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Abstract

While neural networks offer an attractive way to numerically encode functions, actual
formulas remain the language of theoretical particle physics. We use symbolic regression
trained on matrix-element information to extract, for instance, optimal LHC observables.
This way we invert the usual simulation paradigm and extract easily interpretable for-
mulas from complex simulated data. We introduce the method using the effect of a
dimension-6 coefficient on associated ZH production. We then validate it for the known
case of CP-violation in weak-boson-fusion Higgs production, including detector effects.
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1 Introduction

The defining feature of modern LHC physics is the combination of fundamental physics ques-
tions, precision simulations based on first-principle quantum field theory, and state-of-the-art
statistics and analyses. In the ideal LHC world we will use likelihood-free or simulation-based
inference [1] to compare simulated data sets with recorded data sets and extract fundamental
physics parameters using likelihood methods. Machine learning has the potential to transform
many parts of this analysis chain, from enabling faster and more precise simulations to trig-
gering events, providing stable and economic analysis objects, to the actual inference. On the
other hand, a fundamental physics description in terms of perturbative quantum field theory
often allows us to write down compact and instructive mathematical expressions for scatter-
ing amplitudes or observables. This advantage is lost when we turn to numerical methods like
neural networks.

The way to combine the power of machine learning with the advantage of mathemati-
cal intuition is symbolic regression. In analogy to training a neural network we can use this
method to learn a general, analytic function over phase space from a data set. While the
standard methodology in particle physics is to start from human-readable formulas and build
numerical simulations on them, symbolic regression allows us to invert this method and ex-
tract human-readable formulas from simulated data sets. If the performance of this function
is comparable to the numerically trained network, such an analytic expression represents the
best of both worlds and can trigger fundamental considerations explaining the approximate
analytic formula. In this paper we approximate numerically defined optimal observables, or
scores, for simple LHC processes with closed formulas and show how those compare to known
fundamental properties and expressions.

One of the most pressing physics questions for the LHC is the properties of the Higgs boson,
the currently only fundamental scalar particle [2]. The theory framework for Higgs analyses is
the Standard Model Effective Field Theory (SMEFT) [3], which combines rate information and
kinematic distributions in global analyses [4–10]. Given a set of Wilson coefficients describing
physics beyond the Standard Model, the straightforward question is how we can best measure
a specific model parameter in a specific LHC process. In the usual LHC analysis framework
of theory-inspired observables this leads to the problem of finding the optimal observable to
measure a given parameter in a given process [11–14]. At the detector level, optimal ob-
servables or scores [15] can be encoded in form of neural networks [16–18], automated in
the MADMINER library [19]. They have proven useful in different applications to LHC Higgs
physics [20–23].

In this paper we use symbolic regression [24–27] to construct optimal observables for LHC
processes as human-interpretable formulas. We rely on MADMINER [19] to extract matrix-
element information from simulated events and on PYSR [28] to approximate the score as a
closed-form symbolic expression. We then show how the so-defined observables compare to es-
tablished fundamental properties and expressions. Unlike the traditional parton-level method,
our approach allows us to incorporate backgrounds, jet radiation, and detector effects. Unlike
the neural approach, its output is a human-readable expression such as pT,1pT,2 cos(∆φ j j).

After introducing all relevant concepts and tools in Sec. 2, we will illustrate how symbolic
regression can learn the optimal observable for the Wilson coefficient fB in ZH production in
Sec. 3. For this simple on-shell scattering process, we discuss possible functional forms and
a suitable modification of the standard PYSR algorithm. In Sec. 4, we will apply symbolic
regression to determine the optimal observable for the C P-violating Wilson coefficient fWfW
in weak-boson-fusion (WBF) Higgs production. In this case we know the analytic form for
small Wilson coefficients at parton level [21,29,30], it has been shown to work in actual anal-
yses [31–34], so we will benchmark our symbolic regression approach and study the case of
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larger Wilson coefficients and detector effects. Finally, we compare the expected performance
of our approximate formulas to the complete numerical MADMINER output.

2 Basics

2.1 Optimal observables or score

Historically, LHC analyses identify phase space regions with a large signal-to-background ra-
tio and focus on them by applying cuts on kinematic observables. A measurement is then
based on counting events and comparing this rate to the background-only and the signal-plus-
background predictions. Such an analysis has the fundamental disadvantage that there will
always be kinematic observables and phase space regions which do not contribute to our task.
One way to improve these analyses is to change the way we organize events. Instead of a
simple kinematic observable, we can define histograms in terms of any variable we want, and
we can systematically construct optimal test statistics for a given task.

The central object for constructing an optimal observable or score is the likelihood function
for a single event at the LHC,

p(x |θ ) =
1

σtot(θ )
ddσ(x |θ )

dxd
. (1)

The symbol x stands for all of the information we observe for an event, for instance as a vector
in terms of a basis of observables, including particle IDs of reconstructed particles. θ is the
vector of theory parameters of interest, ddσ(x |θ )/dxd is the fully differential cross section,
andσtot is the total cross section. If we are interested in parameter values θ close to a reference
point θ0, we can taylor the log likelihood around θ0,

log
p(x |θ )
p(x |θ0)

= (θ − θ0) · ∇θ log p(x |θ )
�

�

�

�

θ0
︸ ︷︷ ︸

t(x |θ0)

+ · · · (2)

The first-order term in this expansion is known as the score in the field of statistics [15]. If the
second-order term is negligible, we can solve this equation and find

p(x |θ )≈ et(x |θ0)·(θ−θ0)p(x |θ0) . (3)

This likelihood function has the property that t(x |θ0) are its sufficient statistics; measuring
this score contains all of the information on the parameters θ as the full event record x . In the
vicinity θ ∼ θ0 we can then define an optimal observable for each model parameter θi as [12],

O opt
i (x)≡ t(x |θ0) =

∂ log p(x |θ )
∂ θi

�

�

�

�

θ0

. (4)

From Eq.(2) we also see that it is optimal in the sense that it approximates the log-likelihood ra-
tio as the optimal discriminator. Using the same simplifying assumptions, it is possible to show
that the score or optimal observable is not only linked to the Neyman-Pearson lemma [35],
but also saturates the Cramér-Rao bound [36, 37], for a particle physics-related discussion
see e.g. Refs. [2,20,38] and indeed includes all available information on a continuous model
parameter.

For many LHC applications, including measuring SMEFT Wilson coefficients, a natural
reference point is the Standard Model with θ0 = 0. At parton level and assuming all particle
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properties can be observed, the likelihood is proportional to the transition amplitude and we
find

p(x |θ )∼ |M|20 +
∑

n

θn|M|2int,n +O(θ2) ⇒ O opt
i (x)≡ t(x |θ0)∝

|M|2int,i

|M|20
, (5)

where we have omitted additive and multiplicative constants.
Computing the score t(x |θ0) beyond parton level is not straightforward, because the like-

lihood function p(x |θ ) is, in general, intractable. However, it is linked to the scattering matrix
elements in that the single-event likelihood of Eq.(1) can be written as [16–18]

p(x |θ )∝
∫

dz p(x |z) |M(z|θ )|2 , (6)

where we integrate over the full parton-level information z, |M(z|θ )|2 is the squared matrix
element evaluated for parameters θ , and p(x |z) relates the full parton-level information z to
the observables x , including parton shower and detector effects.

