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Abstract

Within the setting of the AdS/CFT correspondence, we ask about the power of computers
in the presence of gravity. We show that there are computations on n qubits which cannot
be implemented inside of black holes with entropy less than O(2n). To establish our
claim, we argue computations happening inside the black hole must be implementable
in a programmable quantum processor, so long as the inputs and description of the
unitary to be run are not too large. We then prove a bound on quantum processors
which shows many unitaries cannot be implemented inside the black hole, and further
show some of these have short descriptions and act on small systems. These unitaries
with short descriptions must be computationally forbidden from happening inside the
black hole.
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1 Introduction

Complexity theory deals with the power of mathematical models of computation. It is gener-
ally believed that these models capture the computational abilities of physical computers, but
making this connection precise is difficult. For instance, considering a quantum circuit model
we may be tempted to equate circuit depth with the time needed to implement the computa-
tion on a physical computer. By assuming a bound on energy, that connection can be made
precise via the Margolus-Levinin theorem [1]. For any given unitary however, a Hamiltonian
can be constructed which implements that unitary arbitrarily quickly, even at bounded en-
ergy [2]. This means that in this Hamiltonian model of computation, an energy bound doesn’t
suffice to relate computational and physical notions of time. Observations such as this one
leave it unclear how to connect the limits of physical computers and mathematical models of
computation.

In this article we make a preliminary step towards understanding the limits of physical
computers. To consider the full set of constraints on physical computers, and the full phys-
ical setting that can be exploited by a computer, we consider computation in the context of
quantum gravity. We work within the framework of AdS/CFT, which claims an equivalence
between quantum gravity in asymptotically anti de Sitter (AdS) spaces and a purely quantum
mechanical theory (a conformal field theory, the CFT) living at the boundary of that space-
time. Our main result is a construction of a family of unitaries that a computer operating
inside of a black hole with entropy Sbh cannot perform, where the computation is on n qubits
with log Sbh ≤ n ≪ Sbh and the family we construct is of size 2o(Sbh). Because n ≪ Sbh, the
inputs to the computation do not themselves couple strongly to gravity. Instead, it must be the
computation on these small inputs that is restricted.

While we are ultimately interested in the physical limits of computers in our universe,
working within the context of the AdS/CFT correspondence gives us a precise framework for
quantum gravity. As well, a fundamental observation in computer science is that the power of
computers is robust to “reasonable” changes in the details of the computing model: classical
computers can be described in terms of Turing machines, uniform circuits, etc. and the re-
sources needed to solve a given computational problem will change only polynomially. Quan-
tum computers are similarly robust. This robustness suggests understanding the power of
computers in AdS is likely to yield insights that apply more broadly.

Naively, the AdS/CFT duality between a bulk quantum gravity theory and quantum me-
chanical boundary suggests the power of computers in quantum gravity should be equivalent
in some way to quantum computers. We can imagine simulating the CFT on a quantum com-
puter, and thereby producing the outcomes of any computations run in the dual bulk picture.
This approach is complicated however by the possibility that mapping between the boundary
CFT descriptions and bulk gravity description is exponentially complex [3–6]. Consequently
determining the result of the bulk computation from the boundary simulation may itself be
highly complex, allowing for a discrepancy in efficiencies between the bulk and boundary. An
intriguing observation is that this leaves open the possibility of a quantum gravity computer
being much more powerful than a quantum computer [7].

In this work, we give a strategy to restrict bulk computation using the existence of the
boundary quantum mechanical description. The crucial property of the bulk to boundary map
we assume is state independence, which we have in AdS/CFT when reconstructing suitably
small bulk subsystems. We also use that this map is isometric.1 The state independence of

1For experts, one comment is that in our context we are assured that the relevant bulk states are physical states
in the fundamental description. We are not claiming that the entire bulk effective field theory (EFT) Hilbert space
can be recovered from the CFT. In fact, the map from the EFT Hilbert space to the CFT Hilbert space is expected
to be non-isometric [8].
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a p

Figure 1: A two sided black hole, with systems a and p falling in from opposite sides.
The state on P describes a unitary, which should be applied to the state on A.

the bulk to boundary map allows us to relate bulk computation to programmable quantum
processors, a well studied notion in quantum information theory. Using tools from functional
analysis, we give a bound on the average case behaviour of programmable processors.

Beyond the quantum processor bound, we use additional input from quantum gravity: we
assume that we cannot pass more than a black holes area worth of qubits into the black hole (a
special case of the covariant entropy bound), and we use that the boundary CFT has a “short”
description.2 To reach the strongest version of our result, we will also make an assumption
that a computation which is forbidden from happening inside a black hole also cannot be
implemented inside of a smaller one.

Before proceeding, we note that another strategy to constrain bulk computation using the
boundary description was suggested in [9], and similar ideas appear in [10,11]. That strategy
involves noting that bulk computations are supported, in a sense that can be made precise, by
boundary entanglement. The finite entanglement between distant boundary subregions can
then be used to place constraints on the size of inputs for some bulk computations, and it has
been further suggested that better understanding of entanglement requirements in non-local
computation may lead to computational constraints.

Summary of our thought experiment and result

The basic setting in which we constrain computation is shown in figure 1, where we consider
a two sided black hole. A quantum system A is recorded into bulk degrees of freedom a
and thrown into the black hole from the left asymptotic boundary, and a second system P is
recorded into bulk degrees of freedom p and thrown in from the right. System A initially holds
a state |ψ〉A, and P holds a description of a unitary that needs to be performed, along with
any computing device to be used to perform it. We will impose that the computer is built from
a much smaller number of degrees of freedom than the black hole we are throwing it into,
so that np ≪ Sbh.3 Otherwise, we can remain agnostic as to the design and functioning of
this computer — it might exploit some exotic quantum gravitational effects in performing its
computation. We aim to have the computer produce the state U |ψ〉a, which will be stored
somewhere in the black hole. We assume that a global reconstruction of the Ha Hilbert space
from the joint Hilbert space of both CFT’s exists, and we require the reconstruction procedure
is independent of the unitary to be performed.4 Thus there is some isometry R that maps

2In particular we argue the CFT data can be specified in O(log(LAdS/GN )) = O(log(c)) bits.
3In the main text we will relax this to allow np ≤ Sbh, which is enforced in the bulk by the covariant entropy

bound. To do so and still find an interesting constraint, we will need to invoke the additional assumption that
going to a smaller black hole never adds computational power. We consider the simpler setting where np ≪ Sbh in
the introduction.

4As we will review, this is justified when na + np ≪ Sbh.

3

https://scipost.org
https://scipost.org/SciPostPhys.16.1.024


SciPost Phys. 16, 024 (2024)

HA⊗HC F T →HA⊗HE , where HA holds the state U |ψ〉A if the bulk computation has succeeded.
To relate this setting to quantum information theory, consider the notion of a quantum pro-

grammable processor. An exact programmable processor is an isometry T which acts according
to

TAP→AE(|ψ〉A |φU〉P) = (UA |ψ〉A)
�

�φ′U
�

E . (1)

We will also consider approximate notions of a quantum processor. The P Hilbert space holds
a state |φU〉 which we call a program state, and which specifies a unitary U to be applied.
We will consider non-universal programmable processors, which have program states for only
some finite set of unitaries.

Returning to our black hole, we note that we can view the insertion of the relevant degree’s
of freedom, time evolution, and the recovery operation as the action of a quantum processor.
This is because once the program state is prepared, the remaining operations used to carry
out the computation — inserting these systems into the bulk, allowing the black hole to time
evolve, then recovering the output system — are all independent of the program state, and can
be viewed as a particular choice of isometry T that acts according to equation 1. We discuss
the definition of T in more detail later on, but note here that it is fixed by the description of
the CFT and of the initial state of the black hole.

