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Abstract

Utilizing the framework of Z2 lattice gauge theories in the context of Pauli stabilizer
codes, we present methodologies for simulating fermions via qubit systems on a two-
dimensional square lattice. We investigate the symplectic automorphisms of the Pauli
module over the Laurent polynomial ring. This enables us to systematically increase the
code distances of stabilizer codes while fixing the rate between encoded logical fermions
and physical qubits. We identify a family of stabilizer codes suitable for fermion simula-
tion, achieving code distances of d = 2, 3, 4, 5, 6, 7, allowing correction of any ⌊d−1

2 ⌋-qubit
error. In contrast to the traditional code concatenation approach, our method can in-
crease the code distances without decreasing the (fermionic) code rate. In particular,
we explicitly show all stabilizers and logical operators for codes with code distances of
d = 3, 4, 5. We provide syndromes for all Pauli errors and invent a syndrome-matching
algorithm to compute code distances numerically.
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1 Introduction

Error-correcting codes were initially developed to correct quantum errors on noisy quantum
devices and have found further applications in condensed matter physics and high-energy
physics. The cornerstone of quantum error correction is the stabilizer formalism [1], which
defines the codewords in the common eigenspace of elements in an Abelian group, referred
to as the stabilizer group. A stabilizer code is labeled [[n, k, d]] when it uses n physical qubits
to encode k logical qubits with code distance d. The code distance is the minimum weight of
an operator that commutes with all elements in the stabilizer group but is not in the stabilizer
group itself. The ratios k

n and d
n determine the quality of codes. Recent developments show the

existence of “good” quantum low-density parity-check (LDPC) codes, i.e., with the number of
logical qubits k and the code distance d both scaling linearly with the number of physical qubits
n [2–5]. In this paper, our focus is on a different objective. Instead of encoding logical qubits,
we aim to encode logical fermions using physical qubits. This motivation comes from the need
to simulate fermions on quantum computers since most models of matter involve electrons,
which are, in fact, fermions [6–14]. While fault-tolerant quantum computation [15, 16] is
the ultimate goal, current devices still have limited resources and suffer from noise, so error-
mitigation schemes are crucial. Therefore, we seek an effective design such that when we
implement fermions with qubits on a quantum computer, certain physical qubit errors can
be corrected directly in this protocol without having to encode the underlying qubits further.
Thus, we want to systematically increase the code distance d in a fermion-to-qubit mapping
with a fixed code rate (between logical fermions and physical qubits).1

When a fermionic Hamiltonian consists of geometrically local terms, they can be mapped
to local qubit operators by the Bravyi-Kitaev superfast encoding and its variants [8, 17], by
the auxiliary methods [18–23], or by exact bosonization [24–26]. The mappings between
fermionic Hamiltonians and higher-spin Hamiltonians are also studied in Refs. [27–30]. There
are also proposals that utilize defects of surface codes for fermionic quantum simulation [31–
33], and those defects are recently implemented by Google Quantum AI [34]. Variants of these
mappings have been studied to optimize different costs [35–48]. In the context of quantum
many-body physics, these mappings also reveal the deep connections between fermion and
spin systems [49, 50]. There is another exact fermion-flux lattice duality derived from the
Z2 gauge theory [51]. Aside from the investigation of constructing new mappings, fermion-
to-qubit mappings have been studied in the context of variational quantum circuits [52, 53].
In all the above-mentioned methods, extra qubits are required, e.g., the number of qubits is
twice the number of fermions on a 2d square lattice. This is the price for the locality-preserving

1The code rate here is defined as the ratio between the number of logical fermionic modes k and the number of
physical qubits n, in the n→∞ limit. Each code will be demonstrated in an infinite plane, but they can be defined
on a torus or open disk (up to some boundary modifications) with linear size L, such that both n and k scale with
L2. If L is sufficiently large, the boundary effects are negligible, and the ratio k/n will converge to the code rate.
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property.2 These methods can be thought of as stabilizer codes. Given N fermions with the
Hilbert space dimension 2N , they are mapped to 2N qubits with space dimension 22N , which
is an enlarged space. After N gauge constraints (stabilizer conditions) are imposed, the gauge-
invariant subspace (code space) has dimension 2N , which matches the dimension of the logical
fermions. It has been shown that gauge constraints can be utilized for error correction [54],
and code distances can be studied for these stabilizer codes. Ref. [17] demonstrates that an
improved Bravyi-Kitaev superfast encoding can correct any single-qubit error in a graph where
each vertex has degree d ≥ 6. In Ref. [55], another version of the Bravyi-Kitaev superfast
encoding is proposed, called the “Majorana loop stabilizer code,” which is designed to have
code distance d = 3 such that any single-qubit error can be corrected. However, it is not
known how to generalize the Bravyi-Kitaev superfast encoding to produce codes with higher
and higher code distances. An alternative approach is code concatenation, where logical qubits
in error-correcting codes replace physical qubits in the fermion-to-qubit mappings. However,
code concatenation will decrease the code rate between logical fermions and physical qubits,
increasing the overhead of fermionic simulation. In this work, we present a method that
increases the code distances of the fermion-to-qubit mappings while preserving the code rate.

In this paper, we conjugate an existing stabilizer code with a Clifford circuit.3 This produces
a new stabilizer code. Since the new code is obtained via conjugation by a unitary operator,
the algebra of the logical operators is preserved. If we choose the circuit wisely, the new sta-
bilizer code will have a larger code distance (d ≥ 3), compared to the code distance d = 2 of
the original exact bosonization. To study Clifford circuits systematically, we utilize the Lau-
rent polynomial method introduced in Refs. [56,57] and further extended in Ref. [58], which
shows that any Pauli operator can be written as a vector in a symplectic space. For a system
with translational symmetry, e.g., the 2d square lattice, the space of Pauli operators becomes
a module over a polynomial ring. Furthermore, this polynomial method can be used to for-
mulate the 2d bosonization concisely [59]. The commutation relations of Pauli operators are
determined by the symplectic form. Ref. [60] shows that there is a one-to-one correspondence
(up to a translation operator on the lattice):

Automorphism of the symplectic form⇐⇒ Clifford circuit on a 2d square lattice.

