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Abstract

We introduce a critical string theory in two dimensions and demonstrate that this the-
ory, viewed as two-dimensional quantum gravity on the worldsheet, is equivalent to a
double-scaled matrix integral. The worldsheet theory consists of Liouville CFT with cen-
tral charge c ≥ 25 coupled to timelike Liouville CFT with central charge 26 − c. The
double-scaled matrix integral has as its leading density of states the universal Cardy
density of primaries in a two-dimensional CFT, thus motivating the name Virasoro min-
imal string. The duality holds for any value of the continuous parameter c and reduces
to the JT gravity/matrix integral duality in the large central charge limit. It thus pro-
vides a precise stringy realization of JT gravity. The main observables of the Virasoro
minimal string are quantum analogues of the Weil-Petersson volumes, which are com-
puted as absolutely convergent integrals of worldsheet CFT correlators over the moduli
space of Riemann surfaces. By exploiting a relation of the Virasoro minimal string to
three-dimensional gravity and intersection theory on the moduli space of Riemann sur-
faces, we are able to give a direct derivation of the duality. We provide many checks,
such as explicit numerical — and in special cases, analytic — integration of string dia-
grams, the identification of the CFT boundary conditions with asymptotic boundaries of
the two-dimensional spacetime, and the matching between the leading non-perturbative
corrections of the worldsheet theory and the matrix integral. As a byproduct, we discover
natural conformal boundary conditions for timelike Liouville CFT.
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Part I

Introduction and summary

1 Introduction

String theories with a low number of target spacetime dimensions have proven to be valu-
able laboratories for understanding fundamental aspects of string theory. Rich phenomena
such as holographic duality (for reviews, see [1–7]), non-perturbative effects mediated by D-
instantons [8–20], and time-dependent stringy dynamics such as rolling tachyons [21–24],
persist in low-dimensional string theories yet remain more computationally tractable than in
their higher-dimensional counterparts.

At the same time, the direct approach of worldsheet string perturbation theory in the
Polyakov formalism of integrating conformal field theory (CFT) correlators over the moduli
space of Riemann surfaces, while being explicit and familiar, often obscures the underlying
simplicity of the physics of the model. For instance, the two-dimensional c = 1 or type 0A/0B
string theories admit a simpler description of the spacetime strings in terms of a double-
scaled matrix quantum mechanics. Similarly, worldsheet theories of strings propagating in
certain AdS3 backgrounds are more simply described in terms of their spacetime boundary
CFT2 dual [25–29]. In these examples, the simpler and more illuminating description is the
(spacetime) holographic dual.

Another important low-dimensional string theory model is the minimal string [30, 31],
whose worldsheet theory is composed of a Virasoro minimal model CFT with central charge
ĉ < 1 and Liouville CFT with c > 25 that together with the bc-ghost system form a critical
worldsheet theory. This string model has been a fruitful arena for investigating aspects of two-
dimensional quantum gravity and their relation to double-scaled matrix integrals [32–34] (for
reviews, see [2,35]). As a recent example, several works [36–39] have highlighted the (2, p)
minimal string as a candidate string-theoretic description of Jackiw–Teitelboim (or linear)
dilaton quantum gravity in the p→∞ limit.

The main purpose of this paper is to investigate a new critical string theory that we will
refer to as Virasoro minimal string theory, for reasons to be described below. When viewed
as a model of two-dimensional quantum gravity on the worldsheet itself,1 this theory admits

1See [40, 41] however, for a target spacetime interpretation of the worldsheet theory (1.1) for the particular
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several distinct presentations that make its solvability more manifest. The Virasoro minimal
string is defined by the following worldsheet conformal field theory,2

c ≥ 25
Liouville CFT

⊕
ĉ ≤ 1

Liouville CFT
⊕ bc-ghosts , (1.1)

where ĉ = 26− c. Importantly, as described in more detail in section 3, the ĉ ≤ 1 Liouville CFT
sector of (1.1) is not simply the analytic continuation of the c ≥ 25 Liouville CFT; rather, it is
a distinct (non-unitary) solution to the CFT crossing equations for central charge in the range
ĉ ≤ 1 that has been independently bootstrapped [42–44]. It has sometimes been referred to
as “timelike Liouville CFT” in the literature, and we will adopt that name here.

In contrast to minimal string theory, the Virasoro minimal string (1.1) is a continuous family
of critical worldsheet theories labeled by a single parameter c = 1 + 6(b + b−1)2 ∈ R≥25.
Furthermore, the main observables of the theory, worldsheet CFT correlators integrated over
moduli space of Riemann surfaces — or quantum volumes of the string worldsheet — have
analytic dependence on both the parameter c as well as the “external momenta” Pi labeling
the on-shell vertex operator insertions on the worldsheet. For example, we find for the four
punctured sphere and the once punctured torus

V(b)0,4(P1, P2, P3, P4) =
c − 13

24
+ P2

1 + P2
2 + P2

3 + P2
4 , V(b)1,1(P1) =

c − 13
576

+
1

24
P2

1 . (1.2)

Despite their origin as complicated integrals of CFT correlators over the moduli space of Rie-
mann surfaces, the resulting quantum volumes are extraordinarily simple functions of the
central charge and external momenta. This suggests that the theory admits a much simpler
representation. Indeed, in the main part of this paper we will leverage such alternative de-
scriptions to derive relations that make V(b)g,n accessible for arbitrary g and n.

In this paper, we will show that in addition to the worldsheet CFT description (1.1), the
Virasoro minimal string admits the following presentations: as a model of dilaton quantum
gravity on the two-dimensional worldsheet subject to a sinh-dilaton potential; as a dimensional
reduction of a certain sector of three-dimensional gravity; in terms of intersection theory on
moduli space of Riemann surfaces; and in terms of a double-scaled matrix integral. These
different presentations are summarized in figure 1.

The double-scaled matrix integral is perturbatively fully determined by its leading density
of eigenvalues, which is given by

ϱ
(b)
0 (E)dE = 2

p
2

sinh(2πb
p

E) sinh(2πb−1pE)
p

E
dE , (1.3)

where E is the energy in the double-scaled matrix integral. Since (1.3) is the Cardy formula
that universally governs the asymptotic density of states in any unitary compact CFT2, we call
(1.1) the Virasoro minimal string. In the limit b→ 0 (equivalently c→∞) and upon rescaling
the energy E the eigenvalue density of the Virasoro minimal string reduces to the sinh(

p
E)dE

density of JT gravity. At finite values of c the Virasoro minimal string (1.1) corresponds to a
deformation of JT gravity, which is however completely distinct from the (2, p)minimal string.

case of ĉ = 1 and c = 25 Liouville CFTs, as strings propagating in a two-dimensional cosmological background.
2A brief aside on terminology: we refer to this as “Virasoro minimal string theory” because it is in a sense the

minimal critical worldsheet theory involving only ingredients from Virasoro representation theory. Another point
of view is that any bosonic string theory without a tachyon defines a minimal string theory. In contrast to the
ordinary minimal string, the word “minimal” should not be read as having anything to do with Virasoro minimal
model CFTs.
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Figure 1: Road map of this paper. The Virasoro minimal string admits five different
presentations summarized in the blue shaded boxes. The red shaded boxes refer to
more details related to the presentation in consideration.

Outline of this paper. The rest of the paper is organized in four parts. In the first part
we summarize the different presentations of (1.1) and highlight our main results following
the structure outlined in figure 1. Part II is split into three sections: In section 3 we define
the worldsheet theory (1.1). We describe the spacelike and timelike Liouville conformal field
theories corresponding to the theories with central charge c ≥ 25 and ĉ ≤ 1 in the Virasoro
minimal string (1.1). We introduce suitable boundary conditions which will allow us to study
also configurations with asymptotic boundaries. In section 4 we provide a three-dimensional
perspective of the Virasoro minimal string and derive a cohomological interpretation for the
quantum volumes V(b)g,n using intersection theory technology on the compactified moduli space

of Riemann surfaces, Mg,n. We introduce and discuss the dual matrix model in section 5.
Topological recursion demonstrates the equivalence between the matrix model and the inter-
section theory expressions for V(b)g,n. Part III contains further applications and direct checks of
the Virasoro minimal string, such as a discussion of non-perturbative effects in section 6, the
direct evaluation of string diagrams in section 7 and string diagrams in the presence of bound-
aries in section 8. We conclude in part IV with a discussion and a summary of open problems.
Details of various calculations and conventions are summarized in appendices A, B, C and D.
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2 Summary of results

2.1 Sinh-dilaton gravity

We begin by considering a two-dimensional theory of dilaton gravity. Its classical Euclidean
action on a surface Σ takes the form

SΣ[g,Φ] = −
1
2

∫

Σ

d2 x
p

g
�

ΦR+W (Φ)
�

−
∫

∂Σ

dx
p

hΦ(K − 1)

−
S0

2π

�

1
2

∫

Σ

d2 x
p

g R+
∫

∂Σ

dx
p

hK

�

, W (Φ) =
sinh(2πb2Φ)

sin(πb2)
. (2.1)

Here S−1
0 plays the role of a gravitational coupling. The model reduces to JT gravity in the

limit b → 0, where the dilaton potential becomes linear [45, 46]. The second line in (2.1)
is the Euler term which weighs different topologies according to their genus, see e.g. [36].
This theory has been considered before, see e.g. [37, 38, 47–49], but is not yet solvable by
standard techniques, since it in particular falls outside the class of dilaton gravities considered
in [39,50–52]. We will not discuss the theory directly in the metric formulation. Instead, we
will make use of the following field redefinition

φ = b−1ρ −πbΦ , χ = b−1ρ +πbΦ , (2.2)

where ρ is the Weyl factor of the worldsheet metric g = e2ρ g̃. At the level of the classical
actions, this maps the theory to the direct sum of a spacelike Liouville theory of central charge
c = 1+ 6(b+ b−1)2 and a timelike Liouville theory of central charge ĉ = 26− c. See [38,47]
for more details. We can thus describe the theory as a two-dimensional string theory with
a spacelike Liouville theory coupled to a timelike Liouville theory. The classical actions of
spacelike and timelike Liouville theory are respectively given by

SL[φ] =
1

4π

∫

Σ

d2 x
p

g̃
�

g̃ i j∂iφ∂ jφ +Q eRφ + 4πµsLe2bφ
�

, (2.3a)

StL[χ] =
1

4π

∫

Σ

d2 x
p

g̃
�

− g̃ i j∂iχ∂ jχ − bQ eRχ + 4πµtLe2b̂χ
�

. (2.3b)

The dimensionless parameters Q, b and bQ, b̂ and their relation with each other is explained in
the next section; µsL andµtL are dimensionful parameters of the theory that satisfyµsL = −µtL.3

We emphasize that although we have introduced these theories at the level of their worldsheet
Lagrangians, in what follows we will treat them as non-perturbatively well-defined conformal
field theories that together define the worldsheet CFT.

2.2 Worldsheet definition

The most direct description of the Virasoro minimal string is that of a critical bosonic world-
sheet theory consisting of spacelike and timelike Liouville conformal field theories with paired
central charges c ≥ 25 and ĉ ≤ 1 respectively, together with the usual bc-ghost system with
central charge cgh = −26. We emphasize that we view this string theory as a 2d theory of
quantum gravity on the worldsheet (as opposed to a theory in target space), as depicted in
figure 2.

3In the references [38,39,49,53,54], the timelike Liouville factor is replaced by a minimal model at the quantum
level which then leads to the usual minimal string. In this paper, we will take the timelike Liouville factor seriously
which leads to a completely different theory at the quantum level.
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σ

τ

Quantum gravity on the worldsheet.

space

time

Strings in target spacetime.

Figure 2: A critical string background can be viewed as a model of quantum gravity
on the two-dimensional worldsheet of the string, or as a model of strings propagating
in target spacetime.

We refer to Liouville theory with c ≥ 25 as spacelike Liouville theory whereas we refer to
Liouville theory with ĉ ≤ 1 as timelike Liouville theory [55–58]. This distinction is important
as the CFT data of timelike Liouville theory is not simply the analytic continuation of that of
spacelike Liouville theory. In this paper, we will place a typographical hat on quantities that
refer to the timelike Liouville sector of the worldsheet theory (1.1) in order to distinguish
them from those in the spacelike Liouville sector. We parametrize the central charges and the
Virasoro conformal weights of their operator spectra by

spacelike Liouville CFT: c = 1+ 6Q2 , Q = b+ b−1 , hP =
Q2

4
+ P2 , (2.4a)

timelike Liouville CFT: ĉ = 1− 6bQ2 , bQ = b̂−1 − b̂ , ĥ
bP = −

bQ2

4
+ bP2 . (2.4b)

The parameters P and bP are often referred to as the “Liouville momenta.” With this
parametrization b and b̂ are real valued and we can choose b, b̂ ∈ (0, 1]. Both spacelike
and timelike Liouville CFT are noncompact solutions to the crossing equations with a con-
tinuous spectrum of (delta-function normalizable) scalar primary operators with conformal
weights bounded from below by c−1

24 and ĉ−1
24 respectively. This corresponds to real values of

the Liouville momenta P, bP. We defer a more comprehensive discussion of these worldsheet
CFTs to section 3.1.

The Virasoro minimal string is described on the worldsheet by coupling a spacelike Liou-
ville theory to a timelike Liouville theory, as described classically in (2.2). Vanishing of the
conformal anomaly of the combined theory imposes the condition ĉ = 26− c and thus b̂ = b.
The mass shell condition for physical states hP + ĥ

bP = 1 further implies bP = ±iP. In summary
we have

b̂ = b , bP = iP , (2.5)

where we chose one convention for the sign for concreteness. Hence, on-shell vertex operators
in Virasoro minimal string theory involve external primary operators in timelike Liouville CFT
with imaginary values of the Liouville momenta. Notably, imaginary values of bP correspond
to ĥ ≤ ĉ−1

24 and are thus not in the spectrum of timelike Liouville theory. Thus we will need
to analytically continue the correlation functions of timelike Liouville theory away from real
Liouville momenta. In fact this is a harmless operation and, contrary to spacelike Liouville
theory, does not require contour deformations in the conformal block decomposition of world-
sheet correlators. In [57], such an analytic continuation leads to the distinction of the internal

7
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and external spectrum. A similar analytic continuation is also necessary for the usual minimal
string — there, primaries of the Virasoro minimal model are combined with vertex operators in
Liouville theory that are not in the spectrum and so their correlation functions are necessarily
defined by analytic continuation.

We will denote the primary operators in the spacelike/timelike Liouville CFTs of conformal
weights hP and ĥ

bP by VP(z) and bV
bP(z) respectively. Physical operators of the full worldsheet

theory are hence represented by the following vertex operators built out of paired primaries
of the spacelike and timelike Liouville CFTs, together with bc-ghosts,

VP = N(P) cc̃VP bVbP=iP , (2.6)

where N(P) is a normalization constant that will be fixed in section 7.
The observables in Virasoro minimal string theory are computed by worldsheet diagrams

as usual in string theory. For a worldsheet with genus g and n external punctures we define

V(b)g,n(P1, . . . , Pn)≡
∫

Mg,n

Zgh〈VP1
. . . VPn

〉g〈bViP1
. . . bViPn

〉g . (2.7)

Here 〈VP1
. . . VPn

〉g is the correlation function of n primary operators on a genus-g Riemann
surface in spacelike Liouville CFT, 〈bViP1

. . . bViPn
〉g is the corresponding correlator in timelike

Liouville CFT, Zgh is the correlator of the bc-ghost system and the worldsheet CFT correlators
are integrated over Mg,n, the moduli space of genus-g Riemann surfaces with n punctures.
We will typically consider the worldsheet diagrams for real values of the external momenta Pj ,
but we will see that the analytic continuation to complex momenta is often straightforward. A
special feature of the Virasoro minimal string is that at least for real values of the external mo-
menta, these diagrams are absolutely convergent integrals over the moduli space of Riemann
surfaces. The Liouville momenta Pj play a role analogous to that of the geodesic lengths in JT
gravity, with V(b)g,n playing the role of the Weil-Petersson volumes. We shall discuss the precise

reduction of V(b)g,n to the Weil-Petersson volumes in section 2.7. For this reason we will refer to

V(b)g,n as “quantum volumes.” In the full theory of quantum gravity, it is necessary to sum over
all topologies which are weighted according to the Euler characteristic. We have

V(b)n (S0; P1, . . . , Pn)≡
∞
∑

g=0

e(2−2g−n)S0 V(b)g,n(P1, . . . , Pn) . (2.8)

This sum is asymptotic, but can be made sense of via resurgence.
Given the relationship between the Virasoro minimal string and two-dimensional dilaton

gravity, it is natural to anticipate that it can compute observables with asymptotic boundaries
in addition to the string diagrams with finite boundaries corresponding to external vertex
operator insertions.4 This is achieved on the worldsheet by equipping the worldsheet CFT
with particular boundary conditions. We summarize the mechanism by which we incorporate
asymptotic boundaries in section 2.5 and the precise worldsheet boundary conformal field
theory in section 3.2. We in particular introduce a new family of conformal boundary con-
ditions for timelike Liouville theory — which we dub “half-ZZ” boundary conditions — that
will play an important role in the incorporation of asymptotic boundaries and in mediating
non-perturbative effects in Virasoro minimal string theory.

4In the JT gravity limit, these finite boundaries become geodesic boundaries with lengths fixed in terms of the
data of the vertex operator insertions as in (2.22). For this reason, in a slight abuse of notation, we will sometimes
use the terms finite boundaries and geodesic boundaries interchangeably.
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2.3 Dual matrix integral

The central claim of this paper is that the Virasoro minimal string is dual to a double-scaled
Hermitian matrix integral. We will provide evidence that the leading density of states for this
double-scaled matrix integral is given by

ϱ
(b)
0 (E)dE = 2

p
2

sinh(2πb
p

E) sinh(2πb−1pE)
p

E
dE , (2.9)

where E = P2 = hP −
c−1
24 is the energy in the matrix integral. For b → 0, one of the sinh’s

linearizes and we recover the famous sinh(
p

E)dE density of states of JT gravity [36].
(2.9) is the universal normalized Cardy density of states in any unitary CFT2, which is what

motivated us to call the bulk theory the Virasoro minimal string. It is the modular S-matrix for
the vacuum Virasoro character that controls the high energy growth of states in a CFT2,

χ(b)vac

�

− 1
τ

�

=

∫ ∞

0

dP ρ(b)0 (P)χ
(b)
P (τ) , with ρ

(b)
0 (P)≡ 4

p
2sinh(2πbP) sinh(2πb−1P) ,

(2.10)
where χ(b)P (τ) = qP2

η(τ)−1 are the non-degenerate Virasoro characters with weight hP . Here
τ is the torus modulus, with q = e2πiτ and η(τ) the Dedekind eta function. The density of
states is directly related to the spectral curve [59] which is the basic data for the topological
recursion/loop equations in a double-scaled matrix integral. Since in recent CFT literature
and the random matrix theory literature it is common to denote the densities of states by the
same Greek letter, we distinguish the two cases by using ρ(b)0 in the CFT and ϱ(b)0 (2.9) in the
matrix integral context.

The matrix integral associated to (2.9) turns out to be non-perturbatively unstable, unless
b = 1. This is diagnosed by computing the first non-perturbative correction to the density of
states. Perturbatively, no eigenvalue can be smaller than zero, but non-perturbatively, eigenval-
ues can tunnel to this classically forbidden regime. The leading non-perturbative contribution
to the density of states in the forbidden E < 0 region takes the form

〈ϱ(b)(E)〉= −
1

8πE
exp

�

2
p

2 eS0

�

sin(2πQ
p
−E)

Q
−

sin(2πbQ
p
−E )

bQ

��

, (2.11)

where Q and bQ were defined in (2.4). Unless b = 1, this can become arbitrarily large for suf-
ficiently negative E and thus renders the model unstable. One can define a non-perturbative
completion of the matrix integral by modifying the integration contour over the eigenvalues
of the matrices. Such a non-perturbative completion is ambiguous and any choice requires
the inclusion of non-perturbative corrections to the gravity partition functions. These non-
perturbative corrections correspond to ZZ-instanton corrections on the worldsheet and will
be discussed in section 6.1. The worldsheet exhibits the same non-perturbative ambiguities,
presumably related to the choice of integration contour in string field theory [60]. Via resur-
gence, the computation of non-perturbative effects allows us also to extract the large-genus
asymptotics of the quantum volumes,

V(b)g,n(P1, . . . , Pn)
g≫1
∼

∏n
j=1

p
2 sinh(2πbPj)

Pj

2
3
2π

5
2 (1− b4)

1
2

×
�

4
p

2b sin(πb2)
1− b4

�2−2g−n

× Γ
�

2g + n− 5
2

�

. (2.12)
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P4

P3P2

P1 P4

P3P2

P1 P4

P3P2

P1

Figure 3: The three different ways of embedding a three-punctured sphere into a
surface, corresponding to the three different contributions in eq. (2.13).

2.4 Deformed Mirzakhani recursion relation

Our conjecture for the dual matrix integral leads to recursion relations for the quantum vol-
umes V(b)g,n. In particular we have

P1V
(b)
g,n(P1,P) =

∫ ∞

0

(2P dP) (2P ′ dP ′)H(P + P ′, P1)
�

V(b)g−1,n+1(P, P ′,P)

+
g
∑

h=0

∑

I⊔J={2,...,n}

V(b)h,|I |+1(P,PI)V
(b)
g−h,|J |+1(P

′,PJ )
�

+
n
∑

i=2

∫ ∞

0

(2P dP)
�

H(P, P1 + Pi) +H(P, P1 − Pi)
�

V(b)g,n−1(P,P \ Pi) , (2.13)

where P = (P2, . . . , Pn). The different terms correspond to the three topologically different
ways in which one can embed a three-punctured sphere with boundary P1 into Σg,n. They are
displayed in figure 3. The function H(x , y) takes the following form

H(x , y) =
y
2
−
∫ ∞

0

dt
sin(4πt x) sin(4πt y)

sinh(2πbt) sinh(2πb−1 t)
. (2.14)

The integral over t is not elementary, except in special cases. For example, we have for b = 1

H(x , y)
�

�

b=1 =
−y cosh(2πy) + x sinh(2πy) + y e−2πx

4 sinh(π(x + y)) sinh(π(x − y))
. (2.15)

This is a deformed version of Mirzakhani’s celebrated recursion relation [61] to which it re-
duces in the limit b → 0. We wrote an efficient implementation of this recursion relation in
Mathematica, which is appended as an ancillary file to the submission.

2.5 Asymptotic boundaries

So far, we have only explained how to efficiently compute gravity partition functions with
finite boundaries. One can add asymptotic boundaries just like in JT gravity by computing the
partition function of a disk and of a punctured disk (aka trumpet) and glue them to the bulk
volumes.

The disk and trumpet partition function take the form

Z(b)disk(β) = e
π2c
6β

∞
∏

n=2

1

1− e−
4π2n
β

=
1

η( β i
2π)

√

√2π
β

�

e
π2Q2

β − e
π2
bQ2

β

�

, (2.16a)

Z(b)trumpet(β; P) = e−
4π2
β (P

2− 1
24 )
∞
∏

n=1

1

1− e−
4π2n
β

=
1

η( β i
2π)

√

√2π
β

e−
4π2P2
β . (2.16b)
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V(b)2,2(P1, P2)

Z (b)trumpet(β1, P1) Z (b)trumpet(β2, P2)

2P1 dP1 2P2 dP2

Figure 4: Gluing trumpets to the bulk gives the partition function of the Virasoro
minimal string on arbitrary topologies with asymptotic boundaries.

From the first expression, one can recognize that these partition functions are simply the Vi-
rasoro vacuum character and non-vacuum character in the dual channel, respectively. In the
second expression, we used the modular properties of the eta-function to rewrite it in terms
of the β channel.

The reason why the Virasoro character appears is that these 2d gravity partition functions
are actually equal to a partition function of a chiral half of three-dimensional gravity theory on
Σg,n×S1. We will explain this in section 4, where we derive these formulas. In our convention

of β , the size of the thermal circle is 4π2

β . Thus, for the disk, we are actually computing
the chiral 3d gravity partition function on a solid cylinder which gives the vacuum Virasoro
character in the boundary. Similarly the trumpet partition function is equal to the 3d gravity
partition function on a solid cylinder with a black hole inside, which gives a generic Virasoro
character in the boundary.

The dual matrix integral explained in section 2.3 only captures the partition function of
primaries. This should be intuitively clear since Virasoro descendants are dictated by symme-
try and thus cannot be statistically independent from the primaries. We account for this by
stripping off the factor η( β i

2π) and denote the primary partition functions by Z (b). Thus we
have

Z (b)disk(β) =

√

√2π
β

�

e
π2Q2

β − e
π2
bQ2

β

�

, (2.17a)

Z (b)trumpet(β; P) =

√

√2π
β

e−
4π2P2
β . (2.17b)

The trumpet partition function has the same form as in JT gravity [36]. Taking the inverse
Laplace transform of the disk partition function of the primaries Z (b)disk leads to the eigenvalue

distribution ϱ(b)0 given in equation (2.9), see subsection 5.2 for more details.
We can then compute the partition function with any number of asymptotic boundaries as

follows

Z (b)g,n(β1, . . . ,βn) =

∫ ∞

0

n
∏

j=1

�

2Pj dPj Z (b)trumpet(β j , Pj)
�

V(b)g,n(P1, . . . , Pn) . (2.18)

Notice that the same measure 2P dP appears as in the deformed Mirzakhani’s recursion relation
(2.13). We derive this gluing measure from 3d gravity in section 4.1. Up to normalization,
this is the same measure as in JT gravity. The gluing procedure is sketched in figure 4.
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2.6 Intersection theory on moduli space

There is a last way to describe the theory – in terms of intersection theory on the compacti-
fied moduli space of Riemann surfaces Mg,n. This forms the conceptual bridge between the
worldsheet description of section 2.2 and the description in terms of a random matrix integral
in section 2.3 and allows us to essentially derive the duality.

From a bulk perspective, this also gives a far more efficient way to compute the integrals
over Mg,n defined in (2.7), thanks to efficient algorithms to compute intersection numbers on
moduli space. We used admcycles [62] in practice. We obtain with the intersection theory
approach for example

V(b)0,4(P1, . . . , P4) =
c − 13

24
+

4
∑

j=1

P2
j , (2.19a)

V(b)1,1(P1) =
1
24

�

c − 13
24

+ P2
1

�

, (2.19b)

V(b)0,5(P1, . . . , P5) =
5c2 − 130c + 797

1152
+

c − 13
8

5
∑

j=1

P2
j +

1
2

5
∑

j=1

P4
j + 2

∑

j<k

P2
j P2

k , (2.19c)

V(b)1,2(P1, P2) =
c2 − 26c + 153

9216
+

c − 13
288

(P2
1 + P2

2 ) +
1

48
(P2

1 + P2
2 )

2 . (2.19d)

These can of course also be obtained from the recursion (2.13). We have compiled a much
larger list of quantum volumes in appendix B.

Our main claim, which connects the worldsheet and matrix integral descriptions of the
Virasoro minimal string, is that V(b)g,n(P1, . . . , Pn) defined in eq. (2.7) is given by the following

intersection number of Mg,n:

V(b)g,n(P1, . . . , Pn) =

∫

Mg,n

td(Mg,n) exp
�

c
24
κ1 +

n
∑

j=1

�

P2
j −

1
24

�

ψ j

�

=

∫

Mg,n

exp
�

c − 13
24

κ1 +
n
∑

j=1

P2
j ψ j −

∑

m≥1

B2m

(2m)(2m)!
κ2m

�

. (2.20)

Here, ψ j and κn are standard cohomology classes on Mg,n whose definition we briefly recall
in appendix A. B2m are the Bernoulli numbers. The Todd class of the tangent bundle of moduli
space that appears in the first line, can be rewritten in terms of the ψ- and κ-classes via the
Grothendieck-Riemann-Roch theorem, which leads to the expression in the second line.5 Note
that the integrand should be viewed as a formal power series. We expand the exponential and
pick out the terms of the top degree 3g − 3+ n and integrate them over moduli space.