Quantum processors are subject to constraints. Consider processors that implement a fam-
ily of diagonal unitaries on nA qubits,

E = {Uϵ : Uϵ = diag(ϵ1,ϵ2, ...,ϵ2nA),ϵi ∈ ±1} . (2)

For this family, one can show that an isometry T succeeds in implementing a randomly chosen
unitary Uϵ ∈ E poorly whenever the number of qubits in the program state is sub-exponential
in the number of data qubits. In particular, we will show that the probability p(T,Uϵ) of
successfully applying the unitary5 satisfies the bound

Eϵ p(T,Uϵ)≤ C
nP

2nA
, (3)

where nP is the number of qubits in the program state, the average Eϵ is over all values of ϵ,
and C is a constant.

Returning to the holographic setting, take

nP ≪ Sbh , log CSbh ≤ nA≪ Sbh . (4)

The upper bound on nP is our imposition that we are considering a computer built of many
fewer degrees of freedom than the black hole. We are free to choose nA as we like, and take
nA ≪ Sbh to ensure the inputs to the computation fit easily into the black hole. The lower
bound on nA ensures CnP/2

nA will be small and our processor bound consequently non-trivial.
Inside this regime, the bound 3 implies that some unitaries Uϵ can be implemented in the bulk
only with probability less than 1. By itself this is no surprise: to specify an arbitrary Uϵ requires
2nA bits (the signs ϵi), so for some Uϵ the program state of nP ≪ Sbh ≤ 2nA/C qubits is too few
qubits to specify the unitary, preventing the bulk computer from applying it.

More surprising is that there are also unitaries with short descriptions that cannot be im-
plemented in the bulk. To construct one, notice that the Uϵ inherit an ordering from the strings
ϵ. Choosing some threshold δ < 1, we have from the bound 3 that some unitaries cannot be
completed with probability higher than δ. We define Uϵ as the first unitary which the proces-
sor T defined by our setting can’t complete with probability more than δ. In the main text we
argue the CFT and the initial state can be efficiently described, using in particular O(log Sbh)
qubits, which means the description of these forbidden unitaries is small enough to be recorded

5We define this probability more precisely in the main text.
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into nP . Thus inside the black hole the computer holds a complete description of the unitary
Uϵ to be applied, but by construction the computer must fail to apply Uϵ, since otherwise the
programmable processor T would succeed.

This construction shows that there are at least some computations which cannot be
performed inside the black hole, despite there being no information theoretic reason they
shouldn’t be (i.e. the unitary is fully specified, and the inputs are available). Consequently, it
is a computational restriction that forbids these unitaries from happening — we have shown
that the bulk quantum gravity computer cannot implement arbitrary computations, and in
particular cannot implement the explicit computation we constructed.

To better understand the workings of our bulk computer, it is interesting to ask how hard
it is to implement the computations we’ve shown to be forbidden. In particular, what is their
complexity, when considering for example a quantum circuit model of computation? We argue
that in the regime 4, the computation that implements the needed unitary requires circuits with
memory at least CSbh and depth at least 2Sbh . Assuming the physical computer has similar
space and time requirements would suffice as a bulk explanation for why these computations
are forbidden.

Summary of notation

We briefly recall some asymptotic notation used in computer science and employed here. We
will use

f (x) = O(g(x)) ⇐⇒ lim
x→∞

f (x)
g(x)

<∞,

f (x) = o(g(x)) ⇐⇒ lim
x→∞

f (x)
g(x)

= 0 ,

f (x) =ω(g(x)) ⇐⇒ lim
x→∞

f (x)
g(x)

=∞ ,

f (x) = Θ(g(x)) ⇐⇒ 0< lim
x→∞

f (x)
g(x)

<∞ .

In words, big O means f (x) grows not much faster than g(x), little o means f (x) grows more
slowly than g(x), little ω means f (x) grows faster than g(x), and Θ means g(x) and f (x)
grow at the same rate. Some other notation:

• We use capital Latin letters for quantum systems A, B, ..., except when they are bulk
subsystems, in which case we use lower case Latin letters a, b, ..., etc.

• We use bold face capital Latin letters for unitaries and isometries, T, U, etc.

2 Programmable processors

In this section we define the notion of a programmable processor more carefully, then give a
bound on a particular class of processors.

2.1 Universal and non-universal quantum processors

A classical computer functions according to the following basic structure. We input some data
recorded in a string, call it x , and a program, call it P. Then the computer applies the program
to the input data, producing output P(x). When any program can be input to the computer in
this way, we say the computer is universal.

5
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In the quantum context the analogue is known as a universal processor. In this setting a
program amounts to a specification of a unitary, and the input data is a quantum state. The
overall action of a processor is given by an isometry TAP→AE , which satisfies

TAP→AE(|ψ〉A⊗ |φU〉P) = (UA |ψ〉A)
�

�φ′U
�

E . (5)

In [12], the notion of universal quantum processor was defined, and it was shown that for each
distinct unitary (up to a phase) the processor can implement, an orthogonal program state is
needed. Because there are an infinite number of distinct unitaries, no universal processor can
exist in the exact setting.

Giving up on a universal quantum processor we can consider similar but weaker objects
that might be possible to construct. One possibility is to consider approximate universal pro-
cessors, allowing for some error tolerance in applying the unitary U. Such approximate uni-
versal processors can be constructed [13], and it is known that any such construction needs
the dimension of the program Hilbert space to scale exponentially with the dimension of the
input Hilbert space [14]. Another route is to consider finite families of unitaries, and look for
processors that apply only elements of this family, either exactly or approximately.

In this work, we will make use of results on this second notion of a quantum processor,
which we now define more fully.

Definition 1. A quantum processor T : HA⊗HP → HA⊗HE is said to implement the family
of unitaries U if for each U ∈ U there is a state |φU〉 ∈HP such that

trE T(|ψ〉〈ψ|A⊗ |φU〉〈φU|P)T
† = U |ψ〉〈ψ|U† , (6)

holds for all |ψ〉. We also call such a construction a U -processor.

To define a notion of an approximate U -processor, one approach would be to require 6
holds approximately for all U. Instead, we will define a quantity which captures how close to
a U -processor an isometry is in an averaged sense.

Definition 2. (Processor testing scenario) Consider an isometry T : HA ⊗HP → HA ⊗HE .
The U -processor testing scenario is as follows.

1. Choose UA ∈ U uniformly and at random.

2. Choose a state |φU〉P ∈HP . Apply T to |Ψ〉AA⊗|φU〉P , where R is a reference system and
|Ψ〉AA is the maximally entangled state.

3. Measure the POVM {UA |Ψ〉〈Ψ|U
†
A,I −UA |Ψ〉〈Ψ|U

†
A}.

The probability of passing this test is, using the optimal choice of program state, given by

p(T,U)≡ EUA∈U sup
|φU〉

tr
�

UA |Ψ〉〈Ψ|U
†
AT(|Ψ〉〈Ψ| ⊗ |φU〉〈φU|)T†

�

. (7)

The quantity p(T,U) gives our quantification of how close to a U -processor T is.

2.2 Lower bounds on quantum processors

Below, we will show that U -processors are constrained by the size of their program Hilbert
spaces. We will be interested in processors implementing the family of unitaries

E = {Uϵ : Uϵ = diag(ϵ1,ϵ2, ...,ϵ22n),ϵi ∈ ±1} . (8)

This family is of particular interest because it can be related to the notion of type constants
in the theory of Banach spaces, which will be the technical tool that eventually leads to our
bound.