For a simulated event, we know the complete parton-level information z and can compute
the joint score

t(x , z|θ ) =
∇θ |M(z|θ )|2

|M(z|θ )|2
−
∇θσtot(θ )
σtot(θ )

. (7)

This joint score is not useful, since it depends on unobserved parameters as part of z. However,
it turns out that the score t(x |θ ) can be linked to the joint score t(x , z|θ ) as the minimum of
the mean-squared-error functional:

t(x |θ ) = arg min
g(x)
Ex ,z∼p(x ,z|θ ) |g(x)− t(x , z|θ )|2 . (8)

In practice, we can perform this minimization by choosing an expressive variational family for
g(x) and fitting its parameters to simulated data.

The first instantiation of this idea is the SALLY method [16–18], which uses a neural net-
work as fitting function g(x) and learns its parameters through stochastic gradient descent. In
this work we propose an alternative approach: for g(x), we use a set of symbolic expressions,
closed-form formulas that combine elementary elements and simple functions in a human-
readable way. For this purpose we minimize the loss functional in Eq. (8) with a genetic
algorithm.

2.2 MadMiner

To generate LHC events for finite Wilson coefficients we use the reweighting option in MAD-
GRAPH5, combined with the known, quadratic dependence of the production cross section on
the Wilson coefficient. This gives us event weights for different values of the Wilson coeffi-
cient, which are then extracted by MADMINER 0.5 [19] and used for the calculation of the joint
score via a morphing technique [17].

The joint score is essentially extracted from the 4-momenta of the outgoing particles at
parton level. Taking the joint score, the neural net SALLY can be used to regress the score on
the real kinematic observables after shower and detector. The goal of this paper is to replace
the neural network by an explicit analytic formula obtained through the symbolic regression
tool PYSR.

We use 500k events from the MADGRAPH5 [39], PYTHIA8 [40], and DELPHES [41] simula-
tion chain with the default CMS card. With MADMINER we extract matrix-element information
from our Monte-Carlo simulations and calculate the expected limits on the Wilson coefficients.
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Additionally we use the implemented SALLY algorithm, trained on the same events, as a base-
line for comparison with symbolic regression results. For the network training we rely on the
AMSGRAD optimizer [42].

2.3 Symbolic regression

For our symbolic regression we rely on PYSR [28]. It uses genetic programming to find a
symbolic expression for a numerically defined function in terms of pre-defined variables. The
population consists of symbolic expressions, visualized as a tree and consisting of nodes with
an operator function or an operand. We use the operators for addition, subtraction, multi-
plication, squaring, cubing and if needed division. The tree population evolves when new
individuals are created and old ones are discarded. To breed the next generation, several
mutation operators can be applied, for instance exchanging, adding or deleting nodes of the
parent tree. The hyperparameter populations= 30 defines the number of populations and
is per default set to the number of processors used (procs). The number of individuals per
populations is given by npop= 1000.

As the figure of merit for the PYSR algorithm we take the mean squared error between the
data points t i(x , z|θ ) and the functional description gi ,

MSE=
1
n

n
∑

i=1

(gi(x)− t i(x , z|θ ))2 , (9)

and balance it with the function’s complexity, defined as

complexity= #nodes . (10)

For the PYSR score value, not to be confused with the statistics version of the optimal observ-
able defined in Eq.(2), the parameter parsimony defined through

score=
MSE

baseline
+ parsimony · complexity , (11)

balances the two conditions. The normalization factor baseline is the MSE between the
data and the constant unit function. The hyperparameter maxsize restricts the complexity
to a maximum value. We adjust this value depending on the difficulty of the regression task
taking 50 as a starting point and increase (decrease) it if the required complexity is larger
(smaller). Additionally we can restrict the complexity of specific operators to obtain a more
readable result. We set the maximal complexity of square to 5 and cube to 3. Note that in some
instances we choose to not extract the score, but the score scaled by a constant, to improve
the numerics with an order-one function.

Simulated annealing [43] allows us to search for a global optimum in a high-dimensional
space while preventing the algorithm from being stuck in a local optimum. A mutation is
accepted with the probability

p = exp
�

−
scorenew − scoreold

alpha · T

�

. (12)

The parameter T is referred to as temperature. It linearly decreases with each cycle
or generation, starting with 1 in the first cycle and 0 in the last. The hyperparameter
ncyclesperiterations = 200 sets the amount of cycles. We choose alpha = 1. If the
new function describes the data better than the reference tree, scorenew ≪ scoreold, the
exponent has a positive sign and the new function is accepted. If the new sore is larger than
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the old score, the acceptance of the new function is given by p and hence exponentially sup-
pressed. We use this default PYSR form for our simple example and discuss a better-suited
form for our application in Sec. 3.

The hyperparameter niterations = 300 defines the number of iterations of a full sim-
ulated annealing process. After each iteration the best formulas are compared to the hall
of fame (HoF). For each complexity the best equation is chosen and saved in the output
file. An equation of higher complexity is only added if its MSE is smaller than for previ-
ous formulas. Equations from different populations or the hall of fame can migrate to other
populations. This process is affected by the parameters fractionReplaced = 0.5 and
fractionReplacedHof= 0.2.

3 ZH production

To illustrate our symbolic regression task we choose the LHC production process

pp→ ZH , (13)

without decays and modified by a single dimension-6 operator,

L= LSM +
fB

Λ2
OB , with OB =

i g ′

2
(Dµφ)†DνφBµν . (14)

This operator is know to modify the boosted regime of ZH production [22, 44–46]. For our
numerical results we quote fB-values for Λ= 1 TeV.

We generate parton level events with MADGRAPH5 with the EWDIM6 model file [47]. Con-
sidering ZH production at parton level and without decays, the number of degrees of freedom
is given by two on-shell 3-momenta minus transverse momentum conservation. Of these four
degrees of freedom the azimuthal angle is a symmetry, so we expect three observables to de-
scribe the effects of fB over phase space. In Fig. 1 we show distributions for the candidate
observables

pT,Z = pT,H , and η± = ηZ ±ηH , (15)

for fB = 0,2, 10, where the largest value is experimentally ruled out and only chosen for
illustration purposes. At first sight the Wilson coefficient seems to affect pT and η+, while η−
looks insensitive. However, this is an artifact of looking at 1-dimensional histograms. In Fig. 2
we show the correlation between η+ and η− in slices of pT . In the right column, the ratio
indicates that for given pT there is no variation in η+, except for a smaller global range, which
reflects a general suppression of events with, both, large pT and pz . On the other hand, there
is a small residual dependence on η−, in that highly boosted events are more central.

0 200 400 600 800
pT [GeV]

10 6

10 5

10 4

10 3

10 2

d
/d

p T
 [f

b/
bi

n]

fB = 0
fB = 2
fB = 10

4 2 0 2 40.0

0.1

0.2

0.3

0.4

d
/d

 [f
b/

bi
n]

6 4 2 0 2 4 6
+

0.06

0.07

0.08

0.09

0.10

d
/d

+
 [f

b/
bi

n]

Figure 1: Kinematic distributions for ZH production at parton level with different
Wilson coefficients fB. We define η± = ηZ ±ηH .
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Figure 2: Kinematic η− vs η+ correlations for ZH production with fB = 0,10. We
show pT -slices in the boosted regime.

