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Abstract

We consider generalisations of the recently proposed supersymmetry breaking defor-
mation of the 5d rank-1 E1 superconformal field theory to higher rank. We generalise
the arguments to theories which admit a mass deformation leading to gauge theories
coupled to matter hypermultiplets at low energies. These theories have a richer space
of non-supersymmetric deformations, due to the existence of a larger global symmetry.
We show that there is a one-to-one correspondence between the non-SUSY deformations
of the gauge theory and their (p, q) 5-brane web. We comment on the (in)stability of
these deformations both from the gauge theory and the 5-brane web point of view. UV
duality plays a key role in our analysis, fixing the effective Chern-Simons level for the
background vector multiplets, together with their complete prepotential. We partially
classify super-Yang-Mills theories known to enjoy UV dualities which show a phase tran-
sition where different phases are separated by a jump of Chern-Simons levels of both a
perturbative and an instantonic global symmetry. When this transition can be reached
by turning on a non-supersymmetric deformation of the UV superconformal field theory,
it can be a good candidate to host a 5d non-supersymmetric CFT. We also discuss consis-
tency of the proposed phase diagram with the ’t Hooft anomalies of the models that we
analyse.
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1 Introduction

Superconformal field theories (SCFTs) in five spacetime dimensions have been an active area
of research, following their conception in the seminal work by Seiberg [1]. Their existence is
heavily reliant on stringy constructions such as brane webs [2], geometric engineering [3], as
well as their holographic dual AdS6 solutions [4–7]. For a recent review see [8]. An important
component in the aforementioned class of CFTs is the existence of supersymmetry (SUSY). In
contrast, non-supersymmetric fixed points are still poorly understood, and their very existence
is a matter for debate. Some notable progress was achieved employing the conformal bootstrap
and the ε-expansion [9–20]. Yet, we still have no conclusive evidence of the existence of these
CFTs, not least because non-perturbative methods based on string constructions are not fully
under control in this setting.

Recently, soft-SUSY breaking deformations of the E1 SCFT were analyzed in [21] as a
possible way to flow from a UV SCFT to a non-SUSY CFT in the IR. Indeed, the E1 SCFT admits
a supersymmetric mass deformation, which triggers an RG flow, leading at low energies to an
N = 1 SU(2) super-Yang-Mills (SYM) theory. The corresponding deformation parameter 〈φa〉
is the vacuum expectation value (VEV) for the lowest component of the background vector
multiplet VI for the SO(3)I symmetry acting on the Higgs branch chiral ring.1 Selecting the
third component 〈φ3〉, we can identify the inverse gauge coupling 1

g2 of the IR free gauge

theory as 〈φ3〉 ≡ h∼ 1
g2 . This deformation explicitly breaks the SO(3)I symmetry to its Cartan

subgroup, which at low energies and at the origin of the Coulomb branch (CB) describes the
topological U(1)I symmetry of the gauge theory with conserved current

JI[F] =
1

8π2
⋆ TrF ∧ F . (1)

Further deforming the theory by turning on a VEV 〈Di
a〉= 〈D

3
3 〉 ≡ d for the highest component

of VI breaks supersymmetry. This follows because this operator carries an index i in the adjoint

1That the global symmetry of the E1 SCFT is SO(3) rather than SU(2) was first suggested in [22].
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of the SU(2)R R-symmetry, breaking it down to its U(1)R Cartan subgroup. Both the gaugino
and the scalar gaugino acquire a mass proportional to d/h and can be integrated out in the
weak coupling regime |d| ≪ h2, hence the theory flows to pure SU(2) Yang-Mills. The E1 fixed
point admits another mass deformation, leading to pure SU(2) gauge theory at weak coupling,
where one turns on the mass parameter with the opposite sign ĥ = −h. When the mass
parameter |h| is small compared with the scale of the Coulomb branch, both theories describe
the vicinity of the fixed point and are in this sense referred to as UV-duals. The duality map
between the two theories, in addition to the sign flip h→−h, includes a shift of the Coulomb
branch VEV, this generates a Z2 orbit which is identified with the Weyl group of the SO(3)I
symmetry. This Z2 action changes both the sign of the Chern-Simons level associated with
the background vector field of the U(1)I global symmetry and of the residual U(1)R symmetry,
which can both be shown to be non-zero in the pure YM phase. Observing the change of sign in
the effective Chern-Simons level for the background U(1)I and U(1)R symmetries, the authors
of [21] showed that a phase transition must separate the two YM phases related by the Z2
Weyl group action. In particular, in the hypothesis that the whole U(1)I × U(1)R symmetry
remains unbroken at the transition point, the change of levels is driven by both perturbative
and non-perturbative particles becoming simultaneously massless at the transition point. This
is the hallmark of a possible interacting fixed point. However, both the order of the transition
and the position of the phase transition line in the (h, d) plane were left undetermined.

This picture was further refined in [23], where the deformation was analyzed in the context
of the (p, q) web description of the E1 theory. It is well known that supersymmetric mass
deformations of 5d SCFTs correspond to deformations in the plane of the (p, q) 5-brane. In
contrast, the SUSY-breaking deformation d was identified with a particular rotation transverse
to the plane of the (p, q) 5-brane for the E1 theory.2 The string theory analysis revealed an
instability on the Higgs branch as one turns on the SUSY breaking deformation d, which was
confirmed by analyzing the effect of the deformation at a generic point of the Higgs branch of
the SCFT. The instability induces a tachyon condensation mechanism in string theory, which
can be interpreted in field theory terms as a spontaneous breaking of the U(1)I symmetry.
However, the fate of the system after this instability is, in general, difficult to determine, except
for the infinite coupling axes, at which the potential appears unbounded and the instability
cannot be resolved [23]. The analysis suggests figure (1) as the minimal phase diagram for the
E1 SCFT. The E1 fixed point sits at the SO(3)I×SU(2)R symmetric origin of the two-dimensional
(h, d) plane. Far along the (±h, 0) direction, the theory is described by pure SU(2) SYM which
has an SU(2)R ×U(1)I global symmetry. The YM regime corresponds to the regime h2 ≫ |d|.
There is a symmetric region around the d-axis where U(1)I is spontaneously broken. The
boundary of this region is marked by the fuzzy cyan curve in figure (1), representing a cartoon
of the actual phase transition curve. Determining the shape of this curve is difficult due to our
ignorance of the precise form of the tachyon potential in the finite coupling region. The order
of the phase transition on this line remains an open question.

Given the rich landscape of 5d SCFTs, it is natural to extend the logic pioneered in [21] to
other theories. A step in this direction has already been taken in [26], where a particular non-
supersymmetric mass deformation for the X1,N theory [27] was analyzed. In particular, the
authors found evidence for a second order phase transition in the large N limit of the theory
by analyzing the (p, q) web subject to the non-SUSY and SUSY deformations. Moreover, the
complete prepotential of the X1,N theory was recently constructed in [28]. However, there
is so far no further field theoretic generalisation of the analysis performed for the E1 theory.
The goal of this paper is to bridge this gap by analyzing higher rank generalisations of the
E1 fixed point. In particular, we consider SCFTs which admit a gauge theory deformation

2The analogous deformation in 3d Hanany-Witten setups was analyzed in [24, 25], which led to new non-
supersymmetric dualities in 3d gauge theories.
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Figure 1: Summary of the phase diagram of the E1 theory. The physics in each
of the four quadrants is identical and related by the Z2 × Z2 Weyl group action of
the SO(3)I×SU(2)R symmetry. The fuzzy cyan line separates the symmetry broken
phase from the pure YM ones. The exact shape of this line and the order of the phase
transition taking place there is still not fully understood.

to a pure SYM theory. A crucial ingredient in determining the background CS level for the
instantonic symmetry of the E1 theory was the existence of UV self-duality relating the weakly
coupled descriptions of the E1 theory with mass parameter ±h. In string theory, this follows
from the S-duality of type IIB. As we will see, in theories with self-duality we will be able to
completely fix the CS level associated with the global symmetries and so determine the jump
between the two low energy phases obtained by deforming the SCFT point by both the SUSY
and the non-SUSY mass deformations. When the SCFT admits two different IR gauge theory
descriptions, UV duality will not be able to completely fix the jump of CS levels. In such cases,
we will determine the background CS levels up to some integer constant. In both cases, the
calculations will be verified by explicitly constructing the complete prepotential of the theory
and calculating the CS levels directly from it. We will also discuss consistency of the proposed
phase diagram with existing ’t Hooft anomalies of the models that we analyse.

The rest of the paper is organized as follows. In section 2, we study the effect of a generic
SUSY breaking deformation involving the background vector multiplet of the flavor symmetry
of a generic SYM theory coupled to F hypermultiplets. This will allow us to set the stage and
understand the weakly coupled phases of the theory obtained after mass deforming the SYM
theories. The non-supersymmetric deformations leading to an instability already visible at
weak coupling will be discarded, while the ones leading to a stable vacuum will be analyzed
in the later sections. In section 3, we generalize the calculation to SU(N)N theories, calculating
their complete prepotential and the corresponding jump of CS levels associated with the U(1)I
global symmetry of the corresponding weakly coupled descriptions. This will be achieved by
employing the self-duality enjoyed by these theories. We then generalize the story to the UV
fixed point of the dual SU-Sp theories, employing their UV duality, determining the jump of
the global symmetry CS levels up to an integer value. In section 4, we will analyze the rank-N
E1 SCFT, determining via self-duality the jump of the CS levels and its CFT prepotential. The
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description of the SUSY breaking deformation will be verified in detail by looking at its (p, q)
web description, which shows interesting complicated dynamics. In section 5, we analyze
the case SU(4)0+2AS. This is meaningful, since the theory can be reduced to the Sp(2)+1AS
theory through Higgsing and to SU(2)2 if we go at infinite distance on the CB, so it can be seen
as a “mother theory” for most of the cases we treated above. We then conclude and give some
outlook of our results.

2 Weak coupling analysis

In order to determine the phase diagram of SCFTs subject to the non-SUSY and SUSY mass
deformations we would like to study, we should analyze their gauge theory descriptions. The
gauge theory phase can be reached by flowing in the IR after turning on a SUSY mass deforma-
tion. We can then turn on a SUSY breaking mass deformation. This regime is equivalent to the
limit 1/g2 ≫

p
d, where 1/g2 represents the gauge coupling associated with the gauge the-

ory, which we take to be simple, and d is the non-SUSY mass parameter. In the following, we
will in particular focus on non-SUSY mass deformations involving the global symmetry current
multiplet, although other types of non-SUSY deformations are available in principle [29]. The
basic reason underlying this choice comes from the possibility of geometrically realising these
deformations in the (p, q) web. Since they break both the global and the R-symmetry and can
be performed at weak coupling, their realization in string theory will be more transparent.
Note, however, that in general this will have drawbacks. Since the global symmetry acts as
an isometry on the Higgs branch, a deformation involving the current multiplet can lead to
instabilities on the Higgs branch if no other deformation is turned on, as happens in the E1
case.