We now state the main claim of this section.

6
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Theorem 3. (Bound on E-processors) Given an isometry T : HA⊗HP →HA⊗HE , we have

p(T,E)≤
C log dP

dA
, (9)

where C is a constant.

This will be the technical statement used in the next section, and the reader uninterested
in the proof may proceed to there. In the rest of this section we explain some tools needed
and then give the proof. Note that this result is similar to the bound given in [14], both in the
techniques we will use to prove it and the statement. The only distinction is that in [14] they
give a lower bound on the dimension of the program space in terms of a measure of the worst
case performance of the processor. We can read the above as a lower bound on dP in terms of
the performance of the processor on a particular state, the maximally entangled one, which
can also be related to the average case performance of the processor.

The central mathematical structure we will exploit is the notion of a Banach space, and
the theory of type constants. A Banach space B is a vector space equipped with a norm || · ||B,
and which is complete under that norm. This can be compared to the more familiar notion
of Hilbert space, which is a vector space with an inner product 〈·, ·〉, and which is complete
under the norm induced by that inner product ||x ||=

p

〈x , x〉. Notice that every Hilbert space
is also a Banach space, but the reverse is not true.

Type constants are certain numerical values associated with a given Banach space B that
characterize, in a sense we explain, how far from being a Hilbert space B is. In particular, if
a norm is defined by an inner product, it carries with it additional structure beyond what is
usually given by a norm. For example, in a Hilbert space we have

1
2
(||x + y||2 + ||x − y||2) = ||x ||2 + ||y||2 . (10)

How badly a Banach space can violate this equality then gives some notion of how far it is
from being a Hilbert space. This motivates the following definition, which follows [15]. We
will only exploit the type 2 constants, but give a more general definition for completeness.

Definition 4. Let B be a Banach space and let 1 ≤ p ≤ 2. We say B is of type p if there exists
a positive constant t such that for every natural number n and every sequence {x i}ni=1, x i ∈ B
we have



Eϵ





�

�

�

�

�

�

�

�

�

�

n
∑

i=1

ϵi x i

�

�

�

�

�

�

�

�

�

�

2

B









1/2

≤ t

� n
∑

i=1

||x i||
p
B

�1/p

. (11)

The infimum of the constants t that satisfy this condition is the type p constant of B, which
we denote tB,p.

Note that in a Hilbert space H, we always have tH,2 = 1.
It is also helpful to introduce the Banach space formed by linear operators acting on a

Hilbert space. Given an operator O : H→H′ define the operator norm,

||O||∞ = sup
|ψ〉∈Ball(H)

||O |ψ〉 ||H′ , (12)

where Ball(H) is the unit ball in Hilbert space H. Then L(H′,H), the space of linear operators
mapping H into H′ which also have bounded operator norm, forms a Banach space. Consid-
ering the case of finite dimensional spaces, the type 2 constant of L(H′,H) can be bounded
above according to [15,16]

tL(H′,H),2 ≤ C
Æ

min{log dimH, log dimH′} . (13)

With these ingredients, we are able to give the proof of theorem 3.
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Proof. (Of theorem 3) We introduce the notation

|Ψϵ〉AR ≡ UϵA |Ψ〉AR ,

and will denote the choice of program states by |φϵ〉. The success probability p(T,E) is ex-
pressed as

p(T,E) = Eϵ sup
|φϵ〉

tr
�

|Ψϵ〉〈Ψϵ| (T |Ψ〉〈Ψ| ⊗ |φϵ〉〈φϵ|T†)
�

= Eϵ sup
|φϵ〉
|| 〈Ψϵ|T(|Ψ〉 ⊗ |φϵ〉)||2E , (14)

where || |ψ〉E ||E =
p

〈ψ|ψ〉 is the usual norm on the Hilbert space HE . Using that |Ψ〉AR is the
maximally entangled state, and that

|Ψϵ〉AR =
1
p

dA

dA
∑

i=1

ϵi |i〉A |i〉R , (15)

we obtain

p(T,E) = 1

d2
A

Eϵ sup
|φϵ〉

�

�

�

�

�

�

�

�

�

�

dA
∑

i=1

ϵi 〈i|A T(|i〉A⊗ |φϵ〉P)

�

�

�

�

�

�

�

�

�

�

2

E

. (16)

Define Ti ≡ 〈i|A T |i〉A, which is a linear map from P to E. Then the above becomes

p(T,E) = 1

d2
A

Eϵ sup
|φϵ〉

�

�

�

�

�

�

�

�

�

�

dA
∑

i=1

ϵiTi |φϵ〉P

�

�

�

�

�

�

�

�

�

�

2

E

=
1

d2
A

Eϵ

�

�

�

�

�

�

�

�

�

�

dA
∑

i=1

ϵiTi

�

�

�

�

�

�

�

�

�

�

2

∞

.

The last norm is on the Banach space of bounded linear operators fromHP toHE . Our choice of
family of unitaries E has lead conveniently to the final expression here being the sum appearing
in the definition of the type 2 constant. Using the result 13 for the upper bound on the type 2
constant of this Banach space, we obtain

p(T,E)≤ C
log dP

d2
A

dA
∑

i=1

||Ti||
2
∞ ≤ C

log dP

dA
, (17)

where we used that ||Ti||∞ ≤ 1 in the last inequality. This is exactly equation 9.

3 Forbidden computations for physical computers

In this section we relate bounds on programmable processors to computation in holographic
spacetimes. Then, we comment on the interpretation of the resulting constraints from a bulk
perspective. We begin however with a very brief review of some needed results in AdS/CFT
related to reconstructing states in the bulk from the boundary.

3.1 The reconstruction wedge

A basic element in the understanding of AdS/CFT is the Ryu-Takayanagi formula, and its var-
ious generalizations and restatements. One form of the modern statement reads [17]

S(A) =min
γex t

extγ∈Hom(A)

�

area(γ)
4GN

+ Sbulk(Eγ)
�

. (18)

The area plus entropy term inside the brackets is often called the generalized entropy. The
extremization is over surfaces γ which are homologous to A, which means that there exists a
codimension 1 surface Eγ such that

∂ Eγ = A∪ γ . (19)
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The term Sbulk(Eγ) counts the entropy inside the region Eγ. When there are multiple candi-
date extremal surfaces homologous to A, the final minimization picks out the one with least
generalized entropy. The minimal extremal surface picked out by the optimization procedure
in the RT formula will be labelled γA. This formula receives leading order corrections in some
regimes, as understood in [18], but the form 18 will suffice for our application.6

Given a subregion of the boundary A, it is natural to ask if a subregion of the bulk is recorded
into A. To make this question more precise, we should introduce a choice of bulk subspace,
which we refer to as the code-space and label Hcode. The subspace Hcode might for instance be
specified by a particular choice of bulk geometry, along with some qubits distributed spatially
across the bulk. Then, assume we are told the bulk degrees of freedom are in a state within
Hcode, and we are given the degree’s of freedom on subregion A. What portion of the bulk
degrees of freedom can we recover?

Answering this question is related closely to the RT formula. In particular, the portion of
the bulk we can recover if we know the bulk state in Hcode is given by [19,20]

EA ≡
⋂

ψ∈Hcode

EγA
. (20)

That is, for each state in the code space we find where the RT surface γA sits, and define
the corresponding bulk subregion EγA

. Then, we define the intersection of all such surfaces,
considering all states in the code-subspace. Note that in this procedure we should include
mixed states of the code-space. The resulting region is the portion of the bulk degrees of
freedom we can recover, if we know nothing about which state in the code-space the full bulk
is in. This region is sometimes referred to as the reconstruction wedge of region A, defined
relative to the code-space Hcode.