It is straightforward to derive two identities from (2.20) which are the analogue of the
dilaton and string (or puncture) equations of topological gravity [63–65]. This requires some
algebraic geometry and the proof can be found in appendix D. They take the form

V(b)g,n+1

�

P = ibQ
2 ,P

�

−V(b)g,n+1

�

P = iQ
2 ,P

�

= (2g − 2+ n)V(b)g,n(P) , (2.21a)

∫
ibQ
2

iQ
2

2P dP V(b)g,n+1(P,P) =
n
∑

j=1

∫ Pj

0

2Pj dPj V
(b)
g,n(P) . (2.21b)

5Here it is important whether we talk about the Todd class of the tangent bundle of Mg,n or Mg,n, since they
differ in their behaviour near the boundary of moduli space. We will mention further details about this subtlety in
section 4.2.
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To state these formulas, one has to analytically continue the quantum volumes to complex val-
ues of Pi . We used the parametrization (2.4). These two equations together with polynomiality
of the quantum volumes that follows from the intersection expression (2.20) determine them
completely at genus 0 and 1 [63].

2.7 Relation to JT gravity and the minimal string

As already noticed at the level of the action (2.1) or the density of states for the dual matrix
integral (2.9), the Virasoro minimal string reduces to JT gravity in the limit b→ 0. JT gravity
has been studied extensively in the literature, see [36] and many subsequent works. This
reduction precisely realizes an idea of Seiberg and Stanford about the relation between the
minimal string and JT gravity [37].

Let us make this precise at the level of the quantum volumes V(b)g,n and the partition func-

tions Z (b)g,n. In the limit b→ 0, one has to scale the Liouville momenta like

P =
ℓ

4πb
, (2.22)

where ℓ are the geodesic lengths on hyperbolic surfaces. This relation is further explained in
section 4.2. We also scale the boundary temperatures as follows,

β =
1
b2
βJT , (2.23)

and hold βJT fixed in the limit b→ 0. From the intersection point of view (2.20), it is obvious
that the quantum volumes reduce to the ordinary Weil-Petersson volumes by using eq. (A.6)
and the fact that the Todd class becomes subleading in this limit. We have

V(b)g,n(P1, . . . , Pn)
b→0
−→ (8π2 b2)−3g+3−nVg,n(ℓ1, . . . ,ℓn)

�

1+O(b2)
�

, (2.24)

where Vg,n denote the Weil-Petersson volumes. In the presence of asymptotic boundaries, we
have6

Z (b)g,n(β1, . . . ,βn)
b→0
−→ (8π2 b2)

3
2 (2−2g−n)ZJT

g,n(β
JT
1 , . . . ,βJT

n ) . (2.25)

The prefactor is raised to the Euler characteristic and hence can be absorbed into the definition
of S0 in (2.1).

One might also wonder whether the Virasoro minimal string is related to the (2, p)minimal
string which also admits a double-scaled dual matrix integral description [66–68]. Moreover,
there are hints that the (2, p) minimal model could be obtained from timelike Liouville theory
on the worldsheet by a certain gauging [69,70]. It has also been argued that the large p limit
of the minimal string reduces to the JT gravity, albeit in the regime where vertex operators cor-
respond to conical defect insertions instead of geodesic boundaries [37–39,52,54]. However,
let us emphasize that the (2, p) minimal string and the Virasoro minimal string correspond to
two completely different deformations of JT gravity and do not seem to have a direct relation.
In particular the density of states of the dual matrix integrals are genuinely different.

6Here we are using standard conventions in JT gravity. In the language of [36], we set α= 1 and γ= 1
2 .
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Part II

Dual descriptions

3 A worldsheet perspective

In this section we elucidate in more detail the worldsheet description of the Virasoro minimal
string. Throughout we emphasize the exact formulation of the worldsheet CFTs in terms of
their operator spectrum and OPE data.

3.1 Description of the worldsheet CFT

Spacelike Liouville CFT. Spacelike Liouville CFT is a non-perturbative solution to the CFT
crossing equations that exists for all complex values of the central charge c away from the
half-line (−∞, 1]. It defines a unitary CFT only if the central charge is real and satisfies c > 1.
Its spectrum consists of a continuum of scalar Virasoro primary operators VP with conformal
weights lying above the threshold Q2

4 =
c−1
24 as parameterized in (2.4). It is a non-compact

solution to the bootstrap equations, meaning that the identity operator is not a normalizable
operator in the spectrum of the theory.7 There is significant evidence that Liouville CFT is the
unique unitary CFT with c > 1 whose spectrum consists of only scalar Virasoro primaries (and
indeed with primaries of bounded spins) [71–73].

The structure constants of Liouville CFT were famously bootstrapped by [74–77], and are
given by the well-known DOZZ formula. In this work we find it convenient to adopt operator
normalization conventions such that the DOZZ formula is equivalent to the universal formula
Cb that governs the asymptotics of CFT structure constants [73], namely8

〈VP1
(0)VP2

(1)VP3
(∞)〉= Cb(P1, P2, P3)≡

Γb(2Q)Γb(
Q
2 ± iP1 ± iP2 ± iP3)

p
2Γb(Q)3

∏3
k=1 Γb(Q± 2iPk)

. (3.1)

Here Γb denotes the meromorphic double gamma function (see appendix C for a compendium
of properties and representations of Γb) and the ± notation indicates a product over all eight
possible sign choices. As an example Γb(

Q
2 ± iP1 ± iP2 ± iP3) is a product over eight different

factors. This in particular has the feature that it is invariant under reflections Pj →−Pj of the
Liouville momenta. Although it is not a normalizable operator in the spectrum of Liouville
theory, the identity operator is obtained by analytic continuation P → iQ

2 ≡ 1. The two-point
function inherited from (3.1) is then given by

〈VP1
(0)VP2

(1)〉= Cb(P1, P2,1) =
1

ρ
(b)
0 (P1)

(δ(P1 − P2) +δ(P1 + P2)) . (3.2)

Here ρ(b)0 is given by the universal formula

ρ
(b)
0 (P) = 4

p
2 sinh(2πbP) sinh(2πb−1P) . (3.3)

7The “spectrum” of Liouville CFT is a somewhat ambiguous notion; although sub-threshold operators are not
(delta-function) normalizable in Liouville theory, we will see that one can often analytically continue observables
in the theory to arbitrary values of the external Liouville momenta, corresponding for example to sub-threshold
values of the conformal weights. However the fact that sub-threshold operators are non-normalizable means that
they do not appear as internal states in the conformal block decomposition of generic observables, and for this
reason we reserve the term “spectrum” for the normalizable, above-threshold operators.

8This function has been referred to as C0 in the recent CFT literature. Here we find it convenient to make the
dependence on the central charge explicit. Also we find it appropriate to reserve the 0 subscript for ρ(b)0 , which
plays the role of the leading density of eigenvalues in the matrix model, whereas in the present application Cb is
an exact CFT three-point function.
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Both the two-point function and the three-point function of Liouville CFT are universal quan-
tities in two-dimensional conformal field theory. The reason for this is that they are crossing
kernels for conformal blocks involving the identity operator. We have already seen in section
2.3 that ρ(b)0 is the modular crossing kernel for the torus vacuum character, which is asymp-
totic to Cardy’s formula for the universal density of high-energy states in a unitary compact 2d
CFT. Similarly, Cb — which describes the asymptotic structure constants of high-energy states
in a unitary compact 2d CFT — is the crossing kernel for the sphere four-point conformal block
describing the exchange of the identity Virasoro Verma module:

1

1

2

1

2

=

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P2, P) P

1

2

1

2

. (3.4)

The diagrams on the left- and right-hand sides of the above equation are respectively meant
to denote the t- and s-channel Virasoro conformal blocks for the sphere four-point function of
pairwise identical operators with conformal weights hP1

and hP2
.

Together, this data is sufficient to compute any correlation function of local operators on
any closed Riemann surface. This is achieved by the conformal block decomposition as follows:

〈VP1
· · ·VPn

〉g =
∫

R≥0

�

∏

a

dPa ρ
(b)
0 (Pa)

��

∏

( j,k,l)

Cb(Pj , Pk, Pl)

�

|F (b)g,n(P
ext;P|m)|2 . (3.5)

Here F (b)g,n are the genus-g n-point Virasoro conformal blocks with central charge c = 1+6Q2,

Q = b + b−1; Pext = (P1, . . . , Pn) denote the external Liouville momenta, and P and m col-
lectively denote the 3g − 3 + n internal Liouville momenta Pa and the worldsheet moduli
respectively. Left implicit in the definition of the conformal block is the choice of a channel C
of the conformal block decomposition, which is specified by a decomposition of the worldsheet
Riemann surface into 2g − 2+ n pairs of pants sewn along 3g − 3+ n cuffs, together with a
choice of dual graph. The conformal block decomposition of the resulting correlator includes
a factor of ρ(b)0 for each internal weight corresponding to the complete set of states inserted
at each cuff, and a factor of Cb for each pair of pants corresponding to the CFT structure con-
stants. The resulting correlator is independent of the choice of channel in the conformal block
decomposition because Liouville CFT solves the crossing equations.

A priori, for fixed worldsheet moduli, the correlation function (3.5) is a function defined
for real external Liouville momenta Pext in the spectrum of the theory. However, the structure
constants Cb are meromorphic functions of the Liouville momenta and we can readily consider
the analytic continuation of (3.5) to complex Pext. But there may be subtleties in this analytic
continuation. Even restricting to real values of the conformal weights, if the external operators
have weights sufficiently below the threshold c−1

24 , then poles of the structure constants cross
the contour of integration and the contour must be deformed such that the conformal block
decomposition picks up additional discrete contributions associated with the residues of these
poles. This can happen for example whenever there is a pair of external momenta Pj , Pk such
that | Im(Pj ± Pk)|>

Q
2 .

Timelike Liouville CFT. Timelike Liouville CFT is a solution to the CFT crossing equations
for all values of the central charge on the half-line ĉ ≤ 1. Although less well-known than (and
with some peculiar features compared to) spacelike Liouville theory, it furnishes an equally
good solution to the CFT bootstrap that has been developed from various points of view over
the years [43, 44, 56, 57, 78]. It is essential that timelike Liouville CFT is not given by the
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analytic continuation of spacelike Liouville theory to c ≤ 1, although as we will see the CFT
data of the two theories are related.

Similarly to spacelike Liouville theory, the spectrum of timelike Liouville theory consists of

a continuum of scalar Virasoro primaries bV
bP with conformal weights ĥ

bP ≥
ĉ−1
24 = −

bQ2

4 param-
eterized as in (2.4).9 Unlike spacelike Liouville theory, timelike Liouville theory with ĉ < 1
never defines a unitary CFT in the sense that the spectrum contains primaries with negative
conformal weights that violate the unitarity bound. Nevertheless, we will see that the structure
constants of the theory are real in the cases of interest.

We adopt conventions such that the structure constants in timelike Liouville CFT are given
by the inverse of an analytic continuation of the spacelike structure constants (3.1), in partic-
ular [43,44,56,78,79] .

〈bV
bP1
(0)bV

bP2
(1)bV

bP3
(∞)〉= bCb̂(bP1, bP2, bP3)

≡
1

Cb̂(ibP1, ibP2, ibP3)

=
p

2Γb(b̂+ b̂−1)3

Γb(2b̂+ 2b̂−1)

∏3
k=1 Γb(b̂+ b̂−1 ± 2bPk)

Γb(
b̂+b̂−1

2 ± bP1 ± bP2 ± bP3)
. (3.6)

With a suitable contour of integration of the internal Liouville momenta in the conformal
block decomposition that we will discuss shortly, correlation functions in timelike Liouville
CFT with these structure constants have been shown to solve the CFT crossing equations nu-
merically [78, 80], see also [40]. We note in passing that although the spectrum of timelike

Liouville contains a weight zero operator (with bP =
bQ
2 ), it is not the degenerate representa-

tion corresponding to the identity operator; indeed the two-point function is not obtained by

analytic continuation of (3.6) to bP3 =
bQ
2 . The latter is instead given by

〈bV
bP1
(0)bV

bP2
(1)〉=

2ρ(b̂)0 (ibP)

(ibP)2
(δ(bP1 − bP2) +δ(bP1 + bP2)) . (3.7)

Correlation functions in timelike Liouville CFT are then computed by the following conformal
block decomposition

〈bV
bP1
· · · bV

bPn
〉g =

∫

C

∏

a

dbPa (ibPa)2

2ρ(b̂)0 (ibPa)

�

∏

( j,k,l)

1

Cb̂(ibPj , ibPk, ibPl)

�

|F (i b̂)g,n (bP
ext;bP|m)|2 , (3.8)

where C denotes the contour R+ iϵ, ϵ > 0 (see figure 5). It warrants further emphasis that
the contour of integration over the internal Liouville momenta bP in the conformal block de-
composition of the timelike Liouville correlation function is shifted by an amount ϵ above the
real axis. Such a shift is required to avoid the infinitely many poles of the timelike Liouville
structure constants on the real bP axis at

poles of bCb̂: bPj = ±
1
2

�

(m+ 1)b̂+ (n+ 1)b̂−1
�

, m, n ∈ Z≥0 . (3.9)

These are the only singularities of bCb̂ in the complex bPi plane. Similarly, the ĉ ≤ 1 Virasoro
conformal blocks have poles on the real bPi axis corresponding to degenerate representations
of the Virasoro algebra

poles of F : bPj = ±
1
2

�

(r + 1)b̂− (s+ 1)b̂−1
�

, r, s ∈ Z≥0 . (3.10)

9Sometimes states with purely imaginary bP are described as the spectrum of timelike Liouville theory, since they
turn out to be natural from the point of view of the Lagrangian formulation of the theory. Here we will reserve
that terminology for operators that appear in the conformal block decomposition of correlation functions.
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C
}ϵ

bP

Figure 5: Contour of integration C over the intermediate states in the Virasoro con-
formal block decomposition of the genus g n-point function (3.8) in Liouville CFT
at ĉ ≤ 1. Poles in the bP-integrand, coming from the three-point coefficient (3.9) as
well as the Virasoro conformal blocks (3.10), are marked with crosses. The contour
C runs parallel to the real axis and shifted vertically by a small ϵ > 0 amount in the
imaginary direction in order to avoid the poles. Due to the reflection symmetry of
the timelike Liouville structure constant (3.6), the contour C could also be shifted
vertically by a small ϵ < 0.

Together with the poles of the measure, the integrand has then poles for

bPj =
m
2

b̂+
n
2

b̂−1 , (m, n) ∈ Z2 \ {(0, 0)} , (3.11)

which for b̂2 ̸∈Q is a dense set on the real line.
Since the location of the poles in the internal Liouville momenta are independent of the

external Liouville momenta, analytic continuation of the timelike Liouville correlators to com-
plex values of the external momenta bPext is straightforward, and does not require the further
contour deformations that are sometimes needed for analytic continuation of the spacelike
Liouville correlators. Indeed, in the Virasoro minimal string we will mostly be interested in
the case that the external operators have imaginary timelike Liouville momentum.

The need to shift the OPE contour as described above is perhaps an unfamiliar aspect of
timelike Liouville theory. It renders the notion of the spectrum of timelike Liouville somewhat
ambiguous, since we may freely deform the OPE contour provided that the poles (3.9), (3.10)
on the real axis are avoided. One may wonder about the possibility of different OPE contours.
For example, although states with imaginary Liouville momentum are from some points of
view natural in timelike Liouville theory, it is clear that with a vertical contour the conformal
block decomposition would badly diverge, since with that prescription the OPE would contain
internal states with arbitrarily negative conformal dimension. With this prescription where
the OPE contour runs parallel to the real axis, the correlation functions of timelike Liouville
CFT have been shown to solve the bootstrap equations numerically [40,78]. Since it satisfies
these basic CFT consistency conditions, our view is that despite some subtleties (including
non-unitarity of the spectrum) timelike Liouville theory is non-perturbatively well-defined as
a CFT in the same sense as spacelike Liouville theory.

The Virasoro minimal string background. Equipped with our knowledge of the OPE data
of spacelike and timelike Liouville theories that together with the bc-ghost system defines the
worldsheet CFT of the Virasoro minimal string, we can now proceed to compute string world-
sheet diagrams as usual in string theory. On-shell vertex operators VP (2.6) are labelled by a
single Liouville momentum P and are defined by combining primaries in spacelike and timelike
Liouville CFT with the bc-ghosts as in (2.6). In string perturbation theory, the observables are

17

https://scipost.org
https://scipost.org/SciPostPhys.16.2.057


SciPost Phys. 16, 057 (2024)

string worldsheet diagrams V(b)g,n(P1, . . . , Pn) (“quantum volumes”), which we define by inte-
grating correlation functions of the worldsheet CFT over the moduli space of Riemann surfaces
as outlined in (2.7).

Let us pause to briefly comment on the convergence properties of the moduli integral
(2.7) that defines the string worldsheet diagrams that we compute in this paper. In string
perturbation theory one often has to worry about divergences in the integrals over worldsheet
moduli space that define string diagrams due to intermediate states going on shell. These
divergences are associated with particular degenerations in moduli space — for instance, the
genus-g worldsheet may split into two components Σg,n→ Σg1,n1+1∪Σg2,n2+1 with g = g1+ g2
and n = n1 + n2, or in the case of non-separating degenerations, in which a handle pinches
and the genus of the worldsheet drops by one but remains connected. The behaviour of the
worldsheet integrand near such degenerations is sensitive to the exchange of the lightest oper-
ators in the spectrum of the worldsheet CFT. In the Virasoro minimal string theory, the absence
of the identity operator (in other words, the non-compact nature of the worldsheet CFT) and
the scaling dimensions of the lightest operators in spacelike and timelike Liouville CFT ensure
that the resulting moduli integral is in fact absolutely convergent in degenerating limits. We
see this explicitly in the case of the torus one-point and sphere four-point diagrams discussed
in sections 7.1 and 7.2.

Let us make this more concrete with an example. Consider for instance the moduli inte-
grand in the sphere four-point diagram V(b)0,4(P1, . . . , P4), which is computed by integrating the
sphere four-point functions of spacelike and timelike Liouville CFT over the complex cross-ratio
plane:10

V(b)0,4(P1, . . . , P4) =

∫

C
d2z 〈VP1

· · ·VP4
〉〈bViP1

· · · bViP4
〉 . (3.12)

We will be interested in the behaviour of the worldsheet integrand in the limit in which two
of the vertex operators, say those corresponding to the momenta P1 and P2, coincide. In this
degeneration limit the sphere four-point Virasoro blocks can be approximated by the leading
term in the small cross-ratio expansion

F (b)0,4 (P
ext; P|z)≈ zP2−P2

1−P2
2−

Q2

4 . (3.13)

In this limit the OPE integrals appearing in the spacelike and timelike Liouville four-point
functions will be dominated by the P, bP ≈ 0 regions,11 for which we have

ρ
(b)
0 (P)≈ 16

p
2π2P2 . (3.14)

Hence we can approximate the sphere four-point functions of spacelike and timelike Liouville
CFT as follows in the degeneration limit

〈VP1
· · ·VP4

〉
z→0
≈

2π
5
2 Cb(P1, P2, 0)Cb(P3, P4, 0)|z|−2P2

1−2P2
2−

Q2

2

(− log |z|)
3
2

,

〈bViP1
· · · bViP4

〉
z→0
≈

|z|2P2
1+2P2

2+
bQ2

2

64π
3
2 (− log |z|)

1
2 Cb(P1, P2, 0)Cb(P3, P4, 0)

. (3.15a)

In particular the product of four-point functions that appears in the moduli integrand has the
following behaviour in the degeneration limit

〈VP1
· · ·VP4

〉〈bViP1
· · · bViP4

〉
z→0
≈

π|z|−2

32(− log |z|)2
, (3.16)

10In what follows we will typically omit the explicit dependence on the worldsheet moduli of the worldsheet
CFT correlators for brevity of notation. For example below we have 〈VP1

· · ·VP4
〉= 〈VP1

(0)VP2
(z)VP3

(1)VP4
(∞)〉.

11Here we are assuming that the external Liouville momenta are such that the contour in the conformal block
decomposition does not need to be deformed. This is always the case for real Liouville momenta.
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and thus the moduli integral (3.12) receives convergent contributions from the degeneration
limit locally of the form

∫

C

d2z
|z|2(− log |z|)2

. (3.17)

Similar considerations apply to all other degeneration limits of the sphere four-point diagram
(which can be studied exactly analogously by working in different OPE channels), and to de-
generation limits of more complicated observables. It is interesting to compare eq. (3.16) with
the leading behaviour of the Weil-Petersson volume form, which appears in JT gravity. Using
the explicit formωWP = dℓ∧dθ of the Weil-Petersson form in Fenchel-Nielsen coordinates [81]
and the leading relation

ℓ∼
2π2

− log |z|
,

2πθ
ℓ
∼ arg(z) , (3.18)

between z and the Fenchel-Nielsen coordinates, gives the leading behaviour [82]

ωWP ∼
8π3i dz ∧ dz̄
|z|2(− log |z|)3

, (3.19)

which is slightly faster decaying than (3.16).

A trivial worldsheet diagram. As a trivial example, let us consider the three-punctured
sphere. In this case there are no moduli to integrate over, and the three-point diagram is
simply given by the product of the corresponding structure constants in spacelike and time-
like Liouville theory given by (3.1) and (3.6) respectively. On the solution to the mass-shell
condition (2.5) the sphere three-point diagram is then simply given by

V(b)0,3(P1, P2, P3)≡ CS2〈VP1
(0)VP2

(1)VP3
(∞)〉

= CS2N(P1)N(P2)N(P3)Cb(P1, P2, P3)bCb(iP1, iP2, iP3)

= CS2N(P1)N(P2)N(P3)
Cb(P1, P2, P3)
Cb(P1, P2, P3)

= CS2N(P1)N(P2)N(P3) , (3.20)

where we have used the relation between the structure constants of timelike and spacelike
Liouville given in (3.6) together with reflection invariance of Cb. Here, CS2 reflects the arbitrary
normalization of the string path integral.

We fix the arbitrary normalizations N(P) of the vertex operators by requiring that

V(b)0,3(P1, P2, P3)
!
= 1 , (3.21)

which implies that N(P)≡ N is independent of P and

CS2 = N−3 . (3.22)

3.2 Worldsheet boundary conditions

In order to discuss configurations with asymptotic boundaries we need to supplement the
worldsheet CFT with conformal boundary conditions. Here we review the conformal boundary
conditions of spacelike and timelike Liouville CFT, and describe their role in the worldsheet
description of configurations with asymptotic boundaries in Virasoro minimal string theory.
Throughout we emphasize the definition of the conformal boundary conditions in terms of
abstract boundary conformal field theory (BCFT) data rather than in terms of specific boundary
conditions for the Liouville fields in the Lagrangian descriptions of the theories.
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Conformal boundary conditions for spacelike Liouville

Spacelike Liouville CFT admits two main types of conformal boundary conditions, whose prop-
erties we summarize in turn.

ZZ boundary conditions. The first are the ZZ boundary conditions [83], which are labelled
by a degenerate representation of the Virasoro algebra. In defining conformal boundary con-
ditions, it is convenient to map the upper half-plane to the unit disk by a conformal transfor-
mation so that the boundary condition defines a state in the Hilbert space of the CFT on the
circle by the usual radial quantization. The ZZ boundary states can be represented in terms of
the Ishibashi states |VP〉〉 associated with the primaries in the spectrum as follows12

|ZZ(b)(m,n)〉=
∫ ∞

0

dP ρ(b)0 (P)Ψ
(b)
(m,n)(P)|VP〉〉 . (3.23)

The quantity Ψ(b)(m,n)(P), which we will specify shortly, is the disk one-point function of the
primary VP in the presence of the (m, n) ZZ boundary condition.

Consider the annulus formed by cutting a circle of radius e−πt out of the unit disk, with
Ishibashi states |VP1

〉〉 and |VP2
〉〉 on the inner and outer boundary circles respectively. This

configuration corresponds by the usual exponential map to the following partition function on
a cylinder with unit radius and length πt:

〈〈VP1
|e−πt(L0+ L̄0−

c
12 )|VP2

〉〉=
δ(P1 − P2) +δ(P1 + P2)

ρ
(b)
0 (P1)

χ
(b)
P1
(i t) , (3.24)

where

χ
(b)
P (τ) =

qP2

η(τ)
, q = e2πiτ , (3.25)

is the non-degenerate Virasoro character associated with a primary of conformal weight hP .
The ZZ boundary states are defined by the property that the cylinder partition function with the
(m, n) and (1, 1) boundary conditions assigned to the two ends is given by the corresponding
Virasoro character in the open string channel [83]

〈ZZ(b)(m,n)|e
−πt(L0+ L̄0−

c
12 ) |ZZ(b)(1,1)〉=

∫ ∞

0

dP ρ(b)0 (P)Ψ
(b)
(m,n)(P)Ψ

(b)
(1,1)(P)χ

(b)
P (i t)

!
= χ(b)(m,n)(

i
t )

= TrH(m,n),(1,1)
e−

2π
t (L0−

c
24 ) , (3.26)

with

χ
(b)
(m,n)(τ) =

q−
1
4 (mb+nb−1)2 − q−

1
4 (mb−nb−1)2

η(τ)
, q = e2πiτ , (3.27)

the torus character of the (m, n) degenerate representation of the Virasoro algebra. This fixes
the bulk one-point functions to be

Ψ
(b)
(m,n)(P) =

4
p

2sinh(2πmbP) sinh(2πnb−1P)

ρ
(b)
0 (P)

. (3.28)

12The convention of including ρ(b)0 (P) in the measure of the integral over P is natural in our normalization of
Liouville theory. This will also lead to analytic expressions for the wave-functions, contrary to the perhaps more
familiar conventions from the literature.
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In particular we have Ψ(b)(1,1)(P) = 1, for which the cylinder partition function is the Virasoro
identity character in the open-string channel. In the last line of (3.26) we have reminded the
reader that the cylinder partition function admits an interpretation in terms of a trace over
the Hilbert space of the CFT on the strip with thermal circle of size 2π

t . The more general
cylinder partition function with mixed ZZ boundary conditions is given by the following sum
over degenerate Virasoro characters in the open string channel [83]

〈ZZ(b)(m,n)|e
−πt(L0+ L̄0−

c
12 ) |ZZ(b)(m′,n′)〉=

m+m′−1
∑

r
2
=|m−m′|+1

n+n′−1
∑

s
2
=|n−n′|+1

χ
(b)
(r,s)(

i
t ) , (3.29)

where the notation
2
= is meant to indicate that the variable increases in steps of 2.

