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Abstract

We study the symmetries of closed Majorana chains in 1+1d, including the translation,
fermion parity, spatial parity, and time-reversal symmetries. The algebra of the symmetry
operators is realized projectively on the Hilbert space, signaling anomalies on the lattice,
and constraining the long-distance behavior. In the special case of the free Hamiltonian
(and small deformations thereof), the continuum limit is the 1+1d free Majorana CFT.
Its continuum chiral fermion parity (−1)FL emanates from the lattice translation sym-
metry. We find a lattice precursor of its mod 8 ’t Hooft anomaly. Using a Jordan-Wigner
transformation, we sum over the spin structures of the lattice model (a procedure known
as the GSO projection), while carefully tracking the global symmetries. In the resulting
bosonic model of Ising spins, the Majorana translation operator leads to a non-invertible
lattice translation symmetry at the critical point. The non-invertible Kramers-Wannier
duality operator of the continuum Ising CFT emanates from this non-invertible lattice
translation of the transverse-field Ising model.
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1 Introduction

Symmetries are a powerful tool in the analysis of physical systems. They help organize lattice
models and continuum quantum field theories and constrain their physical observables. A
refinement of the notion of symmetries is their ’t Hooft anomalies [1]. One of the applications
of these anomalies is a relation between the microscopic problem and its possible macroscopic
behavior [1]. This is particularly important when the microscopic problem is complicated and
then its ’t Hooft anomalies constrain its possible outcomes.

The modern view of ’t Hooft anomaly in the context of continuum quantum field theory is
the statement that while the system has a symmetry group G, it cannot be coupled to classical
background gauge fields for G in a gauge invariant way. See e.g., [2] for a recent review.

An independent line of investigation, starting with lattice models, also uses global symme-
tries and their realization to constrain the long-distance behavior of the system. A characteris-
tic example of such a constraint is the famous Lieb-Schultz-Mattis (LSM) theorem [3] and its
generalizations [4–31]. Various authors [14, 16, 17, 19, 20, 29, 32] have suggested that these
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results should be phrased as ’t Hooft anomalies. In particular, [32] has presented a framework
to couple the lattice system to background gauge fields and to probe for anomalies as a failure
of their gauge symmetry. Here, we will follow this approach.

It is known that the description of symmetries and anomalies in fermionic systems is more
subtle than in bosonic systems [33–44]. Our goal here is to present the analog of the analysis
in [32] for fermionic systems. See the earlier discussion in [15,27,45,46].

The models we will be discussing here have been studied by many researchers from various
perspectives. In order to make the paper accessible to people in the different communities,
our presentation will be self-contained, including reviews of many known results. Also, some
of the free, and therefore exactly solvable, models that we will analyze are well-known for
a long time. We will use them mostly in order to demonstrate the more general techniques
based on the symmetries and their anomalies.

1.1 Majorana chain

Concretely, we will focus on a 1+1-dimensional system of Majorana fermions. (In [47], we will
extend the discussion of this model in various directions and will provide more details. And
in [48], we will study a similar system of Dirac fermions. See also [49,50] for recent discussions
of the translation symmetry of Dirac fermions coupled to gauge fields on the lattice.) Many
authors have studied the anomalies of the continuum 1+1-dimensional theory of Majorana
fermions. See e.g., the recent discussions in [37, 38, 42, 43, 51–54]. And many authors have
studied the lattice Majorana chain [15, 51, 55–58]. In fact, the relation between this lattice
model and the LSM theorem was discussed in [15]. Here we will follow the approach of [32]
to bridge the gap between the lattice analysis and the continuum perspective of anomalies in
these systems.

Our lattice consists of L sites, labeled by ℓ with periodic boundary conditions, i.e.,

ℓ∼ ℓ+ L . (1)

On every site, we have a real fermion χℓ satisfying

{χℓ,χℓ′}= 2δℓ,ℓ′ . (2)

The anticommutation relations (2) mean that the Hilbert space H is a representation of
this Clifford algebra. We will take it to be one copy of that representation. It is well known
that the properties of these representations depend sensitively on L. For example, for even
L = 2N , H is a sum of the two different spinor representations of Spin(2N). They differ by
the eigenvalue of

G= χ1χ2 · · ·χL , L = 2N . (3)

For odd L = 2N + 1, H is the unique spinor representation of Spin(2N + 1) and

C = χ1χ2 · · ·χL , L = 2N + 1 , (4)

is central. It acts as a c-number.1

1The quantum mechanical system of 2N + 1 real fermions is notoriously confusing. One approach, which we
will follow here, is to let the Hilbert space be in a single 2N -dimensional spinor representation of Spin(2N + 1).

An alternative approach is to double this Hilbert space, H = H+ ⊕H−. This means that we should add to the
theory another decoupled fermionic operator χL+1 that cannot be constructed out of the other L = 2N+1 fermions
χℓ. χL+1 maps H+↔H−. Now, the total Hilbert space H is Z2-graded and C is an operator rather than a c-number.
(See, for example, [59].) In a way, this added fermion is like ’t Hooft’s spectator fermion [1], which cancels an
anomaly. It is also related to the Majorana mode at the end of a higher dimensional SPT phase [51,55,56]. (This
approach of adding a decoupled fermion has appeared also in [59].)
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We consider a Hamiltonian, which is a sum of local terms preserving ZL lattice translation

T : χℓ→ χℓ+1 , (5)

and fermion parity
G : χℓ→−χℓ . (6)

This transformation will be related to the fermions parity transformation of the continuum
theory, which is often denoted as (−1)F . The reason we denote the lattice expression as G
rather than (−1)F will become clear below. (For odd L, there is no operator G that implements
the automorphism (6); it is an outer-automorphism. Yet, we can impose that the Hamiltonian
is invariant under (6).)

A good example to keep in mind is the free Hamiltonian2

H =
i
2

L
∑

ℓ=1

χℓ+1χℓ =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ +
i
2
χ1χL . (7)

But we emphasize that for most of our discussion, the particular form of the Hamiltonians is not
essential. For example, as in [57,58], we can add to it terms of the form

∑L
ℓ=1χℓχℓ+1χℓ+2χℓ+3

without affecting its symmetries and our analysis.3

In addition to the lattice translation T (5) and fermion parity G (6), the systems can also
have parity P and time-reversal symmetry T , which we will discuss in detail. (More precisely,
these are symmetries of the system with even L, while the odd L system does not have the
symmetries G, P, and T .)

We will also be interested in the Hamiltonian with a defect associated with fermion parity.
For the Hamiltonian (7), the system with the defect is described by the Hamiltonian

HG =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χL , (8)

where the defect is on the link (L, 1). This defect is topological; it can be moved by conjugat-
ing HG by a unitary transformation. For example, conjugating it by the (fermionic) unitary
operator χ1 moves the defect to the link (1, 2). As in [32], in the presence of the defect, the
symmetry operators are modified and their algebra is different.

Neither of these approaches is compatible with the path integral presentation of this theory. The latter is well
defined, but it leads to a partition function with a factor of

p
2, which does not admit a standard Hilbert space

interpretation. See e.g., [42,54,60] for recent discussions.
It is amusing to compare the situation in the first two approaches to the case of a system with a spontaneously

broken Z2 symmetry generated by the symmetry operator ζ satisfying ζ2 = 1. In finite volume, the symmetry is
unbroken, ζ exists, and the Hilbert space is decomposed as H = H+ ⊕H− with the order parameter C having
eigenvalues ±1 in the two subspaces. (This is similar to the situation in the second approach.) In the infinite
volume limit, the symmetry is spontaneously broken and the Hilbert space is split into two superselection sectors
H+ and H− with no local operator relating them. In this case, the order parameter C becomes a c-number in each
sector and the symmetry operator ζ does not exist. (This is similar to the situation in the first approach.)

Finally, we should comment that this discussion of a system with an odd number of fermions involves another
subtlety that arises when we consider a tensor product of our system with another system. The third approach that
follows from the path integral assumes that we can take simple tensor products and leads to the peculiar factor ofp

2. For this reason, below, when we will consider tensor products of our systems we will have to be quite careful.

2In contrast, the Majorana chains in [51,55,56] do not generally have this lattice translation symmetry by one
site.

3In the continuum limit, this term flows to an irrelevant deformation of the Ising CFT and therefore it does not
change its extreme IR behavior near the critical point. Specifically, this operator flows to a product of the left-
moving and the right-moving components of the stress tensor. To leading order, this deformation is the interesting
T T̄ deformation of [61].
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1.2 Local Hilbert spaces and lattice translations

So far, this seems very similar to the starting point of the discussion in [32]. However, fermionic
systems exhibit new subtleties.

Locality is central in continuum field theory and in lattice systems. However, in fermionic
systems, fermions at separated points do not commute, but they anticommute. As is well
understood, this fact is consistent with locality, but can raise questions once we consider sym-
metry operators and defects. We will show that this is particularly important for the analysis
of the anomalies.

Often, the total Hilbert space is a tensor product of local Hilbert spaces

H =
N
⊗

j=1

H j , (9)

and we can examine how the various symmetry operators act on the local factors H j . Further-
more, with periodic (or twisted) boundary conditions, we can expect a translation operator
that acts as

H j →H j+1 , j ∼ j + N . (10)

Indeed, the Hilbert space of the Majorana chain has such a structure. For even L = 2N , we
can associate χ2 j−1 and χ2 j with H j . And for odd L = 2N + 1, χL is also associated with
HN . Furthermore, for even L, the fermion parity operator G can be written as a product of
local factors each acting linearly on H j . However, since H j is associated with two fermions at
different sites, ℓ = 2 j − 1 and ℓ = 2 j, the translation generator T does not act simply on H j .
One might have expected that T2 acts as in (10). But as we will discuss in Section 5, even
this is not quite true. Hence, the decomposition (9) of the Hilbert space of the Majorana chain
does not expose its ZL translation symmetry.4

Because of these subtleties, we need to adjust the procedure of [32] such that it does
not rely on the tensor product structure (9). We will first discuss the symmetry operators by
specifying how they act on the fundamental fields χℓ. This will lead us to concrete expressions
for them in terms of χℓ. For example, for even L = 2N , we will find

G= χ1χ2 · · ·χ2N ,

T =
1

2
2N−1

2

χ1(1+χ1χ2)(1+χ2χ3) · · · (1+χ2N−1χ2N ) ,

TG =
1

2
2N−1

2

(1−χ1χ2)(1−χ2χ3) · · · (1−χ2N−1χ2N ) ,

(12)

where TG is the translation symmetry operator of the problem with the G-defect, e.g., the one
described by the Hamiltonian (8). And for odd L = 2N + 1, where we do not have G,

T =
1

2N
(1−χ1χ2)(1−χ2χ3) · · · (1−χ2Nχ2N+1) . (13)

4It is often the case that an internal symmetry operator S is given by a product of local operators

S= s1s2 · · · sN , (11)

where each factor s j acts only on H j of (9). The bosonic Heisenberg chain has such a decomposition, but the local
factors s j act projectively on H j . This fact is at the root of the LSM-anomaly. In that case, we could have taken
H j to include two sites, as we do in the Majorana chain. Then, the local symmetry operators s j act linearly on
H j . However, then, the translation operator does not have a simple action on H j; only T 2 acts simply, as in (10).
Therefore, in this case, depending on how we define H j , the subtleties are either with s j or with the action of T ,
leading to a mixed anomaly between the internal symmetry and translation [32]. For this reason we will refer to
an internal symmetry as acting “on-site” only when its factors s j act linearly on the local Hilbert space H j and the
translation operator T maps H j →H j+1.
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In the continuum limit, these three cases, even L without or with the defect, and odd L corre-
spond to imposing different boundary conditions on the left- and right-moving fermions. More
specifically, they correspond to the RR (periodic for the left- and right-movers), NSNS (anti-
periodic for the left- and right-movers), and NSR or RNS boundary conditions, respectively.5

1.3 Anomalies on the lattice

In writing the expressions (12) and (13), we made an arbitrary phase choice. Since these
symmetry operators act on the fields by conjugation, this arbitrary phase choice does not affect
their action on the operators. However, it does affect the algebra they satisfy. Equivalently,
the Hilbert space could be in a projective representation of the symmetry group. In order to
understand this projective representation and the corresponding anomaly, we need to have
better control of these phases.

When the Hilbert space factorizes as in (9), and the translation operator acts asH j →H j+1,
it has a natural phase. Similarly, internal symmetries can have a local action on H j as in (11)
and then their phase redefinitions are restricted. However, this is not the case in the Majorana
chain and therefore it is less clear how to set the phases of the symmetry operators.

Instead, we will postulate that the allowed phase redefinitions of the symmetry operators
in (12) and (13) are restricted. In particular, let us assume that the symmetry operator S can
be written as a product of local factors

S = ŝ1ŝ2 · · · ŝL . (14)

Unlike (11), here the local factors are labeled by the same index as the fermions ℓ= 1, · · · , L.
The reason for that is that we do not assume that the Hilbert space factorizes as (9). By local
factors we mean that ŝℓ is constructed out of the fermions near ℓ and that for sufficiently
separated points the local factors ŝℓ commute

ŝℓŝℓ′ = ŝℓ′ ŝℓ , |ℓ− ℓ′| mod L > ℓ0 . (15)

This condition is satisfied for all the symmetry operators in (12) and (13) except for G. (Below
we will present other equivalent expressions for T and TG that do not satisfy (15), but since
their expressions in (12) and (13) do satisfy (15), the discussion below applies to them.)
When the condition (15) is satisfied, we postulate that the allowed phase redefinitions are
linear functions of L

S → ei(αL+β)S , (16)

with the constants α and β independent of L. Different operators, including T for even and
for odd L, can have different values of α and β . This restriction on the phase redefinitions
can be thought of as local renormalization of the operators. We are not going to impose this
restriction on the phase redefinition of the parity operator P, because it does not act locally
on the chain.

After using the freedom to make such phase redefinitions, we can see whether the sym-
metry algebra has anomalous phases. Following ’t Hooft, these anomalous phases should be
present also in the long distance theory and thus they restrict its possible phases.

However, this immediately leads to the following question. The anomalies in [32] and
here involve lattice translation. Since there are no anomalies involving continuum translation,
how can the microscopic anomaly be realized in the macroscopic theory? The answer to this
question is that the lattice translation symmetry leads to a new internal symmetry in the long-
distance theory. As emphasized in [32], such a new symmetry should not be viewed as an

5Here we follow the string theory terminology: R stands for Ramond boundary condition, where the fermion
is periodic, while NS stands for Neveu-Schwarz boundary condition, where the fermion is anti-periodic.
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emergent (equivalently, accidental) symmetry. Instead, it was named an emanant symmetry
because it emanates from the underlying exact lattice translation symmetry. This emanant
internal symmetry can have anomalies in the continuum theory. These anomalies should match
the anomalies of the underlying lattice model.

As we will see, the same is true in the Majorana chain. For the specific choice of the
Hamiltonians (7) and (8), the lattice translation leads to an emanant chiral fermion parity
(−1)FL . More precisely, after a phase redefinition (16), the lattice translation operator Tlattice
is related to the chiral fermion parity operator (−1)FL of the continuum massless Majorana
CFT as6

Tlattice = (−1)FL e
2πiP

L , (17)

which is an exact relation for the low-lying states on the lattice. Here P is the continuum
momentum operator.7

As in [32], the details of the emanant symmetry depend not only on the symmetry of
the system, but also on the continuum limit. In the specific case of the Hamiltonian (7) or
small deformations of it the emanant (−1)FL symmetry can have additional anomalies. The
continuum version of these anomalies have a known Z8 classification [33, 52, 62, 63], which
is related to the critical spacetime dimension of the superstring theory [64,65]. Here we will
find a precursor of this anomaly for a lattice with finite L.

1.4 Non-invertible lattice translations

Our discussion of the fermionic Majorana chain leads to interesting results for the Ising model.
Unlike a bosonic theory, a fermionic theory depends on a choice of spin structure. This fact
leads to essential differences between the symmetries and anomalies of bosonic and fermionic
systems. Given a fermionic theory, depending on its anomalies, we can construct a closely
related bosonic system by summing over these spin structures (a procedure known as the GSO
projection [66] in the string theory literature).

In our case, the bosonic theory constructed out of the Majorana system, is the Ising model.
In Section 5, we will review the relation between them on the lattice. And in Appendix A.3,
we will discuss it in the continuum.

An interesting byproduct of the GSO projection on the lattice is that the Majorana lattice
translation operator T leads to a novel non-invertible symmetry D (defined in (237)) in the
resulting bosonic lattice transverse-field Ising model.8 This non-invertible symmetry D mixes
with the lattice translation TIsing of the Ising model.

D2 =
1
2
(1+η)TIsing ,

T N
Ising = 1 ,

(18)

where η is the Z2 spin-flip symmetry and N is the number of Ising spins. The Kramers-Wannier
duality symmetry D of the continuum Ising CFT [76–79] emanates from this non-invertible
symmetry D on the lattice; that is, it is a non-invertible emanant symmetry. We present this

6Here Tlattice collectively stands for TRR, TNSNS, Todd (defined in Section 3.3 and Section 4) for even L without or
with the defect, and odd L, respectively.

7Similarly, the lattice translation symmetry GT leads to the right-moving chiral fermion parity (−1)FR . The two
lattice translation symmetries T and GT are related by parity or time reversal, as do the two continuum symmetries
that emanate from them.

8Various authors [67–74] have discussed similar lattice operators, which roughly involve “translation by half
the lattice spacing.” (See also [75].) Our operator D is not exactly the same as theirs and it also obeys a different
algebra.
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non-invertible symmetry on the lattice both in terms of a defect in Section 5.4, and of a con-
served operator9 in Section 6. See, for example, [80–84] for recent reviews on non-invertible
symmetries.

1.5 Outline

The rest of the paper is organized as follows. Section 2 reviews the symmetries and their
algebras in the NSNS, RR, NSR, and RNS Hilbert spaces of the continuum Majorana CFT. In
Section 3, we analyze the closed Majorana chain. We study the translation, fermion parity,
spatial parity, and time-reversal symmetries. In Section 3.3, we discuss the allowed phase
redefinition of these symmetry operators, and find that the algebras are sometimes realized
projectively on the Hilbert space, signaling an anomaly. In Section 4, we focus on the free
fermion Hamiltonian, and compare the symmetries and their algebras with those in the free
Majorana CFT in the continuum. In particular, we give the precise relation between the lattice
translation operator and the chiral fermion parity, and find a precursor for the mod 8 anomaly
on the lattice.

In Section 5, we perform the Jordan-Wigner transformation of the Majorana chain, and
discuss the (lack of) local Hilbert spaces. For even L, the lattice bosonization leads to the Ising
model without or with a Z2 defect, while for odd L, we find the Ising model with a Kramers-
Wannier duality defect. In Section 6, we discuss a non-invertible translation symmetry of the
critical transverse-field Ising model.

