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Abstract

We construct a class of solvable models for 2+1D quantum critical points by attaching
1+1D conformal field theories (CFTs) to fluctuating domain walls forming a “loop soup”.
Specifically, our local Hamiltonian attaches gapless spin chains to the domain walls of a
triangular lattice Ising antiferromagnet. The macroscopic degeneracy between antifer-
romagnetic configurations is split by the Casimir energy of each decorating CFT, which is
usually negative and thus favors a short loop phase with a finite gap. However, we found
a set of 1D CFT Hamiltonians for which the Casimir energy is effectively positive, making
it favorable for domain walls to coalesce into a single “snake” which is macroscopically
long and thus hosts a CFT with a vanishing gap. The snake configurations are geometri-
cal objects also known as fully-packed self-avoiding walks or Hamiltonian walks which
are described by an O(n = 0) loop ensemble with a non-unitary 2+0D CFT description.
Combining this description with the 1+1D decoration CFT, we obtain a 2+1D theory with
unusual critical exponents and entanglement properties. Regarding the latter, we show
that the log contributions from the decoration CFTs conspire with the spatial distribu-
tion of loops crossing the entanglement cut to generate a “non-local area law”. Our
predictions are verified by Monte Carlo simulations.
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1 Introduction

Phases of matter can be distinguished by the presence or absence of a gap to bulk excitations.
Gapped phases of matter were shown over the recent years to have an extremely rich classifi-
cation of (symmetry-protected) topological (SPT) phases [1–11]. By contrast, gapless systems
are often more challenging to study theoretically, with the notable exception of 1-dimensional
(D = 1) systems about which much is known thanks to conformal field theory [12]. Further,
the notion of gapless SPT order [13–24] is still an active area of research.

For gapped topological systems like SPTs, the decorated domain wall construction pro-
vides a way of constructing a D-dim SPT starting from a (D− 1)-dim SPT [25]. The idea is to
decorate domain walls of a (typically G = Z2) symmetry with a (D − 1)-dim SPT, and to let
the domain walls fluctuate in order to restore G. Is it possible to generalize this dimensional
“bootstrapping” approach to gapless systems? In this work, we answer this question affirma-
tively by providing a decorated domain wall construction in which 1+1D CFTs are attached
on domain walls, leading to a gapless 2+1D theory with remarkable properties.

The idea of attaching gapless 1D theories on fluctuating domain walls is motivated by
a number of physical systems. First, the combination of frustrated magnetism and itinerant
degrees of freedom appears in so-called “charge-ice” systems [26, 27]. Second, decorated
domain wall models were shown to be relevant to certain models combining spin and or-
bital degrees of freedom [28], including the extended Hubbard model on the Kagome [29]
and checkerboard [30] lattice. Third, when a two-dimensional antiferromagnetic insulator
is doped, the charge concentrates into domain walls forming “metallic rivers” and effectively
behaving as Luttinger liquids in an active environment [31–33]. Fourth, if we reintepret the
domains as distinct gapped topological phases, the gapless degrees of freedom appearing at
the domain walls would have a natural intepretation as edge modes, like in the quantum Hall
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Figure 1: Example of a decorated domain wall configuration. σz = ±1 spins are rep-
resented by filled and empty blue dots, respectively. τ spins (red dots) are located
on every site of the hexagonal lattice (dashed blue lines), including the domain walls
of the σz spins (green lines). As an example, τ1 and τ2 are located on the domain
wall between sites p and q. Figure a) illustrates a snake configuration, consisting of a
single domain wall traversing the entire lattice. Figures b) and c) illustrate hexagon
solid and stripe configurations, consisting of contractible and non-contractible do-
main walls of the shortest length, respectively.

plateau transition [34]. Finally, since Ising domain walls have been proposed as a model for
strings [35–38], the decoration described here is analogous to the fermionic degrees of free-
dom which are added to form super-strings [39].

From a spin-liquid perspective, we will see that our construction starts with a familiar route,
in which local frustration (in our case Ising antiferromagnetism on a triangular lattice) leads
to an exponentially large number of classical ground states which is described by a familiar
ensemble of fully packed loops (FPL) [40–42]. However, the source of the exotic criticality
we will describe below — fully packed self-avoiding walks described by a non-unitary c = −1
theory — lies elsewhere: It is due to an additional kind of non-local frustration whereby all
allowed loops on the honeycomb lattice realize an effectively twisted boundary condition [43]
for the CFT which lives on it.

2 Model and solution

We introduce a local model which attaches any translation-invariant 1D Hamiltonian H1D to
Ising domain walls. The model contains σ Ising spins living on a triangular lattice, and τ
decoration degrees of freedom (DOFs) living on the vertices of the dual honeycomb lattice
(see Fig. 1). The τ operators could be anything (spins, bosons, fermions,. . . ), but we will
take them to be spins for concreteness. The Hamiltonian couples the τ DOFs only along the
domain walls of the σ spins. This is easily implemented on this lattice, as we now show for an
example which involves nearest-neighbor coupling terms Hdec(τ1,τ2) between τ DOFs (e.g.
Hdec(τ1,τ2) = τx

1τ
x
2 +τ

y
1τ

y
2 +∆τ

z
1τ

z
2 for the XXZ chain):1

H =
∑

〈pq〉

Hpq =
∑

〈pq〉

1−σz
pσ

z
q

2
Hdec(τ

pq
1 ,τpq

2 ) , (1)

where 〈pq〉 denotes bonds of the triangular lattice and τpq
1 and τpq

2 are the spins attached to
the honeycomb bond crossing 〈pq〉(see Fig. 1). One can easily generalize this construction to
the case of Hdec with longer-range terms, as shown in Appendix A.

1This example assumes Hdec(τ1,τ2) = Hdec(τ2,τ1) for simplicity. If the 1D Hamitonian is not inversion-
symmetric, one needs to have a consistent way of orienting the domain walls. This is easily done by choosing
a convention such as: when moving from the up spins to the down spin domain, the domain wall is oriented to
the left.
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The Hamiltonian 1 is block diagonalized in the σz basis. There is a two to one mapping
between {σz} configurations and their domain wall configurations, which form a set of non-
crossing loops L. This enables us to rewrite the Hamiltonian as a sum of 1D Hamiltonians
living on each loop l:

H =
∑

{σz}

∑

l∈L
H1D[l] , (2)

where H1D =
∑

i Hdec(τi ,τi+1) is the 1D Hamiltonian given by the sum of the Hdec terms along
the loop. Each H eigenstate, denoted |Ψ〉, is a tensor product of an H1D eigenstate |ψ1D〉 on
each loop l. We will be mostly interested in the case for which |ψ1D〉 is the ground state of
H1D, given by:2

|Ψ[L]〉= |{σz}〉
⊗

l∈L

�

�ψ1D,GS[l]
�

. (3)

The total energy of this state is the sum of the 1D ground state energies, E[L] =
∑

l∈L EGS(Ll)
with H1D[l]
�

�ψ1D,GS[l]
�

= EGS(Ll)
�

�ψ1D,GS[l]
�

and where Ll is the length of loop l.
Which configurations L minimize the total energy E[L]? Let us for now neglect finite-

length effects in EGS(L) and only keep the leading-order term in L: EGS(L)≃ ε0 L, with ε0 the
ground state energy per site. If ε0 < 0, minimizing the energy simply amounts to maximizing
the total length of all domain walls, which corresponds to a “fully packed” loop configuration
for which each honeycomb site is visited by a loop. The corresponding {σz} are the ground
states of the classical Ising AFM on a triangular lattice, first studied by Wannier. These con-
figurations lead to a residual entropy per spin of 0.323066 [44]. Note that ε0 can always be
made negative by adding a term −J1 to Hdec with a large enough J . For the sake of simplicity,
we will work in the limit of J → ∞ for the remainder of this work, which means the only
allowed loop configurations are fully packed.