2.1 Weakly coupled phase after SUSY breaking

Consider a 5dN = 1 gauge theory with a simple gauge algebra g coupled to nH hypermultiplets
in representation Ri of g, with i ∈ {1,2, · · · , nH}. The Lagrangian for this system is comprised
of three terms: the supersymmetric YM Lagrangian LSYM, a CS term together with its SUSY
completion LSCS, and the hypermultiplet Lagrangian Lmatter:

L= LSYM +LSCS +Lmatter . (2)

These terms are respectively given by [30,31]:

LSYM =
1
g2

tr
�

−
1
2

FµνFµν −DµφDµφ +
i
2
Dµλ̄γµλ−

i
2
λ̄γµDµλ+ Di Di + iλ̄ [φ,λ]

�

,

LSCS =
κ

24π2
tr
�

AF2 +
i
2

A3F −
1

10
A5 − 3λ̄γµνλFµν + 6iλ̄σi Diλ

�

+
g2κ

2π2
tr [φLSYM] ,

Lmatter = −
�

�Dµq
�

�

2
+ iψ̄γµDµψ− q̄φ2q+ qσi q̄Di +

p
2ψ̄λq−

p
2q̄λ̄ψ+ iψ̄φψ ,

(3)

where i = {1,2, 3} is SU(2)R index, σi are the Pauli matrices, and we work with the Lorentzian
metric η = diag(−1,+1,+1,+1,+1). In the following, for the sake of notation, we will sup-
press the flavor indices associated with the matter fields.

The gauge theory has an associated U(1)I instantonic symmetry whose current appears in
eq. (1). Introducing a background vector multiplet for the U(1)I

VI = (φI ,λI , AI , DI) . (4)

It can be shown that the bottom component φI of the background vector multiplet couples
to the highest component of the instantonic current multiplet, which corresponds to g2LSYM.
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Then the VEV of φI can be interpreted as the inverse square of the gauge coupling 1/g2. If
we additionally turn on a VEV for the highest component DI of the background U(1)I vector
multiplet




Di
I

�

= d i , (5)

the Lagrangian changes by

δIL= d itr
�

i
4
λ̄σiλ+φDi

�

, (6)

and supersymmetry is broken.
We can also consider turning on a background vector multiplet for the flavor symmetry

acting on the hypermultiplets
VF = (φF ,λF , AF , DF ) . (7)

Turning on a VEV for the bottom component φF of VF gives a supersymmetric mass to the
hypermultiplets. On the other hand, a VEV for the highest component




Di
F

�

= d̃ i , (8)

leads to a SUSY breaking mass for the scalars of the hypermultiplet

δFL= qσi q̄d̃ i , (9)

while no tree-level mass term is generated for the fermionic components of the hypermul-
tiplets. Turning on all SUSY breaking deformations, the potential for the scalars takes the
following form:3

V = tr
�

−
1
g2

Di Di − (d iφ + qσi q̄)Di − qσi q̄d̃ i + q̄φ2q
�

. (10)

After eliminating the auxiliary scalars Di , we obtain

V = tr

�

g2

4
(d iφ + qσi q̄)2 − qσi q̄d̃ i + q̄φ2q

�

. (11)

Let us now study the vacua associated with this potential. Clearly, φ = q = 0 is an extremum.
Its stability can be determined by looking at the second derivatives of the potential

∂ 2V
∂ q∂ q̄

�

�

�

�

q=φ=0
= σi d̃ i ,

∂ 2V
∂ φ2

�

�

�

�

φ=q=0
=

g2

2
d id i . (12)

From the first equation, we see that in the presence of a D-term VEV d̃ i for the flavor multiplet
VF , there is a tachyonic instability, since the Pauli matrices have eigenvalues {+1,−1}. The
negative mass of this mode can be compensated by turning on a VEV for φF , namely a super-
symmetric mass for the entire hypermultiplet. On the other hand, setting d̃ i = 0, the potential
in eq. (12) is, at the origin of the Coulomb branch, completely unaware of the presence of
the SUSY breaking parameter d i . Consequently, a Higgs branch opens up exactly as in the
supersymmetric case. Of course, having broken supersymmetry, the moduli space is expected
to be lifted by quantum corrections. These effects are nevertheless expected to be suppressed
in the regime we are dealing with, since the theory is IR-free and so the weakly coupled regime
remains reliable.

In order to avoid this instability at weak coupling, in the following we will only consider
(if not otherwise stated) D-term deformations involving only the instantonic symmetry of the
theory. As we will see later on, these deformations will be naturally embedded in string theory
as rotations of (p, q) brane junctions outside the plane of the web.

3To simplify the analysis, we consider a vanishing CS level for the dynamical vector multiplet. We can always
think of a non-vanishing CS level as the result of integrating out heavy fermions. This will be sufficient for our
purposes.
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2.2 Chern-Simons terms from UV dualities

An important tool to understand the dynamics of 5d supersymmetric theories comes from the
prepotential. The moduli space of vacua of a 5d gauge theory consists of a Coulomb and a
Higgs branch. The Coulomb branch is a real orbifold Rrk(g)/W , where rk(g) denotes the rank
of the gauge algebra, while W is the Weyl group of g. The low energy effective theory on
the Coulomb branch is governed by the perturbative or Intriligator-Morrison-Seiberg (IMS)
prepotential [3]

F = 1
2

m0hi jφ
iφ j +

κ

6
di jkφ

iφ jφk +
1

12

 

∑

r∈∆(g)

|r ·φ|3 −
nH
∑

i=1

∑

w∈Ri

|w ·φ −m j|3
!

, (13)

where the first sum is over the set of roots∆(g) of the Lie algebra g, and the second sum is over
the weights w of the representation Ri under which the i-th matter hypermultiplet transforms.
m0 is the inverse of the square of the YM coupling, κ is the classical (bare) Chern-Simons level,
and we have defined hi j = Tr

�

Ti T j

�

, di jk = Tr
�

Ti{T j , Tk}
�

in terms of the Cartan generators
Ti of the Lie algebra g.

In five dimensions, the vector multiplet can be dualized to a tensor multiplet containing a 2-
form gauge field, whose electric sources are strings. Therefore, the Coulomb branch spectrum
contains BPS monopole strings. The tensions of such strings are given by the first derivative
of the prepotential with respect to the Coulomb branch moduli [1,3]

Ti =
∂F
∂ φ i

, i ∈ {1, · · · , rk(g)} . (14)

The low energy dynamics of type IIB (p, q) webs, composed of junctions of (p, q) 5-branes,
are governed by 5d gauge theories. In this context, particles are described by generic (p, q)
strings connecting the various 5-branes composing the web. The masses of such particles are
proportional to the length of the string junctions. Similarly, the monopole strings are realized
as D3 branes which wrap a compact face of the 5-brane web. Their tension is proportional
to the area of the face of the web that they wrap [2]. Hence, given a 5-brane web, there is a
straightforward way to compute the prepotential associated with a given phase of the theory:
one simply has to compute the areas of all the compact faces and solve the system of PDEs
in eq. (14). In doing so, we will generate integration constants which, by dimensional anal-
ysis, must be cubic in the mass parameters {m0, m j}. These constants do not change either
the metric on the CB nor the masses of the monopole strings, so they are often ignored in the
literature. However, such integration constants carry important physical information on phase
structures as discussed in [21]. Note that in the prepotential in eq. (13), Chern-Simons terms
for the gauge fields appear as cubic terms in the CB parameters. Knowing the prepotential of
the theory, it is sufficient to take three derivatives with respect to the CB parameters in order to
extract the value of these CS coefficients. Similarly, we can interpret the mass parameters as-
sociated with the global symmetries of the theory as VEVs of the scalar field in the background
vector multiplet, see the discussion following eq. (3). Then, we see that the presence of cubic
terms in these mass parameters in the prepotential will signal the existence of CS terms for
the background vector multiplets. Invariance under large gauge transformations imposes an
integer quantisation condition on the CS coefficient. Thus, the CS level cannot be changed
continuously and so is a rather robust quantity along the RG flow. Therefore, a change in
the CS level is typically accompanied by a phase transition. In this way, knowing the global
CS terms of the theory, one can detect the presence of phase transitions in the corresponding
phase diagram.

Given that the constant terms do not affect the perturbative dynamics of the theory or
the masses of the monopole strings, one may wonder if there is a way to uniquely fix them.
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The answer turns out to be positive if we are dealing with different gauge theory descriptions
descending from the same UV fixed point. In the 5d literature, theories enjoying this property
are referred to as UV duals. They can be understood as different mass deformations of the same
UV fixed point. When the mass deformation remains small (compared with the scale of the
CB parameters), the prepotentials of the two theories should be the same since they describe
the same UV SCFT on the CB. Note that, in this context, the prepotential will not necessarily
be the perturbative prepotential of the two gauge theories: in going from the weakly coupled
limit to the strong coupling limit, some non-perturbative statecan flip the sign of its mass,4

contributing to the prepotential of the gauge theory and changing it. The corresponding phase
is denoted in the literature as the CFT phase [32] and the corresponding prepotential as the
CFT prepotential. In this phase, the two prepotentials coming from the two different gauge
theory descriptions must agree.

The CB and mass parameters of the two theories will be mapped to each other in some non-
trivial way. The UV dualities are often inherited from the S-duality of the type IIB string theory.
As such one can extract the duality map by comparing the parametrisation of the (p, q)-web of
a given theory with its S-dual. Requiring the prepotential to be invariant under UV dualities
(namely under the transformations of the CB and mass parameters) is sufficient to partially
(in certain cases completely) determine the constant terms in the prepotential.

A far more powerful object is the complete prepotential [32], which captures all the gauge
theory phases, in addition to non-trivial information such as the global symmetry of the fixed
point theory. In this context, the dynamics of the CFT phase of the theory is described in terms
of CB parameters that are invariant under UV self-dualities, making the global symmetry of
the CFT point manifest. These parameters are denoted in the literature as the invariant CB
parameters and can be obtained systematically by knowing the CFT prepotential, as we will
see later in detail. In addition, the complete prepotential is augmented by a hypermultiplet
contribution, which encodes all the perturbative and non-perturbative hypermultiplets that
can change their sign if we start from the CFT phase and mass deform away from the fixed
point. Knowing the complete set of hypermultiplets is in general challenging, as we will later
see. However, in the following, we will mainly be interested in the CFT part of the complete
prepotential. Indeed, the global symmetry of the fixed point can in some cases fix completely
the constant terms in the CFT prepotential and allow us to determine the CS levels of the
global symmetry.

On overall normalization of mass parameters

Another subtle feature of the prepotential is the overall normalization of the mass parameters
appearing in eq. (13). At present, several choices of normalization of the coefficient m0 of the
quadratic term in the prepotential of eq. (13) appear in the literature. In the absence of the
integration constants mentioned above, the choice of overall normalization seems harmless.
However, we emphasize that the integration constants appearing in the prepotential must
be cubic in the masses {m0, m j} and so represent CS terms for the global symmetries of the
theory. As a consequence, the coefficients of these terms must be integers in order to have
well-defined CS levels. We can then try to formulate a criterion in order to choose the correct
normalization for the mass parameters. We expect this criterion to come from the spectrum of
the theory. Looking at BPS operators charged under both the global and the gauge symmetry
of the theory, we know that their mass M is determined in terms of their charges qi

e, q j by the
BPS mass formula

M = |qi
eφi + q jm j| . (15)

4Although, in all the cases we will consider, the CFT phase will coincide with the perturbative phase of the
theory.
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Changing the normalization of the masses will then change the normalization of the charges q j .
Integrating out such a state will lead to CS terms for both the gauge and the global symmetries.
However, if the charges are not integer quantized, the CS terms will acquire non-integer levels.
So, the minimal physical requirement that we should ask is to have correctly quantized charges.
This is a necessary, but not sufficient, condition to have integer levels in the various phases of
the theory. However, as we will see later on, in some cases this physical requirement will also
fix the CS levels of the CFT prepotential to be integers.

