)
�

1+O(γ−2)
�

, in region 5,6′,

−i y I−2is(−i y)
�

1+O
�

γ−2
��

, in region 5′, 6 .

(B.14)

(B.15)

B.2 Exponential form in semi-classical limit

We can obtain an exponential form for the two-point functions (B.14), (B.15) in the semi-
classical limit

s2≫ 1 , (B.16)

by evaluating the integral

K2is(±i y) =
1
2

∫ ∞∓π2 i

−∞±π2 i
dξ e−p(ξ) , p(ξ) = ±i y coshξ∓ 2isξ , (B.17)

using the saddle-point method. There is a saddle-point at

sinhξ∗ =
2s
y

, (B.18)

where

p(ξ∗) = ±i
Æ

y2 + 4s2 ∓ 2is sinh−1
�

2s
y

�

, p′′(ξ∗) = ±i
Æ

y2 + 4s2 . (B.19)

Thus we deform the integration contour in (B.17) as in Figure 6. Using the closed formula for
the saddle-point expansion of an integral of a single variable, and also taking the large-s limit
of the analytic continuation

∓iπI∓2is(∓i y) = K2is(±i y)− e−2πsK2is(∓i y) , (B.20)

we obtain the result in (28).

C Einstein’s equations in relative coordinates

Here we give the derivation of the metric and Einstein’s equations (29), (30) at a point of the
asymptotic geometry M, written using relative coordinates with respect to an approaching
point.

At a point x2, we switch from using absolute coordinates Xµ = (φ2,φ′2) to relative coordi-
nates l = l21, u= u21 with respect to an approaching point x1. With φ21 being small,

l =

�

�

�sin
�

φ2−φ1
2

�

�

�

�

2
Æ

φ′2φ
′
1

, u= cot
�

φ2 −φ1

2

�

φ′1 −

Æ

φ′2φ
′
1

sin
�

φ2−φ1
2

� , (C.1)
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Figure 6: Deformation of contours in (B.17) to pass through saddle-points.

and solving for derivatives of Xµ with respect to (l, u),

∂ φ2

∂ l
= ±4φ′2 ,

∂ φ2

∂ u
= −

sin2
�

φ2−φ1
2

�

φ′1
,

∂ φ′2
∂ l
= ±4φ′2



φ′2 cot
�

φ2 −φ1

2

�

−

Æ

φ′2φ
′
1

sin
�

φ2−φ1
2

�



 ,
∂ φ′2
∂ u

= −
φ′2
φ′1

sin(φ2 −φ1) ,

(C.2)

with the upper (lower) sign forφ21 positive (negative). Inverting (C.1) to solve for sin
�

φ1−φ2
2

�

,
φ′1
φ′2

in terms of l, u at fixed x2,

sin
�

φ1 −φ2

2

�

= ∓

√

√

√1−
q

1− 16l2(1± 2ul)2φ′22
2

,
φ′1
φ′2
=

1−
q

1− 16l2(1± 2ul)2φ′22
8l2φ′22

,

(C.3)
and substituting in (C.2), we can obtain the metric (15) at x2 using coordinates (l, u).

We consider its asymptotics as x1 approaches x2 at distances short compared to the AdS
radius, γl ≪ 1. Expanding in small l ≪ γl ≪ 1,

guu ≈ 16l2 +O
�

l3
�

+O
�

γ2l4
�

︸ ︷︷ ︸

−64γ2 l4

,

gl l ≈ −16γ2 +O(1) , gul ≈ O(l) +O
�

γ2l2
�

︸ ︷︷ ︸

±32γ2 l2

,
(C.4)

and we confirm the leading behavior of the metric is flat, with corrections suppressed by γ−1

and γl. The curvature of the metric can be retained by including corrections suppressed by γl
and γ2l2 which we have shown explicitly in (C.4),

ds2 ≈ 16
�

−γ2dl2 + l2
�

1− 4γ2l2
�

du2 ± 4γ2l2dldu
�

. (C.5)

The resulting Laplacian, at leading order in γ, is

∇2 = gµν∇µ∇ν ≈
1
16

�

1
l2
∂ 2

u ±
2
l
∂u

�

. (C.6)