At this point, we have an exponential degeneracy between FPL configurations. However,
this degeneracy will in general be split by the finite-length corrections to the ground state
energy of each chain. For the rest of the letter, we will focus on the case when H1D realizes
a conformal field theory (CFT). For a CFT with periodic boundary conditions, the finite-size
correction to the ground state energy — also called the Casimir energy — is expected to be
universal and proportional to the central charge c: EGS/L = ε0 −πc/3L2 + . . . 3 Naively, this
should put a damp on our hopes of realizing a gapless theory: since c > 0 for unitary theories,
this means the Casimir energy is negative and the energy per site is thus minimized for short
loops. In this scenario, the lowest-energy loop configurations are thus the ones which pave the
plane with the shortest possible loops (which are hexagons of length 6), leading to a 3-fold
breaking of lattice translation in a “hexagon solid” phase (see Fig. 1.b) [29]. Since each loop
has finite size, the 1D Hamiltonian living on it has a finite gap, and the theory is thus gapped.

However, if c was negative, the energy per site would be minimized by taking L →∞,
leading to a loop which is macroscopically long and which can thus host a 1+1D theory with
a vanishing gap. Interestingly, this scenario can be realized by choosing CFTs which are “frus-
trated” for certain chain lengths [43] and which can effectively behave as if c < 0, as we now
show. A key insight is that, for certain CFTs, the value of c which appears in the Casimir energy
is not always equal to the actual central charge and may depend on the chain length modulo
some integer. We will focus on cases where that integer is 4, leading to a more general formula

2We have omitted in Eq. 3 the τ DOFs living on empty sites (i.e. honeycomb sites not traversed by a loop),
which form decoupled zero modes since they trivially commute with the Hamiltonian. The reason is that we will
soon restrict the discussion to fully-packed configurations, which do not have empty sites.

3We use a convention in which the CFT velocity is 2.
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Figure 2: The energy density of the ground state of the HX-ZXZ chain as a function of
its length L (markers) along with a fit to Eq. 4 for the c0 = 1 and c2 = −2 branches
(curves). Specifically, the figure shows the graph of EGS/L + ε0 vs 1/L2, where the
thermodynamic limit value for the energy density of ε0 = 2/π was used. Although
higher-order terms in 1/L could in principle become sizable for short loops, we find
that the −πc/3L2 formula (curves) for the energy density agrees extremely well with
the exact values (markers) down to L = 6, which corresponds to the shortest loop
allowed by the honeycomb lattice.

for the finite-size ground state energy density:4

EGS(L = 4k+ r)
L

= ε0 −
πcr

3
1
L2
+ . . . (4)

For example, consider the following 1D Hamiltonian, which is the decoration model we will
focus on for the rest of the article:5

HX-ZXZ(L) =
1
2

L
∑

i=1

(τx
i −τ

z
i−1τ

x
i τ

z
i+1) . (5)

It describes the quantum phase transition between a 1D trivial paramagnet and an SPT pro-
tected by a Z2 × Z2 symmetry which is generated by

∏

i τ
x
2i and
∏

i τ
x
2i+1 [45].6,7 The mod

4 effect in the energy density of Eq. 5 can be calculated analytically (see Appendix B) and
gives c0 = 1 and c2 = −2 (see Fig. 2).8 The most relevant aspect for us will be that
c2 < 0. Another example of a CFT with c2 < 0 is the doubled version of the XX chain with

4One might worry that this CFT formula only holds for long loops, but we have found that it actually gives
extremely good agreement with exact values down to the shortest loops possible (which have L = 6 on the hon-
eycomb lattice), see Fig. 2. More generally, the precise value of the energy density for short loops does not really
matter so long as the energy density is a monotonically decreasing function of L for L = 4k + 2, which we have
found to be the case for all models we considered (see Fig. 2 and Appendix C).

5Note that this 1D Hamiltonian has single and three-body terms, whereas the example given in Eq. 1 was for
two-body terms. A generalization of Eq. 1 for single and three-body terms is given in Appendix A.

6A quantum phase transition with the same universality also could also appear in spin-1 chain models which
are relevant for a number of materials like CsNiCl3 [46] and Y2BaNiO5 [47], in which case it separates the Haldane
phase [48] from a topologically trivial phase. We discuss this spin-1 model in Appendix C.

7We note that Eq. 5 also describes the edge theory of a 2D Z2 SPT [9].
8This mod 4 effect can be understood at a simple level: as explained in Appendix B, the model can be solved

by performing a Jordan-Wigner whereby the Ising domain walls become fermions. Because the number of domain
walls is restricted to be even for periodic boundary conditions, so is the number of fermions. This means only
chains of L = 4k can be at exactly half-filling, and the other ones are thus “frustrated” and have a higher energy
density.

5
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Figure 3: Peak value of equal-time structure factor
CZ Z(Q) ≡ ℓ−2

∑

x CZ Z(x)e−iQ·x ∼ ℓ−η where Q is at the corner of the Brillouin
zone (see also Appendix. E.1 for more details). The linear fit gives η = 0.65± 0.01.
The calculations have been performed at Tℓ2 ≡ T̃ = 4.

H1D =
1
2

∑L
i=1(τ

x
i τ

x
i+2+τ

y
i τ

y
i+2)which has c0 = 4 and c2 = −119 (see Appendix C for a detailed

calculation and for more examples of decoration Hamiltonians).
Another crucial insight is that, on the honeycomb lattice, all contractible loops forming an

FPL configuration have a length given by L = 4k + 2 with k an integer (see Appendix D for
a proof). Putting aside non-contractible loops for now, this means the low energy properties
of the system are only determined by the sign of c2. For c2 > 0, the system forms a gapped
solid of short loops, as explained before. However, for c2 < 0, the Casimir energy is positive
and thus the minimal energy per site is obtained for L →∞. For a 2D system of linear size
ℓ, the maximal loop length scales like ℓ2 and is obtained for a single loop visiting every site
of the lattice exactly once (also called a Hamiltonian walk, or fully-packed self-avoiding walk
(FPSAW), or “snake” in the rest of the paper). Since the gap ∆ of H1D scales like the inverse
length L of the chain on which it lives, one finds∆∼ 1/L ∼ 1/ℓ2, which indicates a 2D gapless
theory with dynamical critical exponent z = 2.

Since there is an extensive number of degenerate “snake” configurations (with entropy per
site s ≡ S/N ≈ 0.130812) [49], the low-energy physics is described by a statistical average
over them, which is obtained in the zero-T limit of the following thermal density matrix:

ρ =
∑

{σz}

p{σz} |{σz}〉 〈{σz}|
⊗

l∈L
ρ1D[l] , (6)

where ρ1D[l] = exp(−βH1D[l])/Z(Ll) with Z(Ll) = Tr[exp(−βH1D[l])], and where
p{σz} =
∏

l∈L Z(Ll)/Z with Z =
∑

{σz}
∏

l∈L Z(Ll). In the zero-T limit,10 the ensemble of {σz}
described by ρ maps to the O(n→ 0) fully packed loop model, which is described by a c = −1
non-unitary CFT [49]. This leads to unusual power laws for correlation functions. For example,
the antiferromagnetic correlations captured by CZ Z(x) = 〈σz(0)σz(x)〉 ≡ Z−1Tr[ρσz(0)σz(x)]
have a power law envelope CZ Z(x) ∼ |x|

−η, which we extract from the structure factor (see
Fig. 3 and Appendix. E.1). We find η = 0.65 ± 1, which agrees well with the prediction of
η= 2/3 based on a Coulomb gas description of the c = −1 CFT (see Appendix E.2). This also
shows conclusively that the snake phase is in a different universality class from the standard
Ising triangular lattice antiferromagnet (also known as the O(n= 1) fully-packed loop model)
which has η= 0.5 [50].