3.1 Score for fB

The advantage of our simple ZH example process is that we can analytically compute the score
to leading order. We start with the joint score in the presence of unphysical parameters z as
given in Eq.(7). The differential cross section for ZH production is

dσ(z|θ ) =
(2π)4 f1(x1) f2(x2)

8x1 x2s
|M|2 (z|θ ) dΦ(x) , (16)

with the momentum fractions x i of the partons, the squared center-of-mass energy s, and the
parton densities fi(x i). If the matrix element is quadratic in the Wilson coefficient we can
write it as

|M(θ )|2 ∼ p0 + aθ + bθ2 , (17)

and find for the first term in Eq.(7)

∇θ |M(θ )|2

|M(θ )|2
=

a+ 2bθ
p0 + aθ + bθ2

. (18)

We consider two limits for this expression in Tab. 1. For small Wilson coefficients we only
keep the leading term in θ and find that the score decreases as long as 2b < a2/p0. Evaluated
around the Standard Model, the contribution to the score is constant, specifically a/p0. For
large new physics contributions we neglect the constant and linear terms. In that case the
score decreases like 2/θ for increasing θ .
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Table 1: Limits for the first term of the joint score in Eq.(7).

θ ≪ 1 θ ≳ 1

approximation
leading term quadratic term

a
p0
+

1
p0

�

2b−
a2

p0

�

θ
2
θ

scaling mostly constant decreasing with θ

The situation is more complicated for the second term, because the total cross section
requires a phase space integration and the prefactors in Eq.(16) do not cancel

∇θσtot(θ )
σtot(θ )

=

∫

dΦ(x) f1(x1,Q2)/x1 f2(x2,Q2)/x2 (a+ 2bθ )
∫

dΦ(x) f1(x1,Q2)/x1 f2(x2,Q2)/x2 (p0 + aθ + bθ2)
. (19)

This contribution is essentially a constant in θ , but it is different for different quark flavors.
To simplify our problem we will start by only looking at one quark type in the initial state,
allowing us to neglect this score contribution.

For a single quark flavor and only considering the Z-contribution,

uū→ Z∗→ ZH , (20)

the partonic squared matrix element has the compact form.

|M|2 =
2g2(V 2 + A2)
c2

w(s−m2
Z)2

x1 x2s
�

2m2
Z + p2

T

�

�

mZ

v
+

fB

Λ2

g ′2v
8mZ

�

m2
H + 2pH pZ

�

�2

. (21)

Around the Standard Model the linear score contribution of Eq.(18) reads

t(x | fB = 0)≈
a
p0
=

g ′2v2

4m2
Z

�

m2
H + 2pH pZ

�

. (22)

In Fig. 3 we show the kinematic dependence of the score from our numerical evaluation. In
the left panel we see that the pT -dependence of the score is mild for small Wilson coefficients
and small pT . For larger pT we also see the quadratic scaling from the formula. Towards
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Figure 3: Kinematic distributions, pT and η−, for different values of fB. We only
include the Z-contribution and one initial parton flavor.
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Figure 4: Score as a function of pT for the polynomial fits and the PYSR output,
including the optimization fit, for the simplified ZH setup with fB = 0, corresponding
to Tab. 2.

larger Wilson coefficients, the score indeed decreases approximately like 1/θ ∼ 1/ fB. For η−
and in the boosted regime we see the same pattern, namely that the score decreases when we
evaluate it away from the Standard Model. For all values of fB the score increases towards
larger η−, where events are generally more rare.

3.2 Learning a score formula

Now that we have a numerical definition of the score over phase space, we can use symbolic
regression to construct a formula for its phase space distribution. From our earlier consider-
ation we expect the score to be described by the two observables pT and η−. Moreover, from
Fig. 3 we expect that for small fB values the score should be covered by a polynomial in the
leading observables pT/mH and η−.

Polynomial functions for fB = 0

As a starting point, we extract a functional form of the score for ZH production only including
the Z-contribution and one quark flavor using a polynomial form in

xp =
pT

mH
, and xη = |η−| . (23)

The scaling ensures that all involved quantities are in the same order of magnitude which
is easier for PYSR to deal with. These phase space variables do not directly correspond to
the variables in Eq.(22), but will allow us to generalize our results to the full hadron collider
kinematics.

In the upper left panel of Fig. 4 we first show the full data set for t(x | fB = 0) as a function
of pT . Before applying PYSR, we first establish a baseline by fitting polynomials of degrees two
to four in xη and xp. The fits minimized the MSE for all 500k phase space points. For the fits
as well as for the optimizations of PYSR results described below we use the python package
LMFIT [48] for non-linear optimization and curve fitting which is based on SCIPY.OPTIMIZE [49].
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In Tab. 2 we see that the increased expressivity of the higher polynomial leads to a slight
improvement in the MSE value. From the prefactors we get a rough idea what the leading
dependences are. According to the upper row of Fig. 4 the second-order polynomial describes
most of the data well. The quadratic form, with four prefactors of similar size and a much
smaller constant and x2

η term, is necessary to add the scattered points with large score at
intermediate pT -values and large |η−|. This pattern reflects the fact that the score function for
our toy model at fB = 0, shown approximately in Eq.(22), is easy to model.

PYSR with the settings described in Sec. 2.3 with 10 populations and the maximal com-
plexity of 50 gives us a hall of fame with the most prominent formulas listed in Tab. 3. The
complexity refers to the original PYSR tree and can often be smaller when we simplify the
equation by hand. The great advantage of PYSR is that given such a hall of fame we can
choose a result that fits our needs best in terms of balancing complexity versus MSE. The last
expression with complexity 49 corresponds to the PYSR result given in Tab. 2. It includes
powers up to p2

T |η−|
3, but leaves out some of the terms, notably p3

T and p4
T , which are also

missing from Eq.(22). Instead, PYSR introduces correlations between pT and η− to model
their dependence. Overall, we see that while having less free parameters it gives better results
than the polynomial of degree four.

An algorithmic weakness of PYSR is that it never properly fits its functional form to the
data set. Because larger data sets pose an increasing challenge to PYSR we only use 800
of our originally 500k data points, distributed appropriately. For both reasons, we add an
optimization fit for all parameters in the HoF functions using the whole data set. The shift
in the parameters is indicated in the right column of Tab. 2, where the individual parameters
change by up to a factor 2, and the error bar of the fit indicates that the original PYSR choice
it outside the fit uncertainty. The modest improvement in the description of the score as a
function of pT is illustrated in Fig. 4. The results given in Tab. 3 are also optimized.

