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Nonlinear response in diffusive systems
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Abstract

Nonintegrable systems thermalize, leading to the emergence of fluctuating hydrodynamics.
Typically, this hydrodynamics is diffusive. We use the effective field theory (EFT) of
diffusion to compute higher-point functions of conserved densities. We uncover a simple
scaling behavior of correlators at late times, and, focusing on three and four-point
functions, derive the asymptotically exact universal scaling functions that characterize
nonlinear response in diffusive systems. This allows for precision tests of thermalization
beyond linear response in quantum and classical many-body systems. We confirm our
predictions in a classical lattice gas.
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1 Introduction

Most interacting systems thermalize at nonzero temperature. Their late time dynamics is
then described by the fluctuations of conserved densities, or hydrodynamics, and their global
equilibration towards thermal equilibrium.

In the case where a single density is conserved, the hydrodynamic description is typically
diffusive [1], with density two-point function taking a universal form

〈n(x , t)n(0, 0)〉=
χT

(4πD|t|)d/2
e−x2/(4D|t|) +O
�

1/t
d
2+1
�

+O(1/td) , (1)

which is entirely fixed at late times up to two non-universal constants: the charge susceptibility
χ ≡ dn

dµ , and the diffusivity D. Here T is the temperature and d the spatial dimension. The
subleading corrections denote higher derivative [2] and loop contributions [3] respectively
– both are irrelevant and lead to small corrections at late times. This two-point function
captures linear response in all diffusive systems and organizes it in terms of a few non-universal
‘Wilsonian coefficients’ of the effective field theory (EFT) of diffusion [4].

Diffusive systems feature nonlinear response as well. For example, a diffusivity D = D(n)
or a susceptibility χ = χ(n) that is a nontrivial function of the background density immediately
implies nonlinear response. More generally, the EFT of diffusion has interactions that do not
have simple interpretations as nonlinearities of transport or thermodynamic parameters (see,
e.g., [5]); we will show however that to leading order at late times, nonlinear response is
simply controlled by the coefficients in the expansion of D(n) and σ(n) ≡ χ(n)D(n) around
the background value of the density

D(n) = D+ D′δn+
1
2

D′′δn2 + · · · , σ(n) = σ+σ′δn+
1
2
σ′′δn2 + · · · . (2)

The EFT predictions for nonlinear response therefore do not involve, to leading order, any
Wilsonian coefficients beyond those measurable within linear response at several values of the
background density.

In this paper, we present a simple scaling argument for the late time behavior of equilibrium
connected N -point functions in diffusive systems 〈n((N −1)t) · · ·n(2t)n(t)n(0)〉 ∼ 1/t(N−1)d/2.
Using the EFT of diffusion [4], we confirm this scaling and, focusing on N = 3, obtain the
entire three-point function 〈n(x2, t2)n(x1, t1)n(0,0)〉 at late times, which is the sum of two
universal scaling functions multiplied by the nonuniversal parameters D′ and σ′ from (2). The
EFT results are asymptotically exact: the only approximation lies in the late time expansion
of correlators. Finally, we numerically study a classical lattice gas model and find excellent
agreement with our predictions.

One motivation for this work are recent experimental developments in probing the nonlinear
response of correlated many-body systems [6–8], and particularly progress in studying higher-
harmonic generation from low-frequency (single THz) sources [9,10], which may be governed
by hydrodynamics when ħhω ≲ T . Our results should apply to diffusive metals, including
anomalous metals [11] and strange metals [12, 13], as well as to diffusion in correlated
insulators [14]. We further hope that our results can serve as benchmarks for precision tests of
thermalization (or lack thereof) in numerics.

Nonlinear response in thermal states has been studied for some time. Generalized
fluctuation-dissipation or KMS relations were found in [15,16]. Certain general properties were
also studied recently through the lens of the eigenstate thermalization hypothesis in [17,18].
Higher order correlation functions were computed in holographic models [19,20], models with
relaxational dynamics [19,21], integrable systems [22,23] as well as more general ballistic
regimes [24]. Nonlinear response is also related to higher cumulants (or full counting statistics)
in out-of-equilibrium states (see, e.g., [25–27]).
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2 General scaling considerations

A simple scaling argument gives the general form of nonlinear response in equilibrium: From (1),
one finds that densities scale as δn∼ 1/xd/2 and x2 ∼ Dt. Nonlinear response however requires
corrections to diffusive scaling from irrelevant interactions. These leading non-Gaussianities
are suppressed by fluctuations δn∼ 1/xd/2: a three-point function for example will therefore
scale as 〈nnn〉 ∼ x−3d/2 x−d/2 ∼ x−2d . A connected N -point function will require N − 2 such
non-Gaussianities and therefore scale as 〈n · · ·n〉 ∼ x−Nd/2 x−(N−2)d/2, or

〈n(xN−1, tN−1) · · ·n(x1, t1)n(0,0)〉=
χT

(Dt̄)(N−1)d/2
gN

�

t i

t j
, yi

�

+ · · · , yi ≡
x i
p

Dt i
, (3)

where gN is a universal dimensionless scaling function (up to a finite number of Wilsonian
coefficients) depending on cross-ratios of coordinates. The factor of χT can be obtained from
dimensional analysis. We have chosen to parametrize the overall scaling dependence in terms
of the geometric mean of the differences in times (assuming that tN−1 > · · · t2 > t1 > 0):

t̄ = [(tN−1 − tN−2) · · · (t2 − t1)(t1 − 0)]1/(N−1) . (4)

The subleading corrections in (3) are similar to those in (1): higher derivative contributions
give corrections with a relative O(1/ t̄) suppression, and loops give corrections with a relative
O(1/ t̄d/2) suppression (up to logarithms).

Eq. (1) shows that the two-point function (N = 2) indeed takes the form (3), with

g2

�

x2

Dt

�

=
1

(4π)d/2
e−

1
4

x2
Dt , (5)

the universal scaling function describing linear response in diffusive systems. We study higher-
point functions N ≥ 3 below, focusing particularly on N = 3,4. We will obtain the universal
form of the density three-point function in diffusive systems

〈n(x2, t2)n(x1, t1)n(0,0)〉=
χT

[D
p

t1(t2 − t1)]d
g3 + · · · . (6)

We will find that the cubic scaling function g3 separates into two universal scaling functions,
with non-universal coefficients proportional to D′ ≡ dD(n)/dn and σ′ ≡ dσ(n)/dn:

g3 = χT
D′

D
g3,D′

�

t2

t1
, y1, y2

�

+χT
σ′

σ
g3,σ′

�

t2

t1
, y1, y2

�

, (7)

with yi ≡ x i/
p

Dt i . Since both D′ and σ′ can be independently extracted from linear response
measurements at various values of the density n, the EFT produces a prediction for the three-
point function with no fitting parameters.