Given that it is possible to recover information inside the reconstruction wedge, we can also
ask what explicit operation recovers the code space from the CFT degrees of freedom. Given
a global map from the bulk subspace Hcode to the boundary Hilbert space, it was understood
in [21] how to construct such a recovery channel. Note that in this construction, a single
choice of recovery channel works correctly for the entire code-space.

We will apply the notion of the reconstruction wedge with the region A taken to be the
entire boundary CFT. In this setting we might expect the reconstruction wedge is always the
entire bulk, but if we choose too large of a code space it is possible for this to break down.
In particular the minimal extremal surface appearing in equation 18 can appear that cuts
out a portion of the bulk. While this incurs an area term with a cost like LAdS/GN in the
generalized entropy, if we take Hcode large enough this can reduce the generalized entropy
and be favoured. For this reason it will be necessary to keep our code spaces sufficiently small.

3.2 Holographic thought experiment with the game GE

Let’s return to the setting of the thought experiment presented in the introduction. Our goal
will be to construct a unitary acting on a small system that is forbidden from being completed
in the black hole interior. It will also be important that the unitary have a short description: if
even specifying the unitary requires an exponential number of bits, bringing this description
into the region may itself induce a large backreaction and cause the experiment to fail.

To make the notion of an efficient description more precise, we recall the definition of
Komolgorov complexity, also known as descriptive complexity. Intuitively, the descriptive com-
plexity counts the minimal number of bits needed to describe a given string. Somewhat more
formally, we make the following definition, which follows [22].

6Very roughly, in [18] it was understood that this formula breaks down when there are bulk states whose smooth
max or min entropy differs at O(1/GN ) from the von Neumann entropy, which won’t occur here.
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Definition 5. The shortest description of a string x is the shortest string 〈M , w〉, where M
is a Turing machine and w is an input string for that Turing machine, such that M(w) outputs
x . The descriptive complexity of x , which we denote d(x) is the length of the shortest
description.

Returning to holography, we consider two copies of a holographic CFT placed in the ther-
mofield double state, so that the bulk description is a two sided black hole. We consider a one
parameter family of black holes parameterized by their entropy Sbh.7 We could realize this
by for instance considering a family of CFT’s parameterized by the central charge c, which is
proportional to the black hole entropy. Our argument however is agnostic to how we realize
this family, which we could also realize by adjusting the black hole temperature.

We are interested in putting constraints on what can be computed within an AdS space
dual to a holographic CFT. Before proceeding, we should make some comments on what is
meant by having performed a computation. Given some input system Ha, we usually say
that we have performed some computation Uϵa (which will here be unitary) if the state on Ha
transforms according to |ψ〉a → Uϵa |ψ〉a. In quantum mechanics this is unambiguous, since
the Hilbert space Ha is defined at all times. In field theory, we only have subregions of the
spacetime, and a priori it’s not clear what “the same” Hilbert space Ha at different times means.
Unlike in quantum mechanics, we have different Hilbert spaces Ha and Ha′ at early and late
times, and some identification of bases in the two spaces. In practice we routinely identify
persistent Hilbert spaces: for example we can track a given particle through spacetime, and
call the Hilbert space describing its spin degree of freedom Ha, but implicitly we have some
basis information we are identifying across the early and late times.

In our context it will suffice to say that computation Uϵ has been completed if we can
identify in a “sufficiently simple” way a Hilbert space Ha′ and identification of basis elements
between Ha and Ha′ such that the transformation |ψ〉a→ Uϵ |ψ〉a′ has been implemented. For
us “sufficiently simple” will mean that the Ha′ and the identification of bases can be specified
using a number of bits small compared to other parameters in the problem. This agrees with
the usual setting in quantum mechanics where Ha′ is trivial to identify, and avoids some trivial
ways of “performing” an arbitrary highly complexity computation, by for instance absorbing
the computation into the basis identification. As an example, considering our particle moving
through spacetime, we might identify the early and late time Hilbert spaces by specifying the
background metric and parallel transporting a set of axes along the particle trajectory.

With this background on what we mean by a computation happening in a spacetime, let’s
proceed to understand the claimed constraints. We consider three agents, whom we call Alice,
Bob, and the referee. The referee decides on some input size for the computation, call it
nA = log dA. We then play the following game.

Definition 6. (Diagonal unitary game GE)

• Alice prepares a randomly chosen string ϵ ∈ {±1}dA.

• Based on the value of ϵ, Alice prepares a state |φϵ〉P ∈ HP and acts on CFTR so as to
record the state on P into bulk degrees of freedom p, and throws this state into the black
hole.

• The referee prepares the state |Ψ〉AA =
1p
dA

∑dA
i=1 |i〉A |i〉A and gives the A system to Bob.

Bob acts on CFTL so as to record the state on A into bulk degrees of freedom a, and
throws this state into the black hole.

• Alice gives CFTR to the referee, Bob gives CFTL to the referee.

7In our asymptotic notation, e.g. o(·), the asymptotic parameter will always be Sbh.
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• The referee applies a global reconstruction procedure on HL ⊗ HR to recover the
state on the a′ system, which he records into HA. The Hilbert spaces Ha and
Ha′ should be identified as discussed above. The referee then measures the POVM
{UϵA |Ψ〉〈Ψ|AA (U

ϵ
A)

†,I −UϵA |Ψ〉〈Ψ|AA (U
ϵ
A)

†}.

If the referee obtains the measurement outcome UϵA |Ψ〉〈Ψ|AA (U
ϵ
A)

†, we declare Alice and Bob
to have won the diagonal unitary game.

The steps in this procedure are summarized in figure 2.

VL VR

A

R

A

E

|φϵ〉P

Figure 2: Circuit describing Alice and Bob’s procedure to carry out the diagonal uni-
tary game. Unitary VL acts on AL, and corresponds in the holographic picture to
recording the state on the A system into bulk degrees of freedom a sitting in the left
asymptotic region. Unitary VR acts on RP and in the bulk picture corresponds to
recording P into degree’s of freedom p in the right asymptotic region. We allow the
two CFT’s to time evolve, which we absorb into VL and VR, which in the bulk picture
allows a to interact with p. The isometry R extracts the a system from the bulk and
records it back into A. The state |φϵ〉P is prepared based on the string ϵ. The full
circuit can be viewed as an isometry TAP→AE .

In the reconstruction step, the referee applies a map R to the Hilbert space HA⊗HL ⊗HR.
We claim this map can be made independent of ϵ and isometric. To understand why, recall
from the last section that we can reconstruct Ha′ in a state independent way if we take our
code space to be the full Hilbert space of states that can depend on ϵ, since then the reconstruc-
tion procedure is independent of ϵ. Thus we should take Hcode to include all of those states
obtained by inserting any state in Hp and time evolving forward to the point where we do the
reconstruction. If we would also like to reconstruct without holding the reference system A,
which we will need to apply our processor bound,8 we should add in the nA qubits worth of
states. Thus state independent reconstruction is possible when nA+ nP is much smaller than
Sbh, so that the bulk entropy term never competes with the area of the black hole in finding
the minimal extremal surface in equation 18. Concretely, it suffices to impose that

nA+ nP = o(Sbh) . (21)

8This is because our processor bound is proven in the setting where T acts on A and P but not on the reference A.
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(a) (b)

Figure 3: a) We apply the CEB to the right going light sheet that begins on the bi-
furcation surface, call it Σ. Note that the information thrown in from the left will
never cross Σ. b) Throwing in matter from the right deforms Σ. According to the
CEB, Σ will always bend inwards enough so that no more than area(Σ)/4GN qubits
will cross through it. Consequently, information thrown in from the left will not en-
counter more than area(Σ)/4GN qubits thrown in from the right.