FZZT boundary conditions. Spacelike Liouville theory also admits a distinct one-parameter
family of conformal boundaries known as the FZZT boundary conditions [84, 85]. It is de-
scribed by the following boundary state

|FZZT(b)(s)〉=
∫ ∞

0

dP ρ(b)0 (P)Ψ
(b)(s; P)|VP〉〉 . (3.30)

The FZZT parameter s takes real values. Indeed we will see that it labels a state in the spectrum
of Liouville theory. The FZZT boundary state is defined such that the Hilbert space of Liouville
CFT on the strip with FZZT boundary conditions on one end and (1,1) ZZ boundary conditions
on the other is spanned by a single primary state labelled by the Liouville momentum s. Indeed,
the mixed cylinder partition function is given by a single non-degenerate Virasoro character
in the open-string channel

〈ZZ(b)(1,1)|e
−πt(L0+ L̄0−

c
12 )|FZZT(b)(s)〉=

∫ ∞

0

dP ρ(b)0 (P)Ψ
(b)
(1,1)(P)Ψ

(b)(s; P)χ(b)P (i t)

!
= χ(b)s (

i
t ) . (3.31)

Hence the FZZT bulk one-point function Ψ(b)(s; P) is given by

Ψ(b)(s; P) =
SsP[1]

ρ
(b)
0 (P)

=
2
p

2cos(4πsP)

ρ
(b)
0 (P)

. (3.32)

Here S[1] is the crossing kernel for Virasoro characters on the torus.
In what follows the partition function of Liouville CFT on the cylinder with FZZT boundary

conditions at the two ends will play an important role. It is given by

〈FZZT(b)(s1)|e−πt(L0+ L̄0−
c

12 )|FZZT(b)(s2)〉=
1
2

∫

Γ

dP ρ(b)0 (P)Ψ
(b)(s1; P)Ψ(b)(s2; P)χ(b)P (i t)

=
1
p

2

∫

Γ

dP
cos(4πs1P) cos(4πs2P)

sinh(2πbP) sinh(2πb−1P)
χ
(b)
P (i t) .

(3.33)

Here we have promoted the integral over the positive P axis to a horizontal contour Γ in the
complex P plane that avoids the pole of the integrand at the origin. Since the residue at P = 0
vanishes, it does not matter whether the contour passes above or below 0. The open string
spectrum consists of a continuum of states with weights above the c−1

24 threshold.
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Conformal boundary conditions for timelike Liouville

When we add boundaries to the worldsheet in Virasoro minimal string theory we will pair
particular conformal boundaries for the spacelike Liouville sector with those of the timelike
Liouville sector. Conformal boundary conditions for timelike Liouville CFT have been rela-
tively unexplored compared to their spacelike counterparts (see however [86]). Here we will
introduce a new family of ZZ-like boundary conditions for timelike Liouville CFT that will
play a distinguished role in the Virasoro minimal string. Before moving on, let us emphasize
that conformal boundaries of non-unitary and non-compact CFTs are relatively weakly con-
strained13 and thus it is a priori not particularly clear what wavefunctions should be allowed.
Nevertheless, we find the following boundary condition very natural.

“Half-ZZ” boundary conditions. Consider the following boundary states for timelike Liou-
ville CFT

|cZZ
(i b̂)
(m,±)〉=

∫

C
dbP

(ibP)2

2ρ(b̂)0 (ibP)
bΨ
(i b̂)
(m,±)(bP)|bVbP〉〉 , (3.34)

where |bV
bP〉〉 is the Ishibashi state associated to the primary bV

bP in the spectrum of timelike
Liouville CFT, normalized such that

〈〈bV
bP1
|e−πt(L0+ L̄0−

ĉ
12 )|bV

bP2
〉〉=

2ρ(b̂)0 (ibP)

(ibP)2
�

δ(bP1 − bP2) +δ(bP1 + bP2)
�

χ
(i b̂)
bP
(i t) . (3.35)

In (3.34) we have again included the measure that descends from the two-point function of
timelike Liouville CFT (see e.g. (3.8)), which is natural in our normalization. The contour is
also the same as appears in section 3.1 and that avoids all the poles on the real line, C = R+ iϵ.
The corresponding conformal boundary conditions come in two infinite families, labelled by a
positive integer m ∈ Z≥1 and a sign. We declare that the bulk one-point functions on the disk
bΨ
(i b̂)
(m,±) are given by14

bΨ
(i b̂)
(m,±)(bP) =

4 sin(2πmb̂±1
bP)

bP
. (3.36)

In what follows we will refer to these as “half-ZZ” boundary conditions. The reason for the
“half-ZZ” name is that the product of the (m,+) and (n,−)wavefunctions (3.36) is functionally
similar (but not identical) to that of the (m, n) ordinary ZZ boundary conditions (3.28) adapted
to timelike Liouville CFT with ĉ ≤ 1.

In order to assess these boundary states, we scrutinize the cylinder partition functions
associated with them. In particular, consider the cylinder partition function with (m,+) half-
ZZ boundary conditions on one end and (n,+) on the other. It is given by

Z (i b̂)(m,+;n,+)(t) = 〈cZZ
(i b̂)
(m,+)|e

−πt(L0+ L̄0−
ĉ

12 )|cZZ
(i b̂)
(n,+)〉

=

∫

C
dbP

(ibP)2

2ρ(b̂)0 (ibP)

∫

C
dbP ′

(ibP ′)2

2ρ(b̂)0 (ibP ′)
bΨ
(i b̂)
(m,+)(bP)bΨ

(i b̂)
(n,+)(bP

′)〈〈bV
bP |e
−πt(L0+ L̄0−

ĉ
12 )|bV

bP ′〉〉

13Here we mean that in non-compact and non-unitary CFT, in implementing the cylinder bootstrap the spectrum
in the open-string channel is a priori not subject to the usual constraints of positivity, discreteness, and integrality.
Nevertheless we will see that the cylinder partition functions involving the conformal boundary conditions that we
will introduce obey these properties.

14Here the ± on the RHS is correlated to that on the LHS; it does not mean the product of the expressions with
each sign, as was the case in (3.1).
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=

∫

C
dbP

(ibP)2

2ρ(b̂)0 (ibP)
bΨ
(i b̂)
(m,+)(bP)bΨ

(i b̂)
(n,+)(bP)χ

(i b̂)
bP
(i t)

=
m+n−1
∑

r
2
=|m−n|+1

∞
∑

s
2
=1

χ
(i b̂)
(r,s)(

i
t ) . (3.37)

The result takes the form of an infinite sum over degenerate characters of the central charge
ĉ Virasoro algebra in the open-string channel. The structure of degenerate representations of
the ĉ ≤ 1 Virasoro algebra is such that this sum is actually convergent. Indeed, the cylinder
partition function (3.37) is formally equivalent to that of spacelike Liouville CFT with (m,∞)
and (n,∞) ordinary ZZ boundary conditions analytically continued to ĉ ≤ 1.15 Analogously,
we have

Z (i b̂)(m,−;n,−)(t) =
∞
∑

r
2
=1

m+n−1
∑

s
2
=|m−n|+1

χ
(i b̂)
(r,s)(

i
t ) . (3.38)

A very similar calculation yields the following for the cylinder partition function in timelike
Liouville theory with (m,+) and (n,−) half-ZZ boundary conditions

Z (i b̂)(m,+;n,−)(t) = 〈cZZ
(i b̂)
(m,+)|e

−πt(L0+ L̄0−
ĉ

12 )|cZZ
(i b̂)
(n,−)〉=

m−1
∑

r
2
=−m+1

n−1
∑

s
2
=−n+1

χ
(i b̂)
bP= 1

2 (r b̂−s b̂−1)
( i

t ) . (3.39)

The result involves a finite sum over certain non-degenerate Virasoro characters in the open-
string channel (some of which involve conformal weights equal to those of particular degen-
erate representations of the Virasoro algebra).

Timelike Liouville CFT presumably also admits a suitable generalization of the FZZT
boundary conditions [86], which are conceptually similar to those of spacelike Liouville the-
ory that were discussed in section 3.2. In this paper we will not make use of FZZT boundary
conditions for timelike Liouville CFT and so we will not discuss them any further here.

4 A three-dimensional perspective

In this section, we give a conceptual derivation of the proposed duality. Our arguments will
heavily involve a connection to a chiral half of three-dimensional gravity on the topology
Σg,n × S1.

4.1 3d gravity on Σg ,n × S1

We consider three-dimensional quantum gravity with negative cosmological constant. LetΣg,n
be an initial-value surface of genus g with n punctures. Then it is known that the Hilbert space
of 3d gravity on Σg,n can be identified with Hgravity =Hg,n ⊗Hg,n, where Hg,n is the space of
Virasoro conformal blocks with all internal conformal weights above the c−1

24 threshold [87,88].
Since these are precisely the conformal blocks that appear in Liouville theory, we will often
adopt “Liouville conformal blocks” as a shorthand. The central charge of the Liouville theory is
given by the Brown-Henneaux central charge c, which is an arbitrary parameter of the theory.
As in the rest of the paper, we take c ≥ 25. Insertions of vertex operators on Σg,n correspond
to massive particles in the three-dimensional picture (for conformal weights h ≤ c−1

24 ) and to
black holes (for conformal weight h> c−1

24 ).

15However for spacelike Liouville theory, the sum over degenerate characters would diverge.
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In ordinary 3d gravity, we take the central charge of the two factors Hg,n to be equal,
but we can also consider the case where the right-moving central charge c̄ is different. In
particular, the relation to 2d gravity will appear in a chiral version of gravity, where c̄ = 0. In
this case, we can remove one factor of the Hilbert space and simply take a chiral half

Hg,n = space of Liouville conformal blocks. (4.1)

We can endow this space with an inner product to turn it into a Hilbert space. Letting F1 and
F2 be two Liouville conformal blocks, we have schematically [87,88]

〈F1 |F2〉=
∫

Tg,n

F1 F2 ZtL Zgh , (4.2)

where ZtL is the partition function of timelike Liouville theory of central charge 26− c. Zgh is
the bc-ghost partition function as in string theory that provides the measure to integrate over
Teichmüller space Tg,n. Let us recall that Teichmüller space is the universal covering space
of the moduli space of Riemann surfaces Mg,n. Since the conformal blocks are not crossing
symmetric it would not make sense to restrict this integral to moduli space. However, just like
in string theory, the total central charge needs to equal 26 for the Weyl anomaly to cancel.
In the presence of punctures ZtL should be thought of as a correlation function in timelike
Liouville theory, where the vertex operators are chosen such that all the combined external
conformal weights sum to one.

Only Liouville conformal blocks are (delta-function) normalizable with respect to this inner
product. In fact, there is an explicit formula for this inner product [88]. For the four-punctured
sphere, it takes the following form16

〈F (b)0,4 (P
ext; P) |F (b)0,4 (P

ext; P ′)〉=
ρ
(b)
0 (P)

−1δ(P − P ′)

Cb(P1, P2, P)Cb(P3, P4, P)
, (4.3)

where we assumed the two conformal blocks to be in the same OPE channel. We also wrote
Pext = (P1, P2, P3, P4). Here and throughout we use the notation |F (b)g,n(P

ext;P)〉 for the states

in Hg,n whose wavefunction at some fixed value of the moduli m is given by F (b)g,n(P
ext;P|m).

More generally, we get a factor of Cb(Pj , Pk, Pl)−1 for every three-punctured sphere appearing

in the pair-of-pants decomposition of the conformal block and a factor of ρ(b)0 (P)
−1 for every

cuff. This is precisely the inverse of the OPE density of spacelike Liouville theory, for which
we summarized our conventions in section 3.1 and appendix C. This formula can be derived
in a variety of ways [88]. It is for example fully fixed up to overall normalization by requiring
that crossing transformations on conformal blocks act unitarily.

The inner product (4.2) is tantalizingly close to the integral that we want to compute for
the two-dimensional theory of gravity under consideration. In fact, it tells us about the integral
over Teichmüller space of the worldsheet partition/correlation function before integrating over
the internal Liouville momenta. Let us make this a bit more precise as follows. Recall that
the moduli space of Riemann surfaces is the quotient of Teichmüller space by the mapping
class group. For example, in the simplest case of a once-punctured torus, this mapping class
group is simply given by the group of modular transformations Map(Σ1,1) = SL(2,Z). There
is a subgroup of the mapping class group Map(Σg,n) generated by Dehn twists around the
curves used to define the pair of pants decomposition. It is an abelian group Z3g−3+n. The
conformal blocks transform with a simple phase e2πihP under such a Dehn twist, where P
denotes the Liouville momentum through the curve around which we perform the Dehn twist.
In particular, this phase cancels once one combines the left- and right-movers. We consider the

16This formula implicitly sets a convention for the normalization of the ghost partition function.
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case of the four-punctured sphere for simplicity. Then we have the following integral identity
(we suppress the ghosts in the notation)

∫

T0,4/Z
ρ
(b)
0 (P)Cb(P1, P2, P)Cb(P3, P4, P)

�

�F (b)0,4 (P
ext; P|z)

�

�

2
­ 4
∏

j=1

bViPj
(z j)

·

= 2P . (4.4)

This equation follows from eq. (4.3) as follows. Consider P close to P ′. Then we can write the
integral over Teichmüller space that defines the inner product (4.2) as follows:

ρ
(b)
0 (P)

−1δ(P − P ′)

Cb(P1, P2, P)Cb(P3, P4, P)
=
∑

n∈Z
e2πin(hP−hP′ )

∫

T0,4/Z
F (b)0,4 (Pext; P|z)F (b)0,4 (P

ext; P ′|z)
­ 4
∏

j=1

bViPj
(z j)

·

= δ(hP − hP ′)

∫

T0,4/Z
F (b)0,4 (Pext; P|z)F (b)0,4 (P

ext; P ′|z)
­ 4
∏

j=1

bViPj
(z j)

·

.

(4.5)

In the first line, we chopped up the integral over Teichmüller space. We made some arbitrary
choice of fundamental domain in the integration over T0,4/Z and used that the conformal
blocks transform simply under Dehn twists. We can now strip off the delta-function and com-
pare the coefficients. Since hP =

c−1
24 + P2, we have (recall that we assume P, P ′ ≥ 0):

δ(hP − hP ′) = δ(P
2 − (P ′)2) =

1
2P
δ(P − P ′) . (4.6)

Thus (4.4) follows.
Coming back to the chiral half of 3d gravity, the partition function on a 3-manifold of the

form Σg,n × S1 can be formally obtained as follows

ZΣg,n×S1 =
1

|Map(Σg,n)|
dimHg,n

=
1

|Map(Σg,n)|

∫

d3g−3+nP tr
|F (b)g,n(P

ext;P)〉〈F (b)g,n(P
ext;P)|

〈F (b)g,n(Pext;P) |F (b)g,n(Pext;P)〉

=
1

|Map(Σg,n)|

∫

d3g−3+nP
∏

a

ρ
(b)
0 (Pa)

∏

( j,k,l)

Cb(Pj , Pk, Pl)

×
∫

Tg,n

�

�F (b)g,n(P
ext;P|m)

�

�

2
­ n
∏

j=1

bViPj
(z j)

·

g
Zgh

=
1

|Map(Σg,n)|

∫

Tg,n

­ n
∏

j=1

VPj
(z j)

·

g

­ n
∏

j=1

bViPj
(z j)

·

g
Zgh

=

∫

Mg,n

­ n
∏

j=1

VPj
(z j)

·

g

­ n
∏

j=1

bViPj
(z j)

·

g
Zgh

= V(b)g,n(P1, . . . , Pn) . (4.7)

Here we used that the mapping class group Map(Σg,n) is gauged in gravity and that the three-
dimensional mapping class group on Σg,n × S1 coincides with the two-dimensional one. We
have by definition Mg,n = Tg,n/Map(Σg,n). We also used that the Hamiltonian of gravity
vanishes and the partition function before dividing by the mapping class group is simply given
by the (infinite) dimension of the Hilbert space. We wrote this dimension as a trace of the
identity, which we in turn wrote by inserting a complete set of conformal blocks, for which we
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used a braket notation to emphasize that they span the Hilbert space. By the inner product
〈F (b)g,n|F

(b)
g,n〉 in the second line of (4.7), we mean the coefficient of the delta-function appearing

in (4.3). We then use the formula in terms of an integral over Teichmüller space (4.2) in the
numerator and the explicit formula (4.3) in the denominator. We recognize the conformal
block expansion of the spacelike Liouville correlation function in the third line of the above
equation (4.7). Finally, we can gauge the mapping class group by using the crossing symmetry
of the spacelike Liouville correlation function and restrict the integral to moduli space Mg,n.
We thus reach the conclusion that the 2d gravity partition functions that we want to study
are nothing else but the partition functions of chiral gravity on Σg,n × S1. Punctures in the 2d
theory become Wilson lines in the 3d gravity theory that wrap the thermal circle.

Some comments are in order. First, the reader may worry that this derivation was a bit
formal, since both the integral over Teichmüller space diverges and Map(Σg,n) is an infinite
group. There are however several ways to get around this. For example, the inner product
(4.2) can be derived from the path integral of 3d gravity, see [87]. Gauging of Map(Σg,n) in
that path integral indeed reduces the integral to the quotient Mg,n = Tg,n/Map(Σg,n). Thus
we could have gauged Map(Σg,n) from the very beginning and the gravity path integral can be
brought to the form (4.7), thus circumventing the formal step in our argument. One can also
compute equivariantly with respect to Map(Σg,n). The Hilbert space carries an action of the
mapping class group that acts by crossing and while there are infinitely many conformal blocks,
one can decompose the Hilbert space into irreducible representations of Map(Σg,n) and every
irreducible representation appears only finitely many times. This removes the formal infinities
appearing in the problem.

Second, the partition function appearing in (4.7) has no reason to be a positive integer.
This is perhaps confusing since we would have expected that the gravity partition function
would count the number of states of the Hilbert space obtained after dividing by Map(Σg,n).
Such a chiral gravity theory can indeed be defined. However it differs in a rather subtle way
from what we discuss here. To define it, one starts from a compactified phase space Mg,n, but
the theory explicitly depends on the chosen compactification. Consistency then requires that
the framing anomalies of the theory cancel, which imposes c ∈ 24Z and h ∈ Z. Moreover, since
Mg,n has orbifold singularities, one needs to include contributions from twisted sectors. Such
a theory is discussed in [89]. However, since we do not insist on a fully three-dimensional
interpretation, we do not have to worry that these partition functions are non integer-valued.

4.2 Quantization and index theorem

We will now discuss an alternative way to compute the chiral gravity partition function on
Σg,n×S1, which will make contact with the intersection theory on the moduli space of Riemann
surfaces. This discussion follows closely [89, 90]. Let us again start with the phase space of
gravity, which is given by Tg,n (orMg,n if we want to divide by Map(Σg,n) before quantization).
The symplectic form on Tg,n is the Weil-Petersson form c

48π2ωWP(ℓ1, . . . ,ℓn). In the case that
punctures are present, the external conformal weights h j are related to the lengths of the
geodesic boundaries of the Weil-Petersson form as follows:

h j =
c

24

�

1+
ℓ2

j

4π2

�

. (4.8)

To pass to the quantum theory, we want to quantize this phase space. Since Teichmüller space
is a Kähler manifold, a convenient way of doing so is to use Kähler quantization. The result
is that the wavefunctions are holomorphic sections of a line bundle L over Teichmüller space
whose curvature is

c1(L ) =
c

48π2
ωWP(ℓ1, . . . ,ℓn) . (4.9)
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Holomorphic sections of this line bundle can be identified with Liouville conformal blocks
which lead to the description of the Hilbert space discussed above. The non-triviality of the
line bundle is an expression of the conformal anomaly, since conformal blocks are not functions
of the moduli; this is only true after fixing an explicit metric, i.e. trivialization of the bundle.
Of course, Tg,n is a contractible space and thus we could trivialize this line bundle (in a non-
canonical way). However, this will not be true once we restrict to moduli space and thus it is
important to keep the curvature at this point.

We can then compute the partition function of chiral gravity on Σg,n × S1 by counting the
number of holomorphic sections of this line bundle. It can be computed from the Hirzebruch-
Riemann-Roch index theorem:

dimHg,n =

∫

Tg,n

td(Tg,n)e
c

48π2ωWP(ℓ1,...,ℓn) . (4.10)

Here, td denotes the Todd class of the tangent bundle. Thus the partition function of 3d gravity
may be computed by restricting this divergent integral to moduli space:

ZΣg,n×S1 =

∫

Mg,n

td(Mg,n)e
c

48π2ωWP(ℓ1,...,ℓn) . (4.11)

We used that the tangent bundle of moduli space has the same curvature as the tangent bundle
of Teichmüller space and thus the characteristic classes agree. We can then extend the integral
to Mg,n and treat the integrand as cohomology classes. Using that the cohomology class of the
Weil-Petersson form is given by (A.6) and the relation of the lengths and conformal weights
(4.8), we arrive at eq. (2.20).

This computation contains the same formal infinities as before. However, this is again not
a problem. We could have used an equivariant version of the index theorem to render the
expressions well-defined. We also remark that the proof of the index theorem via the heat
kernel is a local computation which is unaffected by the compactness of the manifold.

Thus, we arrive at a central claim of the paper, namely

V(b)g,n(P1, . . . , Pn) =

∫

Mg,n

td(Mg,n)e
c

24κ1+
∑n

j=1(P
2
j −

1
24 )ψ j . (4.12)

We recall the definition of the ψ- and κ-classes for the benefit of the reader in appendix A. We
also extended the integral to the Deligne-Mumford compactification of Mg,n in order to use
the standard intersection theory on moduli space.

We can then use the following formula for the Todd class of the tangent bundle:

td(Mg,n) = exp
�

−
13
24
κ1 +

1
24

n
∑

j=1

ψ j −
∑

m≥1

B2m

(2m)(2m)!
κ2m

�

, (4.13)

where B2m are the Bernoulli numbers. This formula was derived in [89] for the tangent bundle
of Mg,n. The two formulas differ slightly, because the treatment of the boundary divisor is
different. It is clear that the formula of interest should not get contributions from boundary
divisors since it is obtained by restricting an integrand on Tg,n. To derive this formula, one
applies the Grothendieck-Riemann-Roch theorem to the forgetful map Mg,n+1 −→Mg,n and
the line bundle of quadratic differentials on the Riemann surface, which in turn span the
cotangent space of Mg,n. This application is standard in algebraic geometry, see e.g. [91] for
a general context. We thus obtain

V(b)g,n(P1, . . . , Pn) =

∫

Mg,n

exp

 

c − 13
24

κ1 +
n
∑

j=1

P2
j ψ j −

∑

m≥1

B2m

(2m)(2m)!
κ2m

!

. (4.14)
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This reproduces eq. (2.20). Similar generalizations of the Weil-Petersson volumes from an
intersection point of view were considered for example in [92]. This establishes the links be-
tween the worldsheet formulation, 3d gravity and the intersection theory on Mg,n as depicted
in figure 1.

4.3 Dilaton and string equation

Fully analyzing (4.14) requires fairly deep mathematics in the form of topological recursion,
which we will discuss in section 5.3. However, it is more straightforward to deduce two simpler
equations for the quantum volumes directly. Borrowing terminology from topological gravity,
we call them the dilaton and the string equation. We already wrote them down without further
explanation in eqs. (2.21a) and (2.21b) and repeat them here

V(b)g,n+1(P =
ibQ
2 ,P)−V(b)g,n+1(P =

iQ
2 ,P) = (2g − 2+ n)V(b)g,n(P) , (4.15a)

∫
ibQ
2

iQ
2

2P dP V(b)g,n+1(P,P) =
n
∑

j=1

∫ Pj

0

2Pj dPj V
(b)
g,n(P) . (4.15b)

The reason for the existence of these equations is that one can integrate out the location
of the (n+1)-st marked point of the integrand on the LHS. In the language of the cohomology
of the moduli space, this is implemented by the pushforward in cohomology. Let

π : Mg,n+1 −→Mg,n , (4.16)

be the map between moduli spaces that forgets the location of the (n + 1)-st marked point.
Then integrating over its location is given by the pushforward

π∗ : H•(Mg,n+1,C) −→ H•−2(Mg,n,C) . (4.17)

In appendix D, we show that the integrands of the dilaton and string equation (4.15a) and
(4.15b) are simple to pushforward and the result can again be expressed in terms of the coho-
mology classes of the integrand for the quantum volumes. Integrating over Mg,n then gives
the two equations. We refer the reader to appendix D for details.

4.4 Disk and trumpet partition functions

The 3d gravity point of view is very useful to understand the meaning of asymptotic bound-
aries, since an asymptotically (nearly) AdS2 boundary uplifts simply to an asymptotically AdS3
boundary.

The simplest topology with an asymptotic boundary is the disk D2, for which the corre-
sponding 3d topology is a solid cylinder. From the point of view of chiral gravity, it is thus clear
that ZD2×S1 evaluates to the vacuum Virasoro character of the boundary torus, see e.g. [93].
The vacuum Virasoro character depends on the thermal length β̃ of S1. It is related by a
modular transformation to the boundary circle of the disk, which plays the role of time in the
dual matrix model of our two-dimensional gravity theory. We thus set β = 4π2

β̃
. This recovers

(2.16a). A similar argument determines the trumpet partition function (2.16b).
They can also directly be derived from the integral (4.12) over moduli space. The relevant

moduli space for the disk is the Virasoro coadjoint orbit Diff(S1)/PSL(2,R), where PSL(2,R)
corresponds to the three reparametrization modes of the disk. Quantization of the phase
space Diff(S1)/PSL(2,R) is thus achieved by quantizing Virasoro coadjoint orbits which leads
again to Virasoro characters [94]. Finally, the integral (4.12) over Diff(S1)/PSL(2,R) can also
be performed equivariantly, where β enters as an equivariant parameter. One can then use
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equivariant localization to compute it directly. We refer to [89,95] for details on this. Similarly
the trumpet partition function is obtained by the quantization of a generic Virasoro coadjoint
orbit Diff(S1)/S1.

It now also follows that one can glue the trumpet partition function to the bulk part of the
two-dimensional geometry as in JT gravity. We already determined the correct gluing measure
2P dP in eq. (4.4). Indeed, when gluing a trumpet, the geodesic where we are gluing the
trumpet is unique and is in particular preserved by any mapping class group transformation.
Thus the only mapping class group transformation interacting non-trivially with the trumpets
are Dehn twists along the gluing geodesic and hence taking the Z quotient as in (4.4) reduces
the integral over Teichmüller space to an integral over moduli space. Of course there can
be still non-trivial mapping class group transformations acting only on the bulk part of the
surface, but they do not interact with the gluing of trumpets. Hence (4.4) tells us that before
integrating over P we get a factor of 2P, so that the total gluing measure is 2P dP. Thus (2.18)
follows.

4.5 Further properties of the quantum volumes

Contrary to the worldsheet definition, the intersection theory approach gives manifestly ana-
lytic expressions for the quantum volumes V(b)g,n. The integral over Mg,n picks out the top form
in the power series expansion of the integrand. Thus, it follows directly from (4.14) that the
quantum volumes are polynomial in c and P2

1 , . . . , P2
n with rational coefficients

V(b)g,n(P1, . . . , Pn) ∈Q
�

c, P2
1 , . . . , P2

n

�

. (4.18)

The degree is 3g−3+n, which generalizes the well-known polynomial behaviour of the Weil-
Petersson volumes [96].

This also makes it clear that eq. (4.14) exhibits the following unexpected duality symmetry:

V(i b)g,n (iP1, . . . , iPn) = (−1)3g−3+n V(b)g,n(P1, . . . , Pn) . (4.19)

Indeed, sending c → 26 − c and Pj → iPj acts on (4.14) by a minus sign on the coefficients
of κ1 and ψ j in the exponent. The other classes are in H4•(Mg,n) and thus we simply act by
a minus sign on H4•+2(Mg,n). The integral picks out the top form on moduli space, which
leads to the identification (4.19). In the presence of a boundary, it follows from (2.18) that
the symmetry is modified to

Z (i b)g,n (β1, . . . ,βn) = i2g−2+nZ (b)g,n(−β1, . . . ,−βn) . (4.20)

Note however that because of the appearance of the square root in the trumpet partition func-
tion (2.16b), the symmetry extends to a Z4 symmetry.

From the worldsheet point of view, such a duality symmetry cannot even be defined, since
the central charge of the timelike Liouville theory is constrained to ĉ ≤ 1 and thus only makes
sense after analytically continuing the result for the quantum volumes in c and Pj . However,
the presence of this symmetry means that timelike and spacelike Liouville theory are at least
morally on democratic footing.