Appendix A reviews standard facts about the continuum Majorana CFT and bosonization
in 1+1d.

2 Majorana fermion CFT in 1+1d

Consider a single, non-chiral, massless, free Majorana fermion field in the continuum, with
its left- and right-moving components denoted by χL,χR. The global symmetry includes the
Z2 ×Z

f
2 generated by (−1)FL and (−1)F , which act on the fields as

(−1)F : χL(t, x)→−χL(t, x) , χR(t, x)→−χR(t, x) ,

(−1)FL : χL(t, x)→−χL(t, x) , χR(t, x)→ χR(t, x) .
(19)

Of course, we can also define (−1)FR = (−1)FL(−1)F , which acts only on the right-movers.
Below we will examine whether the operators generating these transformations actually exist
in the theory and how they act on the various states.

There is a spatial parity symmetry P which acts as

P : χL(t, x)→ χR(t,−x) , χR(t, x)→ χL(t,−x) . (20)

These symmetries generate a D4 global symmetry, the dihedral group of order 8.
We will also discuss an anti-unitary time-reversal transformation T 10

T : χL(t, x)→−χR(−t, x) , χR(t, x)→−χL(−t, x) . (21)

9By definition, an invertible or a non-invertible symmetry operator S commutes with the Hamiltonian H. There-
fore, using the Heisenberg equation of motion i d

d t S= [S, H], it is independent of time, i.e., conserved. Therefore,
we will use the phrases “conserved operator” and “symmetry operator” interchangeably.

10An anti-unitary transformation T acts on a linear combination of operators O1 and O2 as
T (c1O1 + c2O2)T −1 = c̄1T O1T −1 + c̄2T O2T −1, where c̄1 and c̄2 are the complex conjugates of c1 and c2,
respectively. The overall minus signs on the right-hand side are chosen so that it matches with the time-reversal
symmetry on the lattice in Section 3.2. The signs can be flipped by redefining T → (−1)FT .
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Finally, we will also discuss the spatial momentum operator P, which is related to the
conformal weights as P = hL − hR.

The Lagrangian and Hamiltonian

L = i

∫

d x
�

χL(∂t − ∂x)χL +χR(∂t + ∂x)χR

�

,

HMaj = i

∫

d x
�

χL∂xχL −χR∂xχR

�

,

(22)

are invariant under all these symmetries.
We can also add to the Lagrangian density a mass term

iχLχR , (23)

with a real coefficient. It violates P , (−1)FL , and (−1)FR , but preserves the symmetries (−1)F ,
P ′ = (−1)FLP , and T .

We quantize the CFT on a spatial circle parameterized by the coordinate x with x ∼ x+2π.
As common in the string theory literature, we refer to the anti-periodic boundary as the Neveu-
Schwarz (NS) boundary condition, while the periodic boundary condition as the Ramond (R)
boundary condition. We can choose independent boundary conditions for the left χL and the
right fermions χR, leading to four different quantizations of the Lagrangian (22). We refer to
them as the NSNS, RR, NSR, and RNS theories and Hilbert spaces.11 (More precisely, the NSR
and RNS theories are equivalent because they are related by conjugation by either parity P or
time-reversal T .)

On a circle, the fermions obey the boundary conditions

χL(t, x + 2π) = e2πiνLχL(t, x) , χR(t, x + 2π) = e2πiνRχR(t, x) , (24)

where ν = 0 (or ν = 1
2) corresponds to the R (or NS) boundary condition. We write the

fermion fields in momentum modes

χL(t, x) =
1
p

4π

∑

r∈Z+νL

χL,r e−ir(t+x) ,

χR(t, x) =
1
p

4π

∑

r∈Z+νR

χR,r e−ir(t−x) .
(25)

Canonical quantization leads to the standard anticommutation relation

{χL,r ,χL,r ′}= δr,−r ′ , {χR,r ,χR,r ′}= δr,−r ′ . (26)

When νL = νR mod 1, we have the parity and time-reversal symmetries, which act on
the momentum modes as PχL,rP−1 = χR,r , PχR,rP−1 = χL,r and T χL,rT −1 = −χR,r ,
T χR,rT −1 = −χL,r .

The Hamiltonian in momentum space is

HMaj =
∞
∑

r=1−νL

r χL,−rχL,r +
∞
∑

r=1−νR

r χR,−rχR,r + const. (27)

The ground state(s) in each Hilbert space is defined so that they are annihilated by all the
positive momentum modes r > 0.

Below we analyze the algebras of the symmetry operators of the free Majorana CFT subject
to different boundary conditions.

11In string theory, one performs a sum over spin structures. Correspondingly, the total Hilbert space of the
worldsheet theory has several sectors. Each sector is a subspace of the Hilbert space of the fermionic theory with
different boundary conditions [85]. (We will perform a similar sum over spin structures on the lattice in Section
5.3.) Here, on the other hand, we study a fermionic field theory with fixed spin structure. For this reason, we refer
to these quantizations as the RR, NSNS, NSR, and RNS “theories” or “Hilbert spaces,” rather than “sectors.”
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2.1 NSNS Hilbert space

In the NSNS theory, the fermions obey the boundary condition (24) with νL = νR =
1
2 . The

NSNS boundary condition is natural from the continuum CFT point of view because of the
operator-state correspondence. In particular, the identity operator corresponds to the non-
degenerate ground state |Ω〉NSNS in the NSNS Hilbert space, which is annihilated by all the
raising operators:

χL,r |Ω〉NSNS = χR,r |Ω〉NSNS = 0 , r =
1
2

,
3
2

, . . . (28)

We can normalize the symmetry operators in the NSNS theory as

(−1)F |Ω〉NSNS = |Ω〉NSNS , (−1)FL |Ω〉NSNS = |Ω〉NSNS ,

P |Ω〉NSNS = |Ω〉NSNS , T |Ω〉NSNS = |Ω〉NSNS , P|Ω〉NSNS = 0 .
(29)

It follows that, in the NSNS Hilbert space, we have the following algebra

NSNS :
�

(−1)F
�2
= 1 ,
�

(−1)FL
�2
= 1 , P2 = 1 , T 2 = 1 ,

(−1)F (−1)FL = (−1)FL (−1)F ,

(−1)F P = P (−1)F ,

P (−1)FL = (−1)F (−1)FLP ,

T (−1)F = (−1)FT , (T P)2 = 1 , T (−1)FL = (−1)FL(−1)FT .

(30)

The unitary symmetries realize a D4 = ZL
2 × Z

R
2 ⋊ Z

P
2 . One way to see that is to replace the

generator (−1)F by (−1)FR = (−1)FL(−1)F and then the relations (30) become

NSNS :
�

(−1)FR
�2
= 1 ,
�

(−1)FL
�2
= 1 , P2 = 1 ,

(−1)FR (−1)FL = (−1)FL (−1)FR ,

P (−1)FL = (−1)FR P ,

T (−1)FR = (−1)FLT , (T P)2 = 1 .

(31)

Alternatively, we can use the generators r = (−1)FLP and s = (−1)FR and note that they satisfy
s2 = r4 = (sr)2 = 1. We see that the symmetry is realized linearly in the NSNS Hilbert space.

The momentum operator P obeys12

NSNS : e2πiP = (−1)F ,

(−1)FL P(−1)FL = P , (−1)FR P(−1)FR = P , PPP−1 = −P , T PT −1 = −P .
(32)

Finally, the operators T ′ = T (−1)FL and P ′ = P(−1)FL satisfy

(P ′)2 = (−1)F , (T ′)2 = (−1)F . (33)

2.2 RR Hilbert space and the projective algebra

In the RR theory, the fermions obey the boundary condition (24) with νL = νR = 0. As a result,
we have a pair of Majorana zero modes χL,0,χR,0 obeying

{χL,0,χL,0}= 1 , {χR,0,χR,0}= 1 , {χL,0,χR,0}= 0 . (34)

12Note our notation: P is parity, while P is the momentum.

10

https://scipost.org
https://scipost.org/SciPostPhys.16.3.064


SciPost Phys. 16, 064 (2024)

We can choose a basis for the two RR ground states so that χL,0, χR,0 are realized as 1p
2
σx ,

1p
2
σz , respectively.13 It follows that (−1)F , (−1)FL ,P ,T can be taken to be

RR : (−1)F = σ y , (−1)FL = σz , P = 1
p

2

�

1 1
1 −1

�

, T = 1
p

2

�

1 −1
−1 −1

�

K , (36)

where K is the complex conjugation. For this choice of the normalization, we have the follow-
ing algebra in the RR Hilbert space

RR :
�

(−1)F
�2
= 1 , ((−1)FL)2 = 1 , P2 = 1 , T 2 = 1 ,

(−1)F (−1)FL = −(−1)FL (−1)F ,

(−1)F P = −P (−1)F ,

P (−1)FL = −i(−1)F (−1)FL P ,

T (−1)F = (−1)FT , (T P)2 = −1 , T (−1)FL = −i(−1)FL(−1)FT .

(37)

The algebra in the RR theory realizes that of the NSNS theory in (30) projectively. In particular,
the unitary operators lead to a central extension of D4 = ZL

2 ×Z
R
2 ⋊Z

P
2 .14

As in (33), we can also consider T ′ = T (−1)FL and P ′ = P(−1)FL . Now they satisfy

(P ′)2 = −i(−1)F , (T ′)2 = i(−1)F . (38)

The minus sign in
(−1)F (−1)FL = −(−1)FL(−1)F , (39)

signals an anomaly of the Z2 × Z
f
2 symmetry. In a general 1+1d fermionic QFT, it is known

that the ’t Hooft anomaly of a Z2 × Z
f
2 symmetry is classified by the spin cobordism group

Hom(TorsΩSpin
3 (BZ2), U(1)) = Z8 [33, 52, 62–64]. For a single Majorana fermion, the chiral

fermion parity (−1)FL realizes the ν= 1 ∈ Z8 anomaly. It was argued in [42] (see also [36,43])
that the minus sign in (39) is a consequence of the anomaly when ν ∈ Z8 is odd.

Including the spatial parity symmetry P we have a more general anomaly. The algebra
(37) realizes D4 projectively, which includes

(−1)FP = −P(−1)F ,

P (−1)FL = −i(−1)F (−1)FL P .
(40)

Note that in terms of P ′ = P(−1)FL , the first of these simplifies as

(−1)FP ′ = P ′(−1)F , (41)

showing that there is no anomaly involving (−1)F and P ′.
It is known that this D4 also has a mod 8 anomaly, classified by

Hom(TorsΩDPin
3 (pt), U(1))=Z8, where DPin is the double Pin group that contains both Pin±

[64, 65]. Indeed, P and (−1)FLP respectively can be used to define a Pin+ and a Pin− struc-
ture. Similarly, the symmetry generated by (−1)F , (−1)FL ,T has the same mod 8 anomaly. If

13Our conventions are

σx =
�

0 1
1 0

�

, σ y =
�

0 −i
i 0

�

, σz =
�

1 0
0 −1

�

. (35)

14We can redefine (−1)F → i(−1)F so that all the phases in the algebra are ±1. This shows that the extension is
by Z2. However, we choose not to do this so that (−1)F remains an order 2 operator, i.e.,

�

(−1)F
�2
= 1.
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we just focus on the symmetry generated by (−1)F and P , this symmetry group has a mod 2
anomaly classified by Hom(Tors ΩPin+

3 (pt), U(1)) = Z2 [33]. This anomaly is detected by the
minus sign in the algebra between (−1)F and P in the first line in (40). In contrast, there is
no anomaly in the symmetry generated by (−1)F and T , since Hom(Tors ΩPin−

3 (pt), U(1)) is
trivial. Indeed, (−1)F commutes with T .15

All this is consistent with the fact that the mass term (23) preserves (−1)F , P ′ = P(−1)FL ,
and T and therefore these symmetries are anomaly free.

We can also rewrite the algebra by replacing the generator (−1)F by (−1)FR= i(−1)FL(−1)F .16

Then, in the normalizations in (36), we have (−1)FR = σx . And the relations (37) become

RR :
�

(−1)FR
�2
= 1 , ((−1)FL)2 = 1 , P2 = 1 ,

(−1)FR (−1)FL = −(−1)FL (−1)FR ,

P (−1)FL = (−1)FR P ,

T (−1)FR = −(−1)FLT , (T P)2 = −1 .

(42)

It is then clear that the extension is by Z2.
The momentum operator P obeys

RR : e2πiP = 1 ,

(−1)FL P(−1)FL = P , (−1)FR P(−1)FR = P , PPP−1 = −P , T PT −1 = −P .
(43)

2.3 NSR Hilbert space and the mod 8 anomaly

Let us discuss the NSR Hilbert space. The discussion in the RNS Hilbert space is similar. In the
NSR theory, the fermions obey the boundary conditions in (24) with νL =

1
2 ,νR = 0. Parity P

is not a symmetry in either NSR or RNS; rather, it exchanges the two Hilbert spaces. The NSR
Hilbert space can be obtained from the NSNS theory by a (−1)FR twist, or from the RR theory
by a (−1)FL twist.

There is a single fermion zero mode χR,0 obeying {χR,0,χR,0} = 1. We can canonically
quantize the theory by choosing a ground state |Ω〉NSR that obeys

χR,0|Ω〉NSR = |Ω〉NSR ,

χR,r̃ |Ω〉NSR = 0 , r̃ = 1, 2, . . . ,

χL,r |Ω〉NSR = 0 , r =
1
2

,
3
2

, . . .

(44)

Because of the odd number of fermion zero modes, the NSR theory does not have the
operators (−1)F or (−1)FR . While they are automorphisms of the operator algebra and are
symmetries of the Lagrangian, they do not act in the Hilbert space. See footnote 1.

However, the internal symmetry operator (−1)FL and the momentum operator P do exist.
They act on the NSR ground state as

(−1)FL |Ω〉NSR = |Ω〉NSR , P|Ω〉NSR = −
1

16
|Ω〉NSR . (45)

It follows that they obey the algebra:

NSR :
�

(−1)FL
�2
= 1 , e2πiP = (−1)FL e−

2πi
16 . (46)

The second relation indicates an ’t Hooft anomaly of the chiral fermion parity (−1)FL , as we
will discuss soon.

15We thank S. Seifnashri for discussions on this point.
16The inverse relation is (−1)F = i(−1)FR(−1)FL = −i(−1)FL(−1)FR .
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Alternatively, one can quantize the NSR theory on a two-dimensional ground space so that
χR,0 is realized as 1p

2
σz so that the fermion parity (−1)F is a symmetry. However, as we

discuss in Appendix A, neither of these options match a path integral description. Again, see
footnote 1.

The anomaly of Z2 ×Z
f
2 labeled by ν ∈ Hom(TorsΩSpin

3 (BZ2), U(1)) = Z8 can be detected
from the eigenvalue of the momentum operator P in the NSR Hilbert space. More specifically,
the eigenvalue of P in the Z2-twisted Hilbert space (from the NSNS Hilbert space) takes values
in [42,43]

P ∈
ν

16
+
Z
2

. (47)

This is the fermionic version of the spin selection rule in [68,79,86–88]. In our case, the NSR
Hilbert space is the (−1)FL-twisted Hilbert space. The anomaly of the chiral fermion parity
(−1)FL of a free Majorana CFT corresponds to ν= 1, consistent with (46) and (47).

In the RNS theory, the fermions obey the boundary condition (24) with νL = 0,νR =
1
2 .

The RNS theory can be quantized in a similar way by choosing a ground state such that
χL,0|Ω〉RNS = |Ω〉RNS. It is important that (−1)F , (−1)FL are not symmetries in the RNS Hilbert
space, but (−1)FR is. We have the following algebra in the RNS theory:

RNS :
�

(−1)FR
�2
= 1 , e2πiP = (−1)FR e

2πi
16 . (48)

The (−1)FR symmetry realizes the ν= −1 ∈ Z8 anomaly, consistent with (47) and (48).

3 Majorana chain

Consider L Majorana fermions χℓ obeying

{χℓ,χℓ′}= 2δℓ,ℓ′ . (49)

A concrete Hamiltonian to keep in mind is the nearest neighbor Hamiltonian

H =
i
2

L
∑

ℓ=1

χℓ+1χℓ , χℓ+L = χℓ . (50)

We can also add the four Fermi term
∑

ℓχℓχℓ+1χℓ+2χℓ+3, which preserves the same symme-
tries. (See footnote 3.) However, we emphasize that for most of our discussion the particular
form of the Hamiltonian will not matter.

The Hilbert space of the problem is a realization of the Clifford algebra (49). We take it to
be a single irreducible representation of this algebra. Its dimension is 2

L
2 for L even and it is

2
L−1

2 for L odd.
There is a well known relation between the Clifford algebra and the orthogonal groups.

Consider the transformation
χℓ→
∑

ℓ′

Rℓ,ℓ′χℓ′ . (51)

In order to preserve (49), Rℓ,ℓ′ should be an O(L)matrix. When this transformation is an inner
automorphism, there is an operator O such that

OχℓO−1 =
∑

ℓ′

R(O)ℓ,ℓ′χℓ′ . (52)

For even L, we can find such an O for every O(L) matrix Rℓ,ℓ′ . The hermitian operators
i
2χℓχℓ′ generate the SO(L) subgroup and the remaining “reflection” transformation can be
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taking to be generated by χ1. For odd L, only the SO(L) subgroup corresponds to an inner
automorphism. There is no operator constructed out of χℓ that implements a transformation
Rℓ,ℓ′ with det Rℓ,ℓ′ = −1.

Another significant fact is that the operators realizing the O(L) (or SO(L)) transformations
realize these groups projectively. The Hilbert space is in a spinor representation of Spin(L).
More precisely, for even L we have the two spinor representations each with dimension 2

L−2
2 .

And for odd L we have the single spinor representation with dimension 2
L−1

2 .
So far the fermions χℓ were unrelated to each other. In the physical problem, they are

arranged on a closed chain with L sites and there is a Majorana fermion on each site with a clear
notion of locality. This restricts the global symmetry of the problem to be smaller than the O(L)
(or SO(L)) automorphism. In particular, we will be interested in the transformations T and G
corresponding to translation and fermion number, respectively. We will also be interested in
the parity transformation P and the time-reversal transformation T , which is anti-unitary.

