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Abstract

We perturbatively study marginally relevant quenched disorder in AdS3/CFT2 to second
order in the disorder strength. Using the Chern–Simons formulation of AdS3 gravity for
the Poincaré patch, we introduce disorder via the chemical potentials. We discuss the
bulk and boundary properties resulting from the disorder-averaged metric. The disorder
generates a small mass and angular momentum. In the bulk and the boundary, we find
unphysical features due to the disorder average. Motivated by these features, we pro-
pose a Poincaré–Lindstedt-inspired resummation method. We discuss how this method
enables us to remove all of the unphysical features and compare with other approaches
to averaging.
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1 Introduction

Strongly interacting quantum systems are of interest in both high-energy physics and con-
densed matter physics. While in the description of condensed matter systems idealisations
such as the perfect crystal are often useful to understand aspects of the physics of the electron
system, taking into account the effect of impurities and disorder implemented by lattice de-
fects is important to fully describe the physics as measured in experiments. In particular, the
presence of random disorder completely changes the low energy transport properties of oth-
erwise free quantum particles, a phenomenon nowadays known as Anderson localisation [1].
Anderson localisation states that in disordered lower dimensional systems, disorder leads to a
complete termination of diffusive processes, making a metal a perfect insulator in the thermo-
dynamic limit. While this was shown for non-interacting systems in [1], it is an open question
how interactions will affect the localisation transition, which is a contemporary open problem
in theoretical physics known as many–body localisation (for reviews see [2,3]).

While interactions can be included perturbatively into an already disordered system, an in-
teresting question is whether many–body localisation persists in the non-perturbative regime,
in particular, if the interacting but non-disordered phase would be gapless. A promising ap-
proach to describe strongly interacting systems, and hence to answer this question, is provided
by the AdS/CFT correspondence (a.k.a. gauge/gravity duality or simply holography) [4].
The AdS/CFT correspondence relates strongly interacting quantum field theories (QFTs) to
weakly interacting gravitational theories in asymptotically Anti–de Sitter (AdS) spacetimes.
In the limit of large central charges, the generating functional of the dual strongly interact-
ing quantum field theory is defined on the asymptotic boundary of the AdS spacetime via
the semiclassical gravitational path integral with fixed boundary conditions [5, 6]. In partic-
ular, each field in the bulk encodes both the source and response (expectation value) of an
operator in the dual boundary QFT. In this work, we will disorder the boundary sources by
drawing them randomly from a Gaussian ensemble, solve the gravity equations of motion for
the bulk spacetime in each disorder realisation, and analyse the resulting disorder-averaged
bulk geometry. We work in the realm of the AdS3/CFT2 correspondence, and in particular use
the SL(2,R)×SL(2,R) Chern–Simons formulation [7,8] of three-dimensional Einstein–Hilbert
gravity with a negative cosmological constant.

The possibility of introducing quenched disorder in AdS/CFT was first adumbrated in [9]
(see [10] for a review). Momentum–relaxing impurities have been introduced in AdS/CFT
even earlier in [11], and the replica trick has first been used in [12] to calculate the effect of
disorder in AdS/CFT. Refs. [13–16] studied a disordered scalar in AdS spacetime. In [13] the
effects of disorder on a holographic superconductor were studied by introducing a random
chemical potential on the boundary. In [14], a scalar field coupled to three-dimensional AdS
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gravity was considered, where the source dual to the scalar operator was disordered. The
scalar source was disordered along the spatial boundary dimension, and several different en-
semble realisations for the disorder were discussed in [14]. Disorder was finally introduced
in [13, 14] by an ansatz using superimposed plane waves with equally distributed random
phases. By solving Einstein’s equations to second order in the disorder strength, the backre-
action of the scalar field on the pure AdS background was determined. The resulting metric
averaged over disorder realisations showed a logarithmically divergent behaviour in the in-
frared (IR) region in the bulk. The logarithmic behaviour can be traced back to the disorder
being marginally relevant in the sense of Harris’ criterion [17]. The Poincaré–Lindstedt re-
summation method was then employed to remove this divergence. The resummed metric
admitted an IR Lifshitz scaling fixed point, with the dynamical exponent departing from the
relativistic value quadratically in the disorder strength. The quartic correction in the disorder
strength was also calculated analytically. The analytic results were confirmed by a numerical
analysis for non-perturbative disorder strength. In [15], this analysis was extended to finite
temperature, i.e., to a planar AdS black hole background, both in D = 3 and D = 4. A scal-
ing of the low–temperature entropy density with temperature, with the exponent fixed by the
Lifshitz scaling exponent found at zero temperature [14], was constructed both analytically
and numerically. Furthermore, it was realised [18, 19] in a non-perturbative treatment of
the model of [14] that the Lifshitz scaling is only approximate, and non-perturbative effects
lead to a different IR fixed point independent of the disorder strength at exponentially small
energy scales. In [16], extremal planar AdS black holes, and in particular their near horizon
behaviour, in D = 4 Einstein–Maxwell theory were studied. Furthermore, disorder in a p-wave
holographic superconductor has been investigated in [20], and a disorder-induced holographic
metal-insulator transition has been found in [21].

Einstein–Maxwell theory in D = 4 with a disordered boundary chemical potential for the
U(1) charge density was investigated in [22]. AdS gravity supplemented with a U(1) gauge
field in the bulk describes a boundary state at finite U(1) charge density at the boundary con-
dition, with the chemical potential being the constant mode in the time component of the bulk
chemical potential. In AdS/CFT, the full U(1) gauge field in the bulk is holographically dual
to a global conserved Noether current in the boundary QFT. By computing the backreaction of
the disordered vector potential on the metric to second order in the disorder strength, the ef-
fect of disorder on the bulk spacetime geometry was determined analogously as in [14]. From
this metric, a positive second-order correction to the conductivity of the boundary theory was
found. This result is consistent with [23], where a lower bound for the boundary conduc-
tivity of disordered Einstein–Maxwell AdS gravity was derived, implying that any source of
disorder will raise the average value of the boundary conductivity in Einstein–Maxwell AdS
gravity. Similarly, a lower bound on the thermal conductivity in Einstein–Maxwell–Dilaton the-
ory was found in [24], provided the dilaton potential is bounded from below. Preceding [23],
it was shown in [25] that random disorder in Einstein–Maxwell–Dilaton theory has a strong
effect on the DC resistivity. Both DC and AC conductivities in D = 4 have also been studied in a
holographic lattice setup in Einstein–Maxwell [26] and Einstein–Maxwell–Dilaton theory [27].
More recently, the effect of disorder on phase transitions has been discussed in [28,29]. [28]
showed that the presence of disorder in d > 4 Euclidean CFTs leads to new fixed points of
the renormalization group which are in general not scale-invariant. Furthermore, in [29] it
was shown that including disorder into a model for a holographic Weyl semimetal leads to
a smearing of the quantum phase transition between the topologically trivial and non-trivial
phases.

The possibility of Anderson localisation in holographic systems has been discussed in [23,
30–32]. In [23] it was argued that for a certain class of holographically mean-field disordered
systems based on Einstein-Maxwell theory, there is no disorder-driven metal-insulator phase
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transition. On the contrary, it was found in [30,31] that adding couplings between the trans-
lation breaking sector and the electric charge sector indeed does yield disorder-driven metal-
insulator transitions. Furthermore, by analysing a scalar field on a disordered background
metric, [32] found that the two-point function receives corrections dependent on the disor-
der strength which, for particular implementations of the disorder, lead to large long-range
correlations suggesting that the system flows to a new disorder-driven fixed point.

A related question is whether the notion of Anderson localisation, originally derived in
quantum mechanical systems of free or weakly interacting particles, can in principle be anal-
ysed within a holographic setup. A key question is whether the quantum nature of the quantum
interference of single-particle wave functions leading to the Anderson insulator is crucial for
the phenomenon, or whether classical wave interference, as should occur in the bulk of a
disordered AdS spacetime before averaging, is sufficient. Disorder induced localisation also
appears in systems of electromagnetic [33–35] and acoustic waves [36–38]. From these stud-
ies we conclude that Anderson localisation requires interference, but not necessarily quantum
interference, and that holographic theories should be useful for studying Anderson localisa-
tion.

In this work, we use the AdS3/CFT2 correspondence to study holographically disordered
strongly interacting two-dimensional conformal field theories (2D CFTs). We employ the first–
order formulation of three-dimensional Einstein gravity with a negative cosmological constant
as SL(2,R) × SL(2,R) Chern–Simons theory [7, 8]. Choosing asymptotic Brown–Hennaux
boundary conditions [39], the dual QFT is a 2D CFT at large central charge, with symme-
try given by two copies of the Virasoro algebra [39]. As described in more detail below, we
introduce quenched static disorder by disordering the sources encoded in the asymptotic be-
haviour of the bulk Chern–Simons gauge fields, i.e., the chemical potentials coupling to the
left- and right-moving Chern–Simons currents. A crucial advantage of this approach is the
exact solvability of the bulk Chern–Simons theory [40], providing an explicit expression for
the bulk solution for each disorder realisation, and hence allowing us to derive our results
analytically to second order in the disorder strength.

Having introduced disorder into the system, we calculate the disorder-averaged bulk met-
ric to quadratic order in the disorder strength. We then analyse both bulk and boundary
properties of the resulting geometry. We find that there are curvature singularities in the IR
region. As we will discuss in more detail in section 2.2, these singularities are of a “bad” type
and are therefore deemed unphysical. The presence of the singularity implies a breakdown
of the perturbation expansion in the disorder strength. Furthermore, our averaged metric
does not satisfy the AdS3 vacuum Einstein equations any longer for non-vanishing disorder
strength. The averaged metric is moreover found to contain closed timelike curves. In the
region containing closed timelike curves, a breakdown of the semiclassical approximation for
a probe string is found, one of the three criteria for a “bad singularity” mentioned in [41]. In
the field theory dual, we find that the energy-momentum tensor has a trace anomaly, which
however cannot be related to the Ricci curvature of the boundary metric via the usual trace
anomaly equation. Finally, depending on the relative strengths of the disorder parameters for
left and right moving sectors as well as on the length of the entangling interval, we find that
the quantum null energy condition (QNEC), as well as the null energy condition (NEC), can
be violated.