Therefore, the problem of finding new codes turns into a problem of searching for “good”4

automorphisms of the Pauli module with the symplectic form, which can be achieved efficiently
by exhaustive numerical search.

In this work, we use the Laurent polynomial method to construct bosonizations on a 2d
square lattice. Table 1 is the summary of our results. In Section 2, we review the original
2d bosonization method [24] in Section 2.1 and then pictorially construct 2d bosonizations
with distances of 3, 4, and 5 in Section 2.2, 2.3, and 2.4, respectively. We review the Lau-
rent polynomial method in Section. 3.1. In Section. 3.2, we describe all these bosonizations
within the framework of the Laurent polynomial method. In addition, in Section. 3.3, we
describe a computerized method to search for bosonizations. In Appendix A, we discuss the
“syndrome matching” method used to compute the code distance of a given bosonization. In
Appendix B, we describe the generators of the symplectic group and choose sixteen elementary
automorphisms for our numerical search algorithm. In Appendix C, we show the polynomial
representations of an automorphism with a distance of 6 and another with a distance of 7.

2We can apply the Jordan-Wigner transformation on the 2d lattice by choosing a path including all vertices.
However, some local fermionic terms will be mapped to long string operators that are highly nonlocal.

3A circuit U is Clifford if and only if U PU† is a product of Pauli matrices for any given Pauli matrix P.
4Here, “good” refers to symplectic automorphisms that generate bosonizations with higher code distances while

preserving locality and code rates.
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Table 1: A comparison of codes based on modified exact bosonization to the Bravyi-
Kitaev superfast encoding [8] and to the Majorana loop stabilizer code [55] on a 2d
square lattice. The d = 2 exact bosonization is equivalent to the Bravyi-Kitaev super-
fast encoding with a specific choice of the ordering of edges [48]. We list the code
distance, as well as the weights (after mapping to qubits) of a fermion occupation
term (local fermion parity term), of a hopping term, and of a density-density inter-
action between nearest neighbors. The weights of the stabilizers are also shown.

distance occupation hopping interaction stabilizer
Bravyi-Kitaev superfast encoding 2 4 6 6 6

Majorana loop stabilizer code 3 3 3-4 4-6 4-10
Exact bosonization (d = 3) 3 4 3-5 6 8
Exact bosonization (d = 4) 4 6 5-6 10 10
Exact bosonization (d = 5) 5 8 5-9 12-14 12
Exact bosonization (d = 6) 6 12 6-13 16-20 18
Exact bosonization (d = 7) 7 12 7-23 16-18 26

2 Results

In Section 2.1, we begin by reviewing the original 2d bosonization on a square lattice from
Ref. [24]. Then we demonstrate a new way to perform bosonization with code distances of
d = 3, d = 4, and d = 5 in Section 2.2, Section 2.3, and Section 2.4, respectively.

2.1 Review of the original bosonization

We first describe the Hilbert space in Fig. 1. The elements associated with vertices, edges, and
faces will be denoted by v, e, and f , respectively. On each face f of the lattice, we place a single
pair of fermionic creation-annihilation operators c f , c†

f , or equivalently a pair of Majorana
fermions γ f ,γ′f . The even fermionic algebra consists of local observables with trivial fermionic

parity, i.e., local observables that commute with the total fermion parity (−1)F ≡
∏

f (−1)c
†
f c f

where F =
∑

f c†
f c f is the total fermion number.5 The even algebra is generated by [24]:

5The even fermionic algebra can also be considered as the algebra of local observables containing an even
number of Majorana operators.

1 2 3

4 5 6

7 8 9

a b

cd

Figure 1: Bosonization on a square lattice [24]. We put Pauli matrices X e, Ye, and
Ze on each edge and one complex fermion c f , c†

f on each face. We will work in the

Majorana basis γ f = c f + c†
f and γ′f = −i(c f − c†

f ) for convenience.
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1. On-site fermion parity (occupation):

Pf ≡ −iγ f γ
′
f .6 (1)

2. Fermionic hopping term:
Se ≡ iγL(e)γ

′
R(e) , (2)

where L(e) and R(e) are faces to the left and right of e, with respect to the orientation
of e in Fig. 1.

The bosonic dual of this system involves Z2-valued spins on the edges of the square lattice.
For every edge e, we define a unitary operator Ue that squares to 1. Labeling the faces and
vertices as in Fig. 1, we define:

U56 = X56Z25 ,

U58 = X58Z45 ,
(3)

where X e, Ze are Pauli matrices acting on a spin at edge e:

X e =

�

0 1
1 0

�

, Ze =

�

1 0
0 −1

�

. (4)

Operators Ue for the other edges are defined by using translation symmetry. Pictorially, oper-
ator Ue is depicted as

Ue = X e

Z

or

X e

Z (5)

corresponding to the vertical or horizontal edge e.
In Ref. [24], Ue and Se are shown to satisfy the same commutation relations. We also map

the fermion parity Pf at each face f to the “flux operator” Wf ≡
∏

e⊂ f Ze, the product of Ze
around a face f :

Wf =
Z

f ZZ

Z

(6)

The bosonization map is

Se←→ Ue ,

Pf ←→Wf ,
(7)

6Pf = −iγ f γ
′
f = (−1)c

†
f c f measures the occupancy of the fermionic mode at face f .
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or pictorially

i ×

γL(e)

γ′R(e)

e oo //
X e

Z

i × eγL(e) γ′R(e)
oo // X e

Z

−iγ f γ
′
f
oo //

Z

f ZZ

Z

(8)

The condition PaPcS58S56S25S45 = 1 on fermionic operators gives a gauge (stabilizer) con-
straint Gv =Wfc