3.1 Translation and fermion parity symmetries

3.1.1 Even L

We would like to realize these operators on the Hilbert space. Let us start with even L = 2N
and focus on the translation T and the fermion parity G, which act on the fermion operators
as

T : χℓ→ TχℓT
−1 =
∑

ℓ′

R(T )ℓ,ℓ′χℓ′ = χℓ+1 ,

G : χℓ→ GχℓG
−1 =
∑

ℓ′

R(G)ℓ,ℓ′χℓ′ = −χℓ ,
(53)

where ℓ∼ ℓ+ L.
The algebra satisfied by these operators is

R(G)2 = 1 , R(T )L = 1 , R(G)R(T ) = R(T )R(G) . (54)

We would like to see how these operators are realized on the Hilbert space. Clearly,

det R(T )ℓ,ℓ′ = −1 ,

det R(G)ℓ,ℓ′ = +1 .
(55)

This means that G corresponds to an SO(L) transformation and it is realized as a product of
an even number of fermions χℓ, while T involves the reflection in O(L) and therefore it is
realized as a product of an odd number of fermions. As we will see, the operators G, T realize
the relations corresponding to (54) projectively. But since the O(L) action on the operators
becomes a Pin(L) action on the states, the projective phases are only ±1.

Let us find an explicit expressions for these symmetry transformations in terms of the
fermion fields.17 Using the way G and T act on the fermions (53) and imposing that they
are unitary transformations determines them only up to an overall phase. First, we will find
particular expressions for G and T by assuming there is no additional phase in these expres-
sions in terms of χℓ. Second, in Section 3.3, we will see how we can redefine them by phases,
and compare them to the continuum operators.

The Z2 generator G can be written in terms of the fermion fields as

G= χ1χ2 · · ·χ2N . (56)

17We thank M. Cheng, S. Ryu, and S. Seifnashri for discussions on the local expressions for the translation
operator.
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As written, it satisfies
G2 = (−1)N . (57)

We could have redefined G by a factor of iN such that it squares to one, as one would expect
of a Z2 generator. As discussed above, we prefer not to do it at this stage. In Sections 3.3 and
4.2, we will rescale it to compare with the continuum parity operator (−1)F .

We would like to write G as a product of local factors. One option is to view (56) as such a
product, but then, the local factors χℓ do not act on the fermions as the total unitary operator
G, because χℓχℓ′χ

−1
ℓ
= −χℓ′ if ℓ ̸= ℓ′. This can be fixed by using a Klein transformation. We

write G as
G= g1g2 · · ·g2N , (58)

where gℓ is defined as

gℓ = Gχℓ = (−1)ℓχ1 · · ·χℓ−1χℓ+1 · · ·χ2N . (59)

It acts on the fermions as

gℓχℓ′ g
−1
ℓ =

¨

−χℓ , if ℓ= ℓ′ ,
χℓ′ , if ℓ ̸= ℓ′ ,

(60)

and obeys
{gℓ,gℓ′}= 2(−1)N+1δℓ,ℓ′ . (61)

Note that G is a boson, as it is constructed out of an even number of fermions, but the factors
χℓ or gℓ are fermions. (Because of that, they do not satisfy the locality condition (15).)

In the context of symmetries, it is common to use the phrase “on-site” symmetry action.
Often, it refers to the action on the local Hilbert spaces H j . We will discuss the action on the
local Hilbert spaces in Section 5 and in particular, we will see around (189) that G can be
written as a product of local factors χ2 j−1χ2 j acting linearly in H j . (Note that this is unlike
the discussion around (14).)

Here, we would like to comment on another notion of “on-site” action, which refers to
how the symmetry operator acts on the local fields at different sites. Unlike the discussion in
Section 5, here the word “site” refers to the site of the lattice, labeled by ℓ = 1, · · · , L. Even
though G can be written as a product of factors χℓ or gℓ as in (56) and (58), its action on
the fields is not the standard on-site action for the following reasons. In both expressions,
the factors χℓ or gℓ at different sites anticommute with each other. In (56), the factor χℓ acts
on χℓ′ with ℓ ̸= ℓ′ nontrivially, i.e., χℓχℓ′χ

−1
ℓ
= −χℓ′ . In (58), while gℓ acts locally on the

fermion fields, i.e., it commutes with χℓ with ℓ ̸= ℓ′, it is not a local operator; in fact, it is the
product of all the fermions except for the one at site ℓ. In any case, we cannot write G as a
product of local operators that implement the symmetry transformation on local fields, i.e.,
they commute with operators at different sites.

Before we give the explicit expression for T , we can readily derive a relation between T
and G using (58) [15,57]:

TGT−1 = χ2χ3 · · ·χ2Nχ1 = −G . (62)

Equivalently, GT = −TG stating that T is constructed out of an odd number of fermions. This
is consistent with the fact that det R(T )ℓ,ℓ′ = −1.

Next, we write the translation operator T in terms of the fermions. Again, the action (53)
does not determine the overall phase normalization of T , and below we will make a particular
choice. In Section 3.3, we will rescale it to TRR and compare with the continuum operators.
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We can think of the translation as shifting the fermions in steps. First, a rotation between
L and L − 1, then a rotation between L − 1 and L − 2, etc. Finally we need another factor to
arrange the signs. Explicitly, we write the translation operator as18

T =
1

2
L−1

2

χ1(1+χ1χ2)(1+χ2χ3) · · · (1+χL−1χL) . (64)

It is important that T is written as a product of local factors,

tℓ =
1
p

2
(1+χℓχℓ+1) , t8

ℓ = 1 . (65)

tℓ is a π
2 rotation in the plane labeled by (ℓ,ℓ+ 1), which is indeed an order 8 rotation. One

finds19 that [90]

T L = e
iπL(L−2)

8 = (−1)
N(N−1)

2 =

¨

−1 , if L = 4,6 mod 8 ,

+1 , if L = 0,2 mod 8 .
(66)

In Section 3.3, we will discuss the allowed redefinition of the operator T that are compatible
with locality.

Similarly, we define20

T̂ =
1

2
L−1

2

χ1(1−χ1χ2)(1−χ2χ3) · · · (1−χL−1χL) = (−1)N TG , (67)

which is also a product of local factors t−1
ℓ
= −t3

ℓ
= 1p

2
(1−χℓχℓ+1), or χℓ t

−1
ℓ
= 1p

2
(χℓ−χℓ+1).

The significance of T̂ will be clear below.
To summarize, we find the following algebra for even L = 2N :

G2 = (−1)N , T L = (−1)
N(N−1)

2 , GT = −TG . (68)

They realize the relations (54) projectively. Note that all the projective phases are ±1. This is
consistent with our statement above about lifting the O(L) transformations to Pin(L).

3.1.2 Even L with a fermion parity defect

Let us introduce a G defect. A concrete Hamiltonian to keep in mind is

HG =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χL , (69)

18The translation operator for even L can be equivalently written as

T =
1

2
L−1

2

χ2χ3 · · ·χL(1−χ1χ2)(1−χ2χ3) · · · (1−χL−1χL)

=
1

2
L−1

2

(χ1 +χ2)(χ2 +χ3) · · · (χL−1 +χL) .
(63)

These alternative expressions are convenient for different purposes. (Note that in these forms, T does not satisfy
the locality condition (15).)

19Many of the calculations in this paper involve long and painful manipulations using fermions. The following
procedure simplifies them. It is often easy to find the answer up to an overall phase. Since we manipulate real
fermions, that phase is a sign. The reason the calculations are tedious is that they involve a large number of such
transpositions of fermions that can lead to some signs. The number of such transpositions grows as a power of L,
say L3. Then, the overall sign is (−1)a3 L3+a2 L2+a1 L+a0 with some constants aI . These constants can be determined
by performing the explicit calculation for some small values of L, thus deriving the answer for all L. Some of these
calculations are done with the help of the Mathematica package of [89].

20We normalize T̂ so that T̂ = T TT −1 where T is the time-reversal symmetry defined in Section 3.2.1.
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where the defect is in the link connecting (L, 1). We use the subscript G for the Hamiltonian
and symmetry operators in the system with aG defect. However, we emphasize that for most of
our discussion the particular form of the Hamiltonian will not matter. Note that the defect can
be moved to other links, e.g., to the link (1, 2), by conjugating HG by a local G transformation,
χ1 or g1.

Let us determine the symmetry operators of the theory with the defect. We use the same
fermion parity operator G as in (58), because it commutes with HG.21 On the other hand,
instead of (53), the translation operator now acts on the fermion fields as

TG : χℓ→ TGχℓT
−1
G =
∑

ℓ′

R(TG)ℓ,ℓ′χℓ′ =

¨

χℓ+1 , ℓ= 1,2, · · · , L − 1 ,

−χ1 , ℓ= L .
(70)

The algebra satisfied by these operators is

R(G)2 = 1 , R(TG)
L = R(G) , R(G)R(TG) = R(TG)R(G) . (71)

In contrast to the case without the defect (55),now we have

det R(TG)ℓ,ℓ′ = +1 ,

det R(G)ℓ,ℓ′ = +1 .
(72)

This means that the twisted translation operator is an SO(L) transformation and is constructed
out of an even number of fermions, i.e., it is bosonic.

Let us write TG in terms of the fermion fields. Again, (70) does not determine its phase
normalization, and we will make an arbitrary choice below. Later, in Section 3.3, we will
rescale it to TNSNS and compare it to the continuum operators. Its action in (70) means that
we should multiply T by an operator that maps χ1 → −χ1 and leaves the other fermions
unchanged, i.e., we should multiply it by g1 = −χ2χ3 · · ·χL . Therefore, we take [91]22

TG = (−1)Ng1T =
1

2
L−1

2

(1−χ1χ2)(1−χ2χ3) · · · (1−χL−1χL) . (74)

Using TgℓT
−1 = −gℓ+1 and T L = (−1)

N(N−1)
2 , we have

T L
G = (−1)

N(N+1)
2 χ1 · · ·χL = (−1)

N(N+1)
2 G . (75)

We summarize that these operators in the system with even L = 2N and with a defect
satisfy

G2 = (−1)N , T L
G = (−1)

N(N+1)
2 G , GTG = TGG . (76)

They realize the relations (71) projectively. As for the problem without the defect, all the
projective phases are ±1. Later, we will see how we can remove these phases.

21We do not write GG because it is the same as G.
22Alternatively, the translation operator for even L with a defect can be written as

TG =
(−1)N

2
L−1

2

(χ1 −χ2)(χ2 −χ3) · · · (χL−1 −χL)χL . (73)

(Note that in this forms, TG does not satisfy the locality condition (15).)
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3.1.3 Odd L and a translation symmetry defect

Next, we repeat this discussion for odd L = 2N + 1. As in footnote 1, unlike the case of even
L, now the operator

C = χ1χ2 · · ·χL , (77)

commutes with all the operators in the theory. Since it is central, it can be taken to be a
c-number. Since

C2 = (−1)N , (78)

the value of the c-number for fixed N is ±iN and the Hilbert space is characterized by that
sign. Recall that for even L, an operator of the form (77) generated the G symmetry. Instead,
now it is a c-number and as we will soon discuss, the theory does not have such a symmetry.
For this reason, we distinguish C in (77) from the symmetry transformation G.23

Again, we keep in mind two possible Hamiltonians H in (50) and the one with a defect
HG in (69) with L = 2N + 1. As above, we are only interested in the symmetries of these
Hamiltonians rather than in their particular form.

We start by discussing the Hamiltonian H in (50). We can still take T to act on the fermion
field as in (53). Unlike the case of even L, now det R(T )ℓ,ℓ′ = 1, so this is an SO(L) transfor-
mation. One might attempt to use the same expression for the translation operator (64) for
odd L = 2N + 1. However, the L-th power of this translation operator is proportional to the
central element C. Instead, we define the translation operator for odd L as24

T =
1

2
L−1

2

(1−χ1χ2)(1−χ2χ3) · · · (1−χL−1χL) . (80)

Its L-th power is

T L = e
iπ(L2−1)

8 = (−1)
N(N+1)

2 =

¨

+1 , if L = 1, 7 mod 8 ,

−1 , if L = 3, 5 mod 8 ,
(81)

which does not depend on C. We will discuss possible phase redefinitions of T that are com-
patible with locality in Section 3.3.

Next, we consider G. We would like it to act as in (53). Indeed, this action is a symmetry
of the Hamiltonian (50). However, since det R(G)ℓ,ℓ′ = −1, it cannot be realized on the Hilbert
space. The odd L problem does not have the Z2 symmetry generated by G. The operator
algebra has an automorphism χℓ → −χℓ and this is a symmetry of the Hamiltonian. But this
automorphism is an outer-automorphism.

23The discussion in footnote 1 was focused on a quantum mechanical system and no locality in space was impor-
tant. Now, that we have a “space coordinate” ℓ, we should address the question of locality. Should local operators
commute or anticommute? Even though our system does not have a fermion parity symmetry generated by G, G
is an outer-automorphism of the symmetry algebra. Therefore, we can still assign a fermion parity value ±1 to
every operator. Operators with fermion parity +1 are bosons and operators with fermion parity −1 are fermions.
This labeling determines whether local operators commute or anticommute when they are separated. Note that in
this case of odd L, C is a fermion, but it is a c-number. This does not lead to problems with locality because C is
not a local operator.

24This translation operator for odd L = 2N + 1 can be written equivalently as

T =
(−1)N

2
L−1

2

(χ1 −χ2)(χ2 −χ3) · · · (χL−2 −χL−1)(χL−1 −χL)

=
(−1)N

2
L−1

2

Cχ1(1+χ1χ2)(1+χ2χ3) · · · (1+χL−1χL) .
(79)

(Note that the first expression does not satisfy the locality condition (15).) The second expression makes it manifest
that it differs from (64) for even L only by a c-number. See more discussions on the relation between the even and
odd L cases below.
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Translation symmetry defect

The odd L = 2N + 1 theory that we have been discussing is closely related to the even
L = 2N theory. Their Hilbert spaces are the same and χℓ with ℓ = 1, 2, · · · , 2N satisfy the
same algebra. The additional fermion of the L = 2N + 1 theory χ2N+1 can be constructed out
of the 2N fermions as follows. We pick a c-number C = ±iN and use G(2N) = χ1χ2 · · ·χ2N to
define

χ2N+1 = (−1)NCG(2N) . (82)

It is easy to check that it satisfies the correct anticommutation relations.
Let us express the specific Hamiltonian (50) of the L = 2N + 1 theory in terms of the

degrees of freedom of the L = 2N theory. The Hamiltonians are related

H(2N + 1) =H(2N) +
i
2

�

−χ1χ2N + (−1)N CG(2N) (χ2N −χ1)
�

. (83)

Looking at (83), it is clear that it does not respect the translation symmetry and the internal
symmetry of the 2N theory generated by T (2N) and G(2N) respectively. However, it respects
a new translation symmetry generated by

T (2N + 1) =
(−1)N
p

2
CT (2N)(1+χ2Nχ2N+1) . (84)

This symmetry acts on the fermions as

T (2N + 1)χℓT (2N + 1)−1 = χℓ+1 , ℓ= 1, 2, · · · , 2N − 1 ,

T (2N + 1)χ2N T (2N + 1)−1 = (−1)NCG(2N) = χ2N+1 ,

T (2N + 1)χ2N+1T (2N + 1)−1 = χ1 ,

(85)

and satisfies T (2N + 1)2N+1 = (−1)
N(N+1)

2 . Hence, it is the correct translation operator of the
L = 2N + 1 theory.

As always in this paper, our discussion is more general than the specific Hamiltonian (83)
and can be repeated for any Hamiltonian with the same symmetries, leading to the translation
operator (84).

We would like to interpret the change in the Hamiltonian (83) as a defect. Written in
terms of the 2N fermions, as in (83), this modification of the Hamiltonian does not look local.
However, since G(2N) has simple anticommutation relations, {χℓ,G(2N)} = 0, the operator
G and therefore also χ2N+1 as defined in (82) can be thought of as local operators and then
the right-hand side in (83) looks local.

We suggest that the defect is associated with the translation symmetry.25 To motivate this
suggestion, note that since T (2N)G(2N) = −G(2N)T (2N), a T (2N)-defect breaks the G(2N)
symmetry. This is indeed the case in (83). Also, the translation symmetry is always violated
in the presence of a defect and instead we have a new translation symmetry. In our case, it is
T (2N + 1). This new translation symmetry satisfies another relation

T (2N + 1)2N = (−1)
N(N+1)

2 T (2N + 1)−1 . (86)

Following our general picture, we see on the right-hand side the symmetry generator asso-
ciated with the defect – the translation generator. Unlike defects associated with an internal
symmetry, where the symmetry we use in constructing the defect is not modified by the defect,

25We thank S. Seifnashri for useful discussions of translation defects in other systems.
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here it is not the original symmetry generator T (2N), but the deformed one T (2N+1). Finally,

we also have a projective phase (−1)
N(N+1)

2 .
As we end this discussion of odd L = 2N + 1 as a translation defect in the even L = 2N

theory, we would like to add another comment. If instead of analyzing H in (83), we had
analyzed HG, we would have found that the twisted odd L = 2N + 1 theory can be viewed as
a T̂ = (−1)N TG defect in the even L = 2N twisted theory. This fact will be important below.

3.2 Parity and time-reversal symmetries

Next, we discuss the parity and time-reversal transformations.

3.2.1 Even L

For even L = 2N , we define the parity P and the time-reversal T transformations as

P : χℓ→ PχℓP
−1 =
∑

ℓ′

R(P)ℓ,ℓ′χℓ′ = (−1)ℓχ−ℓ ,

T : χℓ→ T χℓT −1 =
∑

ℓ′

R(T )ℓ,ℓ′χℓ′ = (−1)ℓ+1χℓ ,

ℓ∼ ℓ+ L .

(87)

The expressions for R(P) and R(T ) are motivated by the fact that they are symmetries of the
Hamiltonian (50).26 Clearly, we can redefine P or T by combining them with G.

For even L, we have
det R(P)ℓ,ℓ′ = −1 ,

det R(T )ℓ,ℓ′ = (−1)N .
(88)

The first line means that P involves the reflection in O(L) and therefore it is realized as a
product of an odd number of fermions. Since T is anti-unitary, its determinant does not tell
us directly its relation to Pin(L).