Also noting

∂ Xµ

∂ l
∂ X ν

∂ l
gµν = gl l ≈ −16γ2 ,

∂ Xµ

∂ l
∂ X ν

∂ l
∇µ∇ν =∇l∇l ≈ ∓4γ2 1

l
∂u , (C.7)
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we obtain

lim
l→0

∂ Xµ

∂ l
∂ X ν

∂ l

�

∇µ∇ν − gµν∇2 − gµνΛ
�

≈ lim
l→0
γ2
�

1
l2
∂ 2

u ∓
2
l
∂u − 16

�

, (C.8)

whose tensorial components are differential operators appearing in Einstein’s equations of JT
gravity. The expression can be verified by computing the left-hand-side in absolute coordi-
nates (φ2,φ′2), and comparing with the right-hand-side computed using the short-distance
asymptotics of the derivatives in (C.2),

∂ φ2

∂ l
= ±4φ′2 ,

∂ φ2

∂ u
≈ −8φ′2l2 ,

∂ φ′2
∂ l
≈ ∓4φ′2u+ 8φ′2

�

u2 −φ′22
�

l ,
∂ φ′2
∂ u
≈ ∓4φ′2l + 8φ′2ul2 .

(C.9)

Note ∂l , l−1∂u are the scaled derivatives finite as l → 0, and their behavior is odd as x1 ap-
proaches x2 from below and above.

D Evaluation of generator equation

Here we give a complete account of the evaluation of the generator equation (4) for the quan-
tum stochastic process of the boundary AdS JT gravity in the Schwarzian regime, which leads
to Einstein’s equations in the final form (38). Without loss of generality, we consider the case
of the boundary particle having spin ν = −iγ, and its quantum motion on the asymptotic
geometry near the right boundary of ÞAdS2.

D.1 Two-event integrals

Let us consider the two-event integral appearing on the right-hand-side of the equation,
∫

Dx1

qT2,T1
(x3, x1)

qT1
(x1)

Φ(x1) =

∫

Dx1
〈x3|e−iHT21ρ|x1〉〈x1|eiHT21 |x3〉

〈x1|ρ|x1〉
Φ(x1) . (D.1)

Noting the factor qT1
(x1)−1 fixes the coordinate u31 = u as explained near (32) of Section 3.2,

and using expansions (20), (21) of two-point functions (19), we have that in the holographic
limit the integral restricted to the relative region (x3; x1) ∈ region 6 becomes28

∫

16dldu13δ(u31 − u)

∫

ds s
e−(β+iT )s2/2

Z
sinh2πs

2π2
l−1K2is

�

il−1
�

×
∫

ds′ s′eiTs′2/2 i
4π

I2is′
�

il−1
�

Φ(l, u31)
�

1+O
�

γ−2
��

, (D.2)

where we have used the shorthand T21 = T , l13 = l31 = l. Changing variable in the integral
from u13 to u31 introduces the Jacobian

du13

du31
=
φ′3
φ′1

1
cos(φ1 −φ3)

= 1− 4u31l +O(l2) . (D.3)

28After taking the semi-classical limit, the integral will localize to this region—i.e. there will be no saddle-point in
the other region (x3; x1) ∈ region 6′—as the classical trajectory of a spin-ν particle goes up near the right boundary
of ÞAdS2.
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As explained near (34), we need—and actually should—only retain O(l)∼ O(γ−1) corrections
for our purposes of calculating the generator equation to leading non-vanishing order.29

Next, we take the semi-classical limit using the expansion (28), which gives

1
2π3Z

∫

dl

∫

ds

∫

ds′ e−p(l,s,s′) ss′

l(l−2 + 4s2)1/4(l−2 + 4s′2)1/4
Φ(l, u)

× (1− 4ul)

�

1+
i

24

�

3l−2 − 8s2

(l−2 + 4s2)3/2
−

3l−2 − 8s′2

(l−2 + 4s′2)3/2

�

+O(γ−2)

�

,

(D.4)

p(l, s, s′) = (β + iT )
s2

2
− 2πs−

iTs′2

2
+ i
�p

l−2 + 4s2 − 2s sinh−1 2sl
�

− i
�p

l−2 + 4s′2 − 2s′ sinh−1 2s′l
�

. (D.5)

We find there is a saddle point at

s∗ = s′∗ =
2π
β

, l∗31 =
sinh

�

s∗T21
2

�

2s∗
=
β

4π
sinh

�

πT21

β

�

, (D.6)

consistent with the classical trajectory of the boundary particle in the Schwarzian regime, see
e.g. Appendix C of [6].