9We conventionally define L as the number of sites, not the number of unit cells. Thus, we obtain c0 = 4 instead
of the expected c0 = 2 for two independent chains of c0 = 1.

10The zero-T limit needs to be taken after the thermodynamic limit, as discussed below.
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Figure 4: The average number of domain walls 〈nDW 〉 vs rescaled temperature
T̃ = Tℓ2, for an ℓ by ℓ torus. (Due to an even-odd effect, the data for even and
odd ℓ was separated into two panels for clarity.) The plot indicates a phase transi-
tion between a snake phase at high T̃ for which 〈nDW〉 does not scale with ℓ, and a
stripe phase at low T̃ for which 〈nDW〉 grows with ℓ.

We now discuss correlation functions of τ DOFs. Denoting φ(x, t) a scaling operator in
the decoration CFT with scaling dimension ∆φ , purely temporal correlations have the same
value for any snake configuration, leading to:

〈φ(0, 0)φ(0, t)〉 ∼ 1/|t|2∆φ . (7)

By contrast, for spatial correlations the average over snake configurations leads to an averaging
over the 1D distance d measured along the snake which appears in the correlator ∼ 1/|d|2∆φ .
Assuming φ is chosen so that it has no lattice-scale oscillations, we expect it is safe to replace
|d| by its average value, which scales like |d| ∼ |x|1/ν, with ν = 1/2 the known geometrical
exponent of the FPSAWs. This leads to the following prediction for spatial correlations:

〈φ(0, 0)φ(x, 0)〉 ∼ 1/|d|2∆φ ∼ 1/|x|4∆φ . (8)

To summarize, temporal scaling dimensions in the 2+1D theory are the same as for the un-
derlying decoration 1+1D CFT, whereas spatial ones are multiplied by 2. This behavior is
manifestly consistent with z = 2. (It is instructive to contrast this behavior with conformal
quantum critical points (CQCPs) [51–53], which are 2+1D critical points constructed starting
from a 2+0D CFT, and which often have z = 2. For CQCPs, the spatial scaling dimensions are
the same as the underlying 2+0D CFT, whereas the dynamical ones are divided by 2.)

3 Finite temperature and finite size

How do the previous results survive at finite temperature? In order to study this, we have
developed a worm Monte Carlo algorithm [54–56] (see Appendix F for more details) which
probes the density matrix in Eq. 6. We calculated the average number of domain walls 〈nDW〉 as
a function of temperature (see Fig. 4), from which we can also infer the typical length of each
domain wall L ∼ ℓ2/ 〈nDW〉. We find that, in the snake phase, the average number of domain
walls scales as 〈nDW〉 ∼ ℓ2/β , and the typical length of each domain wall therefore scales as
L ∼ β . Finite temperature thus provides a spatial infrared cutoff of size β for the chain lengths
on which the 1+1D CFTs live, along with the usual temporal cutoff β in imaginary time. This
means that, as T approaches zero, both the spatial and temporal dimensions of the 1+1D tori
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Figure 5: Top: Partition of an ℓ by ℓ torus for which we calculate entanglement.
Bottom: After unfolding the snake, the partition becomes a union of disjoint intervals.
Intervals belonging to the subsystem A are colored while those outside A are black
and labeled B.

hosting the CFTs diverge like β , in contrast to usual quantum critical scaling for which only the
imaginary time dimension scales with β whereas the spatial dimension is independent of β .

While the discussion so far was done in the limit of ℓ → ∞ before T → 0, let us now
consider a finite-size system, focusing on an ℓ by ℓ torus for concreteness. The main new
ingredient on the torus is the presence of non-contractible loops. Indeed, the geometrical
constraint that loop lengths have L = 4k+2 for FPL configurations only applies to contractible
loops. This means non-contractible loops can have L = 4k, and can thus be on the c0 > 0
branch, which is lower in energy (see Fig. 2). Filling the space with such loops amounts to
forming a stripe configuration for the σz spins (see Fig. 1.c). The difference in total energy
between the snake and the stripe configuration is calculated easily: ∆E = πc0

6 +O(1/ℓ2). Since
c0 > 0, the stripe phase is lower in energy, and is actually the true ground state for a finite-size
torus. However, the snake phase has a zero-temperature finite entropy density s, whereas the
stripe phase does not. Any small temperature should thus be enough to stabilize the snake
phase at the expense of the stripe phase. Let us consider the difference in free energy between
the two phases, given by ∆F = ∆E − 2Tℓ2s. Since ∆E = O(1), the entropy term dominates
already at a temperature which is parametrically small in system size, motivating the definition
of a rescaled temperature T̃ ≡ Tℓ2. Setting∆F = 0, we predict a first-order phase transition11

at T̃c = πc0/12s between a stripe phase at low T̃ and a snake phase at higher T̃ . This gives
T̃c ≃ 2.0013 for the decoration Hamiltonian HX-ZXZ with c0 = 1, which is confirmed by our
numerics (see Fig. 4). For T̃ > T̃c , we observe that the average number of domain walls is
independent of system size, consistently with the snake phase. For T̃ < T̃c , 〈nDW〉 shows an
increase with ℓ, consistently with a stripe phase.

In practice, since numerics is done for finite ℓ, we have to work at T̃ > T̃c in order to probe
the snake phase, for which 〈nDW〉 is not strictly equal to one, but remains of order O(1) (for
example, we used T̃ = 4 to generate data for Fig. 3, for which 〈nDW〉 is slightly above 2). At
any rate, local properties should not be able to distinguish between a single or an O(1) number
of snakes.

11Since that transition would break simultaneously the Ising symmetry of theσ spins and the rotational symmetry
of the lattice, it needs to be first-order [56]. Another possibility is the existence of an intermediate nematic phase,
which we were not able to observe with our numerics.
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Figure 6: Universal contributions to the entanglement entropy of the strip shown
in Fig. 5 vs. x for different system sizes ℓ. The black curves are fitted to x ≥ 4
numerical data points according to Eq. 9. The snake configurations were generated
at T̃ = 4. Details on how S was calculated numerically, and about the non-universal
contributions which were dropped, can be found in Appendix G.

4 Entanglement

Should we expect an ℓA log(ℓA) term (with ℓA the linear size of subsystem A) in the bipartite
entanglement of a 2D soup of 1+1D CFTs such as the one we have constructed here (as sug-
gested in Ref. [57] for example)? Surprisingly, we find that this is not the case, due to a subtle
property of the spatial distribution of loops crossing the entanglement cut which restores the
area law in 2D.12 (It is however a non-local form of the area law, as we will explain).