To have correctly normalized charges, we need to take care of two additional phenomena
that we can encounter: the mixing on the CB between the electric and the global symmetry
charges and the enhancement of the global symmetry at the fixed point. In order to clearly
explain these phenomena, we will consider two simple examples, namely the mixing in the E1
theory and the global symmetry enhancement of the E2 theory.

Mixing phenomena

The mixing phenomenon of the E1 theory was first analyzed in [1]. The charge associated with
the instantonic symmetry was shown to be a linear combination of the electric charge and the
charge of the Cartan generator associated with the SO(3)I symmetry of the fixed point. In
the language of the CFT prepotential, this mismatch comes from the difference between the
invariant CB parameter and the CB parameter associated with the low energy description (in
this case for positive h). The invariant CB parameter is5

Φ := φ +
hE1

2
, (16)

where φ is the CB parameter of the gauge theory description. A point of the CB of the CFT
is described by a VEV of the invariant CB parameter, while the CB associated with SU(2) SYM
theory is described simply by φ. Masses of BPS states have different expressions depending on
which variables we use, either the CFT or the weakly coupled ones. In the first case, a generic
BPS mass reads

M = |q̃eΦ+ qch
E1 | , (17)

where qc represents the charge associated with the Cartan subgroup of the SO(3)I global sym-
metry. On the other hand, at weak coupling, masses are measured in terms of the SU(2) SYM
mass parameters

M = |qeφ + qIh
E1 | . (18)

Equating the two descriptions, we see that

qe = q̃e , qI = qc +
1
2

q̃e , (19)

leading to a mixing between the charge associated with the Cartan subgroup of the SO(3)I
global symmetry and the electric charge. So, the mixing phenomenon is present whenever the
invariant CB parameter does not coincide with the CB parameter. In the following, we will
insist on requiring the charges under all abelian symmetries to be integer quantised, both in
the weak coupling and CFT variables. This translates to a criterion for determining the overall
normalisation of mass parameters appearing in the prepotential. To see this recipe in action,

5The duality map for this case is φ→ φ + hE1
, hE1 →−hE1 .
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consider the 5-brane web for pure SU(2) SYM theory

m0
2 + 2φ

2φ

W

I
(20)

The above parametrisation leads to the following prepotential for SU(2) SYM

F =
m0

2
φ2 +

4
3
φ3 , (21)

while the mass of the W boson and instanton particle are given by the lengths of the F1 (resp.
D1) strings indicated in the web of figure (20)

mW = |2φ| , mI =
�

�

�

m0

2
+ 2φ

�

�

� . (22)

We can also express them in terms of the invariant Coulomb modulus

mW =
�

�

�2Φ−
m0

4

�

�

� , mI =
�

�

�2Φ+
m0

4

�

�

� . (23)

Following the criterion mentioned above, we seek to rescale m0 in such a way that the BPS
states carry integer charges. The minimum choice that satisfies this criterion is to set m0=4hE1 .
This is precisely the choice of normalization of [21] which leads to the correct normalization
for the U(1)3I CS levels.

Global symmetry enhancement

Another phenomenon is the enhancement of global symmetry at the fixed point for symmetry
groups of rank higher than one. The mass parameters associated with the enhanced symmetry
GUV at the fixed point can differ in general from the mass parameters associated with the weak
coupling symmetry GIR. The former will be linear combinations of the latter as prescribed by
the embedding GIR ⊂ GUV . The simplest example of this phenomenon comes from the E2
theory, the UV completion of the SU(2) + 1F theory. At weak coupling, the theory possesses a
U(1)I × SO(2)F global symmetry with associated mass parameters m0, m1 respectively. At the
fixed point, however, the global symmetry enhances to SU(2)I ×U(1) [33] and the associated
mass parameters x , y are actually linear combinations of the weak coupling parameters [32]

x =
1
4
(m0 +m1) , y = −

1
4
(m0 − 7m1) . (24)

On top of the enhancement of the global symmetry, also a mixing phenomenon can appear. In
this case, mass parameters need to be normalized in order to have correctly quantized charges
whenever we measure the masses of the BPS states in the GUV or the GIR parameters and in
temrs of the weakly coupled or the strongly coupled CB parameters.

3 Super Yang-Mills theories

In this section, we consider SUSY-breaking deformations of UV completions of pure SYM the-
ories. We consider only theories that have a known UV dual description, which is a key ingre-
dient in detecting a phase transition. In particular, we first focus on the SU(N)N pure gauge
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theories, starting with the N = 3 case and then extending the discussion to generic N . In
both cases, we determine the CS levels of the global symmetry and the complete prepotential.
These theories enjoy many common features with the E1 theory. Firstly, at strong coupling,
their symmetry enhances SO(3)I [33]. Secondly, there are no additional hypermultiplets that
we can flop when turning on the mass deformation for the fixed point. This will facilitate
our calculation of the complete prepotential of these theories. At infinite coupling the Higgs
branch is C2/Z2 [34], exactly as in the E1 case. Since the instability given by the non-SUSY
deformation was driven by the Higgs branch, we see that these theories are also plagued by
the same instability, leading to a phase diagram analogous to the N = 2 case.

We also study the SU(3)7 pure gauge theory, which was shown to be UV dual to G2 [35].
Since this theory does not enjoy self-duality, the CS levels are partially fixed by the duality.
Nevertheless, we show the existence of a jump of the CS levels between the low energy G2
phase and the SU(3)7 YM phase, resulting from mass deforming the corresponding SYM the-
ories.

3.1 SU(3)3

Let us consider 5d N = 1 SU(3) YM-CS theory with level 3. The gauge theory has a U(1)I
global symmetry which is the remnant of the SO(3)I symmetry of the UV fixed point theory.
Moreover, the Higgs branch of the UV fixed point is C2/Z2. The symmetry acting on the Higgs
branch is SO(3)I , rather than SU(2)I , since all chiral ring generators transform under projective
representations of the su(2)I Lie algebra. There is also an SU(2)R symmetry required for the
consistency of the superconformal algebra. Finally, the theory enjoys a Z3 1-form symmetry,
which acts on Wilson lines in the gauge theory limit, and is expected to persist all the way to
the UV fixed point as argued in [36].

The theory in question admits a brane web construction, that at a generic point of the
Coulomb branch phase is given by

(25)

Note, in particular, that the symmetries of the theory are manifest in the web. The SO(3)I is
realized as the symmetry on the two [0,1] 7-branes that can be attached to the NS5 branes,
while the SU(2)R symmetry is identified with the isometry group of rotations in the three
directions transverse to the 5-brane web. Finally, the Z3 1-form symmetry is detectable by
noticing that three fundamental strings terminating on the color (1,0) 5-branes can be screened
by the external (3,±1) 5-branes, forming a string junction [37]. This is the analog of the
screening of fundamental Wilson loops in the gauge theory language.

In order to achieve a UV dual description, we find it convenient to bring the web in figure
(25) to a slightly different presentation by a combination of Hanany-Witten transition and
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T -transformation of SL(2,Z)

m0 + 3a1

m0 − a3 + a2

a2 − a3 3a1

a1 − a2

a1 − a2

(26)

In this parametrization, the string tensions read

T1 = (a1 − a2)(3a1 + a2 − a3 +m0) , T2 = (a2 − a3)(a2 − a3 +m0) . (27)

Integrating the tensions, we obtain the IMS perturbative prepotential of SU(3)3

FSU(3)3 =
m0

2
(a2

1 + a2
2 + a2

3) +
1
6

�

(a1 − a2)
3 + (a1 − a3)

3 + (a2 − a3)
3
�

+
1
2
(a3

1 + a3
2 + a3

3)

= m0(φ
2
1 −φ1φ2 +φ

2
2) +

4
3
φ3

1 +φ
2
1φ2 − 2φ1φ

2
2 +

4
3
φ3

2 ,

(28)

as can be shown by comparing it to the general expression in eq. (13) in the Weyl chamber
a1 ≥ a2 ≥ 0 ≥ a3. In the second line of eq. (28), we change the parametrization of the CB
going from the orthogonal to the Dynkin basis via the relations

a1 = φ1 , a2 = −φ1 +φ2 , a3 = −φ2 . (29)

Let us now consider the S-dual configuration to the web in figure (26), shown below in
figure (30). The low energy theory is still the SU(3)3 theory, with parameters âi , i = {1, 2}
and m̂0.

3â1
â2 − â3

â2 − â3 + m̂0

m̂0 + 3â1

â1 − â2

â1 − â2

(30)
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In this case, the tensions that we obtain from the web are given by

T1 = (â1 − â2)(m̂0 + 2â1 − 2â3) , T2 = (â2 − â3)(â2 − â3 + m̂0) , (31)

where in the above we have used the traceless condition
∑

i âi = 0, for the SU(3) CB param-
eters. Integrating the tensions, we can obtain, once again, the SU(3)3 prepotential written in
the new variables âi and m̂0. The corresponding parameter map between the two UV dual
descriptions is readily obtained by comparing the parametrizations in figures (25) and (30)

φ̂1 = φ1 +
1
3

m0 , φ̂2 = φ2 +
2
3

m0 , m̂0 = −m0 . (32)

In terms of the global symmetry of the fixed point, we see that the Weyl group of su(2)I
acts on the CB parameters by sending φi → φ̂i , i = {1, 2} and on the mass parameters as
m0→ m̂0 = −m0, as expected from the fact that m0 represents the VEV of the lowest compo-
nent of the background vector multiplet of the global symmetry group. Note, however, that
the two perturbative prepotentials are not invariant under this reparameterization, owing to
the fact that we have ignored the integration constant which arises in integrating the tensions
in eq. (31).

In order to write down the prepotential invariant under the UV duality eq. (32), we can
restore this integration constant α into the IMS prepotential

F = m0(φ
2
1 −φ1φ2 +φ

2
2) +

4
3
φ3

1 +φ
2
1φ2 − 2φ1φ

2
2 +

4
3
φ3

2 +αm3
0 , (33)

and require F to remain invariant under the duality map in eq. (32). The invariant prepoten-
tial is then given by

F = m0(φ
2
1 −φ1φ2 +φ

2
2) +

4
3
φ3

1 +φ
2
1φ2 − 2φ1φ

2
2 +

4
3
φ3

2 −
1

18
m3

0 . (34)

In order for the CS level for the background vector multiplet of U(1)I to have the right quan-
tisation, we rescale m0 as

m0 = 3h , (35)

which yields

F = 3h(φ2
1 −φ1φ2 +φ

2
2) +

4
3
φ3

1 +φ
2
1φ2 − 2φ1φ

2
2 +

4
3
φ3

2 −
9
6

h3 , (36)

from which we can read off

kI =
∂ 3F
∂ h3

= −9 sgn(h) . (37)

3.2 Generalisation to SU(N)N

Generalizing the previous discussion to the SU(N)N case is fairly straightforward. Indeed, for
generic N , we have the same global symmetry and Higgs branch at infinite coupling, and a
similar embedding in string theory via a (p, q) web construction.