To evaluate the integral we use the closed-form formula for the saddle-point expansion of
a multi-variable integral derived in [6]. If there are N variables z = (z1, . . . , zN ),

∫

dz f (z)e−p(z) = e−p∗
∞
∑

m=0

2m
∑

j=0

2(m+ j)
∑

|i|=3 j

(−1) j

j!
B̂i j(p)

×
∑

|k|=2(m+ j)−|i|

fk

N
∏

M=1

1
2

�

1+ (−1)(k+i)M
�

p−((k+i)M+1)/2
M Γ

�

(k + i)M + 1
2

�

,

(D.7)

where pM are coefficients of quadratic terms in the expansion of the exponent p(z) about the
saddle-point, and coefficients of higher-order terms in the expansion have been packaged into
a function p : NN → C,

p(z)− p(z∗) =
N
∑

M=1

pM(zM − z∗M)
2 +

∞
∑

|k|=3

pk(z − z∗)
k . (D.8)

fk are coefficients in the expansion of the amplitude function f (z),

f (z) =
∞
∑

|k|=0

fk(z − z∗)
k , (D.9)

29For example, as u∼ O(1) in large-γ counting in the holographic limit, but u∼ O(s)∼ O(γ) in large-γ counting
after taking the semi-classical limit, individual terms that are O(u2 l2) ∼ O(γ−2) in holographic counting formally
become O(1) in semi-classical counting. However, they are actually scaling as s2/γ2, so should not be included
in the evaluation to O(γ−1), γ → ∞. To avoid such anomalous contributions at all orders in the saddle-point
expansion in the semi-classical limit, we should not include any O(γ−2) terms in the holographic expansion.
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and B̂i j(x), x : NN → C are multivariate Bell polynomials [24] which can be computed using
recursion relations

B̂i j(x) =























δi,0 , j = 0 ,

xi , j = 1 ,
|i|−J
∑

|r |=J( j−1)

B̂i, j−1(x)B̂i−r ,1(x) , j ≥ 2 ,

(D.10)

where J is an integer s.t. xi = 0 for |i| < J—in our case with xi = pi , J = 3. Note we have
used the multivariate notation |i| =

∑N
M=1 iM, zi =

∏N
M=1 z iM

M for i ∈ NN , and in (D.10) 0
is the vector of 0’s in NN . Importantly, the formula (D.7) assumes the quadratic expansion of
the exponent is diagonal in variables z, see (D.8) .

Going back to the integral (D.4), we proceed by identifying second derivatives of the ex-
ponent which are non-vanishing at the saddle point. They are

a =
∂ 2p
∂ s2

�

�

�

�

∗
, a′ =

∂ 2p
∂ s′2

�

�

�

�

∗
, b =

∂ 2p
∂ s∂ l

�

�

�

�

∗
= −

∂ 2p
∂ s′∂ l

�

�

�

�

∗
, (D.11)

so denoting X = s − s∗, X ′ = s′ − s′∗, Y = l − l∗, we can complete the squares in the quadratic
expansion of (D.5) as

p− p∗ ≈
1
2

a
�

X +
b
a

Y
�2

+
1
2

a′
�

X ′ −
b
a′

Y
�2

+
1
2

�

−b2
�

1
a
+

1
a′

��

Y 2 . (D.12)

Thus we change variables in the integral as

s = w−
b
a

l , s′ = w′ +
b
a′

l , l , (D.13)

when applying (D.7) with N = 3. Note the index m in (D.7) counts inverse powers of large
exponent—in our case, γ—relative to the leading term. We would like to evaluate the integral
to sub-leading accuracy in large γ, so we calculate m = 0,1 terms in (D.7) for leading terms
in the amplitude in (D.4), and the m = 0 term for subleading terms in the amplitude. As
explained near (37), the variable u newly acquires the scaling O(γ) in semi-classical counting,
so both terms in the factor 1− 4ul of the amplitude contribute at leading order. The result of
such evaluation is given by

∫

Dx1

qT2,T1
(x3, x1)

qT1
(x1)

Φ(x1) =






1− 4ul31 + c00 + c10∂l31

+ c20∂
2
l31

︸ ︷︷ ︸

O(γ−1) terms

+O(γ−2)






Φ(l31, u)

�

�

�

�

�

�

�

∗

,

(D.14)
where the coefficients

c00 =
iul31(π+ i sinh−1(2sl31)) sinh−1(2sl31)

πs
, . . . , (D.15)

are not important as corresponding terms (and in fact all terms in (D.14)) will be cancelled by
those in the zeroth-order term of the Taylor expansion in the three-event integral in (4), see
(D.28).

Performing a similar calculation as above, the two-integral on the left-hand-side of the
generator equation evaluates to

lim
T21→0+

∫

Dx1

∂T2
qT2,T1

(x3, x1)

qT1
(x1)

Φ(x1) =
�

lim
x1→x3

�

1
4
∂l31
− u+O

�

γ−1
�

�

Φ(l31, u)
�

(x3;x1)∈region 6
.