To remedy all these issues, we perform a resummation inspired by (but different from) the
Poincaré–Lindstedt technique used in [14, 16]. With this method, we restore finite curvature
throughout the entire bulk. The resulting resummed averaged metric satisfies the AdS3 vac-
uum Einstein equations, up to second order in the disorder strength. The resummed metric
furthermore no longer contains closed timelike curves and yields a well-defined semiclassical
approximation for a string probing the interior of the averaged spacetime. The dual theory’s
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energy-momentum tensor is now traceless, following the usual relation between the boundary
Ricci curvature and the trace anomaly. Also, the QNEC condition for the resummed metric
is not only satisfied but saturated. This single resummation ansatz solving all of these prob-
lems at once suggests this is the correct bulk procedure to obtain a reasonable holographic
disorder–averaged state.

Having discussed the disorder-averaged metric and its resummation in great detail, we
also study performing the average directly in the Chern–Simons theory. The resulting aver-
aged connections fail to satisfy the gauge flatness conditions. Calculating the metric for the
averaged connections, we again find a curvature singularity in the IR, albeit of different be-
haviour than for averaging the metric. Moreover, again we find that the energy-momentum
tensor of the dual description has a trace anomaly which does not satisfy the usual relation
to the boundary Ricci curvature, i.e. the trace anomaly equation. As for the averaged met-
ric, we perform a resummation of the averaged connections. By a minimal modification of
the lowest weight components of the t-components of the connection, we can restore all of
the aforementioned properties: the resummed connections are gauge flat, the corresponding
metric is not divergent and the dual state satisfies the trace anomaly equation, in particular
with both sides of the equation vanishing. In general, averaging and calculating the metric
from the connections does not commute. Remarkably, the resummed metric obtained before
and the metric following from the resummed connections are, up to an overall sign in the
t − φ component, identical. The sign difference only appears for the case of different left-
and right-moving disorder strengths ε ̸= ε̄, and may be removed by a time reversal transfor-
mation t → −t when passing between the two formalisms. Since even for non-rotating and
hence parity and time reversal invariant backgrounds, ε ̸= ε̄ induces rotation and breaks time
reversal and parity explicitly, it does not come as a surprise that a time reversal non-trivially
transforms disorder-averaged backgrounds into each other. This is yet another instance of
averaging and disordering not commuting, this time between the Chern–Simons and metric
formalisms, which are equivalent to each other within each disorder realisation before aver-
aging, but are found to differ by a sign after averaging.

Finally, we compare our results with those obtained by first calculating observables for
each realisation of the disorder and then averaging only the final result. In particular, we ob-
tain an averaged energy-momentum tensor that differs from the one generated through the
Poincaré–Lindstedt-inspired method. The main disadvantage of this, otherwise straightfor-
ward, alternative is that there is no way to associate an effective metric with the resulting
energy-momentum tensor. In particular, the averaged boundary metric does not provide a
source for the averaged boundary energy-momentum tensor.

This paper is organised as follows: in section 2 we briefly review the Chern–Simons for-
mulation of three-dimensional gravity in AdS and then introduce the disorder implemented
in section 2.1. We discuss our results from the bulk perspective in section 2.2 and from the
boundary perspective in section 3. Afterwards, we present a Poincaré–Lindstedt inspired re-
summation of these results in section 4. In section 5 we first analyse the average performed
directly on the level of the connections of the Chern–Simons theory. After discussing the results
of this averaging procedure, we also present a resummation in the Chern–Simons formulation.
In the second part of this section, we compare our results with those obtained by first calcu-
lating observables for each realisation of the disorder and then averaging only the final result.
We conclude and give an outlook towards future work in section 6.
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2 Disorder in SL(2,R) Chern–Simons gravity

Classical Einstein–Hilbert gravity with negative cosmological constant in three spacetime di-
mensions can equivalently be formulated as a Chern–Simons gauge theory [7, 8]. We use
this formalism to conveniently introduce disorder into the system, while also ensuring asymp-
totic AdS behaviour. Before discussing the disorder setup, we will therefore briefly review the
Chern–Simons formulation of AdS3 gravity.

The three-dimensional Einstein–Hilbert action on the classical level can equivalently be
expressed as the difference of two Chern–Simons actions [7,8]

SEH[A, Ā] =
k

4π

∫

M
tr
�

A∧ dA+
2
3

A∧ A∧ A− Ā∧ dĀ−
2
3

Ā∧ Ā∧ Ā
�

, (1)

where the Chern–Simons level1 k = 1
4G =

c
6 is related to Newton’s constant G and the Brown–

Henneaux central charge c. The gauge fields A and Ā are linear combinations of the dreibein
ea
µ and the dualised spin connection ωa

µ =
1
2ε

abcωbcµ. Furthermore, the gauge fields are
charged under the isometry group of the spacetime under consideration. In this paper, we
consider AdS space which in D = 3 has the isometry group SO(2, 2) ≃ SL(2,R) × SL(2,R).
Explicitly, the gauge fields are realised as

A= AaTa = (ω
a + ea)Ta , and Ā= ĀaTa = (ω

a − ea)Ta , (2)

where Ta are generators of sl(2,R), satisfying [Ta, Tb] = (a− b)Ta+b. For explicit calculations,
we work with the fundamental representation for sl(2,R) (see appendix A).

We consider manifolds whose topology is a solid cylinder, with radial coordinate ρ ∈ R,
time t ∈ R and angular coordinate φ ∈ [0, 2π]. To ensure asymptotic AdS behaviour, we
impose Brown–Henneaux boundary conditions on the gauge fields as described in [40] (see
also [42,43] for reviews). To do so we first write the fields in radial gauge

A= b−1(d + a)b , Ā= b(d + ā)b−1 . (3)

The functions a and ā depend only on the boundary coordinates and capture all of the state
dependence. The radial dependence is captured by the group element b only, which we choose
as

b = exp(ρT0) . (4)

Brown–Henneaux boundary conditions are then achieved by imposing the following form on
the state-dependent functions a and ā

at = µT+ − ∂φµT0 +
�

−
2π
k
µL+ 1

2
∂ 2
φµ

�

T− , (5)

aφ = T+ −
2π
k
LT− , (6)

āt =
�

2π
k
L̄µ̄+ 1

2
∂ 2
φ µ̄

�

T+ + ∂φµ̄T0 + µ̄T− , (7)

āφ =
2π
k
L̄T+ + T− , (8)

where the gauge-flatness conditions on A and Ā following from (1),

dA+ A∧ A= 0= dĀ+ Ā∧ Ā , (9)

1We set the AdS radius to one.
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have been used. Both barred and non-barred sector contain two free functions each, the chem-
ical potentials µ, µ̄ and their corresponding conserved currents L, L̄, respectively. As shown
in [40], a well-defined variational principle only allows the latter ones to vary and generate
the Virasoro algebras for the barred and non-barred sectors.

By the flatness conditions (9), the conserved currents are determined completely by their
associated chemical potentials

∂tL= µ∂φL+ 2L∂φµ−
k

4π
∂ 3
φµ , (10)

∂tL̄= µ̄∂φL̄+ 2L̄∂φµ̄+
k

4π
∂ 3
φ µ̄ . (11)

For the vanilla choice of chemical potentials, µ = 1 = −µ̄, these conservation equations are
the usual holographic Ward identities ∂−L= 0= ∂+L̄, with x± = t ±φ.

In this work, to solve these conservation equations, we assume static chemical potentials,
∂tµ= 0= ∂t µ̄. Then the solutions for the currents are given by

L=
F
�

t +
∫ φ du

µ(u)

�

µ2
+

k
4π

�

∂ 2
φ
µ

µ
−

1
2

(∂φµ)2

µ2

�

, (12)

L̄=
G
�

t +
∫ φ dv

µ̄(v)

�

µ̄2
−

k
4π

�

∂ 2
φ
µ̄

µ̄
−

1
2

(∂φµ̄)2

µ̄2

�

. (13)

In general, F and G are arbitrary functions depending on the indicated combination of t and
φ.

From the above equations (12) and (13), the Poincaré AdS solution is obtained by the
vanilla choice, µ = 1 = −µ̄, and furthermore F = 0 = G, such that L = 0 = L̄. Using the
well-known relation between metric and gauge fields

gµν =
1
2

tr
� �

A− Ā
�

µ

�

A− Ā
�

ν

�

, (14)

we find the Poincaré patch metric

ds2 = −e2ρd t2 + dρ2 + e2ρdφ2 . (15)

In the next subsection, we exploit the chemical potentials to introduce disorder onto the
background given by (15). For the remainder of this paper, we use the holographic coordinate
ρ = − ln z.

2.1 Disorder setup

Our approach to introducing disorder into (15) is inspired by earlier work on disorder [14].
In our case, the chemical potentials µ and µ̄ serve as sources for disorder, which is considered
analogously to [14]:

µ= 1+ ε f (φ) = 1+
ε
p

N

N
∑

n=1

cos
� n

N
φ + γn

�

, (16)

µ̄= −1+ ε̄ f (φ) = −1+
ε̄
p

N

N
∑

n=1

cos
� n

N
φ + γn

�

. (17)
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The random phases γn are equally distributed in the interval [0,2π). The chemical potentials
are then periodic in 2πN , only.2

Averaging an arbitrary function H over these random phases is defined by integration over
all random phases γn and taking the large N limit afterwards

〈H({γn})〉= lim
N→∞

2π
∫

0

N
∏

n=1

dγn

2π
H({γn}) . (18)

The average, which we denote by 〈·〉, is defined such that

〈 f (φ)〉= 0 , (19)

leading to
〈µ〉= 1= −〈µ̄〉 . (20)

Therefore, to zeroth order in the disorder strengths ε and ε̄, this reproduces the vanilla choices
µ = 1 = −µ̄ made earlier for (15). More generally, it can be shown that every odd power of
f (φ) averages to zero. Since the metric is bilinear in the gauge fields, and thereby also in the
chemical potentials, we obtain terms with non-trivial averages by employing (14). Note that
there certainly are also other ways to implement the averaging procedure. As is clear from
the relation between the metric and the gauge fields (14), directly averaging the gauge field
before computing the metric components is a distinct procedure. While the metric formulation
and the Chern–Simons formulation of AdS3 gravity are classically equivalent, the metric being
bilinear in the gauge fields implies that this equivalence breaks during the averaging procedure.