Let us first give a physical argument for the restoration of the area law, followed by numer-
ical results. As shown in Fig. 5, for any given snake configuration L, unfolding the snake to a
straight line results in a periodic chain for the τ DOFs in which the subsystem A is mapped into
several disjoint intervals. Hence, to determine the entanglement entropy S[L] of a given state
|Ψ[L]〉, we only need to apply the known formula for the entanglement of disjoint intervals in
a 1+1D CFT [58–60] (refer to Appendix G.1 for more details). In order to derive the entangle-
ment scaling, we assume it is sufficient to approximate this formula by S ∼ (c/3)

∑Nint
i=1 log(t i)

where t i is the length of interval i and Nint is the number of intervals. We then average S[L]
over L which, assuming a translation-invariant entanglement cut like that of Fig. 5 for simplic-
ity, effectively corresponds to an average over interval lengths denoted by f (t)≡

∫

d tp(t) f (t)
with a distribution p(t i) ≡ p(t). We also know that Nint = 2ℓA/3 since each honeycomb edge
crossed by the entanglement cut has a 2/3 probability of being occupied by a loop strand.13

Overall, this leads to a simple prediction for the entanglement: S∝ (c/3)(2ℓA/3)log(t).
The remaining task is thus to find how log(t) scales with ℓA. Although p(t) is a priori

unknown, we already know that t∝ ℓA since the total length of all intervals should scale like
ℓ2

A because the snake visits every site inside subsystem A. If we assumed that log(t) ∼ log
�

t
�

,
we would thus find a ℓA log(ℓA) term for the entanglement. This is incorrect however because,
as we argue in Appendix G.3, p(t) effectively describes the distribution of the exit time at
which a random walker first exits subsystem A, having started inside A one lattice spacing away
from the entanglement cut. Such a process is expected to follow a Lévy-type distribution, for
which the typical value ttyp is O(1) even though the average value t diverges with ℓA due to a

long-time tail. One thus finds log(t)∼ log
�

ttyp

�

= O(1), and the area law is restored: S ∼ ℓA.

12In the stripe phase, there is actually a ℓA,y log
�

ℓA,x

�

term (for stripes parallel to the x axis, with ℓA,x , ℓA,y the
dimensions of subsystem A along x and y), since one can simply add the log contribution from each stripe crossing
the partition cut.

13Strictly speaking, Nint can have small fluctuations away from 2ℓA/3 depending on the snake configuration, but
these fluctuations can be neglected in the large ℓA limit we care about.
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We now focus on a strip subsystem of width x in a ℓ by ℓ torus (see Fig 5) [61]. Using
the random walker model mentioned above, we derive a distribution p(t) and calculate log(t)
as a function of x (see Appendix G.3 for details), leading to the following prediction for the
entanglement:

Sstrip(ℓ, x) = 2ℓ
�

A−
B
x̃

�

+ o(ℓ) , (9)

with x̃ = ℓ
π sin
�

πx
ℓ

�

. This formula gives a good agreement with our numerical results, as shown
in Fig. 6 (see also Appendix G.4). In Eq. 9, the dependence of the area law prefactor on x due
to the term proportional to B is unusual: it does not appear in the standard scaling forms
used for gapless 2D systems, and leads to a much larger dependence on x of Sstrip than usually
observed [61, 62]. The B term depends crucially on contributions from parametrically long
intervals and thus reveals the non-local character of the area law: the distribution p(t) has a
long-time tail which extends until the “Thouless time” tTh = x2/D, with D the effective diffu-
sion constant of the random walker. (Another example of a non-local area law was recently
proposed in Ref. [57]).

5 Discussion

By attaching CFTs with positive Casimir energy on domain walls, we have shown how to realize
a 2+1D quantum critical point featuring a single domain wall visiting every site of the system,
whose statistical fluctuations are described by the O(n= 0) fully-packed loop ensemble.

On the border of which phases does this QCP exist? There are at least two types of relevant
perturbations. The first type is obtained by adding terms to the decoration Hamiltonian. In
that case, any relevant perturbation of the 1+1D CFT would also be relevant for the 2+1D
QCP. For example, for the case of HX-ZXZ considered in this work, we can use the following
interpolation Hamiltonian as decoration:

H1D(α) =
L
∑

i=1

(1−α)τx
i −ατ

z
i−1τ

x
i τ

z
i+1 , (10)

with 0≤ α≤ 1. In this notation, the unperturbed decoration Hamiltonian HX-ZXZ corresponds
to α = 1/2, at which the QCP occurs. For α < 1/2 (resp. α > 1/2), H1D(α) flows to a trivial
(resp. non-trivial) Z2 × Z2 1D gapped bosonic SPT [45].

When the decoration Hamiltonian flows to a gapped phase, we expect the spin degrees of
freedom σz to flow to the conventional triangular lattice Ising antiferromagnet, also known as
the O(n= 1) fully-packed loop ensemble [40,41]. Indeed, in the limit of vanishing correlation
length for the decoration DOFs, the ground state energy of H1D becomes independent of the
domain wall length, and all fully-packed loop configurations become equally likely. For the
example at hand, the QCP thus separates two phases of fully-packed loops with n= 1 fugacity
which are decorated by a trivial (resp. non-trivial) 1D gapped Z2×Z2 SPT. (The 2D Hamiltonian
obtained by using H1D(α) as decoration corresponds to the same interpolation Hamiltonian
between 2D Z3

2 SPTs introduced in Ref. [63] (See also Refs. [64–68]), but with the addition of
an infinitely large nearest-neighbor antiferromagnetic coupling on one of the three triangular
sublattices in order to enforce the fully-packed loop constraint on the σz spins). The class of
QCPs we have proposed appear thus naturally at the transition between different 2D gapped
SPTs with an underlying domain wall structure. Further, the kind of statistical average over
snake configurations we constructed could describe a phase transition between average SPTs,
which were introduced recently [69,70].

A second type of relevant perturbation is obtained by adding terms to the Hamiltonian for
the σ degrees of freedom. The most natural term to add would be a transverse field term σx ,
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which would generate quantum fluctuations between the snake configurations. In fact, quan-
tum fluctuations between decorated loops were studied in the context of the Kagome Hubbard
model in Ref. [29]. In that work, the relevant classical loop configurations formed a solid of
short loops (the “hexagon solid” pictured in Fig. 1b), and the quantum fluctuations thus natu-
rally stabilized a “plaquette” phase of resonant short loops. In our case, the relevant classical
configurations feature a single snake, and the impact of local quantum fluctuations on such a
non-local object seems difficult to predict a priori. Nonetheless, the possibility of stabilizing a
quantum superposition of snake configurations, in analogy with earlier work work [51,71,72],
is interesting and left for future work.

We note that the snake phase could be amenable to a fermionic description after performing
a Jordan-Wigner transformation on the τ DOFs along the snake. A similar construction was
used to study spin liquid models like the Kitaev honeycomb model [73,74], but for a fixed snake
configuration with a simple geometry which necessarily breaks certain spatial symmetries,
whereas in our case the symmetry is restored by averaging over snake configurations. Once
expressed in terms of fermions, the transition from the stripe phase to the snake phase would
be reminiscent of the smectic and/or nematic transitions in electronic systems [75].

Our construction generates a new kind of non-local frustration by combining two primary
ingredients: (1) a non-trivial dependence of the Casimir energy of the decoration CFT on the
chain length modulo some integer, and (2) a geometrical constraint which forces all loops
on a given lattice to have a certain length modulo some integer. The first ingredient was re-
cently understood as arising from effectively twisted boundary conditions for certain chain
lengths [43]. More generally, our work demonstrates the importance of the coefficients cr
(which encode the Casimir energy dependence on the chain length modulo some integer) as
an additional property of a CFT Hamiltonian with crucial physical consequences. It is remark-
able that two CFTs with the same central charge can lead to completely different physics when
used as decoration in our model due to their different sign for c2 (e.g. the XX chain versus
HX-ZXZ). One natural generalization of our construction is to consider other lattices for which
domain wall lengths are constrained in some other way, which could magnify the effect of the
cr coefficients for r ̸= 2. Another generalization is to consider other decoration Hamiltoni-
ans beyond the ones we have proposed here. This motivates further work on classifying the
possible cr sequences for known CFTs, especially beyond c = 1 theories [43].