Complete prepotential

The Weyl group of the global symmetry of the fixed point is related, in the (p, q)-web descrip-
tion, to S-duality. Looking at the parametrization of the web, we can easily see that the UV
duality acts on the CB parameters as

âi = ai +
m0

N
, m̂0 = −m0 (i ∈ {1, · · · , N − 1}) . (38)
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Figure 2: Grid diagram for the SU(4)4 case.

Requiring the perturbative prepotential in the Weyl chamber a1 ≥ a2 ≥ ... ≥ aN−1 ≥ 0 ≥ aN
(resp. â1 ≥ â2 ≥ ...≥ âN−1 ≥ 0≥ âN )

F =
m0

2

N
∑

i=1

a2
i +

N
6

N
∑

i=1

a3
i +

1
6

N
∑

i< j

(ai − a j)
3 ,

N
∑

i+1

ai = 0 , (39)

to be invariant under UV duality fixes it completely to be of the form

F =
m0

2

N
∑

i=1

a2
i +

N
6

N
∑

i=1

a3
i +

1
6

N
∑

i< j

(ai − a j)
3 −
(N − 1)

12N
m3

0 . (40)

In order to have an integer CS level for the background U(1)I , we perform the redefinition
m0 = Nh and obtain

F = Nh
2

N
∑

i=1

a2
i +

N
6

N
∑

i=1

a3
i +

1
6

N
∑

i< j

(ai − a j)
3 −

N2(N − 1)
12

h3 , (41)

from which we read the U(1)3I CS level

kI = −
N2(N − 1)

2
sgn(h) , (42)

which is integer for any N .
It is also possible to obtain the complete prepotential of the theory by following the pro-

cedure in [32]. Firstly, we calculate the effective coupling in the CFT phase of the theory. As
already emphasized, this phase contains the CFT point, which can be reached by sending all
the masses to zero. As a consequence, the FC F T should be invariant under the action of the
Weyl group of the enhanced global symmetry, as well as the correspoding effective couplings.
In our case, since the theory has no flops, as can be inferred by looking at its grid diagram in
figure (2), the CFT phase coincides with the perturbative phase. So, what we can do is just
calculate the effective couplings from the perturbative prepotential

∂ 2F
∂ ai∂ ai

= (2N + 4− 2i)ai + 2
i−1
∑

k=1

ai − 2aN + 2m0 (i = {1, ..., N − 1}) ,

∂ 2F
∂ ai∂ a j

= 2a j − 2aN +m0 (i < j) .

It is then easy to see that the effective couplings can be written in terms of linear combinations
of

âi = ai +
1

2N
m0 (i = {1, ..., N − 1}) . (43)
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h

d

SU(N)N SYMSU(N)N SYM SCFT

SU(N)N YM�

− N2(N−1)
2 ,− N2−1

2

�SU(N)N YM�

N2(N−1)
2 , N2−1

2

�

SU(N)N YM�

− N2(N−1)
2 , N2−1

2

�SU(N)N YM�

N2(N−1)
2 ,− N2−1

2

�

Figure 3: Summary of the phase diagram of the pure SU(N)N theory. The physics in
each of the 4 quadrants is identical and related by the Z2 ×Z2 Weyl group action of
the SO(3)I×SU(2)R symmetry. The fuzzy cyan line separates the symmetry broken
phase from the pure YM ones. The exact shape of this line and the order of the phase
transition taking place there is still not fully understood.

which can be shown to be manifestly invariant under the duality action induced by the Weyl
group. The prepotential in the CFT phase can be obtained by integrating the effective couplings
and matching the expression of the corresponding tensions with the perturbative ones, leading
to the complete prepotential

FC F T =
1
6

∑

i< j

(âi − â j)
3 +

N
6

N
∑

i=1

â3
i +

1
4

m0âN , (44)

which is completely fixed by the symmetry of the fixed point. By expanding the invariant CB
parameters, it is easy to obtain the value of the CS terms associated with the weakly coupled
descriptions written in eq. (42).

Phase diagram

Exploiting both calculations and the weak coupling analysis of section 2, we obtain the gen-
eralisation of the phase diagram of the E1 theory depicted in figure (3). In particular, we see
that the CS term for the U(1)R symmetry depends on N . This comes from the fact that the
D-term breaking deformation gives a mass to the gauginos. These are in the fundamental of
SU(2)R. When this symmetry is broken to its Cartan subgroup by the deformation, we obtain
N2 − 1 BPS particles charged under the U(1)R global symmetry, since the gauginos are in the
adjoint6 of SU(N). Introducing a background gauge field for U(1)R, it is easy to see that when
the gauginos are integrated out, they generate the following CS level for the R-symmetry

kR = −
N2 − 1

2
sgn(d) . (45)

6For this reason, there is no shift for the CS level of the dynamical gauge field, since dabc = 0, for the adjoint
representation.
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As in the E1 case, the Weyl groups of SU(2)R and SO(3)I relate the CS levels for the U(1)I and
U(1)R symmetries in the various quadrants of the (h, d) plane, as shown in figure (3). The
total jump of the CS levels across the d axis is then

∆CSI = −N2(N − 1) , ∆CSR = −(N2 − 1) . (46)

As stated in the E1 case, we expect an instability on the HB of the SCFT deformed by the
SUSY breaking deformation, since the structure of the Higgs branch and of the deformation
is identical to the E1 case. This leads to a symmetry breaking phase surrounding the d axis,
which is separated from the symmetry preserving phase by a phase transition at finite coupling,
where the tachyon instability on the HB can be in principle resolved as shown in [23]. The
phase diagram is then a natural generalisation of the E1 phase diagram.

The previous picture is consistent with the string theory realization of this same deforma-
tion. This is completely analogous to the E1 web in the parallel presentation [23]. The tachyon
instability on the HB translates into an instability of the strings connecting the 7-branes host-
ing the global symmetry. This gets resolved when the (p, q) web is opened by turning on the
gauge coupling.

Consistency with ’t Hooft anomaly matching

The SU(N)N theory is known to have a mixed ’t Hooft anomaly between the zero-form in-
stanton symmetry U(1)I and one-form symmetry Z(1)N [22]. Indeed, if we turn on the U(1)I
background gauge field A and Z(1)N background gauge field B, then the partition function of the
theory on S1×Σ4 changes under the large gauge transformation of U(1)I with a unit winding
as

ZSU(N)N [A, B] → ZSU(N)N [A, B]exp

�

−
2πi
2N

∫

Σ4

P(B)
�

, (47)

where P(B) is the Pontryagin square.7 The ’t Hooft anomaly can be cancelled by coupling the
theory to a bulk topological theory with the partition function8

exp

�

2πi
2N

∫

Y6

dA
2π

P(B)
�

, (48)

with ∂ Y6 = M5. The ’t Hooft anomaly is invariant along RG flow preserving U(1)I and Z(1)N ,
and implies that the phase cannot be trivial. This is consistent with our proposal on the phase
diagram in figure (3).

3.3 Duality between G2 and SU(3)7

Let us now consider the duality between the pure G2 SYM and SU(3)7 SYM. This was studied
in great detail in [32, 42]. The common UV fixed point enjoys only the U(1)I instantonic
symmetry preserved in the gauge theory phase. This can be seen from the isometry acting on
the Higgs branch chiral ring, which is U(1), since the HB is9 C2/Z4. The IMS prepotential for
a pure G2 gauge theory, in the Dynkin basis, is given by [35]

F = m0(φ
2
1 − 3φ1φ2 + 3φ2

2) +
4
3
φ3

1 − 4φ2
1φ2 + 3φ1φ

2
2 +

4
3
φ3

2 +
α

6
m3

0 , (49)

7Throughout discussion on ’t Hooft anomaly in this paper, we take Σ4 as a spin manifold on which the integral
of the Pontryagin square is even integer. This point will be more relevant in other cases.

8There are some possibilities on interpretations of the ’t Hooft anomaly at the superconformal point [22, 33]
involving two-group symmetries [33,38–41].

9In general the Higgs branch of 5d N = 1 SYM theory with gauge algebra g is the orbifold C2/Zĥ, where ĥ is
the dual Coxeter number of g [43].
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h

d

G2 SYMSU(3)7 SYM SCFT point

G2 YM(α,−7)SU(3)7 YM-CS(β ,−4)

Figure 4: Summary of the phase diagram for the G2 − SU(3)7 case without matter.
The negative d region is omitted since it is related to the upper-half plane by the Z2
residual Weyl symmetry of SU(2)R.

where we introduced an integration constant, which was neglected in [35]. The prepotential
for pure SU(3)7 theory, obtained from the S-dual web diagram in [44], in the Dynkin basis, is

F = m̂0(φ̂
2
1 − φ̂1φ̂2 + φ̂

2
2) +

4
3
φ̂3

1 + 3φ̂2
1φ̂2 − 4φ̂1φ̂

2
2 +

4
3
φ̂3

2 +
β

6
m̂3

0 , (50)

where we introduced the analogous integration constant β6 m3
0 which was absent in [44]. The

duality map between these theories, was worked out by comparing the parameterizations of
the same web diagram and reads:

m̂0 = −
m0

3
, φ̂1 = φ2 +

m0

3
, φ̂2 = φ1 +

2
3

m0 . (51)

In both cases, the CFT prepotential still coincides with the perturbative phase. So, requiring
the prepotential for SU(3)7 in eq. (28) to coincide with that of pure G2 in eq. (49) upon
substituting in the duality map in eq. (51) imposes a constraint on the integration constants

β = −27α− 6 . (52)

This shows that, although the duality does not constrain completely the prepotential, it con-
strains the integration constants of the SU(3)7 prepotential in terms of the G2 one. The jump
of the U(1)I CS level reads then

∆CS= −28α− 6 . (53)

We see that, for any integer α, there is a jump in the level between the two weakly coupled
phases.

Also, the R-symmetry level jumps between the two weakly coupled phases. Integrating
out the gaugino induces a shift of the CS level for the background gauge field AR of the U(1)R
symmetry, which in the G2 side reads

kR = −7 sgn(d) , (54)

while in the SU(3)7 theory is
k̃R = −4 sgn(d) . (55)

Altogether, our analysis suggests the minimal phase diagram in figure (4) with a total jump of
the CS levels across the d axis of

∆CSI = −28α− 6 , ∆CSR = −3 . (56)
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The qualitative difference from the SU(N)N case is the absence of the reflection symmetry
around the d-axis. This is expected, since the theory is not self-dual, so the SUSY deformations
driving the SCFT point to the IR free gauge theory descriptions are not related by the action
of the global symmetry. This is also the reason why the CS level cannot be completely fixed.

3.4 SU-Sp duality

In this section, we consider another higher rank generalisation by focusing on the UV duality
between SU(N + 1)N+3 and Sp(N)(N+1)π SYM. As in the G2 − SU(3)7 case, we don’t expect to
be able to fix completely the prepotential of the theory, since there is no self-duality that we
can employ. However, the duality will still be sufficient to detect the jump of the CS level as
we go from one weakly coupled description to another. In particular, these theories do not
show symmetry enhancement at the fixed point and the global 0-form symmetry remains just
the instantonic U(1)I enjoyed by the weak coupling description. In addition, when N is odd,
there is Z2 1-form symmetry [38], which coincides with the centre of Sp(N), or equivalently
(in the dual frame) the Zgcd(N+1,N+3) = Z2 subgroup of the ZN+1 centre of SU(N +1). There is
no 1-form symmetry when N is even. The Higgs branch of the SCFT also depends on the parity
of N ; for even N there is no continuous Higgs branch,10 while for odd N the Higgs branch is
C2/ZN+1. Consequently, we expect the instability on the Higgs branch to lead to a symmetry
breaking phase for the case when N is odd. On the other hand, the same instability cannot
appear when N is even, which makes these theories a good candidate to host a CFT at infinite
coupling.11

As we will see, these theories are not expected to have any associated hypermultiplets
contributing to the prepotential. For this reason, the computation of the complete prepotential
is rather trivial: it is simply the perturbative one with the standard CB parameters. Indeed, we
do not expect the prepotential to remain invariant under the UV duality transformation, but
rather to be able to transform the SU(N +1)N+3 prepotential into Sp(N)(N+1)π and vice versa.