We will need to ensure we work in this regime.
The claim that R is isometric is easy to misunderstand in light of another set of ideas

in AdS/CFT. Often it is useful to discuss the Hilbert space of an effective field theory that
lives on the bulk geometry. In the context of black holes, this EFT Hilbert space is thought
to map non-isometrically into the CFT Hilbert space [8]. Said another way, the EFT Hilbert
space of black holes is too big, and some of its states do not have corresponding states in the
fundamental (CFT) description. In our context we never introduce the larger bulk EFT Hilbert
space. Instead, we begin with some CFT state dual to the two sided black hole, then act on
the CFT to introduce the inputs to our computation. Thus our bulk state is necessarily a state
in the fundamental description.

If indeed we can ensure R is state independent, we can notice that after the initial prepa-
ration of ϵ all the steps in the protocol are independent of ϵ, and form an isometry. In fact,
looking at the circuit diagram of figure 2 we see that the protocol is described by an isometry
TAP→AE and a state preparation of |φϵ〉P , which is then input to TAP→AE . Thus the overall action
is described by a map

TAP→AE(|Ψ〉AA |φϵ〉P) =
�

�Ψ′
�

AA

�

�φ′ϵ
�

E . (22)

This is exactly the action of a quantum programmable processor, so we have from theorem 3
that

p(T,E)≤ C
nP

2nA
. (23)

If we put appropriate constraints on nP , nA this bound will lead to constraints on computation
happening inside the black hole.

The value of nP we would like to have constrained physically, rather than as a choice we
put in — nP controls the size of the computer, and we want to allow Alice and Bob to exploit
the action of any physically allowed computer. A natural constraint on nP is given by the
covariant entropy bound (CEB) [23–25]. We will apply the CEB to the bifurcation surface of
the black hole, as shown in figure 3a. This limits the size of the computer that can be thrown
into the hole according to

nP ≤
Abh

4GN
= Sbh . (24)

Notice that we can throw in arbitrarily large systems from the right and create a larger black
hole, but at most Sbh of these degrees of freedom can interact with the systems falling in from
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the left. See figure 3b.
Unfortunately, at the upper limit of allowed values given by the CEB we violate 21, and

lose our guarantee of state independent recovery. To continue our argument in light of this, we
introduce an assumption, which is that if a computation is forbidden inside of a black hole with
entropy S′bh, then it is also forbidden inside of a black hole with entropy Sbh with Sbh = o(S′bh).
That is, we will restore state independent recovery in the diagonal unitary game by allowing
Alice and Bob an apparently more powerful resource, the geometry of a larger black hole, and
assume this doesn’t weaken their computational power.9

Now with the diagonal unitary game in the larger black hole in mind, consider the value
of nA. The value of nA is something we choose: we can decide to ask for a unitary on nA qubits
to be applied inside the black hole, for whatever value of nA. We will choose nA such that it
is much smaller than Sbh, and so can be brought into the original black hole. Further, we will
need to make nA large enough for equation 23 to be a meaningful constraint. Summarizing all
the needed constraints, we consider running the diagonal unitary game inside of a black hole
with entropy S′bh, with nP , nA satisfying

nP ≤ Sbh = o(S′bh) , log(CSbh)< nA ≤ Sbh . (25)

In this regime, the constraint 21 is satisfied and the map T (which acts on the CFT state
describing the larger black hole) is a state independent isometry. Consequently, the bound
23 applies, and using that nP ≤ Sbh < 2nA/C we have that the average success probability of
the diagonal unitary game will be below 1.

Now revisit the bound 23. Define the success probability of the processor T on value ϵ as

p(T,E |ϵ) = sup
|φϵ〉

tr
�

|Ψϵ〉〈Ψϵ| (T |Ψ〉〈Ψ| ⊗ |φϵ〉〈φϵ|T†)
�

, (26)

so that the processor bound 9 is expressed as

p(T,E) = Eϵ p(T,E |ϵ)≤ C
nP

2nA
. (27)

Setting some threshold probability δ with CnP/2
nA < δ < 1, we define the set

P(T,E) = {ϵ : p(T,E |ϵ)≤ δ} . (28)

We refer to elements in this set as forbidden unitaries. From 27, this set will be of size at least

|P(T,E)| ≥ 22nA
�

1−
CnP

2nAδ

�

, (29)

which is doubly exponentially large in our parameter regime.
To understand the meaning of these forbidden unitaries, first notice that nA grows more

slowly than Sbh. This means applying the needed unitaries is not restricted because the CEB
is limiting the size of the systems acted on by our unitary. Looking at nP however, we can
notice that since nP ≤ Sbh < 2nA/C , and ϵ consists of 2nA bits, it is not possible to fit a complete
description of an arbitrary ϵ into nP qubits. If we can’t even bring a specification of the unitary
Uϵ into the black hole, there’s no surprise we can’t implement it there — it’s not possible to do
so on information theoretic grounds. While this does explain why many unitaries are forbid-
den, we claim there are also some forbidden unitaries whose description can be compressed
to fewer than nP bits. Consequently information theoretic constraints don’t suffice to explain
why those unitaries are forbidden.

We now define a unitary which both cannot be implemented in the bulk region, and has a
short description.

9One way to argue for this is to consider that if the computation can be run inside the smaller black hole, we
could take that black hole and throw it into the larger black hole, apparently running the same computation in the
larger hole.
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Definition 7. Define the unitary Uϵ
0

to be the first element of P(T,E), where the ordering is
the one induced by interpreting the string ϵ as a binary number.

Notice that from equation 29 the set P(T,E) is non-empty and thus this unitary exists. Also
observe that the above definition uniquely specifies this unitary.

We claim that Uϵ
0

can be specified using nP bits, with nP inside of the regime 25. The
definition above is an Θ(1) length string, plus the descriptive lengths of TAP→AE and E . Let’s
consider the length of a description of each of these objects in turn.

• To describe E , we need some Θ(1) description plus the value of nA, which fixes the size
of the unitaries in the set, which we can specify in O(log nA) bits.

• To describe TAP→AE we need to specify R and the initial state in HL ⊗HR appearing in
figure 2.

– To define the initial state of the two CFT’s, we need to specify which CFT we
are discussing, and the one parameter describing the black hole, for which we
use the entropy S′bh. Considering the description of the CFT, we assume there is
a family of CFT’s parameterized by the central charge c. Then to describe the
CFT requires some Θ(1) data to specify which family we are considering, plus
Θ(log c) = Θ(log S′bh) bits to specify the member of that family. To specify S′bh
requires at most log S′bh bits.

– Consider the map R. This is fixed by defining the choice of CFT, the initial state of
the CFT, and the choice of subspace Ha′ . The choice of CFT and initial state was
already specified above. To specify the subspace Ha′ , recall that we defined having
completed a computation to mean recording the output into a Hilbert space that
can be described in a small number of bits. In the black hole context, we take this
as meaning that we need far fewer than S′bh bits. We will allow in particular log S′bh
bits to specify the subspace.

The last point regarding the number of bits to specify Ha′ is worth a few more comments.
While we allow for log S′bh bits, in the argument below anything smaller than S′bh bits will lead
to forbidden bulk computations. Our specific choice of log S′bh bits is motivated by considering
the setting where, at the time of recovery, the bulk is described geometrically, and the output
is recorded into some localized degree’s of freedom. In this case we can specify the subspace
using O(log S′bh) bits, since S′bh controls the size of the black hole and we would need to specify
where in the black hole those bits are stored.