Finally, our calculation of the entanglement, which combines known results about entan-
glement in 1+1D CFTs with properties of exit time distributions, allowed us to explain the
somewhat surprising presence of an area law and could be useful in other contexts, includ-
ing other kinds of constrained models like that of Ref. [57]. Since the bipartite entanglement
turned out to follow an area law, one wonders whether other measures of entanglement could
provide a more direct probe of the non-locality arising from parametrically long intervals.
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Figure 7: Example of a decorated domain wall configuration. σz = ±1 spins live on
a triangular lattice and are represented by filled and empty blue dots, respectively.
τ spins (red dots) are located on the vertices of the hexagonal lattice dual to the
triangular lattice of the σ spins. Domain walls of σz spins are depicted as green
lines. An example of a triangle of σz spins △pqr and the corresponding τ spins is
also shown in reference to Eq. A.1.

A Generalization of the decoration Hamiltonian to further neigh-
bor interactions

In the main text, we showed how to construct a 2D local Hamiltonian which attaches to domain
walls any 1D decoration Hamiltonian composed of nearest-neighbor terms. In this appendix
we generalize this construction to terms involving three consecutive sites, using for concrete-
ness the example of the HX-ZXZ Hamiltonian we consider in the main text. The same procedure
can be used for terms involving any number of sites.

For the X-ZXZ model given in Eq. 5, Hdec(τi−1,τi ,τi+1) =
1
2(τ

x
i − τ

z
i−1τ

x
i τ

z
i+1) should

be attached to domain walls of σ spins. Since Hdec involves three honeycomb vertices and
correspondingly two honeycomb bonds, we need two domain wall projectors to modify Eq. 1:

H =
∑

△pqr

∑

b1=〈p1p2〉∈△pqr

b2=〈p3p4〉∈△pqr
b1 ̸=b2

1−σz
p1
σz

p2

2

1−σz
p3
σz

p4

2
Hdec

�

τ
b1,b2
1 ,τb1,b2

2 ,τb1,b2
3

�

,
(A.1)

where the first sum is over triangular plaquettes of the triangular lattice, the second sum is a
sum over the three choices of pairs of edges b1 ̸= b2 belonging to the triangle△pqr , and where

τ
b1,b2
1,2,3 are the three τ spins on the honeycomb vertices which are connected by the honeycomb

bonds dual to b1 and b2 (see Fig. 7 for an example).

B Solution of the X-ZXZ model

In this section, we review the mapping of the H = X − ZX Z Hamiltonian to free fermions.
We begin with a Kramers-Wannier duality transformation, for which it is convenient to split
the Hilbert space into two sectors:

∏

i τ
x
i = ±1. The constraint for the positive sector can be

satisfied with a standard duality transformation: τ̃z
i = τ

z
iτ

z
i+1 and τx

i = τ̃
x
i−1τ̃

x
i for all i. Then

it follows that Eq. 5 maps to

H+ =
1
2

L
∑

i=1

τ̃x
i τ̃

x
i+1 + τ̃

y
i τ̃

y
i+1 . (B.1)
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For the negative sector, we employ the same mapping with the modification τx
1 = −τ̃

x
L τ̃

x
1

to satisfy the
∏

i τ
x
i = −1 constraint. Then Eq. 5 maps to

H− =
1
2

∑

i≤L−1

τ̃x
i τ̃

x
i+1 + τ̃

y
i τ̃

y
i+1 −

1
2

�

τ̃x
L τ̃

x
1 + τ̃

y
L τ̃

y
1

�

. (B.2)

H+ and H− can then both be mapped to free fermions using a Jordan-Wigner transforma-
tion

H± = −
∑

i<L−1

�

c†
i ci+1 + hc
�

∓ s
�

c†
Lc1 + hc
�

, (B.3)

where s = (−1)L−N+1 for L sites and N particles. In this free fermion language, ground state
energies can be easily computed. In the case of even L, s = −1 for both sectors, since the
number of domain walls N must always be even. Hence, for even L, the positive and negative
sectors possess antiperiodic and periodic boundary conditions, respectively.

For a chain of length L = 0 mod 4, the ground state occurs in the positive sector with
half-filling N = L/2. The corresponding energy density is given by

EGS/L = −
2
L

L/4−1
∑

n=−L/4

cos
�

2π
�

n+
1
2

�

/L
�

, (B.4)

since the momentum is quantized as k = 2π
�

n+ 1
2

�

/L in the case where L−N is even. Eq. B.4
can be expressed in closed form as EGS/L = − 2

L
1

sin(π/L) . For a chain of length L = 2 mod 4, we
are restricted from N = L/2 since the number of particles must be even. Hence, the ground
state occurs in the positive sector with N = L/2±1. These two degenerate ground states have
an energy density given by

EGS/L = −
2
L

(L−2)/4−1
∑

n=−(L−2)/4

cos
�

2π
�

n+
1
2

�

/L
�

, (B.5)

which can be expressed in closed form as EGS/L = −2
L cot
�

π
L

�

. The Casimir energy then can
be obtained from these closed form expressions in the limit of large L:

EGS(L)
L

=

¨

− 2
L sin(π/L) ≃ −

2
π −

π
3L2 , L = 0 mod 4 ,

− 2
L tan(π/L) ≃ −

2
π +

2π
3L2 , L = 2 mod 4 .

(B.6)

According to Eq. 4, this consequently leads to c0 = 1 and c2 = −2.

C Other CFT Hamiltonians with a cr < 0 branch

Like the X-ZXZ model, there exist other 1D chains whose ground state energies, as a function
of their length, have positive and negative c branches. Here we provide two other examples
of such models.

C.1 Spin-1 chain

The model is a spin-1 chain with the Hamiltonian

HHaldane-AFM =
∑

i

Si · Si+1 + D
∑

i

(Sz
i )

2 . (C.1)
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Figure 8: Energy density of different 1D CFT chains with an even-odd effect. The
energies are calculated through exact diagonalization. (a) Energy density of the spin-
1 chain introduced in C.1 at D = 1 ≈ Dc , (b-d) energy density of the X X Z chain at
different values of ∆, namely ∆= −0.5, 0,0.5. It can be numerically confirmed that
the system exhibits the even-odd effect at any values of −1 < ∆ < 1, where the
system is in its gapless phase. However, the values of c0 and c1 are not universal and
depend on ∆.

This model undergoes a phase transition at Dc ≈ 1 between a trivial paramagnetic phase for
large D and the Haldane phase for small D [48, 77], which exhibits a Z2 × Z2 SPT [78–80].
The critical point belongs to the same universality class as the X - ZXZ chain and is described
by a c = 1 CFT [79]. As shown in Fig. S2 (a), the ground state energy of the system with
periodic boundary conditions, has two branches of c0 > 0 for even system sizes and c1 < 0 for
odd ones.

In order to realize the snake physics with this Hamiltonian, it is necessary to have a mod
4 effect instead of an even-odd effect. This can be accomplished by using two independent
copies of the spin-1 chain. More precisely, the ground state energy of

HDoubled Haldane-AFM(L) =
L
∑

i=1

Si · Si+2 + D
L
∑

i=1

(Sz
i )

2 , (C.2)

at the quantum critical point D = Dc has c0 > 0 for L = 0 mod 4 and c2 < 0 for L = 2 mod 4.