The disorder that we introduced through random phases describes Gaussian noise. Com-
puting for example the two-point function of f results in

〈 f (φ) f (θ )〉=
1
2
δ(φ − θ ) . (21)

In principle, we are now equipped to calculate the average of the metric components from
(14), using (16) and (17) to introduce disorder. In practice, this calculation involves integrals
over inverse powers of µ and µ̄ (see (12), (13)), for which a closed expression could not be
found. Therefore, since in the present work, we mostly aim for analytic results, we use ε and
ε̄ as perturbative handles to expand the metric components to second order. This enables
us to perform an analytic computation of the averages. While it is technically feasible to go
beyond the quadratic order, we have checked that going to O(ε4) does not lead to a qualitative
change of the results discussed in the following sections (see App. C) which is why we restrict
our analytic analysis to the second order in the disorder strength.

While averaging the metric components to second order, there are four different combina-
tions of f and its derivatives that occur. The averages of these combinations are given by




f 2
�

=
1
2

,



(∂φ f )2
�

=
1
6

,
¬

f ∂ 2
φ f
¶

= −
1
6

,
¬

(∂ 2
φ f )2

¶

=
1

10
. (22)

In our work, we take the same random phases for µ and µ̄, i.e., we do not introduce
random phases γn and γ̄n, where we could allow for different intervals, say [0, 2π) for γn and
[α, 2π+α) for γ̄n. In that way, relative phases between ε and ε̄ can be included. However, at
the level of our current analysis, this does not yield an immediate advantage. For more details
on the effect of relative phases, we refer the reader to appendix B.

2As a consequence, the chemical potentials are not single-valued anymore, in line with the disorder ansatz by
Hartnoll and Santos [14]. This multi-valuedness yields the desired white noise for the two-point functions (21)
below, which would not be the case if the chemical potentials were single-valued.
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A particular feature related to our choice above is that flipping signs of both ε and ε̄ can
be absorbed in γn, which is not possible if only one of the signs is changed. We expect this
behaviour to reflect in the disorder-averaged quantities we obtain in section 2.2 and later on.

An important characterisation of disorder in any system is given by the Harris criterion
[17]. The criterion uses the mass dimension of the source [ε] to quantify whether a source of
disorder is relevant ([ε] > 0), marginal ([ε] = 0) or irrelevant ([ε] < 0). For a holographic
scenario, the criterion can be obtained by considering the source term in the action of the
dual field theory and using that the action is dimensionless in natural units. In our case, we
consider the coupling term between the disordered source µ and its conserved current L,

∫

d tdφµL . (23)

If we were to consider the BTZ black hole instead of pure Poincaré patch, linear combinations
of the zero modes of the currents L and L̄ would yield the black hole mass and angular mo-
mentum. Therefore we have [L] = 1. In the above coupling term, this cancels the inverse
mass dimension of d t. Since the angular coordinate φ is dimensionless, we find [µ] = 0 and
correspondingly [ε] = 0. This is consistent with the two-point function

〈µ(φ)µ(θ )〉= 1+
ε2

2
δ(φ − θ ) . (24)

Since [ε] = 0, the disorder is marginal. To be more precise, we will find that the disorder
we implement is marginally relevant, since after disordering and averaging the metric, there
appear regions in the IR z→∞ where our perturbative treatment breaks down. This will be
indicated e.g. by curvature singularities.

Having discussed the setup and its characteristics, we are now ready to analyse how the
disorder affects the Poincaré patch geometry (15).

2.2 Averaged geometry

Using the setup described above, we proceed to analyse the disorder-averaged Poincaré patch.
First, we compute the disorder-averaged metric as follows. We insert the chemical potentials
(16) and (17) into the gauge field components (5), (6), (7) and (8), with L and L̄ given by
(12) and (13), respectively, and setting F = 0 = G. The metric components then follow from
(14). Expanding to second order and averaging3 using the above mean values (22), we find

〈gt t〉=
�

−1+
εε̄

2

�

1
z2
+
εε̄

12
,




gtφ

�

=
ε̄2 − ε2

24
,




gφφ
�

=
1
z2
+
ε2 + ε̄2

24
−
εε̄

40
z2 ,

〈gzt〉= 0=



gzφ

�

, and 〈gzz〉=
1
z2

.

(25)

As expected, to zeroth order in the disorder strengths this is the usual Poincaré patch metric. As
mentioned above, the metric components are invariant under (ε, ε̄)→−(ε, ε̄), but not under
(ε, ε̄)→ (ε,−ε̄). The averaged geometry is in Fefferman–Graham form 〈gzt〉=




gzφ

�

= 0. For
convenience, in the following calculations, we rescale t such that the leading order in 〈gt t〉 is
equal to − 1

z2 . Since we always work perturbatively in ε and ε̄, this does not change



gtφ

�

.

3For completeness, the unaveraged components can be found in appendix A.
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Regarding the curvature properties of the averaged metric (25), we first note that in the
asymptotic region z→ 0, the metric describes a locally AdS spacetime with Ricci scalar R= −6,
Ricci tensor squared RµνR

µν = 12 and vanishing Cotton tensor. This is consistent with our
choice of asymptotic boundary conditions. The above-mentioned rescaling of t does not inter-
fere with this observation.

Now we analyse the geometry described by the averaged metric for general z. Its Ricci
scalar is given by

R= −6+
(ε− ε̄)2

12
z2 +

εε̄

10
z4 . (26)

In the bulk, a curvature singularity is present in the IR where z→∞. Also, the Cotton tensor
has a non-vanishing component

Ctφ = −
3
20
εε̄z2 , (27)

with all other components equal to zero, so (25) in general differs from an AdS spacetime.
Moreover, there is a singularity of the causal structure appearing at gφφ(z0) = 0, with

z0 =
�

40
εε̄

�
1
4

+O(
p
ε) . (28)

In the region z > z0, as the φ direction is compact, the spacetime has closed timelike curves.
This shows that at z0 the spacetime ends, with finite Ricci curvature.

To further characterise the singularity, we analyse whether it yields a well-defined semi-
classical approximation for a string [41]. If this is not the case the supergravity approximation
that we employ is not valid anymore. To test this, we consider the string action for a small
perturbation of a static configuration z(φ) = zs(φ) +δz(φ),

S =
1

2πα′

∫

dφ
q

(z′)2 + gφφ(z)

≈
1

2πα′

∫

dφ

 

q

(z′s)2 + gφφ(zs) +
1
2

(δz′)2
Æ

(z′s)2 + gφφ(zs)
3

!

. (29)

If the square root vanishes, the semiclassical approximation for the Nambu–Goto action (29)
breaks down. For our averaged metric we find the real root zs = z0 and thus the supergravity
approximation breaks down in the vicinity of z0.

The appearance of singularities is not unexpected. They also appeared in prior work on
disorder [14] and [22]. As in these cases, the disorder we use is a marginally relevant operator
in the sense of the Harris criterion, therefore drastic changes in the interior of the bulk, i.e.
the IR region, can arise. Since before averaging, the solutions for the charges in (12) and (13)
correspond to a locally AdS3 spacetime for any choice of µ(φ), µ̄(φ), the divergent behaviour
must result from using the disorder-averaged metric. As briefly discussed in the introduction,
the nature of the singularities found in [14, 22] was recently refined by a non-perturbative
analysis in [18,19]. However, the setup of the latter two papers uses matter fields to source the
disorder, which is conceptually different from our approach. Moreover, while they encounter
Lifshitz scaling geometries, we do not find such a behaviour in our averaged metric (25). We
therefore do not expect the methods developed in [18, 19] to have a direct relation to what
we find in our approach. It will be interesting to study whether their approach can be adapted
to our setup, which however we leave for future work.

Having discussed the properties of the averaged metric from the bulk perspective, in the
next section we analyse the dual holographic state utilizing holographic renormalisation [44].
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3 Properties of the holographic averaged state

In the previous section, we showed how the averaged metric is obtained, followed by a dis-
cussion of its curvature properties. Here, we study the effects of the disorder on the boundary
field theory using the holographic dictionary. In particular, we calculate the boundary energy-
momentum tensor and the QNEC.

3.1 Energy-momentum tensor and trace anomaly

Here, we compute the energy-momentum tensor of the dual theory on the boundary. Since
the disorder-averaged metric (25) is in Fefferman–Graham gauge, we can do so by use of the
standard result [44]

〈〈T ren
i j 〉〉=

c
12π

�

γ
(2)
i j − tr

�

γ(2)
�

γ
(0)
i j

�

, (30)

where γi j is the metric induced on the boundary, expanded as

γi j(z) = γ
(0)
i j

1
z2
+ γ(2)i j + . . . (31)

The trace is understood in terms of γ(0)i j as tr
�

γ(2)
�

= γ(0) i jγ
(2)
ji . We denote the expectation

value as 〈〈·〉〉 to distinguish it from disorder averages.
Applying (30) to the averaged metric in (25), we find the energy-momentum tensor

〈〈T ren
i j [〈γ〉]〉〉=

c
288π

�

ε2 + ε̄2 ε̄2 − ε2

ε̄2 − ε2 2εε̄

�

i j
. (32)

It is clear from this result that by including disorder, we introduce a small amount of energy
into the system. Provided that the disorder strengths ε and ε̄ are different, we also introduce
angular momentum.

The trace of the energy-momentum tensor does not vanish in general,

tr
�

〈〈T ren
i j [〈γ〉]〉〉

�

= −
c(ε− ε̄)2

288π
. (33)

However, since the disorder-averaged metric 〈γ(0)i j 〉 = diag(−1, 1) induced on the boundary is
Ricci flat, the general result for the trace anomaly in curved backgrounds

tr
�

〈〈T ren
i j [〈γ〉]〉〉

�

=
c

24π
R[〈γ(0)〉] , (34)

cannot be fulfilled for general disorder strengths ε, ε̄. For equal strengths, both sides vanish.
Even though tr

�

〈〈T ren
i j 〉〉

�

∝ R[〈γ(0)〉] is fulfilled for ε = ε̄, the bulk curvature (26) is still
divergent in the IR, so these two features are not in one-to-one correspondence. Nevertheless,
as we will show in section 4, there is a procedure to restore finite bulk curvature and absence of
the trace anomaly for general ε and ε̄. Before doing so, we consider one additional holographic
probe of our geometry, namely the QNEC.

3.2 Quantum null energy condition

QNEC locally constrains the null projections of the expectation value of the energy-momentum
tensor [45–47]. For QFT2 with a CFT2 UV-fixed point it reads [45] (see also [48])

2π 〈〈Ti j〉〉kik j ≥ S′′ +
6
c

�

S′
�2

. (35)
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The right-hand side contains first and second variations of entanglement entropy (EE) ex-
plained below as well as the UV central charge c.