5 Virasoro matrix integral

In this section we study the dual matrix integral for the Virasoro minimal string. We start by
collecting some important equations and results in the bigger scheme of random matrix theory,
particularly Hermitian matrix integrals.
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5.1 A brief review of matrix integrals

A Hermitian matrix integral is an integral of the form

MN =

∫

RN2
[dH]e−N tr V (H) , (5.1)

where H is a Hermitian N × N matrix and V (H) is a polynomial in H. Matrix integrals of
the form (5.1) are solvable in the large N limit [97–102] (for reviews see [35, 103, 104])
and FN ≡ − log(MN ) admits a perturbative expansion in powers of 1/N . Using a saddle point
approximation we can obtain the leading contribution (of order N2) and using e.g. orthogonal
polynomials, loop equations and topological recursion we get higher-order contributions [105–
107]. Of particular interest is the so called double scaling limit. In this limit the full genus
expansion can be reduced to solving a differential equation [32–34,108].

Every Hermitian matrix can be diagonalized using a unitary matrixU such that H = UDHU†

with DH ≡ diag(λ1, . . . ,λN ) a real diagonal matrix. The trace is invariant under this diagonal-
isation, but the measure in (5.1) picks up a non-trivial Jacobian: This Jacobian is known as
the Vandermonde determinant ∆N (λ)≡

∏

i ̸= j |λi −λ j|. Explicitly we have

MN =

∫

RN

N
∏

i=1

dλi e−N2S[λ] , S[λ] =
1
N

N
∑

i=1

V (λi)−
1

N2

∑

i ̸= j

log |λi −λ j| . (5.2)

Note the reduction from N2 to N degrees of freedom. The saddle point equations for (5.2) are

V ′(λi) =
2
N

∑

j ̸=i

1
λi −λ j

. (5.3)

To solve this equation we introduce the normalized eigenvalue density

ϱ(λ) =
1
N

N
∑

i=1

δ(λ−λi) ,

∫ a+

a−

dλϱ(λ) = 1 , (5.4)

where we assume that all eigenvalues are located within the strip [a−, a+] on the real axis.
Additionally we introduce the resolvent

RN (E)≡
1
N

Tr (E 1N −H)−1 =
1
N

N
∑

i=1

1
E −λi

, E ∈ C \ {λi} . (5.5)

Sending N →∞ the sum can be replaced by an integral where each eigenvalue is weighted
by its average density

lim
N→∞

RN (E)≡ R(E) =

∫ a+

a−

dµ
ϱ(µ)
E −µ

, (5.6)

where we assume that the eigenvalue distribution is connected and has compact support on
a single real interval [a−, a+]. The resolvent relates to the eigenvalue density and the matrix
potential through the following relations

ϱ(E) =
1

2πi
(R(E − iϵ)− R(E + iϵ)) , E ∈ supp(ϱ) , (5.7a)

V ′(E) = R(E + iϵ) + R(E − iϵ) , E ∈ supp(ϱ) , (5.7b)

where ϵ is a small positive number and we used the large N limit of (5.3) to obtain (5.7b). Ad-
ditionally it satisfies limE→∞ ER(E) = 1 which immediately follows from the definition (5.6).
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In the next subsection we discuss methods to obtain correlation functions of the resolvents.
These satisfy an expansion of the form

〈R(E1) . . . R(En)〉conn. ≈
∞
∑

g=0

Rg,n(E1, E2, . . . , En)

N2g−2+n
. (5.8)

On the right hand side the power of N accounts for the genus and the number of boundaries.
The resolvent (5.6) is equal to R0,1(E1) in this expansion. Without providing details since they
can be found in multiple recent papers (see e.g. in [36,109]) we also have

R0,2(E1, E2) =
1
4

1
p

−E1
p

−E2(
p

−E1 +
p

−E2)2
. (5.9)

This result is universal for matrix integrals with support on a single interval.

5.2 Density of states and resolvent

In the double scaling limit we take the limit N →∞ and zoom into one edge of the eigenvalue
distribution. In this limit the perturbative eigenvalue distribution is supported on the entire
real positive axis and becomes non-normalizable. The double-scaled matrix integral is pertur-
batively completely fixed by this density of eigenvalues. Upon double scaling the eigenvalue
density is given by [36]

ϱtotal
0 (E) = eS0 ϱ

(b)
0 (E) , (5.10)

and hence eS0 is a rough analogue of N and plays the role of the parameter that controls the
perturbative genus expansion. For example, (5.8) still holds after double scaling but with N
replaced by eS0 . In the Virasoro matrix integral,

ϱ
(b)
0 (E)dE = ρ(b)0 (P)dP = 4

p
2 sinh(2πbP) sinh(2πb−1P)dP , (5.11)

where E = P2 = hP −
c−1
24 is the energy in the matrix model. For b → 0, one of the sinh’s

linearizes and we recover the famous sinh(
p

E)dE density of states of JT gravity [36]. As
already stressed in section 2.3, this is the universal Cardy density of states that endows the
Virasoro matrix integral with its name.

One way to obtain ϱ(b)0 (E) is through the inverse Laplace transform of the disk partition
function (2.17a)

ϱ
(b)
0 (E) = 2

p
2

sinh(2πb
p

E) sinh(2πb−1pE)
p

E
=

∫ i∞+γ

−i∞+γ

dβ
2πi

eβE Z (b)disk(β) , (5.12)

where γ ∈ R+ is such that the contour is to the right of the singularities of Z (b)disk in the complex
β plane.

Recall that the leading density of states ϱ(b)0 may also be computed as the discontinuity of
the genus-zero contribution to the resolvent, see equation (5.7a). For (g, n) ̸= (0, 1), all other
resolvents may be obtained from the partition functions Z (b)g,n (which are in turn related to the
quantum volumes by gluing trumpets as in (2.18)) by Laplace transform as

R(b)g,n(−z2
1 , . . . ,−z2

n) =

∫ ∞

0

� n
∏

j=1

dβ j e−β jz
2
j

�

Z (b)g,n(β1, . . . ,βn) . (5.13)

Here we have written the energies Ei = −z2
i as negative for convergence of the integrals,

but may analytically continue to positive energies afterwards. Hence by combining eq. (2.18)
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and (5.13) the quantum volumes themselves may be obtained from the resolvents by inverse
Laplace transform

V(b)g,n(P1, . . . , Pn) =

∫ i∞+γ

−i∞+γ

� n
∏

j=1

dz j

2πi
e4πPjz j

p
2z j

Pj

�

R(b)g,n(−z2
1 , . . . ,−z2

n) , (5.14)

for γ sufficiently large.

5.3 Topological recursion

We now define the spectral curve [36,107] of the Virasoro matrix integral

y(b)(z) = −2
p

2π
sin(2πbz) sin(2πb−1z)

z
, (5.15)

where z2 ≡ −E as before. We also defineω(b)0,1(z)≡ 2z y(b)(z)dz. Adjusting our notation to [36]
we introduce the following modified resolvents

ω(b)g,n(z1, . . . , zn)≡ (−1)n2nz1 . . . znR(b)g,n(−z2
1 , . . . ,−z2

n)dz1 . . . dzn . (5.16)

In particular using (5.16) it follows from (5.9)

ω
(b)
0,2(z1, z2) =

dz1dz2

(z1 − z2)2
, (5.17)

where a convenient branch choice was made. For 2g−2+n> 0 we obtain theω(b)g,n(z1, . . . , zn)
from the recursion

ω(b)g,n(z1, z2, . . . , zn) = Resz→0

�

K(b)(z1, z)
�

ω
(b)
g−1,n+1(z,−z, z2, . . . zn)

+
g
∑

h=0

∑

I∪J={z2,...zn}
{h,I}̸={0,;}
{h,J }̸={g,;}

ω
(b)
h,1+|I|(z,I)ω(b)g−h,1+|J |(−z,J )

�

�

, (5.18)

where the recursion kernel K(b)(z1, z) is given by

K(b)(z1, z)≡

∫ z
−zω

(b)
0,2(z1,−)

4ω(b)0,1(z)
= −

1

(z2
1 − z2)

z

8
p

2π sin(2πbz) sin(2πb−1z)
. (5.19)

These are the loop equations of the double-scaled matrix integral in the language of topolog-
ical recursion. It determines the resolvent correlators (5.8) completely from the initial data
R0,1(E)≡ R(E) (5.6). Let us list some of the ω(b)g,n:

ω
(b)
0,1(z1) = −4

p
2π sin(2πbz1) sin(2πb−1z1)dz1 , (5.20a)

ω
(b)
0,2(z1, z2) =

dz1dz2

(z1 − z2)2
, (5.20b)

ω
(b)
0,3(z1, z2, z3) = −

1

(2π)3 × 2
p

2

dz1dz2dz3

z2
1z2

2z2
3

, (5.20c)

ω
(b)
0,4(z1, z2, z3, z4) =

1
(2π)4

�

c − 13
96

+
3

8(2π)2

4
∑

i=1

1

z2
i

�

dz1dz2dz3dz4

z2
1z2

2z2
3z2

4

, (5.20d)
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ω
(b)
1,1(z1) = −

1

24π
p

2

�

c − 13
48

+
3

(4π)2
1

z2
1

�

dz1

z2
1

, (5.20e)

ω
(b)
1,2(z1, z2) =

1
(4π)6

�

3

z2
1z2

2

+ 5

�

1

z4
2

+
1

z4
1

�

+
2π2

3
(c − 13)

�

1

z2
1

+
1

z2
2

�

+
π4

18
(c − 17)(c − 9)

�

dz1dz2

z2
1z2

2

. (5.20f)

Let us explain how the topological recursion can be obtained from the definition of the
quantum volumes in terms of integrals over the moduli space of curves Mg,n. This is a straight-
forward application of the result of [59]. [59, Theorem 3.3] states that for any choice of initial
data ω(b)0,1, ω(b)g,n as computed from the topological recursion (5.18) is equal to the following

intersection number of Mg,n:

ω(b)g,n(z1, . . . , zn) = 23g−3+n

∫

Mg,n

e
∑

m t̃mκm

n
∏

j=1

∑

ℓ≥0

Γ (ℓ+ 3
2)

Γ (3
2)

ψℓj dz j

z2ℓ+2
j

. (5.21)

The numbers t̃m are defined in terms of ω(b)0,1 as follows. We expand ω(b)0,1(z) in (5.20a) for
small z leading to

ω
(b)
0,1(z) =

∑

m≥0

Γ (3
2)tm

Γ (m+ 3
2)

z2m+2 dz . (5.22)

The coefficients t̃m in (5.21) are then defined via the equality of the following power series
in u

∑

m≥0

tmum = exp

�

−
∑

m≥0

t̃mum

�

. (5.23)

In our case, it follows from (5.20) that

t̃0 = −
3
2

log(8π2) +πi , (5.24a)

t̃1 =
c − 13

24
(2π)2 , (5.24b)

t̃2m = −
B2m(2π)4m

(2m)(2m)!
, m≥ 1 . (5.24c)

Using that κ0 = 2g − 2+ n, we thus obtain

ω(b)g,n(z1, . . . , zn)

= (2π)6−6g−3n2−
n
2 (−1)n

∫

Mg,n

exp
�

c − 13
24

(2π)2κ1 −
∑

m≥1

B2m(2π)4m

(2m)(2m)!
κ2m

�

∑

ℓ≥0

Γ (ℓ+ 3
2)

Γ (3
2)

ψℓj dz j

z2ℓ+2
j

= 2−
3n
2 (−π)−n

∫

Mg,n

exp
�

c − 13
24

κ1 −
∑

m≥1

B2m κ2m

(2m)(2m)!

�

∑

ℓ≥0

Γ (ℓ+ 3
2)

Γ (3
2)(2π)2ℓ

ψℓj dz j

z2ℓ+2
j

=

∫

∏

j

(−4
p

2πPjdPj e−4πz j Pj )

∫

Mg,n

exp
�

c − 13
24

κ1 −
∑

m≥1

B2m κ2m

(2m)(2m)!

�

∑

ℓ≥0

P2ℓ
j ψ

ℓ
j dz j

ℓ!

=
�

∫ ∞

0

∏

j

(−4
p

2πPjdPj e−4πz j Pj )V(b)g,n(P1, . . . , Pn)
�

dz1 . . . dzn , (5.25)
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where we used the definition of the quantum volumes in terms of intersection numbers given
in eq. (4.14). This formula is valid for Re z j > 0, but can be extended to any complex value of
z j by analytic continuation.

For concreteness we can confirm the above relation (5.25) for the quantum volume V(b)0,4

(2.19a) of the four punctured sphere and the quantum volume V(b)1,1 (2.19b) of the once punc-
tured disk. Using also the expressions for (5.20d) and (5.20e) we easily confirm

ω
(b)
0,4(z1, z2, z3, z4) =

�

(−4
p

2π)4
∫ ∞

0

4
∏

j=1

(PjdPj e−4πz j Pj )
� c − 13

24
+

4
∑

j=1

P2
j

�

�

dz1dz2dz3dz4 ,

(5.26a)

ω
(b)
1,1(z1) =

�

(−4
p

2π)

∫ ∞

0

(P1dP1 e−4πz1P1)
� c − 13

576
+

1
24

P2
1

�

�

dz1 . (5.26b)

This provides the crucial link between intersection theory and the Virasoro matrix integral
and hence the last missing arrow in figure 1. The same perturbative data can now be expressed
in terms of the resolvents/differentials ω(b)g,n, the partition functions Z (b)g,n or the quantum vol-

umes V(b)g,n. They carry all the same information and are related by simple integral transforms,
which we summarize in figure 6. We have already seen most of the required relations in this
triangle diagram. For completeness, let us also state the last two relations,

V(b)g,n(P1, . . . , Pn) =

∫

Γ

 

n
∏

j=1

dβ j

2πi

√

√

√
2π
β j

eβ j P
2
j

!

Z (b)g,n

�4π2

β1
, . . . , 4π2

βn

�

, (5.27a)

Z (b)g,n(β1, . . . ,βn) =

∫

Γ

 

n
∏

j=1

du j

2πi
eβ ju j

!

R(b)g,n(−u1, . . . ,−un) , (5.27b)

where in both cases the integration contours Γ are vertical and to the right of all singularities
of the relevant integrands.

5.4 Deformed Mirzakhani recursion relation

We can translate the topological recursion (5.18) into a recursion relation for the quantum vol-
umes V(b)g,n. For the original case of Mirzakhani’s recursion, this was done for the Weil-Petersson
volumes in [110], while various generalizations with supersymmetry were considered in [109].
Let us first note that since the differentials ω(b)g,n are polynomial in inverse powers of z−2

j , we
can rewrite (5.14) as

V(b)g,n(P1, . . . , Pn) =

∫

Γ

n
∏

j=1

i e4πz j Pj

2
p

2πPj
ω(b)g,n(z1, . . . , zn) =

n
∏

j=1

Res
z j=0

−e4πz j Pj

p
2Pj

ω(b)g,n(z1, . . . , zn) , (5.28)

where again Γ is a contour that runs on the positively oriented shifted imaginary axis to the
right of all singularities of the integrand. This representation is valid for Re Pj > 0, otherwise
the result follows from analytic continuation. In the second representation, we used that z j = 0
is the only singularity of ω(b)g,n, provided that 3g − 3+ n≥ 0.

Let us derive the first term in (2.13) from the topological recursion, all other terms are
obtained by very similar computations. We can set n = 1, since all Pj ’s in P are spectators.
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Partition
function

Z (b)g,n

Resolvent
R(b)g,n or ω(b)g,n

Quantum
volume
V(b)g,n

gluing
trumpets

(2.18)
removing
trumpets
(5.27a)

inverse
Laplace

transform
(5.27b)

Laplace
transform

(5.13)

inverse Laplace
transform (5.14)

Laplace trans-
form (5.25)

Figure 6: There are three quantities that all capture the same information that we
discussed. They are all related by simple integral transformations, which we summa-
rize here. We also recall that the differentials ω(b)g,n are just a more convenient way
to write the resolvent; they are simply related via (5.16).

We have

P1V
(b)
g,1(P1) = −

1
p

2
Res
z1=0

e4πz1P1ω
(b)
g,1(z1)

⊃ −
1
p

2
Res
z1=0

e4πz1P1 Res
z=0

K(b)(z1, z)ω(b)g−1,2(z,−z)

= −
1
p

2
Res
z1=0

e4πz1P1 Res
z=0

K(b)(z1, z)ω(b)g−1,2(z, z)

= −4π2
p

2 Res
z1=0

Res
z=0

e4πz1P1 K(b)(z1, z)

∫

(2P dP)(2P ′ dP ′)e−4πz(P+P ′)V(b)g−1,2(P, P ′) .

(5.29)

We used that all the multi-differentials (except forω(b)0,2) are symmetric in z j . We can commute
the two residues as follows:

Res
z1=0

Res
z=0
= Res

z=0
Res
z1=z
+Res

z=0
Res

z1=−z
, (5.30)

since as a function of z1, the appearing function only has poles at z1 = z and z1 = −z. Using
the explicit form of the recursion kernel (5.19) we can take the z1-residue, which leads to

P1V
(b)
g,1(P1) ⊃ Res

z=0

π sinh(4πP1z)
2 sin(2πbz) sin(2πb−1z)

∫

(2P dP)(2P ′ dP ′)e−4πz(P+P ′)V(b)g−1,2(P, P ′)

= Res
t=0

π sin(4πP1 t)
2sinh(2πbt) sinh(2πb−1 t)

∫

(2P dP)(2P ′ dP ′)e4πi t(P+P ′)V(b)g−1,2(P, P ′) ,

(5.31)

where we set z = −i t in the last equality. We can now rewrite the residue integral as a
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difference of two integrals as follows:

P1V
(b)
g,1(P1) ⊃





∫

R−iϵ

−
∫

R+iϵ





dt sin(4πP1 t)
4i sinh(2πbt) sinh(2πb−1 t)

×
∫

(2P dP)(2P ′ dP ′)e4πi t(P+P ′)V(b)g−1,2(P, P ′)

=

∫

R−iϵ

dt sin(4πP1 t)
4i sinh(2πbt) sinh(2πb−1 t)

∫

(2P dP)(2P ′ dP ′)e−4πi t(P+P ′)V(b)g−1,2(P, P ′)

−
∫

R+iϵ

dt sin(4πP1 t)
4i sinh(2πbt) sinh(2πb−1 t)

∫

(2P dP)(2P ′ dP ′)e4πi t(P+P ′)V(b)g−1,2(P, P ′) .

(5.32)

We used that the integral over P and P ′ is only absolutely convergent for Im t > 0 and is
otherwise defined by analytic continuation. However, it is an even function in t and can thus
be obtained by replacing t →−t for the contourR−iϵ. At this point all integrals are absolutely
convergent and thus we can exchange the t-integral with the P and P ′ integral. This gives the
desired form of Mirzakhani’s recursion relation (2.13), with kernel

H(x , y) =

∫

R−iϵ

dt
sin(4πy t)e−4πi x t

4i sinh(2πbt) sinh(2πb−1 t)
−
∫

R+iϵ

dt
sin(4πy t)e4πi x t

4i sinh(2πbt) sinh(2πb−1 t)
. (5.33)

This can be further massaged as follows to bring it to the form (2.14). Indeed, we can rewrite
both integrals in terms of principal value integrals by picking up some part of the residue at
t = 0. This gives

H(x , y) =
y
2
− PV

∫ ∞

−∞
dt

sin(4πy t)(e4πi x t − e−4πi x t)
4i sinh(2πbt) sinh(2πb−1 t)

=
y
2
−
∫ ∞

0

dt
sin(4πx t) sin(4πy t)

sinh(2πbt) sinh(2πb−1 t)
, (5.34)

which is the form given in eq. (2.14).
Let us also mention that for an efficient implementation of Mirzkhani’s recursion relation,

we have the following integral formulas:

∫ ∞

0

(2x dx) x2kH(x , t) = Fk(t) , (5.35a)

∫ ∞

0

(2x dx) (2y dy) x2k y2ℓH(x + y, t) =
2(2k+ 1)!(2ℓ+ 1)!
(2k+ 2ℓ+ 3)!

Fk+ℓ+1(t) , (5.35b)

where

Fk(t) = Res
u=0

(2k+ 1)!(−1)k+1 sin(2tu)
22k+3u2k+2 sinh(bu) sinh(b−1u)

(5.36)

=
∑

0≤ℓ+m≤k+1

(−1)ℓ+m(2k+ 1)!B2ℓB2m(1− 21−2ℓ)(1− 21−2m)b2ℓ−2m t2k+3−2ℓ−2m

(2ℓ)!(2m)!(2k+ 3− 2ℓ− 2m)!
. (5.37)

We provide such an implementation in the ancillary Mathematica file.
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Figure 7: Plot of the effective potential V (b)eff (E) of the double-scaled Virasoro matrix
integral in the region E < 0, shown for several values of the parameter b ̸= 1. Ex-
trema of the effective potential occur at E∗k,± = −

k2 b±2

4 .

Part III

Evidence and applications

6 Non-perturbative effects

In this section we discuss some of the non-perturbative effects of the Virasoro matrix integral.
Our discussion follows the logic in [36] and we avoid adding too many details as they can
be found therein. In particular [36, eq. 155] expresses the leading perturbative and leading
non-perturbative behaviour of the density of eigenvalues. For the eigenvalue density (5.11) of
the Virasoro minimal string we find

〈ϱ(b)(E)〉 ≈

(

eS0ϱ
(b)
0 (E)−

1
4πE cos

�

2πeS0
∫ E

0 dE′ϱ(b)0 (E
′)
�

, E > 0 ,
1

−8πE exp
�

−V (b)eff (E)
�

, E < 0 ,
(6.1)

where the effective potential V (b)eff is defined as

V (b)eff (E) = 2eS0

∫ −E

0

dx y(b)(
p

x) = 2
p

2 eS0

�

sin(2πbQ
p
−E )

bQ
−

sin(2πQ
p
−E )

Q

�

, (6.2)

with Q = b−1 + b and bQ = b−1 − b defined in section 2.2. The effective potential is the
combination of the potential V (λ) (5.1) and the Vandermonde Jacobian (5.2). In figure 7
we see the oscillatory behaviour of the effective potential for some values of b. As in the JT
case the term in the allowed region E is rapidly oscillating and larger than the first subleading
perturbative contribution. On the other side we find a non-zero contribution in the classically
forbidden regime E < 0. It accounts for the possibility of one eigenvalue sitting in the regime
E < 0.

6.1 Non-perturbative corrections to the quantum volumes

The leading non-perturbative correction to the quantum volume V(b)n (S0; P1, . . . , Pn) is con-
trolled by configurations of the matrix integral where one eigenvalue is in the classically for-
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bidden region E < 0 and all the others are in the allowed region. Thus the leading non-
perturbative correction is naturally given as an integral of the form

∫ 0

−∞
dE 〈ϱ(b)(E)〉 . . . , (6.3)

for some operator insertions · · · depending on the quantity under consideration. In particular,
for the quantum volumes, the operator insertions can be determined intuitively as follows. For
a more rigorous derivation, we refer to [36, appendix A].

Let us start by discussing the leading non-perturbative correction to the resummed partition
function

Z (b)n (S0;β1, . . . ,βn)≡
∞
∑

g=0

Z (b)g,n(β1, . . . ,βn)e
−(2g−2+n)S0 . (6.4)

Z (b)g,n(β1, . . . ,βn) is obtained by inserting
∏n

j=1 tr (e−β j H) into the matrix integral. Focussing
now on the single eigenvalue in the forbidden region, the insertions in (6.3) should be
∏n

j=1 e−β j E . We can then compute the corresponding insertions for the quantum volumes

V(b)n by removing the trumpets, i.e. inverting (2.18). This basically amounts to an inverse
Laplace transformation, see eq. (5.27a). However, in the process, we have to commute the
integral over E with the integral of the inverse Laplace transform, which is not quite allowed.
This makes the present derivation non-rigorous. Let us anyway go ahead. The inverse Laplace
transform predicts the following operator insertion for the quantum volumes, assuming that
the energy E < 0:

1
2πi

∫ γ+i∞

γ−i∞
dx eP2 x

√

√2π
x

e−
4π2E

x , (6.5)

for γ a positive constant. By deforming the contour appropriately, this is easily evaluated to

p
2 e−4π|P|

p
−E

|P|
. (6.6)

However this is not quite the right result because of the illegal exchange of contours. As usual,
the correct result is analytic in P and symmetric under exchange P → −P. Following the
analogous more careful derivation of Saad, Shenker and Stanford [36, appendix A], shows
that the operator insertion is actually the average of both sign choices in the exponent. This is
the unique choice that is both reflection symmetric and analytic in P. Summarizing, we hence
have for the first non-perturbative correction (that we denote by a superscript [1])

V(b)n (S0; P1, . . . , Pn)
[1] =

∫ 0

−∞
dE 〈ϱ(b)(E)〉

n
∏

j=1

p
2sinh(4πPj

p
−E)

Pj
, (6.7)

where 〈ϱ(b)(E)〉 is given by (6.1).

Non-perturbative (in)stability. Before continuing, we have to discuss an important issue.
So far, the discussion makes it sound as if the non-perturbative corrections are unique. But
this is actually not the case, because the integral in (6.7) is divergent unless b = 1. The reason
for this is that unless b = 1, the sign of V (b)eff is indefinite and as a consequence, 〈ϱ(b)(E)〉
can be arbitrarily large for negative energies. This means that the model is non-perturbatively
unstable and all eigenvalues will tunnel to minima of V (b)eff (E) at smaller and smaller energies.
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Figure 8: Plot of the effective potential V (b)eff (E) of the double-scaled Virasoro matrix
integral in the region E < 0, for b close to one. For b ̸= 1 the effective potential is
oscillatory, while for b exactly equal to one it is monotonically increasing.

For b = 1 instead, V (b)eff (E) is monotonic and 〈ϱ(b)(E)〉 decays exponentially as E → −∞.
Thus the model is non-perturbatively stable. These two different behaviours are depicted in
figure 8.

The non-perturbative instability does not mean that the model is non-sensical. Instead,
the simplest way out is to deform the integration contour over the eigenvalues of the matrix.
This however means that the non-perturbative completion of the model is not unique. As we
shall discuss in section 8.2, the same ambiguities also arise when we reproduce these non-
perturbative corrections from the worldsheet. For example, we can deform the integration
contour to run to an extremum of 〈ϱ(b)(E)〉 and then turn into the complex plane, as we do
below.

Alternatively, one can also follow the route proposed in [111] to construct a different
non-perturbative completion of the matrix integral, but it is not clear how to reproduce this
structure from the worldsheet.