C.2 XXZ model

The spin-1/2 XXZ model with the Hamiltonian

HX X Z =
1
2

∑

i

�

τx
i τ

x
i+1 +τ

y
i τ

y
i+1 +∆τ

z
iτ

z
i+1

�

, (C.3)

is a c = 1 CFT for −1<∆≤ 1 [81]. The X X Z model in its critical phase exhibits an even-odd
effect when it has periodic boundary conditions. The plot of energy density is provided in
Fig. S2 (b-d) for ∆= −0.5, ∆= 0.5 and ∆= 0 (X X chain). Similar to the previous examples,
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the doubled Hamiltonian,

HDoubled XXZ(L) =
1
2

L
∑

i=1

�

τx
i τ

x
i+2 +τ

y
i τ

y
i+2 +∆τ

z
iτ

z
i+2

�

, (C.4)

leads to a mod 4 effect.
In the special case of∆= 0 (XX model), the model can be solved exactly using the Jordan-

Wigner transformation, allowing us to analytically calculate c0 and c2 as explained below. First,
we determine the relationship between the Casimir coefficients of the single and double chain
models. The doubled model consists of two independent chains, each of length L/2, so we
have:

Edouble(L)
L

=
2Esingle(L/2)

L
=

2
L

�

ε0 L/2−
πcsingle(L/2)

L/2
+ · · ·
�

, (C.5)

which leads to
cdouble(L) = 4csingle(L/2) . (C.6)

Now, for a single X X chain, the Jordan-Wigner transformation yields the ground state energy
as

Esingle(L)

L
=

¨

− 2
L sin(π/L) ≃ −

2
π −

π
3L2 , L = 0 mod 2 ,

− cos(π/L)
L sin(π/2L) ≃ −

2
π +

11π
12L2 , L = 1 mod 2 .

(C.7)

Therefore, according to Eq. C.6, for the doubled X X model, we find c0 = 4 and c2 = −11.

D Proof of L = 2 mod 4 for contractible loops in a fully packed
configuration

In this appendix, we prove that contractible loops in a fully packed configuration cannot be of
length L = 0 mod 4, and must thus be of length L = 2 mod 4 (since loop lengths are always
even).

The proof is in two steps. First, we show that contractible loops with L = 0 mod 4 nec-
essarily have an odd number of honeycomb vertices in their interior. Second, we show that
an area of the honeycomb lattice with an odd number of vertices cannot host a fully packed
configuration. By combining the two results, we conclude that a contractible domain wall with
L = 0 mod 4 is not consistent with a fully packed configuration.

D.1 First result

In this first result, we show that contractible loops with L = 0 mod 4 necessarily have an odd
number of honeycomb vertices in their interior. A simple proof can be found in Ref. [82],
which we reproduce here for convenience.

Let L be the length of the loop, let k be the number of hexagons inside the loop, and let x
be the number of vertices which are strictly inside the loop. Let z denote the number of obtuse
loop vertices (i.e. vertices at which the interior angle drawn by the loop is 120 degrees) and y
the number of reflex loop vertices (i.e. vertices at which the interior angle drawn by the loop
is 240 degrees). If we orient the loop counterclockwise, the obtuse vertices correspond to left
turns and the reflex vertices correspond to right turns. We know that z+ y = L since each loop
vertex is either obtuse of reflex. We also know that z − y = 6 since the loop needs to close: it
needs to do 6 more left turns than right turns.

Consider cutting each interior hexagon into 12 right triangles by cutting along all its axes
of symmetry. There are two ways of counting the number t of such triangles: t = 12k, but
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kx

k y

Figure 9: Color map of CZ Z(k) for an ℓ = 48 system at T̃ = 4 which peaks at the
corners of the Brillouin zone.

also t = 6x + 4y + 2z. The first way is obtained by summing over hexagons. The second way
is obtained by summing over interior points first, each of which is surrounded by 6 triangles.
One should then add the triangles which touch the boundary: each obtuse vertex contributes
two triangles, whereas each reflex vertex contributes four.

Finally, one finds 12k = t = 6x+4y+2z = 6x+3(y+z)+(y−z) = 6x+3L−6. Dividing
by six gives L/2 = 2k − x + 1. This means L = 2 mod 4 if the number of interior points x is
even, and L = 0 mod 4 if the number of interior points x is odd.

D.2 Second result

A fully packed configuration must have a domain wall passing through each vertex of the
honeycomb lattice. If x is the number of vertices inside an area of the honeycomb lattice, a
fully packed configuration in that area is a configuration of loops such that x =

∑

i Li , where i
is the loop index. Since each Li is even, there can be no fully packed configuration if x is odd.

E More details on the σzσz correlator

E.1 Numerical results

As usual for triangular lattice antiferromagnets, the spin correlation function
CZ Z(x) = 〈σz(0)σz(x)〉 has lattice scale oscillations corresponding to the K and K’ wavevec-
tors at the corner of the Brillouin zone. On top of these lattice scale oscillations, in
the long distance limit, we expect the spin correlation CZ Z(x) = 〈σz(0)σz(x)〉 to have a
power law decaying envelope: CZ Z(x) ∼ |x|−η. Assuming the structure factor defined by
CZ Z(k)≡ 1/ℓ2
∑

k CZ Z(x)e−ik·x has a sharp peak at k= Q, we find CZ Z(Q)∼ ℓ−η. Fig. 9 shows
that Q is indeed at the corners of the Brillouin zone. The value of η can be obtained using
the graph of CZ Z(Q) vs. ℓ (Fig. 3), which gives η ≈ 0.65. In Appendix E.2, we propose a CFT
argument based on Coulomb gas which predicts η= 2/3.

E.2 CFT prediction

The CZ Z(r) = 〈σz(0)σz(r)〉 ∼ |r|−η correlator can be interpreted as a correlator of twist oper-
ators in the CFT which flip the sign of the fugacity for loops which enclose one point (say 0)
but not the other (r) [83]. Inspired by Ref. [83], we propose that the scaling dimension for
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σz is given by

∆σz (n) =
1

2g(n)
(χ ′2 −χ2) , (E.1)

where g(n) = 1− e0(n) with 2 cos(πe0) = n, χ ′ = 2/3 and χ = 1/3. The correlation function
is given by CZ Z(r)∼ 1/|r|2∆Z .

If we apply this to the case of n = 1, we find g(n = 1) = 2/3 and ∆(n = 1) = 1/4, which
reproduces the well-known 〈σz(0)σz(r)〉 ∼ cos(2πr/3)/

p

|r| dependence of spin correlation
function in the Ising antiferromagnet on the triangular lattice [50].

For our case (n = 0), we find ∆(n = 0) = 1/3, and thus CZ Z(r) ∼ 1/|r|2/3, which is close
to the exponent ≃ 0.65 we observed numerically.

F Worm Update for Monte Carlo algorithm

Fully-packed loop configurations on a hexagonal lattice can be ergodically sampled using a
classical Monte Carlo algorithm with worm updates [54–56]. In such loop configurations, all
vertices will generally touch an even number of occupied bonds (links). If B is the complete set
of occupied bonds constituting a given loop configuration, then the worm update is initiated
by attaching a single bond to B with vertices a and b: B′ = B ∪ ab. In this case, a and b
are referred to as vertex defects since they touch an odd number of occupied bonds, hence
removing the bond configuration from the subspace of valid loop configurations. To return
back to this subspace, one random bond whose boundary includes either a or b is added or
removed to B′, thereby updating the pair of vertex defects, and this process is repeated until
the two vertex defects coincide: a = b. In our case, this cluster update can then be accepted
or rejected with standard Metropolis sampling according to the Boltzamann weight given by
e−F[L]/T . This cluster update procedure is summarized in page 12 of [54].