The full accounting then is that the descriptive length d(·) of Uϵ
0

is

d(Uϵ
0
) = O(log
�

S′bh

�

+ log nA) = O(log S′bh) . (30)

The second equality follows from our choice of parameter regime. From this equation, we
see that we can describe ϵ0 using a state on nP bits whenever log S′bh < Sbh, which we can
easily take while being consistent with Sbh = o(S′bh). Notice also that we can define Uϵ

m
as

the mth element of P(T,E), in which case we use k = log m additional bits. So long as we
keep k = o(Sbh), this allows us to construct a family of unitaries of size 2k which are similarly
describable inside the black hole but forbidden from being implemented by the processor T.

Let’s summarize now our holographic thought experiment. On the right, AliceR prepares a
randomly drawn string. Consider a case where she obtains a string describing a unitary in the
set {Uϵm}m≤2k . In this case, she can record a description of the unitary Uϵ into no more than Sbh
bits. Doing so, and sending these bits into the black hole with larger entropy S′bh, a complete

description of Uϵ
0

is inside the black hole. However, by construction these unitaries cannot be
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completed with probability more than δ in our thought experiment. Thus performing these
unitaries inside the black hole must be forbidden in the black hole of entropy S′bh, and hence
by our assumption forbidden inside the smaller black hole of entropy Sbh. In that setting, nP
(the size of the computer) may be taken to be as large as the black hole entropy, nA (the size
of the inputs) is still much smaller than the black hole, and the description of the forbidden
unitaries is much smaller than Sbh, so can easily be brought into the black hole. Thus, the
computation is forbidden from happening inside the smaller black hole using any physically
allowed computer, even while the information needed to implement it is stored there — these
forbidden computations must then be computationally forbidden. Further, there are at least
2k such unitaries, with k = o(Sbh).

3.3 Bulk interpretation of forbidden unitaries

It is generally expected that the widely studied models of computation — classical Turing
machines or quantum circuits — capture the power of physical computers. To make the con-
nection between models of computation and physical computers, many authors have looked
to gravitational constraints. This is because within quantum mechanics it does not seem pos-
sible to find a fundamental unit of time, or fundamental constraint on the memory held in a
physical region.

As one example, Lloyd [26] offered a plausible gravity argument that, considering a circuit
model of computation, the number of gates that can be performed in a given time is limited
by the available energy. He then argues the available energy should be bounded above by the
energy of a black hole, putting an apparent speed limit on computation. However, working
with a Hamiltonian description of the computation one can evade this bound [2], doing arbi-
trarily complex operations arbitrarily quickly, and at arbitrarily low energy. While the needed
Hamiltonians are likely unphysical, this construction shows that it remains unclear how to
obtain a precise bound on computation from a direct gravity perspective.

Our construction of forbidden unitaries gives a very preliminary step towards connecting
physical computers and models of computation: it at least shows that some computations
cannot happen in certain finite spacetime regions. A natural question is how high of complexity
our forbidden computations are, and if this high complexity offers some plausible physical
reason from a bulk perspective why these unitaries should be forbidden.

We can make a few comments about the complexity of our forbidden computations. The
needed computation is to, given the compressed description of ϵ0 and input system A, apply
Uϵ

0
. One route to doing this is to first decompress ϵ0, then apply Uϵ

0
based on the value of the

uncompressed string. To decompress ϵ0 from its compressed description, we need to find the
first value ϵ where the function p(T,E |ϵ) is smaller than δ. A naive classical algorithm then
to decompress the description of ϵ0 is the following.

ϵ′ = 0
While ϵ′ ≤ 22nA

If p(T,E |ϵ′)≤ δ,
Return ϵ′

Else
ϵ′ = ϵ′ + 1

Assuming computing p(T,E |ϵ′) takes O(1) steps (it is likely longer) this runs in O(22nA) steps.
From 25 we see that this gives a number of steps in this algorithm of 2CSbh . Further, notice that
the memory needed to run this algorithm is at least the memory needed to store ϵ′, which is
length 2nA, so can be made as small as CSbh bits. In appendix A, we give a heuristic argument
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that it is not possible to significantly improve on the memory usage and number of steps used
in this algorithm, even using a quantum circuit model of computation.

The ‘central dogma’ of black hole physics states that black holes can be described as quan-
tum mechanical systems with dimension 2Sbh . If we assume this, and assume a quantum circuit
model captures the power of the bulk computer, this provides one plausible explanation for
why these unitaries are forbidden in the bulk: the best quantum algorithm seems to require
memory CSbh > Sbh, so can’t run inside the black hole.

We can also discuss the relationship between the number of computational steps needed
to perform our unitary and the time available inside the black hole. Recall that we considered
running our diagonal unitary game in the larger black hole of entropy S′bh, where we first
showed the computation was forbidden, assuming

nP ≤ Sbh = o(S′bh) . (31)

Setting the above constraint amounts to a constraint on the choice of computing device thrown
into the black hole, imposing that it is sufficiently small compared to the black hole entropy.
Why does this constrained computer fail to implement the given computation in the larger
black hole? Notice that the memory usage of the naive algorithm above is 2nA = CSbh = o(S′bh),
which is now much smaller than the black hole entropy. The number of computational steps
of the naive algorithm now presents the most plausible computational restriction: the num-
ber of steps is 22nA which is much larger than S′bh if ω(log S′bh) = nA, which we are indeed
guaranteed by our parameter regime 25. If we suppose a computational step takes some finite
time, and that the naive algorithm above cannot be significantly improved in run time, this
suffices as a bulk explanation for why our (restricted) computer cannot perform the needed
computation. Because this seems to be the needed explanation in the context of the larger
black hole, we might take this as evidence that the run time is also the relevant constraint
in the (unconstrained) computer in the smaller black hole, although as noted above in that
setting the memory is also larger than is available, again assuming a circuit model.

In fact, it is interesting to push this restriction on the size of the computer as far as possible
and understand the number of computational steps needed in the resulting problem. Suppose
we take nP = log S′bh. This is the smallest we can take it while still allowing a description of T
to be fit into nP bits. Then, we can have nA = log

�

C log S′bh

�

and still get a non-trivial bound
from our processor bound. This leads to unitaries that are forbidden from happening inside
of the black hole using a computer built from nP qubits. The memory then needed to run our
naive algorithm is log S′bh, while the run-time is S′bh. Thus the run-time of this small computer
still seems to explain its inability to perform the computation inside the black hole.10

If we are willing to place constraints on the size of the computer by hand, there is no longer
any need to consider the black hole setting, gave a natural surface on which to invoke the CEB.
In the next section we consider restrictions on small computers in more general settings.

4 Forbidden computations for small computers

Given our construction in section 3 of constrained computations, we should ask to what extent
our argument can be generalized away from the black hole setting, and away from AdS/CFT.

Towards making a more general statement, consider the following setting. We have a
quantum mechanical system described by Hilbert space H = HA ⊗ HP ⊗ HE and evolving
under Hamiltonian H, where we refer to the A system as the data Hilbert space, the P system

10That our lower bound on the number of computational steps is exactly linear in the black hole entropy shouldn’t
be taken too seriously: since we are in an oracle model where evaluating p(T,E |ϵ) takes one step, we are probably
underestimating the run-time.
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as the program space, and E as the environment. Given a unitary UA, Alice prepares HP in a
state recording the unitary to be applied, or description of a program to apply it, along with
any computing device prepared to apply it. She may use arbitrarily complex computations in
preparing this state. Then, Bob prepares some state on the A system. Further, the E system
is put in an arbitrary state |ψ〉E which we take to be initially pure, so that the environment is
initially unentangled with the data and program spaces. The full Hilbert space is then allowed
to evolve under time evolution given by the Hamiltonian H. After some amount of time t, a
measurement is made on the A subsystem testing if UA has been applied. This setting closely
models the basic computational setting we find in the real world: we can prepare our computer
which holds the program, insert the data, and then the computer runs — it evolves in this case
under the Hamiltonian describing our universe.