All together, the Hamiltonian (50) for even L enjoys the translation T , fermion par-
ity G, parity P, and time-reversal symmetry T . The inclusion of the four Fermi term
∑

ℓχℓχℓ+1χℓ+2χℓ+3 also preserves all these symmetries. (See footnote 3.) We can add to
the Hamiltonian (50) a real mass term (compare with (23))

im
2

L
∑

ℓ=1

(−1)ℓχℓ+1χℓ . (89)

It violates the symmetries P and T , but preserves the symmetries G, TP, T2, and T .
These symmetry operators form the following algebra when acting on the fermion opera-

tors (see (53) and (87))

R(G)2 = 1 , R(T )L = 1 , R(P)2 = 1 , R(T )2 = 1 ,

R(G)R(T ) = R(T )R(G) ,

R(G)R(P) = R(P)R(G) ,

R(P)R(T ) = R(G)R(T )−1 R(P) ,

R(G)R(T ) = R(T )R(G) ,

(90)

26Note that in the problem of L decoupled real fermions in quantum mechanics, it is more natural to let T map
χℓ→ χℓ (orχℓ→−χℓ), such that it commutes with the global SO(L) symmetry. This is indeed the T transformation
that was analyzed in [42,54,60]. In our case, the transformation is different because the Hamiltonian (50) couples
the different χℓ’s. We can also consider another parity transformation, which is not a symmetry of the Hamiltonian
(50), P0 : χℓ→ χ−ℓ.
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R(P)R(T ) = R(P)R(T ) ,
R(T )R(T ) = R(G)R(T )R(T ) .

Note that because of the factor of (−1)ℓ in the action of R(P), the algebra of R(T ), R(P), and
R(G) is not merely DL acting on the indices ℓ, but it is a Z2 extension of it by R(G). The addition
of the anti-unitary transformation R(T ) also extends the algebra in a nontrivial way, as can be
seen in the last relation. Again, this algebra will be realized projectively on the Hilbert space.

Before we give an expression for P in terms of the fields, we can straightforwardly compute
the conjugation of G and T by P using PχℓP

−1 = (−1)ℓχ−ℓ. We have

PGP−1 = (−1)Nχ2N−1χ2N−2 · · ·χ1χ2N = −G ,

PTP−1 = T−1χ1 · · ·χL = −GT−1 .
(91)

As we said above, for even L, the parity operator is an inner automorphism and can be
expressed in terms of the fermion fields:

P=







1

2
N−1

2
χ0(χ1 −χ−1)(χ2 +χ−2) · · · (χN−1 −χ−N+1)χN , even N ,

1

2
N−1

2
χ0(χ1 −χ−1)(χ2 +χ−2) · · · (χN−1 +χ−N+1) , odd N .

(92)

As a check, P has an odd number of fermions, which is consistent with the fact that it is not
an SO(L) transformation. It satisfies

P2 = (−1)
N(N−1)

2 = e
iπL(L−2)

8 . (93)

Using the time-reversal transformation (87), we have

T GT −1 = (−1)Nχ1χ2 · · ·χ2N = (−1)NG ,

T PT −1 =

¨

(−1)
N
2 +1P , even N ,

(−1)
N+1

2 P , odd N
= −P−1 ,

T TT −1 = (−1)N TG .

(94)

Since T is anti-unitary, when we write it in terms of the fundamental fields, we must include
a factor of the complex conjugation operator K. Hence, the expression for T in terms of the
fermions depends on a choice of basis. It is easy to see that there is a basis (which we will use
in Section 5) such that T is just the complex conjugation K and therefore

T 2 = 1 . (95)

To summarize, the algebra of T,G,P,T on the Hilbert space of even L is

G2 = (−1)N , T L = (−1)
N(N−1)

2 , P2 = (−1)
N(N−1)

2 , T 2 = 1 ,

GT = −TG , GP= −PG , PTP−1 = −GT−1 ,

T G= (−1)NGT , (T P)2 = −1 , T TT −1 = (−1)N TG ,

(96)

which realizes (90) projectively.27 Again all the projective phases are ±1, consistent with the
lifting from O(L) to Pin(L).

27Note that in terms of T̂ = (−1)N TG, we can write PTP−1 = −T̂−1 and T TT −1 = T̂ .

21

https://scipost.org
https://scipost.org/SciPostPhys.16.3.064


SciPost Phys. 16, 064 (2024)

3.2.2 Even L with a fermion parity defect

We now move on to discuss the parity and time-reversal transformations in the presence of a
G defect. A particular Hamiltonian is the one in (69).

The time-reversal transformation T acts the same as in the theory without the defect.
In contrast, the original parity operator P does not leave the defect invariant. Rather, the
following transformation is a symmetry of (69):

PG : χℓ→ PGχℓP
−1
G =
∑

ℓ′

R(PG)ℓ,ℓ′χℓ′ =

¨

(−1)ℓχ−ℓ , ℓ= 1, 2, · · · , L − 1 ,

−χL , ℓ= L ,
(97)

which has
det R(PG)ℓ,ℓ′ = +1 . (98)

The fermion parity G, time-reversal symmetry T , and the new translation TG in (70) and
parity PG in (97) together form the following algebra when acting on the operators:

R(G)2 = 1 , R(TG)
L = R(G) , R(PG)

2 = 1 , R(T )2 = 1 ,

R(G)R(TG) = R(TG)R(G) ,

R(G)R(PG) = R(PG)R(G) ,

R(PG)R(TG) = R(G)R(TG)
−1 R(PG) ,

R(G)R(T ) = R(T )R(G) ,
R(PG)R(T ) = R(PG)R(T ) ,
R(T )R(TG) = R(G)R(TG)R(T ) .

(99)

More explicitly, the new parity operator can be constructed out of P and gL , i.e.,

PG = gLP . (100)

Finally, for the time-reversal transformation, we can still take T =K without a modification.
On the Hilbert space with even L, these operators satisfy

G2 = (−1)N , T L
G = (−1)

N(N+1)
2 G , P2

G = (−1)
N(N+1)

2 , T 2 = 1 ,

GTG = TGG , GPG = PGG , PGTGP
−1
G = (−1)NGT−1

G ,

T G= (−1)NGT , T PGT −1 = P−1
G , T TGT −1 = TGG .

(101)

They realize the relations (99) projectively. As for the problem without the defect, all the
projective phases are ±1. Actually, as we will see in (125), all these phases can be absorbed
in redefinitions of the operators.

Finally, as in the discussion around (89), we can add to the Hamiltonian (50) a real mass
term

im
2

�L−1
∑

ℓ=1

(−1)ℓχℓ+1χℓ −χ1χL

�

. (102)

It violates the symmetries PG and TG, but preserves the symmetries G, TGPG, T2
G, and T .

3.2.3 Odd L

Finally, we discuss the parity and time-reversal transformations for odd L = 2N + 1. Even
though they are not symmetries of the particular Hamiltonian (50), they are still useful as we
will see below.
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The parity transformation of the even L system

P : χℓ→
∑

ℓ′

R(P)ℓ,ℓ′χℓ′ = (−1)ℓχ−ℓ = (−1)ℓχL−ℓ , ℓ= 0, · · · , L − 1 , (103)

does not preserve the periodicity. Therefore, we will take the same expression for ℓ=0, · · ·, L−1
and then extend this action periodically for odd L. With this definition, det R(P)ℓ,ℓ′ = +1 and
hence it can be realized on the Hilbert space. Note however that R(P)2 acts as −1 on χℓ for
ℓ = 1, · · · L − 1 and as +1 on χ0 = χL and hence with this definition P2 is not central and P
cannot be viewed as a standard parity transformation.

Another significant fact is that this P transformation does not preserve the Hamiltonian
and hence it is not a symmetry. Consider for example the untwisted Hamiltonian H in (50). It
is mapped under P as28

PHP−1 =
i
2

L−2
∑

ℓ=0

χ−ℓχ−ℓ−1 −
i
2
χ1χ0 =

i
2

L−1
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χL = HG . (105)

We see that it maps the Hamiltonian H of (50) to the same Hamiltonian with a G defect at the
link (L, 1) (equivalently, (0, 1)) HG in (69) with odd L. By redefining the fermion fields in HG

as
χℓ→ (−1)ℓχℓ = χ̂ℓ , ℓ= 1, 2, · · · , L , (106)

we see that the twisted Hamiltonian is equivalent to the untwisted Hamiltonian with the overall
minus sign flipped, i.e.,

HG(χℓ) = −H(χ̂ℓ) = −
i
2

L
∑

ℓ=1

χ̂ℓ+1χ̂ℓ . (107)

More precisely, we can think of the defect as associated with C = χ1χ2 · · ·χL . As we said,
this is not an operator but a c-number. Yet, it can lead to topological defects. To see that,
first note that the defect in HG in (105) is topological. The defect can be moved, e.g., to
the link(1,2), by conjugating HG by χ1. And moving it all the way around is obtained by
conjugating the Hamiltonian by the c-number C = χ1χ2 · · ·χL .

Recall that for even L, the system has a parity symmetry and we could introduce a G defect.
Now we see that for odd L, there are no parity or G symmetries, and the system with the G
defect is actually conjugate to the system without the defect, i.e., HG = PHP−1.

Let us turn to the time-reversal transformation T . It acts on the fermion operators as

T : χℓ→ T χℓT −1 =
∑

ℓ′

R(T )ℓ,ℓ′χℓ′ = (−1)ℓ+1χℓ , ℓ= 1, 2, · · · , L , (108)

and it is extended periodically. Note that we use a different range of ℓ compared to the parity
transformation (103).

Similar to the case of parity, this anti-unitary transformation is not a symmetry of the

28It is important to first write the untwisted Hamiltonian as

H =
i
2

L−2
∑

ℓ=0

χℓ+1χℓ +
i
2
χ0χL−1 , (104)

so that all the fermion fields are in the range ℓ= 0,1, · · · , L − 1, and then apply (103).
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Hamiltonian. Instead,29

T HT −1 =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χL = HG . (110)

We find that the conjugation of the untwisted Hamiltonian by the time-reversal transformation
gives the twisted one.

We define the conjugated translation operator as

T̂ = T TT −1 . (111)

It does not commute with H, but it is a symmetry of HG of (69) for odd L. It is given by

T̂ =
1

2
L−1

2

(1+χ1χ2)(1+χ2χ3) · · · (1+χL−1χL) . (112)

We also have T̂ = PT−1P−1. It acts on the fermion fields as

T̂χℓ T̂
−1 =

¨

−χℓ+1 , ℓ= 1, 2, · · · , L − 1 ,

χ1 , ℓ= L ,

T̂ χ̂ℓ T̂
−1 = χ̂ℓ+1 .

(113)

We see that the conjugated translation operator T̂ acts as the ordinary translation on the new
fermion fields χ̂ℓ in (107).

In Section 3.1.3, we argued that the odd L = 2N + 1 theory can be viewed as the even
L = 2N theory with a translation defect. H is obtained using a T defect and HG is obtained
using a T̂ defect. These observations are consistent with the results of this Section where H
and HG are related by parity, and so do T and T̂ .

Finally, we note that the Hamiltonian (50) is invariant under an anti-unitary transforma-
tion, which we denote by RT . (The unitary operator R will be given below soon.) It acts on
the fermion fields as

RT : χℓ→−χL−ℓ , ℓ= 1,2, · · · , L , (114)

with j ∼ j+ L. Explicitly, it is a composition of the above transformations, RT = T−1PT−1T .
This is the lattice version of the standard CPT symmetry. RT acts on the translation operator
(80) as

RT T (RT )−1 =
1

2
L−1

2

(1−χL−1χL−2)(1−χL−2χL−3) · · · (1−χ2χ1)(1−χ1χL) = T−1 . (115)

3.3 Anomalies and local counterterms

We have discussed the algebras of various symmetry operators on a Majorana chain. While
the symmetry operators are motivated by a particular Hamiltonian, such as (50) and (69),
the algebras they obey are independent of the choice of the Hamiltonian. More specifically,
for even L, the algebras of the translation T , fermion parity G, parity P, and time-reversal
symmetry T obey the algebra in (96). When there is a G defect, the algebra becomes (101).

For odd L, the only symmetry is the translation operator T , which obeys T L = (−1)
N(N+1)

2 .

29It is important to first write the Hamiltonian as

H =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ +
i
2
χ1χL , (109)

so that all the fermions are in the range ℓ= 1, 2, · · · , L, and then apply (108).
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These algebras contain some projective phases that depend on the number of lattice sites.
Can we redefine our symmetry operators to simplify, or even remove, these projective signs?
Can they be interpreted as the ’t Hooft anomalies of these symmetries?

In a generic quantum mechanical problem where this no notion of space, one can rescale an
operator by an arbitrary phase. It is clear that some of the projective signs cannot be removed
by any phases redefinition. These include the minus signs in GT = −TG , GP = −PG in (96)
for the case of even L without a defect, which are examples of anomalies on the lattice as we
will discuss soon.

However, by allowing such a general phase redefinition, we are only able to probe anoma-
lies of the quantum mechanical problem. To see the precursor of some more subtle anomalies
of the 1+1d system, we need to impose more restrictions on the allowed phase redefinitions.

For operators S that can be written as a product of local factors, we expect the phase
redefinitions to depend on L in a controlled manner. (See the discussion around (14).) Such
operators include the translation operators T in (64) and (80), and its twisted version TG in
(74) when there is a defect. For these operators, it is natural to postulate that the allowed
phase redefinition should be restricted to be of the form

S → eiαL+iβS . (116)

This corresponds to redefining the corresponding line operator/defect by a local counterterm.
For instance, α corresponds to multiplying the local unitary operator by a phase. In case of
a continuous symmetry, it arises from adding a real constant to the time component of the
current. In fact, for even L with or without a defect, the restriction due to (116) will not affect
the conclusion. It will be important only for odd L below. For other operators, e.g., the fermion
parity G in (56), the parity operators P of (92), and PG of (100), there is no such restriction
and the phase can have more complicated L dependence.

Even L

Following our rule of the phase redefinition, for even L without a defect, we define a new
translation operator TRR and a new fermion parity operator (−1)F on the lattice as30

TRR = e
2πi(N−1)

8 T =
e

2πi(N−1)
8

2
2N−1

2

χ1(1+χ1χ2)(1+χ2χ3) · · · (1+χ2N−1χ2N ) ,

(−1)F = iNG= iNχ1χ2 · · ·χ2N .

(117)

The algebra (68) becomes

�

(−1)F
�2
= 1 , T L

RR = 1 , (−1)F TRR = −TRR (−1)F . (118)

For the parity operator P, since it is not a product of operators with local support (see
(92)), we are allowed to rescale it by an arbitrary phase. We define a new parity operator P
on the lattice as

P = e
2πiN(N−1)

8 P . (119)

30Clearly, we could have redefined (−1)F →−(−1)F without affecting any of the conclusions below. The arbitrary
choice here is such that this expression in terms of the fermions, satisfies (162) in the G twisted theory for the
specific Hamiltonian (69). We denote this new, rescaled fermion parity operator as (−1)F because, for the specific
choice of the Hamiltonian (50), it corresponds to the continuum fermion parity operator in the Majorana CFT.
Similarly, we denote the rescaled translation operator as TRR because the fermions are periodic in the untwisted
problem, which corresponds to the RR boundary condition in the continuum. See Section 4.1 for more discussions.
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We leave the time-reversal symmetry operator T as is. Written in terms of the rescaled oper-
ators, the algebra (96) for even L = 2N without a defect now becomes

�

(−1)F
�2
= 1 , T L

RR = 1 , P2 = 1 , T 2 = 1 ,

(−1)F TRR = −TRR (−1)F ,

(−1)F P = −P (−1)F ,

P TRR = −i(−1)F T−1
RR P ,

T (−1)F = (−1)F T , (T P)2 = −1 , T TRR = −iTRR (−1)F T .

(120)

The advantage of the rescaled operators is that now all the projective phases are independent
of N .31

The fact that we cannot completely remove all the projective phases in (120) signals an
anomaly on the lattice. In particular we have

(−1)F TRR = −TRR(−1)F ,

(−1)FP = −P(−1)F ,

P TRR = −i(−1)F T−1
RR P .

(121)

The minus sign in the first line was observed in [15,57]. Such an algebra is incompatible with
a gapped phase with a non-degenerate ground state. It is interpreted as an anomaly. Here we
further find other anomalies involving the spatial parity operator P . In Section 4.1, we will
focus on a specific free Hamiltonian and compare the algebra and anomalies in (120) with
those in the continuum CFT discussed in Section 2.2.

Even L with a defect

Next, we move on to the algebra (101) of even L with a fermion parity defect. We redefine
the fermion parity G as in (117), and rescale the twisted translation by the following local
phase32

TNSNS = e−
2πiN

8 TG =
e−

2πiN
8

2
2N−1

2

(1−χ1χ2)(1−χ2χ3) · · · (1−χ2N−1χ2N ) . (122)

The algebra (76) becomes

�

(−1)F
�2
= 1 , T L

NSNS = (−1)F , (−1)F TNSNS = TNSNS (−1)F . (123)

For the twisted parity PG, we define a new parity operator PG as33

PG = (−1)
N(N−1)(N−2)

2 e
2πiN(N+1)

8 PG , (124)

so that P2
G = 1. Note that since PG is not a product of local operators, we do not impose the

rule (116) on the phase redefinition.

31Similar to the comment in the continuum in footnote 14, we can also redefine (−1)F → i(−1)F so that all the
phases are ±1 and independent of N . Again we choose not to do it so that (−1)F is order 2.

32We denote this rescaled operator as TNSNS because the fermions in the twisted problem with a defect correspond
to the NSNS boundary condition in the continuum. See Section 4.2 for an example.

33The first factor on the right-hand side is chosen so that PG acts with +1 eigenvalue on the ground state |Ω〉NSNS

of the particular Hamiltonian we will study in Section 4.2.
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For even L = 2N with a defect, the algebra (101) involving the parity and time-reversal
symmetries now becomes

�

(−1)F
�2
= 1 , T L

NSNS = (−1)F , P2
G = 1 , T 2 = 1 ,

(−1)F TNSNS = TNSNS (−1)F ,

(−1)F PG = PG (−1)F ,

PG TNSNS = (−1)F T−1
NSNS PG ,

T (−1)F = (−1)F T , (T PG)
2 = 1 , T TNSNS = TNSNS (−1)F T .

(125)

We see that we are able to remove all the projective phases for even L with a defect, and there
is no anomaly in the system with a defect.

Odd L

For odd L = 2N + 1, the translation symmetry T obeys T L = (−1)
N(N+1)

2 (see (81)). Since
T is a product of local operators (80), we ask if there is a local phase redefinition (116) such
that its L-th power is 1 for all odd L? Intriguingly, the answer is negative.

Following (116), we define34

Todd = eiπ(xN+y) e
−2πi(2N+1)

16

2N
(1−χ1χ2)(1−χ2χ3) · · · (1−χ2Nχ2N+1) , (126)

with x , y ∈ R. Here we have pulled out the factor e
−2πi(2N+1)

16 for later convenience. Using (81),
we compute

T L
odd = eiπ(xN+y)(2N+1)e−

2πi
16 . (127)

We choose the coefficients x , y so that the right-hand side is independent of N . This is achieved
with x = − n1

2 , y = 3n1
4 + n2 with some general integers n1, n2. As a result, the local phase

redefinition (116) can only simplify the L-th power of the translation to the following form

T L
odd = exp
�

2πin
16

�

, n ∈ 2Z+ 1 . (128)

Since n = 6n1 + 8n2 − 1, we can change the odd integer n using the phase redefinition. We
see that the only invariant fact here is that n is odd and in particular it cannot vanish.