Table 2: Polynomial score functions for the simplified ZH setup with fB = 0. The
right column shows the results from an optimization fit to the PYSR function. For
numerical reasons all results describe t(xp, xη)× 10.

polynomial d = 2 polynomial d = 3 polynomial d = 4 PYSR PYSR optimized

MSE 3.49 · 10−3 8.16 · 10−4 1.28 · 10−4 1.23 · 10−4 7.65 · 10−5

dof 6 10 15 9 9

1 -0.03145 -0.1810 -0.1231 -0.1495 -0.134807(46)
xp -0.2022 0.4871 -0.06404 -0.01553 -0.036030(78)
xη -0.1783 0.1837 -0.04830 0.0045 0.002083(55)
x2

p 0.1805 0.1303 0.1612 0.1453 0.148277(26)
xp xη 0.2303 -0.3434 0.1124 -0.01553 -0.00787(10)
x2
η 0.02861 -0.1036 0.06492 - -

x3
p - -0.001788 −4.504 · 10−4 - -

x2
p xη - 0.1022 -0.03152 0.01854 0.022835(68)

xp x2
η - 0.1449 -0.1551 - -

x3
η - 0.01001 -0.01976 6.333 · 10−4 0.0013648(50)

x4
p - - 6.936 · 10−5 - -

x3
p xη - - -0.002264 - -

x2
p x2
η - - 0.07835 0.005143 -0.002813(67)

xp x3
η - - 0.03080 -0.007064 -0.011333(26)

x4
η - - 0.001368 - -

x2
p x3
η - - - 0.01970 0.023525(22)
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Table 3: Score hall of fame for simplified ZH setup with fB = 0. The last formula
corresponds to the PYSR result shown in Tab. 2. For numerical reasons all results
describe t(xp, xη)× 10.

cmpl dof function MSE

7 1 axp(xp + xη) 3.81 · 10−2

10 3 ax2
p(b+ xη)− c 2.49 · 10−3

14 3 ax2
p + bx2

p x2
η − c 6.64 · 10−4

22 4 ax2
p + bx2

p x2
η − cxp xη − d 3.09 · 10−4

32 6 a(x2
p + xη) + bx2

p xη − (cxp − d)2 + ex2
p x3
η − f 2.06 · 10−4

34 7 a(x2
p + xη) + bx2

p xη − (cxp − d)2 + ex3
η(xp − f )2 − g 7.77 · 10−5

49 9 ax2
p + bx2

p xη − cxη(xp − d) + ex3
η(xp − f )2 + g x2

p x2
η − hxp − i 7.65 · 10−5
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Figure 5: Score as a function of pT and η− for the rational PYSR output for the
simplified ZH setup with fB = 10, corresponding to Tab. 4.

Rational function for fB = 10

Moving on to a more challenging PYSR task, we know from Tab. 1 and Fig. 3 that a simple
polynomial form is unlikely to describe the score away from the Standard Model, for instance
at fB = 10. To enable PYSR to describe this score, we also allow for the division operator, so
the score can be described by a rational function. The maximum complexity is now 75.

The initial PYSR output we chose from the hall of fame is the function

t(xp, xη| fB = 10) = axp − b+
c(xη + d)

e+
f

xp

�

�

xp − g
�4
+ h
��

i
�

xη − j
�2
+ k
�

, (24)

again with xp = pT/mH and xη = |η−|. In Tab. 4 we see that with this formula PYSR initially
finds stable results, but a proper fit converges on some very large parameters with large error
bars, specifically c, e and f . This reflects flat directions in Eq.(24), which we can remove by
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re-defining

t(xp, xη| fB = 10) = axp − b+
c′xη + d ′

1+
f ′

xp

�

h′
�

xp + g
�4 − 1
��

i′
�

xη − j
�2
+ 1
�

, (25)

with

c′ =
c
e

, d ′ =
cd
e

, f ′ =
f

ehk
, h′ =

1
h

, i′ =
i
k

. (26)

This way we remove two parameters, e and k. We see in the third column of Tab. 4 that now
all parameters come with controlled uncertainties.

Finally, we can check if the two exponents in the function are what they should be. The
final function we can fit to our data set is then

t(xp, xη| fB = 10) = axp − b+
c′xη + d ′

1+
f ′

xp

�

h′|xp + g|z − 1
� �

i′|xη − j|y + 1
�

. (27)

According to the right column of Tab. 4, this leads to a sizeable shift in one of the exponents,
z = 2→ 3.37. On the other hand, from the very slight improvement in the MSE we see that
already the original function was expressive enough to describe the majority of data points.

In Fig. 5 we show the dependence of the rational score functions on the two kinematic
observables. Here we see that the post-processing is necessary to describe the high-pT range,
as well as the |η−|-dependent upper limit. Given that in an actual analysis we rely on parameter
points with large score to measure fB, such a difference might become numerically relevant.
We will come back to the relation between MSE and analysis reach in Sec. 4.4.

Table 4: Rational score parametrizations for the simplified ZH setup with fB = 10.
We show parameters from PYSR, from an additional fit to the PYSR function, and from
a fit including exponents. For numerical reasons all results describe t(xp, xη)× 10.

PYSR default PYSR optimized
Eq.(24) Eq.(25) Eq.(27)

MSE 8.85 · 10−4 7.52 · 10−5 7.38 · 10−5 5.42 · 10−5

a 0.2201 0.02318(20) 0.01534(20) 0.00805(17)
b 0.2427 0.169067(79) 0.166262(71) 0.166229(67)
c(′) 0.0249 6.2(10) 0.09973(32) 0.06691(36)
d(′) 0.7070 13.667(54) 1.5949(23) 1.712(22)
e 0.1405 56.6(96) - -
f (′) 0.7046 374(42) 2.680(21) 1.928(18)
g 0.2855 -13.834(86) 18.56(14) 23.54(20)
h(′) 0.1270 -3.945(96)·104 7.97(23)·10−6 1.206(33)·10−5

i(′) 0.5750 2.05(30)·10−5 0.42702(54) 0.05091(78)
j 0.3189 0.336749(58) 0.32375(55) -0.5942(55)
k 0.1192 4.61(67)·10−5 - -
y fixed 2 fixed 2 fixed 2 3.3771(78)
z fixed 4 fixed 4 fixed 4 3.5724(43)
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Including photon for fB = 10

In our next step we add the s-channel photon to the process and study how an increased
complexity helps describing the score for fB = 10. It turns out that the default setup of PYSR
does not find a good high-complexity function for this case, because the algorithm gets stuck
at complexities around 30. The reason for this problem is the mutation probability Eq.(12),
which for small parsimony reads

p = exp
�

−
MSEnew − MSEold

alpha · T · baseline

�

. (28)

The baseline is an order-one constant. This form causes a problem if the old function is a poor
fit, and the new function has an improved shape, but an even worse MSE for its initial param-
eters. In that case the absolute scale of the MSE values always leads to a vanishing mutation
probability, and Eq.(12) or Eq.(28) do not accept enough more complex functions to leave
the local minimum. Shifting alpha to very large values helps, but leads to problems when
the typical MSE become small. For data that is easy to describe, as our previously considered
cases, this problem was compensated by a very large number of mutation attempts, but after
including the photon this compensation fails.

Once we understand the problem, it is easy to fix with a new mutation probability,

p = exp
�

−
MSEnew − MSEold

alpha · T · MSEold

�

. (29)

In the following we use this relative difference with alpha= 100.
For two s-channel diagrams and fB = 10 we show a selection of the HoF functions in Tab. 5.