In the black hole setting there is a natural bound on nP , the number of qubits in the program
space, which is imposed physically. In this scenario, we restrict nP arbitrarily — consequently,
we are deriving here constraints on how fast small computers can perform computations, but
not on all physically allowed computers. Also, note that in that setting the role of the environ-
ment Hilbert space HE was played by the combined Hilbert spaces of the two CFT’s.

Our processor bound 9 leads to a constraint on how quickly some unitaries can be per-
formed in this scenario. In particular we have again that, after the system P is put into the
program state, the remaining action of the computer is described by an isometry independent
of the unitary. In particular, the remaining action is just time evolution under H. The de-
scription of H, initial state of the environment |ψ〉E , and amount of time we evolve for t then
defines a processor, which we label T. Considering the family of unitaries 8, we can apply the
processor bound 9, finding that

p(T,E)≤ C
nP

2nA
. (32)

Given an allowed program space of nP qubits, we choose the family of computations E such
that nA is large enough, satisfying in particular

nP ≤ 2nA/C , (33)

so that p(T,E) is less than 1. Given a value of t and choice of Hamiltonian H, we can then
define a forbidden unitary in a way analogous to definition 7, which we do next.

Define the set of unitaries with low success probability

P(T,E) = {ϵ : p(T,E |ϵ)≤ δ} . (34)

and then define a unitary which has a short description and is forbidden.

Definition 8. Let Uϵ0 be the first unitary in the set P(T,E), where we order the set E by
interpreting the strings ϵ as binary numbers.

As before, we can also extend this to a family of unitaries.
How long is the description of Uϵ0? Importantly, it must be short enough to be written into

nP qubits while maintaining nP ≤ 2nA/C . Notice that this definition consists of the O(1) string
given explicitly, plus a description of T and the parameter nA describing the set E . Thus, if we
have

d(H) + d(|ψ〉E) + log t + log nA ≤ nP , (35)

for d(H) and d(|ψ〉) the descriptive lengths of H and |ψ〉, there will exist forbidden unitaries
which have descriptions fitting inside the program state, and hence must be computationally
forbidden. We can always adjust our chosen value of nP to ensure this is the case.

The requirement above is essential to the physical consistency of our construction. One
way this manifests is that we have

log t ≤ nP ≤ 2nA/C , (36)
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so that we cannot construct forbidden unitaries for arbitrarily small nA compared to t, which
means the complexity of the computation cannot be made small compared to the time t. As
an interesting case consider the setting where log t is much larger than the other parameters
in the description of the isometry, in particular we allow a long enough time that

log t ≫ d(H), log nA, d(|ψ〉E) . (37)

Going to this setting, and using 36, we see that forbidden unitaries occur only for times shorter
than t ∼ 22nA . Recall that 22nA is exactly the scaling of the number of steps needed to decom-
press the forbidden ϵ. Thus our forbidden computations remain complex enough to ensure the
number of steps it takes to implement them scales like the physical time needed to implement
them on a computer.

Another comment is that we expect that for a given computation we can always find a
t large enough that our dynamical evolution implements the computation. Indeed our con-
struction doesn’t violate this, as it requires we first choose t, then can construct a unitary that
cannot be implemented within time t. In particular we emphasize that for larger t the value of
nA must be chosen suitably large. A similar comment arises in comparing to the construction
of Jordan [2]. Given a unitary, Jordan constructs a Hamiltonian that completes the unitary
in an arbitrarily short time. In contrast, our ordering is different: we fix a Hamiltonian and a
choice of time t and then show there are computations that cannot be run by this Hamiltonian
within that time. Since we expect there is ultimately one Hamiltonian describing our universe,
this reversed statement seems sufficient to find physically unrealizable computations.

5 Discussion

In this work we have constructed computations which cannot be implemented inside of a
black hole with entropy Sbh, despite the inputs to these computations being small, and the
description of the computation being easily fit inside the black hole. We’ve argued that these
computations are high complexity, which may explain why they are forbidden. Regardless of
the explanation for why these computations are forbidden, our construction unambiguously
establishes that at least some computations are forbidden from being implemented inside the
black hole.

Moving forward, it would be interesting to understand general properties of unitaries that
restrict their bulk implementation. To do this, we have two alternative approaches by which
we can proceed. As we’ve done here, we can exploit the view of bulk computation in terms
of programmable processors. Alternatively, following [9, 10, 27, 28], we can relate bulk com-
putation to non-local quantum computation.11 So far, the constraints coming from non-local
computation have been complimentary to the ones derived from programmable processors.
Perhaps one of these techniques, or some synthesis of the two, will allow further progress in
the understanding of the limits of computation in the presence of gravity.

Before making a few comments on the connections between this work and others, we sum-
marize the basic conceptual tension underlying our construction. A universal computer can
follow instructions and, given an unbounded number of steps, perform any computation. Tak-
ing an outside view, and assuming our system is quantum mechanical, any computer evolves
under the time evolution of some fixed Hamiltonian. This time evolution can be viewed as
the action of a programmable quantum processor. Programmable processors are limited in the
computations they can perform, while universal computers are apparently unrestricted, setting

11In an upcoming work [29], we adapt that discussion to the setting of two sided black holes. Doing so removes
some assumptions made in [9], allowing constraints on non-local computation to be applied more rigorously to
constrain the bulk. Another perspective on removing this assumption was presented in [11].
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up a tension between the two perspectives. The naive resolution is that the programmable pro-
cessor is only limited when the program states are small, restricting us from specifying most
computations, thereby explaining on information theoretic grounds why the universal com-
puter fails. For universal processors with simple descriptions however the tension becomes
sharper — the universal computer can be input a description of the processor, which allows ef-
ficient descriptions of programs the computer can’t itself run. Now, the way out of the tension
is a computational restriction on the universal computer.

Our construction is similar to the diagonalization technique as used in computer science,
in that the universal computer is being fed a description of the dynamics which it is itself is
governed by. A key new ingredient however is the universal processor bound, which ties our
argument to a physical setting. In particular, the length of the description of the processor,
which relates to physical parameters (e.g. the time or black hole entropy), constrains the nP
and nA parameters which then enter the processor bound. In this way physical data is brought
into the diagonalization argument.

We conclude with a few comments on related topics.

What is special about black holes?

We discussed here constraints on both computers inside of black holes and in ordinary AdS.
We can briefly comment on what is unique about the black hole case. First, the black hole gave
a natural covariant definition of a bulk subregion, and a surface on which to apply the CEB.
These features are convenient but not strictly necessary: we could define a bulk subregion
in some other way, and can then apply the CEB again or place a constraint on the size of the
computer by hand. More fundamentally, the black hole gives us a way to specify the setting in a
simple way, in terms of just the parameter Sbh. This parameter then appears in the specification
of the forbidden computation, and controls the complexity of the forbidden computation. In
contrast, away from the black hole setting, we had to specify a parameter T setting the time
for which we allow our system to evolve. The complexity of the forbidden computation is then
set in terms of T .

Quantum extended Church Turing thesis

The quantum extended Church Turing thesis states that any physically realizable computer
can be efficiently simulated by a quantum Turing machine. Recently, Susskind [7] proposes
an interesting tension with this thesis and a thought experiment in the setting of a two sided
black hole. He argues that an observer who jumps into the black hole can compute certain
functions efficiently that an observer who instead holds the two CFT’s cannot. We find this
thought experiment suggestive that a notion of an observer is needed in the statement of the
extended Church Turing thesis, and the statement should only apply when two observers may
separate for a time and then meet again and compare the efficiency of their computations.