(D.16)
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Note we only need to compute to O(γ−1) to match the computation of integrals to O(γ−2) on
right-hand-side, as the latter are divided by T32 = (Tb)32 /γ∼ O(γ−1). The action of ∂T2

brings
down a factor of E′− E = (s′2− s2)/2 in (D.4), so the integral is enhanced by a factor of γ2 in
semi-classical counting. Thus we expand around the saddle-point to order m = 2 for leading
terms in the amplitude, and to order m= 1 for subleading terms—the m= 0 evaluation right
at the saddle-point is identically zero as s∗ = s′∗.

D.2 Three-event integrals

Let us consider the three-event integral in the generator equation (31). As explained in Section
3.2, the Taylor expansion of Φ(x1) in (4) will be replaced with the expansion (36) adapted to
our use of relative coordinates. As outlined in the same Section and also Section 3.1, there
are extra components in the evaluation of (31) as compared to the case of two-event integrals,
having to do with i) including the spin-loop phase in the three-event joint quantum distribu-
tion, ii) identifying all corrections due to curvature in the holographic limit, and iii) using the
geometry of three points in the semi-classical limit.

Similarly as in (D.2), noting the factor qT1
(x1)−1 fixes u21 = u (the directional coordinate

of the point at time T2 relative to the point at time T1), we have that in the holographic limit
the integral restricted to the relative regions (x3; x2), (x2; x1) ∈ region 6 becomes (33). We
must take care to find all O(γ−1) corrections in the holographic expansion that are due to
the curvature of spacetime; these are identified in (34), (35), and (36). Here let us give the
derivation of the displacements (35). Solving for x̄1 such that l31̄ = l21 and u31̄ = u21—note
x3 is fixed—we find (cf. (C.3))

sin

�

φ̄1 −φ3

2

�

= −

√

√

√1−
q

1− 16l2
12(1+ 2u21l12)2φ′23

2
,

φ̄′1
φ′3
=

1−
q

1− 16l2
12(1+ 2u21l12)2φ′23

8l2
12φ
′2
3

.

(D.17)

Employing similar solutions for x1 in terms of l31 and u31, and converting the displacements
∆x1 = x1 − x̄1 as

∆x31 =
∂ x31

∂ φ1

�

�

�

�

x1= x̄1

∆φ1 +
∂ x31

∂ φ′1

�

�

�

�

x1= x̄1

∆φ′1 , x31 = (l31, u31) , (D.18)

we find the expansions in (35).
Next, similarly as in (D.4), we take the semi-classical limit of (33), which gives

1
Zπ4

√

√ 2
π

∫

dl12

∫

dl23d(u32 − u12)

∫

dsds1ds2 e−p(l12,l23,u32−u12,s,s1,s2)

×
ss1s2

l13

e
π
4 i

(l−2
13 + 4s2)1/4(l−2

12 + 4s2
1)1/4(l

−2
23 + 4s2

2)1/4
F(l12, l23, u, u32 − u12)

×
�

1+
i

24

�

3l−2
13 − 8s2

(l−2
13 + 4s2)3/2

−
3l−2

12 − 8s2
1

(l−2
12 + 4s2

1)3/2
−

3l−2
23 − 8s2

2

(l−2
23 + 4s2

2)3/2

�

+O(γ−2)

�

,

(D.19)

p = (β + iT31)
s2

2
− 2πs−

iT21s2
1

2
−

iT32s2
2

2
+ i
�q

l−2
13 + 4s2 − 2s sinh−1 2sl13

�

− i
�q

l−2
12 + 4s2

1 − 2s1 sinh−1 2s1l12

�

− i
�q

l−2
23 + 4s2

2 − 2s2 sinh−1 2s2l23

�

+ iω , (D.20)
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where the function F includes terms of up to O(l) ∼ O(γ−1) in the product of the Jacobian
(34) and Taylor expansion (36) with u21 = u, and we use composition formulas for l31, u31,
and ω given in (24), (26), and (25). There is a saddle point at (37).