As expected, PYSR produces results with larger complexities, driven by an MSE improvement
by two orders of magnitude. We illustrate the improved MSE with increased complexity in the
left panel of Fig. 6. After removing flat directions, the best-suited rational function in the HoF
retains 11 parameters and reads

t(xp, xη| fB = 10) =
xp − a

bx3
p +

cxp −
d

xp

�

xη + e−
f

(xp − g)2(xp + x2
η) + h

�

xp + i x2
η(xp + j)

+ 1

− k . (30)

Table 5: Score hall of fame for the simplified ZH setup with fB = 10 and s-channel
photon and Z . For numerical reasons all results describe t(xp, xη)× 10.

cmpl dof function MSE

16 5 ax + b y − c(d − ex)2 1.57 · 10−2

22 6 ax + b y − c(d − ex)2 + f /x 9.46 · 10−3

30 8 (ax − b)/(cx3 + d + e(x − y + f + g/x)/x)− h 3.82 · 10−3

42 9 (ax − b)/(cx3 + d + e(x + f − (g y − h/x2)/x)/(x + y/x))− i 1.22 · 10−3

45 8 (x − a)/(bx3 + c + d(x + e− f (y − g/x2(x + y))/x)/(x + y2/x))− h 7.96 · 10−4

47 10 (x − a)/(bx3 + c + d(x + e− f (y − g/(hx2(x + y) + i))/x)/(x + y2/x))− j 6.71 · 10−4

50 10
(x − a)/(bx3 + c + d(x + e− f (y − g/(hx2(x + y2 − y) + i))/x)

6.03 · 10−4
/(x + y2/x))− j

63 13
(ax − b)/(cx3 + d + e(x + f − g(hx2 + y + i − j

5.64 · 10−4
/(kx2(x + (y − l)2 − y) +m))/x)/(x + y2/x))− n

73 14
(ax − b)/(cx3 + d(x − e( f x2 + y + g − h/(i( j − x)2(x + y2) + k))/x)

1.45 · 10−4
/(x + l y(mx y + y)) + n)− o
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Figure 6: MSE and score for the simplified ZH setup with fB = 10 and s-channel pho-
ton and Z . The functional forms correspond to Tab. 5. MSE given for t(xp, xη)×10.

In spite of the large complexity, this function does still not describe the score perfectly. In the
center and right panels of Fig. 6 we see that points close to the upper score limit and points at
large pT still show deviations from the training data.

3.3 Two quark flavors

Finally, we need to include different incoming quark flavors for

pp→ ZH , (31)

as an example for an unobserved or unphysical parameter in the joint score in Eq.(6), which
we remove to arrive at the physical score or optimal observable.

Results for fB = 0

In Tab. 6 we show a set of function from the HoF with their corresponding MSE for the Standard
Model parameter choice fB = 0. We remind ourselves that in this case the functional form will
most likely be described by a simple polynomial in xp = pT/mH and xη = |η−|. Increasing
the complexity from 7 to 29, or the number of degrees of freedom from one to eight has
a surprisingly mild effect on the MSE. We can understand the reason when looking at the
kinematic distribution of the score in Fig. 7. In the left panel we see that integrating out the
discrete quark flavor leads to two distinct branches in the score, an upper branch for incoming
d-quarks and a lower branch for incoming u-quarks. Because the information is unphysical,

Table 6: Score hall of fame for the complete ZH setup with fB = 0. For numerical
reasons all results describe t(xp, xη)× 10.

cmpl dof function MSE

7 1 axp(xp + xη) a = 0.0375 6.51 · 10−3

9 2 ax2
p(xη + b) a = 0.0203 ab = 0.0406 4.35 · 10−3

11 2 ax2
p(x

2
η + b) a = 0.0111 ab = 0.0462 4.32 · 10−3

13 3 ax2
p + bxp x2

η − c a = 0.0648 b = 0.0088 c = 0.0625 1.96 · 10−3

17 4 ax2
p + bxp x2

η − cxη − d 1.84 · 10−3

19 4 ax2
p + bxp x2

η − cxp − d xη 1.74 · 10−3

21 5 ax2
p + bxp x2

η − cxp − d xη + e 1.72 · 10−3

27 6 ax2
p + bxp x2

η − cxp xη − d xp + exη + f 1.63 · 10−3

28 7 ax2
p(bxη − c)2 + d xp x2

η + ex2
p − f xp − g xη 1.43 · 10−3

29 8 ax2
p + b(x2

η + c)(xη(d xp − e)(xp − f ) + xp + g)− h 1.29 · 10−3
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Table 7: Score hall of fame for the complete ZH setup with fB = 10. For numerical
reasons all results describe t(xp, xη)× 10.

cmpl dof function MSE

10 3 axp + bx3
η − c a = 0.3487 b = 0.0043 c = 0.3492 1.61 · 10−2

16 4 axp − b/(cx4
p xη + d) a = 0.3032 b = 0.0960 c = 0.0213 d = 0.3033 1.26 · 10−2

20 4 axp − b/(cx5
p xη + d) a = 0.2860 b = 0.0942 c = 0.0117 d = 0.3005 1.21 · 10−2

23 5 axp + bx3
η − c/(d x4

p xη + e) 1.19 · 10−2

25 7 axp + bx3
η + cxη − d/(ex4

p(xη + f ) + g) 1.14 · 10−2

45 12 axp + bxη − c(xp − d)3 + e− f /(g x3
p x3
η − xη(hxp + i) + j(xp + k)6 + l) 4.65 · 10−3

51 13 axp + bxη − c(xp − d)3 + e− f /(g x3
p x3
η − xη(h+ i) + j(xp + k)6 + l +m/xp) 4.65 · 10−3

an implicit or explicit form for the score will interpolate between them and define a single
curve in the middle with an MSE well above the case without unphysical parameters shown
in Tab. 2.

The simplest expression of complexity seven consists of a squared term in pT and a linear
correlation of pT and |η−|. It describes the data for small pT but undershoots for larger values.
More importantly, its |η−|-dependence is simply too flat. Nevertheless, already this simple
form describes most of the data points at low pT and central |η−|. Switching to a squared
correlation term with complexity 11 leads to a slight improvement in the η− distribution for
low pT , but still does not give the correct shape at large pT . Interestingly, another slight
complexity increase to 13 improves the description at large pT , but worsens it at large η−,
indicating a tension for a limited number of parameters.

Eventually, moving towards an appropriate complexity we see that PYSR starts adding lin-
ear terms in pT and |η−|, which slightly improves the MSE in the bulk of central events with
small pT , but still does not fit the data points with large scores. This situation changes for
complexity with terms proportional to p3

T and |η−|3, including a more complex set of corre-
lations between them. This is consistent with the results for our toy model in Tab. 2, and we
find that adding more complexity does not improve the MSE further.
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Figure 7: Sliced kinematic distributions for the joint score in the complete ZH setup
with fB = 0, showing the HoF given in Tab. 6.
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Results for fB = 10

Finally, we can see what kind of rational function PYSR constructs for the full ZH process
with fB = 10. In Tab. 7 we see that the simplest solution at complexity 10 already uses three
parameters, and Fig. 8 confirms that it is does not provide a good interpolation between the
two branches. With increasing complexity, all formulas up to complexity 45 only include a
linear pT -term in the numerator and therefore fail to describe the intermediate pT -range and
the saturation above. Note that for high complexity the denominator includes powers up to
p6

T to describe the rapid saturation. At the same time, a p3
T -term in the numerator allows the

function to describe the low- and intermediate-pT range well. As for fB = 0, adding more
complexity does not improve the MSE, which is now limited by the interpolation between the
two branches. The slight over-shoot for large |η−| affects a too small fraction of parameter
points to make a difference.