Single instanton contribution. Let us assume that b ̸= 1 for now. We discuss the special case
b = 1 further below in subsection 6.3. Each possible instanton correction on the worldsheet
will be associated to one of the extrema of V (b)eff (E). They come in two infinite families and are
located at

E∗k,± = −
k2 b±2

4
, k ∈ Z≥1 . (6.8)

For the one-instanton correction, we simply have to expand the integrand (6.7) around one of
these saddle points. The corresponding non-perturbative correction is thus given by

V(b)n (S0; P1, . . . , Pn)
[1]
k,± =

=

∫

γk,±

dE
−1

8πE∗k,±
e−V (b)eff (E

∗
k,±)−

1
2 (E−E∗k,±)

2(V (b)eff )
′′(E∗k,±)

n
∏

j=1

p
2sinh(4πPj

q

−E∗k,±)

Pj

= −
i e−V (b)eff (E

∗
k,±)

8πE∗k,±

√

√

√

−π

2(V (b)eff )
′′(E∗k,±)

n
∏

j=1

p
2sinh(4πPj

q

−E∗k,±)

Pj
. (6.9)

The contour γk,± takes the form sketched in figure 9. We should also mention that we only
kept the imaginary part of the expression (which does not get contributions from the real line),
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E∗k,±

γk,±

E
imaginary
part comes
from here

Figure 9: The integration contour γk,± for the computation of instanton corrections
in the sector (k,±). We could have also chosen the contour reflected at the real axis,
which would lead to the opposite sign in the result (6.12). This reflects the ambiguity
of the non-perturbative completion discussed above on the matrix integral side.

since it is the only unambiguous part of the contour integral. The result is only one half of the
Gaussian integral, since the contour turns into the complex plane. This is explained in more
detail in [60]. To bring this expression into a form that is interpretable in string theory, let us
denote

T (b)k,± = V (b)eff (E
∗
k,±) =

4
p

2 eS0 b±1(−1)k+1 sin(πkb±2)
1− b±4

. (6.10)

T (b)k,± has the physical interpretation of the tension of the corresponding ZZ-instanton in the
bulk description. Notice that it may be positive or negative, reflecting that most of these
instanton corrections should not live on the integration contour of the matrix integral. We will
nonetheless be able to match them to the corresponding bulk quantities below. We also note
that

(V (b)eff )
′′(E∗k,±) = T (b)k,±

(V (b)eff )
′′(E∗k,±)

V (b)eff (E
∗
k,±)

= T (b)k,±
4π2(1− b∓4)

k2
. (6.11)

Thus we can rewrite (6.9) as

V(b)n (S0; P1, . . . , Pn)
[1]
k,± =

i e−T (b)k,±

2
5
2π

3
2 (T (b)k,±)

1
2 (1− b±4)

1
2 k

n
∏

j=1

p
2 sinh(2πkb±1Pj)

Pj
. (6.12)

6.2 Large g asymptotics of V(b)g ,n

From the leading non-perturbative correction V(b)n (S0; P1, . . . , Pn)[1] to V(b)n (S0; P1, . . . , Pn), one
can also determine the asymptotic behaviour of the quantum volumes V(b)g,n(P1, . . . , Pn) at large
genus g using resurgence techniques. Assuming 0 < b < 1, the closest saddle-point to the
origin is the contribution from the saddle point (6.8) (1,+). The existence of non-perturbative
corrections indicates that the series (2.8) is asymptotic. Let us look at its Borel transform,

eV(b)n (x; P1, . . . , Pn) =
∞
∑

g=0

x2g

(2g)!
V(b)g,n(P1, . . . , Pn) , (6.13)

which has a finite radius of convergence in x . V(b)n (S0; P1, . . . , Pn) can then be recovered via a
Laplace transform

V(b)n (S0; P1, . . . , Pn) = e−(n−2)S0

∫ ∞

0

dx e−x
eV(b)n (x e−S0; P1, . . . , Pn) . (6.14)
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In the cases of interest to us, eV(b)n will have singularities on the real axis and thus the inte-
gral over x actually has to be deformed into the complex plane to give a non-perturbative
completion of the summation. This leads to the same non-perturbative ambiguities that were
already observed above. In particular, the large g asymptotics of V(b)g,n controls the radius of
convergence of the Borel transform in the x-plane.

As we shall see, the quantum volumes, V(b)g,n(P1, . . . , Pn) have the following universal be-
haviour as g →∞,

V(b)g,n(P1, . . . , Pn)∼ (2g)! · ABg gC , (6.15)

for functions A, B and C depending on b and n that we will now determine. The (2g)! growth
ensures that the Borel transform will have singularities in the x-plane. This behaviour implies
that eV(b)n (x; P1, . . . , Pn) behaves as

eV(b)n (x; P1, . . . , Pn)∼ AΓ (C + 1) (1− Bx2)−C−1 + less singular, (6.16)

near the two singularities x = ± 1p
B

in the Borel plane. In particular, when C ̸∈ Z, the Borel

transform has a branch cut running along the real axis starting from x = 1p
B

. We can then
plug this behaviour into (6.14). The branch cut will lead to an imaginary part in the answer,
which we can then compare with the first non-perturbative correction (6.12) of the quantum
volumes. We deform the contour above the branch cut and only focus on the imaginary part
of the answer. Thus resurgence predicts the following asymptotics of the quantum volumes

V(b)n (S0; P1, . . . , Pn)
[1] = i e−(n−2)S0

∫ ∞

B−
1
2 eS0

dx e−xAΓ (C + 1) Im
�

1− Bx2 e−2S0
�−C−1

∼
Aπi

2C+1B
C+1

2

e−B−
1
2 eS0 e(3+C−n)S0 . (6.17)

Comparing to (6.12), we hence see that

B = e−2S0
�

T (b)1,+

�−2
, C = n−

7
2

, (6.18)

which is required to match the correct S0 dependence. The fact that this matches the S0-
dependence of the non-perturbative correction to V(b)n justifies our ansatz (6.15) a posteriori.
We can then compare the prefactors to conclude

A=

�

eS0 T (b)1,+

�2−n

25π
5
2 (1− b4)

1
2

n
∏

j=1

2
p

2 sinh(2πbPj)

Pj
. (6.19)

To summarize, we have extracted the following large g behaviour of the quantum volumes,

V(b)g,n(P1, . . . , Pn)
g≫1
∼

∏n
j=1

p
2 sinh(2πbPj)

Pj

2
3
2π

5
2 (1− b4)

1
2

×
�

4
p

2b sin(πb2)
1− b4

�2−2g−n

× Γ
�

2g + n− 5
2

�

, (6.20)

where we need to assume that 0< b < 1. We also assume in this formula that P1, . . . , Pn and b
are held constant while taking the large g limit. It is interesting to note that even though the
quantum volumes are all polynomial in P2

j and c = 1+6(b+ b−1)2, the large g asymptotics is
highly non-polynomial. We should also note that this formula implies that the string coupling
gs = e−S0 is renormalized to its effective value

geff
s =

1− b4

4
p

2b sin(πb2)
e−S0 = (T (b)1,+)

−1 . (6.21)
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Some consistency checks. We can perform some simple consistency checks on this expres-
sion. We first remark that (6.20) is consistent with the dilaton equation (4.15a) in a somewhat
non-trivial way. The LHS of the string equation (4.15b) vanishes for the asymptotic formula
(6.20). This is consistent with the right hand side, since it is suppressed by one power of 1

g .
Finally, (6.20) formally reduces to known formulas for the Weil-Petersson volumes when

taking the limit b→ 0. Using (2.22) as well as (2.24), we obtain

Vg,n(ℓ1, . . . ,ℓn)∼
(4π2)2g−2+n

2
3
2π

5
2

Γ
�

2g + n− 5
2

�

n
∏

j=1

2 sinh(
ℓ j
2 )

ℓ j
, (6.22)

which matches with the formulas derived in [36, 112–119]. In particular, [119] develops the
large g asymptotics much more systematically beyond the leading order.

Explicit check. We can compare (6.20) explicitly against the first few quantum volumes
as computed from intersection theory or the recursion relation (2.13). Let us first focus on
the case n = 0. For the Weil-Petersson volumes, this was done in [112] using more efficient
algorithms for the computation of the volumes. In our case, we do not know of such an
algorithm and the most efficient method for the computation of the volumes is the direct
computation via intersection numbers on moduli space. We were able to evaluate the volumes
up to g = 12 directly. The Mathematica notebook implementing this is attached to the
publication as an ancillary file. The ratio of the quantum volumes and the asymptotic formula
is displayed in figure 10. We also extrapolated the result to g =∞ by using the general fact
that the corrections to the asymptotic formula (6.20) are of the form

V(b)g,n

(6.20)
=
∞
∑

j=0

x j g
− j . (6.23)

This mirrors the fact that the string perturbation theory expansion is a power series in gs (as
opposed to g2

s ) in the one-instanton sector). We fitted x0, . . . , x10 from the data and plotted
the asymptotic value given by x0.

From the figure, it is clear that the asymptotic formula is good for b well away from b = 1.
This is expected since for b = 1, the saddle point approximation above breaks down because
two saddles collide in that case.

We also checked the asymptotic formula for V(b)g,1(P1). In figure 11, we plotted the ratio
of the volume at genus 12 with the formula (6.20) as a function of P1. The approximation is
good for b well away from b = 1 and P1 sufficiently small.

6.3 The special case b = 1

The case b = 1 needs to be treated separately. For b exactly equal to one the effective potential

V (b=1)
eff (E) =

p
2eS0

�

4π
p
−E − sin(4π

p
−E)

�

, (6.24)

is no longer oscillatory (see figure 8). We will now repeat the analysis of sections 6.1 and 6.2
for this case. Our discussion will be rather brief, since many aspects are very similar.

The one-instanton contribution. In this case, the extrema are located at

E∗k = −
k2

4
, k ∈ Z≥1 . (6.25)
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Figure 10: The ratio of the exact volumes and the asymptotic formula (6.20) up to
g = 12. The last curve is the extrapolation of the low g data to g =∞.

They do not carry a subscript ‘+’ or ‘−’, since both cases coincide. In particular, all extrema of
V (b=1)

eff have vanishing second derivative. Thus in the saddle point evaluation of the integral
(6.7), we have to go to subleading order in the integral. We take the contour to be a steepest
descent contour in the complex plane. Only the imaginary part of the one-instanton contri-
bution is unambiguous since the real part depends on the precise details of the contour. We
have

V(1)n (S0; P1, . . . , Pn)
[1]
k = i Im

∫

γk

dE
−1

8πE∗k
e−V (1)eff (E

∗
k)−

1
6 (E−E∗k)

3(V (b)eff )
′′′(E∗k)

×
n
∏

j=1

p
2 sinh(4πPj

Æ

−E∗k)

Pj

= −
i e−V (1)eff (E

∗
k) Γ (1

3)

8πE∗k
�

− 4
p

3(V (1)eff )
′′′(E∗k)

�
1
3

n
∏

j=1

p
2sinh(4πPj

Æ

−E∗k)

Pj

=
i e−2

p
2kπeS0

Γ (1
3)

8π2k (4
p

6eS0)
1
3

n
∏

j=1

p
2 sinh(2πkPj)

Pj
. (6.26)

Large genus asymptotics. To extract the large genus behaviour of the quantum volumes
V(1)g,n, we proceed as above. Matching (6.17) and (6.26) with k = 1 yields the asymptotics

V(1)g,n(P1, . . . , Pn)
g≫1
∼
Γ (1

3)
∏n

j=1

p
2sinh(2πPj)

Pj

2
7
3 3

1
6π

8
3

�

1

2
p

2π

�2g−2+n

Γ
�

2g − 7
3 + n

�

. (6.27)

Note that these quantum volumes grow slightly faster than the generic volumes, which is
consistent with the fact that (6.20) diverges at b = 1. (6.27) is again consistent with the
dilaton and the string equations (4.15a) and (4.15b), but we are not aware of simple checks
beyond these.
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Figure 11: The ratio of the quantum volumesV(1)12,1 and the asymptotic formula (6.20)
for different values of b.

7 Worldsheet string perturbation theory

In this section, we will study the Virasoro minimal string (1.1) directly using worldsheet string
perturbation theory. As emphasized in the introduction and in figure 2, we interpret string
diagrams as computing quantum volumes of the worldsheet, rather than in terms of amplitudes
of asymptotic string states in target spacetime.

7.1 Torus one-point diagram

In string perturbation theory, the torus one-point diagram is evaluated as

V(b)1,1(P1) =
(2π)2

2

∫

F0

d2τ



bb̃VP1
(0)
�

g=1

= N
(2π)2

2

∫

F0

d2τ |η(τ)|4



VP1
(0)
�

g=1




bViP1
(0)
�

g=1 , (7.1)

where F0 = {τ ∈ C| −
1
2 ≤ Reτ ≤ 1

2 , |τ| ≥ 1} is the fundamental domain of the torus moduli
space, and where we used the definition (2.6) for the physical vertex operators and the fact that
the normalization N(P) is independent of P, see eq. (3.22). In our conventions, d2τ= dτ1dτ2
where τ = τ1 + iτ2. Contrary to the sphere, see eq. (3.22), we do not have to introduce an
additional arbitrary normalization CT2 of the string path integral, since there is no correspond-
ing counterterm on the torus and the normalization of the path integral is unambiguous and
thus CT2 = 1. The factor of (2π)2 in (7.1) arises from the correct normalization of the ghost
path integral, see e.g. [120, section 7.3]. Finally, the factor of 1

2 arises from the fact that each
torus has a Z2 symmetry and we need to divide by the order of the automorphism group.
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In our conventions, the Liouville one-point correlation functions on the torus T2 with mod-
ulus τ in (7.1) admit the following Virasoro conformal block decompositions




VP1
(0)
�

g=1 =

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P, P)F (b)1,1 (P1; P|q)F (b)1,1 (P1; P|q) , (7.2a)




bViP1
(0)
�

g=1 =

∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, bP, bP)F (i b)1,1 (iP1; bP|q)F (i b)1,1 (iP1; bP|q) , (7.2b)

where F (b)1,1 (P1; P|q) is the holomorphic torus one-point Virasoro conformal block at central

charge c = 1+ 6(b + b−1)2 with external weight hP1
= 1

4(b + b−1)2 + P2
1 and internal weight

hP =
1
4(b+b−1)2+P2, evaluated at a value of the parameter q = e2πiτ whereτ is the modulus of

the torus. The contour of integration C over the intermediate states with Liouville momentum
bP in the ĉ ≤ 1 torus one-point function (7.2b) is chosen as depicted in figure 5.

The torus one-point Virasoro conformal block F (b)1,1 (P1; P|q) can be expressed as [121,122]

F (b)1,1 (P1; P|q) = qP2− 1
24

� ∞
∏

m=1

1
1− qm

�

H(b)1,1(P1; P|q) , (7.3)

where the so-called elliptic conformal block H(b)1,1(P1; P|q) admits a power series expansion in
q that starts at 1 and that can be computed efficiently with a recursion relation in the internal
weight hP , as briefly reviewed in appendix C.2. Decomposing the Liouville one-point functions
in (7.1) into Virasoro conformal blocks and making use of (7.3) we obtain that the torus one-
point diagram in Virasoro minimal string theory takes the form,

V(b)1,1(P1) = N
(2π)2

2

∫

F0

d2τ

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P, P)|q|2P2
H(b)1,1(P1; P|q)H(b)1,1(P1; P|q)

×
∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, bP, bP)|q|2bP

2
H(i b)1,1 (iP1; bP|q)H(i b)1,1 (iP1; bP|q) . (7.4)

As discussed in section 3, an interesting feature of the Virasoro minimal string background
(1.1) is that string diagrams in string perturbation theory are manifestly finite for any physical
value of the external momenta of the closed strings. This is in contrast to more familiar string
backgrounds in which divergences arise in degenerating limits of moduli space and the string
diagram (for example, a string S-matrix element) is typically defined via analytic continuation
from unphysical values of the external closed string momenta for which the string diagram
moduli space integral converges [120].

Analytic evaluation of V(b)1,1(P1) for two special values of P1. There are a couple of cases
in which the torus one-point Virasoro conformal block is known explicitly, for all values of the
central charge. The most obvious is the case in which the external operator is the identity,
with P1 =

iQ
2 , in which case the conformal block is simply given by the corresponding non-

degenerate Virasoro character with (internal) weight P,

F (b)1,1

�

P1 =
iQ
2 ; P|τ

�

= χ(b)P (τ) =
e2πiτP2

η(τ)
. (7.5)

The second case is less obvious. It turns out that when the external weight is equal to one,

with P1 =
i
2(b

−1− b) = ibQ
2 , then the torus-one point block is also given by the non-degenerate

Virasoro character [123]
F (b)1,1

�

P1 =
ibQ
2 ; P|τ

�

= χ(b)P (τ) . (7.6)
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In other words, in both cases the elliptic conformal block (7.3) is precisely equal to one,

H(b)1,1(P1; P|q) = 1 for P1 =
iQ
2 and P1 =

ibQ
2 . In both these cases, P1 ̸∈ R. But these values

still fall in the range of analyticity of V(b)g,n since the contour in the conformal block decompo-
sition does not need to be deformed; see section 3.1.

For the case P1 =
ibQ
2 , using the following limit of the three-point coefficient

Cb(
ibQ
2 , P, P) =

2P2

πQρ0(P)
, (7.7)

as well as (3.6), we obtain that the torus one-point diagram (7.4) evaluates to,

V(b)1,1(P1 =
ibQ
2 ) = N

(2π)2

2

∫

F0

d2τ

∫ ∞

0

dP ρ(b)0 (P)Cb(
ibQ
2 , P, P)e−4πτ2P2

×
∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(

bQ
2 , bP, bP)e−4πτ2bP

2

= N
(2π)2

2

∫

F0

d2τ

∫ ∞

0

dP P2 e−4πτ2P2

∫ ∞

−∞

dbP
2

e−4πτ2bP
2

= N
(2π)2

2
1

128π

∫

F0

d2ττ−2
2 = N

π2

192
. (7.8)

This precisely agrees with (2.19b) evaluated at P1 =
ibQ
2 , provided that

N =
4
π2

. (7.9)

Therefore, making use of (3.22) we obtain that

CS2 =
π6

64
. (7.10)

The torus one-point diagram in the case P = iQ
2 proceeds essentially identically, except that

slightly more care is required in taking the limit. The issue is that the relevant structure con-
stant diverges in this limit

Cb

�

i
�Q

2 − ϵ
�

, P, P
�

=
1

πρ
(b)
0 (P)

ϵ−1 +O(ϵ0) . (7.11)

For this reason the spacelike Liouville correlator diverges and the timelike Liouville correlator
vanishes but the combination that appears on the worldsheet remains finite. We find that

V(b)1,1

�

P1 =
iQ
2

�

= N
(2π)2

2

∫

F0

d2τ

∫ ∞

0

dP e−4πτ2P2

∫ ∞

−∞

dbP
2
(−bP2)e−4πτ2bP

2

= −N
π2

192
, (7.12)

which also exactly agrees with (2.19b) evaluated at P1 =
iQ
2 provided (7.9) is satisfied.

Direct numerical evaluation of V(b)1,1(P1) for generic values of P1. Let us first be more
explicit about the behavior of the torus one-point diagram (7.4) near the cusp τ2 → ∞ of
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the fundamental domain. In this limit, since to leading order at large τ2 the torus one-point
elliptic conformal blocks H(b)1,1(P1; P|q)≃ 1, the moduli integral of (7.4) behaves as

∫ ∞

dτ2

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P, P)e−4πτ2P2

∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, bP, bP)e−4πτ2bP

2
. (7.13)

In the limit τ2 → ∞, the integrals over the intermediate Liouville momenta P and bP are
dominated by their values near P = 0 and bP = 0. Using Laplace’s method, we can approximate
these integrals as an asymptotic expansion at large τ2 by

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P, P)e−4πτ2P2

∼
∑

n∈2Z≥0

2−2(n+1)π−
n
2

Γ ( n
2 + 1)

τ
− n+1

2
2

dn

dPn

�

�

�

�

P=0
ρ
(b)
0 (P)Cb(P1, P, P) , (7.14a)

∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, bP, bP)e−4πτ2bP

2

∼
∑

m∈2Z≥0

2−2m−1)π−
m
2

Γ (m
2 + 1)

τ
−m+1

2
2

dm

dbPm

�

�

�

�

P̂=0

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, bP, bP) . (7.14b)

For instance, the first nonzero terms in the asymptotic expansions are the m = 0 and n = 2
terms on the RHS of (7.14), from which we obtain that the moduli integral (7.13) behaves as

1
128π

∫ ∞

dτ2 τ
−2
2 , (7.15)

and is therefore convergent, as claimed in section 3.1.
In the direct numerical evaluation of (7.4), we will employ the strategy of [41]. We split the

fundamental domain F0 of the torus moduli space into two regions: (I) τ ∈ F0 with τ2 ≤ τmax
2 ,

and (II) τ ∈ F0 with τ2 ≥ τmax
2 , for a sufficiently large value of τmax

2 . In region (I), we
first perform the integrals over the intermediate Liouville momenta bP and P separately and
for a fixed value of τ. These two integrations are performed numerically with the elliptic
conformal blocks H(i b)1,1 (iP1; bP|q) and H(b)1,1(P1; P|q) computed via the recursion relation (C.12)
and truncated to order q8. The integration over τ in region (I) is then performed numerically.
In region (II), we may approximate the moduli integrand by the expressions in (7.13) and
(7.14); the moduli integral can then be done analytically. We include a sufficient number of
terms in the asymptotic expansions (7.14) such that the resulting moduli integral over region
(II) is accurate to order (τmax

2 )−3.
For the numerical evaluation of the torus one-point diagram, we will consider values of

the Liouville parameter b such that b2 is a rational number. As discussed in appendix C,
for such values of b the Liouville three-point coefficients (3.1) and (3.6) can be expressed in
terms of the Barnes G-function and thus their numerical implementation is much faster, as
opposed to resorting to the integral representation of the Γb(x) function. For some rational
values of b2, the numerical calculation of the torus one-point elliptic Virasoro conformal blocks
H(b)1,1(P1; P|q) through the recursion relation (C.12) involves delicate cancellations. In order to
avoid loss of precision, we compute the conformal blocks with a central charge corresponding
to b = (m

n )
1
2 + δ and b̂ = (m

n )
1
2 + δ, with m, n ∈ Z≥1, with the choice of small δ = 10−7 for

the c ≥ 25 and ĉ ≤ 1 Liouville CFT sectors, respectively. Lastly, in the numerical calculation
of (7.4) we parametrize the contour of integration C over the intermediate ĉ ≤ 1 Liouville
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Figure 12: Shown in dots are the numerical results for the torus one-point string
diagram (7.4) in Virasoro minimal string theory for a range of external momentum
P1 ∈ [0,1] of the asymptotic closed string state, for the choice of the Liouville pa-
rameter b = 1,2−

1
2 , 3−

1
2 , 4−

1
2 as labeled in the plot. The exact result (7.16) is shown

in the solid curve.

momentum by bP = p + iε with p ∈ R and ε = 10−1, and set τmax
2 = 15 in the splitting of the

fundamental domain F0 described in the previous paragraph.
Figures 12 and 13 show numerical results for the torus one-point diagram (7.4) in Virasoro

minimal string theory, with the fixed value (7.9) for the normalization constant N, computed
with the strategy outlined above. Figure 12 shows results for the torus one-point diagram as
a function of the external closed string momenta in the range P1 ∈ [0,1], for the following
four choices of the Liouville parameter b = 1,2−

1
2 , 3−

1
2 , 4−

1
2 .17 Figure 13 shows results for

the torus one-point diagram as a function of the spacelike Liouville CFT central charge in the
range c ∈ [25, 26], for three choices of external closed string momenta P1 =

1
3 , 1

2 , 2
3 .

These numerical results exhibit a remarkable level of agreement with the exact result
(2.19b)

V(b)1,1(P1) =
1
24

�

c − 13
24

+ P2
1

�

, (7.16)

and provide a highly nontrivial direct check of the duality. The largest discrepancy between
the numerical results shown in figure 12 and the exact result (7.16) is of order 10−4 % for
b = 1, 2−

1
2 and 10−3 % for b = 3−

1
2 , 4−

1
2 . Likewise, the largest discrepancy between the nu-

merical results in figure 13 and the function (7.16) is of order 10−4 %.

7.2 Sphere four-point diagram

Next, we consider the four-punctured sphere diagram in Virasoro minimal string theory. After
using its conformal Killing group to fix the positions of three vertex operators V j(z j , z j) with
j = 1, 3,4 to z1 = 0, z3 = 1, and z4 =∞, the sphere four-point diagram has one remaining

17The numerical results for b = 1 agree with those of [41], which followed a different normalization convention
for the c = 25 and c = 1 Liouville CFT three-point coefficients.
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Figure 13: Shown in dots are the numerical results for the torus one-point string dia-
gram (7.4) in Virasoro minimal string theory for a fixed value of external momentum
P1 =

1
3 , 1

2 , 2
3 of the asymptotic closed string state, as labeled in each curve, and for

varying central charge c ∈ [25, 26]. Specifically, the data points calculated numeri-
cally correspond to b2 = 9

10 , 5
6 , 4

5 , 7
9 , 3

4 , 8
11 , 5

7 , 7
10 , 9

13 , 2
3 for each value of P1. The exact

result (7.16) is shown in the solid curve.

modulus, the position z ∈ C of the last vertex operator V2(z, z), and takes the form

V(b)0,4(P1, P2, P3, P4) = CS2N4

∫

C
d2z




VP1
(0)VP2

(z, z)VP3
(1)VP4

(∞)
�

g=0

×



bViP1
(0)bViP2

(z, z)bViP3
(1)bViP4

(∞)
�

g=0 . (7.17)

The Liouville CFT sphere four-point functions in (7.17) admit the following Virasoro conformal
block decompositions,




VP1
(0)VP2

(z, z)VP3
(1)VP4

(∞)
�

g=0 =

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P2, P)Cb(P3, P4, P)

×F (b)0,4 (P1, P2, P3, P4; P|z)F (b)0,4 (P1, P2, P3, P4; P|z) , (7.18a)




bViP1
(0)bViP2

(z, z)bViP3
(1)bViP4

(∞)
�

g=0 =

∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, iP2, bP)bCb(iP3, iP4, bP)

×F (i b)0,4 (iP1, iP2, iP3, iP4; bP|z)F (i b)0,4 (iP1, iP2, iP3, iP4; bP|z) , (7.18b)

where F (b)0,4 (P1, P2, P3, P4; P|z) is the sphere four-point holomorphic Virasoro conformal block

with external weights hPi
= Q2

4 + P2
i for i = 1, . . . , 4, intermediate weight hP =

Q2

4 + P2,

evaluated at the cross-ratio z. Further, the conformal block F (b)0,4 (P1, P2, P3, P4; P|z) can be

expressed in terms of an elliptic conformal block H(b)0,4(P1, P2, P3, P4; P|q) as [124]

F (b)0,4 (P1, P2, P3, P4; P|z) = (16q)P
2
z−

Q2

4 −P2
1−P2

2 (1− z)−
Q2

4 −P2
2−P2

3 θ3(q)
−Q2−4(P2

1+P2
2+P2

3+P2
4 )

×H(b)0,4(P1, P2, P3, P4; P|q) , (7.19)

49

https://scipost.org
https://scipost.org/SciPostPhys.16.2.057


SciPost Phys. 16, 057 (2024)

1

reg (1)

z
F0

t

Figure 14: The fundamental domain in the cross ratio z-plane of the sphere four-point
diagram, region (1) = {z ∈ C |Re z ≤ 1

2 , |1− z| ≤ 1}, is mapped to the fundamental
domain F0 = {t ∈ C | −

1
2 ≤ Re t ≤ 1

2 , |t| ≥ 1} in the complex t-plane via the change
of variables (7.22).

where θ3(q) is a Jacobi theta function, and the elliptic nome q is related to the cross-ratio z by

q(z) = exp
�

−π
K(1− z)

K(z)

�

, where K(z) = 2F1

�1
2 , 1

2 ; 1|z
�

. (7.20)

The elliptic conformal block H(b)0,4(P1, P2, P3, P4; P|q) admits a power series expansion in q that
can be efficiently computed via Zamolodchikov’s recursion relation, as reviewed in appendix
C.2. Whereas the conformal block expansion in the cross ratio z a priori converges only in the
unit z-disk (|z|< 1), the expansion in the elliptic nome q variable converges everywhere inside
the unit q-disk, which in particular covers the entire complex z-plane [125]. Furthermore, at
any given point in the z-plane, the conformal block expansion in the q variable converges much
faster.