∏

e⊃v5
X e = 1 for bosonic operators, or generally

Gv =

Z

Z

X v

X Z

X Z

X

= 1 . (9)

The gauge constraint Eq. (9) can be considered as the stabilizer (Gv |Ψ〉 = |Ψ〉 for |Ψ〉 in
the code space), which forms the stabilizer group G. The operators Ue and Wf generate all
logical operators.7 The weight of a Pauli string operator O is the number of Pauli matrices
in O, denoted as wt(O). For example, we have wt(U56) = wt(U58) = 2, wt(Wf ) = 4, and
wt(Gv) = 6. The code distance d is defined as the minimum weight of a logical operator
excluding stabilizers:

d =min{wt(O) | [O,G] = 0, O ̸∈ G} . (10)

The code distance of this original bosonization is d = 2 as Ue has weight 2 and any single Pauli
matrix violates at least one Gv , which implies that there is no logical operator with weight 1.

There are four types of nearest-neighbor hopping terms ( γLγ
′
R, γLγR, γ′Lγ

′
R, and γ′LγR)

and one type of fermion occupation term (−iγ f γ
′
f ). When mapped to Pauli matrices, their

weights wti are in the range 2≤ wti ≤ 6. The maximum weight corresponds to the worst case
to simulate the fermion hopping term or the fermion occupation term. A good stabilizer code
requires a balance between the minimum weight and the maximum weight. A high minimum
weight guarantees the error-correcting property, while a low maximum weight implies that
the cost of simulation is low. We label the minimum and maximum weights of the hopping
terms as wtmin and wtmax. In this example, (wtmin,wtmax) = (2,6).

2.2 Bosonization with code distance d = 3

We now introduce a new way to map the fermionic operators Se and Pf to Pauli matrices. For
simplicity, we present the mapping in a pictorial way:

7The logical operators consist of all operators that commute with G. Elements of G are trivial logical operators
as stabilizers have no effect on the code space. Ue and Wf together generate all the other logical operators.
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i ×

γL(e)

e

γ′R(e)

oo //
Z

X e

Z

i × eγL(e) γ′R(e)
oo // X e

Z Z

−iγ f γ
′
f
oo //

Z

f ZZ

Z

(11)

The stabilizer on the bosonic side is

Gd=3
v = (−1)×

Z

Z

X

Z

v

X

X

X

Z

= 1 . (12)

Notice that there is a minus sign coming from ZX Z = −X .8 We can manually check that the
logical operators defined in Eq. (11) do commute with the stabilizer in Eq. (12). We will prove
that this mapping preserves the fermionic algebra in Section. 3.

Given the stabilizer, we can provide the syndromes for all single-qubit Pauli errors, as
shown in Fig. 2. We see that all single-qubit Pauli matrices have different syndromes, which
means that we do not have any logical operators with weight 2. This implies a code distance of
d ≥ 3. Eq. (11) shows logical operators with weight 3, so we conclude that the code distance
is d = 3. Based on the syndrome measurements, we can always correct any single-qubit error
according to Fig. 2.

The four types of nearest-neighbor hopping terms, γLγ
′
R, γLγR, γ′Lγ

′
R, and γ′LγR have

weights wti in the range 3 ≤ wti ≤ 5. Therefore, the modified bosonization has
(wtmin, wtmax) = (3, 5) and a fermionic occupation term of weight 4. Compared to the original
bosonization with (wtmin, wtmax) = (2, 6), the minimum weight is increased such that error
correction can be performed, while the maximum weight of the hopping terms is decreased
implying a reduction in the simulation cost.

Here we present the spinless Fermi-Hubbard Hamiltonian in 2d square lattice for d = 3
encoding as a concrete example. The 2d spinless Fermi-Hubbard Hamiltonian is

H = −t
∑

〈i, j〉

(c†
i c j + h.c.) + U
∑

〈i, j〉

c†
i cic

†
j c j , (13)

where 〈i, j〉 represents the nearest-neighbor pair of vertices in the square lattice. We can write

individual terms in Majorana basis such as c†
i c j + h.c.= i

2(γiγ
′
j−γ

′
iγ j) , c†

i cic
†
j c j=(

1+iγiγ
′
i

2 )(
1+iγ jγ

′
j

2 ).

8The stabilizer is derived from the identity Pa PcS58S56S25S45 = 1. After we map Pf and Se to Pauli matrices
using Eq. (11), it becomes Gd=3

v .
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Figure 2: Syndromes of single-qubit errors for the bosonization with code distance
d = 3. The red vertices v represent locations where the single-qubit error does not
commute with the stabilizer Gv .

Next, we map the hopping terms and density-density interaction term to Pauli operators as
follows

γiγ
′
j
oo //

iZ

j

X

Z

, i X j

Z Z

γ′iγ j
oo //

Z

i Z

j

X

Z

Z

, i

Z

X

Z

j ZZ

−γiγ
′
iγ jγ

′
j
oo //

Z

i Z

j

Z

Z Z

Z

Z

i j

Z

ZZ

Z Z

(14)

where two terms on the right-hand side correspond to vertical and horizontal (i, j). The hop-
ping terms have weights ranging from 3 to 5, and the interaction term has a weight 6.
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2.3 Bosonization with code distance d = 4

In this subsection, we provide a construction of an exact bosonization with code distance d = 4
as an intermediate step toward d = 5. Since its code distance is d = 4, which is even, this code
(like the d = 3 code) can only correct the ⌊ d−1

2 ⌋= 1 Pauli error. However, for error defection,
Pauli errors up to weight 3 can be observed from the stabilizer syndrome measurements.

The mapping can be described as

i ×

γL(e)

e

γ′R(e)

oo //

X e

Z

X

Z

Z

i × eγL(e) γ′R(e)
oo //

Z Z

X

Z

X e

−iγ f γ
′
f
oo //

Z

X

X Z X

X Z

f

Z

(15)

The stabilizer becomes

Gd=4
v =

Z

X

Z

Z

X Z v Z

X Z

X

Z

Z

= 1 . (16)

We can check that the logical operators in Eq. (15) commute with the stabilizer in Eq. (16).
The proof of the equivalence between the even fermionic algebra and this stabilizer code will
be shown in Section. 3.