3 EFT calculation of higher-point functions

To compute the nonlinear response of diffusive systems, we use the EFT of diffusion developed
by Crossley, Glorioso and Liu [4], see [28] for a review and [29,30] for related work. It differs
from previous approaches to fluctuating hydrodynamics [31,32] and macroscopic fluctuation
theory [26] in that it provides a systematic controlled expansion in fluctuations. In particular, it
captures general nonlinearities in the noise field that are not visible at the level of constitutive
relations, and are missed in other approaches. However, these terms correspond to fairly
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irrelevant operators in the EFT and only give subleading corrections to correlation functions.1

We therefore expect that previous approaches could also be used to obtain nonlinear correlators
〈n(tN−1, xN−1) · · ·n(t1, x1)n(0,0)〉 to leading order at late times (although this has, to our
knowledge, not been done). Nevertheless, in the spirit of using a controlled approach – namely
one where corrections to the leading answer can be systematically obtained, order by order –
we use the EFT of diffusion in this paper.

Consider the partition function of a microscopic system2 with a conservation law ∂µ jµ = 0
(µ= 0,1, . . . , d runs over spacetime indices)

Z[A1
µ, A2

µ]≡ Tr
�

U[A1]ρβU†[A2]
�

, (8)

where ρβ = e−βH/Tr(e−βH) is the thermal density matrix, and

U[A] = T exp

�

−i

∫ ∞

−∞
d t

�

H −
∫

dd x jµAµ(t, x)

��

, (9)

is the time-evolution operator of the system with density and current coupled to a source Aµ.
We have introduced two independent background sources A1

µ, A2
µ in (8), one on each leg of the

Schwinger-Keldysh contour, to generate correlation functions of the density n≡ j0 (or current
density j i) with various operator orderings.3 For example, defining

Arµ ≡
1
2

�

A1
µ + A2

µ

�

, Aaµ ≡ A1
µ − A2

µ , (10)

the symmetric Green’s function of density is obtained from

1
2

Tr
�

ρβ{n(t, x), n(0, 0)}
�

=
1
i2

δ2 log Z
δAa0(t, x)δAa0(0,0)

≡ Gr r(t, x) . (11)

One can similarly define higher-point functions, for example:

Gr r r(t2, x2; t1, x1)≡
1
i3

δ3 log Z
δAa0(t2, x2)δAa0(t1, x1)δAa0(0,0)

, (12)

with similar expressions for Gr ra and Graa, see Eq. (A.8). These correspond to various orderings
of three point functions of densities, see, e.g., [16].

The EFT of diffusion [4] consists in representing the partition function (8) by an effective
Lagrangian L of hydrodynamic degrees of freedom

Z[A1
µ, A2

µ]≃
∫

DnDφa ei
∫

d tdd x L , (13)

where n is the fluctuating density and φa is related to the corresponding noise field. The
assumption of hydrodynamics is that the only long-lived excitations in thermalizing systems
are conserved densities – the entire nonlocal aspect of Z[A1, A2] can therefore be realized
through a local effective action of these long-lived degrees of freedom. Appendix A reviews the
construction of this effective action. To leading order in the diffusive scaling, the nonlinear
action takes the form

L= σ(n)Bai(iT Bai − Er,i) + Ba0n− D(n)Bai∂in+ · · · , (14)

1The leading such terms give relative 1/td+1, 1/td/2+1, and 1/t corrections to the correlators of N = 2, 3 and ≥ 4
densities respectively [5].

2While we use notation appropriate for quantum systems, our approach describes nonlinear response of thermal-
izing classical systems as well.

3Correlation functions of other microscopic operators can also be obtained from the EFT up to further Wilsonian
coefficients, through operator matching equations [33]. See [34] for examples in classical spin chains.
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p3

p1

p2

p3

p1
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Figure 1: Two diagrams give contributions, proportional to σ′ and D′ respectively, to
the density three-point function Gr r r(p2, p1).

where T = 1/β is the temperature, Baµ = ∂µφa + Aaµ, and Er,i = ∂0Ari − ∂iAr0. The ellipses
contain higher derivative terms, which give O(q2) corrections to observables, as well as further
nonlinear terms that are more irrelevant than the leading nonlinear terms. To leading order,
all nonlinearities come from expanding σ(n) and D(n) around the background value of the
density as in (2). For example, up to cubic order in fields, turning off background fields Aµ
momentarily, one has

L= iTσ (∇φa)
2 −φa

�

ṅ− D∇2n
�

+ iTσ′n (∇φa)
2 +

1
2

D′n2∇2φa + · · · . (15)

The propagators 〈nφa〉 and 〈nn〉 can be obtained from the first line:

〈nφa〉(p) =
1

ω+ iDq2
, 〈nn〉(p) =

2Tσq2

ω2 + D2q4
, (16)

where p = {ω, q} denotes frequency and momentum collectively. The terms in the second line
of (15) give cubic vertices: these lead to a density three point function (see Fig. 1):

Gr r r(p2, p1) = Tσ′(q1 · q2)〈nφa〉(p2)〈nφa〉(p1)〈nn〉(−p1 − p2)

− iD′(q1 + q2)
2〈nn〉(p2)〈nn〉(p1)〈nφa〉(−p1 − p2)

+ 2 perm. ,

(17)

where the permutations are obtained by swapping p1→ p2, p2→−p1 − p2 once, and twice.
Higher-point functions can be similarly computed; the four-point function is obtained in (A.15).