The crossing symmetry relations of the ĉ ≤ 1 and c ≥ 25 Liouville CFT sphere four-point
correlation functions (7.18), generated by (C.15) and (C.16), may be used to reduce the mod-
uli integration of the four-point diagram (7.17) over the complex z-plane into a finite domain
near z = 0 [126,127]. We divide the complex z-plane into six regions: (1) Re z ≤ 1

2 , |1−z| ≤ 1,
(2) |z| ≤ 1, |1 − z| ≥ 1, (3) Re z ≤ 1

2 , |z| ≥ 1, (4) Re z ≥ 1
2 , |z| ≤ 1, (5) |1 − z| ≤ 1, |z| ≥ 1,

and (6) Re z ≥ 1
2 , |1− z| ≥ 1. Denoting the transformation z→ 1− z, for which (C.15) holds,

by T and the transformation z → z−1, for which (C.16) holds, by S, the regions (2)–(6) can
be mapped to region (1) by the transformations STS, TS, T, ST, S, respectively. Hence, the
four-point string diagram (7.17) can be written as

V(b)0,4(P1, P2, P3, P4) = CS2N4

∫

reg (1)

d2z
�




bViP1
(0)bViP2

(z, z)bViP3
(1)bViP4

(∞)
�

g=0

×



VP1
(0)VP2

(z, z)VP3
(1)VP4

(∞)
�

g=0

+
�

5 other perms of {123}
�

�

. (7.21)

Lastly, performing a change of variable defined by

t = i
K(1− z)

K(z)
, (7.22)

from the cross-ratio z to the complex t-plane, such that the elliptic nome is q = eiπt , region (1)
of the complex z-plane is mapped to the fundamental domain F0={t ∈ C | −

1
2 ≤ Re t≤ 1

2 , |t|≥1}
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in the complex t-plane. Decomposing the Liouville CFT four-point functions in (7.17) into
Virasoro conformal blocks, making use of (7.19), performing the change of variables (7.22),18

and plugging in the constant values (7.9) and (7.10), we obtain that the four-point string
diagram in Virasoro minimal string theory can be written as

V(b)0,4(P1, P2, P3, P4) = 4

∫

F0

d2 t
�

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P2, P)Cb(P3, P4, P)

× |16q|2P2
H(b)0,4(P1, P2, P3, P4; P|q)H(b)0,4(P1, P2, P3, P4; P|q)

×
∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, iP2, bP)bCb(iP3, iP4, bP)

× |16q|2bP
2
H(i b)0,4 (iP1, iP2, iP3, iP4; bP|q)H(i b)0,4 (iP1, iP2, iP3, iP4; bP|q)

+
�

5 other perms of {123}
�

�

. (7.24)

As was the case for the torus one-point diagram considered in the previous section, the sphere
four-point diagram takes the slightly simpler form (7.24) when expressed in terms of the el-
liptic Virasoro conformal blocks.

Analytic evaluation of V(b=1)
0,4 (P1, P2, P3, P4) for special values of Pi and b. Unlike the

case of the torus one-point diagram, we are not aware of any value of the conformal weights
for which we can compute both the timelike and spacelike Liouville CFT four-point functions
exactly for any value of the central charge. However, for the special case of c = 25, or b = 1,
with external weights all equal to hi =

15
16 , as well as for the case of c = 1, or b = i, with

external weights all equal to ĥi =
1
16 , the elliptic sphere four-point blocks (7.19) are known to

be given simply by [128]

H(b=1)
0,4

� i
4 , i

4 , i
4 , i

4 ; P|q
�

= 1 , H(b=i)
0,4

�1
4 , 1

4 , 1
4 , 1

4 ; bP|q
�

= 1 , (7.25)

respectively. For this special case, and making use of

Cb=1(
i
4 , i

4 , P) =
2−

11
2 −4P2

P
sinh(2πP)

, (7.26)

we obtain that the sphere four-point diagram (7.24) evaluates to

V(b=1)
0,4 ( i

4 , i
4 , i

4 , i
4) = 6× 4

∫

F0

d2 t

∫ ∞

0

dP ρ(b)0 (P)C1(
i
4 , i

4 , P)2 28P2
e−2πt2P2

×
∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bC1(

i
4 , i

4 , bP)2 28bP2
e−2πt2bP

2

= 24

∫

F0

d2 t

∫ ∞

0

dP P2 e−2πt2P2

∫ ∞

−∞

dbP
2

e−2πt2bP
2

=
1
4

, (7.27)

which exactly agrees with (2.19a) evaluated at c = 25 with Pi =
i
4 .

18The Jacobian of the map from the cross-ratio z to the elliptic nome q = eiπt

�

�

�

�

dz
dt

�

�

�

�

2

=

�

�

�

�

πi
�θ2(q)θ4(q)

θ3(q)

�4
�

�

�

�

2

, (7.23)

exactly cancels the combined prefactors appearing in the product of the conformal blocks (7.19).
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Direct numerical evaluation of V(b)0,4(P1, P2, P3, P4) for generic values of Pi and b. The
behavior of each of the six terms in (7.24) near the cusp t2→∞ of the fundamental domain F0
in the complex t-plane, with t = t1+ i t2, can be analyzed similarly to the case of the torus one-
point diagram considered in the previous section. In the limit t2→∞, the sphere four-point
elliptic conformal blocks H(b)0,4(Pi; P|q) ≃ 1 and using Laplace’s method we can approximate
the ĉ ≤ 1 and c ≥ 25 Liouville correlation functions as an asymptotic expansion at large t2 by

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P2, P)Cb(P3, P4, P)e−(2πt2−8 log 2)P2

∼
∑

n∈2Z≥0

2−(n+1)π
1
2 (2πt2 − 8 log2)−

n+1
2

Γ ( n
2 + 1)

dn

dPn

�

�

�

�

P=0
ρ
(b)
0 (P)C(P1, P2, P)C(P3, P4, P) ,

(7.28a)
∫

C
dbP

(ibP)2

2ρ(b)0 (ibP)
bCb(iP1, iP2, bP)bCb(iP3, iP4, bP)e−(2πt2−8 log2)bP2

∼
∑

m∈2Z≥0

2−nπ
1
2 (2πt2 − 8 log 2)−

n+1
2

Γ ( n
2 + 1)

dm

dbPm

�

�

�

�

bP=0

(ibP)2 bCb(iP1, iP2, bP)bCb(iP3, iP4, bP)

2ρ(b)0 (ibP)
,

(7.28b)

and similarly for the other five terms in (7.24). For example, taking the first nonzero terms in
the asymptotic expansions (7.28) we obtain that the full moduli integral in the sphere four-
point string diagram (7.24) behaves as

6×
1

32π

∫ ∞

dt2 t−2
2 , (7.29)

and is therefore convergent, as discussed in section 3.1.
With the four-point sphere diagram written in the form (7.24), we can then follow precisely

the same strategy of numerical integration that we employed in the computation of the torus
one-point string diagram described in the previous section.19 We split the fundamental domain
F0 in the complex t-plane into two regions: (I) t ∈ F0 with t2 ≤ tmax

2 , where we first perform
the integrals over the intermediate Liouville momenta P and bP, and then over the modulus
t numerically, and (II) t ∈ F0 with t2 ≥ tmax

2 , where we use the asymptotic expansions of
the form (7.28) and perform the moduli integral over t analytically, including a sufficient
number of terms in the asymptotic expansions such that the resulting integral is accurate to
order (tmax

2 )−4. In the direct numerical evaluation of (7.24), we compute the elliptic conformal

blocks H(b)0,4(Pi; P|q) via the recursion relation (C.10) with a central charge corresponding to

b = (m
n )

1
2 + δ and b̂ = (m

n )
1
2 + δ with m, n ∈ Z≥1 and the choice of small δ = 10−6 for the

c ≥ 25 and ĉ ≤ 1 Liouville CFT sectors, respectively, both truncated to order q8; parametrize
the contour of integration C over the intermediate ĉ ≤ 1 Liouville momentum by bP = p + iϵ
with p ∈ R and ϵ = 10−1; and set tmax

2 = 15.

19In [40], the moduli integral of the sphere four-point diagram was numerically computed directly in the cross-
ratio variable z ∈ region I, which led to less precise results compared to the computations performed in this
paper. More importantly, [40] followed a different strategy in which the order of integrations is switched – first
integrate over the cross-ratio z and then over the intermediate Liouville momenta P and bP; this order proved to
be more convenient in the numerical evaluation of string scattering amplitudes in two-dimensional string theory
of [127, 129, 130]. With that order of integrations, it was necessary to introduce regulator counterterms to the
moduli integral (7.21), which appears to have led to a systematic error in the numerical results for the sphere
four-point diagram V(b)0,4. In the notation of equation (3.11) of [40], the results of the present paper are α= 8 and
β = 16.
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Figure 15: Shown in dots are the numerical results for the four-point string diagram
(7.24) in Virasoro minimal string theory with the choices (7.30) for the external
momenta of the asymptotic closed string states. The exact result (7.31) is shown in
the solid curve.

For the direct numerical evaluation of the four-point string diagram (7.24) we will make
the following choices for the external momenta of the asymptotic closed string states and for
the Liouville parameter b of the c ≥ 25 Liouville CFT sector of the Virasoro minimal string
background (1.1):

(i) P1 = P2 = P3 = P4 ≡ P , P ∈ [0,0.7] , for b = 1,2−
1
2 , 3−

1
2 , (7.30a)

(ii) P1 = P2 = P3 =
1
3

, P4 ∈ [0, 0.7] , for b = 1,2−
1
2 , 3−

1
2 , (7.30b)

(iii) P1 =
1
3

, P2 =
1
2

, P3 =
1
5

, P4 ∈ [0, 0.7] , for b = 1,2−
1
2 , 3−

1
2 , 4−

1
2 , (7.30c)

(iv) P1 =
1
3

, P2 =
1
2

, P3 =
3
5

, P4 ∈ [0, 0.7] , for b = 1,2−
1
2 , 3−

1
2 , 4−

1
2 . (7.30d)

The numerical results for the four-point sphere string diagram (7.24) for the choice of external
closed string momenta (7.30), computed with the strategy outlined above, are shown in figure
15. We again find that the numerical results demonstrate a remarkable agreement with the
exact form for the string four-point diagram (2.19a),

V(b)0,4(P1, P2, P3, P4) =
c − 13

24
+ P2

1 + P2
2 + P2

3 + P2
4 . (7.31)

This agreement provides again highly nontrivial evidence for our proposed duality. For the
results presented in figure 15, the largest discrepancy between the numerical results in the
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data sets (7.30) and the exact result (7.31) is of order 10−4 % for b = 1, 2−
1
2 and 10−3 % for

b = 3−
1
2 , 4−

1
2 .

7.3 Sphere partition function and other exceptional cases

So far, we have discussed V(b)g,n for 2g−2+n≥ 0, where the moduli space Mg,n in (2.7) is well-
defined. However, one can also discuss the remaining exceptional cases, which we do now.
Especially on the sphere, this is subtle, because the volume of the conformal Killing vector
group is infinite for n ≤ 2 and because of non-compactness of the worldsheet CFT the result
is formally given by a ratio ∞∞ . Our main tool is to assume that the dilaton (4.15a) and string
equations (4.15b) continue to hold, which allows us to relate these lower-point functions to
higher-point functions.

Torus partition function. Let us start with the torus partition function. The dilaton equation
implies that the torus partition function diverges:

0 ·V(b)1,0 = V(b)1,1

�

P = ibQ
2

�

−V(b)1,1

�

P = iQ
2

�

=
1
24
̸= 0 . (7.32)

Since the right-hand-side is non-zero, this implies that the torus partition function is infinite.
This can also be checked directly from the worldsheet and is a reflection of the fact that the
torus partition function of Liouville theory diverges.

Sphere two-point function. The sphere two-point function needs to satisfy the dilaton equa-
tion, but this does not give any non-trivial information. Instead, we observe from the world-
sheet definition (2.7) that the two-point functions on the worldsheet are only non-vanishing
for P1 = P2 and thus we necessarily have20

V(b)0,2(P1, P2) = F(P1)δ(P1 − P2) . (7.33)

We can fix F(P1) by looking at the string equation (4.15b)

1=
2
∑

j=1

∫ Pj

0

2Pj dPj V
(b)
0,2(P1, P2) , (7.34)

which fixes

V(b)0,2(P1, P2) =
1

2P1
δ(P1 − P2) = δ(h1 − h2) , (7.35)

where we expressed it in terms of the conformal weight in the last step. This could have been
expected from the spacetime picture, since we can obtain a double-trumpet either by gluing
two trumpets or by using eq. (2.18) for g = 0 and n= 2. Thus the two-point volume should be
just a delta-function in the natural measure 2P dP. We also would have concluded this from
the inverse Laplace transform of the resolvent R(b)0,2 (5.9).

20The worldsheet two-point function is actually proportional to δ(P1 − P2)2, since we get a delta-function from
both spacelike and timelike Liouville theory. The square in the delta-function can then get cancelled by the infinite
volume of the conformal Killing vector group [131].
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Sphere one-point function. The one-point function on the sphere can be obtained directly
from (7.35) via the dilaton equation (4.15a). We have

V(b)0,1(P) = V(b)0,2

�

P, iQ
2

�

−V(b)0,2

�

P, ibQ
2

�

= δ(h)−δ(h− 1) . (7.36)

This could again be expected from the disk partition function, since gluing a trumpet to this ob-
ject according to (2.18) gives back the disk partition function (2.16a). In particular, for states
in the spectrum for which P > 0, the one-point function on the sphere vanishes. Vanishing of
the generic sphere one-point function was anticipated in [41] based on the well-behavedness
of the string perturbation expansion.

Sphere partition function. Finally, the zero-point function on the sphere follows again from
the dilaton equation:

V(b)0,0 =
1
2

�

V(b)0,1

� iQ
2

�

−V(b)0,1

�

ibQ
2

��

=
1
2
(δ(0) +δ(0)) =∞ . (7.37)

Like the torus partition function, also the sphere partition is divergent. This feature is also
believed to be a property of JT gravity [132,133].

8 Asymptotic boundaries and ZZ-instantons

In this section we elucidate the worldsheet boundary conditions needed to describe configu-
rations with asymptotic boundaries in Virasoro minimal string theory. We will see that this
involves pairing a non-standard basis of FZZT branes for spacelike Liouville CFT described in
section 3.2 together with ZZ-like boundary conditions (a good choice turns out to be the “half-
ZZ” branes introduced in section 3.2) for timelike Liouville CFT. Equipped with these boundary
conditions, we will then derive the disk and trumpet partition functions (given in equations
(2.16a) and (2.16b) respectively), as well as the double-trumpet partition function directly
from the worldsheet BCFT. We then proceed to investigate non-perturbative effects mediated
by ZZ-instantons on the worldsheet. In particular, we determine the normalization of the one-
instanton contributions to the free energy, finding a perfect match with the matrix integral as
computed in section 6.1. Finally, we compute the leading non-perturbative corrections to the
quantum volumes as mediated by ZZ-instantons.

8.1 Asymptotic boundaries

We now discuss the incorporation of asymptotically Euclidean AdS boundaries to Virasoro
minimal string theory through conformal boundary conditions for the worldsheet CFT. The
quantum volumes V(b)g,n(P1, . . . , Pn) computed by closed string perturbation theory as in (2.7)
correspond to configurations with n geodesic boundaries with lengths that are given in the JT
limit (b→ 0) by [134]

ℓi = 4πbPi . (8.1)

In order to introduce asymptotic boundaries, we glue “trumpets” — punctured disks with
boundary conditions to be described shortly — onto the string diagrams with finite boundaries
as described in section 2.5. The punctures are labelled by a Liouville momentum Pi and create
finite boundaries (which are to be glued onto those of the quantum volumes), with lengths that
in the JT limit are given by (8.1). Then what we seek is a boundary condition for the worldsheet
CFT corresponding to an asymptotic boundary with fixed (renormalized) length βi .

As reviewed in section 3.2, Liouville CFT admits two main families of conformal boundary
conditions. In order to develop some intuition for them and their interpretation in Virasoro
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minimal string theory, recall that the Virasoro minimal string admits a reformulation in terms
of two-dimensional dilaton gravity defined in (2.1), where the dilaton and Weyl factor of the
target space metric can be recast in terms of the spacelike and timelike Liouville fields φ
and χ as in (2.2). The one-parameter family of FZZT branes [84, 85] admit a semiclassical
reformulation in terms of a modified Neumann boundary condition for the Liouville fields,
and hence may heuristically be thought of as extended branes. In contrast, the ZZ conformal
boundary conditions [83] may semiclassically be thought of as Dirichlet boundary conditions
for the Liouville field and hence represent localized branes. Indeed, as reviewed in section 3.2,
the open-string spectrum of the cylinder partition functions with FZZT boundary conditions is
continuous, while it is discrete for the ZZ-type boundary conditions.

Thus in order to introduce asymptotic boundaries in Virasoro minimal string theory, we
will need to equip the spacelike and timelike Liouville sectors of the worldsheet CFT with a
suitable combination of FZZT and ZZ-type boundary conditions. In particular, we claim that
an ansatz that correctly reproduces matrix integral results is to equip the spacelike Liouville
theory with FZZT boundary conditions and the timelike Liouville theory with the “half-ZZ”
boundary conditions introduced in section 3.2.

Let us first discuss the FZZT boundary conditions for spacelike Liouville theory. Recall that
the FZZT branes are labeled by a continuous parameter s. We claim that fixing the renormal-
ized length of the asymptotic boundary is achieved by working in a basis of FZZT boundary
states that is Laplace-dual to the fixed-s basis, as

∫ ∞

0

ds e−βs2
|FZZT(b)(s)〉 . (8.2)

Heuristically, since s labels the Liouville momentum of an open string stretched between FZZT
and ZZ branes, we think of s2 as an energy and the Laplace transform as implementing the
change to an ensemble of fixed β .

Having fixed the renormalized boundary length with FZZT-like boundary conditions on the
spacelike Liouville theory, fixing the asymptotic value of the dilaton as usual in dilaton grav-
ity requires ZZ-like (Dirichlet) boundary conditions for the timelike Liouville theory. Indeed,
any of the “half-ZZ” boundary conditions described in section 3.2 is sufficient, when paired
with a suitable modification of the FZZT BCFT data for the spacelike Liouville CFT. Following
previous literature on Liouville gravity (although our prescription varies significantly in the
details, see e.g. [38]), we think of the resulting combined boundary condition as introducing
a “marked” disk in Virasoro minimal string theory. The idea is that in string theory equipped
with worldsheet boundaries one computes partition functions on unmarked disks, in the sense
that translations along the boundary circle are gauged (there is no marked reference point).
To undo the effect of the gauging, one should multiply by the volume of translations along the
boundary. This is how we interpret the necessary modification of the FZZT boundary state to
be described presently.

For example, suppose we equip the timelike Liouville theory with (m,±) “half-ZZ” bound-
ary conditions. Then we claim that the FZZT boundary conditions on the spacelike Liouville
theory should be modified so that the disk one-point function is given by

Ψ(b)(s; P)→ Ψ(b)(m,±)(s; P)≡
Pρ(b)0 (P)p

2sinh(2πmb±1P)
Ψ(b)(s; P) , (8.3)

where the unmarked one-point function Ψ(b) is given in (3.32). This redefinition is indepen-
dent of the FZZT brane parameter s so the transformation to the fixed-length basis is unaf-
fected.

To summarize, we claim that the worldsheet boundary conditions that introduce an asymp-
totic boundary of fixed renormalized length β involve combining the Laplace transform of the
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VP

FZZT(b)(m,±)(s)⊗cZZ
(i b)
(m,±)

P

β

∫ ∞

0

ds e−βs2

Z (b)trumpet(β; P)

Figure 16: The Laplace transform of the (marked) disk one-point diagram of an
on-shell vertex operator VP subject to FZZT(s) boundary conditions in the spacelike
Liouville sector and half-ZZ boundary conditions in the timelike Liouville sector of
the Virasoro minimal string theory computes the partition function of a “trumpet”
with Liouville momentum P and an asymptotic boundary of renormalized length β .

marked FZZT boundary conditions for spacelike Liouville CFT with the corresponding half-ZZ
boundary conditions for timelike Liouville CFT:

∫ ∞

0

ds e−βs2
|FZZT(b)(m,±)(s)〉 ⊗ |cZZ

(i b)
(m,±)〉 , (8.4)

where the subscript on the FZZT boundary state indicates the marking. In what follows we
will see that all choices of (m,±) are in a sense BRST-equivalent.

We note that both the transformation from the fixed-s to the fixed-length basis (8.2) and
the marking prescription (8.3) differ substantially from the conventions adopted in previous
work on the minimal string. Nevertheless, we will see that the combined BCFTs define the
correct conformal boundary conditions that match with the matrix integral.

In particular, the energy in the dual matrix model will be identified with s2 instead of
cosh(2πbs) as is the case e.g. in the minimal string. In those cases, this relation can be mo-
tivated from the path integral, but we do not have a sufficiently good understanding of the
boundary conditions of timelike Liouville theory to perform such a derivation here. Instead,
we remark that the identification of the energy with s2 is uniquely fixed by requiring that the
density of states computed from the disk partition function matches with the spectral curve
given in eq. (5.15). We also remark that this identification is quite natural in this context
given that from the definition of the FZZT parameter in (3.31) s2 is the conformal weight in
the open-string channel, which is the energy in the Virasoro algebra.

Punctured disk diagram: The trumpet and the disk. We start by computing the trumpet
partition function in Virasoro minimal string theory directly from the worldsheet BCFT. The
starting point for this computation is the punctured disk diagram, with FZZT boundary con-
ditions on the spacelike Liouville sector and (say) (m,±) half-ZZ boundary conditions on the
timelike Liouville sector. Figure 16 summarizes the relationship between the punctured disk
diagram and the trumpet partition function in Virasoro minimal string theory. Taking into
account the prescription (8.3), the marked disk diagram is given by the following product of
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disk one-point functions

Z (b)disk(s; P) = eCD2NΨ(b)(m,±)(s; P)bΨ(i b)(m,±)(P)

= eCD2N
Pρ(b)0 (P)p

2sinh(2πmb±1P)

2
p

2cos(4πsP)

ρ
(b)
0 (P)

4 sinh(2πmb±1P)
P

= 2
p

2eCD2N× 2
p

2cos(4πsP) , (8.5)

where bΨ(i b̂)(m,±) is given in (3.36) and we used (2.5) and (2.6). Here, eCD2 is the normalization
of the string theory path integral; the tilde indicates that it also includes the volume of the
residual U(1) automorphism group of the punctured disk. Equation (8.5) is equivalent to the
modular S matrix that decomposes a Virasoro character with Liouville momentum s into a
complete basis of characters in the dual channel with Liouville momenta P.

The trumpet partition function, with an asymptotic boundary of renormalized length β , is
then given by the Laplace transform (8.2) of the marked disk one-point function (8.5):

Z (b)trumpet(β; P) =

∫ ∞

0

ds e−βs2
Z (b)disk(s; P) = 2

p
2eCD2N×

√

√2π
β

e−
4π2P2
β . (8.6)

As explained in sections 2.5 and 4.4, this should be nothing but the Virasoro character of a
primary of conformal weight hP in the dual channel (with modulus τ = 2πi

β ) with the contri-
butions of the descendants stripped off. This fixes the normalization

eCD2 =
1

2
p

2N
=
π2

8
p

2
, (8.7)

where we used that N is given by (7.9). We can then recognize that

Z (b)trumpet(β; P) = η
�

iβ
2π

�

χ
(b)
P

�

2πi
β

�

. (8.8)

This is because the partition function of the Virasoro minimal string on the disk is equivalent to
that of (the chiral half of) 3d gravity on the solid cylinder, which computes the corresponding
Virasoro character. We get the character in the dual channel because the length of the thermal
circle in 3d gravity is related to the length of the boundary disk by a modular S transformation,
see section 4.4. Up to an overall scale factor, this is actually equivalent to the trumpet partition
function of JT gravity for all values of b (where P is related to the geodesic length as in (2.22)
and the inverse temperature is rescaled as in (2.23)).

The empty disk diagram. To compute the empty disk diagram in Virasoro minimal string
theory, and hence the disk partition function, we appeal to the dilaton equation (4.15a). The
dilaton equation implies that the empty (marked) disk diagram is given by the following dif-
ference of punctured disk diagrams

Z (b)disk

�

s; P = iQ
2

�

− Z (b)disk

�

s; P = ibQ
2

�

= ρ(b)0 (s) . (8.9)

Thus the disk partition function in Virasoro minimal string theory is given by

Z (b)disk(β) =

∫ ∞

0

ds e−βs2
ρ
(b)
0 (s) =

√

√2π
β

�

e
π2Q2

β − e
π2
bQ2

β

�

= η
�

iβ
2π

�

χ
(b)
(1,1)

�

2πi
β

�

. (8.10)

As indicated in the last line, this is equivalent to the Virasoro vacuum character in the dual
channel with the descendant-counting eta function stripped off.
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FZZT(b)(m,±1)
(s1)⊗cZZ

(i b)
(m,±1)

FZZT(b)(n,±2)
(s2)⊗cZZ

(i b)
(n,±2)

∫ ∞

0

dsi e−βis
2
i

β1 β2

Z (b)double−trumpet(β1,β2)

Figure 17: The Laplace transform of the cylinder diagram in Virasoro minimal
string theory with FZZT(s1) and FZZT(s2) boundary conditions together with half-ZZ
boundary conditions on the two ends computes the partition function on the double-
trumpet, with asymptotic boundaries of renormalized lengths β1 and β2.

Cylinder diagram: The double-trumpet. We now discuss the computation of the double-
trumpet partition function from the worldsheet in Virasoro minimal string theory. We start
by considering the cylinder diagram with (s1, s2) FZZT boundary conditions on the spacelike
Liouville theory and any combination of half-ZZ boundary conditions on the timelike Liouville
theory, subject to the marking prescription (8.3). For concreteness in what follows we will put
(m,+) and (n,+) half-ZZ boundary conditions on the timelike Liouville CFT, but we emphasize
that the analysis for any other combination proceeds similarly. The relationship between the
cylinder diagram and the double-trumpet partition function is recapitulated in figure 17. The
(marked) cylinder diagram is computed as the following integral of the cylinder partition
functions of the ghost, spacelike Liouville and timelike Liouville CFTs over the modulus t21

Z (b)cylinder(s1, s2) =

∫ ∞

0

dt η(i t)2
∫ ∞

0

dP ρ(b)0 (P)Ψ
(b)
(m,+)(s1; P)Ψ(b)(n,+)(s2; P)χ(b)P (i t) Z

(i b)
(m,+;n,+)(t)

=
p

2

∫ ∞

0

dt

∫ ∞

0

dP η(i t)2
cos(4πs1P) cos(4πs2P)

sinh(2πbP) sinh(2πb−1P)
χ
(b)
P (i t)

×
m+n−1
∑

r
2
=|m−n|+1

∞
∑

s
2
=1

χ
(i b)
(r,s)(

i
t )

�

Pρ(b)0 (P)p
2sinh(2πmbP)

��

Pρ(b)0 (P)p
2sinh(2πnbP)

�

, (8.11)

where Z (i b)(m,+;n,+) is given in (3.37). We then exchange the integral over the cylinder modulus

with that over the Liouville momentum P and use the following identity22

m+n−1
∑

r
2
=|m−n|+1

∞
∑

s
2
=1

∫ ∞

0

dt η(i t)2χ(b)P (i t)χ
(i b)
(r,s)(

i
t ) =

sinh(2πmb|P|) sinh(2πnb|P|)
p

2|P| sinh(2πb|P|) sinh(2πb−1|P|)
, (8.12)

where the characters are defined in (3.25) and (3.27) respectively. We then arrive at the
following simple expression for the cylinder diagram

Z (b)cylinder(s1, s2) =

∫ ∞

0

(2P dP)
�

2
p

2cos(4πs1P)
�

×
�

2
p

2 cos(4πs2P)
�

. (8.13)

21Here we consider a cylinder of length πt and unit radius. We should also note that there is no counterterm on
the annulus since it admits a flat metric. Thus there is no need to introduce a further arbitrary normalization CA2 .