The syndromes for all single-qubit Pauli errors are provided in Fig. 3. From the generators
of the logical operators in Eq. (15), we may be tempted to conclude that the code distance is
d = 5 because the minimum weight is 5. However, based on the syndromes in Fig. 3, we find
that the following operator is logical:

Z

Z

Z

Z

(17)
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Figure 3: Syndromes of single-qubit errors for the bosonization with code distance
d = 4. The red vertices v represent locations where the single-qubit error does not
commute with the stabilizer Gd=4

v .

Since it does not commute with the terms in Eq. (15), this operator does not belong to the
stabilizer group. Therefore, the code distance for this stabilizer code is d ≤ 4. In Appendix A,
we introduce the “syndrome matching” method to provide a lower bound for the code distance
for a given stabilizer code. With this method, we check that the stabilizer code defined by
Eq. (16) has a code distance of d = 4.

The minimum and maximum weights of the nearest-neighbor terms are (wtmin,wtmax)=(5,6)
and the fermionic occupation term has weight 6, which means that all the operations are quite
well-balanced. This code has an error-correcting property for any single-qubit error.

2.4 Bosonization with code distance d = 5

The bosonization map with code distance d = 5 is provided in this subsection. The generators
of the even fermionic algebra are mapped to Pauli matrices as shown below:

i

γL(e)

e

γ′R(e)

oo //
X Z

X e Z

X Z

X Z

ZZ

Z

(18)
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eiγL(e) γ′R(e)
oo // e

Z X X Z

Z (19)

−iγ f γ
′
f
oo // Z X

f

Z

Z

X

X Z Z

X Z

(20)

The stabilizer is

Gv =

Z Z

X

X Z

X Z

Z

Z

v

Z

X

X Z

X Z

Z

= 1 . (21)

The minimum and maximum weights of the nearest-neighbor terms are (wtmin, wtmax) = (5, 9)
and the weight of the fermionic occupation term is 8. We use the “syndrome matching” method
in Appendix A to confirm that d = 5. This code has an error-correcting property for any two-
qubit error.

3 Stabilizer codes and the Pauli module

This section discusses the stabilizer code formalism and the Pauli module representation via
Laurent polynomials. The Laurent polynomial method is reviewed in Section. 3.1. Then, in
Section. 3.2, we discuss bosonization with distance d = 3,4, 5 and the corresponding symplec-
tic automorphisms. The searching algorithm for automorphisms is presented in Section. 3.3.

3.1 Review of the Laurent polynomial method for the Pauli algebra

We start by reviewing how any Pauli operator can be expressed as a vector over the Laurent
polynomial ring R = F2[x , y, x−1, y−1]9 as set out in Ref. [56]. First, we define X12, Z12, X14,
and Z14 in Fig. 1 as column vectors:

X12 =







1
0
0
0






, Z12 =







0
0
1
0






, X14 =







0
1
0
0






, Z14 =







0
0
0
1






. (22)

9This is the ring that consists of all linear combinations of polynomials involving x , x−1, y , y−1 (and their
powers) with coefficients in F2 (the field with two elements {0,1}).
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Figure 4: Syndromes of single-qubit errors for the d = 5 bosonization.

The Pauli Y can be written as a vector which is a sum of corresponding vectors of X and Z ,
such as

Y12 =







1
0
1
0






. (23)

We express the vector representation of the Pauli Y operator on an edge e as X Z along the
same edge. It is important to note that in this representation, we quotient out the phase
factor ±1,±i associated with Pauli operators. For instance, we equate Y,−Y, iY,−iY with Y .
Our primary focus is on the commutation and anti-commutation properties of Pauli operators;
thus, quotienting out the phase factor ±1,±i does not impede our calculations. In practical
applications, the phase factor can be efficiently tracked, as demonstrated in the Gottesman-
Knill theorem [61,62].

All the other edges can be defined with the help of translation operators as follows. We
use polynomials of x and y to represent translation in the x and y directions, respectively. For
example,

Z78 = y2







0
0
1
0






=







0
0
y2

0






, X58 = x y







0
1
0
0






=







0
x y
0
0






. (24)

More examples are included in Fig. 5.
Next, we introduce the antipode map that is an F2-linear map from R to R defined by

xa y b→ xa y b := x−a y−b . (25)
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Figure 5: Examples of polynomial expressions for Pauli strings. The flux term (i.e.,
fermionic occupation) on a plaquette and the hopping term on an edge are both
shown. The factors such as x2 y2 and x2 represent the locations of the operators
relative to the origin.

To determine whether two Pauli operators represented by vectors v1 and v2 commute or anti-
commute, we define the dot product as

v1 · v2 = vT
1Λv2 , (26)

where T is the transpose operation on a matrix and

Λ=







0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0






, (27)

is the matrix representation of the standard symplectic bilinear form. Notice that −1 is the

same as 1 because we are working over the Z2 field. For simplicity, we denote (· · · )
T

as (· · · )†.
The two operators v1 and v2 commute if and only if the constant term of v1 · v2 is zero. For

example, we calculate the dot products

X12 · Z12 = 1 , X58 · Z14 = x−1 y−1 , (28)

and, therefore, X12 and Z12 anti-commute, whereas X58 and Z14 commute (their dot product
only has a non-constant term x−1 y−1). Furthermore, the physical meaning of X58 · Z14= x−1 y−1

is that the shifting of X58 in −x and −y directions by 1 step will anti-commute with Z14. A
translationally invariant stabilizer code forms an R-submodule10 V such that

v1 · v2 = v†
1Λv2 = 0 , ∀v1, v2 ∈ V . (29)

We now study the automorphisms A of the symplectic form Λ:

(Av1) · (Av2) = v1 · v2 , ∀v1, v2 ∈ V . (30)

10The R-submodule is similar to a subspace of a vector space, but the entries of the vector are in the ring
R = F2[x , y, x−1, y−1]. In a ring, the inverse element may not exist. This is the distinction between a module
and a vector space.
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This is equivalent to A†ΛA = Λ. All matrices A satisfying this equation form the symplectic

group. We divide A into 2× 2 blocks A=

�

a b
c d

�

, the automorphism condition becomes

�

a† c†

b† d†

��

0 I

−I 0

��

a b

c d

�

=

�

0 I

−I 0

�

⇒ a†d − c† b = I , a†c = c†a , b†d = d† b .