3.1 Properties of the three-point function

There are a number of properties that the higher-point functions should satisfy, which serve as
useful consistency checks of our calculation. First, notice that (17) vanishes when either q1 or
q2→ 0, as well as when q1→−q2; this must happen because the total charge

∫

dd x n(x , t) is
conserved and has trivial dynamics. Second, other time orderings of the three-point function
Gaar and Garr can also be computed from the EFT (14): these should be related among each
other and with Gr r r through nonlinear KMS relations [16]. We check in App. A that these
relations are satisfied. Third, in the limit where one of the densities is taken to be static, the
three-point function reduces to the derivative of a two-point function with respect to chemical
potential:

lim
q′→0

lim
ω′→0

Gaar(p
′, p) = −i

d
dµ

Gar(p) , (18a)

lim
q′→0

lim
ω′→0

Garr(p
′, p) = −i

d
dµ

Gr r(p) , (18b)

where Gar(p) = −iσq2〈nφa〉(−p) and Gr r(p) = 〈nn〉(p). Since d
dµ = χ

d
dn , and Gr r , Gar depend

on the background density through σ(n), D(n), Eq. (18) further elucidates why the three-point
function depends on σ′ and D′; we verify that it holds in App. A.
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3.2 Fourier transform

The Fourier transform of (17) can be evaluated, for direct comparison with numerics or
experiments that probe nonlinear response in space and time domain.4 Following Eqs. (6) and
(7), we remove the overall 1/td scaling and directly extract the universal scaling functions
g3,D′ and g3,σ′ . In this section, we focus on d = 1 spatial dimension for simplicity. The scaling
function g3,σ′ is most simple and is given by

g3,σ′

�

t1

t2
, y1, y21

�

=
1

8π
e−

1
4 (y

2
1+y2

21) , (19)

with y1 ≡ x1/
p

Dt1 and y21 ≡ (x2 − x1)/
p

D(t2 − t1). The other scaling function g3,D′ is
much richer and is shown in (A.17). When all three points lie on the same site y1 = y21 = 0, it
simplifies to

g3,D′

�

t1

t2
, 0, 0
�

=
1

8π

�

1+ 2
r

t1
t2
+ 2
r

1− t1
t2

�

. (20)

Recall that we have taken t2 > t1 > 0. In this kinematics, the entire three-point function is
given by

〈n(t2, 0)n(t1, 0)n(0,0)〉=
(χT )2

8πD
p

t1(t2 − t1)]

�

σ′

σ
+

D′

D

�

1+ 2
r

t1
t2
+ 2
r

1− t1
t2

��

. (21)

An interesting kinematic configuration that neatly distinguishes both scaling functions is to
take two of the points at equal time, t1 = t2, while keeping x1 ≠ x2. There one finds from (19)
that g3,σ′ vanishes exponentially fast as t2→ t1 for x1 ̸= x2 and only produces a contact term
∝ δ(x1 − x2) in this limit. The entire correlator at separated points is then proportional to D′:

〈n(t, x2)n(t, x1)n(0, 0)〉=
(χT )2

8πDt
D′

D
e−

1
4 (y

2
1+y2

2 )
�

1− y1e
1
4 y2

2

�

erf
� y2

2

�

+
p
π

2
sign(y1 − y2)
��

+ (y1↔ y2) , (22)

where erf(s) =
∫ s

0 du e−u2
. The fairly long-range correlations at time t in (22) are an equilibrium

analog of long-range, equal-time correlations that arise in out-of-equilibrium states [26].

3.3 OPE in the EFT

Any EFT defined by a path integral satisfies an operator product expansion (OPE) [35]: two
operators approaching each other can be approximated by an expansion in local operators
of the EFT. This provides a useful organizing principle for nonlinear response in the EFT. For
densities, this gives

n(x , t)n(0, 0)∼
1

(Dt)d/2
fnn

1
�

x2

Dt

�

+
n(0, 0)
(Dt)d/2

fnn
n
�

x2

Dt

�

+ · · · , as x2 ∼ Dt → 0 , (23)

where · · · contains contributions from higher dimension operators such as ∇n, n2, etc. The
EFT OPE should be understood as valid in the limit where n(x , t) and n(0, 0) are much closer
than any other two EFT operators, but still with a separation greater than the EFT cutoff. We
have used the tree level scaling dimension n(x , t)∼ qd/2 to obtain the scaling of the first term,
and furthermore used the fact that second term requires the dimensionful couplings qd/2

Λ to

4Note that the correlator in mixed t, q representation 〈n(t2, q2)n(t1, q1)n(0,−q1 − q2)〉 is expected to receive
large loop corrections at late time due to the ‘diffuson cascade’ [33]. We therefore consider correlators in space and
time t, x in this section.
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obtain the scaling of the second term. The first scaling function describing the n× n→ 1 fusion

channel can be simply read off the two point function (1): fnn
1
�

x2

Dt

�

= χT
(4π)d/2 e−

x2
4Dt . However,

the next OPE function, describing the n×n→ n fusion channel is more interesting. It constrains
a limit of the three-point function:

lim
x ,t→0
〈n(x ′, t ′)n(x , t)n(0,0)〉=

1
(Dt)d/2

fnn
n
�

x2

Dt

�

〈n(x ′, t ′)n(0, 0)〉

=
1

(D2 t t ′)d/2
fnn

n
�

x2

Dt

�

fnn
1
�

x ′2
Dt ′

�

.
(24)

The fact that the dependence on x , t and x ′, t ′ factorizes is an obvious consequence of taking
the limit x2 ∼ Dt ≪ x ′2 ∼ Dt ′ – the nontrivial content of (24) is however that the dependence
on x ′2/(Dt ′) is entirely fixed. Eq. (19) shows that the σ′ piece satisfies this property. We show
in App. A that the D′ piece of the three-point function satisfies it as well.

4 Applications

4.1 Numerics

We expect the scaling behavior (3) to apply to any diffusive many-body system, with the precise
form of the scaling function (17) applying more specifically to systems with a single conserved
density. This includes quantum and classical spin chains, random or deterministic unitary
circuits and cellular automata with a conserved density, and lattice gases. As a simple test of
our predictions, we study nonlinear response numerically in the Katz-Lebowitz-Spohn (KLS)
model [36], a classical lattice gas with conserved particle number. One appeal of this model
is that the diffusivity D(n) and conductivity σ(n) are known analytically as functions of the
background density n [37, 38] – all parameters entering our prediction for the three-point
function in Eq. (17) or (21) are therefore fixed.

Let us first verify the universal scaling behavior of correlators from (3): Fig. 2 shows a
clear 1/t(N−1)/2 decay of the N -point functions, for N = 2,3. Moreover, the prefactor of this
polynomial behavior agrees with the theory prediction from (21) at late times. As a more
refined test of our results, we extract numerically the dimensionless scaling function g3 (6) and
compare it to the prediction (19) and (20) (insets of Figs. 2 and 3). In Fig. 2, the predicted
scaling function is fairly featureless and difficult to confirm. To enhance its features, Eq. (21)
suggests to study a region of parameters where the D′ coefficient is large; this is done in
Fig. 3, where a good agreement with the predicted scaling function g3 is found. A larger D′ is
also known to produce larger loop corrections to the correlators [3] – Fig. 3 shows that these
corrections are indeed appreciable at intermediate times.