Next, we proceed to calculate second derivatives of (D.20) and change variables to diago-
nalize its quadratic expansion about the saddle. The second derivatives non-vanishing at the
saddle-point are

a =
∂ 2p
∂ s2

�

�

�

�

∗
, a j =

∂ 2p

∂ s2
j

�

�

�

�

�

∗

, b′j =
∂ 2p

∂ s∂ l j, j+1

�

�

�

�

∗
, b j =

−∂ 2p
∂ s j∂ l j, j+1

�

�

�

�

∗
, c =

∂ 2p
∂∆u2

�

�

�

�

∗
,

d =
∂ 2p
∂ s∂∆u

�

�

�

�

∗
, e j =

∂ 2p
∂∆u∂ l j, j+1

�

�

�

�

∗
, f jk =

−∂ 2p
∂ l j, j+1∂ lk,k+1

�

�

�

�

∗
, j, k = 1,2 ,

(D.21)

where we have used the shorthand ∆u = u32 − u12. Denoting X = s − s∗, X j = s j − s∗j ,
Yj = l j, j+1 − l∗j, j+1, Z = ∆u−∆u∗, we find that we can complete the squares in the quadratic
expansion of (D.20) as

p− p∗ ≈
1
2
α

 

X +
1
α

2
∑

j=1

b jYj

!2

+
1
2

2
∑

j=1

a j

�

X j −
b j

a j
Yj

�2

(D.22)

+
1
2

2
∑

j=1

�

−b2
j

�

1
α
+

1
a j

��

Y 2
j −

1
α

b1 b2Y1Y2 +
1
2

c

 

Z +
d
c

X +
2
∑

j=1

e j

c
Yj

!2

, α= a−
d2

c
.

Thus in applying (D.7) with N = 6, we change variables to

w= s+
1
α

2
∑

j=1

b j l j, j+1 , w j = s j −
b j

a j
l j, j+1 , u=∆u+

d
c

s+
2
∑

j=1

e j

c
l j, j+1 , (D.23)

and also diagonalize the matrix of derivatives w.r.t. l j, j+1 by working with rotated variables

v+ = l12 −χ l23 , v− = χ l12 + l23 , (D.24)

χ = −

�

α(a1 b2
2 − a2 b2

1)− a1a2(b2
1 − b2

2)
�

2a1a2 b1 b2



1−

√

√

√

√1+
4a2

1a2
2 b2

1 b2
2

�

α(a1 b2
2 − a2 b2

1)− a1a2(b2
1 − b2

2)
�2



 .

(D.25)

The eigenvalues of the latter matrix are given by

α± =
α(a1 b2

2 + a2 b2
1) + a1a2(b2

1 + b2
2)∓

�

α(a1 b2
2 − a2 b2

1)− a1a2(b2
1 − b2

2)
�

2αa1a2

×

√

√

√

√1+
4a2

1a2
2 b2

1 b2
2

�

α(a1 b2
2 − a2 b2

1)− a1a2(b2
1 − b2

2)
�2 , (D.26)

and the exponent (D.20) expands quadratically with respect to new variables (D.24) as

p− p∗ ∼ −
1
2

�

1
1+χ2

�

�

α+V 2
+ +α−V 2

−

�

, V± = v± − v∗± . (D.27)

Then the result of evaluating terms of degree 0,1,2 in the Taylor expansion (36) inside of
F in (D.19), and expanding about the saddle point to order m = 1 for leading terms in the
respective amplitudes and to order m= 0 for subleading terms, is as follows:
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∫

Dx1Dx2

qT3,T2,T1
(x3, x2, x1)

qT1
(x1)

Φ(x31 = x21) =
�

1− 4ul21 − uT32

+ c20∂
2
l21
+ c10∂l21

+ c00 +
i
2

T32 +O
�

T32T21, T2
32

�

+O
�

γ−2
�

�

Φ(l21, u)

�

�

�

�

∗
, (D.28)

∫

Dx1Dx2

qT3,T2,T1
(x3, x2, x1)

qT1
(x1)

∑

|k|=1

Φ(k)(x31 = x21)
k!

∆x k
31

=
�

T32

�

1
4
∂l21
+

i
16

l−1
21 ∂u

�

+O
�

T32T21, T2
32

�

+O
�

γ−2
�

�

Φ(l21, u)

�

�

�

�

∗
, (D.29)

and

∫

Dx1Dx2

qT3,T2,T1
(x3, x2, x1)

qT1
(x1)

∑

|k|=2

Φ(k)(x31 = x21)
k!

∆x k
31

=
�

T32

�

−
i

32
l−2
21 ∂

2
u

�

+O
�

T32T21, T2
32

�

+O
�

γ−2
�

�

Φ(l21, u)

�

�

�

�

∗
. (D.30)

To O(γ−1), terms of degree 3 or higher in the Taylor expansion (36) only give terms of O(T2
32),

so do not contribute to the generator equation (4). Collecting the integrals (D.14), (D.16),
(D.28), (D.29), (D.30), we obtain (38), with all surviving terms originating from the three-
event integral. Note the term corresponding to cosmological constant comes from (D.28).
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