(31)

Examples of the automorphism A are

S =

�

I 0

c I

�

, where c ∈Mat2[R] , and c† = c ,

H =

�

0 I

−I 0

�

,

C =







1 0 0 0
r 1 0 0
0 0 1 r̄
0 0 0 1






, where r ∈ R .

(32)

Mat2[R] consists of all 2× 2 matrices with entries in R = F2[x , y, x−1, y−1]. The generators
of the symplectic group are discussed in Appendix B. We have selected sixteen elementary
automorphisms, denoted as A1, A2, · · · , A16, from the symplectic group. These automorphisms
can be expressed by the conjugation of a unitary operator, i.e., the effect of the automorphism
is

P
A
−→ U PU† . (33)

The corresponding unitary circuits for the sixteen elementary automorphisms are illustrated
in Fig. 6.

3.2 New stabilizer codes developed from automorphisms

First, we reformulate the original bosonization introduced in Section 2.1 and incorporate it
into the Pauil module. For simplicity, we will write x−1 and y−1 as x and y , respectively. The
original hopping operators Ue in Eq. (5) can be written as

U1 =







1
0
0
y






, U2 =







0
1
x
0






, (34)

where U1 represents Ue on the horizontal edge and U2 represents Ue on the vertical edge. The
flux term Wf in (6) is written as

W =







0
0

1+ y
1+ x






. (35)
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H

H

H

H

Figure 6: The circuit representations of sixteen elementary automorphisms. Red lines
represent the C Z gates, green lines represent the H⊗2(C Z)H⊗2 gates, and blue lines
represent the CNOT gates.

The stabilizer Gv in Eq. (9) corresponds to the vector

G =







1+ x
1+ y
1+ y
1+ x






. (36)

Now, we will apply automorphisms on these vectors to generate new stabilizer codes.

3.2.1 Automorphism for code distance d = 3

We consider the simplest automorphism

A1 =







1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1






, (37)

which modifies the Pauli operator X e as

A1







1
0
0
0






=







1
0
0
1






, A1







0
1
0
0






=







0
1
1
0






. (38)
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Figure 7: Clifford circuit corresponding to automorphism A1.

Pictorially, this is equivalent to

X e =































X e
A1 // Z

X e

X e
A1 // X e

Z

(39)

Notice that Ze is unchanged under this automorphism. This automorphism corrsponds to the
Clifford circuit shown in Fig. 7.

Now we apply A1 on the logical operators U1, U2, and W and the stabilizer G:

A1U1 =







1
0
0

1+ y






, A1U2 =







0
1

1+ x
0






, (40)

A1W =







0
0

1+ y
1+ x






, A1G =







1+ x
1+ y
y + y
x + x






. (41)

The automorphism A1 applied on Ue can be visualized as

Ue =































































X e

Z

A1 // X e

Z Z

X e

Z A1 //

Z

X e

Z

(42)
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The flux term Eq. (6) is unchanged. The automorphism A1 applied on the stabilizer Gv is

Gv =

Z

Z

X v

X Z

X Z

X

A1 //

Z

Z

X

Z

v

X

X

X

Z

(43)

This is the bosonization with code distance d = 3 introduced in Section 2.2. Since we applied
the automorphism of the Pauli module on the original bosonization, the logical operators sat-
isfy the same algebra. Therefore, we conclude that this new stabilizer code is a valid way to
simulate fermions.

3.2.2 Automorphism for code distance d = 4

In this section, we consider a slightly more complicated automorphism A′:11

A′ =







1 0 0 1
0 1 1 0
0 x y 1+ x y 0

x y 0 0 1+ x y






. (44)

One can easily check that A′ indeed satisfies the condition in Eq. (31) for being an automor-
phism. Applying A′ on the logical operators U1, U2, and W and the stabilizer G, we get

A′U1 =









1+ y
0
0

x y2 + x y + y









, A′U2 =









0
1+ x

x + x y + x2 y
0









, (45)

A′W =







1+ x
1+ y

1+ y + x + x y2

1+ x + y + y x2






, A′G =







x + x
y + y

1+ y + x + x y2

1+ x + y + y x2






. (46)

The operators A′(Ue) can be depicted as

Ue =































































X e

Z

A′ //

Z Z

X

Z

X e

X e

Z A′ //

X e

Z

X

Z

Z

(47)

11A′ = A4A7 in terms of the elementary automorphisms defined in Appendix B.
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The stabilizer A′(Gv) is

Gv =

Z

Z

X v

X Z

X Z

X

A′ //

Z

X

Z

Z

Y v Z

Y

X

Z

Z

(48)

The logical operator Ue and the stabilizer Gv are mapped on the bosonization with code dis-
tance d = 4 introduced in Section 2.3.

Finally, the flux term under the automorphism A′ becomes

Wf =
Z

f ZZ

Z

A′ //

Z

X

Z

fY

Z

v Y

Z

X

Z

Z

(49)

This term can be simplified by multiplying it by A′(Gv), which does not change the effective
logical operation. The resulting flux term is

Z

X

Y X

Y

f

Z

(50)

which matches Eq. (15) in Section 2.3.