While broadly this work and ours are both interested in the computational abilities of
computers in the presence of gravity, we should be careful to distinguish between the two
settings. Note that we never compare observers outside and inside the black hole and ask
about their relative ability to perform some computation. Instead, we ask only about the
computational abilities of the observer inside the hole. The boundary perspective is exploited
to relate bulk computation to quantum processors.

Complexity of the AdS/CFT dictionary

Recently, there have been discussions around the complexity of the operations needed to re-
cover bulk data from the boundary [3, 6]. We emphasize that our argument does not rely on
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this map being low or high complexity. Instead, we only rely on this map being state indepen-
dent within some appropriate, and small, subspace of states.

Bulk computation as non-local computation

Our results are interesting in light of a conjecture made in the context of non-local compu-
tation and its relationship to AdS/CFT. Non-local computation implements unitaries on two,
separated, subsystems using an entangled resource state and a single round of communication.
In [9], the authors state that at least one of the following must be true:

1. All computations can be performed with linear entanglement.

2. Gravity places constraints on bulk computation.

They also argue that not 1) implies 2). That work conjectured that 1) is false and consequently
2) is true. This work establishes that 2) is true in AdS/CFT, without resolving 1).

Understanding of the black hole interior

In [8], the authors discuss a puzzle in the physics of black holes. The central dogma of black
hole physics states that a black hole can be described by a number of degrees of freedom given
by its entropy. The description of the black hole using Sbh degrees of freedom is referred to
as the fundamental description. Additionally, we can describe the black hole within effective
field theory, within some background set by the appropriate solution to Einsteins equations.
In the effective description, and at late times, the black hole interior volume can be very large.
Thus the number of low energy degrees of freedom in the effective description will exceed Sbh.
A puzzle then is to understand how the effective description, with a large number of apparent
degrees of freedom, is embedded into the fundamental description with fewer degrees of free-
dom. Necessarily many of the states in the effective description will not be realizable states of
the black hole, since most states cannot map to a state in the fundamental description.

To understand this, the authors of [8] argue that it is the low complexity states in the black
hole interior that are mapped to the fundamental description. They show that even while
the effective black hole interior is exponentially larger than the fundamental description, a
subspace in the effective description large enough to contain all the low complexity states can
be mapped to states in the fundamental description, and this map can approximately preserve
orthogonality.

Our results support this perspective, in that they suggest high complexity unitaries are
restricted in the bulk. In particular, the variation on our thought experiment most relevant to
this discussion involves taking the computer to consist of nP = o(S′bh) qubits and considering
the diagonal unitary game in the larger black hole, with entropy S′bh. Then, the computer state
is a state in the effective description of the black hole. Our argument then shows there are
high complexity states the computer cannot evolve dynamically into, in line with the proposal
of [8]. Said differently, our results support the idea that boundary time evolution, which must
take fundamental states into fundamental states, also preserves a low-complexity set of states
in the bulk.

An end to time

Among the strangest properties of black holes is that time in the interior comes to an apparent
end at the singularity, at least within the classical description of the black hole. Understanding
how this can arise from a quantum mechanical theory, in which time does not end, seems to
be a basic challenge in understanding how gravitational physics can emerge from quantum
mechanics. Our results support the idea that the finite bulk time corresponds, in some sense
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to be made precise, to limits on bulk complexity enforced by the boundary theory: the bulk
geometrizes the limits on complexity enforced by the boundary by having an end to time at
the singularity.12
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A Optimality of the naive algorithm

Recall that the full computation we wish to perform inside of the black hole is to apply Uε
0
,

given HA and the compressed description of ε0 as input. One method to do this is to first com-
pute the full description of ε0, then use this to apply the unitary. We will focus on algorithms
of this form. Notice that within algorithms of this form we will always need memory of at
least 2nA, since that is the number of bits needed to store ε0. A lower bound on the number
of computational steps needed to compute ε0 from its compressed description is less clear
immediately, but we argue for one here.

The naive classical algorithm discussed in section 3.3 for decompressing the description of
the forbidden unitary Uε

0
is as follows. ϵ′ = 0

While ϵ′ ≤ 22nA

If p(T,E |ϵ′)≤ δ,
Return ϵ′

Else
ϵ′ = ϵ′ + 1

This uses Ω(22nA) steps, and memory Ω(2nA). One would additionally need the steps and
memory necessary to then apply Uε

0
.

Can we improve on this naive number of computational steps needed? We’ve seen that the
function p(T,E |ϵ) has at least some structure: equation 29 bounds how many input values on
which p(T,E |ϵ) is less than δ, and that in fact the fraction of values where this function is less
than δ is nearly one, being 1−Θ(nP/2

nA). Let’s assume for a moment that this function has
no additional structure aside from this condition. Thus, p(T,E |ϵ) is treated as an oracle, with
the promise that some fraction of its inputs return a function value less than δ.13 We count

12We thank Steve Shenker for making a similar remark to us.
13Note that, by equation 26, p(T,E |ϵ) amounts to calculating the largest eigenvalue of the map
〈Ψ|T† |Ψϵ〉〈Ψϵ|T |Ψ〉 : HP →HP . Hence, given access to the matrix elements 〈i|A 〈 j|P T† |k〉〈ℓ|A T |r〉A |s〉P one could
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one call to this oracle as a single computational step. How complex then is it to find the first
input such that p(T,E |ϵ)≤ δ?

To study this, define the Boolean function

f (ϵ) =

¨

1 , if p(T,E |ϵ)< δ ,

0 , if p(T,E |ϵ)≥ δ .
(A.1)

Let the number of inputs where p(T,E |ϵ)≥ δ be Ns. This can be as large as

Ns = 22nA nP

2nA
, (A.2)

while maintaining consistency with equation 29, so let’s assume this equality holds and that
this is the only structure present in f . That is, the set of Boolean functions given by equation
A.1 is assumed to be the set of all Boolean functions with exactly Ns satisfying assignments.
Restrict the function f (ϵ) to its first Ns possible inputs, so that now it is a function on log Ns
bits, and call this function f̂ (ϵ). Notice that finding the first ϵ where p(T,E |ϵ)< δ is at least as
hard as finding a satisfying solution to f̂ (ϵ). But now the set of functions f̂ is precisely the set
of all possible Boolean functions on log Ns bits. Note that, unlike f (ϵ), the function f̂ (ϵ) has
no restrictions on the number of inputs where it is 1 — it could have any number of satisfying
inputs, including zero. Thus finding the first ϵ such that p(T,E |ϵ) < δ is at least as hard the
unstructured search problem with the oracle defined by f̂ (ϵ). Using a quantum computer one
can do no better than making

p

Ns = Ω(22nA−1
) oracle calls [30].

We can also briefly comment further on the memory usage needed in this problem. As
mentioned at the beginning of this section, any algorithm where we first compute ϵ0 then
apply Uε

0
we need 2nA bits of memory. However, we can also consider strategies that use some

algorithm for applying Uε
0

that computes each bit of ϵ0 as it needs them, and erases each
computed bit after it is used. Typically, finding such memory efficient algorithms comes at a
cost to the number of steps, since many bits may need to be re-computed several times. Notice
that in our setting to improve on the 2nA memory cost one would actually also have to do better
in computational steps: any algorithm using 22nA steps will need 2nA bits of memory, since
otherwise the algorithm will revisit one of its previous configurations and the computational
will fall into an infinite loop. If we believe we cannot improve on the number of steps used in
the naive algorithm then, we also cannot improve on the memory.
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