4.2 Generalizations

We have focused on nonlinear response in diffusive systems ω∼ −iqz with z = 2, because this
is the most common dissipative universality class observed in thermalizing systems. However,
there are other possibilities: superdiffusion in the KPZ universality class z = 3

2 occurs for sound
modes in d = 1 [32], and subdiffusion (e.g., z = 4) can arise in constrained systems with
dipole-type symmetries [39–41]. One can extend a scaling argument similar to Eq. (3) for
these situations: Assuming that nonlinear static susceptibilities are finite

〈nr na · · ·na〉 ∼
dN−1n
dµN−1

∼ 1 , (25)
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Figure 2: Log-log plot of the connected two- and three-point functions of density
in the KLS model. The gray curves are the theory predictions from (1) and (21),
with no fitting parameters. Inset: dimensionless scaling function (7) g3(

t2
t1

, x1,2 = 0)
compared to theory (21). (Numerical parameters: δ = 0.9, L = 219, 〈n〉 = 0.9,
averaged over 5 realizations).
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Figure 3: Same as Fig. 2, but with a filling 〈n〉= 0.35 chosen such that D′ is large,
leading to a scaling function with clearer features (inset). A large D′ also leads to
enhanced 1/

p
t corrections due to loops [3]. Dashed lines show the predictions from

(1) and (21) without corrections, and solid lines include 1-loop corrections. For the
two-point function, the exact prefactor of the 1-loop correction from [3] was used;
for the three-point function, the corresponding computation is not available so the
coefficient was fit. Fig. 4 shows the diagrams contributing to this correction.
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Figure 4: Loop corrections giving a relative 1/td/2 correction to the three point
function: 〈nnn〉 ∼ 1

td

�

1+ 1
td/2

�

. In d ≤ 2 this is the leading correction to the three-
point function.

and that the entire N -point function is scaling according toω∼ qz in the hydrodynamic regime,
one finds

〈n((N − 1)t) · · ·n(2t)n(t)n(0)〉 ∼ 1/t
d
z (N−1) . (26)

The scaling assumption however does not apply to hydrodynamic regimes that include a scale
to leading order in dissipation, including balistic modes ω(q) = csq− iDqz with length scale
(D/cs)1/(1−z). The leading nonlinearities in these situations are non-dissipative (see, e.g., [23]),
but the subleading diffusive regime can be captured by generalizing the scaling argument
above: note that nonlinearities from cs(n) are 1/qz−1 enhanced compared to those from D(n);
using N − 2 such vertices then leads to 〈n · · ·nn〉 ∼ 1/t

d(N−1)−(z−1)(N−2)
z along the sound front.5

To go beyond this general scaling behavior and obtain the universal dimensionless scaling
functions for nonlinear response, one would need to use the appropriate EFTs for the different
hydrodynamic situations described above. It would be interesting to carry this out to allow for
precision tests of thermalization in models exhibiting superdiffusion or subdiffusion.

Acknowledgments

We thank Dmitry Abanin, Benjamin Doyon, Jacopo de Nardis, Paolo Glorioso, Mark Mezei, and
Alexios Michailidis for inspiring discussions.

A Schwinger-Keldysh EFT for diffusion

Nonlinear EFT

The EFT of diffusion [4] consists in expressing the partition function (8) of a thermalizing
system in terms of a local effective Lagrangian L containing ‘Stückelberg’ fields φ I :

Z[A1
µ, A2

µ] =

∫

Dφ1Dφ2 ei
∫

d tdd x L[B1
µ,B2

µ] , (A.1)

with B I
µ ≡ AI

µ + ∂µφ
I (I = 1, 2) and µ= 0, 1, . . . , d is a spacetime index. This is a minimal way

of producing a gauge-invariant partition function; the number of degrees of freedom (two per
symmetry) matches those of previous approaches to fluctuating hydrodynamics [31,32] which
contain one density and a noise field for each continuous symmetry. One then proceeds as
usual in EFT by including in L all possible operators allowed by symmetries, in an expansion
in derivatives and fields. There are several other conditions that the partition function must
satisfy which leads to a number of constraints on L – we refer the reader to [28] for further
details. Up to quadratic order in fields, one finds

L(2) = σBai(iT Bai − Ḃri) +χBa0Br0 + · · · , (A.2)

5For the special case of the KPZ universality class z = 3
2 , which describes sound modes in d = 1, this becomes

1/tN/3, in agreement with [42].
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where dot denotes a time derivative. The two undetermined Wilsonian coefficients σ and
χ will be found to correspond to the conductivity and susceptibility. The fact that the first
two terms come with the same coefficient (up to a factor of the temperature T) follows from
KMS relations. The ellipses denote higher derivative terms: these give 1/t corrections to any
late-time observable and will be ignored here. Turning off the background fields, one has

L(2) = σ∇iφa(iT∇iφa −∇iφ̇r) +χφ̇aφ̇r + · · · . (A.3)

Balancing the three terms, one finds that the appropriate scaling is diffusive ω ∼ q2, and
φa ∼ φ̇r . This leading scaling of the Gaussian action guides one in keeping only the most
relevant nonlinear terms – at the cubic level these are:

1
χ
L(3) = σ′Br0Bai

�

iT Bai − Ḃri

�

+
1
2
χ ′Ba0B2

r0 +wF2
r,i jBa0 + · · · . (A.4)

Three new Wilsonian coefficients enter in the cubic action at leading order in derivatives: σ′, χ ′

and w. The last one involves the field strength Fr,i j which is independent of the dynamical field
φr – it will only produce contact term contributions to correlators involving the current, so we
ignore it in the following. How suppressed are cubic terms compared to the quadratic action?
Fluctuations in φ scale as

∫

d tdd x L(2) ∼ 1 ⇒ φ̇r ∼ φa ∼ qd/2 . (A.5)

The cubic action is therefore L(3)/L(2) ∼ qd/2 suppressed compared to the quadratic one. This
is what allows for an expansion in fluctuations in the EFT: interactions are irrelevant in the
RG sense. For example, they lead to O(qd) = O(ωd/2) corrections to correlation functions [3]
(because two cubic vertices are necessary). However, the cubic terms in (A.4) will give the
leading contribution to three-point functions of densities or currents.