The variations of EE work as follows. One of the endpoints of the entangling interval
is chosen arbitrarily, while the other must coincide with the spacetime point where the left-
hand side of the QNEC inequality (35) is evaluated. Then the entangling region is deformed
into the null direction ki , with a deformation parameter λ. As a consequence of this lightlike
deformation, EE depends on this parameter. Primes denote derivatives with respect to λ, and
after taking these derivatives λ is set to zero. For more details on QNEC in two dimensions
and explicit examples see [49].

We investigate now QNEC for our averaged field theory, to verify whether or not QNEC
holds/saturates/is violated. If the latter happened we had a nogo result showing that the
averaged field theory cannot be a unitary relativistic QFT.

For states dual to three-dimensional vacuum Einstein solution QNEC saturates [50, 51],
which in our context implies that QNEC saturates for each of our realisations. Therefore, also
the averaged QNEC inequality trivially saturates,




2π 〈〈Ti j〉〉 kik j
�

=



S′′ +
6
c

�

S′
�2�

. (36)

The Cauchy–Schwarz inequality then implies a QNEC inequality for the averaged EE




2π 〈〈Ti j〉〉 kik j
�

≥ 〈S〉′′ +
6
c

�

〈S〉′
�2

. (37)

However, in our work, we have to differentiate between averaged quantities and quantities
computed from the averaged metric. Therefore, in the following, we calculate both sides of
(35) explicitly for the averaged geometry (25).

We start our analysis by calculating the right-hand side of (35) for the averaged metric
(25). The calculation follows the above description of introducing a lightlike deformation ki

parametrised by a small λ. In the following, we choose the lightlike direction ki = (1,1). The
details of the calculation are included in appendix E, following the method described in [49].
From the computation using (25), we find

S′′
�

�

λ=0 +
6
c
(S′)2

�

�

λ=0 =
c
3

�

−ε2 +
�

2−
39
25

l2
�

εε̄+ 11ε̄2
�

, (38)

where l is the size of the undeformed entangling interval. The fact that this length appears
proves that QNEC is not saturated, since l cannot appear in the left-hand side of (35). Com-
puting this explicitly from (32), we find

2π〈〈T ren
i j [〈γ〉]〉〉k

ik j = c
�

−ε2 + 2εε̄+ 3ε̄2
�

. (39)

Comparing with (38), we find that whether QNEC holds or not depends on the length l and
the ratio of the disorder strengths a = ε̄

ε . QNEC is satisfied within a symmetric region around
a = 1 for sufficiently large l. When the disorder strengths are equal, QNEC always holds and
even saturates for l = 0. Considering also the corresponding NEC condition, given by (39)
via 〈〈T ren

i j 〉〉k
ik j ≥ 0, we find that there are regions in parameter space where NEC is violated

while QNEC holds, as well as the contrary. We summarise our results in figure 1.
We point out that for the averaged geometry in (25), the EE shows unphysical behaviour

in that it becomes negative for sufficiently large l; the explicit result follows from (E.12) in
appendix E for λ= 0,

S =
c
3

ln
l

zcut
+

c
864

�

(ε2 + ε̄2)l2 −
3εε̄l4

25

�

. (40)
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Figure 1: Results of the QNEC/NEC analysis for (25). All combinations of either
QNEC or NEC being satisfied/violated exist for the averaged metric in (25).

The possibility for negative S is related to the singular behaviour of (25) in the IR region. In
particular, the turning point zs of the Ryu–Takayanagi geodesic comes close to the causal sin-
gularity z0 obtained in (28), where our approximation breaks down. This feature of negative
EE again shows that (25) includes unphysical behaviour, resulting from the disorder averag-
ing. Motivated by the unphysical features associated with the averaged metric and its dual
holographic quantities, in the next section we discuss a resummation method inspired by the
Poincaré–Lindstedt resummation performed in earlier works on disorder [14,22].

4 Poincaré–Lindstedt inspired resummation

As discussed in the previous section, the averaged metric has several unphysical properties. In
this section, we resolve these deficiencies by a resummation method that we explain below.

In earlier works on disorder in holography such as [14,22], it was observed that the aver-
aged metric components contain secular terms, leading to Lifshitz scaling IR fixed points. To
regulate the averaged solutions, the so-called Poincaré–Lindstedt resummation technique was
employed. Inspired by this resummation, in the following we discuss an approach to modify
the averaged Poincaré patch metric (25).

The idea for the resummation in our case is to change the averaged metric such that the
curvature divergence is absent. To do so, we make an ansatz for the resummed metric, satis-
fying the following conditions:

• Since the divergence of the curvature is only in z, also the modifying functions should
only depend on z.

• The divergent terms in (26) can be traced back to 〈gt t〉 and



gφφ
�

. Therefore only those
components are modified.

• In the asymptotic region, z → 0, the averaged metric is well behaved. Therefore, we
demand the modifying functions to approach one for z→ 0.
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While we implement these functions on the level of the averaged metric, we now argue that
the resummation commutes with the averaging procedure: We define the resummation, in-
dependently of the level on that it is imposed, to only depend on the radial coordinate z, as
this is the coordinate direction that shows the IR divergent behaviour. Furthermore, we do
not want to alter the structure of the disorder in the field theory directions. If we now were
to include the resummation functions before averaging, the functions could be pulled through
the integrals involved in the averaging procedure (18). Therefore, we could also include the
functions before the average without changing the result at the level of the averaged metric.
For appropriately fixed resummation constants, the change of ansatz that this resummation
amounts to will cure the issues in the averaged metric derived in sections 2.2 and 3.1, in par-
ticular the curvature singularities in the averaged metric. We stress again, that the change of
ansatz done after averaging could as well have been implemented before. We implement the
change of ansatz after averaging purely for calculational convenience. We elaborate on the
implementation of this ansatz in the Chern–Simons formulation in section 6.

The above conditions lead us to the modified ansatz for the averaged metric

ds2 =
〈gt t〉
α(z)

d t2 +
dz2

z2
+ 2




gtφ

�

d tdφ +




gφφ
�

β(z)
dφ2 , (41)

where α and β are functions of z and ε, ε̄. To satisfy the above conditions, we make a general
ansatz

α(z) = 1+
∞
∑

n=1

an(ε, ε̄)z
n , β(z) = 1+

∞
∑

n=1

bn(ε, ε̄)z
n , (42)

where the coefficients an, bn can be expanded4 in ε and ε̄,

an(ε, ε̄) = a1nε
2 + a2nεε̄+ a3nε̄

2 , bn(ε, ε̄) = b1nε
2 + b2nεε̄+ b3nε̄

2 . (43)

In the following, the undetermined coefficients ai j and bi j will be fixed by recalculating the
Ricci scalar for (41) to O(ε2) and demand the diverging terms to vanish. When expanding
(41) to second order, the terms of O(zn) in α(z) and β(z), i.e., the coefficients an(ε, ε̄) and
bn(ε, ε̄), contribute at O(zn−2) in the metric. Therefore, we expect that only a2, b2, a4 and b4
need to be non-zero.

Computing the Ricci scalar for (41) to O(ε2) and demanding the result to be non-singular
yields the following conditions:

b14 = b34 = a14 = a34 = 0 , a24 + b24 = −
1
40

,

a12 + b12 =
1
24
= a32 + b32 , a22 + b22 = −

1
12

.
(44)

As expected, all other coefficients have to vanish. Using the above relations to express ai j in
terms of bi j , the resummed metric (41) expanded to O(ε2) is given by

ds2 =
�

−
1
z2
+
�

1
24
− b12

�

ε2 − b22εε̄+
�

1
24
− b32

�

ε̄2 −
�

1
40
+ b24

�

z2εε̄

�

d t2

+
�

1
z2
+
�

1
24
− b12

�

ε2 − b22εε̄+
�

1
24
− b32

�

ε̄2 −
�

1
40
+ b24

�

z2εε̄

�

dφ2

+
dz2

z2
+ 2

�

ε̄2 − ε2

24

�

d tdφ . (45)

4This expansion may be generalised to higher order than quadratic straightforwardly.
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By construction, the leading order terms in z do not change. Hence, the averaged boundary
metric is still given by two-dimensional Minkowski space.

The remaining undetermined parameters will be fixed in the following, but before we sum-
marise what is achieved already by this resummation. To lowest order in ε the scalar curvature
is now finite by construction, R= −6 for the entire range of z. Calculating the Ricci tensor for
(45), we find that its trace-free part vanishes only provided that we set b24 = −

1
40 . This con-

dition can also be found from related calculations: the three-dimensional Einstein equations
with negative cosmological constant are satisfied only for this value of b24. In addition, the
Cotton tensor for the resummed metric does not vanish in general,

Cµν = −(1+ 40b24)εε̄z
2





9
80 0 3

20
0 0 0
3
20 0 3

16





µν

, (46)

but only when fixing b24 = −
1
40 . That is, removing the O(z2) terms in (45) ensures that (45)

is locally an AdS spacetime everywhere.5

While the above features concern the bulk, the resummation also affects the dual holo-
graphic state. Since the terms of O(z0) in 〈gt t〉 and




gφφ
�

change, the boundary energy-
momentum tensor is now given by

〈〈T ren
t t 〉〉=

c
288π

�

(1− 24b12)ε
2 − 24b22εε̄+ (1− 24b32)ε̄

2
�

,

〈〈T ren
tφ 〉〉=

c(ε̄2 − ε2)
288π

,

〈〈T ren
φφ〉〉= 〈〈T

ren
t t 〉〉 .

(47)

A particularly interesting feature is that the trace vanishes since the diagonal terms in (47)
are equal. Therefore, by the resummation method, we obtain a metric with a dual energy-
momentum tensor that satisfies the usual trace anomaly condition (34).

As apparent from the result above, the energy-momentum tensor now depends on the
three remaining coefficients, b12, b22, and b32. They enter in the diagonal terms, which can
be thought of as a small mass induced by the disorder. Correspondingly, the off-diagonal terms
are understood as small angular momentum.