22In arriving at this identity we have implicitly assumed that b2 < 1
m−n+1 . For n = m this is always satisfied for

the relevant values of the central charge.
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Notice that this is entirely independent of b. This universality is expected given the duality
with the double-scaled matrix integral. Indeed, although formally divergent as written, it
is as expected simply the result of gluing two punctured disk diagrams (corresponding to
trumpet partition functions in the fixed-length basis) together with the measure 2P dP. This
also justifies our marking procedure given by (8.3). A similar calculation leads to the same
result for the (m,+; n,−) and (m,−; n,−) assignment of half-ZZ boundary conditions for the
timelike Liouville sector.

The double-trumpet partition function Z (b)0,2 in Virasoro minimal string theory is computed
by transforming the marked cylinder diagram (8.11) to the fixed-length basis via the Laplace
transform (8.2). We find the following universal result

Z (b)0,2 (β1,β2) =

∫ ∞

0

ds1

∫ ∞

0

ds2 e−β1s2
1−β2s2

2 Z (b)cylinder(s1, s2)

=
2π

p

β1β2

∫ ∞

0

(2P dP)e−4π2P2
�

1
β1
+ 1
β2

�

=

p

β1β2

2π(β1 + β2)
. (8.14)

This is of course equivalent to the result of gluing two trumpet partition functions according
to (2.18).

Let us remark that the final results in this section are always independent in the end of
the choice of (m,±) for the half-ZZ boundary condition in the timelike Liouville sector. We
take this to mean that these boundary conditions, while different in the worldsheet theory, are
equivalent in the full string theory, i.e. after taking the BRST cohomology on the worldsheet.
For the case of the minimal string, a similar phenomenon occurs [30].

8.2 ZZ-instantons on the worldsheet

We now turn our attention towards the computation of non-perturbative corrections to the
partition function.23 As anticipated in section 6.1 from the matrix integral, they are given by
ZZ-instantons on the worldsheet. We shall discuss the case b ̸= 1, since the case b = 1 has
further zero-modes and is much more subtle.

We shall start by discussing the appropriate boundary conditions for such ZZ-instantons.
The boundary condition should not involve any continuous parameters and thus the most
general choice is to take the direct product of boundary states

|ZZ(b)(m,n)〉 ⊗ |cZZ
(i b)
(k,±)〉 , (8.15)

which were introduced in section 3.2. We shall later restrict attention to a subset of these.
The quantum volume V(b)g,n(P1, . . . , Pn) receives non-perturbative corrections of order

exp(−eS0) from each ZZ-instanton boundary condition, which themselves admit a perturbative
expansion schematically of the form

exp
�

+ + + + · · ·
�

×



 · · · + · · · · + · · · · + · · ·



 . (8.16)

All boundaries of the diagram end on the same ZZ-instanton boundary conditions labelled
by (m, n) and (k,±). We will focus our attention to the leading non-perturbative correction.

23This matching of the leading non-perturbative effects in the Virasoro matrix integral to those of half-ZZ instan-
tons on the string worldsheet has been independently observed by [135].
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Counting powers of the string coupling according to the Euler characteristic, only the disk
and cylinder diagram contribute to this order in the exponential, while we also only keep
the product of n once-punctured disk diagrams. Thus to leading order, the non-perturbative
correction reads

exp
�

+
�

· · · . (8.17)

We will thus discuss the computation of the punctured disk diagram and the cylinder diagram
in the following. The empty disk diagram can be obtained from the punctured disk diagram
by resorting to the dilaton equation as in section 8.1.

The punctured disk. As in section 8.1, the punctured disk is given by the product of the
wavefunctions,

Z (b)disk(m, n, k,±; P) =
1

2
p

2
Ψ
(b)
(m,n)(P) bΨ

(i b)
(k,±)(iP)

=
1

2
p

2

4sinh(2πmbP) sinh(2πnb−1P) sinh(2πkb±1P)
sinh(2πbP) sinh(2πb−1P) P

. (8.18)

The factor of 1
2
p

2
comes from the normalization of the disk partition function as in (8.5), which

we determined in (8.7) to be eCD2N = 1
2
p

2
. Thus there is no parameter left in this subsection

to adjust.
Notice that this is a redundant basis of boundary conditions. We have for example

Z (b)disk(m, 1, k,+; P) =
m+k−1
∑

r
2
=|m−k|+1

Z (b)disk(1, 1, r,+; P) . (8.19)

Similar to [30], we take this as an indication that in the full string theory, these boundary
conditions are actually BRST equivalent to each other. In particular, this motivates us to restrict
to the (1, 1) ZZ boundary condition in the spacelike Liouville theory.24 For these, we get the
simpler answer

Z (b)disk(k,±; P)≡ Z (b)disk(1, 1, k,±; P) =
p

2sinh(2πkb±1P)
P

. (8.20)

To obtain the empty disk diagram, we apply the dilaton equation as in (8.9) and obtain

Z (b)disk(k,±) = Z (b)disk

�

k,±; P = iQ
2

�

− Z (b)disk

�

k,±; P = ibQ
2

�

= 2
p

2

�

sin(πb±1kQ)
Q

−
sin(πb±1kbQ)

bQ

�

=
4
p

2 (−1)k b±1 sin(πkb±2)
1− b±4

. (8.21)

24However it seems that not all boundary conditions parametrized by m, n, k,± can be reduced to this case in
a simple way, but only boundary conditions with m = n = 1 seem to be present in the matrix integral, at least
at the level of single-instanton calculus considered in this paper. A similar result was observed in the analysis of
multi-instanton effects in c = 1 string theory of [9]. There, only the class of ZZ-instantons of type (m, 1) gave a
non-vanishing contribution to string S-matrix elements, as deduced by matching to the dual c = 1 matrix quantum
mechanics.
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The cylinder diagram. We can similarly compute the string cylinder diagram associated
to the (k,±) ZZ-instanton. We already computed the cylinder partition function of timelike
Liouville theory with two (k,±) boundaries on both sides in (3.37). Let us focus on the ‘+’-case,
for which we have

Z (b)cyl (k,+) =

∫ ∞

0

dt
2
η(i t)2χ(b)(1,1)(

i
t )

2k−1
∑

r
2
=1

∞
∑

s
2
=1

χ
(i b)
(r,s)(

i
t )

=

∫ ∞

0

dt
2t
η(i t)2χ(b)(1,1)(i t)

2k−1
∑

r
2
=1

∞
∑

s
2
=1

χ
(i b)
(r,s)(i t) , (8.22)

where we mapped t → 1
t in the second line. The ingredients are similar to (8.11): The integral

over t integrates over the width of the cylinder, η(i t)2 is the ghost partition function and the
factor 1

2 originates from the Z2-symmetry that exchanges the two boundaries. The volume of
the U(1) automorphism group of the cylinder is 1 in these conventions.

We will continue to work with the representation in the second line of (8.22). The integral
is convergent in the region t → 0, which becomes obvious when writing it as

Z (b)cyl (k,+)=

∫ ∞

0

dt
2t
(1− e−2πt)

2k−1
∑

r
2
=1

∞
∑

s
2
=1

e−
πt
2 ((r−1)b−(s+1)b−1)((r+1)b−(s−1)b−1)(1− e−2πrst) , (8.23)

since the infinite sum over s is absolutely convergent and the factor (1− e−2πt) vanishes for
t → 0. However, the integral is divergent in the region t →∞ and this divergence is somewhat
subtle. One can make sense of this integral using string field theory, as was explained in [60]
for the case of the ordinary minimal string. Let us review the argument. Consider first a single
term

∫ ∞

0

dt
2t

e−
πt
2 ((r−1)b−(s+1)b−1)((r+1)b−(s−1)b−1)(1− e−2πt)(1− e−2πrst) . (8.24)

Assuming that the integral is convergent, i.e.

((r − 1)b− (s+ 1)b−1)((r + 1)b− (s− 1)b−1)> 0 , (8.25)

the integral over t converges and can be evaluated to

∫ ∞

0

dt
2t

e−
πt
2 ((r−1)b−(s+1)b−1)((r+1)b−(s−1)b−1)(1− e−2πt)(1− e−2πrst)

=
1
2

log

�

((r − 1)b± (s− 1)b−1)((r + 1)b± (s+ 1)b−1)
((r − 1)b± (s+ 1)b−1)((r + 1)b± (s− 1)b−1)

�

, (8.26)

where we take the product over both choices of sign in the logarithm. Within string field
theory, this formula is also taken to be valid when the argument of the exponential is positive.
However, in that case the argument of the logarithm might be negative and hence the branch
is ambiguous. Different branches correspond to different definitions of the integration contour
in the string field space.

Assuming that b2 ̸∈ Q, this deals with all cases (r, s) ̸= (1,1), where the argument of the
logarithm is non-singular. In the case (r, s) = (1, 1), we should compute the integral

∫ ∞

0

dt
2t

�

e2πt − 2+ e−2πt
�

, (8.27)
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which of course diverges badly and cannot be rendered finite by contour deformation. The
origin of this divergence is a breakdown of the Siegel gauge-fixing condition. One can instead
fix the gauge in a different way as explained by Sen [11]. We will not repeat the full string
field theory analysis here, which may be found in [60], but use the result that it leads to the
interpretation

∫ ∞

0

dt
2t

�

e2πt − 2+ e−2πt
�

= −
1
2

log
�

− 25π3T (b)k,+

�

. (8.28)

Here, (T (b)k,+)
− 1

2 is the instanton action as computed by the empty disk diagram,

T (b)k,+ = −Z (b)disk(k,+). Again, the choice of branch cut in the logarithm is ambiguous.
Putting together the ingredients, we hence find

Zcyl(k,+) = −
1
2

log
�

− 25π3T (b)k,+

�

+
1
2

log
� 2k−1
∏

r
2
=1

∞
∏

s
2
=1

(r,s)̸=(1,1)

((r − 1)b± (s− 1)b−1)((r + 1)b± (s+ 1)b−1)
((r − 1)b± (s+ 1)b−1)((r + 1)b± (s− 1)b−1)

�

= −
1
2

log
�

− 25π3T (b)k,+(1− b4)k2
�

, (8.29)

where we used that the infinite product telescopes.

The leading ZZ-instanton correction to the quantum volumes. It is now simple to compute
the leading ZZ-instanton correction to the resummed quantum volumes (2.8). The leading ZZ-
instanton correction takes the form

V(b)n (S0; P1, . . . , Pn)
[1]
k,± = exp

�

eS0 Z (b)disk(k,±) + Z (b)cyl (k,±)
�

n
∏

j=1

Z (b)disk(k,±; Pj)

=
i e−T (b)k,±

2
5
2π

3
2 (T (b)k,±)

1
2 (1− b±4)

1
2 k

n
∏

j=1

p
2 sinh(2πkb±1Pj)

Pj
, (8.30)

with

T (b)k,± =
4
p

2 eS0 b±1(−1)k+1 sin(πkb±2)
1− b±4

, (8.31)

which matches with the value computed in the matrix model (6.10). In both formulas, the
sign is ambiguous. Overall, we hence precisely reproduce (6.12), giving strong evidence for
the proposal even at the non-perturbative level.

Part IV

Discussion

9 Loose ends

Let us mention some further applications of our duality and some loose ends.
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Positivity of the volumes. For b ∈ R, i.e. c ≥ 25 and Pj ∈ R, the quantum volumes are all
positive, as is appropriate for “volumes”. This is obvious from the worldsheet definition (2.7).
Indeed, all the OPE data and conformal blocks are positive so that the integrand is positive.
Hence also the volumes are positive.

In fact, something stronger is true. Writing the volumes as a Laurent polynomial in b2 and
a polynomial in the momenta Pj , all non-zero coefficients of the polynomial are positive. This
follows directly recursively from the deformed Mirzakhani recursion (2.13). Indeed, all terms
in the recursion come with a plus sign and all the coefficients in the basic integrals (5.37) are
strictly positive. Together with the correctness of the statement for the initial conditions, the
recursion proves this statement.

If we however leave the regime c ≥ 25, then positivity of the volumes no longer holds. For
large enough genus, the asymptotic formula (6.20) implies that the quantum volumes V(b)g,0
have a zero near c = 25 and one can directly check that such a zero exists in explicit examples.
For example, all the zeros of V(b)12,0 lie in the interval c ∈ [1, 25], the maximal of which is
c ≈ 24.0046.

Dilaton equation of timelike Liouville theory. The duality discussed in this paper has an
interesting consequence purely within CFT. The path integral of timelike Liouville induced from
the action (2.3b) suggests that the operator e2bχ is an exactly marginal operator, just like in
spacelike Liouville theory. It should merely change the value of the cosmological constant µtL.
From KPZ scaling [136], µtL appears in correlation functions of both types of Liouville theory
as a universal prefactor raised to the Euler characteristic. The marginal operator becomes
bV̂h=1 in the quantum theory, where by a slight abuse of notation we label the operator by its
conformal weight rather than its Liouville momentum. Hence the path integral formulation of
the theory suggests that

∫

d2z
¬

bV̂h=1(z)
n
∏

j=1

bV
bPj
(z j)

¶

g

?
∝ (2g − 2+ n)

¬

n
∏

j=1

bVP̂j
(z j)

¶

g
. (9.1)

However, this equation turns out to need refinement. The problem is that the field bV̂h=1(z) has
singular correlation functions because the structure constant of timelike Liouville theory has
a simple pole at ĥ= 1 (i.e. bP = 1

2(b+ b−1)). We can define a residue field Resĥ=1
bV̂h(z) whose

correlation functions are given by the residue of the timelike Liouville correlation functions at
ĥ= 1. However, the field Resĥ=1

bV̂h(z) has special properties. It satisfies

Res
ĥ=1

bV̂h(z) = −
1
2
∂ ∂̄ bV̂h=0(z) . (9.2)

Here, the field appearing on the right-hand-side is the unique primary field of conformal di-
mension 0 in the spectrum of timelike Liouville theory. As was discussed in the literature [56],
and summarized in section 3.1, this field is however not the identity operator and in particular
its derivative does not vanish. (9.2) is the analogue of the first higher equation of motion of
spacelike Liouville theory [137]. It can easily be checked at the level of the three-point func-
tions, which then ensures that (9.2) holds in any correlation function by conformal symmetry.
In particular (9.2) implies that

∫

d2z
¬

Res
ĥ=1

bV̂h(z)
n
∏

j=1

bV
bPj
(z j)

¶

g
= 0 , (9.3)

instead of (9.1).
However, one can derive the correct version of the dilaton equation in timelike Liouville

theory from the dilaton equation of the quantum volumes (4.15a). Since it holds for arbitrary
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operator insertions on the worldsheet, we can remove most of the integrals on the worldsheet
in (4.15a) and get an equation where we only integrate over the location of the (n + 1)-st
marked point on the LHS. We set for simplicity n= 0, since the other vertex operators are only
spectators. We denote the partition functions by an empty correlation function 〈1〉g and 〈b1〉g ,
respectively. We get

(2g − 2)〈1〉g〈b1〉g = lim
h→1

∫

d2z 〈Vh(z)〉g〈bV1−h(z)〉g − lim
h→0

∫

d2z 〈Vh(z)〉g〈bV1−h(z)〉g

=

∫

d2z 〈V1(z)〉g〈bV0(z)〉g − lim
h→0

�

−
1
h

∫

d2z 〈1〉g



Res
ĥ=1

bV̂h(z)
�

g

−
∫

d2z 〈V ′0(z)〉g



Res
ĥ=1

bV̂h(z)
�

+

∫

d2z 〈1〉g



bV ren
1 (z)

�

g

�

=
1
2

∫

d2z
�

〈∂ ∂̄ V ′0(z)−
1
4R〉g〈bV0(z)〉g − 〈V ′0(z)〉g〈∂ ∂̄ bV0(z)〉g

�

− 〈1〉g

∫

d2z



bV ren
1 (z)

�

g

= −〈1〉g

∫

d2z



bV ren
1 (z) + 1

8RbV0(z)
�

g . (9.4)

In going from the first to the second line, we Laurent expanded the second term. Here we
used the notation

bV ren
1 (z)≡ lim

ĥ→1

�

bV̂h(z)−
1

ĥ− 1
Res
ĥ=1

bV̂h(z)
�

. (9.5)

We also used the first higher equation of motion of ordinary Liouville theory,

V1(z) =
1
2
∂ ∂̄ V ′0 −

1
8R , (9.6)

where ′ denotes a derivative in the conformal weight and R is the Ricci curvature. The com-
bination

Φ(z) = −bV ren
1 (z)− 1

8RbV0(z) , (9.7)

does indeed transform like a primary field of conformal weight 1, up to an inhomogeneous
term that is a total derivative. We used integration by parts to cancel the two terms in the
fourth line of (9.4). We thus learn that

∫

d2z
¬

Φ(z)
n
∏

j=1

bV
bPj
(z j)

¶

g
= (2g − 2+ n)

¬

n
∏

j=1

bV
bPj
(z j)

¶

g
, (9.8)

which is the correct version of (9.1). We did not manage to prove this equation directly in
conformal field theory, but it is an interesting prediction of the present duality.

Defect regime. In the worldsheet description of the Virasoro minimal string (section 7), we
took physical vertex operators to have Pj ∈ R, i.e. the external spacelike Liouville momentum
was real and the timelike Liouville momentum was imaginary. This can of course be relaxed
and we can consider general complex momenta Pj , which should still give rise to the quantum
volumes V(b)g,n(P1, . . . , Pn), but with complex values of the Liouville momenta. Let us reiterate
however that the worldsheet moduli integrand can change non-smoothly when the external
momenta Pj are complexified. In particular, whenever there is a pair of momenta Pj , Pk such
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that | Im(Pj ± Pk)| >
Q
2 , the spacelike Liouville CFT correlator may pick up additional contri-

butions from sub-threshold states in particular OPE channels. These contributions can affect
the convergence of the moduli integral and may require regularization. In these situations
the string diagrams are presumably not simply the analytic continuation of the corresponding
quantum volumes.

Given the relation of the Virasoro minimal string and JT gravity, one may expect that taking
Pj imaginary is related to the Weil-Petersson volumes of surfaces with conical defects as studied
in [39,50,52,54,138]. Indeed, at least for sufficiently “sharp” defects, the corresponding Weil-
Petersson volumes are simply obtained from the ordinary Weil-Petersson volumes by inserting
purely imaginary values of the geodesic lengths. However, there is a subtlety. This prescription
is only correct when the defects are sufficiently sharp; for blunter defects the Weil-Petersson
volume changes in a non-analytic way. This mirrors the situation on the worldsheet described
in the previous paragraph.

Witten’s deformations of JT gravity. Witten proposed a duality between a large class of
dilaton gravities and Hermitian matrix models [50]. The dilaton potentials in that duality are
of the form

W (Φ) = 2Φ+ 2
r
∑

i=1

ϵi e−αiΦ , (9.9)

with π < αi < 2π. For
∑

i ϵi = 0, this class of dilaton gravities is described by a dual matrix
model with leading density of states

ϱ0(E) =
e2π
p

EW (
p

E) + e−2π
p

EW (−
p

E)
8π
p

E
. (9.10)

This formula is derived by deforming JT gravity by a gas of defects. Let us emphasize that the
potential of the Virasoro minimal string is not of this form. Nevertheless, when plugging the
sinh-dilaton potential given in eq. (2.1) into (9.9), one recovers the correct density of states
of the Virasoro matrix integral (up to a rescaling of the energy). This gives some evidence that
the equations of [50] hold beyond the assumptions stated above.

Tau-scaling limit and cancellations in the quantum volumes. Some interesting recent
works [139–141] have investigated the perturbative sum over higher-genus contributions to
the spectral form factor

SFF(T ) =
∞
∑

g=0

e−2gS0 SFFg(T ) =
∞
∑

g=0

e−2gS0 Zg,n=2(β + iT,β − iT ) , (9.11)

of double-scaled matrix models and dilaton gravity models in the so-called “tau-scaling” limit,
which is a late-time T →∞ limit with T e−S0 fixed. The linear growth of SFFg=0(T ) at late
times (the “ramp”) is a universal feature of double-scaled matrix integrals, but these works
argued that in the tau-scaling limit the full sum over genera in fact has a finite radius of
convergence, providing perturbative access to the late time plateau of the spectral form factor.
A key to this convergence is the fact that the genus-g contribution to the spectral form factor
only grows as ∼ T2g+1 at late times, rather than the expected T3g−1. This slower growth
is facilitated by novel cancellations due to the underlying integrable structure of the theory;
in JT gravity these correspond to cancellations in the series expansion of the Weil-Petersson
volumes in terms of the two geodesic lengths. In Virasoro minimal string theory, the quantum
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volumes V(b)g,2 exhibit the exact same cancellations. Adapting the notation of [139] for the
Weil-Petersson volumes, if one expands the quantum volumes as

V(b)g,2(P1, P2) =
d1+d2=3g−1

∑

d1,d2=0

(4π2)d1(4π2)d2

d1!d2!
v(b)g,d1,d2

P2d1
1 P2d2

2 , (9.12)

with some coefficients v(b)g,d1,d2
, then the genus-g contribution to the spectral form factor is

given by gluing trumpets as in (2.18)

Zg,n=2(β1,β2) =
d1+d2=3g−1

∑

d1,d2=0

v(b)g,d1,d2

8π3
β

d1+
1
2

1 β
d2+

1
2

2 , (9.13)

upon analytic continuation to β1 = β + iT , β2 = β − iT . One can indeed verify that25

2q
∑

d=0

(−1)dv(b)g,d,2q−d = 0 , q > g , (9.14)

leading to the expected slower late-time growth of the genus-g contribution to the spectral
form factor, SFFg(T )∼ T2g+1.

Near-extremal black holes. Dilaton gravity is often introduced as a universal 2d theory
of gravity that describes the physics of near-extremal black holes in higher dimensions. In
fact this approach was used recently to successfully compute supersymmetric indices from the
gravitational path integral [142–147]. In particular one can engineer also sinh-dilaton gravity
from near-extremal limits of higher dimensional black holes.

From the definition, one setup is particularly straightforward. Consider an AdS3/CFT2
correspondence whose dual CFT is assumed to be irrational and with only Virasoro symmetry
(as well as a discrete spectrum).26 Then its torus partition function can be written as

ZCFT(τ, τ̄) = χvac(τ)χvac(−τ̄) +
∑

h,h̄>0

ah,h̄χh(τ)χh̄(−τ̄) , (9.15)

where ah,h̄ are positive integer degeneracies. One can take the CFT to be Lorentzian which
amounts to making τ and τ̄ purely imaginary and independent, i.e. τ = iβ and −τ̄ = iβ̄ .
One can thus consider the limit β̄ → ∞ with β held fixed. This reduces the CFT partition
function to the vacuum character, which is the disk partition function of the Virasoro minimal
string. In the bulk, such a limit corresponds to a near-extremal limit of the BTZ black hole.27

In particular, we learn that the Virasoro minimal string sits inside any irrational AdS3/CFT2
correspondence as a universal subsector.

Relation to ensemble duality of 3d gravity. The previous paragraph has in particular very
concrete ramifications for the holographic dual of pure 3d gravity. It has been conjectured
that 3d quantum gravity admits a holographic description in terms of an appropriate notion of
an “ensemble of 2d CFTs” or “random 2d CFT” [151], and indeed many aspects of 3d gravity,

25We have checked this explicitly up to g = 10.
26Below we actually make the slightly stronger assumption that there is a nonzero gap in the spectrum of twists

of non-vacuum Virasoro primaries.
27Usually, one considers a combined semiclassical and near-extremal limit in which β̄ ∼ c → ∞ combined

with the further limit β ≲ c−1, where the model reduces to the Schwarzian or JT gravity in the bulk [51, 148].
At large c, the validity of this approximation requires a further sparseness assumption on the spectrum of the
theory [149,150].
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particularly Euclidean wormhole partition functions, are nontrivially reproduced by statistical
averages over 2d CFT data [152, 153]. The precise nature of such an ensemble description
remains elusive (but see [154] for recent progress), and many Euclidean wormhole partition
functions may instead be interpreted in terms of coarse-graining microscopic data of individual
CFTs [155–157]. The Virasoro minimal string now leads to the concrete prediction that the
near-extremal limit as defined in the previous paragraph of the random ensemble of 2d CFTs
is governed by the Virasoro matrix integral. This in particular lends further credence to the
idea that 3d gravity is described holographically via a suitable ensemble of 2d CFTs.

10 Future directions

Supersymmetric Virasoro minimal string. A natural extension of the Virasoro minimal
string would be to incorporate worldsheet supersymmetry. For N = 1 supersymmetry, space-
like Liouville theory is a unitary superconformal field theory with central charge c ≥ 27

2 .
Whereas the structure constants of N = 1 spacelike Liouville theory have been bootstrapped
(see e.g. [158–160]), the N = 1 timelike counterpart with ĉ ≤ 3

2 has not been discussed much
in the literature (see however [49, 161] for a discussion of supersymmetric timelike Liouville
theory from a path integral perspective). The spectrum and structure constants of supersym-
metric timelike Liouville theory have not been explored. It would be interesting to understand
whether a relation similar to (3.6) exists also in the supersymmetric case.

We expect that the N = 1 supersymmetric Virasoro minimal string, defined as the world-
sheet superconformal field theory

c ≥ 27
2 N = 1

Liouville CFT
⊕ ĉ ≤ 3

2 N = 1
Liouville CFT

⊕ bc-ghosts ⊕ βγ-ghosts , (10.1)

also admits a dual matrix model description. As explained in [109] for the case of super JT
gravity without time reversal symmetry, there are two such theories. On the bulk side, they
differ whether we weigh odd spin structures with an opposite sign with respect to even spin
structures or not, corresponding to type 0A and 0B GSO projections of (10.1). The former
corresponds to a matrix model with odd N and the latter to a matrix model with even N . Both
cases can be reduced to a GUE ensemble for the supercharge, see [109, eqs. (2.19) and (2.20)].
For the super Virasoro minimal string, it is natural to conjecture that the leading density of
states of the dual matrix integral is given by the following universal density of states in N = 1
SCFT:28

ρ
(b)
0 (P) = 2

p
2 cosh(πbP) cosh(πb−1P) , (10.2)

with the parametrization

c =
3
2
+ 3Q2 , Q = b+ b−1 , hP =

c − 3
2

24
+

P2

2
+
δ

16
, (10.3)

where δ = 0 in the NS-sector and δ = 1 in the R-sector, and P2 is again identified with the
energy of eigenvalues in the matrix integral. In the limit b→ 0, this reduces to the density of
states of super JT gravity found by Stanford and Witten [109].

One can also consider N = 2 supersymmetry. N = 2 JT gravity was recently analyzed
[162] and one can imagine coupling N = 2 spacelike and timelike Liouville together which
define a critical N = 2 superstring. N = 2 supersymmetric Liouville theory stands on less

28SC is grateful to Henry Maxfield for discussions explaining this formula.
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firm footing. For c > 3 spacelike Liouville is a unitary superconformal field theory, with its
timelike counterpart restricted to the regime c < 3. The spectrum and structure constants
for neither theory have been established. However, at least the spacelike structure constants
are conjecturally known via the duality to the supersymmetric SL(2,R)/U(1) Kazama-Suzuki
supercoset model [163].

Different matrix model statistics. There are three classes of bosonic matrix models, the
GUE, GOE or GSE type. In this paper, we discussed Hermitian matrix integrals, which corre-
spond to GUE. In the bulk, this corresponds to only summing over orientable surfaces. It is
also possible to consider the other two matrix model statistics, which also involve summing
over non-orientable surfaces in the bulk, possibly with a phase (−1)χ(Σ), where χ(Σ) is the
Euler characteristic of the surface. This was explored for JT gravity in [109]. Similarly, one
can consider the different Altland-Zirnbauer classes of supersymmetric matrix models [164]
which are expected to be dual to the different varieties of the supersymmetric Virasoro minimal
string.