The density and current operators can be found by taking derivatives with respect to the
background fields jµr ≡ δL/δAaµ. For example, the density n≡ j0r is given by

n= χ
�

Br0 +
1
2
χ ′B2

r0 + · · ·
�

. (A.6)

Taking derivatives with respect to µ = Ar0, one sees that χ = dn
dµ indeed is the susceptibility,

and χ ′ = 1
χ

dχ
dµ =

dχ
dn , justifying the notation. Similarly computing the current density j i

r shows

that σ is the dc conductivity, and σ′ = dσ
dn .

To make contact with other approaches to fluctuating hydrodynamics, one can use this
equation to trade the degree of freedom φr for n. The action up to cubic order then reads

L=
�

σ+σ′n
�

Bai(iT Bai − Er,i) + Ba0n− (D+ D′n)Bai∂in+ · · · , (A.7)

where we defined D(n)≡ σ(n)/χ(n). This is the action used in the main text, see Eq. (15). One
can similarly compute interactions involving more fields – to leading order in derivatives these
simply take the form (14). The only Wilsonian coefficients involved are therefore the Taylor
expansion coefficients of the diffusivity and conductivity (or susceptibility) around the density
of interest (2). This agrees with other existing approaches to hydrodynamics [31,32], including
macroscopic fluctuation theory [26] – we therefore expect that the results in this paper on the
leading late time density three and four-point functions could be obtained from these other
methods (to the best of our knowledge, they have not so far). However, we emphasize that the
EFT approach of [4] allows to systematically compute corrections to this action (and therefore
to observables such as the ones studied here), including terms that are missed in previous
approaches. The leading such terms arise in the quartic action and give measurable, albeit
small, corrections to any observable, see Ref. [5].
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Higher-point functions of densities

In this paper, we focus on higher-point functions of the density n. Correlators involving the
longitudinal part of the current can be obtained using Ward identities. The transverse part of
the current, instead, does not overlap with any long lived operator in theories with a single
diffusive charge.6 Its correlators are therefore pure contact terms in the EFT.

We define connected N -point functions of r/a densities as

Gr···ra···a(1, . . . , N)≡
δN log Z

δ(iA0
a(1)) · · ·δ(iA0

a(Nr))δ(iA0
r(Nr + 1)) · · ·δ(iA0

r(N))
. (A.8)

Nr denotes the number of ‘r ’ operators, and N − Nr the number of a operators. Note that this
definition slightly differs from that of [16] – the two are related as

G [16]
r···ra···a = (−i)N−12Nr−1Ghere

r···ra···a . (A.9)

The three-point function Gr r r is computed in the main text and expressed in terms of propagators
in Eq. (17). Explicitly, it is given by

Gr r r(p1, p2) = (Tχ)
2
�

2σ′

σ
−

4D′

D

� k2
1k2

2k2
3(k

2
1 + k2

2 + k2
3)

(ω2
1 + k4

1)(ω
2
2 + k4

2)(ω
2
3 + k4

3)
(A.10)

− (Tχ)2
4σ′

σ

k2
1(k2 · k3)ω2ω3 + k2

2(k3 · k1)ω3ω1 + k2
3(k1 · k2)ω1ω2

(ω2
1 + k4

1)(ω
2
2 + k4

2)(ω
2
3 + k4

3)
,

where ki ≡
p

Dqi and we introduced ω3 ≡ −ω1 −ω2 and k3 ≡ −k1 − k2 to make manifest the
permutation symmetry. The two inequivalent operator orderings Garr and Graa can be similarly
obtained – they are given by

Graa(p1, p2) = χ
2

�

D′

D

k2
1k2

2k2
3

�

k2
1 + iω1

� �

k2
2 − iω2

� �

k2
3 − iω3

�

+
σ′

σ

k1k2k3 (k3 (k1k2 + iω2) + ik2ω3)
�

k2
1 + iω1

� �

k2
2 − iω2

� �

k2
3 − iω3

�

�

,

(A.11a)

Garr(p1, p2) = 2Tχ2

�

iD′

D

k2
1k2

2k2
3

�

k2
2 + k2

3 − iω2 − iω3

�

�

k2
1 − iω1

� �

k4
2 +ω

2
2

� �

k4
3 +ω

2
3

�

+
iσ′

σ

k1k2k3

�

k2ω
2
3 − 2k1ω2ω3 + k3

�

ω2
2 − k2k1

�

k2
2 + k3k2 + k2

3

���

�

k2
1 − iω1

� �

k4
2 +ω

2
2

� �

k4
3 +ω

2
3

�

�

. (A.11b)

The momenta p1, p2 are carried by the first two arguments of the Green’s functions. For

example, δ3 log Z
δ(iA0

r (p1))δ(iA0
a(p2))δ(iA0

a(p3))
≡ (2π)d+1δd+1(p1 + p2 + p3)Garr(p1, p2).

One can check that these satisfy nonlinear KMS relations [16], which to the order we are
working in read

Re(Garr + Grar + Gr ra) = 0 , (A.12a)

Im(Gr r r) = 0 , (A.12b)

Re(Gr r r) = −
T
ω1

Re(−Garr + Grar + Garr) . (A.12c)

6This is not the case in the presence of two diffusive modes [43].

11

https://scipost.org
https://scipost.org/SciPostPhys.16.2.047


SciPost Phys. 16, 047 (2024)

In a certain limit, the three-point functions above should reduce to derivatives of two-point
functions with respect to chemical potential (18). From (A.11), one finds that this is indeed
the case

i lim
ω1→0

lim
p1→0

Graa(p1, p2) =
iχ2k2

2
�

k2
2 − iω2

�

2

�

D′

D
k2

2 −
σ′

σ

�

k2
2 − iω2

�

�

=
d

dµ
Gra(p2) ,

i lim
ω1→0

lim
p1→0

Garr(p1, p2) =
−2Tχ2k2

2
�

k4
2 +ω

2
2

�

2

�

2D′

D
k4

2 −
σ′

σ

�

k4
2 +ω

2
2

�

�

=
d

dµ
Gr r(p2) .

(A.13)

In systems with charge conjugation symmetry, such as particle-hole symmetric spin chains at
half filling, cubic nonlinearities D′, σ′ vanish. In these situations, the leading non-Gaussianities
are quartic:

L(4) = 1
2
σ′′n2Bai(iT Bai − Er,i)−

1
2

D′′n2Bai∂in+ · · · , (A.14)

leading to the following four-point function

Gr r r r(p3, p2, p1) = 2Tσ′′(q1 · q2)〈nn〉(p3)〈nφa〉(p2)〈nφa〉(p1)〈nn〉(p4) + 5 perm.