We interpret the phase in (128) as a more subtle anomaly than the anomaly in (121). In
contrast to the latter anomaly, the one in (128) can be removed by a phase redefinition if
we give up on the locality in the one-dimensional space. In other words, (128) presents an
anomaly intrinsic to a 1+1d quantum system, not just of a quantum mechanical system with
no notion of locality. As is manifest in (81), this anomaly is order 2. Indeed, if we stack two
copies of the Majorana chain on top of each other, then there is a choice of the local phase
redefinition such that T L

odd = 1.
Importantly, the anomaly in (128) is universal for any translationally invariant Hamiltonian

for the Majorana chain of odd number of sites. See Section 4.3 for more discussions on the
particular case of the free Hamiltonian H (50) and relations to the continuum anomalies.

34In the continuum, depending on the choice of the Hamiltonian, the lattice model with odd L can be mapped
to either the NSR or the RNS theory. For this reason, we denote the rescaled translation operator as Todd, rather
than TNSR or TRNS. See Section 4.3 for more discussions on the comparison to the continuum.
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3.4 Relations between the partition functions

In this section, we will follow [32] and show how the projective algebras discussed above can
be probed using the Euclidean partition function of the system. The projective phases and
the related anomalies will manifest themselves in minus signs relating partition functions that
should naively be the same. Therefore, the corresponding partition functions should vanish.

We focus on the case of even L = 2N . Define the partition functions of the untwisted
problem as35

Z(β , L, m, n, mP) = Tr
�

e−βH
�

(−1)F
�m

T n
RR P

mP
�

. (129)

From (120), we see that m, mP are defined modulo 2, while n is defined modulo 2N . Here (and
similarly below for the twisted problem), we use the rescaled fermion parity (−1)F , translation
TRR, and parity operators P introduced in Section 3.3. Inserting

�

(−1)F
�2
= 1, TRRT−1

RR = 1,
P2 = 1 into the trace, we have

Z(β , L, m, n, mP) = (−1)n+mP Z(β , L, m, n, mP) ,

Z(β , L, m, n, mP) =

¨

(−1)mZ(β , L, m, n, mP = 0) , if mP = 0 ,

i(−1)m+nZ(β , L, m+ 1, n− 2, mP = 1) , if mP = 1 ,

Z(β , L, m, n, mP) = eiπ n(n−2)
2 +iπmZ(β , L, m+ n,−n, mP) .

(130)

Let us discuss the consequences of these relations. When mP = 0, the first two equalities
of (130) imply that the only nonzero partition functions are those with m= 0 and even n:

Z(β , L, m, n, mP = 0) = 0 , if m or n is odd. (131)

With m, n both even, the third line of (130) then implies

Z(β , L, m= 0, n, mP = 0) = Z(β , L, m= 0,−n, mP = 0) . (132)

When mP = 1, the first line of (130) implies that n has to be odd for the partition function
to be nonzero.

Z(β , L, m, n, mP = 1) = 0 , if n is even. (133)

With n odd, then the third equality of (130) is implied by the second, which reads

Z(β , L, m, n, mP = 1) = −i(−1)mZ(β , L, m+ 1, n− 2, mP = 1) . (134)

By applying this relation repeatedly, we can bring n to n= ±1.
Next, we define the G-twisted partition functions

ZG(β , L, m, n, mP) = Tr
�

e−βHG
�

(−1)F
�m

T n
NSNS P

mP
G

�

. (135)

From (125), we see that m, mP are defined modulo 2 while n is defined modulo 2N . In-
serting
�

(−1)F
�2
= 1 does not yield any nontrivial relation. The relations from inserting

TNSNST−1
NSNS = 1,P2

G = 1 are generated by

ZG(β , L, m, n, mP = 0) = ZG(β , L, m+ n,−n, mP = 0) ,

ZG(β , L, m, n, mP = 1) = ZG(β , L, m+ 1, n− 2, mP = 1) .
(136)

Using the second relation, we can always set n to be 1 when mP = 1.

35Here and in Appendix A, we slightly abuse the notation and use m= 0, 1 as the exponent of the fermion parity
operator. This is not to be confused with the Majorana mass m in (89). Similarly, here n is not to be confused with
the odd integer in (128).
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The above relations hold true for any lattice Hamiltonian enjoying these symmetries. In
Appendix A, we compare these lattice relations with those in the continuum for the specific
case of a free Majorana fermion.

As we see, many of these partition functions vanish. This means that the Hilbert space,
including the ground state, must have certain degeneracies, leading to cancellations in the
partition function. One way to think about these degeneracies is that they are associated with
projective representations of the symmetry algebra. More generally, the vanishing partition
functions show that the spectrum of the system cannot be trivially gapped.

4 Emanant chiral fermion parity from the free fermion Hamilto-
nian

In this Section, we focus on a specific Hamiltonian (7), the free fermion Hamiltonian with
the nearest neighbor interaction. We also study the Hamiltonian (8) twisted by the fermion
parity operator. We compare the lattice analysis with the continuum Majorana CFT. In partic-
ular, we find that the chiral fermion parity (−1)FL in the continuum emanates from the lattice
translation symmetry.

4.1 Even L and the RR theory

Let the number of sites be even L = 2N without a defect, i.e.,

H =
i
2

2N
∑

ℓ=1

χℓ+1χℓ ,

χℓ = χℓ+2N .

(137)

We will show that it flows to the continuum CFT of a free, massless Majorana fermion. More
specifically, it flows to the RR theory, where the fermion field is periodic around the spatial
circle as in (24) with νL = νR = 0.

We use the momentum modes

χℓ =
1
p

N

∑

k

exp
�

πi
ℓk
N

�

dk , dk+2N = dk . (138)

The hermicity of χℓ implies
dk = d†

−k ,

d0 = d†
0 , dN = d†

N .
(139)

The momentum modes obey the anticommutation relation:

{dk, dk′}= δk,−k′ . (140)

The Hamiltonian (137) in momentum space is

H = i
∑

k

eiπ k
N dkd−k = 2

N−1
∑

k=1

sin
�

πk
N

�

d†
kdk + const. (141)

The two hermitian zero modes d0, dN generate a two-dimensional space of ground states. See
Figure 1 for the spectrum.
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Figure 1: The spectrum of the free fermion Hamiltonian (137) for even L = 2N
and odd L = 2N + 1, and that for the twisted Hamiltonian (154) for even L = 2N .
(The figures are for N = 20.) The Hamiltonians in momentum space are given in
(141), (172), and (158). In each case, the low-lying modes near k = 0 and k = N
correspond to the right- and left-moving modes in the continuum Majorana CFT.
More specifically, the three cases correspond to the RR, NSR, and NSNS theories in
the continuum, respectively. The black dots represent the nonzero modes, while the
red dots represent the zero modes. The gray line plots the energy function by treating
the momentum k as a continuous variable.

In the large L limit, let us focus on the low-lying modes created by the d†
k ’s. They come in

two groups, one near k = 0 and the other near k = N . The Hamiltonian for these low-lying
modes is

H ∼
2π
N

L0
∑

k=1

k d†
kdk +

2π
N

L0
∑

k=1

k d†
N−kdN−k + const. ,

1≪ L0≪ L .

(142)

We find that the low-lying spectrum matches with the continuum Hamiltonian (27) of the RR
theory (with νL = νR = 0), up to an overall constant. More explicitly, we identify the lattice
and continuum modes as

χR,k = dk , |k| ≤ L0≪ L ,

χL,k = dN−k , |k| ≤ L0≪ L .
(143)

To conclude, the low-lying lattice momentum modes created by the d†
k ’s near k = 0 give rise

to the continuum right-moving fermion modes χR, while those near k = N give rise to the
left-moving fermion modes χL.

We now turn to the continuum limit of the lattice symmetries. We use the generators with
the preferred phase choice TRR and (−1)F of (117), P of (119), and T . (Recall that we did
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not rescale the time-reversal operator T .) They act on momentum modes as

TRR dk T−1
RR = exp
�

πik
N

�

dk ,

(−1)F dk (−1)F = − dk ,

PdkP−1 = dN−k ,

T dkT −1 = −dN−k .

(144)

In particular, TRRd0T−1
RR = d0, TRRdN T−1

RR = −dN .
Using the map to the low-energy fields (143), we find the action of the translation operator

on the left and right-moving continuum modes:

TRRχR,kT−1
RR = exp
�

2πik
L

�

χR,k ,

TRRχL,kT−1
RR = −exp
�

−
2πik

L

�

χL,k .
(145)

Interestingly, TRR acts on χL,k with an additional minus sign relative to the expected phase
of continuum translation. This indicates that the lattice translation TRR does not flow to the
continuum translation e2πiP/L; rather, an internal global symmetry emanates from the lattice
translation. It is the chiral fermion parity (−1)FL .

In order to find the precise relation between the lattice generator TRR and the continuum
symmetries P and (−1)FL , we need to know not only how they act on the various operators,
but also how they act on the Hilbert space. On the lattice, we can choose an orthonormal basis
{|0〉 , |1〉} for the ground states, which by definition obey

dk |0〉= dk |1〉= 0 , k = 1, · · · , N − 1 . (146)

Using these and the expression for TRR in terms of the fundamental fields and our phase choice,
we can choose the basis {|0〉 , |1〉} such that

TRR |0〉= + |0〉 ,

TRR |1〉= −|1〉 ,
(147)

and (−1)F exchanges them.
In the continuum RR theory, we also have two ground states {|0〉 , |1〉} generated by the

zero modes χL,0,χR,0. They are exchanged by (−1)F (147) and have vanishing continuum
momentum P. We can choose (−1)FL in the continuum to act on the ground states as

(−1)FL |0〉= + |0〉 ,

(−1)FL |1〉= −|1〉 ,
(148)

as in (36). Hence, we have a match between the lattice and the continuum ground states.
We thus obtain the following relation between the lattice translation TRR and the contin-

uum operators (−1)FL , P for the low-lying modes:

TRR = (−1)FL e
2πiP

L . (149)

We also have the lattice relations
T L

RR = 1 ,
�

(−1)F
�2
= 1 ,

(150)
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which are compatible with the continuum relations in the RR Hilbert space in (37), (43)

e2πiP = 1 ,
�

(−1)FL
�2
= 1 ,

�

(−1)F
�2
= 1 .

(151)

As with other emanant symmetries [32], on the lattice, only TRR is meaningful. The sep-
aration in the right-hand side between (−1)FL and e

2πiP
L is meaningful only at low energies,

where we take the eigenvalues of P to be of order one and much smaller than L. Also, as
in [32], the relation (149) between the lattice and the continuum operators is exact and does
not have O(1/L) corrections.

Under the dictionary (149), we see that the symmetry algebra on the lattice in (120) agrees
with that in the continuum RR theory in (37)

(−1)F (−1)FL = −(−1)FL(−1)F ,

(−1)FP = −P(−1)F ,

P (−1)FL = −i(−1)F (−1)FL P .

(152)

The projective phases in (120), and in particular those in (121):

(−1)F TRR = −TRR(−1)F ,

(−1)FP = −P(−1)F ,

P TRR = −i(−1)F T−1
RR P ,

(153)

were interpreted as anomalies on the lattice in Section 3.3 and they match with the continuum
phases in (152).

These phases signal the following anomalies in the continuum:

• The mod 8 anomaly of (−1)F , (−1)FL ,P classified by Hom(Tors ΩDPin
3 (pt), U(1)) = Z8,

• the mod 8 anomaly of (−1)F , (−1)FL classified by Hom(Tors ΩSpin
3 (BZ2), U(1)) = Z8,

• the mod 2 anomaly of (−1)F ,P classified by Hom(Tors ΩPin+
3 (pt), U(1)) = Z2 .

Finally, we comment that the chiral fermion parity (−1)FR for the right-movers emanates
from the lattice symmetry T̂ = (−1)N TG defined in (67), up a phase. This is consistent with
the continuum relation (−1)FR = i(−1)FL(−1)F in Section 2.2. Indeed, T̂ = T TT −1 is related
to T by conjugation of the time-reversal symmetry.

4.2 Even L with a defect and the NSNS theory

Next, we insert a fermion parity defect at the (2N , 1)-link. There are two equivalent ways to
proceed. In the first approach, we extend the fermion fields periodically by χℓ+2N = χℓ but
represent the defect as a modification of the Hamiltonian at one link as in

HG =
i
2

2N−1
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χ2N , χℓ+2N = χℓ . (154)

Alternatively, we can extend the one-dimensional periodic chain to an infinite chain, and im-
pose the twisted boundary condition on the fermion fields as χℓ+2N = −χℓ, but leave the
Hamiltonian as the untwisted one (137). The fermion fields are not functions, but sections,
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over the periodic chains. In the second approach, it is clear that the twisted problem cor-
responds to the NSNS theory in the continuum where the fermions obey the anti-periodic
boundary condition. Below we will proceed using the first approach and restrict the range of
ℓ to 1,2, · · · , 2N .

For the twisted problem, we expand the Majorana field using half-integer momentum
modes:

χℓ =
1
p

N

∑

k

exp

�

iπ
ℓ(k− 1

2)

N

�

bk− 1
2

, ℓ= 1, 2, · · · , 2N , (155)

where the sum over k is over integers modulo 2N . It is important that the range of ℓ is restricted
to 1, · · · , 2N in the expression above. We define bk− 1

2+2N = bk− 1
2
. Since χℓ is hermitian, we

have
bk− 1

2
= b†

−k+ 1
2

. (156)

They obey the anticommutation relation
¦

bk− 1
2
, b−k′+ 1

2

©

= δk,k′ . (157)

The Hamiltonian in momentum space is

HG = 2
N
∑

k=1

sin

�

π(k− 1
2)

N

�

b†
k− 1

2
bk− 1

2
+ const. (158)

See Figure 1 for the spectrum.
Since there is no zero mode, there is a unique ground state |Ω〉NSNS satisfying

bk− 1
2
|Ω〉NSNS = 0 , k = 1, · · · , N . (159)

Next, we analyze the large-L, low-energy limit, as we did in the RR case above. We focus
on the low-lying modes bk− 1

2
|Ω〉NSNS near k = 0 and k = N . The Hamiltonian for these modes

is

HG ∼
2π
N

L0
∑

k=1

�

k−
1
2

�

b†
k− 1

2
bk− 1

2
+

2π
N

L0
∑

k=1

�

k−
1
2

�

b†
N−k+ 1

2
bN−k+ 1

2
+ const. ,

1≪ L0≪ L .

(160)

We find that the low-lying spectrum matches with the Hamiltonian (27) of the NSNS theory
(with νL = νR =

1
2), up to an overall constant. More explicitly, the lattice and continuum

modes are matched as follows

χR,k− 1
2
= bk− 1

2
, |k| ≤ L0≪ L ,

χL,k− 1
2
= bN−k+ 1

2
, |k| ≤ L0≪ L .

(161)

For the symmetry operators, we consider the rescaled operators TNSNS of (122), (−1)F of
(117), and PG of (124).

It is straightforward to check that (−1)F = iNG acts trivially on the ground state:

(−1)F |Ω〉NSNS = iNχ1χ2 · · ·χ2N |Ω〉NSNS = |Ω〉NSNS . (162)

This is consistent with our definition of (−1)F and the identification of the state |Ω〉NSNS on
the lattice as the NSNS ground state in the continuum (29) (and hence the same symbol).

Similarly, the rescaled parity operator PG in (124) acts on the ground state as
PG|Ω〉NSNS = |Ω〉NSNS, and we identify it with the continuum parity operator P in the NSNS
theory.
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The translation symmetry operator that preserves HG is TNSNS acts on the fermion fields as
in (70). It follows that TNSNS acts on the momentum modes as

TNSNS bk− 1
2
T−1

NSNS = exp

�

πi(k− 1
2)

N

�

bk− 1
2

. (163)

Using the map (161), its action on the low-energy modes is the same as in the continuum:

TNSNSχR,k− 1
2
T−1

NSNS = exp

�

2πi(k− 1
2)

L

�

χR,k− 1
2

,

TNSNSχL,k− 1
2
T−1

NSNS = −exp

�

−
2πi(k− 1

2)

L

�

χL,k− 1
2

.

(164)

Again, we see that the twisted translation operator acts on the left-moving fermion field with
an extra minus sign. This means that the continuum chiral fermion parity (−1)FL emanates
from the lattice translation TNSNS.

Let us derive the relation between TNSNS and the continuum chiral fermion parity for the
low-lying modes. It is straightforward to compute the eigenvalues of TNSNS on the low-lying
states to find

TNSNS = (−1)FL e
2πiP

L . (165)

We also have the lattice relations

T L
NSNS = (−1)F ,
�

(−1)F
�2
= 1 ,

(166)

which are consistent with the continuum relations (32)

e2πiP = (−1)F ,
�

(−1)FL
�2
= 1 .

(167)

Again, the relation between the continuum and the lattice quantities in (165) is exact.
Under the dictionary (165), we see that the symmetry algebra on the lattice (125) agrees

with that in the continuum NSNS theory in (30). And in particular, there are no anomalous
phases.

4.3 Odd L, the NSR theory, and the mod 8 anomaly

Let the number of sites be odd L = 2N + 1 and focus on the free Hamiltonian:

H =
i
2

2N+1
∑

ℓ=1

χℓ+1χℓ ,

χℓ = χℓ+2N+1 .

(168)

We define the momentum modes as

χℓ =

√

√ 2
2N + 1

∑

k

exp
�

2πi
ℓk

2N + 1

�

dk , (169)

where the sum in k is over integers modulo 2N + 1, i.e., dk+2N+1 = dk. Since χℓ is hermitian,
we have

dk = d†
−k . (170)
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In contrast to the even L case, now we have only one hermitian zero mode rather than two:

d0 = d†
0 . (171)

The Hamiltonian in momentum space is

H = 2
N
∑

k=1

sin
�

2πk
2N + 1

�

d†
kdk + const. , (172)

and
{dk, dk′}= δk,−k′ . (173)

See Figure 1 for the spectrum.
There is a unique ground state |Ω〉NSR satisfying

dk|Ω〉NSR = 0 , k = 1, · · · , N . (174)

It is a one-dimensional representation of the one-dimensional Clifford algebra {d0, d0} = 1
generated by the hermitian zero mode d0, i.e., d0 = +1/

p
2 or d0 = −1/

p
2. For concreteness,

we choose the former quantization. We denote this state as |Ω〉NSR because it is to be identified
with the ground state of the NSR continuum theory in (45).