Our extensive discussion of the simple ZH production process shows that PYSR can ex-
tract useful analytic expressions for the score or the optimal observable. This can be simple
polynomials — which could also be extracted through a simple fit — or rational functions,
for which a general parametrization would lead to a very large number of parameters. For
the case without unphysical parameters we can improve the MSE with increasing complexity,
while for the case of two incoming quark flavors we see that the achievable MSE is limited,
and adding complexity to the score stops improving the result. For the two questions, namely
if PYSR finds the correct score or optimal observable and how the PYSR result performs in
setting limits in an LHC analysis we turn to the better-understood example of C P-violation in
weak boson Higgs production.

4 WBF Higgs production and CP

Going beyond our simple toy scenario, we can apply the same methodology to the more com-
plex WBF Higgs production process and the fundamentally interesting question of C P-violation
in the V V H interaction. For this case we know the form of the optimal observable at parton
level and close to the Standard Model, so we can check if PYSR extracts the correct score,
what changes when we include detector effects, and what kind of reach we can expect from
different functional forms.
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Figure 8: Sliced kinematic distributions for the complete ZH setup with fB = 10,
showing the HoF given in Tab. 7.
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4.1 Score for fWfW

Testing the properties of the V V H vertex in WBF Higgs production

pp→ H j j , with |M|2∝ α2 , (32)

is equivalent to corresponding analyses of V H production and H → V V decays, with the ad-
vantage that we do not have to rely on a precise reconstruction of the Higgs decay products [21,
50]. We also know that the signed azimuthal angle between the tagging jets ∆φ [21, 29,30]
is the appropriate genuine C P-odd observable. To define an optimal observable we choose the
specific C P-violating operator

L= LSM +
fWfW
Λ2

OWfW , with OWfW = −(φ
†φ)fW k

µνW
µνk . (33)

For our numerical results we quote fWfW -values for Λ = 1 TeV. In Fig. 9 we show the effect
of this additional operator on the WBF kinematics. First, ∆φ develops an asymmetric form,
which can most easily be exploited through an asymmetry measurement. Second, the higher-
dimensional operator OWfW with its additional momentum dependence induces a harder tag-
ging jet spectrum, an effect which it shares with many other higher-dimensional operator, and
which is not related to C P-violation. On the other hand, there exist no dimension-4 operators
leading to C P violation in the V V H interaction, so when we search for the leading effect from
OWfW this momentum dependence will enhance the LHC reach.

For the leading partonic contribution from WW -fusion,

ud → Hdu , (34)

with the standard tagging jet cuts |η j|< 5, |∆η j j|> 2, and pT, j > 20 GeV we can compute the
score contribution given in Eq.(18) for the Standard Model point fWfW = 0 and find [21]

t(x | fWfW = 0)≈ −
8v2

m2
W

(kd ku) + (pupd)
(pd pu)(kukd)

εµνρσ kµd kνu pρd pσu , (35)

where ku,d are the incoming and pu,d the outgoing quark momenta. We can relate this
form to ∆φ when we assign the incoming momenta to a positive and negative hemisphere,
k± = (E±, 0, 0,±E±) and correspondingly for the outgoing momenta p±. We then find

t(x | fWfW = 0)≈ −
8v2

m2
W

2E+E− + (p+p−)
(p+p−)

pT+pT− sin∆φ , (36)

with the known dependence t ∝ sin∆φ. The momentum-dependent prefactor reflects the
dimension-6 structure with an approximate scaling t∝ pT+pT−.
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Figure 9: Kinematic distributions for WBF Higgs production at parton level with
different Wilson coefficients fWfW . Here, ∆φ denotes the signed azimuthal angle
between the two tagging jets, pT,1 refers to the leading tagging jet, and∆η= |∆η j j|.
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Figure 10: Score for simplified WBF Higgs production at parton level and with
fWfW = 0.

4.2 Symbolic regression at parton level

As before, we first use symbolic regression on the simplified partonic process

ud → H j j , (37)

without shower or detector effects. For this setup we will extract the score for the Standard
Model parameter point fWfW = 0 and for fWfW = 1. In Fig. 9 we see that for fWfW = 0 the
∆φ distribution is symmetric, while for fWfW = 1 it roughly follows a sine shape. The pT, j-
distribution indicates that for the two choices of reference point, the score formula will chance
its momentum dependence.

Results for fWfW = 0

For small deviations from the C P-conserving Standard Model we show the score distributions
in Fig. 10. Comparing the different kinematic observables, the leading dependence is clearly
on∆φ. Switching on fWfW > 0 moves events from∆φ > 0 to∆φ < 0, as expected from Fig. 9.
The actual shape of t(∆φ| fWfW ) confirms the sin∆φ scaling of Eq.(36). The dependence on
pT,1 indicates large absolute values of the score for harder events, which will boost the analysis
when correlated with∆φ. The dependence on∆η= |∆η j j| is comparably mild, so we expect
PYSR to only add the tagging jet rapidities at high complexity.

To encode the score dependence of Fig. 10 we use PYSR on the observables

�

xp,1, xp,2, ∆φ, ∆η
	

, with xp, j =
pT, j

mH
, (38)

Table 8: Score hall of fame for simplified WBF Higgs production with fWfW = 0,
including a optimization fit.

compl dof function MSE

3 1 a∆φ 1.30 · 10−1

4 1 sin(a∆φ) 2.75 · 10−1

5 1 a∆φxp,1 9.93 · 10−2

6 1 −xp,1 sin(∆φ + a) 1.90 · 10−1

7 1 (−xp,1 − a) sin(sin(∆φ)) 5.63 · 10−2

8 1 (a− xp,1)xp,2 sin(∆φ) 1.61 · 10−2

14 2 xp,1(a∆φ − sin(sin(∆φ)))(xp,2 + b) 1.44 · 10−2

15 3 −(xp,2(a∆η2 + xp,1) + b) sin(∆φ + c) 1.30 · 10−2

16 4 −xp,1(a− b∆η)(xp,2 + c) sin(∆φ + d) 8.50 · 10−3

28 7
(xp,2 + a)(bxp,1(c −∆φ) 8.18 · 10−3
−xp,1(d∆η+ exp,2 + f ) sin(∆φ + g))

5 10 15 20 25 30
complexity

10 2

10 1

M
SE
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Figure 11: Score for simplified WBF Higgs production at parton level and with
fWfW = 1. The functional form for the right panel with complexity 31 is given in
Tab. 9.

using the usual summing, subtraction, and multiplication operators and now adding the sine
operator. These observables are inspired by our intuition about the physics of WBF processes.
As a matter of fact, we do not expect the rapidities to be relevant for our CP-study, but we
nevertheless include it as a check. Because symbolic regression is much more efficient in
extracting an analytic form than for instance a polynomial fit it is no probem to include a
relatively large set of observables just to ensure that they do not actually contribute to the
final results.