− iD′′q2
4〈nn〉(p3)〈nn〉(p2)〈nn〉(p1)〈nφa〉(p4) + 3 perm. ,

(A.15)

where we introduced p4 = −p1 − p2 − p3 to simplify notation. In the absence of charge
conjugation symmetry, the four-point function also receives contributions proportional to
D′2, D′σ′ and σ′2 from the vertices in Fig. 1.

Fourier transform and OPE

For comparison with experiments or numerics working in the time and space domain, we
Fourier transform the density three-point function 〈nnn〉(p1, p2) = Gr r r(p1, p2) found in (17)
or (A.10). For simplicity, we focus on d = 1 spatial dimensions. Specifically, we compute

〈n(t2, x2)n(t1, x1)n(0, 0)〉=
∫

dω1

2π
dω2

2π
dq1

2π
dq2

2π
e−i(ω1 t1+ω2 t2−q1 x1−q2 x2)Gr r r(p1, p2) , (A.16)

assuming t2 ≥ t1 ≥ 0. The first two frequency integrals can be straightforwardly computed by
residues; the final two integrals require a little more work but can be evaluated as well. One
finds that the three-point function takes the form (6), (7) as expected, with g3,σ′ shown in
(19), and

8πg3,D′ = e−
1
4 (y

2
1+y2

2 )
p

1− A
�

2−
p

Ae
1
4 y2

1 y2 erf( y1
2 )−

1
p

A
e

1
4 y2

2 y1 erf( y2
2 )
�

+ e−
1
4 (y

2
2+y2

21)
p

A
�

2−
1

p
1− A

e
1
4 y2

2 y21 erf( y2
2 )−
p

1− Ae
1
4 y2

21 y1 erf( y21
2 )
�

+ e−
1
4 (y

2
1+y2

21)

�

1+
p

1− A
p

A
e

1
4 y2

21 y1 erf( y21
2 ) +

p
A

p
1− A

e
1
4 y2

1 y21 erf( y1
2 )

�

,

(A.17)

with yi ≡ x i/
p

Dt i , y21 ≡ (x2 − x1)/
p

D(t2 − t1) and A≡ t1/t2, and with erf(s)≡
∫ s

0 du e−u2
.

The scaling function only depends on three dimensionless ratios of coordinates which can be
taken to be t1/t2, y1 and y2, but y21 was introduced to simplify the final expression. Various
limits of this expression lead to Eqs. (21) and (22) quoted in the main text.

One can show that the three-point function found above satisfies the factorization property
(24), and compute the OPE function fnn

n. First, we expect two independent OPE scaling
functions related to the two leading nonlinearities of the EFT

fnn
n
�

x2

Dt

�

= χT
D′

D
fnn

n|D′
�

x2

Dt

�

+χT
σ′

σ
fnn

n|σ′
�

x2

Dt

�

. (A.18)
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The two OPE functions fnn
n|D′ and fnn

n|σ′ are simplified limits of the scaling functions defined
in Eq. (7). One finds

fnn
n|σ′
�

y2
�

=
e−

1
4 y2

p
4π

, fnn
n|D′
�

y2
�

=
e−

1
4 y2

p
4π

y2 − 6
4

. (A.19)

Fourier transforming back, one also expects the OPE to control the large ω, q limit of
correlators, so that the 3pt function must have the limit

lim
ω,q→∞

Gr r r(ω
′, q′,ω, q) =

1
ωω′

f̃nn
n
�

ω
Dq2

�

f̃nn
1
�

ω′

Dq′2

�

, (A.20)

where f̃nn
1
�

ω′

Dq′2

�

is proportional to the density two-point function. We have checked that this
is the case.

B Details on the numerics

To test the predictions of the EFT, we consider a classical chain of bits, with charge at a site i
(i = 1, . . . , L) taking two possible values ni ∈ {0,1}:

· · ·01 01 10 01 00 1 · · · . (B.1)

The dynamics described below will be local, satisfy detailed balance, and will conserve the
total charge
∑

i ni – if it thermalizes it should therefore be described by the EFT of diffusion.
The dynamics we consider on this system is the Katz-Lebowitz-Spohn model [36]. It consists

in a Monte-Carlo type time evolution where at every step, a site i is randomly chosen, and the
following ‘4-site gate’ is applied to the charges ni−1 ni ni+1 ni+2:

01 00
r(1+δ)
−−−−→ 0 01 0 , (B.2a)

11 01
r(1−δ)
−−−−→ 1 01 1 , (B.2b)

1 10 0
r(1+ε)
−−−−→ 1 01 0 , (B.2c)

0 10 1
r(1−ε)
−−−−→ 0 01 1 , (B.2d)

where the number above the arrow denotes the probability P of the transition happening. The
particle at ni therefore hops to the right with probability depending on the configuration of is
neighbors. Processes related to those shown above by reflection occur with equal probability.
The model depends on two parameters δ and ε. We will set ε = 0 below: in this case the rates
above clearly satisfy infinite temperature detailed balance, e−βH = 1 (the model with ε ̸= 0 can
also be shown to satisfy detailed balance [36,44]). Time will be measured in units of the rate
r, which will therefore not appear below. We take a single time step ∆t = 1/r to correspond
to L applications of the gate above.

An appealing feature of this model for the purposes of testing the EFT predictions is that
D(n) and σ(n) are known analytically as a function of the density measured in units of the
lattice constant n = 1

L

∑

i ni ∈ [0,1], and the parameters of the model δ, ε [37, 38]. The
coefficients of the nonlinear EFT (15) to leading order in gradients are therefore entirely fixed.
For our purposes, it will be sufficient to consider the model with ε = 0, in which case these are
given by (note that Tχ is finite in the limit T →∞)

Tχ(n) = n(1− n) , D(n) = 1+δ(1− 2n) . (B.3)

From these expressions, one can obtain the cubic interactions D′ and σ′ appearing in the EFT.
Figs. 2 and 3 show the numerical results for correlation functions, and the corresponding
predictions from the EFT, using the values D′ and σ′ obtained above.