Next we examine the low-energy theory for large L. The modes created by d†
k near k = 0

correspond to the right-movers, while the modes created by d†
k near k = N correspond to the

left-movers. The Hamiltonian for these low-lying modes is

H ∼
4π

2N + 1

L0
∑

k=1

k d†
kdk +

4π
2N + 1

L0
∑

k′=1

�

k′ −
1
2

�

d†
N−k′+1dN−k′+1 + const. ,

1≪ L0≪ L .

(175)

We find that the low-lying spectrum matches with the continuum Hamiltonian (27) of the NSR
theory (with νL =

1
2 ,νR = 0), up to an overall constant. More explicitly, we identify the lattice

and the continuum modes as follows

χR,k = dk , |k| ≤ L0≪ L ,

χL,k− 1
2
= dN−k+1 , |k| ≤ L0≪ L .

(176)

We will consider the phase of the translation operator Todd as in (126) with x = y = 0. It
acts on the momentum modes as

Todd dk T−1
odd = exp
�

2πik
2N + 1

�

dk . (177)

It follows that

ToddχR,kT−1
odd = exp
�

2πik
L

�

χR,k ,

ToddχL,k− 1
2
T−1

odd = −exp
�

−
2πi

L
(k−

1
2
)
�

χL,k− 1
2

.
(178)

As in the previous cases, this means that lattice translation leads to an emanant (−1)FL

symmetry. It is straightforward to work out the action of the symmetry on the low-lying states
to find the exact expression

Todd = (−1)FL e
2πiP

L , (179)
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which is consistent with the lattice relation

T L
odd = e−

2πi
16 , (180)

and the continuum relations (46)

e2πiP = (−1)FL e−
2πi
16 ,

�

(−1)FL
�2
= 1 .

(181)

Finally, we can conjugate the Hamiltonian H (168) by either the parity P or the time-
reversal operator T (which are not symmetries of H) to obtain a twisted Hamiltonian HG as in
(105) and (110), which describes the RNS theory. The twisted Hamiltonian HG is equivalent
to −H by a field redefinition as in (106), and the chiral fermion parity (−1)FR of the RNS
theory emanates from the operator T̂ = T TT −1 = PT−1P−1 defined in (111) on the lattice.

Precursor of the mod 8 anomaly

The relation (179) is a precursor of an anomaly in the continuum Majorana CFT. As dis-
cussed in Section 2.3, in the continuum, the mod 8 anomaly of the chiral fermion parity (−1)FL

can be detected by the momentum eigenvalue P in the continuum NSR Hilbert space, i.e.,
P ∈ 1

16 +
Z
2 (see (47) with ν= 1). On the lattice, the exact normalization of the translation op-

erator is subject to the ambiguity from the local phase redefinition T → eiαL+iβT as in (116).
Nonetheless, we can normalize it such that for large L, we have (179) with (−1)FL = ±1 and
all the low-lying states have finite P (as opposed to P of order L). Once we have set this nor-
malization, we no longer have the freedom to redefine Todd by a phase. Consequently, in the
low-energy theory, the phase in

T L
odd = e−

2πi
16 , (182)

is also meaningful. It leads to the modulo 8 anomaly of the continuum theory.
We see that by looking at the low-lying states at large but finite L, we can detect a precursor

of the continuum modulo 8 anomaly.
We should stress that, as we discussed around (128), the complete lattice model exhibits

only a modulo 2 anomaly as the phase in (182) can be redefined to be an odd power of the
phase there. However, by looking at the low-lying states, Todd has a natural phase, such that
(179) is satisfied with P of order one. And then, the full modulo 8 anomaly is visible.36

In order to demonstrate the distinction between the modulo 2 anomaly on the lattice and
the more refined modulo 8 anomaly seen in the low-lying states, we can do the following. The
modulo 2 anomaly is independent of the choice of Hamiltonian. In particular, it is present
both with the free Hamiltonian H (50), and also with −H in (107). The low-energy spectra
of these two Hamiltonians lead to the NSR and the RNS theories of a free Majorana CFT. Let
us compare these two systems. The chiral fermion parities (−1)FL and (−1)FR emanate from
the corresponding translation operators of the two problems (which we denote as T in (80)
and T̂ in (111), respectively). As discussed in Section 2.3, (−1)FL and (−1)FR carry opposite
continuum anomalies, i.e., ν = 1 versus ν = −1 mod 8. This is consistent with the claim that
the exact anomaly of the lattice model is determined by ν mod 2. However, if we consider a

36In the bosonic problem analyzed in [32], a similar anomaly was seen. There, lattice translation also leads to
an emanant Z2 symmetry. And by examining the action of lattice translations on the low-lying states, an anomaly
involving lattice translation can be seen. It is a lattice precursor of the pure Z2 anomaly of the continuum theory.
Just like here, that anomaly cannot be seen by looking at all the states in the lattice Hilbert space and it is visible
only in the low-energy spectrum. However, unlike the case here, in that bosonic problem, there is no analog of the
modulo 2 translation anomaly (128), which exists for every Hamiltonian.
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particular Hamiltonian and focus on its low-energy states, we can see a lattice precursor of the
more subtle modulo 8 continuum anomaly.37

5 Local Hilbert spaces and bosonization

In the introduction, we mentioned some subtleties of fermionic theories: locality when the
fundamental degrees of freedom anticommute at separated points, the relation to a tensor
product Hilbert space, and the dependence on a choice of spin structure. We now discuss
these issues in more detail and will demonstrate them in the Majorana chain.

5.1 Locality and tensor product Hilbert space

It is completely standard to express fermions in terms of bosons, using the famous Jordan-
Wigner transformation. More precisely, this transformation expresses fermions like χℓ that
anticommute for different values of ℓ in terms of bosonic variables b j that commute for differ-
ent values of j. Furthermore, the total Hilbert space can be taken as a tensor product of local
Hilbert spaces H j (9)

H =
N
⊗

j=1

H j , (183)

such that b j acts only on H j . In this form, the theory seems to be a bosonic theory with a
standard tensor product Hilbert space. However, as we will soon review, the situation is not
so simple.

Let us do it more concretely and start with the case of even L = 2N . (We will turn to the
odd L case in Section 5.4.) The Hilbert space is 2N dimensional. We represent it as a tensor
product of N factors of a two-dimensional Hilbert space (183).

The local bosonic operators b j that act only on H j can be expressed in terms of the Pauli
matrices. For each H j , we will use the basis

|↑〉=
�

1
0

�

, |↓〉=
�

0
1

�

, (184)

so that σz |↑〉 = |↑〉 , σz |↓〉 = −|↓〉. Then, a basis for the full Hilbert space H is given by
|m1, m2, · · · , mN 〉 with m j =↑,↓. And σa

j with a = x , y, z and j = 1, 2, · · · , N denotes the
operator acting as the identity on all Hk with k ̸= j and as σa on H j . Crucially, σa

j commutes

with σb
j′ for j ̸= j′.

In terms of these bosonic degrees of freedom, the Jordan-Wigner transformation on a pe-
riodic chain is38

χ1 = −σx
1 ,

χ2 = σ
y
1 ,

χ3 = −σz
1σ

x
2 ,

(185)

37In this example of free fermions, the lattice anomaly appears to only capture ν mod 2, which is classified by
the “Arf layer” H1(Z2,Z2)≃ Z2 [42]. It is a quotient of the Z8 classification of the full anomaly.

38Here the signs are conventional, and we chose them so that the final Ising Hamiltonian in (202) is ferromag-
netic, rather than antiferromagnetic. One can redefine σx

j → (−1) jσx
j ,σ y

j → (−1) j+1σ
y
j ,σz

j → −σ
z
j to remove

these signs. Alternatively, we could have redefined χℓ → (−1)ℓχℓ and flipped the overall signs of the fermionic
Hamiltonians (50) and (69).
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χ4 = σ
z
1σ

y
2 ,

...

χ2N−1 = −σz
1σ

z
2 · · ·σ

z
N−1σ

x
N ,

χ2N = σ
z
1σ

z
2 · · ·σ

z
N−1σ

y
N .

It is easy to check that these operators satisfy the correct anticommutation relations
{χℓ,χℓ′}= 2δℓ,ℓ′ . The inverse transformation is

σx
1 = −χ1 , σ

y
1 = χ2 ,

σx
2 = −iχ1χ2χ3 , σ

y
2 = iχ1χ2χ4 ,

...
...

σx
N = iN+1χ1χ2 · · ·χ2N−2χ2N−1 , σ

y
N = iN−1χ1χ2 · · ·χ2N−2χ2N .

(186)

The expressions (185) and (186) demonstrate the first subtlety above. If we view the
operators σa

j as local operators, the fermions χℓ are not local. χℓ is a line operator stretching
from ℓ to the first site ℓ = 1 (185). Conversely, if we view the fermions χℓ as local operators,
then the bosons σx

j and σ y
j and are nonlocal (186). However, some operators, e.g.,

χ2 j−1χ2 j = −iσz
j , j = 1,2, · · · , N ,

χ2 jχ2 j+1 = −iσx
j σ

x
j+1 , j = 1, 2, · · · , N − 1 ,

(187)

are local both in terms of the fermions and the bosons. Note that in the last equation we
excluded the case j = N because

χ2Nχ1 = −σz
1σ

z
2 · · ·σ

z
N−1σ

y
Nσ

x
1 = i(σz

1σ
z
2 · · ·σ

z
N )σ

x
Nσ

x
1 . (188)

It is similar to the expression in (187) except that it is multiplied by the nonlocal operator
σz

1σ
z
2 · · ·σ

z
N .

Let us express our symmetry operators in terms of the bosonic degrees of freedom. The
internal symmetry operator is

(−1)F = iNχ1 · · ·χ2N = σ
z
1σ

z
2 · · ·σ

z
N . (189)

Here we expressed it as a product of the local fermion parity operators in H j , which are given
by iχ2 j−1χ2 j = σz

j .
The time-reversal transformation is particularly simple in this bosonic description. It is

independent of the σ matrices T = K, where K denotes complex conjugation. Clearly, this
expression satisfies the defining property T χℓT −1 = (−1)ℓ+1χℓ in (87) and T 2 = 1.

5.2 Majorana translation operators

Unlike the action of (−1)F , the action of the translation operator TRR in (117) (or equivalently
T) is more complicated. First, since TRR maps χℓ→ χℓ+1, it cannot lead to a simple action on
H j . Instead, one can consider T2

RR and hope that it maps H j →H j+1 (with j ∼ j +N). This is
indeed the case for σz

j

T2
RRσ

z
j T−2

RR = σ
z
j+1 . (190)

But this is not true for σx
j and σ y

j . We have

T2
RRσ

a
j T−2

RR =

¨

σz
1σ

a
j+1 , j = 1, 2, · · · , N − 1 ,

σa
1σ

z
2σ

z
3 · · ·σ

z
N , j = N ,

a = x , y . (191)
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Similarly, for the twisted translation TNSNS in (122) (or equivalently TG),

T2
NSNSσ

z
j T−2

NSNS = σ
z
j+1 ,

T2
NSNSσ

a
j T−2

NSNS =

¨

σz
1σ

a
j+1 , j = 1,2, · · · , N − 1 ,

−σa
1σ

z
2σ

z
3 · · ·σ

z
N , j = N ,

a = x , y .
(192)

We see that while TRR and TNSNS act locally on the fermions, they do not act locally on the
bosonic degrees of freedom σa

j . And even T2
RR and T2

NSNS do not act in the naive way on the
bosonic variables.

This action on the bosonic variables has an obvious intuitive explanation. As we empha-
sized, the Jordan-Wigner transformation (185), (186) is nonlocal. A local fermion is expressed
in terms of a line operator constructed out of the bosons. And a local boson is expressed in
terms of a line operator constructed out of the fermions. Then, when the fermionic translation
operators TRR and TNSNS act on the bosons, they should also translate the line operator, and
hence the nonlocal expressions in (191) and (192).

The fact that TRR and TNSNS or even their squares T2
RR and T2

NSNS do not simply translate
σa

j means that they do not act in the naive way by mapping the local factors H j → H j+1.

However, in the basis with diagonal σz
j , T2

RR|m1, m2, · · · , mN 〉 differs from the naive result
|mN , m1, · · · , mN−1〉 by a phase. For example,

T2
RR |↑↑ · · · ↑〉= |↑↑ · · · ↑〉 , T2

RR |↓↓ · · · ↓〉= (−1)N−1 |↓↓ · · · ↓〉 ,

T2
NSNS |↑↑ · · · ↑〉= |↑↑ · · · ↑〉 , T2

NSNS |↓↓ · · · ↓〉= (−1)N |↓↓ · · · ↓〉 .
(193)

The normalization of the translation operators in (117) and (122) is natural also because
the phases in (193) are only signs. However, we see that even with these choices, there is a
nontrivial sign when these operators act on |↓↓ · · · ↓〉.

5.3 Summing over the spin structures on the lattice

The Hilbert space and the bosonic variables σa
j are the same as in the Ising model. However,

as we stressed above, the fundamental degrees of freedom σx
j and σ y

j are nonlocal relative
to the fermions χℓ. (Note that σz

j is local (187).) In the continuum, the relation between the
fermionic theory and the bosonic theory is well understood and will be reviewed in Appendix
A.3. The bosonic theory is given by summing the fermionic theory over its spin structures, a
procedure that can be thought of as gauging (−1)F and is known in string theory as the GSO
projection.

In order to see that on the lattice, we first express the untwisted Hamiltonian (7) and the
twisted Hamiltonian (8), with the mass terms (89) and (102) using the bosonic variables

H =
i
2

2N
∑

ℓ=1

(1+ (−1)ℓm)χℓ+1χℓ

= −
1−m

2

N
∑

j=1

σz
j −

1+m
2

N−1
∑

j=1

σx
j+1σ

x
j +

1+m
2
(−1)Fσx

1σ
x
N ,

HG =
i
2

2N−1
∑

ℓ=1

(1+ (−1)ℓm)χℓ+1χℓ −
i(1+m)

2
χ1χ2N

= −
1−m

2

N
∑

j=1

σz
j −

1+m
2

N−1
∑

j=1

σx
j+1σ

x
j −

1+m
2
(−1)Fσx

1σ
x
N .

(194)
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If not for the factor of (−1)F in the last term, these two Hamiltonians are the same as the
Hamiltonians for the Ising model with or without a Z2 defect at the link (N , 1). However, the
factor of (−1)F is very important for two reasons. First, (−1)F is an operator rather than a
c-number. And furthermore, it is a nonlocal operator, affecting all the local factors H j . Second,
as we stressed, the bosonic degrees of freedom are nonlocal.

To address these two issues, we imitate the sum over the spin structures of the con-
tinuum theory. See [41] for related discussions on the connection between the continuum
bosonization/fermionization and the Jordan-Wigner transformation on the lattice. The au-
thors of [92–95] have also considered the two fermionic Hamiltonians H, HG in (194) (as well
as their translation symmetries), and the two other bosonic Hamiltonians HIsing, Htw that we
discuss below. Here we focus more on the global symmetries of the bosonic and fermionic
models.

First, we double the system by taking a direct sum of two copies of the Hilbert space H
and denote them HNSNS and HRR

eH =HNSNS ⊕HRR . (195)

In the continuum limit, they become the NSNS and the RR Hilbert spaces, as discussed in

Section 4.2 and 4.1. We also define an operator eS =
�

0 1
1 0

�

that implements the natural

isomorphism HRR
∼= HNSNS. (Here and below, the notation with such 2× 2 matrices that act

on the Hilbert space eH should be thought of as having N×N blocks.) We take the Hamiltonian
and the translation operator on this bigger Hilbert space eH to be

eH =

�

HG 0
0 H

�

,

eT =

�

T2
NSNS 0
0 T2

RR

�

.

(196)

Recall that while TRR, TNSNS are symmetries of H and HG at the massless point m = 0, only
T2

RR, T2
NSNS are symmetries of these Hamiltonians for a generic m. Thus, eT is a symmetry of eH

for any m.39

In this bigger Hilbert space eH, in addition to the fermion parity operator40

(−1)F =

�

(−1)F 0
0 (−1)F

�

, (197)

of the original fermion problem, we gain a new unitary Z2 symmetry

eη=

�

1 0
0 −1

�

. (198)

Together, (−1)F and eη generate a ZF
2 ×Z

η
2 symmetry of eH in eH.

39We can think of the difference between the untwisted problem with H and the twisted problem with HG as
coupling the system to a background Z2 gauge field. Unlike standard lattice gauge fields, here we place it only
on the last link (L, 1). This can be viewed as a classical Z2 gauge field with vanishing field strength and therefore
only its holonomy around the lattice is meaningful and it is represented by ±1 in the last link. The procedure
of doubling the Hilbert space and the later projection that we will perform amounts to making this gauge field
dynamical, while keeping its field strength zero. This will be discussed in more detail in [47].

40We slightly abuse the notation where we use the same symbol (−1)F both for the operators acting in the smaller
Hilbert spaces HNSNS and HRR and also in the larger Hilbert space eH. Also, unlike our other operators acting in eH,

we do not writeá(−1)F in the left-hand side.
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In terms of the bosonic variables σa
j , the Hamiltonian eH on eH is not a local Hamilto-

nian. To obtain a local, bosonic model, we can perform two different projections of the 2N+1-
dimensional Hilbert space eH to a 2N -dimensional subspace. In one case we find the Ising
model, and in the other case we find the Ising model with a Z2 defect. This implements the
GSO projection, or equivalently, summing over the spin structures, on the lattice.

5.3.1 Ising model

To obtain the Ising model, we project HNSNS to the subspace H+NSNS with (−1)F = +1, and
projectHRR to the subspaceH−RR with (−1)F=−1. In other words, we project to the eη(−1)F=1
subspace of eH. We denote this 2N -dimensional subspace of eH as

HIsing =H+NSNS ⊕H−RR . (199)

This corresponds to summing over the spin structures in the continuum.