Two spacelike Liouville theories. In the Virasoro minimal string we combine spacelike Li-
ouville with central charge c ≥ 25 and timelike Liouville theory with central charge 26 − c.
Another natural ‘minimal string’ worldsheet is two coupled spacelike Liouville theories with
central charges c+ and c− such that c+ + c− = 26. In particular one can consider any complex
central charge c± ∈ C\(−∞, 1]∪[25,∞). This model seems to be more complicated than the
Virasoro minimal string because for example the product of two DOZZ structure constants does
not cancel out. Thus already the three-point function is non-trivial. The product of two DOZZ
structure constants has in fact an elliptic structure with modular parameter τ= b2 ∈H [43].

In the special case c± ∈ 13± iR, one may suspect a relation to dS3 quantum gravity, which
is described by purely imaginary central charge (up to order O(1) corrections) and thus this
worldsheet theory seems to be more suitable to describe two-dimensional quantum gravity
with a positive cosmological constant.

Non-analytic Virasoro minimal string. There is another variant of the Virasoro minimal
string that we might call the non-analytic Virasoro minimal string. To define it, we have to
specialize to the rational case b2 = q

p ∈ Q. Then there exists a distinct theory from timelike
Liouville theory that we can consider as a matter theory. Its structure constants for real external
bPj are given by [78,165,166]

bCnon-ana
b̂

(bP1, bP2, bP3) = bCb̂(bP1, bP2, bP3)σ(bP1, bP2, bP3) , (10.4)

where

σ(bP1, bP2, bP3) =

¨

1 ,
∏

±,± sinπ
�1

2(p− q) +ppq(bP1 ± bP2 ± bP3)
�

< 0 ,

0 , else,
(10.5)

and bCb̂ are the timelike Liouville structure constants discussed in section 3.1. This matter
theory is called non-analytic Liouville theory, while for the special case ĉ = 1, it is known as
the Runkel-Watts theory. The non-analytic quantum volumes defined by this matter theory are
presumably closely related to the quantum volumes V(b)g,n(P1, . . . , Pn). However, since it is not

obvious how to extend the structure constants (10.4) to complex values of bPj , the definition
is at least naively restricted to the defect regime with Pj ∈ iR.
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Multi-instanton effects and gs-sub-leading contributions. Another interesting direction
for future research is to study non-perturbative multi-instanton effects [9,167,168]. A general
worldsheet instanton configuration with a number of instantons of type (ki ,±i) in the timelike
Liouville sector is expected to correspond to the non-perturbative contribution to the Virasoro
matrix integral. They stem from a configuration with multiple eigenvalues integrated along
the steepest descent contour of the extrema at E∗ki ,±i

. This was recently considered for the
minimal string [168]. Furthermore, it would be interesting to study sub-leading corrections in
gs at a given instanton configuration coming from worldsheet diagrams at higher open string
loop level, as depicted in (8.16), which would require a more systematic string field theory
analysis [14,20,169].

Off-shell topologies in 3d gravity. The Virasoro minimal string is presumably also useful to
compute certain off-shell partition functions of 3d quantum gravity. While on-shell partition
functions are by now fully understood [88], it has been argued that especially Seifert manifolds
play an important role in the holography of 3d gravity. In particular, it was argued in [51] that
they give off-shell contributions to the 3d gravity partition function that save the negativities
in the Maloney-Witten partition function [93,170,171] by summing up to a non-perturbative
shift of the extremality bound for BTZ black holes. The negativities precisely appear in the
near-extremal limit described above and thus the tool to argue for their resolution involved
the reduction to JT gravity. The 3d gravity partition function on Seifert manifolds was argued
to be related to the JT gravity partition function on a Riemann surface with additional inser-
tions of conical defects at the singular points of the Seifert fibration. The Virasoro minimal
string should lead to a precise refinement of this argument and thus it would be interesting to
reconsider it in this new light.

Direct derivation of the deformed Mirzakhani recursion. We derived the deformation of
Mirzakhani’s recursion given by eq. (2.13) in a rather convoluted way by first finding the dual
matrix model and then translating its loop equations to the deformed Mirzakhani recursion in
the bulk. It would be more satisfying to give a direct derivation of the recursion relation from
the worldsheet, much like Mirzakhani managed to use a generalization of McShane’s identity
[172] to give a direct derivation of the recursion relation [61]. For the minimal string, such a
derivation is in principle available, thanks to the existence of higher equations of motions in
Liouville theory [137, 173], even though it was so far only applied to low g and n [53, 173–
175]. Higher equations of motion do not seem to help for the Virasoro minimal string since the
relevant vertex operators are not degenerate. However, it is possible that techniques known
from topological string theory can lead to such a direct derivation [176].

Cohomological interpretation of the minimal string. We found a very satisfying realiza-
tion of the Virasoro minimal string in terms of intersection theory on Mg,n, see eq. (4.12).
Such a clear interpretation is to our knowledge not available for the usual minimal string and
it would be interesting to find one, thus potentially leading to a more direct understanding of
the duality in that case.
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Part V

Appendices

A ψ- and κ-classes

In this appendix, we briefly review the definition of the cohomology ψi- and κm-classes that
enter the intersection number formula for the volumes (4.14). We refer e.g. to [177] for more
details.

We always consider the cohomology with complex coefficients and will not indicate this
always explicitly. One can construct n line bundles L1, . . . ,Ln over Mg,n whose fiber at Σg,n
is the cotangent space at the i-th marked point on the surface.29 One can then take the first
Chern class of these bundles and obtain the ψ-classes

ψi = c1(Li) . (A.1)

Topological gravity computes the intersection number of ψ-classes [63]:
∫

Mg,n

ψ
d1
1 · · ·ψ

dn
n , d1 + · · ·+ dn = 3g − 3+ n . (A.2)

For our purposes we also need the so-called κ-classes. Let π : Mg,n+1 −→ Mg,n be the
forgetful map that forgets the location of the last marked point. The fiber of this map describes
the location of the (n + 1)-st marked point and is hence isomorphic to the Riemann surface
itself. One can then take a cohomology class in Mg,n+1 and consider the pushforward to Mg,n,
which means that we integrate it over the fiber of the map. For α a k-form we have

π∗α=

∫

Σg,n

α ∈ Hk−2(Mg,n) . (A.3)

We can then define the Mumford-Morita-Miller classes κm as follows:

κm = π∗(ψ
m+1
n+1 ) . (A.4)

Notice that κm is a class in H2m(Mg,n). In fact, all cohomology classes we consider are even
cohomology classes and thus commute.

In particular, κ1 plays a very important role. It is a class in H2(Mg,n) and is known to
represent the cohomology class of the Weil-Petersson form on a surface with cusps [178,179]:

κ1 =
1

2π2
[ωWP(0, . . . , 0)] . (A.5)

29The definition of the line bundle on the boundary of moduli space is a bit subtle and we again refer e.g. to [177]
for details.
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Here, it is important that we consider the Weil-Petersson form on a surface where all the
punctures are represented by cusps in the hyperbolic language. If we have a surface with
geodesic boundaries, the class of the Weil-Petersson form is instead modified to [96]

[ωWP(ℓ1, . . . ,ℓn)] = 2π2κ1 +
1
2

∑

i

ℓ2
iψi . (A.6)

B List of quantum volumes

Let us present a list of the quantum volumes V(b)g,n as computed by the topological recursion.
We borrow the following notation from [180]

m(ℓ1,...,ℓk) = P2ℓ1
1 P2ℓ2

2 · · · P2ℓk
k + permutations, (B.1)

where we sum over all distinct permutations of (ℓ1,ℓ2, . . . ,ℓk, 0, . . . , 0) (with n− k additional
zeros). For example,

m(1) =
n
∑

j=1

P2
j , (B.2a)

m(1,1) =
∑

1≤ j<k≤n

P2
j P2

k , (B.2b)

m(2,1) =
n
∑

j ̸=k

P4
j P2

k . (B.2c)

We then have

V(b)0,4 =
c − 13

24
+m(1) , (B.3a)

V(b)1,1 =
c − 13
576

+
m(1)
24

, (B.3b)

V(b)0,5 =
5c2 − 130c + 797

1152
+

c − 13
8

m(1) +
m(2)

2
+ 2m(1,1) , (B.3c)

V(b)1,2 =
(c − 17)(c − 9)

9216
+

c − 13
288

m(1) +
m(2)
48
+

m(1,1)

24
, (B.3d)

V(b)0,6 =
(c − 13)(61c2 − 1586c + 9013)

82944
+

13c2 − 338c + 2101
576

m(1) +
c − 13

8
m(2)

+
c − 13

2
m(1,1) +

m(3)
6
+

3
2

m(2,1) + 6m(1,1,1) , (B.3e)

V(b)1,3 =
(c − 13)(7c2 − 182c + 967)

497664
+

13c2 − 338c + 2053
27648

m(1) +
c − 13
288

m(2) +
c − 13

96
m(1,1)

+
m(3)
144

+
m(2,1)

24
+

m(1,1,1)

12
, (B.3f)

V(b)2,0 =
(c − 13)(43c2 − 1118c + 5539)

238878720
, (B.3g)

V(b)0,7 =
6895c4 − 358540c3 + 6759690c2 − 54565420c + 158417599

39813120

+
5(c − 13)(91c2 − 2366c + 13795)

82944
m(1) +

5(c2 − 26c + 163)
144

m(2)

+
5(c2 − 26c + 163)

36
m(1,1) +

5(c − 13)
72

m(3) +
5(c − 13)

8
m(2,1) +

5(c − 13)
2

m(1,1,1)
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+
m(4)
24
+

2m(3,1)

3
+

3m(2,2)

2
+ 6m(2,1,1) + 24m(1,1,1,1) , (B.3h)

V(b)1,4 =
2645c4 − 137540c3 + 2562510c2 − 20136740c + 55808069

955514880

+
(c − 13)(187c2 − 4862c + 27139)

1990656
m(1) +

41c2 − 1066c + 6593
55296

m(2)

+
17c2 − 442c + 2729

6912
m(1,1) +

7(c − 13)
3456

m(3) +
c − 13

72
m(2,1) +

c − 13
24

m(1,1,1)

+
m(4)
576

+
m(3,1)

48
+

m(2,2)

24
+

m(2,1,1)

8
+

m(1,1,1,1)

4
, (B.3i)

V(b)2,1 =
145c4 − 7540c3 + 138742c2 − 1058772c + 2782913

5096079360

+
(c − 13)(169c2 − 4394c + 23713)

159252480
m(1) +

139c2 − 3614c + 22099
13271040

m(2)

+
29(c − 13)

829440
m(3) +

m(4)
27648

. (B.3j)

C Liouville CFT compendium

In this appendix we specify the conventions we follow for the three-point coefficients in c ≤ 1
and c ≥ 25 Liouville CFT and list some of their properties, as well as present a brief review of
the recursion relations that we employ to compute the sphere four-point and torus one-point
Virasoro conformal blocks numerically.

C.1 Liouville CFT structure constants

In our convention the structure constant for spacelike Liouville theory is given by (3.1)

〈VP1
(0)VP2

(1)VP3
(∞)〉= Cb(P1, P2, P3)≡

Γb(2Q)Γb(
Q
2 ± iP1 ± iP2 ± iP3)

p
2Γb(Q)3

∏3
k=1 Γb(Q± 2iPk)

, (C.1)

while the timelike structure constant (3.6) is given by

〈bV
bP1
(0)bV

bP2
(1)bV

bP3
(∞)〉= bCb̂(bP1, bP2, bP3) =

p
2Γb̂(b̂+ b̂−1)3

∏3
k=1 Γb̂(b̂+ b̂−1 ± 2bPk)

Γb̂(2b̂+ 2b̂−1) Γb̂(
b̂+b̂−1

2 ± bP1 ± bP2 ± bP3)
. (C.2)

Cb(P1, P2, P3) is invariant under reflections Pi →−Pi and under permutations of P1, P2, P3. The
same with hatted variables holds true for bCb̂(bP1, bP2, bP3).

The double Gamma function is a meromorphic function that can be defined as the unique
function satisfying the functional equations

Γb(z + b) =
p

2π bbz− 1
2

Γ (bz)
Γb(z) , Γb(z + b−1) =

p
2π b−b−1z+ 1

2

Γ (b−1z)
Γb(z) , (C.3)
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together with the normalization Γb(
Q
2 ) = 1. It admits an explicit integral representation in the

half-plane Re(z)> 0.

log Γb(z) =

∫ ∞

0

dt
t

�

e
t
2 (Q−2z) − 1

4 sinh( bt
2 ) sinh( t

2b )
−

1
8
(Q− 2z)2 e−t −

Q− 2z
2t

�

. (C.4)

Γb(z) has simple poles for

z = −(r − 1)b− (s− 1)b−1 , r, s ∈ Z≥1 , (C.5)

and consequently Cb(P1, P2, P3) has

• zeros when Pk = ±
i
2(r b+ sb−1) , r, s ∈ Z≥1 , k ∈ {1,2, 3} ,

• poles when ±P1 ± P2 ± P3 = i(r − 1
2)b+ i(s− 1

2)b
−1 , r, s ∈ Z≥1 .

The zeros are associated to the case where one of the external operators corresponds to a de-
generate representation of the Virasoro algebra. On the other hand, the poles are associated
with multi-twist operators in non-rational two-dimensional conformal field theory [181,182].
These poles may cross the contour of integration in the OPE of the spacelike Liouville corre-
lator (3.5) when there exists a pair of external operators with | Im(Pi ± Pj)| >

Q
2 , leading to

additional discrete contributions to the conformal block decomposition. Similarly we find that
the timelike structure constant bCb̂(bP1, bP2, bP3) has

• zeros when ±bP1 ± bP2 ± bP3 = (r −
1
2)b̂+ i(s− 1

2)b̂
−1 , r, s ∈ Z≥1 ,

• poles when bPk = ±
1
2(r b̂+ s b̂−1) , r, s ∈ Z≥1 , k ∈ {1,2, 3} .

Let us note the identity (see [183] for the case m= 2, n= 1)

Γb(z) = λm,n,b (mn)
1
4 z(Q−z)

m−1
∏

k=0

n−1
∏

l=0

Γ b
p

mp
n

�

z + kb+ l b−1

p
mn

�

, (C.6)

for m, n ∈ Z≥1. Here, λm,n,b is some irrelevant constant that will cancel out of every formula
we ever need, since we always have equally many Γb ’s in the numerator and denominator.

To prove this identity, one merely need to check that the LHS satisfies the expected func-
tional equation (C.3). Most factors on the RHS telescope and the remaining factors combine
into a single Gamma-function with the help of the multiplication formula of the Gamma func-
tion, which gives the expected result. Given that

Γ1(z) =
(2π)

z
2

G(z)
, (C.7)

we hence have the following formula for Γpm
n
(z) in terms of G(z):

Γpm
n
(z) = λm,n(mn)

1
4 z( m+np

mn−z)
m−1
∏

k=0

n−1
∏

l=0

Γ1

�

z
p

mn
+

k
m
+

l
n

�

= λm,n(2π)
1
2
p

mnz(mn)
1
4 z( m+np

mn−z)
m−1
∏

k=0

n−1
∏

l=0

G
�

z
p

mn
+

k
m
+

l
n

�−1

. (C.8)

This formula is numerically useful when computing the double Gamma function on rational
values of b2, since the Barnes G function has efficient numerical implementations.
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C.2 Zamolodchikov recursion for conformal blocks

Let us now review the explicit recursion relations that we use to efficiently compute the sphere
four-point and the torus one-point Virasoro conformal blocks, originally derived in [124] and
in [121,122], respectively.

We parametrize the central charge of the Virasoro algebra as c = 1+6Q2 with Q = b+ b−1,
and the holomorphic Virasoro weights of external primaries as hPi

= Q2

4 + P2
i . We also define

Pr,s = i
r b+ sb−1

2
, Ar,s =

1
2

r
∏

p=1−r

s
∏

q=1−s
(p,q)̸=(0,0),(r,s)

1
pb+ qb−1

. (C.9)

The sphere four-point elliptic conformal block H(b)0,4(P4, P3, P2, P1; P|q) introduced in (7.19)
admits a power series expansion in the elliptic nome q(z), defined in (7.20), and satisfies the
following recursion relation,

H(b)0,4(Pi; P|q) = 1+
∑

r,s≥1

(16q)rs Ar,sBr,s(P1, P2)Br,s(P4, P3)

P2 − P2
r,s

H(b)0,4

�

Pi; P → (P2
r,s + rs)

1
2 |q
�

,

(C.10)

where the “fusion polynomials” Br,s are given by

Br,s(P1, P2) =
r−1
∏

p
2
=1−r

s−1
∏

q
2
=1−s

2iP1 ± 2iP2 + pb+ qb−1

2
, (C.11)

and we take the product over both sign choices.
Similarly, the torus one-point elliptic conformal block H(b)1,1(P1; P|q) introduced in (7.3)

admits a power series expansion in q = e2πiτ and obeys the recursion relation,

H(b)1,1(P1; P|q) = 1+
∑

r,s≥1

qrs
Ar,sBr,s(P1, (P2

r,s + rs)
1
2 )Br,s(P1, Pr,s)

P2 − P2
r,s

H(b)1,1

�

P1; P → (P2
r,s + rs)

1
2 |q
�

.

(C.12)
In this case, the product of the fusion polynomials may be written as

Br,s(P1, (P2
r,s + rs)

1
2 )Br,s(P1, Pr,s) =

2r−1
∏

p
2
=1

2s−1
∏

q
2
=1

2iP1 ± pb± qb−1

2
, (C.13)

where we take the product over all four sign choices.
The Liouville CFT sphere four-point functions decomposed into conformal blocks are

G(1234|z)≡



VP1
(0)VP2

(z, z)VP3
(1)VP4

(∞)
�

g=0

=

∫ ∞

0

dP ρ(b)0 (P)Cb(P1, P2, P)Cb(P3, P4, P)

×F (b)0,4 (P1, P2, P3, P4; P|z)F (b)0,4 (P1, P2, P3, P4; P|z) , (C.14a)

bG(1234|z)≡



bV
bP1
(0)bV

bP2
(z, z)bV

bP3
(1)bV

bP4
(∞)

�

g=0

=

∫

C
dbP

(ibP)2

2ρ(b̂)0 (ibP)
bCb̂(bP1, bP2, bP)bCb̂(bP3, bP4, bP)

×F (i b̂)0,4 (bP1, bP2, bP3, bP4; bP|z)F (i b̂)0,4 (bP1, bP2, bP3, bP4; bP|z) . (C.14b)
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The four-point crossing symmetry relations take the form,

G(1234|z) = G(3214|1− z) , (C.15a)

bG(1234|z) = bG(3214|1− z) , (C.15b)

and

G(1234|z) = |z|2(h4−h3−h2−h1)G(1324|z−1) , (C.16a)

bG(1234|z) = |z|2(ĥ4−ĥ3−ĥ2−ĥ1) bG(1324|z−1) , (C.16b)

where hi =
Q2

2 +P2
i and ĥi = −

bQ2

2 +bP
2
i . Similarly, the modular covariance of the torus one-point

functions (7.2b) read,




VP1
(0)
�(− 1

τ )
g=1 = |τ|

2h1



VP1
(0)
�(τ)

g=1 , (C.17a)



bV
bP1
(0)
�(− 1

τ )
g=1 = |τ|

2ĥ1



bV
bP1
(0)
�(τ)

g=1 , (C.17b)

where h1 =
Q2

2 + P2
1 and ĥ1 = −

bQ2

2 + bP
2
1 . (C.15), (C.16) and (C.17) may be directly verified

numerically using the recursion relations described in this appendix.

D Derivation of dilaton and string equations

In this appendix, we derive the dilaton and string equation (4.15a) and (4.15b) from the
definition of the quantum volumes in terms of intersection numbers (4.14). This requires
some algebraic geometry on Mg,n which we will explain in the derivation.

D.1 Dilaton equation

We first derive the dilaton equation (4.15a). By definition, the left-hand-side equals

LHS=

∫

Mg,n+1

e
c−13

24 κ1+
∑

i P2
i ψi−

c−1
24 ψn+1−

∑

m
B2m

(2m)(2m)!κ2m(eψn+1 − 1)

=

∫

Mg,n+1

ψn+1 e
c−13

24 (κ1−ψn+1)+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)! (κ2m−ψ2m
n+1) . (D.1)

We used that we have by definition of the Bernoulli numbers

ex − 1= x e
x
2+
∑

m≥1
B2m

(2m)(2m)! x2m
, (D.2)

as a formal power series. The strategy is now to reduce the integral over Mg,n+1 to an integral
over Mg,n, which means that we want to integrate out the fiber. This is precisely the definition
of the pushforward π∗ by the forgetful map π : Mg,n+1 −→ Mg,n in cohomology. Thus
we need to compute the pushforward of the integrand. The pushforward interacts with the
pullback via the projection formula,

π∗(απ
∗β) = (π∗α)β . (D.3)

We can use this for our integrand with α = ψn+1. For β , we have to find a class which pulls
back to the exponential. To do so, we first have to understand the behaviours of ψi and κm
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under pullback, which we explain here for completeness. See e.g. [177] for a more complete
explanation.

We have
π∗(ψi) =ψi −δ{i,n+1} . (D.4)

Here δ{i,n+1} denotes the class in H2(Mg,n+1) that is Poincaré dual to the boundary divisor
where the i-th and the (n+ 1)-st point approach,

δ{i,n+1}←→
i

n+1
. (D.5)

(D.4) follows from the fact that the line bundle Li on Mg,n defining the ψ-classes (A.1) pulls
back naturally to the corresponding line bundle on Mg,n+1. However, once we pass to the
compactification, we have to be careful. sections of the line bundle Li are allowed to have
simple poles at the boundary divisors. Since the pullback π∗(Li) does not see the (n + 1)-st
marked point, we have to correct the formula by δ{i,n+1} to take this into account.

One can derive the pullback of κm from (D.4) as follows. Consider the maps

Mg,n+2

Mg,n+1 Mg,n+1 ,

π1 π2
(D.6)

where π1 forgets the (n+ 1)-st marked point and π2 forgets the (n+ 2)-st marked point. We
then have

π∗1(ψ
m+1
n+2 ) = (ψn+2 −δ{n+1,n+2})

m+1 =ψm+1
n+2 − (−1)mδm+1

{n+1,n+2} . (D.7)

In the last step we used that the line bundle Ln+2 is trivial once we restrict it to the boundary
divisor defined by δ{n+1,n+2} which implies that their product vanishes and thus there are no
cross terms. We now pushforward this equation by the map π2. For this we first have to
compute

(π2)∗(δ
m+1
{n+1,n+2}) = (π2)∗

�

δm
{n+1,n+2}(ψn+1 −π∗2(ψn+1))

�

= −(π2)∗
�

δm
{n+1,n+2}π

∗
2(ψn+1)

�

= −ψn+1(π2)∗(δ
m
{n+1,n+2})

= (−1)mψm
n+1 (π2)∗(δ{n+1,n+2})

= (−1)mψm
n+1 . (D.8)

Here we used again the pullback (D.4) in the first line and the fact that ψn+1δ{n+1,n+2} = 0
in the second line. We then used the projection formula (D.3) and induction to reduce to the
case m= 0. We then have (π2)∗(δ{n+1,n+2}) = 1 since the corresponding divisor intersects the
fiber precisely once. Combining (D.7) and (D.8) gives

π∗1κm = π
∗
1(π2)∗(ψ

m+1
n+2 ) = (π2)∗π

∗
1(ψ

m+1
n+2 ) = κm −ψm

n+1 . (D.9)

Here we used the definition of κm, as well as the fact that we can commute the pullbacks and
pushforwards of π1 and π2 since those fibers are independent. This is the desired pullback
of κm.
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Coming back to our original integrand (D.1), we realize that

ψn+1π
∗e

c−13
24 κ1+

∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

=ψn+1 e
c−13

24 (κ1−ψn+1)+
∑

i P2
i (ψi−δ{i,n+1})−

∑

m
B2m

(2m)(2m)! (κ2m−ψ2m
n+1)

=ψn+1 e
c−13

24 (κ1−ψn+1)+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)! (κ2m−ψ2m
n+1) , (D.10)

where we used again that ψn+1δ{i,n+1} = 0 and thus we can omit the boundary classes in the
exponent. Hence the integrand is of the form of the projection formula (D.3). We thus have

LHS=

∫

Mg,n

π∗

�

ψn+1π
∗e

c−13
24 κ1+

∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m
�

= π∗(ψn+1)

∫

Mg,n

e
c−13

24 κ1+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

= π∗(ψn+1)V
(b)
g,n(P) . (D.11)

Here we used that π∗(ψn+1) has degree zero and can thus be identified with a number and
taken out of the integral. The remaining integral is precisely again the definition of the quan-
tum volume (4.14). It thus remains to compute π∗(ψn+1). By definitionψn+1 is the first Chern
class of the line bundle Ln+1. A section of Ln+1 on the fiber is a holomorphic differential on
the surface that is allowed to have poles at the marked points. The pushforward is then simply
computing the degree of this line bundle. The degree of the canonical line bundle (the line
bundle of holomorphic differentials) is known to be 2g − 2 and every marked point adds one
to this. Thus

π∗(ψn+1) = 2g − 2+ n , (D.12)

which finishes the proof of the dilaton equation (4.15a).

D.2 String equation

The derivation of the string equation (4.15b) is now very similar. The left hand side is equal
to

LHS=

∫

Mg,n+1

eψn+1 − 1
ψn+1

e
c−13

24 κ1+
∑

i P2
i ψi−

c−1
24 ψn+1−

∑

m
B2m

(2m)(2m)!κ2m

=

∫

Mg,n+1

e
c−13

24 (κ1−ψn+1)+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)! (κ2m−ψ2m
n+1)

=

∫

Mg,n+1

e
∑

i P2
i δ{i,n+1}π∗e

c−13
24 κ1+

∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m . (D.13)

We inserted again the definition of the Bernoulli numbers (D.2) and then used the same pull-
back as above. Contrary to before, we can however not omit the boundary classes since no
ψn+1 prefactor is present. We thus compensated for them by including them in the prefactor.
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We can now pushforward to Mg,n and use the projection formula (D.3). This gives

LHS=

∫

Mg,n

π∗
�

e
∑

j P2
j δ{ j,n+1}

�

e
c−13

24 κ1+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

=
n
∑

j=1

∑

k≥1

P2k
j

k!

∫

Mg,n

π∗
�

δk
{ j,n+1}

�

e
c−13

24 κ1+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

=
n
∑

j=1

∑

k≥1

P2k
j

k!

∫

Mg,n

(−ψ j)
k−1 e

c−13
24 κ1+

∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

=
n
∑

j=1

∫

Mg,n

eP2
j ψ j − 1
ψ j

e
c−13

24 κ1+
∑

i ̸= j P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

=
n
∑

j=1

∫ Pj

0

(2Pj dPj)

∫

Mg,n

e
c−13

24 κ1+
∑

i P2
i ψi−

∑

m
B2m

(2m)(2m)!κ2m

=
n
∑

j=1

∫ Pj

0

(2Pj dPj) V
(b)
g,n(P) . (D.14)

Going from the first line to the second line in (D.14) we used that the divisors corresponding
to δ{i,n+1} and δ{ j,n+1} do not intersect for i ̸= j and thus δ{i,n+1}δ{ j,n+1} = 0 for i ̸= j. We
can also omit the constant term in the power series expansion since π∗(1) = 0 for dimensional
reasons. We then used the pushforward of the boundary classes derived in eq. (D.8). The rest
is simple algebra and recognizing the definition of the quantum volume (4.14).
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