3.2.3 Automorphism for code distance d = 5

We introduce another automorphism A′′:12

A′′ =







1 x x 1
1 x + 1 1+ x 1
x x + 1 x + 1+ x + x2 1+ x
x 1 x + x2 1+ x






. (51)

12A′′ = A9A3A7A14 in terms of the elementary automorphisms defined in Appendix B.
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Again it is easy to check that it satisfies the condition in Eq. (31) for being an automorphism.
Applying A′′ on the logical operators U1, U2, and W and the stabilizer G, we get

A′′U1 =







1+ y
1+ y

y + x y + x
y + x y + x






, A′′U2 =









1+ x
0

x2 + x
x









, (52)

A′′(W + G) =







x y + 1
x y + y

x y + y + x + x
y + x






, A′′G =







x y + x y
x y + y + y + x y

x y + y + x y + y + x y + x2 y
y + 1+ x y + x2 y






. (53)

The A′′(Ue) operators can be depicted as Eq. (18) and (19). Here, we choose A′′(W + G) as
our flux operator shown in Eq. (20) because it has a lower weight wt[A′′(W +G)]< wt(A′′W ).
The pictorial representation of stabilizer A′′G is Eq. (21).

3.3 Searching algorithm for automorphisms

In this subsection, we describe how we find automorphisms with code distances d = 3, 4,5, 6,
and 7. The automorphisms A1 in Eq. (37), A′ in Eq. (44), and A′′ in Eq. (51) correspond to
the examples for d = 3, d = 4, and d = 5, respectively. We will show other examples with
different code distances.

First, we consider sixteen elementary automorphisms A1, A2, · · · , A16 (shown in Appendix
B), which attach no more than one new Pauli matrix to the original Pauli matrix. For example,
the A1 automorphism attaches one Z to X e, as shown in Eq. (38). Given the sixteen elementary
automorphisms, their product Ai1Ai2Ai3Ai4 · · · with in ∈ {1, 2, · · · , 16} is also an automorphism.
(We note that these elementary automorphisms do not generate all automorphisms.) We find
that the product of five elementary automorphisms Ai1Ai2Ai3Ai4Ai5 is sufficient to generate the
code distance d = 7; therefore, we focus on products with five or fewer elementary automor-
phisms. We now describe how we search for automorphisms with large code distances:

1. We write down the bosonization of all the nearest-neighbor and on-site terms generated
by Se and Pf . They include the automorphism acting on U1, U2, W , U1 +W , U1 + yW ,
U1 + yW +W , U2 +W , U2 + xW , U2 + xW +W .13

2. We use the minimum weight of bosonization of nearest-neighbor hopping terms to
roughly estimate the code distance of a given bosonization (automorphism) A.

3. We choose some candidate automorphisms with an appropriate minimum weight d, to
find a bosonization with desired code distance d.

4. We apply the syndrome matching method shown in Appendix A to the candidate au-
tomorphisms. By applying syndrome matching, we find a lower bound of their code
distances.

5. We apply the syndrome matching method for distance d +1 to an automorphism eA with
a lower bound d. If syndrome matching for distance d + 1 returns a logical operator
with no syndrome, we conclude that eA is a bosonization with code distance d.

Applying the syndrome-matching method, we found automorphisms to generate exact
bosonization with d = 3, 4,5,6, 7 (see Table 2).

13The stabilizer G can be added to any term.
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Table 2: The possible automorphisms for different code distances. The numbers
inside parentheses are the minimum and maximum weights of the logical operators
for the nearest-neighbor terms. For example, A9A3A7A14 has the minimum logical
weight 5 and the maximum logical weight 9.

Code distance Automorphisms
3 A1 (3,5)
4 A4A7 (5,6), A2A7A1 (4,6)
5 A9A3A7A14 (5,9)
6 A1A5A14A1(6, 13), A4A9A16A11(7, 17)
7 A1A11A5A14A9(7, 23)

4 Discussion

This work introduces a method that employs Laurent polynomials and symplectic automor-
phisms as efficient classical computational tools in the search for fermion-to-qubit mappings
with error correction capabilities. One significant advantage of this method lies in its ability to
generate equivalent mappings with higher code distances while preserving the code rates. This
is possible due to the established equivalence between various 2d fermion-to-qubit mappings,
as shown in Ref. [48].

In recent years, it has been shown that Laurent polynomials do not only serve as an an-
alytical tool to design and characterize quantum code [56, 57, 60, 63–65], numerical algo-
rithm inspired by Laurent polynomials are also proposed, for example, searching 3d fracton
phases [66]. In this work, we demonstrate the effectiveness of the Laurent polynomial in
searching quantum error-correcting codes. The Laurent polynomials and symplectic automor-
phisms serve a dual purpose in our method: They are instrumental in the analytical derivation
of quantum codes and valuable for the numerical studies of these codes. To illustrate the
effectiveness of our approach, we demonstrate this method through examples of codes with
distances d = 3, 4,5 and further extend our constructions up to d = 7. Additionally, we present
general algorithms designed to systematically search for and verify fermion-to-qubit mappings
with elevated code distances. It is noteworthy that our proposed method is not exclusive to
fermion-to-qubit mappings; it is also applicable to regular qubit stabilizer codes, which are
utilized to encode logical qubits.

In the context of implementing higher-distance error-correcting codes, which are realized
through exact bosonization (with d = 2) by Clifford deformations, we can prepare the code-
words for these codes. This is achieved by applying the appropriate Clifford circuit to the
codewords of the exact bosonization (d = 2). The process involves the following steps:

1. Generating a product state in the fermionic Fock basis from the toric code ground state by
exciting fermions ε= e×m. This state is a codeword of the exact bosonization (d = 2).

2. Transforming this codeword using the Clifford unitary corresponding to the automor-
phism A.

3. The result is the codeword for the higher-distance exact bosonization, preserving the
same logical information. In particular, the Clifford circuit used is geometrically local
and translationally invariant, ensuring that a shallow, O(1)-depth, geometrically local
Clifford circuit does not spread errors.