In the following, in order to be pedagogical, we will first discuss the rank-2 case in some
detail, before present the general results for arbitrary rank.

3.4.1 Duality between SU(3)5 and Sp(2)π

Let us start considering the rank-2 case, namely the SU(3)5 theory. Its (p, q) web is given by:

(57)

10More precisely, in this case the Higgs branch is a fat point. The only generator is the glueball superfield S
subject to the relation S2 = 1 [43].

11This, however, does not exclude the existence of additional instabilities.
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It is convenient to perform a couple of Hanany-Witten moves to bring the web into the follow-
ing form

2m0 + 2a2

a2 − a32a1 − a2 − a3

2m0 + 2a1

a1 − a2

(58)

The corresponding tensions read

T1 =
∂F
∂ φ1

= (a1 − a2)(2m0 + 3a1 + a2 − 2a3) , T2 =
∂F
∂ φ2

= (2m0 + 2a2)(a2 − a3) , (59)

where as usual ai , i = {1,2} represent the coordinate in the orthogonal basis, while
φi , i = {1,2} the ones in the Dynkin basis. Solving for the PDE in eq. (14), we obtain the
prepotential for the SU(3)5 theory

FSU(3)5 = 2m0(φ
2
1 −φ1φ2 +φ

2
2) +

1
3
(4φ3

1 + 6φ2
1φ2 − 9φ1φ

2
2 + 4φ3

2) +
α

6
m3

0 , (60)

where α
6 m3

0 is an integration constant, to be fixed below. Let us now consider the S-dual web,
given by

m̂0 + â1 + 2â2

2â22â1

m̂0 + 3â1

(61)

The tensions in this case read

T1 = (â1 − â2)(2m̂0 + 5â1 + 3â2) , T2 = 2â2(m̂0 + â1 + 2â2) . (62)

The solution to the PDE in eq. (14), with these tensions, leads to the prepotential for the
Sp(2)π theory

FSp(2)π = m̂0(â
2
1 + â2

2) +
1
6
(â1 − â2)

3 +
1
6
(â1 + â2)

3 +
4
3
(â3

1 + â3
2) +

β

6
m̂3

0 . (63)

Comparing the parameterizations of the webs in eqs. (58) and (61) leads to the following
duality map

m̂0 = −3m0 , âi = ai +m0 (i = {1,2}) . (64)
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The cubic U(1)3I Chern-Simons term for the background vector multiplet is then partially fixed
by requiring the prepotentials eqs. (60) and (63) to agree upon the above change of variables
since the CFT point is contained in the perturbative phase. This imposes the following relation
between the integration constants in eqs. (60) and (63)

α+ 27β + 12= 0 . (65)

As anticipated above, UV duality is not enough to completely fix the CS terms. However, the
jump of the level across the two phases may be fixed in terms of one of the CS levels and equals

∆CS= −28β − 12 , (66)

which is always different from zero for any integer β . Before discussing the phase diagram
and the stability of the theory after the SUSY breaking deformation, it is worth generalizing
this discussion to the rank-N case.

3.4.2 Arbitrary rank generalisation

The brane web for SU(N + 1)N+3 is given by

(N + 1, 0)

(N , N)(N ,−N)

(1,−N)(1, N)

(67)

It admits no flops, so the prepotential of the CFT phase coincides with the perturbative prepo-
tential. Moreover, since there is no enhancement of the global symmetry, there is no notion of
an invariant Coulomb branch parameter. The prepotential following from eq. (13) reads

FSU(N+1)N+3
(m0, ai) = m0

N+1
∑

i=1

a2
i +

N + 3
6

N+1
∑

i=1

a3
i +

1
6

N+1
∑

i< j

(ai − a j)
3 +

α

6
m3

0 ,
N+1
∑

i=1

ai = 0 , (68)

where we have restored the integration constant α
6 m3

0. The S-dual web corresponding to
Sp(N)(N−1)π is given by

(2N , 0)

(N ,−N)

(N , N)

(N , 1)

(N ,−1)

(69)

from which one can extract the following prepotential

FSp(N)(N−1)π
(m̂0, âi) = m̂0

N
∑

i=1

â2
i +

1
6

N
∑

i< j

�

(âi − â j)
3 + (âi + â j)

3
�

+
4
3

N
∑

i=1

â3
i +

β

6
m̂3

0 . (70)

The duality map, in this case, reads

m̂0 = −(N + 1)m0 , âi = ai +m0 . (71)
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h

d

SU(N + 1)N+3 SYM-CSSp(N)(N−1)π SYM SCFT point

SU(N + 1)N+3 YM-CS
(α,− (N+1)2−1

2 )Sp(N)(N−1)π YM(β ,− N(2N+1)
2 )

Figure 5: Summary of the phase diagram for the SU(N + 1)N+3-Sp(N)(N+1)π case
without matters.

and can be inferred from the (p, q) web associated with the two theories. Requiring the prepo-
tential in eq. (70) to agree with eq. (68) under this duality map imposes a relation between
the integration constants

α+ β(N + 1)3 + 2N(N + 1) = 0 . (72)

Again, as expected, the CS term is not completely fixed by the deformation. However, the
jump is fixed in terms of β as

∆CS= −β[(N + 1)3 + 1]− 2N(N + 1) . (73)

If we apply the deformation in eq. (6) to the two theories, the gauginos and the scalar gauginos
get a mass and they can be integrated out. In the special unitary case, this gives a contribution
to the R-symmetry CS level

kR = −
(N + 1)2 − 1

2
sgn(d) , (74)

while in the symplectic case

k̃R = −
N(2N + 1)

2
sgn(d) . (75)

The corresponding phase diagram is summarised in figure 5 with a total jump of the CS levels
across the d axis of

∆CSI = −β[(N + 1)3 + 1]− 2N(N + 1) , ∆CSR =
N(N − 1)

2
. (76)

Consistency with ’t Hooft anomaly matching

When N is odd, the theories enjoy aZ(1)2 one-form symmetry and it is interesting to ask whether

there are mixed ’t Hooft anomalies between U(1)I and Z(1)2 as in the SU(N)N theory. This can
be easily answered by using the results in [22,38]. Again, turning on both background gauge
fields and making the large gauge transformation of U(1)I , the partition functions of the two
theories are transformed as

ZSU(N+1)N+3
[A, B] → ZSU(N+1)N+3

[A, B]exp

�

2πiN(N + 1)
8

∫

Σ4

P(B)
�

, (77)
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and

ZSp(N)(N−1)π
[A, B] → ZSp(N)(N−1)π

[A, B]exp

�

2πiN
4

∫

Σ4

P(B)
�

. (78)

There is an important difference between the N = 4k + 1 and N = 4k + 3 cases (k ∈ N).
For N = 4k + 1, both partition functions nontrivially transform with the same factor and
therefore the ’t Hooft anomaly matches on the both side. On the other hand, for N = 4k + 3,
the transformation for the SU(N + 1)N+3 theory is trivial while the one for Sp(N)(N−1)π is

not.12 One scenario to make this consistent with the duality is that the Z(1)2 symmetries may
be emergent and the ’t Hooft anomalies do not have to match. Another possibility is that the
gauge groups of the theories may have different global structures, namely the duality would
be actually enjoyed by SU(N + 1)/Z2 and Sp(N)/Z2 without centers. In summary, if the Z(1)2
symmetries are not emergent, then the ’t Hooft anomaly for N = 4k+3 implies that the phase
cannot be trivial along RG flow and this is consistent with the phase diagram in figure 5.

4 The rank-N E1 SCFT

A natural generalisation of the E1 theory is the so-called rank-N E1 SCFT, denoted as E(N)1 . This
is the UV fixed point of an Sp(N) gauge theory with a single anti-symmetric hypermultiplet.
Contrary to the cases described above, this class of theories possesses a richer global symmetry
and dynamics. Firstly, the global symmetry at the fixed point is SO(3)I × SO(3)A, where the
first group is associated with the enhancement of the instantonic U(1)I symmetry of the Sp(N)
theory and the second with the symmetry under which the anti-symmetric hypermultiplet
transforms. Although two different mass parameters are present, as we will shortly see, no
mixing will arise. In addition to the 0-form symmetry, we have also a Z2 1-form symmetry,
which in the weakly coupled description coincides with the center of the Sp(N) gauge algebra.

The presence of a global symmetry composed of two different groups leads to two possible
mass deformations involving the global symmetry current multiplets. Due to stability reasons
of the weakly coupled description, see section 2, in the following we only focus on the defor-
mation involving the instantonic symmetry. Nevertheless, we briefly comment on the (p, q)
web constructions of the various possible non-SUSY deformations and their instability issues.
The theory, due to the enhancement of the global symmetry, enjoys self-duality at the fixed
point, so we expect the CS terms to be completely fixed by the symmetry of the theory. The
Higgs branch of the theory at the fixed point is the moduli space of SO(3) N -instantons [45].
Away from the fixed point, the Higgs branch reduces to the N -th symmetric product of C2×Z2
arising from the anti-symmetric hypermultiplet and the glueball superfield S subject to the
relation S2 = 1 [43]. In the following, we will briefly comment on the fate of this large moduli
space after the non-SUSY deformations.

This theory is interesting independently of breaking supersymmetry thanks to a variety
of reasons. First of all, the phase structure associated with its supersymmetric mass defor-
mations is quite rich and was the subject of a recent study [46]. It would be interesting to
reproduce their phase diagram by a direct study of the complete prepotential of the theory.
When N is large, this theory possesses a holographic dual, the Brandhuber-Oz solution [7].
Studying its non-SUSY deformation can be important, since predictions arising for the fate of
this deformation in the large N limit can be tested by turning on non-SUSY deformations in
holography.

In the following, we will study the rank-2 case in great detail. The complete prepotential
was already known in [32] from the decoupling of the Sp(2)+1AS +7F. Here, we directly

12Note that the integral of the Pontryagin square is even for spin manifold.
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compute it from the (p, q) web and we generalize its CFT part to the rank-N case. In this
way, we calculate the CS terms for both the U(1)I and the U(1)A symmetries in the weakly
coupled regime. Then, we mass deform via a non-SUSY deformation and study the jump of the
background CS levels. Looking at the (p, q)web construction of this deformation, we comment
on the instability issues arising and we chart the phase diagram of this class of theories.