Here, F[L] is the free energy of the domain wall configuration L, which is the sum of
the free energies of each loop: F[L] =

∑

l∈L F1D(Ll , T ). In the low-T limit, F1D(L, T ) can be
expanded as

F1D(L, T ) = EGS(L)− TSGS + . . . , (F.1)

which according to B.6, for the X − ZX Z chain will be

F1D(L = 4k+ 2, T ) = L
�

ε0 +
2π
3L2
−

T
L

log(2) + · · ·
�

, (F.2)

F1D(L = 4k, T ) = L
�

ε0 −
π

3L2
+ · · ·
�

. (F.3)

The log(2) term appears due to the fact that the L = 2 mod 4 chain is doubly degenerate.
By dropping unimportant constant terms and rewriting the above relations in terms of T̃ , we
obtain

F1D(L = 4k+ 2, T )/T =
L
T̃

�

2πℓ2

3L2
−

T̃
L

log(2) +O(ℓ−2)
�

, (F.4)

F1D(L = 4k, T )/T =
L
T̃

�

−πℓ2

3L2
+O(ℓ−2)
�

. (F.5)
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G Calculations of the entanglement

G.1 Entanglement on the 1D chain

In order to calculate the entanglement of a given eigenstate |Ψ[L]〉, we need to calculate the
entanglement of the τ dofs on the snake. As show in Fig. 5, after unfolding the snake, the
subsystem A is mapped to a union of disjoint intervals on the 1D chain.

Following [58–60], Renyi entropies of disjoint intervals in a CFT can be computed using
the following analytical formula

Tr[ρn
A] = CN

n

�

�

�

�

�

∏

i< j(u j − ui)(v j − vi)
∏

i, j(v j − ui)

�

�

�

�

�

2∆n

FN ,n(x) , (G.1)

where each interval (i running from 1 to N) is between ui and vi , Cn are non-universal con-
stants, and FN ,n(x) is a model-dependent scaling function of all the invariant ratios which
can be constructed out of all the 2N endpoints of the intervals. This formula is interpreted as
the correlation function of twist operators inserted at each interval endpoint, where the twist
operators have the universal scaling dimension ∆n = (c/12)(n− 1/n).

In this work, we will limit ourselves to the dominant contributions to the entanglement in
the limit of large perimeter ℓA of the subsystem, which will turn out to follow a “non-local area
law”. For this reason, we omit the contribution from FN ,n(x) because it only gives a term of
order O(1). Further, for the strip geometry we will consider below, we will show in G.3 that
the contribution from the CN

n factor leads to a simple, local contribution to the area law which
is model-dependent and not particularly interesting. We thus also omit it in the following.

The nth Renyi entropy, Sn = −
1

n−1 log
�

Tr[ρn
A]
�

, is then given by

Sn = −2
∆n

n− 1
log

�

�

�

�

�

∏

i< j(u j − ui)(v j − vi)
∏

i, j(v j − ui)

�

�

�

�

�

+ · · · , (G.2)

where the dots represent the non-universal contributions from FN ,n(x) and CN
n which we

dropped. In particular, the von Neumann entanglement entropy is obtained by taking n→ 1,
leading to

S = −
c
3

log

�

�

�

�

�

∏

i< j(u j − ui)(v j − vi)
∏

i, j(v j − ui)

�

�

�

�

�

+ . . . (G.3)

Also, since we will always work with a finite-length snake with periodic boundary condi-
tions, one should use the following replacement in Eqs. G.2 and G.3:

|ui − u j| →
�

L
π

�

sin

�

π|ui − u j|
L

�

, (G.4)

and similarly for |vi − v j| and |ui − v j|, where L is the length of the chain.
To test the validity of Eq. G.2 for the X − ZX Z chain in the case of multiple intervals,

we used the DMRG method described in Section 6.2 of Ref. [60], which computes the sec-
ond Renyi entropy by performing “twist” operations between two MPS states at the endpoints
of each interval. Specifically, we compute S2 for four equal partitions: u1, u2 = 0, L/2 and
v1, v2 = L/4,3L/4 where L is the linear size of the chain. Fig. 10 compares the results from
DMRG to Eq. G.2 with n= 2 and with the modification given in Eq. G.4. Indeed, we find good
agreement between DMRG and the CFT prediction for sufficiently large L. This justifies the
use of Eq. G.2 when calculating the entanglement for the snake phase.
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Figure 10: Second Renyi entropy for four equal partitions of the X − ZX Z chain with
linear size L, computed according to the DMRG method in Ref. [60] (with maximum
bond dimension χ = 100) and the analytical prediction for a CFT given in Eq. G.2.
The entropies computed using DMRG are shifted by a constant value of −1.889 to
account for the difference generated by the non-universal constant c2 and scaling
function FN ,2(x) given in Equation G.1.

G.2 Averaging over snake configurations

Since the σ degrees of freedom are classical, we are only interested in the quantum entangle-
ment between τ degrees of freedom. We decide to average the value of the quantum entan-
glement over the thermally-generated σ configurations. This provides us with the “quantum”
contribution to the von Neumann entropy of the thermal density matrix after performing a
partial trace over the τ degrees of freedom over the complement of the A subsystem, as we
now show.

The density matrix of the whole system is block diagonalized in the basis of domain wall
configurations.

ρ =
e−βH

Z =







e−βH1

Z
e−βH2

Z
. . .






=





p1ρ1
p2ρ2

. . .



 , (G.5)

where Z is the partition function, pi =
Tr(e−βHi )

Z is the thermal probability of being in the

ith domain wall configuration and ρi =
e−βHi

Tr(e−βHi ) is the density matrix of the system in that

configuration. By taking the partial trace over the τ spins in the subsystem B (complement of
A), the density matrix of the snake in subsystem A can be expressed as

ρA =





p1ρ
A
1

p2ρ
A
2

. . .



 . (G.6)

The von Neumann entropy is obtained by the relation SA = −Tr(ρA logρA) which gives

SA =
∑

i

�

− pi log pi − pi Tr
�

ρA
i logρA

i

�

�

≡ Sth + Squ , (G.7)
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where Sth = −
∑

i pi log pi is the thermal entropy of the domain wall configurations (σ spins)
and Squ = −
∑

i pi Tr
�

ρA
i logρA

i

�

is the quantum entanglement of the τ spins, thermally aver-
aged over snake configurations. The latter term is the quantum contribution which we are
interested in. We simply call it the entanglement entropy and denote it by S in the main text.

Practically, we calculate the average entanglement entropy over an ensemble of domain
wall configurations generated by the Monte Carlo method discussed in Appendix. F. In order to
find the entanglement entropy of each configuration, we add contributions of different domain
walls calculated via Eq. G.3 and Eq. G.4. The only subtlety is that the definition of ui and vi is
ambiguous on a lattice and needs to be regularized. We conventionally choose the following
UV-regularization: first we number the sites on the loop from 1 to L. Then, for the ith interval,
ui is defined as the first site of the interval placed inside the region A, and vi is defined as the
first site which lies outside A. We also note that although in our calculations the temperature
is not exactly zero, we use Eq. G.2 and Eq. G.4 and drop the finite-T contribution which is
parametrically small in system size and is not desired since we seek quantum contributions.