13

https://scipost.org
https://scipost.org/SciPostPhys.16.2.047


SciPost Phys. 16, 047 (2024)

References

[1] L. P. Kadanoff and P. C. Martin, Hydrodynamic equations and correlation functions, Ann.
Phys. 24, 419 (1963), doi:10.1016/0003-4916(63)90078-2.

[2] L. D. Landau and E. M. Lifshitz, Fluid mechanics, Pergamon Press, Oxford, UK, ISBN
9780080339337 (1987), doi:10.1016/C2013-0-03799-1.

[3] X. Chen-Lin, L. V. Delacrétaz and S. A. Hartnoll, Theory of diffusive fluctuations, Phys. Rev.
Lett. 122, 091602 (2019), doi:10.1103/PhysRevLett.122.091602.

[4] M. Crossley, P. Glorioso and H. Liu, Effective field theory of dissipative fluids, J. High Energy
Phys. 09, 095 (2017), doi:10.1007/JHEP09(2017)095.

[5] A. Jain and P. Kovtun, Late time correlations in hydrodynamics: Beyond constitutive relations,
Phys. Rev. Lett. 128, 071601 (2022), doi:10.1103/PhysRevLett.128.071601.

[6] D. Fausti et al., Light-induced superconductivity in a stripe-ordered cuprate, Science 331,
189 (2011), doi:10.1126/science.1197294.

[7] J. Orenstein, Ultrafast spectroscopy of quantum materials, Phys. Today 65, 44 (2012),
doi:10.1063/PT.3.1717.

[8] T. Schweigler et al., Experimental characterization of a quantum many-body system via
higher-order correlations, Nature 545, 323 (2017), doi:10.1038/nature22310.

[9] D. Nicoletti and A. Cavalleri, Nonlinear light-matter interaction at terahertz frequencies,
Adv. Opt. Photon. 8, 401 (2016), doi:10.1364/AOP.8.000401.

[10] D. Chaudhuri, D. Barbalas, R. R. III, F. Mahmood, J. Liang, J. Jesudasan, P. Raychaudhuri
and N. P. Armitage, Anomalous high-temperature THz nonlinearity in superconductors near
the metal-insulator transition, (arXiv preprint) doi:10.48550/arXiv.2204.04203.

[11] A. Kapitulnik, S. A. Kivelson and B. Spivak, Colloquium: Anomalous metals: Failed super-
conductors, Rev. Mod. Phys. 91, 011002 (2019), doi:10.1103/RevModPhys.91.011002.

[12] S. A. Hartnoll, Theory of universal incoherent metallic transport, Nat. Phys. 11, 54 (2014),
doi:10.1038/nphys3174.

[13] J. Zhang, E. M. Levenson-Falk, B. J. Ramshaw, D. A. Bonn, R. Liang, W. N. Hardy, S. A.
Hartnoll and A. Kapitulnik, Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x,
Proc. Natl. Acad. Sci. 114, 5378 (2017), doi:10.1073/pnas.1703416114.

[14] K. Behnia and A. Kapitulnik, A lower bound to the thermal diffusivity of insulators, J. Phys.:
Condens. Matter 31, 405702 (2019), doi:10.1088/1361-648X/ab2db6.

[15] G. Efremov, A fluctuation dissipation theorem for nonlinear media, Sov. Phys. J. Exp. Theor.
Phys. 28, 1232 (1969).

[16] E. Wang and U. Heinz, Generalized fluctuation-dissipation theorem for nonlinear response
functions, Phys. Rev. D 66, 025008 (2002), doi:10.1103/PhysRevD.66.025008.

[17] L. Foini and J. Kurchan, Eigenstate thermalization hypothesis and out of time order correla-
tors, Phys. Rev. E 99, 042139 (2019), doi:10.1103/PhysRevE.99.042139.

[18] S. Pappalardi, F. Fritzsch and T. Prosen, General eigenstate thermalization via free cumulants
in quantum lattice systems, (arXiv preprint) doi:10.48550/arXiv.2303.00713.

14

https://scipost.org
https://scipost.org/SciPostPhys.16.2.047
https://doi.org/10.1016/0003-4916(63)90078-2
https://doi.org/10.1016/C2013-0-03799-1
https://doi.org/10.1103/PhysRevLett.122.091602
https://doi.org/10.1007/JHEP09(2017)095
https://doi.org/10.1103/PhysRevLett.128.071601
https://doi.org/10.1126/science.1197294
https://doi.org/10.1063/PT.3.1717
https://doi.org/10.1038/nature22310
https://doi.org/10.1364/AOP.8.000401
https://doi.org/10.48550/arXiv.2204.04203
https://doi.org/10.1103/RevModPhys.91.011002
https://doi.org/10.1038/nphys3174
https://doi.org/10.1073/pnas.1703416114
https://doi.org/10.1088/1361-648X/ab2db6
https://doi.org/10.1103/PhysRevD.66.025008
https://doi.org/10.1103/PhysRevE.99.042139
https://doi.org/10.48550/arXiv.2303.00713


SciPost Phys. 16, 047 (2024)

[19] B. Chakrabarty, J. Chakravarty, S. Chaudhuri, C. Jana, R. Loganayagam and A. Sivaku-
mar, Nonlinear Langevin dynamics via holography, J. High Energy Phys. 01, 165 (2020),
doi:10.1007/JHEP01(2020)165.

[20] C. Pantelidou and B. Withers, Thermal three-point functions from holographic Schwinger-
Keldysh contours, J. High Energy Phys. 04, 50 (2023), doi:10.1007/JHEP04(2023)050.

[21] S. Lin, Y. Bu and C. Lei, Non-Gaussianity from nonlinear effective field theory, (arXiv
preprint) doi:10.48550/arXiv.2301.06703.

[22] M. Fava, S. Biswas, S. Gopalakrishnan, R. Vasseur and S. A. Parameswaran, Hydrody-
namic nonlinear response of interacting integrable systems, Proc. Natl. Acad. Sci. 118,
e2106945118 (2021), doi:10.1073/pnas.2106945118.

[23] J. De Nardis, B. Doyon, M. Medenjak and M. Panfil, Correlation functions and transport
coefficients in generalised hydrodynamics, J. Stat. Mech.: Theory Exp. 014002 (2022),
doi:10.1088/1742-5468/ac3658.

[24] B. Doyon, G. Perfetto, T. Sasamoto and T. Yoshimura, Emergence of hydrodynamic spatial
long-range correlations in nonequilibrium many-body systems, Phys. Rev. Lett. 131, 027101
(2023), doi:10.1103/PhysRevLett.131.027101.