4.1 Rank-2 theory

Let us consider the 5d rank-2 E1 SCFT. Activating a VEV for the bottom component of the
background vector multiplet of the SO(3)I global symmetry takes us to the gauge theory phase,
which is Sp(2)0+1AS, and breaks SO(3)I to the U(1)I topological symmetry of the field theory.
The brane web for 5d Sp(2) +1AS is given by

2a2 +m0

2a2

m1

2a1

2a1 +m0

(79)

From this diagram, we compute the string tensions to be

T1 = 4(a2
1 − a2

2) + 2m0(a1 − a2)−m2 , T2 = 2a2(m0 + 2a2) . (80)

Solving for the PDE in eq. (14) with the above tensions leads to the IMS prepotential

FIMS =
4
3
(a3

1 + a3
2) +m0(a

2
1 + a2

2)−m2a1 +αm3
0 + βm0m2 , (81)

where the CB independent terms represent our parameterization of the integration con-
stants.13

Now consider the S-dual of the brane web in (79), namely the following diagram:

2â2

2â2 + m̂0

m̂

2â1 + m̂0

2â1 (82)

13The reader may note that it is also perfectly reasonable to turn on additional background CS terms proportional
to m2

0m and m3. However, both such terms are invariant under S-duality, and setting their coefficients to 0 is a
perfectly consistent choice. Moreover, since these terms are invariant under S-duality, their levels will not jump as
we go from the h> 0 phase to the h< 0 one.
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Upon comparing the parameterization of the two web diagrams, we are led to the following
duality map

âi = ai +
m0

2
, m̂0 = −m0 , m̂1 = m1 (i = {1, 2}) . (83)

Invariance of the prepotential under this duality map leads to the constraint

α= −
1

12
−

m2
1

4m2
0

−
m2

1β

m2
0

, (84)

thus the duality invariant prepotential is

F = 4
3
(a3

1 + a3
2) +m0(a

2
1 + a2

2)−m2a1 −
1
12

m3
0 −

1
4

m0m2 . (85)

The background CS couplings are integers when we rescale

m0→ 2h , (86)

which, as we will see, will be natural in order to correctly normalize the charges of BPS states
in terms of the CB invariant parameters. The duality invariant prepotential thus reads

F = 2h(a2
1 + a2

2) +
4
3
(a3

1 + a3
2)− a1m2 −

2
3

h3 −
1
2

hm2 . (87)

In fact, we can go one step further, by directly calculating the complete prepotential of
the theory. Starting from the perturbative prepotential in eq. (81), we need to introduce two
invariant CB parameters, since the theory enjoys an U(1)I × SO(3)A global symmetry, that it
is known to enhance to SO(3)I × SO(3)A at the fixed point. The CFT phase of the theory can
be reached by demanding a1, a2≫ |m|, h and a1 − a2≫ |m|, h, which are already satisfied by
the prepotential in this phase. As it is clear from the lengths of the corresponding (p, q) web
in eq. (79), no additional hypermultiplet needs to be flopped in order to reach the CFT phase.
Consequently, the effective couplings in the CFT phase read

∂ 2F
∂ a2

1

= 8
�

a1 +
1
2

h
�

,
∂ 2F
∂ a2

2

= 8
�

a2 +
1
2

h
�

, (88)

and the invariant CB parameters are

âi = ai +
1
2

h , (89)

generalizing the E1 case. From the tensions of the monopole strings, we can fix the linear
terms in F , obtaining the CFT prepotential

FC F T = −m2â1 +
4
3

2
∑

i=1

â3
i − h2

2
∑

i=1

âi . (90)

The CS terms for the U(1)I ×U(1)A groups are then

∂ 3FC F T

∂ h3
= −4 ,

∂ 3FC F T

∂ h∂m2
= −1 . (91)

We see that the hypermultiplet masses in terms of the invariant CB parameters14

1
6
[|â1 − â2 ±m|]3 +

1
6
[|â1 + â2 − h±m|]3 , (92)

14Here we adopt the conventions of [32] defining

[|x |] := θ (−x) · x =
�

0 , x > 0 ,

x , x < 0 .
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have integer quantized charges, justifying the rescaling of m0 we did above.
The hypermultiplet contribution to the complete prepotential can be obtained by acting

on the masses of the anti-symmetric hypermultiplet with the Z2 Weyl group of SO(3)I , which
sends h→−h. The following representations

1
6
[|â1 − â2 ±m|]3 +

1
6
[|â1 + â2 ± h±m|]3 . (93)

exhaust all possible hypermultiplet contributions to the theory. As it is clear from the previous
procedure, the whole set of hypermultiplets are orbits of the SO(3)I Weyl group obtained from
perturbative hypermultiplets. In this way, we can determine the complete prepotential, which
reads

Fcompl. = −m2â1 +
4
3

2
∑

i=1

â3
i − h2

2
∑

i=1

âi +
1
6
[|â1 − â2 ±m|]3 +

1
6
[|â1 + â2 ± h±m|] , (94)

and matches the calculation in [32].

4.2 Generalisation to arbitrary rank

The discussion in the previous section can be (partially) generalized to arbitrary rank. The
brane system is completely analogous and given explicitly in [47]. For instance, when N = 3
the web is given by

2a3 +m0

2a3

m

2a2 2a1

2a2 +m0

2a1 +m0

2a1 +m0 − 2m

(95)

The tensions read from the web diagram are

Ti =
∂FIMS

∂ ai
−
∂FIMS

∂ ai+1
= 2ai(m0 + 2ai)− 2ai+1(m0 + 2ai+1)−m2 (i = {1, ..., N − 1}) ,

(96)

TN =
∂FIMS

∂ aN
= 2aN (m0 + 2aN ) .

Solving the PDE in eq. (14), with these tensions, we obtain the IMS prepotential

FIMS = m0

N
∑

i=1

a2
i +

4
3

N
∑

i=1

a3
i −m2

N
∑

i=1

(N − i)ai +αm3
0 + βm0m2 . (97)
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The UV duality induces the following map

âi = ai +
m0

2
, m̂0 = −m0 . (98)

Requiring the prepotential to respect this duality imposes the following constraint on the in-
tegration constants

α= −
N
24
−

m2

m2
0

�

β +
N(N − 1)

8

�

, (99)

therefore the duality invariant prepotential for this theory is given by

F = 2h
N
∑

i=1

a2
i +

4
3

N
∑

i=1

a3
i −m2

N
∑

i=1

(N − i)ai −
2N
6

h3 −
N(N − 1)

4
hm2 , (100)

where we have performed the redefinition m0 = 2h to ensure integrality of the non-mixed CS
level of U(1)I .

On the contrary with respect to the N = 2 case, the construction of the complete prepo-
tential is complicated by the presence of a large number of flops, testified by the intricated
structure of the phase diagram unveiled in [46]. Nevertheless, since we are only interested in
the perturbative phase, which is continuously connected to the CFT point without flops, we
can just proceed to compute the CFT prepotential. Starting from the prepotential in eq. (81),
the invariant CB parameters are easily obtained from the effective couplings as

âi = ai +
1
4

m0 . (101)

The tension of the monopole strings obtained from the corresponding (p, q) web in figure (95)
read

∂F
∂ ai
= 2ai (m0 + 2ai)− (N − i)m2 ,

∂F
∂ aN

= 2aN (m0 + 2aN ) . (102)

Matching the values of the tension, the CFT prepotential reads

6FC F T = −6m2
N−1
∑

i=1

(N − i)âi + 8
N
∑

i=1

â3
i −

3
2

m2
0

N
∑

i=1

âi , (103)

generalizing naturally the N = 2 case. The CS terms then match the values obtained in
eq. (100).

Looking at the masses of the perturbative hypermultiplets, written in terms of the invariant
CB parameters

1
6

∑

i< j

[|âi − â j ±m|]3 +
1
6

∑

i< j

[|âi + â j − h±m|]3 , (104)

we see that the rescale we did above gives us the correctly quantized charges. Part of the
hypermultiplet contribution to the complete prepotential can be obtained by applying the Weyl
reflection to m0

1
6

∑

i< j

[|âi − â j ±m|]3 +
1
6

∑

i< j

[|âi + â j ± h±m|]3 . (105)

However, for generic N , the complexity of the phase diagram of the theory in terms of the
mass parameters (m0, m) shown in [46] suggests the existence of additional representations
constituted by purely non-perturbative states, which can be only identified as flops of the (p, q)
web.
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h

d

Sp(N) + 1ASSp(N) + 1AS SCFT point

Sp(N)(−2N ,− N(2N+1)
2 ) + q + ψSp(N)(2N , N(2N+1)

2 ) + q + ψ

Figure 6: Phase diagram of the SUSY-broken E(N)1 theory. We omit drawing the lower
half plane explicitly, since this may be recovered by applying the Z2 Weyl group of
SU(2)R algebra.

We can now activate the SUSY breaking deformation directly in the weak coupling regime.
Contrary to the previously studied cases, we have three choices: giving a VEV to the D-term
for SO(3)A, breaking SUSY and SO(3)A→ U(1)A, giving a VEV to the D-term of U(1)I or giving
a VEV to both. However, as follows from the analysis in section 2, only the first option is stable
at tree level, while the other two choices need to be supplemented by adding a supersymmetric
mass, in order to avoid tachyonic instabilities. In the following, we will deform the theory only
by turning on a deformation for U(1)I .

The effects of this SUSY breaking deformation on the weakly coupled theory is the usual
one: both the gauginos and the CB parameters are lifted, leading to a shift of the background
R-symmetry CS level

kR = −
N(2N + 1)

2
sgn(d) . (106)

The instantonic non-mixed level is left unchanged by this operation, as well as all the levels
involving the anti-symmetric symmetry, under which the gauginos are not charged. At suffi-
ciently weak coupling, namely 1/g2≫

p
d, we expect the full anti-symmetric hypermultiplet

to remain massless under this deformation. The low energy theory is then expected (at least
at weak coupling) to be a non-SUSY Sp(N) YM theory coupled to an anti-symmetric hyper-
multiplet. The resulting phase diagram is shown in figure (6), where as usual we employ the
Z2 ×Z2 Weyl symmetry at the fixed point to relate the four quadrants and the corresponding
CS levels. We see then that on the d axis, the non-mixed levels jump by the following amount

∆CSI = 4N , ∆CSR = N(2N + 1) , (107)

indicating the presence of a phase transition analogous to the E1 case.
Before closing this section, it is worth commenting on the geometric realization of the

previous SUSY breaking deformations, since it can give us indications on the stability of the
theory. The methods we employed above lose their validity when we go to a sufficiently large
coupling. To have access to this regime, we can nevertheless employ the (p, q) web descrip-
tion of the theory, which in the E1 theory context was able to describe consistently both the
supersymmetric and the non-SUSY deformations involving the current multiplet [23]. In the
case at hand, we have multiple possible SUSY preserving and SUSY breaking deformations,
so the geometric description becomes more involved. In the following, we first consider the
non-SUSY deformations of the Sp(N)+1AS theory at weak coupling, in the regime of validity
of the field theory analysis, and then comment on the deformations at strong coupling.
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The CFT point enjoys an SO(3)I×SU(2)A global symmetry. To the two groups, we associate
two independent supersymmetric mass deformations, h and m. We can first turn on h without
introducing m. In this way, the web opens as in figure (108). The symmetry SU(2)A remains
preserved, since the 7-branes on which the global symmetry is hosted (A and B in the figure)
are aligned on the same 5-brane prong direction.

B

A

C

(108)

We can also break SU(2)A without breaking the instantonic SO(3)I symmetry, separating the
two 7-branes A and B by introducing a mass m ̸= 0. We end up with the (p, q) web of figure
(109). The field theory hosted by the web change as we vary N [46]. The instantonic symmetry
remains preserved, as it is hosted on the worldvolume of the two [1, 1] 7-branes, which remain
parallel after the deformation.