What are the operators that act in HIsing? The operators

�

σa
j 0

0 σa
j

�

with a = x , y, z act

within HRR and within HNSNS. For a = z, they commute with the projection, but for a = x , y ,
they take us out of the projected Hilbert space HIsing. However,

X j =

�

0 σx
j

σx
j 0

�

, Yj =

�

0 σ
y
j

σ
y
j 0

�

, (200)

map HRR↔HNSNS and commute with the projectors. We also define

Z j =

�

σz
j 0

0 σz
j

�

. (201)

X j , Yj , Z j satisfy the standard commutation relations of Paul matrices.
Now, we can write the Hamiltonian eH in the projected subspace HIsing in terms of operators

that commute with the projections:41

HIsing = eH
�

�

�

HIsing

= −
1−m

2

N
∑

j=1

Z j −
1+m

2

N
∑

j=1

X j+1X j . (202)

We recognize it as the Ising model Hamiltonian. Here |HIsing
means the restriction of an operator

to the subspace HIsing ⊂ eH.42

This analysis also reveals a lattice version of the standard quantum symmetry that arises
after gauging (or equivalently, orbifolding). In the continuum, this was first done for bosonic
theories in [96]. For a recent discussion of the continuum fermionic theory, see e.g., [37]. Since

41Following on the discussion in footnote 38, suppose we had redefined the Pauli matrices in the Jordan-Wigner
transformation (185) by σx

j → (−1) jσx
j ,σ y

j → (−1) j+1σ
y
j ,σz

j → −σ
z
j . This would have flipped the signs of

∑N−1
j=1 σ

x
j+1σ

x
j in (194). As a result, the final Ising Hamiltonian (202) would be in the anti-ferromagnetic phase,

rather than the ferromagnetic phase. It is known that the anti-ferromagnetic Ising model flows to the untwisted
Ising field theory in the continuum when N is even, and to the twisted version when N is odd. Correspondingly,
in this alternative sign convention, our projections below would have depended on the parity of N .

42The Pauli matrices X j , Z j in (202) should be understood as the restriction to the projected Hilbert space HIsing.

Here and below we suppress the restriction symbol
�

�

�

HIsing

for X j , Z j to avoid cluttering when there is no potential

confusion. Similar comments apply to Htw below.
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we projected on eη(−1)F = +1, eη and (−1)F are not independent in the projected Hilbert space
HIsing. In other words, we do not have a ZF

2 ×Z
η
2 symmetry in HIsing, but only a single Z2

η= (−1)F
�

�

�

HIsing

= eη
�

�

�

HIsing

=
N
∏

j=1

Z j

�

�

�

HIsing

. (203)

It acts as on the new bosonic local operators as

η Z jη
−1 = Z j , ηX jη

−1 = −X j . (204)

We identify this symmetry η as the Z2 symmetry of the Ising model HIsing.
The bosonic Hilbert space HIsing can now be written as H+Ising⊕H

−
Ising with ± denoting the

grading with respect to the Z2 symmetry η. We hence obtain

H+Ising =H+NSNS , H−Ising =H−RR . (205)

This matches with the bosonization relation (A.24) in the continuum.43

Finally, we discuss the action of the translation operator eT in (196), which comes from
the square of the Majorana translation operators. We first work in the bigger Hilbert space eH.
Using

eT eS eT−1 =

�

0 T2
NSNST−2

RR
T2

RRT−2
NSNS 0

�

=

�

0 σz
1

σz
1 0

�

, (206)

then (191) and (192) become
eT Z j eT

−1 = Z j+1 ,

eT X j eT
−1 =











X j+1 , j = 1,2, · · · , N − 1 ,

X1

�

(−1)F 0

0 (−1)F+1

�

, j = N .

(207)

Next, we define

TIsing = eT
�

�

�

HIsing

, (208)

as the restriction of the operator eT to the subspace HIsing ⊂ eH. In the projected Hilbert space
HIsing, (207) simplifies to

TIsing Z j T−1
Ising = Z j+1 , TIsing X j T−1

Ising = X j+1 , (209)

with j ∼ j+N . Therefore, in the projected Hilbert space HIsing, TIsing generates a standard ZN
lattice translation symmetry of the Ising model on a closed chain with N sites.

The Ising translation operator can be written in terms of the bosonic variables as [93]

TIsing = t Ising
1 t Ising

2 · · · t Ising
N−1 ,

t Ising
j =

1
2

�

X jX j+1 + YjYj+1 + Z j Z j+1 + 1
�

,
(210)

where t Ising
j is known as the SWAP gate acting on the j-th and j + 1-th sites. We can pick

a basis for HIsing that diagonalizes Z j , and denote it as |m1, m2, · · · , mN 〉Ising.44 Then, it is

straightforward to check that t Ising
j | · · ·m j , m j+1 · · · 〉Ising = | · · ·m j+1, m j · · · 〉Ising, and hence

TIsing|m1, m2, · · · , mN 〉Ising = |mN , m1, · · · , mN−1〉Ising . (211)

This provides another justification for our phase choices in (117) and (122).
43The discussion in Appendix A.3 is more general than the case of the Majorana and Ising CFTs, and hence we

use a slightly different notation. The H±NSNS,H±RR here correspond to H±NS,H±R in (A.24), and H±Ising corresponds to
H±untw there.

44We note that despite the similarity, the basis we use here differs from the one in (193), as they are bases of
different Hilbert spaces.
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5.3.2 Ising model with a twist

Starting from the 2N+1-dimensional Hilbert space eH, there is an alternative projection to obtain
a local bosonic model, which is the Ising model with a Z2 defect. Instead of (199), we now
project HNSNS to the subspace H−NSNS with (−1)F = −1, and project HRR to the subspace H+RR

with (−1)F = +1. In other words, we project on the eη(−1)F = −1 subspace of eH. We denote
this 2N -dimensional subspace of eH as

Htw =H−NSNS ⊕H+RR . (212)

The operators Z j , X j also act within the Hilbert space Htw. The Hamiltonian eH restricted to
this other projected Hilbert space is

Htw = eH
�

�

�

Htw

= −
1−m

2

N
∑

j=1

Z j −
1+m

2

N−1
∑

j=1

X j+1X j +
1+m

2
X1XN . (213)

We recognize this as the Ising Hamiltonian with a twist at the (N , 1)-link by the Z2 symmetry.
Again, in the projected Hilbert space Htw, eη and (−1)F are not independent, and we do

not have a ZF
2 ×Z

η
2 symmetry. Rather, we have a single Z2 symmetry generated by45

ηtw = (−1)F
�

�

�

Htw

= −eη
�

�

�

Htw

=
N
∏

j=1

Z j

�

�

�

Htw

. (214)

It acts on X j , Z j in the same way as in (204). We identify ηtw as the standard Z2 symmetry
of the twisted Ising model. We can grade the Hilbert space Htw using this ηtw symmetry, i.e.,
Htw =H−tw ⊕H+tw, and find

H−tw =H−NSNS , H+tw =H+RR . (215)

This again matches with the bosonization (A.24) in the continuum reviewed in Section A.3.
Next, we define the translation operator in the twisted Ising model as the restriction of the

operator eT to the subspace Htw ⊂ eH

Ttw = eT
�

�

�

Htw

. (216)

It is a symmetry of the Hamiltonian Htw (213). Using (207), we find that it acts on Z j , X j as

Ttw Z j T−1
tw = Z j+1 ,

Ttw X j T−1
tw =

¨

X j+1 , j = 1, 2, · · · , N − 1 ,

− X1 , j = N ,

(217)

which is the expected twisted translation that leaves the twisted Ising Hamiltonian (213) in-
variant.

5.4 Jordan-Wigner transformation for odd L and the Kramers-Wannier duality
defect

So far, we have focused on bosonization of a Majorana chain with even L sites. We now turn
to the odd L case, which is more subtle. The resulting bosonic lattice model we obtain is the

45In this presentation, the Hilbert space of the Ising model and the Hilbert space of the twisted Ising model
are different subspaces of eH. If we consider these two models as different Hamiltonians acting on a smaller,
2N -dimensional, Hilbert space, then η and ηtw are the same operator.
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critical transverse-field Ising model twisted by the Kramers-Wannier duality defect [68,93,97–
99].

For odd L = 2N + 1, we perform the Jordan-Wigner transformation as

χ1 = −σx
1 ,

χ2 = σ
y
1 ,

χ3 = −σz
1σ

x
2 ,

χ4 = σ
z
1σ

y
2 ,

...

χ2N−1 = −σz
1σ

z
2 · · ·σ

z
N−1σ

x
N ,

χ2N = σ
z
1σ

z
2 · · ·σ

z
N−1σ

y
N ,

χ2N+1 = σ
z
1σ

z
2 · · ·σ

z
N−1σ

z
N ,

(218)

and extend it periodically for other values of ℓ.46 So far, the Hilbert space is 2N -dimensional,
and the expressions for χ j with j = 1, · · · , 2N are the same as in the even L case (185). We
still have (187), and

χ2Nχ2N+1 = iσx
N ,

χ2N+1χ1 = −(σz
1 · · ·σ

z
N )σ

x
1 .

(219)

The Hamiltonians of the system without and with a defect are

H =
i
2

2N+1
∑

ℓ=1

χℓ+1χℓ

= −
1
2

N
∑

j=1

σz
j −

1
2

N−1
∑

j=1

σx
j σ

x
j+1 +

i
2
(σz

1 · · ·σ
z
N )σ

x
1 +

1
2
σx

N ,

HG = PHP−1 =
i
2

2N
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χ2N+1

= −
1
2

N
∑

j=1

σz
j −

1
2

N−1
∑

j=1

σx
j σ

x
j+1 −

i
2
(σz

1 · · ·σ
z
N )σ

x
1 +

1
2
σx

N .

(220)

Neither H or HG is local with respect to the bosonic variables of the Pauli matrices. (Note that
there is no mass term (89) for odd L.)

To proceed, as in Section 5.3,47 we double the system by taking a direct sum of two copies
of the Hilbert space H for odd L and denote them HRNS and HNSR. We denote the resulting
2N+1-dimensional Hilbert space by HD:

HD =HRNS ⊕HNSR . (221)

(The subscript D will be justified soon.) We consider the Hamiltonian

HD =

�

HG 0
0 H

�

, (222)

46With this choice, C = (−i)N . We can change its sign by flipping the signs of all the fermions. Again, we take
T =K without any modifications.

47As in footnote 39, we can think of the two systems with or without the twist as differing by coupling to a
background Z2 gauge field. However, unlike the situation of even L, for odd L, the system does not have such a Z2

global symmetry. Therefore, we can place a spatial background Z2 gauge field by flipping the sign of the fermion
term on the last link (L, 1), but since there is no operator G for that symmetry, we cannot introduce similar gauge
fields in the time direction. Related to that, below, we will not perform a projection on the large Hilbert space HD.
As a result, the combined system should be thought of as having a defect of a non-invertible symmetry. This will
be discussed in more detail in [47].

44

https://scipost.org
https://scipost.org/SciPostPhys.16.3.064


SciPost Phys. 16, 064 (2024)

in this 2N+1-dimensional Hilbert space HD. One way to think about this system is by adding
another spin, labeled by j = N + 1, to the original ones and then

HD = −
1
2

N
∑

j=1

σz
j −

1
2

N−1
∑

j=1

σx
j σ

x
j+1 −

i
2
(σz

1 · · ·σ
z
N )σ

x
1σ

z
N+1 +

1
2
σx

N . (223)

As in (200), (201) for the even L case, we redefine the bosonic variables to

X j = σ
x
j σ

x
N+1 , Yj = σ

y
j σ

x
N+1 , Z j = σ

z
j , j = 1, · · · , N ,

XN+1 = −σx
N+1 , YN+1 = −(σz

1σ
z
2 · · ·σ

z
N )σ

y
N+1 , ZN+1 = σ

z
1σ

z
2 · · ·σ

z
Nσ

z
N+1 .

(224)

It is easy to check that these variables satisfy the standard relations of N + 1 decoupled Pauli
matrices. In terms of these bosonic variables in the bigger Hilbert space, the Hamiltonian is

HD = −
1
2

N
∑

j=1

Z j −
1
2

N
∑

j=1

X jX j+1 −
1
2

X1YN+1 . (225)

Locally, away from the link (N + 1,1), this is the Hamiltonian for the critical transverse-field
Ising model on N + 1 sites. At the (N + 1,1) link, there is a modification, which represents a
local defect. In fact, it is precisely the Kramers-Wannier duality defect D in [68,93–95,97–99].

In the continuum limit, this lattice system becomes the Ising model with a topological
line defect D associated with the Kramers-Wannier duality of the continuum Ising CFT. The
latter has been studied extensively by various authors, including [76–79]. From the modern
perspective on generalized global symmetries in relativistic quantum field theory [81,100], this
topological defect and its corresponding operator implement a non-invertible global symmetry
in the Ising CFT.

One way to see that, is to examine the spectrum. The spectrum of the Hamiltonian (225)
can be found exactly using (221). We did it using the fermionic description in Section 4.3. In
the continuum limit, it consists of Virasoro primaries with conformal weights (hL, hR):

HD→HD =
�

1
16

, 0
�

⊕
�

1
16

,
1
2

�

⊕
�

0,
1
16

�

⊕
�

1
2

,
1

16

�

, (226)

where HD is the defect Hilbert space associated with the duality defect D in the continuum
Ising CFT. This is also consistent with the results of [98,99]. Note that the momentum operators
P take values in Z2 ±

1
16 , consistent with the spin selection rule in [68,79,88].

The fact that this lattice bosonic system flows in the continuum limit to the Ising CFT with
a duality defect fits our general picture here. As we discussed in Section 3.1.3, we can view the
odd L = 2N + 1 Majorana chain as its even L = 2N counterpart with a translation symmetry
defect inserted. Furthermore we have argued that the translation symmetry operator leads to
an emanant (−1)FL internal symmetry. Indeed, in the continuum, the NSNS or the RR theory
with a (−1)FL defect is the same as the RNS or the NSR theory. In the construction above, we
took a direct some of the NSR and the RNS theory. This can be thought of as a direct sum of
the RR and the NSNS theories, each with a translation defect. Therefore, it should flow in the
continuum limit to the direct some of these theories with a (−1)FL defect.

This picture is consistent with the known facts about the continuum theory. First, as shown
in [36,39,40,101], in the Ising CFT, the non-invertible duality defect D arises via bosonization
from the chiral fermion parity defect (−1)FL . Also, unlike the discussion in Section 5.3 for the
even L case, here we do not need to perform any projection for odd L. This is consistent with
the expectation in the continuum, where the defect Hilbert space HD associated with the non-
invertible duality defect of the bosonic Ising CFT is related to the fermionic Hilbert spaces of
the Majorana CFT as HD =HRNS ⊕HNSR.

We will discuss more about this non-invertible symmetry of the lattice Ising model in the
following Section and in [47].
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5.5 Summary of bosonization

The continuum Ising CFT is known to have three topological defects: the trivial one, the Z2
defect, and the Kramers-Wannier duality defect [76–79]. On the other hand, the free, massless
Majorana CFT has a Z2×Z

f
2 global symmetry, associated with four topological defects leading

to the NSNS, RR, NSR, and RNS Hilbert spaces. The relations between these two continuum
theories and their defects are discussed in [36–39].

The lattice transverse-field Ising model is also known to have three topological defects:
[68,93,97–99]. (The duality defect is only topological at the critical point.) In Sections 5.3 and
5.4 we showed the relation of these lattice defects in the bosonic Ising model to the fermionic
Majorana chain. More specifically, starting with the Majorana chain with even number L of
sites, the lattice bosonization leads to the Ising model without or with the Z2 defect, while for
odd L we find the Ising model with the Kramers-Wannier duality defect. Below we summarize
the discussion in this section.

5.5.1 Even L

We start with the Hamiltonians H and HG without and with a defect in (194) for even L = 2N
sites. They act on the 2N -dimensional Hilbert spaces denoted by HRR,HNSNS, respectively.
We then take the direct sum eH = HNSNS ⊕HRR of these two Hilbert spaces, and perform the
Jordan-Wigner transformation.

The 2N+1-dimensional Hilbert space eH decomposes into four sectors, each is 2N−1-
dimensional. These four sectors can be written in two equivalent ways using (205) and (215):

eH =H+NSNS ⊕H−NSNS ⊕H+RR ⊕H−RR

=H+Ising ⊕H−tw ⊕H+tw ⊕H−Ising .
(227)

In the continuum limit, the theory flows to the Ising CFT and then the left-moving and the
righ- moving Virasoro representations of these Hilbert spaces are

H+NSNS =H+Ising → (0,0)⊕
�

1
2

,
1
2

�

,

H−NSNS =H−tw →
�

0,
1
2

�

⊕
�

1
2

,0
�

,

H+RR =H+tw →
�

1
16

,
1
16

�

,

H−RR =H−Ising →
�

1
16

,
1
16

�

,

(228)

where the arrows denote the continuum limits. Even though H+RR and H−RR transform the same
under the left-moving and the right-moving Virasoro algebras, they are viewed as different
Hilbert spaces, as they have different (−1)F eigenvalues.

The Hamiltonian eH on eH enjoys a ZF
2 × Z

η
2 symmetry generated by (−1)F and eη. (This

symmetry was referred to as the “categorical symmetry” in [102].) However, as emphasized
above, eH on this big Hilbert space eH is not a local 1+1d Hamiltonian in terms of the bosonic
spin variables σa

j . To obtain a local 1+1d system, we performed projections to eη(−1)F = ±1,

leading to the untwisted and twisted Ising models on the 2N -dimensional Hilbert spaces HIsing
and Htw, respectively. After the projection on the Hilbert spaces HIsing or Htw, there is only a
single Z2 symmetry generated by either η or ηtw.

To conclude, we either have a non-local Hamiltonian eH with a ZF
2×Z

η
2 symmetry in a 2N+1-

dimensional Hilbert space eH, or a local 1+1d Hamiltonian (HIsing or Htw) with only a single
Z2 symmetry in a smaller 2N -dimensional Hilbert space. And of course, we can also have local
fermionic theories (with or without a (−1)F twist), again, with a single Z2 symmetry (−1)F .
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Alternatively, each of the four sectors can be realized as the Hilbert space of a 2+1d TQFT
with a choice of a boundary condition and an anyon line inserted in the bulk [103–105]. In our
case, of the Ising model, the bulk TQFT can be a Z2 gauge theory. From a more modern per-
spective, it means that the theory on the big Hilbert space is a relative theory at the boundary
of a 2+1d bulk system, rather than an absolute 1+1d theory. See [39,86,88,98,102,106–113]
for this bulk perspective for the different sectors of the continuum Ising CFT.

5.5.2 Odd L

For odd L = 2N + 1, we start with the Hamiltonians H and HG in (220). They act on the
2N -dimensional Hilbert spaces denoted by HNSR,HRNS. In the continuum limit, they flow to
the Majorana CFT in the NSR and RNS Hilbert spaces with the following left- and right-moving
Virasoro primaries:

HNSR →
�

0,
1

16

�

⊕
�

1
2

,
1
16

�

,

HRNS →
�

1
16

, 0
�

⊕
�

1
16

,
1
2

�

,
(229)

where again, the arrows denote the continuum limits.
We then take the direct sum of these two Hilbert spaces HD =HNSR ⊕HRNS, and perform

a Jordan-Wigner transformation to obtain a local Hamiltonian HD in terms of the bosonic
variables. We do not perform a projection for odd L, and the final Hilbert space HD is 2N+1-
dimensional. The new Hamiltonian HD describes the transverse-field Ising model on N + 1
sites with a duality defect. In the continuum limit, it flows to the Hilbert space of the Ising
CFT with a duality defect D whose Virasoro representations are

HD →
�

0,
1
16

�

⊕
�

1
2

,
1
16

�

⊕
�

1
16

, 0
�

⊕
�

1
16

,
1
2

�

. (230)

6 Non-invertible lattice translation of the transverse-field Ising
model

In Section 5.4, we found a duality defect D in the transverse-field Ising model, which becomes
the non-invertible Kramers-Wannier duality defect D in the continuum limit. Can we find the
corresponding conserved operator on the lattice?