This method provides a framework for developing higher-distance error-correcting codes es-
sential for fermionic quantum simulation, simultaneously underscoring the necessity of effi-
cient decoders for effective error correction. Given that exact bosonization originates from
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the toric code, we anticipate that the minimum weight perfect matching approach still works.
Apart from quantum error correction, which includes code construction and decoder devel-
opment, optimizing efficient and fault-tolerant logical operations remains a critical challenge.
Exploring efficient decoders and fault-tolerant operations is left for future research.
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A Syndrome-matching method for finding code distances

This appendix presents an algorithm to find the code distance for a given stabilizer code.
We call it the “syndrome matching” method. Specifically, given an integer n, we describe
an algorithm to determine whether the code distance d satisfies d > n. The algorithm is as
follows.

1. We first choose one vertex to be the origin (0,0). We then apply a single Pauli from X1,
Y1, Z1, X2, Y2, Z2 (acting on qubits located on edges (0, 0)→ (1, 0) and (0,0)→ (0,1)).
We have 6 cases, each of which has its own syndrome vertices, i.e., a set of vertices v
that violate the stabilizer Gv . For a single-qubit error, the syndrome set is an ordered
set V (1) = {(x (1)1 , y(1)1 ), (x

(1)
2 , y(1)2 ), ...}, ordered by x (1)i : x (1)1 ≤ x (1)2 ≤ . . . . If two vertices

i, i + 1 have the same x (1)i = x (1)i+1, they are ordered by y(1)i < y(1)i+1.

2. Ensure that the operator is logical. For this to be the case, all syndrome vertices should
vanish. Therefore, we select the first syndrome vertex (x (k)1 , y(k)1 ) ∈ V (k). Then we enu-
merate all choices of a Pauli matrix on an edge different from the Pauli matrix selected
in the previous step(s), such that it cancels the syndrome at (x (k)1 , y(k)1 ). This operation
may generate other syndrome vertices. The syndrome vertices V (k) are updated due to
this new Pauli matrix. At this stage, the operator has one more Pauli matrix, and a new
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ordered set for the syndrome vertices V (k+1). If the syndrome set V (k+1) is empty, this
operator is logical. If the operator does not belong to the stabilizer group,14 this means
that we have found the nontrivial logical operator with the minimum weight. This min-
imum weight is the code distance and, therefore, we stop the algorithm. Otherwise, we
continue.

3. Repeat steps 1 and 2 until the algorithm stops automatically or all cases with operators
containing n Pauli matrices have been considered, i.e., all V (n) are checked. If the algo-
rithm stops automatically, it will return the value of the code distance. If the algorithm
stops by considering all the cases with n Pauli matrices, we conclude that code distance
satisfies d > n.

B Elementary automorphisms

This section demonstrates the transformation rules of Pauli matrices for sixteen elementary
automorphisms used in our numerical search algorithm. First, according to Ref. [65], the
symplectic group of vectors over the Laurent polynomial ring R = F2[x , y, x−1, y−1] is gener-
ated by the following 4× 4 matrices, which form the elementary symplectic group. Below
a ∈ R× is any monomial in R.

Hadamard: Ei,i+2(−1)Ei+2,i(1)Ei,i+2(−1) , where 1≤ i ≤ 2 ,
control-Phase: Ei+2, j(a)E j+2,i(ā) , where 1≤ i, j ≤ 2 ,

control-Not: Ei, j(a)E j+2,i+2(−ā) , where 1≤ i ̸= j ≤ 2 .
(B.1)

where the matrix Ei, j(a) for any a ∈ R is defined as
�

Ei, j(a)
�

µν
= δµν +δµiδν ja , where δ is the Kronecker delta. (B.2)

More explicitly, the Hamamard gates for i = 1 and i = 2 are






0 0 −1 0
0 1 0 0
1 0 0 0
0 0 0 1






,







1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0






. (B.3)

The control-Phase gates for (i, j) = (1,1), (1,2), (2,1), (2,2) are






1 0 0 0
0 1 0 0

a+ ā 0 1 0
0 0 0 1






,







1 0 0 0
0 1 0 0
0 a 1 0
ā 0 0 1






,







1 0 0 0
0 1 0 0
0 ā 1 0
a 0 0 1






,







1 0 0 0
0 1 0 0
0 0 1 0
0 a+ ā 0 1






.

(B.4)

The control-Not gates for (i, j) = (1, 2), (2, 1) are






1 a 0 0
0 1 0 0
0 0 1 0
0 0 −ā 1






,







1 0 0 0
a 1 0 0
0 0 1 −ā
0 0 0 1






. (B.5)

14A way to check if a Pauli string operator O belongs to the stabilizer group is by computing O · (AW ) and
O · (AU1,2), where AW and AU1,2 generate the full logical space since W and U1,2 are the original generators in the
exact bosonization and we apply an automorphism A on them. O ·(AW ) = O ·(AU1,2) = 0 if and only if the operator
O commutes with all logical operators, which means O ∈ G (G is the stabilizer group).
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From the elementary symplectic group above, we choose the following automorphisms
A1, ...,A16, corresponding to applying nearest-neighbor two-qubit Clifford gates.