In the following, we argue how to fix the open coefficients such that the least additional
energy is injected into the system. In particular, we demand that the mass and angular mo-
mentum in the energy-momentum tensor are consistent with the BPS bound

M2 − J2 ≥ 0 . (48)

We start our argumentation by considering the limits where either ε= 0 or ε̄= 0. Then, from
(47), up to common constant coefficients, we find

for ε̄= 0 : M∝ (1− 24b12)ε
2 , J∝−ε2 , (49)

and for ε= 0 : M∝ (1− 24b32)ε̄
2 , J∝ ε̄2 . (50)

Inserting these values into (48), we obtain conditions on either b12 or b32,

(1− 24b12)
2 − 1≥ 0 →

¨

b12 ≥
1
12 ,

b12 ≤ 0 ,
(51)

and (1− 24b32)
2 − 1≥ 0 →

¨

b32 ≥
1
12 ,

b32 ≤ 0 .
(52)

5We find the same result if we had inserted the coefficients bi j in terms of ai j . In this case, the terms∝ z2 in
the metric are proportional to an overall factor of a24, which has to be set to zero to satisfy Einstein’s equations.
This is consistent with the constraint a24 + b24 = −

1
40 and b24 = −

1
40 .
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The upper conditions on b12 and b32 yield negative contributions to the mass. Therefore, we
exclude them by further requiring M ≥ 0. All values b12 < 0 and b32 < 0 yield a positive
contribution to the mass. We now determine the resummation parameters such that the re-
summation procedure does not introduce any additional mass into the background spacetime,
besides the mass introduced by the disorder. This amounts to setting b12 = b32 = 0. The
expression for M simplifies to

M∝ ε2 − 24εε̄b22 + ε̄
2 . (53)

For this mass, we analyse again the BPS bound for general ε and ε̄. We find that (48) is satisfied
when

a ≤ 0∧ b22 ≥ 0 , or a ≥ 0∧ b22 ≤ 0 , (54)

where a = ε̄
ε is the ratio between the disorder parameters. The only choice for b22 such that

(48) holds for a generic ratio a is b22 = 0. Therefore, with the parameters inserted in (47),
we obtain

M∝ 1+ a2 , and J∝−1+ a2 , (55)

such that

〈〈T ren
i j 〉〉=

cε2

288π

�

1+ a2 −1+ a2

−1+ a2 1+ a2

�

. (56)

A particularly nice observation related to this choice of resummation parameters is that



gφφ
�

cannot have any real roots and does not change sign since it consists of a sum of manifestly
positive terms. Therefore, also the closed timelike curves are removed by the resummation.
Moreover, also the semiclassical approximation is well-defined for a string (29) on the re-
summed metric.

There also exists a different approach than the above procedure to fix the resummation
coefficients ai j and bi j , which remarkably leads to the same result: Inserting the resummation
ansatz (41) into the Einstein equations yields differential equations on the functions α(z) and
β(z). Expanding these functions as α(z) = 1+ ε2α2(z) +O(ε4), β(z) = 1+ ε2β2(z) +O(ε4)
simplifies the differential equations to

0= β ′′2 (z)−
β ′2(z)

z
+

az2

5
, (57)

0= α′2(z) + β
′
2(z)−

z
12
(1− 2a+ a2) +

az3

10
, (58)

0= α′′2 (z)−
α′2(z)

z
, (59)

at quadratic order in ε, where ′ denotes a derivative with respect to z. The solutions to the
differential equations for α2(z) and β2(z) fix the metric to read

ds2 =

�

−
1
z2
+
ε2 + ε̄2

24
−

c1

2
ε2

�

d t2 +
dz2

z2

+

�

1
z2
+
ε2 + ε̄2

24
−

c1

2
ε2

�

dφ2 + 2

�

ε̄2 − ε2

24

�

d tdφ , (60)

where c1 is an integration constant that will be fixed shortly by using the BPS bound.6 By this
procedure, we directly arrive at the resummed metric with fixed coefficients bi2 = 0, which

6Note that by definition, c1 is independent of ε. It does, however, depend on a, such that the expression in (60)
is symmetric in ε↔ ε̄. To be more specific, the expression c1 = ξ1 + aξ2 + a2ξ3 has to satisfy ξ1 = ξ3, for ε2c1 to
be symmetric under ε↔ ε̄.
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coincides with the above result of the BPS bound analysis, up to the constant term − c1
2 . Again

invoking the BPS bound, now for (60), we find that c1 ≥ 0, so we can consistently set it to
zero, ending up with the same metric as by the previous analysis.

Although these are promising results, we point out that the above description has certain
differences from the method used in [14]. The most pertinent is that the Poincaré–Lindstedt
method was employed in [14] before averaging while we choose to change the effective metric
after averaging. Furthermore, while we encounter IR divergences in curvature invariants, in
their case only the metric components are IR-divergent while curvature remains finite.

Having discussed some basic geometric quantities as well as boundary properties of the
resummed metric, in the remainder of this section, we analyse the effect of the resummation
on QNEC.

Since the resummation leads to an averaged geometry that is a solution to the AdS vacuum
Einstein equations, we also expect a change in the result for QNEC. Doing the calculation for
(45), we find that the right-hand side of (35) is given by

S′′
�

�

λ=0 +
6
c

�

S′
�2 �
�

λ=0 =
c
3

�

−b12ε
2 − b22εε̄+

�

1
12
− b32

�

ε̄2
�

. (61)

The energy-momentum tensor after resummation is given in (47). Projecting onto the lightlike
direction ki(1, 1) yields

2π〈〈T ren
i j 〉〉k

ik j =
c
3

�

−b12ε
2 − b22εε̄+

�

1
12
− b32

�

ε̄2
�

, (62)

so (35) saturates independently of a = ε̄
ε , l, or the remaining parameters of the resummation.

This result is consistent with the fact that the resummed geometry is a solution to the vacuum
Einstein equations and thereby a Bañados geometry, since for all Bañados geometries QNEC
saturates [49].

In particular, this means that also the values b12 = b22 = b32 = 0 are allowed, for which
we argued above. In this case, also NEC given by (62) via 〈〈T ren

i j 〉〉k
ik j ≥ 0 is satisfied.

As a final comment, after resummation, the EE is positive and receives only positive per-
turbative corrections. Explicitly, it is given by (E.12) for λ= 0 without the term∝ εε̄l4,

S =
c
3

ln
l

zcut
+

c(ε2 + ε̄2)l2

864
. (63)

5 Comparing other approaches to averaging

In the previous section, we have shown in the metric formulation how the deficiencies of the
averaged metric can be cured by a resummation procedure inspired by the Poincaré–Lindstedt
method. These deficiencies, in particular the divergence of the Ricci scalar in the IR region of
the bulk, are not only present perturbatively to orderO(ε2), but appear also to fourth order and
even non-perturbatively (see app. C and app. D, respectively). In the following, we compare
the above resummation approach to two alternative approaches of studying the disordered
setup. First, we average directly in the Chern–Simons formulation. Second, we discuss the
differences of the above to averaging only after calculating the quantity of interest.

5.1 Averaged connection and resummation in Chern–Simons

The original sources of the disorder are the chemical potentials of the Chern–Simons formula-
tion, (16) and (17). As we pointed out earlier in section 2, directly averaging the connections
A and Ā will, in general, not result in the averaged metric obtained in section 2.2 due to the
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non-linear relation between metric and gauge field (14). To make a quantitative comparison,
in the following, we directly average the connections. After stating the results of this average,
we will also discuss how a resummation in the Chern–Simons formulation may be performed.

The components of the connections are given in (5), (6), (7) and (8). Inserting the chem-
ical potentials (16) and (17), with L and L̄ given by (12) and (13) for F = 0= G, the average
is straightforward to perform using the mean values (22). Note that, except for L and µL
as well as their barred analogues, all other averages are trivially performed. The resulting
averaged connection is given by

at = T+ +
ε2

24
T− , aφ = T+ −

ε2

24
T− , (64)

āt = −
ε̄2

24
T+ − T− , āφ = −

ε̄2

24
T+ + T− . (65)

To zeroth order in the disorder strength, this is simply the Chern–Simons version of the
Poincaré patch. By the disorder, the respective lowest components (T− for A, T+ for Ā) of
the connections receive corrections. In particular, these corrections are such that the gauge
flatness conditions (9) are no longer satisfied,

dA+ A∧ A= −
ε2

6
T0d t ∧ dφ , and dĀ+ Ā∧ Ā= −

ε̄2

6
T0d t ∧ dφ . (66)

Calculating the metric for the averaged connections, we find

gt t

�

〈A〉 ,



Ā
��

= −
1
z2
−
ε2 + ε̄2

24
, gtφ

�

〈A〉 ,



Ā
��

= 0 , (67)

gzz

�

〈A〉 ,



Ā
��

=
1
z2

, and gφφ
�

〈A〉 ,



Ā
��

= −gt t

�

〈A〉 ,



Ā
��

. (68)

The Ricci scalar of this metric shows a divergence in the IR,

R= −6+
ε2 + ε̄2

6
z2 . (69)

While the quantitative behaviour of the Ricci scalar is different compared to (26), the qualita-
tive behaviour is similar, in the sense that an IR divergence is present.

In the dual description, the boundary metric is given by the Minkowski metric ηi j . The
boundary energy-momentum tensor following from (68) is given by

〈〈T ren
i j 〉〉=

c
288π

�

ε2 + ε̄2 0
0 −ε2 − ε̄2

�

i j
= −

c(ε2 + ε̄2)
288π

ηi j . (70)

Since the boundary is flat, the relation for the trace anomaly in curved backgrounds (34)
cannot be satisfied.

To cure these issues, we perform a resummation in the Chern–Simons formulation. We do
so by modifying the lowest weight components of at and āt . Explicitly, we add free constants
ζ̃= ε2ζ and ˜̄ζ= ε̄2ζ̄ which vanish when the disorder strengths are set to zero. The resummed
connection components are then given by

ares
t = T+ +

�

1
24
+ ζ

�

ε2T− , (71)

āres
t =

�

−
1

24
+ ζ̄

�

ε̄2T+ − T− . (72)
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For these connections, the gauge flatness conditions (9) evaluate to

dA+ A∧ A= −
ε2

6
(1+ 12ζ)T0d t ∧ dφ , (73)

dĀ+ Ā∧ Ā= −
ε̄2

6
(1− 12ζ̄)T0d t ∧ dφ . (74)

Demanding that the resummed connections are gauge flat fixes the resummation constants to

ζ= −
1
12
= −ζ̄ . (75)

An alternative way to fix these constants is to calculate the energy-momentum tensor dual
to the metric following from the resummed connections with open ζ, ζ̄. Demanding that this
energy-momentum is traceless such that (34) is satisfied yields the same values for ζ, ζ̄ as
given in (75).