We use the same PYSR settings as in Sec. 2.3, except for maxsize=30 and alpha=1.5.
In Tab. 8 we show the results, alongside the improvement in the MSE. Starting with the
leading dependence on ∆φ, PYSR needs complexity 8 with one free parameter to derive
t ≈ pT,1pT,2 sin∆φ. At this point it turns out that adding ∆η to the functional form still
leads to a significant improvement with a 4-parameter description of complexity 16, namely

t(xp,1, xp,2,∆φ,∆η| fWfW = 0) = −xp,1

�

xp,2 + c
�

(a− b∆η) sin(∆φ + d) ,

with a = 1.086(11) , b = 0.10241(19) , c = 0.24165(20) , d = 0.00662(32) . (39)

The numbers in parentheses give the uncertainty from the optimization fit. Even though d
is significantly different from zero, it is sufficiently small that we can to first approximation
neglect it and confirm the scaling t ∝ sin∆φ. Similarly, the dependence on the rapidity
difference ∆η is suppressed by b/a ∼ 0.1. Beyond this point we do not find a significant
improvement in the MSE relative to the true score.

Results for fWfW = 1

From previous cases we expect that moving away from the Standard Model will lead to a
more complex score formula than Eq.(36). In Fig. 11 we show the score as a function of
kinematic observables for fWfW = 1. Comparing this ∆φ-dependence to Fig. 10 confirms that
the simple scaling with sin∆φ has indeed vanished. Instead, we observe an upper limit t < 2
for negative ∆φ, which according to Tab. 1 reflects the dominance of the positive, quadratic
term with a scaling t ∼ 2/ fWfW . The also positive contribution from the interference term
remains numerically subleading.

For positive ∆φ we observe a more complex pattern from the interplay of linear and
quadratic contributions. The interference term still follows an anti-symmetric sin∆φ shape
and contributes negative scores for positive ∆φ. We can split the events into three phase
space regions: interference-dominated with t < 0, quadratic-dominated with t = 0 ... 2/ fWfW ,
and again interference-dominated with t > 2/ fWfW . These regions can be separated through
their pT -dependence, shown in the center panels of Fig. 11. For small transverse momenta the
interference with the dimension-6 contribution gives mostly negative scores, followed by an
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Table 9: Score hall of fame for WBF Higgs production with fWfW = 1.

cmpl dof function MSE

3 1 axp,× 0.124
12 2 axp,×/(xp,×/∆η+∆η+ b) 0.116
15 2 (sφ + a)(−sφ + xp,× − b)/(−sφ + xp,× +∆η/xp,×) 0.054
26 4 a/(b− (sφ − c − d/(s2

φ
− sφ∆η− sφ/xp,× + ex2

p,×))/xp,×) 0.048
31 7 a/(b− (sφ + (cs2

φ
− d)/(es2

φ
x2

p,× − sφ∆η+ f )− g)/xp,×) 0.039

intermediate regime with a broad range of score values, until for large transverse momenta
that score is concentrated at the limit t = 2/ fWfW = 2 from the quadratic contribution.

After confirming that turning the more complex phase space dependence for fWfW = 1 into
a formula will be challenging, we change the parameter basis to

�

xp,× =

p

pT,1pT,2

mH
, sφ = sin∆φ, ∆η

�

, (40)

and allow for summing, subtraction, multiplication, and division operators. Adding a second
pT -parameter like pT,1 + pT,2 does not lead to a significant improvement. The corresponding
HoF is shown in Tab. 9. First, we see that the MSE we can achieve is almost one order of
magnitude worse than for fWfW = 0. The 7-parameter form generated with complexity 31 can
be written as the rational function

t(xp,×, sφ ,∆η| fWfW = 1) =
a′xp,×(e′s2

φ
xp,× − sφ∆η− f ′)

(b′xp,× + sφ − g ′)(e′s2
φ

xp,× − sφ∆η− f ′)− c′s2
φ
− d ′

,

with a′ = 0.75 , b′ = 0.38 , c′ = 4.2 , d ′ = 4.6 , e′ = 1.1 , f ′ = 0.26 , g ′ = 0.21 .
(41)

As for the ZH case with fB = 10 the functional form is not particularly enlightening, aside
from the fact that the rational form can generate the observed cutoff t < 2/θ for large Wilson
coefficients and that it has nothing to do with the simple scaling t∝ sφ for fWfW = 0.

4.3 Detector effects

Given that all our results have been derived at parton level, the obvious question is what impact
a detector simulation will have on our analytic expressions for the optimal observables. In this
section we will use the same process, WBF Higgs production, but add parton shower and fast
detector simulation with DELPHES [41] using the default CMS card including the anti-kt jet
algorithm [51] implemented in FASTJET [52].

To avoid the additional complication of having to select the two forward jets, we do not
allow for initial state radiation and postpone all question concerning final states with a flexible
number of particles to a more detailed study. While virtual corrections implented for instance
in Madgraph should not be a challenge to the extraction of an analytic optimal observable at
all, real emission corrections or jet radiation would need to be accomodated in the choice of
relevant observables and invariably lead to the question what the appropriate observables for
describing the hard process are.

After including detector effects, MADMINER still extracts the joint score from parton level
observables while for the fitting process we are limited to the final-state observables.

In general, detector effects will mostly add noise to the data, which we find to affect the
PYSR convergence. For fWfW = 0 we still find the same kind of expressions as without detector
effects, for instance the 4-parameter expression given in Eq.(39). To estimate the detector
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Table 10: Detector effect on the scores for WBF Higgs production, for fixed functional
forms derived at parton level.

fWfW = 0 parton level detector pull
Eq.(39)

a 1.086(11) 0.9264(20) 14.5
b 0.10241(19) 0.08387(35) 97.6
c 0.24165(84) 0.3542(20) 134.0
d 0.00662(32) 0.00911(67) 7.75

MSE 8.50 · 10−3 1.51 · 10−2

fWfW = 1 parton level detector pull
Eq.(41)

a′ 0.7490(14) 0.8792(31) 93.0
b′ 0.37800(94) 0.4160(19) 40.4
c′ 4.218(18) 3.526(31) 38.4
d ′ 4.598(18) 4.759(32) 8.9
e′ 1.1271(26) 1.0950(48) 1.2
f ′ -0.2638(49) -0.2325(68) 6.4
g ′ 0.2063(19) 0.2057(34) 0.3

MSE 3.89 · 10−2 4.15 · 10−2

effects on the actual output, it is most useful to compare expressions after the optimization fit
of the PYSR output. In the left part of Tab. 10 we compare the two sets of coefficients. The
main aspects from the previous discussions still hold, d ≪ 1 ensures t ∝ sin∆φ also after
detector effects, and b/a≪ 1 limits the impact of the rapidity observable. The shift in the best
values for the four parameters is statistically significant, but in practice most likely negligible.