A1 =







1 0 0 0
0 1 0 0
0 1 1 0
1 0 0 1






, A2 =







1 0 0 0
0 1 0 0
0 y 1 0
ȳ 0 0 1






, (B.6)

A3 =







1 0 0 0
0 1 0 0
0 x 1 0
x 0 0 1






, A4 =







1 0 0 0
0 1 0 0
0 x y 1 0

x y 0 0 1






, (B.7)

A5 =







1 0 0 x y
0 1 x y 0
0 0 1 0
0 0 0 1






, A6 =







1 0 0 y
0 1 y 0
0 0 1 0
0 0 0 1






, (B.8)

A7 =







1 0 0 1
0 1 1 0
0 0 1 0
0 0 0 1






, A8 =







1 0 0 x
0 1 x 0
0 0 1 0
0 0 0 1






, (B.9)

A9 =







1 0 0 0
1 1 0 0
0 0 1 1
0 0 0 1






, A10 =







1 0 0 0
x 1 0 0
0 0 1 x
0 0 0 1






, (B.10)

A11 =







1 0 0 0
y 1 0 0
0 0 1 y
0 0 0 1






, A12 =







1 0 0 0
x y 1 0 0
0 0 1 x y
0 0 0 1






, (B.11)

A13 =







1 1 0 0
0 1 0 0
0 0 1 0
0 0 1 1






, A14 =







1 x 0 0
0 1 0 0
0 0 1 0
0 0 x 1






, (B.12)

A15 =







1 y 0 0
0 1 0 0
0 0 1 0
0 0 y 1






, A16 =







1 x y 0 0
0 1 0 0
0 0 1 0
0 0 x y 1






. (B.13)

The diagonal blocks of A1 are identities, and its nontrivial part is the lower left block which
attaches an extra Z to X1 and X2. By multiplying the polynomial vectors of X1, X2, Z1, and Z2
by automorphism A1, we get the following terms:

X e
A1 //

X e

Z , X e
A1 //

Z

X e

Ze
A1 // Ze , Ze

A1 // Ze .

(B.14)
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Similarly, we may multiply X1, X2, Z1, and Z2 by A2, thereby obtaining

X e
A2 //

X e

Z , X e
A2 //

Z

X e

Ze
A2 // Ze , Ze

A2 // Ze

(B.15)

Following the same argument, we can obtain pictorial representations for the rest of the auto-
morphisms: A3:

X e
A3 //

X e

Z , X e
A3 //

Z

X e

Ze
A3 // Ze , Ze

A3 // Ze

(B.16)

A4:

X e
A4 //

X e

Z , X e
A4 //

Z

X e

Ze
A4 // Ze , Ze

A4 // Ze

(B.17)

A5:

X e
A5 // X e , X e

A5 // X e

Ze
A5 //

Ze

X , Ze
A5 //

X

Ze

(B.18)

A6:

X e
A6 // X e , X e

A6 // X e

Ze
A6 //

Ze

X , Ze
A6 //

X

Ze

(B.19)
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A7:

X e
A7 // X e , X e

A7 // X e

Ze
A7 //

Ze

X , Ze
A7 //

X

Ze

(B.20)

A8:

X e
A8 // X e , X e

A8 // X e

Ze
A8 //

Ze

X , Ze
A8 //

X

Ze

(B.21)

A9:

X e
A9 //

X e

X , X e
A9 // X e

Ze
A9 // Ze , Ze

A9 //

Z

Ze

(B.22)

A10:

X e
A10 //

X e

X , X e
A10 // X e

Ze
A10 // Ze , Ze

A10 //

Z

Ze

(B.23)

A11:

X e
A11 //

X e

X , X e
A11 // X e

Ze
A11 // Ze , Ze

A11 //

Z

Ze

(B.24)
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A12:

X e
A12 //

X e

X , X e
A12 // X e

Ze
A12 // Ze , Ze

A12 //

Z

Ze

(B.25)

A13:

X e
A13 // X e , X e

A13 // X e

X

Ze
A13 // Z

Ze

, Ze
A13 // Ze

(B.26)

A14:

X e
A14 // X e , X e

A14 //

X

X e

Ze
A14 //

Ze

Z , Ze
A14 // Ze

(B.27)

A15:

X e
A15 // X e , X e

A15 //

X

X e

Ze
A15 //

Ze

Z , Ze
A15 // Ze

(B.28)

A16:

X e
A16 // X e , X e

A16 //

X

X e

Ze
A16 //

Ze

Z , Ze
A16 // Ze

(B.29)
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C Automorphisms for code distances d = 6 and d = 7

In this section, we show the explicit form of automorphisms Ad=6 and Ad=7 found by syndrome
matching. The automorphism Ad=6 = A1A5A14A1 has a code distance of 6:

Ad=6 =







1+ x y x + y y x y
0 1+ x y x y 0
0 x y 1+ x y 0

x y x + x + y x + y 1+ x y






. (C.1)

By applying Ad=6 on logical operators U1, U2, W , and stabilizer G, we obtain their polynomial
representations as follows:

Ad=6U1 =







x + 1+ x y
0
0

y + x + x y






, (C.2)

Ad=6U2 =







x + x y + y
y + x y + 1
y + x y + x

x + 1+ x + x y + y






, (C.3)

Ad=6W =







x y + y2

x y + x
x y + 1+ x + y

1+ x y + x y + y2






, (C.4)

Ad=6G =









x y + x2 y + y + y2

x y2 + y + 1+ x
x y2 + 1+ x + y

x y + x y + x + x + x2 y + y + x y + y2









. (C.5)

The automorphism Ad=7 = A1A11A5A14A9 with distance d = 7 is

Ad=7 =







x + 1 x y x y + y
x y + y + 1 x y + 1 x y + 1 x y + x + 1
x y + y + 1 x y + 1 x y + x y x y + x + y + x y

x + 1 x x + y 1+ x + x y + y






. (C.6)

By applying Ad=7 on logical operatrs U1, U2, W , and stabilizer G, we can write down their
polynomial representations as follows:

Ad=7U1 =









0
x y2 + 1

x y2 + y + x
y + x y









, Ad=7U2 =







x + x y
x y + y + x + 1
x y + y + 1+ y

x + 1+ x y






, (C.7)

Ad=7W =







x y + y + x y + y2

x2 y + x + 1+ y
x2 y + x + 1+ x + y + x y + x2 y + x y2

1+ x + x2 + x y + y + y2






, (C.8)
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Ad=7G =













x y + x2 + x + 1+ x y + y + x y + x y2

x y2 + x2 y + x y + x y + 1+ y
x y2 + x2 y + x y + x2 y

+1+ x + y + x y + x2 y + x y2

x y + x2 + x + x + x2 + x y + y + y2













. (C.9)
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