Inserting these values, the resummed connection components are given by

ares
t = T+ −

ε2

24
T− , (76)

āres
t =

ε̄2

24
T+ − T− . (77)

In general, calculating the metric from the gauge fields and averaging do not commute. Re-
markably, the metric resulting from the resummed connections,

ds2 =

�

−
1
z2
+
ε2 + ε̄2

24

�

d t2 +
dz2

z2
+

�

1
z2
+
ε2 + ε̄2

24

�

dφ2 + 2

�

ε2 − ε̄2

24

�

d tdφ , (78)

is the same that we found in the previous section when discussing the resummation on the
level of the averaged metric, up to a sign change in the tφ component. This component
corresponds to the angular momentum. As discussed at the end of the introduction, we may
remove this sign difference by t → −t. The BPS condition analysed in the previous section
is quadratic in the angular momentum, so it is still satisfied. Also, analogous to before, the
metric (78) has no curvature singularities and is locally an AdS spacetime everywhere. The
dual energy-momentum tensor is traceless and, therefore, satisfies (34).

5.2 Calculating before averaging

Alternatively to the approaches in the previous sections, in the following we compare the above
results to first calculating observables for each realisation of the disorder and averaging only
the final result. As we mentioned above, computing and averaging does not commute due
to the non-linearity of both the average itself as well as the non-linear dependence of certain
observables on the chemical potentials as sources of the disorder. We will make this explicit
by computing the boundary energy-momentum tensor for each realisation and discussing its
properties upon averaging the result.

Here we perform the same computations as in section 3.1 for the expanded, but not av-
eraged, metric components displayed in (A.4). Adjusting (30) to the case where the metric
is not in Fefferman–Graham gauge, we obtain the energy-momentum tensor in each disorder
realisation. To properly compare it to our previous results, we average the expression to obtain

〈〈T ren
i j [γ]〉〉= −

c
288π

�3
2(ε− ε̄)

2 ε̄2 − ε2

ε̄2 − ε2 1
2(ε− ε̄)

2

�

. (79)
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This result differs from both the energy-momentum tensor obtained directly from the averaged
metric as well as the energy-momentum tensor after resummation, displayed in (32) and (56),
respectively. In particular, for equal disorder ε = ε̄ all components are vanishing. To test
whether the above energy-momentum tensor satisfies the trace anomaly equation, we have to
also compute the scalar curvature of the disorder boundary metric γ(0)i j . Since in this section,
we average only after every other computational step, the boundary metric depends on the
angular coordinate φ due to the disorder. Correspondingly, its Ricci scalar does not vanish,

〈R[γ(0)i j ]〉= −
(ε− ε̄)2

12
. (80)

To compute the trace of the energy-momentum tensor of the boundary theory, it is important
to not compute the trace of (79) using the average of the boundary metric, but to compute
the trace for each realisation and averaging afterwards. This illustrates the non-commutative
behaviour of averaging and computing in

tr
�

〈〈T ren
i j [γ]〉〉

�

= 〈γi j〉〈〈T ren
ji [γ]〉〉 ≠

¬

tr
�

T ren
i j [γ]

�¶

. (81)

Having this in mind, averaging the resulting expression for the trace of the energy-momentum
tensor yields

〈tr
�

T ren
i j [γ]

�

〉= −
c(ε− ε̄)2

288π
. (82)

Combining with (80), this satisfies the trace anomaly equation (34).
The non-commuting behaviour (81) makes manifest a particular disadvantage of averaging

only after computing the quantity of interest. That is, it is not straightforward to associate
an effective metric to the energy-momentum tensor (79), in particular not by averaging the
boundary metric. Rather, while the boundary metric γ(0)i j is crucial for computing quantities
such as traces or more generally contracting indices, it does not provide an effective description
of the boundary spacetime corresponding to the averaged boundary energy-momentum tensor
(79).

6 Conclusions and outlook

In this paper, we studied the effect of random disorder on the Poincaré patch solution of the
three-dimensional Einstein equations for the AdS vacuum. Starting from the Chern–Simons
formulation of AdS3 gravity with Brown–Henneaux boundary conditions, we used the left- and
right-moving chemical potentials µ and µ̄ to introduce disorder. Inspired by earlier work on
disorder in holography, we chose a convenient ansatz for the disorder potential and worked
perturbatively to second order in the disorder strengths ε and ε̄. This enabled us to perform
an analytic average. Before discussing our findings, it should be noted that this choice of
implementing the disorder is not unique. An alternative approach would be to directly disorder
the boundary metric on which the dual 2D CFT lives. It is not obvious whether both approaches
lead to the same results.

Having obtained the averaged metric, we first studied its bulk properties. As expected from
our choice of boundary conditions, in the ultraviolet region z → 0 we maintained asymptotic
AdS behaviour, i.e., the Ricci scalar was constant and equal to −6. Furthermore, the trace-free
Ricci tensor as well as the Cotton tensor vanished asymptotically. Deeper in the bulk, we found
that this is no longer true. All the quantities mentioned before receive corrections quadratic
in ε and ε̄. These corrections depended on the holographic coordinate z. This resulted in
an unphysical curvature divergence and a corresponding naked singularity in the IR region
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z → ∞, implying a breakdown of our perturbative treatment. Such divergent behaviour
was not unexpected since similar effects appeared also in earlier work on disorder [14, 22].
Moreover, by the Harris criterion, the disorder we used is marginally relevant. Therefore,
large changes in the IR region are expected to happen. The marginally relevant nature of our
disorder is ultimately responsible for the breakdown of perturbation theory. We further found
that the averaged metric did not yield a well-defined semiclassical approximation for a string,
which is related to the fact that the averaged metric component




gφφ
�

has real roots z0. This
also implied that the averaged metric had a singularity in the causal structure at z0. Since the
φ-direction is compact, the region z > z0 includes closed timelike curves, indicating that the
spacetime ends at z0 with finite Ricci curvature.

We also studied the holographic state dual to the averaged metric. Computing the energy-
momentum tensor, we found a non-vanishing trace. Since the metric induced on the boundary
is just two-dimensional Minkowski space, the relation between trace anomaly and boundary
curvature was not fulfilled. We also analysed the entanglement properties of the averaged
geometry. We found that the EE can become negative for a sufficiently large length of the
entangling region l in the boundary theory, related to the breakdown of perturbation theory
in the bulk IR region. Again, this is due to the marginally relevant nature of the disorder.
Furthermore, we computed QNEC for the averaged metric. It depended on the length l and
the ratio of the disorder strengths a whether or not it was fulfilled. Moreover, we also analysed
NEC and found that it can be violated as well, see Figure 1.

In earlier works on disorder, to regulate diverging behaviour, the so-called Poincaré–
Lindstedt method was employed. Inspired by this, we use an analogous method to cure the
above-mentioned deficiencies of the averaged geometry. Although we modify only the aver-
aged geometry, the averaging procedure and our resummation method commute since the re-
summation functions do not depend on the random phases sourcing the disorder. We rescaled
the averaged metric components by the resummation functions containing undetermined co-
efficients. By computing quantities such as the Ricci curvature and the trace-free Ricci tensor,
we obtain constraints on these coefficients. By our method, we were able to restore finite
curvature throughout the entire bulk. The resummed metric was a solution to the AdS3 vac-
uum Einstein equations with vanishing Cotton tensor. Furthermore, the closed timelike curves
were removed and the semiclassical approximation for a string could be defined. In the dual
theory, the energy-momentum tensor on the boundary was traceless, such that the confor-
mal anomaly equation was satisfied. The EE was manifestly positive and QNEC saturated.
Three of the resummation coefficients entered the boundary energy-momentum tensor of the
resummed metric. We fixed them to zero by requiring consistency with the BPS bound for
generic values of ε and ε̄.

Apart from the metric formalism, we also studied the averaging procedure directly in the
Chern–Simons formulation, i.e. averaging the connections. After averaging, the flatness con-
ditions are no longer satisfied. The metric calculated from the averaged connections shows
a divergence in the IR as well, although the behaviour of the divergence is different than in
the metric approach. In the dual picture, the trace of the boundary energy-momentum tensor
derived from the averaged connections does not vanish and in particular, does not satisfy the
relation between trace anomaly and boundary curvature.

As in the metric approach, we performed a resummation to cure these issues. In particular,
we modified the lowest weight components of at and āt by free parameters proportional to
ε2 and ε̄2, respectively. Demanding that the flatness conditions are satisfied fixes these con-
stants uniquely. All the aforementioned issues are cured by this resummation. The curvature
singularity in the IR is removed and the relation between trace anomaly and boundary cur-
vature is satisfied. Interestingly, the metric obtained from the resummed connections is, up
to an overall sign in the tφ-component, the same as the one obtained by the resummation of
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the averaged metric, although calculating the metric from the connections and averaging, in
general, do not commute in the Chern–Simons formalism as well. Using a time reversal trans-
formation t → −t, this sign difference is removed. This is yet another instance of averaging
and disordering not commuting, this time between the Chern–Simons and metric formalisms,
which are equivalent to each other within each disorder realisation before averaging but are
found to differ by a sign after averaging.

Furthermore, as discussed in section 5.2, also in the metric formalism, the non-commuting
of disordering and averaging manifests itself in the calculation of observables: For example, if
we first calculate the energy-momentum tensor expectation value in each realization and then
average, it is not straightforward to associate to the resulting boundary energy-momentum
tensor (79) an effective metric which would source this energy-momentum tensor. In par-
ticular, the averaged boundary metric does not source the energy-momentum tensor (79),
which vanishes for example in the limit ε = ε̄, while the averaged boundary metric read
off from (25) does not vanish. This implies that the boundary metric γ(0)i j does not provide
an effective description of the boundary spacetime corresponding to the averaged boundary
energy-momentum tensor (79).

Our analysis conducted in this work enables numerous future research projects. In the
following, we give a list of questions and issues that we have not answered or studied in this
work but which might be interesting to study in the future.

Effective theory. Before averaging the metric, the dynamics of the theory is determined by
the Einstein–Hilbert action. After averaging, this is no longer true. The question arises if one
can find an effective action where the averaged metric follows as a solution to the equations of
motion. We made two such attempts by considering topologically massive gravity (TMG) and
Einstein-dilaton gravity. For TMG, the Chern–Simons term yielding the non-vanishing graviton
mass has a coupling constant µ. Imposing the Hamiltonian constraint, Eq. (4) in [52], we
found that the resulting µ does not have a constant asymptotic piece. Therefore, (25) cannot
be a solution to TMG [52]. To check Einstein-dilaton gravity, we followed the steps discussed
in [53]. To calculate the dilaton field from the metric, the averaged metric components need to
satisfy certain convexity conditions. Unfortunately, the averaged metric does not satisfy these
conditions. Finding a bulk effective theory would significantly improve the understanding of
the disorder averaging in AdS/CFT and, in particular, allow us to study the dual field theory
directly.