(109)

Finally, we can turn on both deformations, breaking the symmetry of the fixed point to
U(1)I×U(1)A, as shown in figure (110).

(110)

In all these cases, the breaking of the symmetry is visible by looking at the distance between
the 7-branes which realizes the su(2)I and the su(2)A algebras. When the branes are separated,
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strings stretching between the branes become massive, and the su(2) theory hosted on their
worldvolume is Higgsed down to U(1).

Similarly, non-SUSY deformations are associated with geometric moves of the brane web.
Let us denote the plane on which the (p, q)-web lies as the (x , y) plane, and a Dirichlet di-
rection for all the 5-branes of the web as z. As pointed out in [23], since these deformations
break the R-symmetry and part of the global symmetry by giving a VEV to a D-term, they can
be realized as rotations of some 5-brane along the x-z plane.15 At the fixed point, giving a VEV
to the D term of the flavor symmetry, the global symmetry breaks to SU(2)AS → U(1)A and the
R-symmetry breaks down to SO(2)R. Similarly, if we introduce a VEV for SO(3)I , we break it
to U(1)I together with the R-symmetry, while SU(2)A remains preserved.

If we go at weak coupling, only a Cartan subgroup U(1)I remains preserved by the su-
persymmetric deformation h. We then have three options: we can turn on a D-term for the
flavor symmetry, which gets broken to U(1)A, a D-term for the instantonic symmetry, which
does not further break the instantonic symmetry, and a D term for both. Note that, in order to
perform the deformation also in the weak coupling regime, we cannot completely break the
instantonic symmetry turning on a generic D term VEV at the fixed point. Instead, we should
tune the direction of this VEV in order to be compatible with the direction preserved by the
SUSY deformation itself [21].

A D-term VEV for the gauge theory living on the worldvolume of a couple of 7-branes
hosting an su(2) algebra is realized by rotating one brane with respect to the other by a non-
supersymmetric angle α [23]. Indeed, this operation breaks both the gauge symmetry on
their worlvolume (to a u(1) subalgebra) and the R-symmetry (down to SO(2)R). We can then
describe the geometric realization of the SUSY breaking deformations. Introducing a VEV for
the D-term of SU(2)A is equivalent to a rotation around the D5 brane direction of the 5-prong
associated with the 7-brane A, see figure (111).

(111)

Indeed, looking at the 7-branes realizing the SU(2)A flavor symmetry, the deformation induces
a D-term breaking on their worldvolume theory, breaking SU(2)A to U(1)A. Moreover, at infi-
nite coupling, we see that the deformation preserves the SO(3)I global symmetry enjoyed by
the fixed point.

Note that the (p, q) web suffers an instability along the direction of the Higgs branch
parametrized by the breaking of the (1,−1) 5-brane along the 7-brane B, even at finite cou-
pling,16 due to the non-supersymmetric rotation. This instability can be overcome by giving
a supersymmetric mass m to the anti-symmetric, leading to stabilization. All these features
confirm the field theory analysis performed at weak coupling in section 2.
We can also introduce a VEV only for the D-term of SO(3)I . This deformation is equivalent to

15Note that assuming the rotation plane to be x-z plane for all branes is necessary to preserve the same SO(2)R
subgroup of the original R-symmetry.

16This is known to be parametrized by the hypermultiplet in the trace of the anti-symmetric representation of
Sp(N), which is reducible [48].
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a rotation of the whole three-junction shown in figure (112).

(112)

In this way, we preserve SU(2)A and break the instantonic symmetry when we rotated the
branes at the fixed point, as expected. This is equivalent to a D-term on the worldvolume
of the 7-branes describing the su(2)I algebra. The instability close to the fixed point comes
from the tachyonic mass of the strings connecting the [1,1] 7-branes. However, this can be
overcome in the large h limit, as happens to the E1 case [23]. This reproduces all the features
observed for this deformation in the field theory analysis of the previous section. At weak
coupling, where the instability is resolved, the theory flows in the IR to Sp(N) YM theory
coupled to a full anti-symmetric hypermultiplet.

Finally, we can rotate the junction, leaving the brane A on the x-y plane, figure (113).
This breaks both SO(3)I and the SU(2)A global symmetries, leading to the two instabilities we
found above, which can be resolved only at large h and m.

This analysis shows a nice one-to-one correspondence between the non-supersymmetric
deformations associated with the flavor symmetry of the UV fixed point and the expected non-
supersymmetric deformations of the (p, q) web. The field theory analysis at weak coupling is
compatible with the (p, q) web description, which in addition shows a series of instabilities at
strong coupling invisible in field theory.

(113)

Consistency with ’t Hooft anomaly matching

The theory has the same mixed ’t Hooft anomaly between U(1)I and Z(1)2 of the Sp(N)(N−1)π
theory, since inclusion of the anti-symmetric matter does not break the related symmetries.
Therefore, for odd N , the partition function with the background gauge fields are changed
under the minimal large gauge transformation as [22,38]

ZSp(N)+AS[A, B] → ZSp(N)+AS[A, B]exp

�

2πiN
4

∫

Σ4

P(B)
�

. (114)

This again implies that the phase for odd N cannot be trivial along RG flow and the proposed
phase diagram in figure (6) is consistent with that.

5 SU(4)0+2AS

Having analyzed the phase diagram of the E(N)1 SCFT, it is natural to generalize the previous
analysis to the SU(2N)0+2AS SCFT point. These theories reduce to Sp(N)+1AS if we go on
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a point of their Higgs branch and to SU(2N − 1)2N−1 when we go at infinite distance on one
of the CB directions. For these reasons, these theories can be considered as a sort of “mother
theory” for many of the cases we analyzed above. At weak coupling, they enjoy a U(2)A×U(1)I
global symmetry, that gets enhanced to U(2)×SO(3)I at the fixed point [49]. The inverse gauge
coupling squared h is associated with the global symmetry, while the two independent masses
mT , m are respectively the masses associated with the U(1) and the SU(2) part of the U(2)
flavor group. In the following, we will study the case N = 2. This is particularly interesting,
since su(4) ∼= so(6) and this will have consequences on the global symmetry of the theory.
In the generic N case, it is still not completely clear how we can reach the CFT phase from
the perturbative one. Therefore, we leave the discussion on this generalisation for a future
analysis.
For N = 2, the gauge symmetry is SU(4)∼= Spin(6), so the global symmetry is U(1)I×Sp(2)/Z2,
since the anti-symmetric of SU(4) is the vector of SO(6), which has an Sp(2) global symmetry.
This can be directly seen from the perturbative prepotential

F = h
4
∑

i=1

a2
i +

1
6

∑

i< j

(ai − a j)
3 −

1
12

∑

i< j

|ai + a j +mT ±m|3 , (115)

where the two anti-symmetric of SU(4) can be rewritten as two vectors of SO(6) under the
identification

a1 =
1
2
(φ1 +φ2 −φ3) , a2 =

1
2
(φ1 −φ2 +φ3) , a3 =

1
2
(−φ1 +φ2 +φ3) , (116)

where φi are independent variables obeying the relations φ1 ≥ φ2 ≥ φ3 ≥ 0 in our chosen
Weyl chamber. In this basis, the W bosons of SU(4) can be rewritten as

4
∑

i< j

(ai − a j)
3 =

3
∑

i< j

(φi −φ j)
3 +

3
∑

i< j

(φi +φ j)
3 , (117)

while a (massless) anti-symmetric hypermultiplet as

3
∑

i< j

(ai + a j) =
∑

i

φi ,
3
∑

i=1

(ai + a4) = −
∑

i

φi , (118)

so the expression in eq. (115) becomes

F = h
3
∑

i=1

φ2
i +

1
6

3
∑

i< j

�

(φi −φ j)
3 + (φi +φ j)

3
�

−
1
12

3
∑

i=1

|φi ±mT ±m|3 , (119)

which is nothing but the prepotential of SO(6) coupled to two vector hypermultiplets.
The action of the Weyl group on the product w · m⃗Sp(2) can be inferred from the expression of
the simple roots in terms of the orthonormal basis {e1, e2}

α1 = e1 − e2 , α2 = 2e2 . (120)

An element zi of the Weyl group acts on a weight w as w→ w−(w·α∨i )αi , so it can be converted
into an action on m⃗ as [32]

z1 : m↔ mT , z2 : mT →−mT .

Combining together, we obtain

z′1 : m→−m , z2 : mT →−mT .
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so we see that both m and mT transform under the Weyl action.
The correct parametrization for the brane web is shown in figure (121), where m1=m+mT ,

m2=mT −m.

a2 − a3 + 2h

a2 − a3

a1

a4

2m1

2m2

(121)

Notice that in this phase we cannot go on the Higgs branch of the theory by breaking the
(1,−1) brane in the low-right part of the web into each other, since this would violate the
s-rule. As a consequence, we cannot obtain the Sp(2)+1AS analyzed in section 4. In order to
do so, we need to flop two hypermultiplets a2 + a3 ±m−mT and reach the phase shown in
figure (122).

a2 − a3 + 2h

a1

a2

a3

a4

a2 + a3 +m1

a2 + a3 +m2

(122)

In this phase, we can select a specific point of the CB a2 = −a3 and switch off the mass
parameter m = mT . At this particular point, two hypermultiplets a1 + a4 − m + mT and
a2 + a3 − m + mT become massless and we can enter the Higgs branch by breaking one of
the (1,−1) 5-brane with respect to the 7-brane attached to the other. The (p, q) web reduces
then to the Sp(2) one in figure (79) under the identification aSp

i = aSU
i , i = {1, 2} and

mSp = 2mSU. As we will see later, also the complete prepotential will coincide (up to some
subtlety).
Under S-duality, we obtain the duality map

ā1 = a1 + h , ā2 = a2 + h , ā3 = a3 − h , h̄= −h , mT = m̄T , m= −m̄ . (123)

We can obtain the CS terms by looking directly at the duality map. The perturbative prepo-
tential can be augmented by three additional CS terms for the background fields

F = h
4
∑

i=1

a2
i +

1
6

∑

i< j

(ai − a j)
3 −

1
12

∑

i< j

|ai + a j +mT ±m|3 +αh3 + βhm2 + γhm2
T , (124)

and this should remain invariant under the duality map. This invariance is guaranteed if and
only if

�

α+
2
3

�

h2 + (β + 1)hm2 + (γ+ 1)hm2
T = 0 , (125)

which is solved by α= −2
3 , β = γ= −1. This gives us the CS terms

chhh = chmm = chmT mT
= −4 . (126)
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Alternatively, we can obtain the same result by constructing the CFT prepotential. It is a simple
matter to construct the invariant CB parameters

âi = ai +
h
2

, â3 = a3 −
h
2

. (127)

Substituting these invariant CB parameters in the expression for the gauge couplings, we ob-
tain

(g−2)ii = (6− 2i)âi + 2
i−1
∑

k=1

âk + 4âT ,

(g−2)i< j = 6âT − 2âi .