For the more complex case of fWfW = 1, where we do not have a closed form for the theory
description, the detector effects on the PYSR convergence are more severe. However, as long
as the detector effects do not change the final state particles we can again fit the parton-level
formula of Eq.(41) to the detector-level score given by MADMINER. In the right part of Tab. 10
we confirm the picture for fWfW . While the individual coefficients change in a statistically
significant manner, the general picture is unchanged. In practice, these results imply that once
we have an established and understood PYSR result for scores at the parton level, we can
relatively easily re-optimize them for the detector level.

4.4 Exclusion limits

Throughout our derivation and discussion of symbolic regression approximating the score as
a function of phase space we always use the MSE defined in Eq.(9) as our figure of merit. This
value indeed measures how well the analytic formulas approximate the numerically defined
score distribution, but it is not clear how it is related to the performance of this score formula
in an actual analysis. The reason is that the relevant phase space regions for an analysis are not
necessarily the phase space regions contributing to the MSE. Quite the opposite, we generally
expect tails of kinematic distributions to dominate SMEFT analyses, while not giving large
contributions to the global MSE value.

To benchmark the performance of different (optimal) observables we compute the log-
likelihood distribution and extract the p-value for an assumed fWfW = 0 including detector
effects and for an integrated LHC luminosity of 139 fb−1. We start with the analytic functions

a1pT,1pT,2 , a2 sin∆φ , a3pT,1pT,2 sin∆φ , (42)
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Figure 12: Projected exclusion limits assuming fWfW = 0 for different (optimal) ob-
servables. The SALLY network uses pT1

, pT2
,∆φ and∆η, Sally full uses 18 kinematic

variables.

with a1 = −8.32(89) · 10−7, a2 = −0.37370(94), and a3 = −5.5386(49) · 10−5 and compare
the results to the reach of the complete SR expression of Eq.(39). Finally, we compare these
results to the SALLY method using the four PYSR observables in Eq.(38), and using the full set
of 18 observables. The exclusion limits are shown in Fig. 12 and in Tab. 11. First, we confirm
that for all score approximations the likelihood follows a Gaussian shape. Second, we find that
beyond the minimal reasonable form apT1pT2 sin∆φ there is only very little improvement in
the expected LHC reach.

The plateau we observe in the expected exclusion limits indicates that an improved de-
scription of the score over all of phase space does not automatically result in an improved
reach. Events with high scores in kinematic tails are rare and therefore contribute little to
the global MSE value, but they are crucial for the actual measurement. In contrast, events
with low scores in the kinematic bulk dominate the MSE, but hardly affect our specific SMEFT
measurement of fWfW . This means that the MSE is an orthogonal and typically more sensitive
figure of merit for our symbolic regression task. To understand the different behaviors of the
expected limit and the MSE we divide phase space into different score regions and compute
the score for all events, events with intermediate score values |t( fWfW )|= 0.1 ... 0.5, and event

Table 11: MSE and exclusion limits for different approximations of the score or can-
didate optimal observable. The different scenarios correspond to Fig. 12.

(optimal) MSE reach
observable all |t( fWfW )|= 0.1 ... 0.5 |t( fWfW )|> 0.5 weighted 1 σ 2 σ

apT1pT2 0.1576 0.0645 1.144 0.298 [-0.86,0.86] —
a∆ sinφ 0.0885 0.0163 0.680 0.223 [-0.38,0.36] [-0.76,0.74]
a∆ sinφpT1pT2 0.0217 0.0076 0.163 0.056 [-0.28,0.28] [-0.56,0.56]
SR Eq.(39) 0.0145 0.0059 0.103 0.031 [-0.26,0.26] [-0.54,0.54]
SALLY 0.0129 0.0051 0.092 0.030 [-0.26,0.26] [-0.56,0.54]
SALLY full 0.0048 0.0031 0.026 0.014 [-0.26,0.26] [-0.54,0.54]
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Figure 13: Scaling of the expected exclusion limits with the MSE for the four MSE
evaluations defined in Tab. 11.

with large score |t( fWfW )|> 1 in Tab. 11. We also compute a score-weighted MSE as

MSEweighted =
1
n

n
∑

i=1

gi(x) (gi(x)− t i(x , z|θ ))2 . (43)

The correlation between the MSE and the different scores are illustrated in Fig. 13. All MSE
definitions share the common feature that a strong MSE–score correlation for the simple ap-
proximate formulas becomes flat when we reach the simplified formula t ∝ pT1pT2 sin∆φ
and the closed formula from PYSR. While we observe a slight improvement in all MSE defi-
nitions by going to the full, numerically defined SALLY network, this improvement appears to
have no impact on a possible analysis.

Nevertheless, Fig. 13 illustrates a way to use our new approach in an actual LHC analysis
like the one of Ref. [31]. Right now we have no option in between using the approximate op-
timal observable given in Eq.(5) and the computing-intensive SALLY framework. An analytic
observable which matches the SALLY results also at higher statistical precision, for this refer-
ence value θ0 or others an for this channel or others, it would not only simplify the analysis
setup, it would also render such an analysis much more transparent in the sense of inter-
pretable numerics and machine learning. While interpretability might not seem very relevant
for limit setting, this aspect will become crucial once a measurements points to physics beyond
the Standard Model.

5 Outlook

Modern machine learning opens extremely promising new avenues in experimental and the-
oretical particle physics, but has the disadvantage of only providing numerical functions. Tra-
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ditionally, theoretical and experimental particle physics work with approximate formulas pro-
vided by perturbation series in quantum field theory. Symbolic regression combines the ben-
efits of machine learning and analytic formulas by learning complex functions from low-level
or high-dimensional data and expressing them analytically.

In this first application of symbolic regression to LHC simulations (see also Ref. [53]) we
use a genetic algorithm implemented in PYSR [28] to extract optimal observables or the score
as an analytic function of phase space observables. The input to the PYSR training is the matrix
element used for standard LHC simulations. Our theory parameters of interest are individual
SMEFT Wilson coefficients. First, we study the coefficient fB in a toy setup of ZH production
and extract a simple polynomial for the score around the SM value fB = 0. For larger values
of fB = 10/TeV2 the task becomes more challenging because of saturation effects, so PYSR
resorts to rational functions. For the ZH production example we illustrate how the score is
computed from the joint score, including multiple topologies and unobservable parameters
like the flavor of the incoming quarks.

For the theoretically more interesting case of C P-violation through the Wilson coefficient
fWfW we compute the optimal observable or score for WBF Higgs production. For small Wilson
coefficients our PYSR-based DEEPDIETER tool finds a compact formula for the optimal observ-
able, including the sine-dependence on the azimuthal angle between the tagging jets and a
momentum-dependent pre-factor, pT,1pT,2 sin(∆φ). To the best of our knowledge, this is the
first LHC-physics formula derived using modern machine learning.1 Again, the regression
task becomes significantly more complicated for large Wilson coefficients. For the WBF case
we show how it is possible to include detector effects. Finally, we estimate the LHC reach for
a a range of different PYSR formulas and for the neural networks provided by MADMINER and
find that simple PYSR formulas can be used in experiment without any loss in performance.

While not all neural networks used at the LHC can and should be replaced by learned
formulas, in many instances such formulas will help us understand numerical results and relate
them to perturbative theory predictions. Here, symbolic regression as part of our machine
learning strategy will strengthen the defining link between fundamental theory and complex
experimental analyses in particle physics.
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