Poincaré–Lindstedt inspired resummation. Regarding the resummation method, an inter-
esting question is tied to the effective theory. Above we discussed in great detail how the
resummation regulates the averaged geometry. If we had an effective theory at hand, it would
be interesting to study how it affects the resummation.

Disordering different background geometries. For simplicity, in the current work we re-
stricted our focus on the Poincaré patch metric. On top of this, we introduced disorder. From
the first-order formulation of AdS3 gravity that we introduced in section 2, it is straightforward
to extend to other cases. Simple examples are the BTZ black hole, global AdS3, or conical de-
fect geometries. These examples are obtained simply by fixing the functions F and G in (12)
and (13) to be non-vanishing constants. It will be interesting to see if there are qualitatively
different features after averaging the corresponding disordered metrics.

Beyond perturbation theory. Throughout the entire paper, we worked perturbatively in
the disorder strengths ε and ε̄. While this enables us to perform the averages analytically, it
begs the question of to what extent the perturbative treatment affects the result. One might
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expect that in a non-perturbative treatment, some of the problematic features are absent. Since
the non-perturbative calculation involves averages of inverse powers of µ and µ̄, an analytic
answer to this question is hard to obtain. However, a numeric analysis, along the lines of the
numerical non-perturbative evaluation of the Ricci scalar outlined in section D will be very
useful to properly address these questions.

Different boundary conditions. In our procedure, we average over descendant geometries
of Bañados type, which include a conical singularity in the IR. It is known that by relaxing the
Brown–Henneaux boundary conditions to e.g. near horizon boundary conditions, this conical
singular behaviour can be removed [54,55]. It is reasonable to assume that different boundary
conditions might lead to an averaged metric with regular curvature. To answer this question,
but also to study disorder in 2D CFTs with extended symmetries [40], it is interesting to study
disorder averages with different boundary conditions.
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A Expanded metric components

In this appendix, we display the metric components resulting from the gauge fields expressed
in terms of the charges L and L̄ as well as the chemical potentials µ, µ̄. To calculate the metric
components, we use the following basis for sl(2,R),

T+ =

�

0 0
1 0

�

, T0 =
1
2

�

1 0
0 −1

�

, and T− =

�

0 −1
0 0

�

. (A.1)

The trace of two generators is given by

tr(TaTb) =





0 0 −1
0 1

2 0
−1 0 0



 , (A.2)

where we ordered (+, 0,−).
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The metric components follow from inserting (5), (6), (7), (8) and the group element
b = exp(ρT0) into (14). Expressed in the holographic coordinate z = exp(−ρ), we find

gt t =
µµ̄

z2
+

2π
k

�

µ2L− µ̄2L̄
�

+
1
4

�

µ′ + µ̄′
�2 −

1
2

�

µµ′′ + µ̄µ̄′′
�

+

�

µ′′µ̄′′

4
−
π

k

�

Lµµ̄′′ − L̄µ̄µ′′
�

−
4π2

k2
LµL̄µ̄

�

z2 , (A.3a)

gtz =
µ′ + µ̄′

2z
, (A.3b)

gtφ =
µ+ µ̄
2z2

+
2π
k

�

Lµ− L̄µ̄
�

−
µ′′ + µ̄′′

4
−
�

π

2k

�

Lµ̄′′ − L̄µ′′
�

+
2π2

k2
LL̄
�

µ+ µ̄
�

�

z2 , (A.3c)

gzz =
1
z2

, (A.3d)

gzφ = 0 , (A.3e)

gφφ =
1
z2
+

2π
k

�

L− L̄
�

−
4π2

k2
LL̄z2 . (A.3f)

Inserting (12), (13) and subsequently (16) and (17), we expand to second order in ε and ε̄.
We find the following metric components:

gt t =
�

−1+ (ε̄− ε) f + εε̄ f 2
� 1

z2
+
εε̄

2
f ′2 , (A.4a)

gtz =
(ε̄+ ε) f ′

2z
, (A.4b)

gtφ =
ε+ ε̄

2
f

1
z2
+
ε̄2 − ε2

4
f ′2 +

ε+ ε̄
4

f ′′ , (A.4c)

gzz =
1
z2

, (A.4d)

gzφ = 0 , (A.4e)

gφφ =
1
z2
−
ε̄2 + ε2

2
f f ′′ −

ε̄2 + ε2

4
f ′2 +

ε− ε̄
2

f ′′ −
εε̄

4
f ′′2z2 . (A.4f)

Note that these components are expanded only in the disorder strengths ε, ε̄; there is no
expansion involved in z.

B Disorder with relative phase shift

In this appendix, we discuss the effect of a more general ansatz for the disorder functions. As
mentioned in the main text, we could allow for random phases γn and γ̄n with a relative phase
shift in the intervals that they are drawn from, [0,2π) and [α, 2π+α), respectively. Compared
to (16) and (17), this relative phase shift in the intervals results in a relative phase shift in the
cosines,

f (φ) =
1
p

N

N
∑

n=1

cos
� n

N
φ + γn

�

, and f̄ (φ) =
1
p

N

N
∑

n=1

cos
� n

N
φ + γn +α

�

. (B.1)

Using this ansatz, we first observe that all of the one-point functions still vanish,

〈 f 〉=



f̄
�

= 0 . (B.2)
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Moreover, all disorder averages without mixing of f and f̄ are left invariant,




f 2
�

=



f̄ 2
�

=
1
2

,



( f ′)2
�

=



( f̄ ′)2
�

=
1
6

, (B.3)




f f ′
�

=



f̄ f̄ ′
�

= 0 ,



f f̄ ′′
�

=



f ′′ f̄
�

= −
1
6

. (B.4)

All of the mixed averages receive a correction depending on this phase,




f ′ f̄ ′
�

=
cosα

6
,



f f̄ ′′
�

=



f ′′ f̄
�

= −
cosα

6
,



f ′ f̄ ′′
�

= −



f ′′ f̄ ′
�

= −
sinα

8
, (B.5)




f f̄
�

=
cosα

2
,



f ′′ f̄ ′′
�

=
cosα
10

,



f f̄ ′
�

= −



f ′ f̄
�

= −
sinα

4
. (B.6)

Consistently, α→ 0 reduces back to the averages discussed in the main text.
Although many of the averages are modified, the resulting averaged metric and Ricci cur-

vature do not differ much compared to (25) and (26),




g(α)
�

=





�

−1+ εε̄2 cosα
� 1

z2 +
εε̄
12 cosα 0 ε̄2−ε2

24
0 1

z2 0
ε̄2−ε2

24 0 1
z2 +

ε2+ε̄2

24 −
εε̄
40z2 cosα



 , (B.7)

and R(α) = −6+
ε2 − 2εε̄ cosα+ ε̄2

12
z2 +

εε̄

10
z4 cosα . (B.8)

As expected from the changes in the averages given above, the phase shift only appears in
terms ∝ εε̄. A particular interesting value might be α = π

2 : in this case, the O(z2) term

in



g(α)
φφ

�

vanishes and



g(α)t t

�

= − 1
z2 . However, the curvature still contains a divergent piece

∝ z2. To summarise this brief analysis, including a relative phase shift does not yield an
obvious advantage compared to our analysis in the main text.

C Fourth-order analysis of the disorder

Here, we explain the fourth-order expansion of the metric components and the resulting Ricci
curvature and trace anomaly equation.

Expanding the metric components to fourth order in ε, ε̄ yields

gt t = (−1+ (ε̄− ε) f + εε̄ f 2)
1
z2
+
εε̄

2
f ′2 , (C.1a)

gtz =
(ε+ ε̄) f ′

2z
, (C.1b)

gtφ =
ε+ ε̄

2
f

1
z2
+
ε̄2 − ε2

4
f ′2 +

ε+ ε̄
4

f ′′ +
ε3 + ε̄3

4
f f ′2 −

ε4 − ε̄4

4
f 2 f ′2

+

�

ε2ε̄+ εε̄2

16
f ′2 f ′′ −

ε3ε̄− εε̄3

16
f f ′2 f ′′

�

z2 , (C.1c)

gzz =
1
z2

, (C.1d)
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gzφ = 0 , (C.1e)

gφφ =
1
z2
+
ε− ε̄

2
f ′′ −

ε2 + ε̄2

4
f ′2 −

ε2 + ε̄2

2
f f ′′ +

ε3 − ε̄3

2

�

f f ′2 + f 2 f ′′
�

−
ε4 + ε̄4

4

�

3 f 2 f ′2 + f 3 f ′′
�

+

�

−
εε̄

4
f ′′2 +

ε2ε̄− εε̄2

8

�

f ′2 f ′′ + 2 f f ′′2
�

+
ε2ε̄2

16
f ′4 −

ε3ε̄− ε2ε̄2 + εε̄3

4

�

f f ′2 f ′′ + f 2 f ′′2
�

�

z2 . (C.1f)

Upon averaging, the terms linear and cubic in the product of ε and ε̄ vanish. Using the averages




f 4
�

=
3
4

,



f ′4
�

=
1
12

,



f 2 f ′2
�

=
1

12
, (C.2)




f 3 f ′′
�

= −
1
4

,



f f ′2 f ′′
�

= −
1

36
,



f 2 f ′′2
�

=
19
180

, (C.3)

the averaged metric components to fourth order in the disorder strengths are given by

〈gt t〉=
�

−1+
εε̄

2

�

1
z2
+
εε̄

12
−
ε2ε̄2

192
z2 , (C.4a)




gtφ

�

=
ε̄2 − ε2

24
+
ε̄4 − ε4

48
+
ε3ε̄− εε̄3

576
z2 , (C.4b)




gφφ
�

=
1
z2
+
ε2 + ε̄2

24
−
εε̄

40
z2 +

ε4 + ε̄4

16
+
ε2ε̄2

576
z2 , (C.4c)

〈gtz〉= 0=



gzφ

�

, and 〈gzz〉=
1
z2

. (C.4d)