G.3 Analytical prediction for the entanglement scaling

In this section, we derive a formula for the entanglement of a strip based on a Brownian motion
model for the interval distribution (see Fig. 5 for the geometry of the strip and the definition
of intervals t i). As mentioned in the main text, since we only aim to reproduce the dominant
scaling behavior of the entanglement with the partition size ℓA, we assume it is sufficient to
replace Eq. G.3 by S = (c/3)

∑Nint
i=1 log(t i), where t i is the length of interval i. The average over

snake configurations is then replaced by an average over interval length f (t) ≡
∫

d tp(t) f (t)
with distribution p(t), and the entanglement reads S = (c/3)Nintlog(t) = (c/3)(2ℓA/3)log(t).

There remains to find p(t). In order to do this, let us neglect the correlations inherent to an
n= 0 fully-packed self-avoiding walk and assume we are dealing with a “plain” random walk
instead. The justification is that the geometrical exponent ν = 1/2 for the n = 0 fully-packed
self-avoiding walk is the same as that of a plain random walk. It might therefore be safe to
neglect correlations and work with a random walk, as far as the qualitative behavior of p(t)
is concerned. As a reminder, the exponent ν relates the average end-to-end distance |x| of a
walk after t steps according to |x| ∼ tν.

Using this random walk approximation, t becomes the number of steps a random walk
spends in partition A before exiting, having started inside A one lattice site away from the
entanglement cut. This is known as a first passage time and was studied in the literature in a
variety of geometries [84]. Let us consider an infinite cylinder of circumference ℓ and calculate
the bipartite entanglement for a strip of width x . Taking the continuum limit, the random walk
is described by a Brownian particle with probability distribution U(X , Y, t):

∂t U = D∇2U , (G.8)

with Dirichlet boundary conditions at the left and right entanglement cuts (x = 0 and x = X )
and periodic boundary conditions along Y :

U(X = 0, Y, t) = 0 ,

U(X = x , Y, t) = 0 ,

U(X , Y + ℓ, t) = U(X , Y ) ,
(G.9)

and with a Dirac delta initial condition located at x = a, which is just one lattice constant
inside A starting from the left cut (a is the lattice constant):

U(X , Y, t = 0) = δ(X − a)δ(Y ) . (G.10)
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We note that this is effectively a one-dimensional problem and one can completely forget about
the Y direction. Also, we define a dimensionless diffusion constant as d = D∆t/a2, where∆t
is the time step for the random walk (we choose units such that ∆t = 1 in the following).

Following standard procedure [84], the survival probability (i.e. the probability of the
walker still being inside region A at time t) is given by S(t) =

∫ x
0 dX
∫ L y

0 dY U(t) and the exit

time distribution is given by p(t) = − dS(t)
d t .

After an elementary calculation, one finds

px(t) = −2Dπ
1
x2
ϑ′2(z, q) , (G.11)

with ϑ′2(z, q) the derivative with respect to z of the second elliptic theta function, z = aπ/x
and q = e−D(π/x)24t . By using the Poisson resummation formula, we find a simple expression
for p(t) which is valid at times shorter than the Thouless time tTh = x2/D:

px(t)≃
1
2

1
p
πd

1
t3/2

e−
1

4d t (for t ≪ x2/D) . (G.12)

We have thus recovered the Lévy distribution at short times. Beyond the Thouless time, the
distribution decays exponentially:

px(t)≃ 8Dπ2 a
x3

e−D(π/x)2 t (for t ≫ x2/D) . (G.13)

We now want to calculate log(t)x ≡
∫

d tpx(t) log(t) as a function of x . In the limit
of x → ∞, px(t) is the Lévy distribution for all t, and we find the analytic expression
log(t)x→∞ = γ− log(d) with γ Euler’s constant.

We have not found a closed form for log(t)x for general x , so we have evaluated it numer-
ically (see Fig. 11). We find that, for x ≫ a, it behaves as

log t x ∼ log(t)x→∞ −
b
x

, (G.14)

with b a constant of order 1 (for example, we extract b ≃ 2.7732 for d = 1). The prediction
for the entanglement entropy in the regime x ≫ a is thus

SStrip(l, x) = 2ℓ
�

A−
B
x

�

, (G.15)

with A∝ log(t)x→∞ and B∝ b.
So far the calculation was done for a system which is infinitely long along X . In order to

compare with numerics, we need to generalize this to the case of an ℓ by ℓ torus, in which
case we know that, by symmetry, SStrip(l, x) should be symmetric under x → ℓ− x . Inspired
by Eq. G.4, we propose to do so by replacing x by x̃ = ℓ

π sin
�

πx
ℓ

�

in Eq. G.15. This finally leads
to Eq. 9 in the main text.

Let us now comment on the non-universal contribution from CN
n in Eq. G.1 which we have

dropped. This factor leads to a contribution to S given by NintC
′
1, with C ′1 ≡ −

dCn
dn

�

�

�

n=1
a model-

dependent constant. By calculating numerically the entanglement S1 of a single interval in the
X-ZXZ chain, we found C ′1 ≃ 0.7± 0.02, which is close to the known value for the XX chain of
C ′1,XX ≃ 0.726 [85]. Further, we know that Nint is a constant which is independent of x and
is equal to 2ℓ/3 in the thermodynamic limit. This can be shown by using the fact that fully-
packed loop configurations have the following U(1) symmetry: any two parallel straight lines
along a principal axis of the triangular lattice cross the exact same number of loop strands.
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Figure 11: log t x − log(t)x→∞ vs x in linear and log scales for a dimensionless dif-
fusion constant d = 1. We find log t x ∼ γ−

b
x at large x with b ≃ 2.7732.
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Figure 12: (a) Entanglement entropy of the strip shown in Fig. 5 vs. ℓ for fixed values
of its width x . The graph shows that the entanglement entropy grows almost linearly,
indicating that the leading contribution to the entropy follows the area law. (b) A(ℓ)
and B(ℓ) along with their respective linear fits vs. 1/ℓ.

This means the number of loop strands crossing the entanglement cut is independent of x for
any given loop configuration. We also know that the number of intervals is simply the number
of loop strands crossing the entanglement cuts divided by two. The snake configurations can
thus be divided into different sectors based on their value for Nint. (For a discussion of these
sectors, see [56]). Finally, we know that Nint = 2ℓ/3 (up to fluctuations which vanish in the
thermodynamic limit) since the Nint = 2ℓ/3 sector has the largest entropy [56]. All in all, this
means we have dropped a contribution to S which is equal to (2ℓ/3)C ′1, which can be absorbed
in the constant A in Eq. G.15.

G.4 More numerical results for the entanglement

More numerical results on the entanglement are provided in this appendix. First, Fig. S6 (a)
explicitly illustrates the dominant area law scaling of the entanglement for the strip geome-
try. The dependence of the slope on x reveals the non-local nature of the entanglement, as
discussed in the main text.

Secondly, we show in Fig. S6 (b) the fitting parameters obtained by fitting Eq. G.15 to our
numerical results, at fixed ℓ (see Fig. 6 in the main text for the fits). We denote the potentially
ℓ-dependent values obtained by these fits A(ℓ) and B(ℓ). We find a small drift of the fitting
parameter B with ℓ, and almost no drift for A. Based on Fig. S6 (b), we propose a fit of the
form

Sstrip(ℓ, x) = 2ℓ
�

A−
B
x̃

�

+ 2
�

A′ −
B′

x̃

�

= 2ℓ
�

A(ℓ)− B(ℓ)
x̃

�

, (G.16)
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whereA(ℓ) = A+A′/ℓ, B(ℓ) = B+B′/ℓ. We find A= 0.2520±0.0002, A′ ≈ 0, B = 0.209±0.003
and B′ = −0.31± 0.07.
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