[25] M. A. Stephanov, Non-Gaussian fluctuations near the QCD critical point, Phys. Rev. Lett.
102, 032301 (2009), doi:10.1103/PhysRevLett.102.032301.

[26] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Macroscopic fluctuation
theory, Rev. Mod. Phys. 87, 593 (2015), doi:10.1103/RevModPhys.87.593.

[27] E. McCulloch, J. De Nardis, S. Gopalakrishnan and R. Vasseur, Full counting statistics
of charge in chaotic many-body quantum systems, Phys. Rev. Lett. 131, 210402 (2023),
doi:10.1103/PhysRevLett.131.210402.

[28] H. Liu and P. Glorioso, Lectures on non-equilibrium effective field theories and fluctuating
hydrodynamics, Proc. Sci. 305, 008 (2018), doi:10.22323/1.305.0008.

[29] F. M. Haehl, R. Loganayagam and M. Rangamani, Effective action for relativistic hydrody-
namics: Fluctuations, dissipation, and entropy inflow, J. High Energy Phys. 10, 194 (2018),
doi:10.1007/JHEP10(2018)194.

[30] K. Jensen, R. Marjieh, N. Pinzani-Fokeeva and A. Yarom, A panoply of Schwinger-Keldysh
transport, SciPost Phys. 5, 053 (2018), doi:10.21468/SciPostPhys.5.5.053.

[31] P. C. Martin, E. D. Siggia and H. A. Rose, Statistical dynamics of classical systems, Phys.
Rev. A 8, 423 (1973), doi:10.1103/PhysRevA.8.423.

[32] D. Forster, D. R. Nelson and M. J. Stephen, Large-distance and long-time properties of a
randomly stirred fluid, Phys. Rev. A 16, 732 (1977), doi:10.1103/PhysRevA.16.732.

[33] L. Delacrétaz, Heavy operators and hydrodynamic tails, SciPost Phys. 9, 034 (2020),
doi:10.21468/SciPostPhys.9.3.034.

[34] P. Glorioso, L. Delacrétaz, X. Chen, R. Nandkishore and A. Lucas, Hydrodynamics in
lattice models with continuous non-Abelian symmetries, SciPost Phys. 10, 015 (2021),
doi:10.21468/SciPostPhys.10.1.015.

[35] S. Weinberg, The quantum theory of fields volume 2, Cambridge University Press, Cam-
bridge, UK, ISBN 9780521550024 (1995).

15

https://scipost.org
https://scipost.org/SciPostPhys.16.2.047
https://doi.org/10.1007/JHEP01(2020)165
https://doi.org/10.1007/JHEP04(2023)050
https://doi.org/10.48550/arXiv.2301.06703
https://doi.org/10.1073/pnas.2106945118
https://doi.org/10.1088/1742-5468/ac3658
https://doi.org/10.1103/PhysRevLett.131.027101
https://doi.org/10.1103/PhysRevLett.102.032301
https://doi.org/10.1103/RevModPhys.87.593
https://doi.org/10.1103/PhysRevLett.131.210402
https://doi.org/10.22323/1.305.0008
https://doi.org/10.1007/JHEP10(2018)194
https://doi.org/10.21468/SciPostPhys.5.5.053
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.16.732
https://doi.org/10.21468/SciPostPhys.9.3.034
https://doi.org/10.21468/SciPostPhys.10.1.015


SciPost Phys. 16, 047 (2024)

[36] S. Katz, J. L. Lebowitz and H. Spohn, Nonequilibrium steady states of stochastic lattice gas
models of fast ionic conductors, J. Stat. Phys. 34, 497 (1984), doi:10.1007/BF01018556.

[37] J. S. Hager, J. Krug, V. Popkov and G. M. Schütz, Minimal current phase and uni-
versal boundary layers in driven diffusive systems, Phys. Rev. E 63, 056110 (2001),
doi:10.1103/PhysRevE.63.056110.

[38] Y. Baek, Y. Kafri and V. Lecomte, Dynamical symmetry breaking and phase
transitions in driven diffusive systems, Phys. Rev. Lett. 118, 030604 (2017),
doi:10.1103/PhysRevLett.118.030604.

[39] P. Ledwith, H. Guo and L. Levitov, Angular superdiffusion and directional memory in
two-dimensional electron fluids, (arXiv preprint) doi:10.48550/arXiv.1708.01915.

[40] A. Gromov, A. Lucas and R. M. Nandkishore, Fracton hydrodynamics, Phys. Rev. Res. 2,
033124 (2020), doi:10.1103/PhysRevResearch.2.033124.

[41] P. Glorioso, J. Guo, J. F. Rodriguez-Nieva and A. Lucas, Breakdown of hydrodynamics below
four dimensions in a fracton fluid, Nat. Phys. 18, 912 (2022), doi:10.1038/s41567-022-
01631-x.

[42] J. de Nardis and P. Le Doussal, Tail of the two-time height distribution for KPZ growth in one
dimension, J. Stat. Mech.: Theory Exp. 053212 (2017), doi:10.1088/1742-5468/aa6bce.

[43] S. Mukerjee, V. Oganesyan and D. Huse, Statistical theory of transport by strongly interacting
lattice fermions, Phys. Rev. B 73, 035113 (2006), doi:10.1103/PhysRevB.73.035113.

[44] H. Spohn, Large scale dynamics of interacting particles, Springer, Berlin, Heidelberg,
Germany, ISBN 9783642843730 (2011), doi:10.1007/978-3-642-84371-6.

16

https://scipost.org
https://scipost.org/SciPostPhys.16.2.047
https://doi.org/10.1007/BF01018556
https://doi.org/10.1103/PhysRevE.63.056110
https://doi.org/10.1103/PhysRevLett.118.030604
https://doi.org/10.48550/arXiv.1708.01915
https://doi.org/10.1103/PhysRevResearch.2.033124
https://doi.org/10.1038/s41567-022-01631-x
https://doi.org/10.1038/s41567-022-01631-x
https://doi.org/10.1088/1742-5468/aa6bce
https://doi.org/10.1103/PhysRevB.73.035113
https://doi.org/10.1007/978-3-642-84371-6

	Introduction
	General scaling considerations
	EFT calculation of higher-point functions
	Properties of the three-point function
	Fourier transform
	OPE in the EFT

	Applications
	Numerics
	Generalizations

	Schwinger-Keldysh EFT for diffusion
	Details on the numerics
	References