The CFT prepotential reads then

FC F T =
1
6

∑

i< j

(âi − â j)
3 −

1
6

∑

i< j

|âi + â j|3 − h2(â1 + â2) + 2(m2 +m2
T )â4 . (128)

Expanding the CFT prepotential, we consistently obtain the correct CS terms for the global
symmetries. This prepotential reduces to the Sp(2)+1AS one when we go on the Higgs branch
of the theory. In order to see this, we first flop the hypermultiplets of mass

â1 + â4 +mT ±m , (129)

in order to reach the phase in figure (122). Then, we set mT = m and a2 = −a3. The invariant
CB parameters look the same if we identify aSp

1 = aSU
1 , aSp

2 = aSU
2 and hSp = hSU as expected,

since in the operation the SO(3)I global symmetry remains preserved. The CFT prepotential
changes as

F = 1
6

∑

i< j

(âi−â j)
3−

1
6

∑

i< j

|âi+â j|3−h2(â1+â2)+2(m2+m2
T )â4−

1
6
(â1+â4+mT±m)3 . (130)

In the limit a2 = −a3 and m = mT = mSp/2 this reduces precisely to the Sp(2)+1AS prepo-
tential (where we dropped the Sp label)

FSp(2)
C F T =

4
3
(â3

1 + â3
2)−m2â1 − h2(â1 + â2)−

1
6

m3 , (131)

up to a cubic CS term in m.
Let us briefly comment on this additional term. Its presence is related to the non-invariance

of eq. (130) under the Weyl group reflection associated with mT , since only a subset of the en-
tire orbit of the Weyl group was flopped to go from the CFT to the Sp(2) phase. However, since
m = mT , this translates into a non-invariance w.r.t. the Weyl group associated with m in the
Sp(2) theory. In order to respect the Weyl symmetry, this should be then eliminated, reducing
the prepotential to the expected one. Notice that we are also able to reproduce the pertur-
bative hypermultiplets of the Sp(2) theory, starting from the perturbative hypermultiplets of
SU(4). These read

ai + a j ±m+mT , (132)

and in the Sp(2) limit reduce to (here we omit the massless ones)

m , a1 ± a2 +m , a1 ± a2 , −(a1 ± a2 −m) , −(a1 ± a2) . (133)

These are nothing but the perturbative hypermultiplets of Sp(2), namely a1±a2±m, together
with the additional W bosons necessary in order to reproduce the correct contribution for
Sp(2).
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h

d

SU(4) + 2ASSU(4) + 2AS SCFT point

SU(4)(−4,− 15
2 )
+ 2 q + 2 ψSU(4)(4, 15

2 )
+ 2 q + 2 ψ

Figure 7: Summary of the phase diagram for the SU(4) + 2AS case.

Since the global symmetry has rank 3, we expect three independent mass parameters as-
sociated with the non-SUSY global current deformations of the fixed point. In order to ensure
the stability of the weakly coupled description after the deformation, we choose to give a
VEV to a D-term for the instantonic current multiplet. This breaks SO(3)I to U(1)I as well
as SU(2)R to U(1)R, while keeping the full flavor symmetry preserved. In the weakly coupled
description, this gives a mass to both the gauginos and the scalar gauginos, while keeping the
anti-symmetric hypermultiplets fully massless (at least at tree level). In the decoupling, the
R-symmetry CS level gets shifted as

kR = −
15
2

sgn(d) , (134)

leading to the phase diagram shown in figure (7). The CS levels shift going from h > 0 to
h< 0 as

∆chhh =∆chmm =∆chmT mT
= 8 , ∆kR = 15 , (135)

indicating a phase transition around the non-supersymmetric deformation axis.

Consistency with ’t Hooft anomaly matching

The inclusion of an anti-symmetric to the pure SU(2N)0 theory breaks the one-form symmetry
Z(1)2N to Z(1)2 . Therefore the theory has the same structure on the mixed ’t Hooft anomaly

between U(1)I and Z(1)2 as the SU(N + 1)N+3 theory with odd N we analyzed in previous
section. Again, under a large gauge transformation with unit winding, the partition function
changes as [22,38]

ZSU(2N)0+2AS[A, B] → ZSU(2N)0+2AS[A, B]exp

�

2πiN(2N − 1)
4

∫

Σ4

P(B)
�

, (136)

which indicates that the ’t Hooft anomaly is nontrivial for odd N and trivial for even N . There-
fore, the phase for odd N cannot be trivial along RG flow, while this argument does not give
any constraint for the SU(4) case shown in figure (7).

6 Conclusions and discussion

In this paper, we studied supersymmetry breaking deformations of 5d SYM theories, as well
as theories coupled to matter hypermultiplets, and showed the existence of phase transitions
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separating different weakly coupled regions of their phase diagram. That brane systems can
be useful for the study of non-supersymmetric Yang-Mills theory was noted long ago in [50].
Recently, there has been a flurry of results about dualities and dynamics of 3d gauge theo-
ries without supersymmetry using brane systems, see for instance [24, 25, 37, 51]. In higher
dimensions, and especially in d ≥ 5 there are far fewer studies, with some notable excep-
tions like [23]. It is therefore well overdue to explore the consequences of brane dynamics for
non-SUSY QFTs in 5d. Our study has revealed that 5-brane webs can also be useful in under-
standing the strong coupling dynamics of non-supersymmetric deformations of 5d SCFTs.

One of the main motivations for our work was the question of whether 5d fixed points
without supersymmetry can exist in spacetime dimensions d > 4. It is not easy to provide a
definitive answer to this question yet. In particular, while we can conclusively argue for the ex-
istence of phase transitions, the order of such transitions is not straightforward to determine.
It would obviously be interesting to find further arguments in clarifying this question. Careful
analysis of symmetries and anomalies are an indispensable tool in constraining the space of
possible scenarios. It would, in particular, be interesting to expand on the discussion in ap-
pendix A by turning on further backgrounds for the 0-form flavor symmetries of the theories
with matter hypermultiplets and look for discrete anomalies along the lines of [52].

Among the various theories we analyzed above, the presence of instability on the Higgs
branch when the non-SUSY deformation was turned on at infinite coupling was a common
feature, with however a notable exception. Indeed, the UV fixed point associated with the
SU(N + 1)N+3−Sp(N)(N+1)π theories has no Higgs branch at the fixed point for N even and,
as a consequence, no instabilities of this kind can arise. This can be an example of an RG
flow between a SUSY and a non-supersymmetric CFT purely at strong coupling. However, we
cannot exclude additional instabilities arising through other mechanisms. These can be, in
principle, analyzed by looking at the string theory construction of these theories. This can be
a possible interesting direction to pursue in the future.

In the case of holographic supersymmetric fixed points, much of the insight into their dy-
namics is obtained through their dual AdS6 geometries [5, 53, 54]. Recently, non-SUSY AdS6
solutions of type II supergravities have appeared in [55, 56]. Moreover the aforementioned
class of solutions are close cousins of the SUSY solutions dual to 5d SCFTs. It would be in-
teresting to explore potential similarities between our field theory deformations, and these
studies. In particular while the effective gauge theoretic description breaks down close to the
transition lines outlined in this paper, the supergravity description might provide a window
into the dynamics of this regime. Another particularly relevant solution is the massive IIA
solutions of Brandhuber and Oz [7], whose dual SCFT is the rank-N E1 SCFT. We have per-
formed a detailed analysis of the SUSY-breaking deformation of this theory, identifying their
geometric realization in the 5-brane web. It would be interesting to identify the corresponding
deformation in the holographic setup.

Last but not least, generalizing and classifying SUSY breaking deformations might shed
light on understanding UV behaviors of phenomenological models with extra dimensions.
While such models are always perturbatively non-renormalizable, in many cases it is unclear
whether or not they admit a UV completion and, if so, how they behave at high energies. Pur-
suing the direction of our work, one can try to identify UV completions and their properties of
some phenomenological models.
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A Details of the anomaly computation

In this appendix we collect some results which are useful in computing the anomalies stated in
the main text. The following material is by now standard and appears in many papers, but we
find it convenient to collect these results in order to be self-contained. We closely follow the
logic and presentation of [52]. In order to describe SU(N)/Zk gauge theory on a spacetime
manifold X , we first embed it into a larger group [57–59]

G =
SU(N)×U(1)
Zk

. (A.1)

A G-bundle is specified by the one-forms Ai defined on open covers Ui , together with their
transition functions t i j . On double overlaps Ui j = Ui ∩ U j the gauge fields are related by

A j = t−1
i j Ai t i j + t−1

i j d t i j . (A.2)

On triple overlaps Ui jk = Ui∩U j∩Uk, the transition functions must satisfy the cocycle condition

t i j t jk tki = 1 . (A.3)

Let us write the G-connection A in terms of an su(N) connection Ã and a u(1) connection Â via

A= Ã+
1
k

Â1 . (A.4)

Now the cocycle condition in eq. (A.3) can be satisfied for transition functions t̃ i j and t̂ i j
obeying

t̃ i j t̃ jk t̃ki = exp
�

2πi
k

ni jk

�

, t̂ i j t̂ jk t̂ki = exp
�

−
2πi

k
ni jk

�

. (A.5)

Note the redundancy in redefining the su(N) transition functions by an arbitrary phase

t̃ i j → t̃ i j exp
�

2πi
k

ni j

�

. (A.6)

This defines a relation
ni jk ∼ ni jk + ni j + n jk + nki . (A.7)

Modding out by this relation is equivalent to introducing a 2-form gauge field B ∈ H2(X ,Zk).
A continuum description of a discrete 2-form gauge theory is obtained by imposing the

following constraint
kB = dÂ , (A.8)

and requiring invariance of the system under the following 1-form gauge symmetry

B→ B + dλ , Â→ Â+ kλ , (A.9)

where λ is an ordinary (1-form) gauge field. The above gauge transformation removes the
extra U(1) symmetry we started out with so that we end up with a G/U(1) ∼= SU(N)/Zk
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bundle. The crucial point now is that the instanton current for the original U(N) field strength
F = dA+ A2 is not invariant under this 1-form gauge symmetry. To make it gauge invariant
we send

F → F − B1 , (A.10)

at the expense that the instanton current is no longer integer quantized

1
8π2

∫

Σ4

tr [(F − B)∧ (F − B)] =
1

8π2

∫

Σ4

[tr(F ∧ F)− 2tr(F)∧ B + NB ∧ B] . (A.11)

When B is dynamical, this describes the SU(N)/Zk gauge theory, while if B is a fixed back-
ground it is regarded as an SU(N) gauge theory with a background gauge field of theZ(1)k ⊆Z

(1)
N

one-form symmetry. Using the relation in eq. (A.8) and the quantisation condition

1
8π2

∫

Σ4

[tr(F ∧ F)− trF ∧ trF] ∈ Z , (A.12)

we can extract the fractional part of the instanton number

N(N − 1)
8π2k2

∫

Σ4

dÂ∧ dÂ . (A.13)

The above discussion is useful to compute the mixed ’t Hooft anomaly between the U(1)I
and Z(1)k ⊆ Z

(1)
N symmetry of the 5d SU(N) gauge theory following [22, 38, 60]. After turning

on the background gauge field B for Z(1)k , let us turn on a background gauge field AI for the
U(1)I by adding the following term to the Lagrangian

δL= iAI ∧ ⋆JI[F − B] . (A.14)

Assuming our space time admits non-trivial 1-cycle γ, under a large gauge transformation
winding γ, the gauge field transforms as AI → AI + ζ, where by definition,

∮

γ
ζ/2π integrates

to ℓ ∈ Z. Therefore under such a transformation, the partition function changes by

Z[AI , B] → Z[AI , B]exp
�

2πiℓ
N(N − 1)

k2

�

, (A.15)

which is in perfect agreement with the anomalous phase computed in [38,60].
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