For these metric components, we obtain the Ricci scalar

R= −6+
(ε− ε̄)2

12
z2 +

εε̄

10
z4 +

3ε4 − 2ε2ε̄2 + 3ε̄4

24
z2

−
ε4 − 2ε3ε̄+ 6ε2ε̄2 − 2εε̄3 + ε̄4

288
z4 −

5ε4ε̄+ 4ε2ε̄2 + 5εε̄3

480
z6 +

3ε2ε̄2

400
z8 , (C.5)

and, using (30),

〈〈T ren
i j [〈γ〉]〉〉=

c
288π

�

ε2 + ε̄2 + 3
2ε

4 − 1
2ε

3ε̄− 1
2εε̄

3 + 3
2 ε̄

4 ε̄2 − ε2 + ε̄
4−ε4

2

ε̄2 − ε2 + ε̄
4−ε4

2 2εε̄+ ε2ε̄2

�

. (C.6)

The trace of the energy-momentum tensor is given by

tr
�

〈〈T ren
i j [〈γ〉]〉〉

�

= −
c(ε− ε̄2)

288π
−

c(3ε4 − 4ε2ε̄2 + 3ε̄4)
576π

. (C.7)

Comparing these results to (26), (30) and (33) shows that while we of course obtain non-
trivial corrections by including the fourth order, neither the IR divergence of the curvature
nor the non-vanishing trace of the boundary energy-momentum tensor are resolved by this
inclusion. Therefore we conclude that going to higher orders in perturbation theory only
leads to quantitative changes, but qualitatively we do not learn more about the properties of
the bulk curvature and the trace of the boundary energy-momentum tensor.
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D Numerical evaluation of the Ricci scalar

Here, we give details on the numerical average evaluation. In particular, we compute the
averaged metric components and the corresponding Ricci scalar without expanding in ε. We
show this explicitly for ε= ε̄.

For the numerical evaluation, we use Mathematica. The metric components are obtained
as follows. The components of the connection are typed into Mathematica such that they only
depend on µ and µ̄. Using (14), each metric component can be computed. The metric is
denoted as gPP. The chemical potentials are defined as

1 µ[φ_]:=1+ εp
N
Sum[Cos[ n

Nφ+γ[[n]]],{n,1,N}]
2 µ̄[φ_]:=-1+ ε̄p

N
Sum[Cos[ n

Nφ + γ[[n]]],{n,1,N}]

To calculate the averaged metric components, we calculate the components for N realisations
and afterwards take the mean of them. To do so, we first define empty lists for each component,
such as

1 gttR ={}

for the t t-component. We then run a For loop to evaluate the metric components for partic-
ular realisations of the disorder. Within the loop, for each instance, new random phases are
computed as a list of length N . The phases are, by their definition, automatically inserted into
the chemical potentials µ, µ̄. These particular realisations of µ and µ̄ are put into the metric
components. After evaluating them, the component is included in the lists priorly defined,
using AppendTo. After the loop, each of the lists is averaged by using Mean. In Mathematica,
this looks as follows (again written only for the t t-component):

1 For[i=0,i<N,i++;{γ=Table[RandomReal [{0,2*Pi}],{k,1,N}],AppendTo[
gttR ,gPP [[1 ,1]]/.{µ->µ[φ_]}]

2 gttM=Mean[gttR]

We proceed in this way for every component. In practice, to ensure all components are com-
puted with the same random phases, we run one loop containing the corresponding operations
and the function AppendTo for every metric component. In this way, we obtain the averaged
metric without expanding in ε, ε̄. By using the standard formulae, we can calculate the Ricci
scalar. This code works well at least up to N = 15, which is already a fairly good approx-
imation, given that the resulting error is of the order 1

N ∼ 10%. The resulting Ricci scalar
shows, up to finite N effects, the same diverging behaviour in the IR region as the Ricci scalar
computed in the main text by expanding the metric components to second order in ε, ε̄. In
particular, evaluating the Ricci scalar obtained numerically for ε= ε̄ and ε small shows a good
match between the numerics and the analytical perturbative calculation, as displayed in figure
2. Comparing the two figures 2a and 2b, we also see how a larger N leads to dampening of
the fluctuations in φ direction.

E Details of the QNEC calculation

In this appendix, we explain in detail how the results for the QNEC conditions are obtained
following the method discussed in section 2.6 in [49]. We will first explain the idea and give
explicit expressions afterwards.

The calculation results from the following idea: the EE S is computed by a static geodesic
of length l, connecting two points in the boundary CFT. To obtain QNEC, we need to know
how S changes under small null deformations of the entangling region. For concreteness,
this means we change one of the endpoints by a vector of the form k = λ(1,1), where λ is
assumed to be small compared to l. Therefore, and also due to the fact that we will need only
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(a) N = 5 (b) N = 15

Figure 2: Displayed in both images is the Ricci scalar for the disordered Poincaré
patch evaluated numerically (orange) in comparison to the analytic result (light
blue). The green plane represents a ±ε band. These result are obtained for equal dis-
order strengths ε = ε̄ = 0.1 and for N = 5 (figure 2a) and N = 15 (figure 2b) in the
disordered chemical potentials (16), (17). For the plots, the coordinate θ = arctan(z)
is introduced. In the IR region z →∞, i.e. θ → π

2 , the curvature is divergent both
numerically and analytically (compare (26)). The fact that the curvature varies in φ
direction is a finite N effect. As can be seen by comparing the two plots, the curvature
variations in figure (2b) are damped due to the larger value of N .

second and first derivatives of S evaluated at λ = 0, we can always work perturbatively in
λ. For our disordered metric, we will also work perturbatively in ε. The calculation works
as follows: we choose the spatial boundary coordinate φ as affine parameter to denote the
geodesic Lagrangian L in terms of ṫ, ż and z, where a dot refers to a derivative w.r.t φ. This
makes use of the existence of the Killing vectors ∂t and ∂φ , i.e. the metric components depend
only on the radial coordinate z. The area, and thereby the EE, is then given by the integral of
L over φ. It is, however, more convenient to reexpress this as an integral over z. To do so, we
make use of the Noether charges of ∂φ and ∂t , Q1 and Q2 respectively, where for calculational
convenience we evaluate Q1 at the turning point z∗ of the geodesic. It is then possible to
express ṫ and ż as functions ht and hz depending on z, z∗ and Λ, where Λ is a combination of
the two charges. For example, one may take Λ=Q2/Q1, which turns out to be very convenient
in the case of diagonal metrics. Furthermore, Λ has to vanish when the null deformation is
turned off. Therefore, Λ and λ are linearly related to lowest order, such that expansions in
Λ are also possible. The null deformation changes the extent of the entangling region by λ
both in the spatial and temporal direction. However, using ht and hz , the change of size of the
entangling interval can be calculated in terms of z∗ and Λ, such that these two parameters can
be expressed in terms of l and λ. Finally, to calculate the EE, the integral can be written as
an integral over z, using again hz , where z∗ and Λ are expressed in terms of l and λ. Having
obtained this result, it is straightforward to calculate the QNEC combination in (35).

After this more general discussion, we present in detail the calculation for the metric in
(25). The geodesic Lagrangian

L( ṫ, ż, z) =

√

√




gφφ
�

+ 2



gtφ

�

ṫ + 〈gt t〉 ṫ2 +
ż2

z2
, (E.1)
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has the Noether charges

Q1 = ż
∂L
∂ ż
+ ṫ
∂L
∂ ṫ
−L= −




gφφ
�

+



gtφ

�

ṫ

L
, (E.2)

Q2 =
∂L
∂ ṫ
=




gtφ

�

+ 〈gt t〉 ṫ
L

. (E.3)

Evaluating Q1 at z∗ and solving for ṫ and ż, the solutions are of the form

ṫ = Λht(z, z∗,Λ) , and ż = hz(z, z∗,Λ) . (E.4)

Inserting the metric components (25), we find to O(ε2)

ht = Λ

�

1+
z2ε2

24Λ

�

−(1−Λ+Λ2) +
�

2−
3
5

z2
�

aΛ+ (1+Λ+Λ2)a2
�

�

, (E.5)

hz = −

Æ

(z2
∗ − z2)(1−Λ2)

z
−
ε2

240z

√

√z2
∗ − z2

1−Λ2

�

5(2Λ− 1)z2
∗ + 5(1− 2Λ2 + 2Λ3)z2

+
�

3z4
∗ − 10z2

∗Λ
2 + z2(3z2

∗ − 10Λ2) + z4(6Λ2 − 3)
�

a

−
�

5(1+ 2Λ)z2
∗ + 5(−1+ 2Λ2 + 2Λ3)z2

�

a2
�

, (E.6)

where Λ= Q2
Q1

and a = ε̄
ε is the ratio of the disorder strengths.

The next step is to calculate the expressions for the spatial and temporal deformation of
the entangling interval. In principle, they are given by φ- and t-integrals respectively, but
using the above functions, both can be computed as a z-integral:

λ=

λ
∫

0

d t = 2Λ

0
∫

z∗

dz
ht

hz
, (E.7)

l +λ=

l+λ
∫

0

dφ = 2

0
∫

z∗

dz
hz

. (E.8)

These integrals can be performed after expanding the argument to second order in ε. Solving
for Λ and z∗ yields

Λ=
λ

2z∗
+ ε2

�

a2 − 1
36

z2
∗ +
−125(1+ a2) + (99z2

∗ − 200)a

7200
z∗λ+

1− a2

96
λ2

�

, (E.9)

z∗ =
l
2

�

1+
51al2 − 100(1+ a2)

57600
l2ε2

�

+
λ

2

�

1+
51al2 − 20− 100a2

11520
l2ε2

�

+
λ2

4l

�

1−
300− 1300a2 − (400− 867l2)a

57600
l2ε2

�

. (E.10)

Finally, the area integral can be evaluated to give a result depending only on l, λ and the radial
cutoff zcut

A= 2

zcut
∫

z∗

dz
L(Λht , hz , z)

hz
. (E.11)
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The explicit result using l ≫ zcut, expanded to second order in ε and λ, is given by

S(λ) =
c
3

ln
l

zcut
+

cλ
3l
−

cλ2

3l2
+

cε2

864

�

�

1+ a2
�

l2 −
3al4

25
+

�

4a2 −
12al2

25

�

lλ

+

�

−1+ 2a+ 3a2 −
3al2

5

�

λ2

�

. (E.12)

Taking derivatives w.r.t λ and setting λ= 0 afterwards, we find the result given in (38). While
the above S is calculated by making use of l ≫ zcut in the last step, we find the same result
(38) when using the full result from (E.11), without assuming large l. The calculation for the
resummed geometry (45) works analogously and is even considerably shorter.
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