To proceed, we return to the case of the Majorana chain with even L = 2N in Section 5.3.
We will see that a byproduct of the lattice version of the GSO projection is that it leads to a
conserved operator that mixes with the lattice translation of the critical transverse field Ising
model.

Under the Jordan-Wigner transformation, each pair of Majorana fermions χℓ (with
ℓ = 1,2, · · · , 2N) gives rise to a local Hilbert space H j (with j = 1,2, · · · , N). We saw that

the square of the fermion lattice translation operator, eT =

�

T2
NSNS 0
0 T2

RR

�

(defined in (196))

acts as the ordinary translation operator TIsing in the Ising model when restricted to HIsing.
Similar comments apply to the twisted Ising model.

Let us consider the Majorana translation operator by one site

eTMaj =

�

TNSNS 0
0 TRR

�

: χℓ→ χℓ+1 . (231)

(It is denoted as eTMaj to remind us that it acts in the large Hilbert space eH.) Since

eT = eT2
Maj , (232)
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we can think of eTMaj as roughly the square root of the translation operator eT . Clearly, eTMaj is a
symmetry of the Hamiltonian eH only at the massless point m= 0. Also, because of (120) and
(125):

(−1)F TNSNS = TNSNS (−1)F ,

(−1)F TRR = −TRR(−1)F
(233)

(where the minus sign in the second line was interpreted as an anomaly in (121)), eTMaj does
not commute with eη(−1)F . Therefore, the operator eTMaj does not act within the projected
Hilbert spaces HIsing or Htw.

Instead, we introduce the operator48

eD=
1
2
(1+ eη)eTMaj =

�

TNSNS 0
0 0

�

, (234)

in the big Hilbert space eH. This new operator commutes with eH when m = 0, and obeys
eD2 = 1

2(1+ eη)eT .
Since eD commutes with eη(−1)F , it acts within the projected Hilbert spaces HIsing or Htw.

This motivates us to define

D= eD
�

�

�

HIsing

=

�

TNSNS 0
0 0

�

�

�

�

HIsing

, (235)

as the restriction of D to the projected Hilbert space HIsing. We can similarly define the sym-

metry operator eD
�

�

�

Htw

in the twisted Ising theory.

The operator D of (235) has a kernel – the states with η= −1. In the orthogonal comple-
ment of the kernel, i.e., the states with η = +1, it acts as a unitary symmetry operator. Such
a transformation is known as a partial isometry.

Although this construction was motivated by the fermion theory, it can be discussed entirely
in the bosonic transverse-field Ising model. We start with the Ising Hamiltonian

HIsing = −
1−m

2

N
∑

j=1

Z j −
1+m

2

N
∑

j=1

X j+1X j , (236)

with Pauli operators Z j , X j acting in a 2N -dimensional tensor product Hilbert space, and define
the operator D as49

D= e−
2πiN

8 (dz
1d

x
1)(d

z
2d

x
2) · · · (d

z
N−1d

x
N−1)d

z
N ×

1+η
2

,

dz
j = e

iπ
4 Z j =

1+ iZ j
p

2
, dx

j = e
iπ
4 X j X j+1 =

1+ iX jX j+1
p

2
, η=

N
∏

j=1

Z j .
(237)

Note that 1+η
2 is a projection operator on the states with η = +1. This operator obeys the

following algebra50

DZ j = X jX j+1D , DX jX j+1 = Z j+1D , j = 1, 2, · · · , N . (238)

48We can write (234) as eD= 1
2 (1+ eη)
p

eT to make it clear that it is related to “half-translation.”
49Under the Jordan-Wigner transformation, these local factors are related to those in (65) as dz

j = t−1
2 j−1 for

j = 1,2, · · · , N and dx
j = t−1

2 j for j = 1,2, · · · , N − 1.
50On the 2N -dimensional tensor product Hilbert space for a closed, periodic Ising chain in 1+1d di-

mensions, the Kramers-Wannier duality cannot be implemented by a unitary transformation. To see that,
suppose there is a unitary operator UKW such that UKWZ j U

−1
KW = X j X j+1 for all j = 1, · · · , N , but then

UKWηU−1
KW = UKW(
∏N

j=1 X j X j+1)U−1
KW = 1, which is a contradiction since the Z2 operator η is nontrivial. (See [114]

for an alternative realization of the Kramers-Wannier duality in terms of a unitary operator for the 1+1d edge mode
of a 2+1d bulk system.) In contrast, as we will soon see, our D is not invertible, and in particular not unitary.

48

https://scipost.org
https://scipost.org/SciPostPhys.16.3.064


SciPost Phys. 16, 064 (2024)

Hence, it implements the Kramers-Wannier duality on a closed periodic chain in a translation-
ally invariant way. Indeed, this expression holds true for all j = 1, · · · , N with XN+1 = X1,
ZN+1 = Z1.

To summarize, at the critical point m= 0, D commutes with the Ising Hamiltonian:51

DHIsing = HIsing D , for m= 0 . (239)

One can add to HIsing the deformation

−h
N
∑

j=1

Z j+1Z j − h
N
∑

j=1

X j+2X j , (240)

which preserves the non-invertible symmetry D for any h. This term is locally related to the
four-Fermi term

∑

ℓχℓχℓ+1χℓ+2χℓ+3 via the Jordan-Wigner transformation. See [57] for dis-
cussions of this deformed bosonic lattice model.

We see that D is a symmetry of the transverse-field Ising model (236) at the critical point.
However, D is not an ordinary symmetry. It is not invertible (i.e., D−1 does not exist) because it
has a nontrivial kernel. It is a non-invertible translation symmetry of the critical Ising model.52

In contrast, the operator (dz
1d

x
1) · · · (d

z
N−1d

x
N−1)d

z
N (which has been discussed in, for example,

[67,69,74,115]) is unitary, but it does not commute with the Ising translation operator TIsing
or the Ising Hamiltonian HIsing for any m.

In the projected Hilbert space HIsing, the non-invertible translation operator D and the Z2
symmetry η obey the following algebra

D2 =
1
2
(1+η) TIsing ,

η2 = 1 , Dη= ηD=D ,

T N
Ising = 1 , TIsing D=D TIsing , TIsingη= η TIsing .

(241)

As a result, we also have D2N = 1
2(1 + η). One can similarly consider D† = DT−1

Ising, which

satisfies DD† =D†D= 1
2(1+η).

The algebra (241) is reminiscent of the fusion algebra

D2 = 1+η , Dη= ηD =D , η2 = 1 , (242)

of the non-invertible symmetry operator D of the continuum Ising CFT at the critical point
[76–79], which is associated with the Kramers-Wannier duality. (Recall that we use D for the
lattice operator and D for the continuum operator.) Soon, we will explain the relation between
them.

The main difference between the lattice D and the continuum D is that D mixes with
the lattice translation operator TIsing in (210). For the low-lying states in the large N limit,
TIsing ∼ 1, and therefore, the lattice algebra coincides with the continuum one up to rescaling.

51When we discuss the symmetries, we should distinguish between symmetries of either of the fermionic models
with Hamiltonians H and HG and symmetries of the Ising or twisted Ising model. At the critical point, the two
fermionic models have new symmetries TRR and TNSNS respectively. These symmetries are standard invertible
symmetries. (This was discussed in a context similar to ours in [93–95].) However, it is important that these are
not symmetries of the two bosonic models, Ising and twisted Ising. In contrast, our operator D of the Ising model
is non-invertible and is a symmetry of HIsing at the critical point. (Similar comments apply to the twisted Ising
model discussed below.) These operators are different and are related as in (234) and (235).

52Instead of D, one might be tempted to consider the conserved operator
�

TNSNS 0
0 1

�

= D + 1−η
2 , which is

unitary, and in particular, invertible. However, this is not a valid invertible symmetry, as it does not map local
operators to local operators.
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Let us compare our algebra with related lattice algebras in the literature. In [116], the au-
thors realize the fusion algebra (242) in a lattice model with a non-tensor-factorized Hilbert
space. More specifically, their Hilbert space is a direct sum Hsite ⊕Hlink of the Hilbert space
of spins on the sites Hsite and another one Hlink on the links . This is to be contrasted with
our setup, where HIsing is a tensor product of local Hilbert spaces. So one either has an inter-
nal non-invertible algebra (242) on a non-tensor-factorized Hilbert space, or a non-invertible
algebra mixing with the lattice translation (241) on a tensor product Hilbert space. Our non-
invertible operator D is also different from the one in [68, 70–73, 117]. The authors of these
papers considered a map N from one Hilbert space of spins on the sites, to another one with
spins on the links. Similarly, there is another map N † that maps the Hilbert space on the links
to that on the sites.

We claim that just as (−1)FL emanates from lattice translation in the massless fermion
problem, the non-invertible global symmetry of the continuum Ising CFT D emanates from
the non-invertible translation symmetry D of the transverse field Ising model.53 Consequently,
the continuum non-invertible symmetry D is not an emergent symmetry, but an emanant sym-
metry. It arises from the exact non-invertible translation symmetry of the critical transverse
field Ising model D. And as all emanant symmetries [32], it is exact in the continuum limit
and is not violated even by irrelevant operators.

Let us give a supporting argument for this claim. In the continuum, it is known that the
chiral fermion parity (−1)FL of the massless Majorana CFT becomes the non-invertible global
symmetry D of the bosonic Ising CFT after summing over the spin structures [39, 40, 101].54

As discussed in Section 4, the chiral fermion parity (−1)FL of the continuum Majorana CFT
emanates from the Majorana translation operators TRR, TNSNS (see (149) and (165)). The new
operatorD is the Majorana translation TNSNS after we sum over the spin structures on the lattice
(see Section 5.3). Therefore, the non-invertible global symmetry D of the continuum Ising CFT
emanates from the non-invertible translation symmetry D on the lattice. More precisely, on
the low-lying states, we have

D=
1
p

2
De

2πiP
2N , (243)

where P = hL − hR is the continuum translation operator of the Ising CFT.55

We stress that the relation (243) between the lattice operator D and the continuum oper-
ators D and P is exact in the low-energy spectrum. It does not have any O(1/N) finite-size
corrections.

We leave a thorough investigation of this non-invertible translation symmetry operator D
and its defect (225) in the transverse-field Ising model for an upcoming work [47].

53There are other microscopic realizations of the Kramers-Wannier topological line in the Ising CFT. See [68,
116] for such a realization in the statistical Ising model. The generalization of the anyonic chain [118] gives a
Hamiltonian lattice model with a non-invertible conserved operator.

54Alternatively, the non-invertible Kramers-Wannier symmetry in the Ising CFT can also be constructed by gaug-
ing the Z2 global symmetry in half of the spacetime and imposing a topological Dirichlet boundary condition, a
construction known as half gauging [119].

55Even though the lattice D and the continuum D are conserved operators, since they are non-invertible, without
further input, they do not have a natural normalization. Correspondingly, we could simplify (243) by rescaling
either D or D by a factor of

p
2.
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7 Conclusions

In this paper, we studied the 1+1d closed Majorana chain and focused on its symmetries and
anomalies. Our analysis was divided into three cases:

• Even L, which we refer to as RR,

• even L with a fermion parity defect, which we refer to as NSNS, and

• odd L, which we refer to as NSR (it is closely related to odd L with a fermion parity
defect, which we refer to as RNS).

The symmetries we discussed are lattice translation, parity, time reversal, and fermion
parity (−1)F .

The anomalies of these lattice symmetries appear as projective phases in the algebras real-
ized on these Hilbert spaces. Some of these phases can be moved around by phase redefinitions
of the operators, but some others cannot. In order to respect spatial locality, we restrict the al-
lowed phase redefinitions of operators that are products of local factors, such as the translation
operator, to be of the form (116)

S → eiαL+iβS . (244)

A phase redefinition satisfying this restriction can be thought of as adding a local counterterm
on the symmetry line operator.

For even L, the algebras of the rescaled translation operators TRR and TNSNS with other
symmetries are presented in (120) and (125). The projective phases of the former are inter-
preted as the anomalies on the lattice.

For odd L, we find that there is no local phase redefinition of the lattice translation operator
such that for all L, T L is the identity operator. The best one can achieve is T L

odd = e
2πin
16 as in

(128), with n an odd integer that depends on the choice of the counterterm. This is a more
subtle anomaly.

We then focused on the specific case of the free fermion Hamiltonians (7), (8)

H =
i
2

L
∑

ℓ=1

χℓ+1χℓ =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ +
i
2
χ1χL ,

HG =
i
2

L−1
∑

ℓ=1

χℓ+1χℓ −
i
2
χ1χL .

(245)

The continuum limits of H with even L, HG with even L, H with odd L, and HG with odd L
correspond to the Majorana CFT with RR, NSNS, NSR, and RNS boundary conditions, respec-
tively (and hence, the terminology mentioned above). That is, they correspond to fermions
with periodic, anti-periodic, and mixed boundary conditions.

While the non-chiral fermion parity (−1)F is a manifest internal symmetry of the Majorana
chain, the origin of the chiral fermion parity (−1)FL is more subtle. It is not an emergent
symmetry; rather it emanates from the lattice translation symmetry. The precise relations
between the chiral fermion parity and the lattice translation are in (149), (165), and (179),
and summarized in Table 1.

Under this dictionary between the lattice and the continuum symmetries, the lattice alge-
bras (120), (125), (128) agree with the those in the continuum RR, NSNS, and NSR theories
in (37), (30), and (46). In particular, the projective phases of the lattice algebra (120) match
with those in the continuum in (37), which are consequences of the following anomalies (see
discussions in Section 2.2):
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• The mod 8 anomaly of (−1)F , (−1)FL ,P classified by Hom(Tors ΩDPin
3 (pt), U(1)) = Z8,

• the mod 8 anomaly of (−1)F , (−1)FL classified by Hom(Tors ΩSpin
3 (BZ2), U(1)) = Z8,

• the mod 2 anomaly of (−1)F ,P classified by Hom(Tors ΩPin+
3 (pt), U(1)) = Z2 .

Even though the projective phases of the lattice system match with the continuum pro-
jective phases, the lattice model does not capture all the mod 8 anomalies of the continuum
theory. All its anomalies are mod 2 anomalies. (As emphasized around (128) even this phase
reflects only a mod 2 anomaly.56) However, as in [32], if we restrict ourselves to the low-lying
states of a particular lattice Hamiltonian (or small deformations of it), the lattice model can
capture more subtle behavior, which is the precursor of anomalies in emanant symmetries of
the continuum theory. Indeed, the discussion around (182) shows that for large but finite L,
the low-lying spectrum of the lattice theory captures the mod 8 anomaly of the continuum
theory.

In Section 5, we performed the Jordan-Wigner transformation of the Majorana chain to
rewrite the fermion fields in terms of bosonic fields. The Jordan-Wigner transformation pairs
up two Majorana sites into a single bosonic site. We carefully summed over the spin structures
on the lattice to obtain local Hamiltonians in terms of the bosonic variables:

• For even L, we found either the transverse-field Ising Hamiltonian HIsing in (202) or its
Z2-twisted version Htw in (213).

• For odd L, we found the Ising Hamilton HD twisted by the duality defect (225).

We have thus found all three topological defects (the trivial, Z2, and duality defects) of the
critical transverse-field Ising model from the Majorana chain via bosonization.

As an interesting byproduct, we found that the Majorana translation operator leads to a
non-invertible translation symmetry D of the transverse-field Ising model, and we gave an
explicit expression for this operator in terms of the Ising spins in (237). It squares to the
translation operator of the Ising spins by one site TIsing, times a projection operator (241)

D2 =
1
2
(1+η) TIsing . (246)

At the critical point, m = 0, the operator D commutes with the Ising Hamiltonian. However,
it does not have an inverse. Hence, it is a non-invertible lattice symmetry. In the continuum
limit, it flows to the non-invertible global symmetry D, associated with the Kramers-Wannier
duality of the continuum Ising CFT. We learn that the continuum D is a non-invertible emanant
symmetry. See Table 1. A more detailed analysis of this emanant non-invertible symmetry will
appear in [47].

Throughout the paper we used the phrase “on-site” symmetry action and discussed its
various meanings. Let us summarize this discussion. We distinguish between four different
cases:

• The simplest case is when the degrees of freedom reside on the sites (or more generally
in the unit cells) labeled by j, the Hilbert space factorizes as in (9)

H =
N
⊗

j=1

H j , (247)

56This is similar to an anomaly in a Euclidean 4-dimensional lattice fermion model, as discussed in [46]. There,

only a mod 2 reduction of the full ΩSpinZ4
5 (pt) = Z16 continuum ’t Hooft anomaly is visible on the lattice.
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Table 1: The lattice translation operators of the Majorana chains and the Ising model,
and their emanant symmetries in the continuum Majorana and Ising CFTs. We re-
strict to the specific fermionic Hamiltonians in Section 4 and the transverse-field Ising
Hamiltonian (202). Here NS and R stand for the anti-periodic and periodic boundary
conditions for the fermions, respectively. In the third column, we show the algebras
of the lattice translation operators and in the fourth column, we show the relations
between the lattice operators and the emanant chiral fermion parity (−1)FL of the
Majorana CFT, and the non-invertible symmetry D of the Ising CFT. Here (−1)F is
the (non-chiral) fermion parity of the Majorana chain and η is the Z2 symmetry of
the Ising model. We emphasize that restricting to the low-lying modes, the relations
between the lattice and the continuum operators in the fourth column is exact and
does not suffer from finite-size corrections.

number of sites/

Majorana chain

boundary conditions lattice translations emanant symmetries

even L T L
RR = 1 TRR = (−1)FL e

2πiP
L

periodic – RR

even L with defect T L
NSNS = (−1)F TNSNS = (−1)FL e

2πiP
L

antiperiodic – NSNS

odd L T L
odd = e−

2πi
16 Todd = (−1)FL e

2πiP
L

mixed – NSR

Ising model general N D2 = 1+η
2 TIsing D= 1p

2
De

2πiP
2N

periodic T N
Ising = 1

the translation operator T maps (10)

T : H j →H j+1 , j ∼ j + N , (248)

and the internal symmetry operators are given by products of local factors (11)

S= s1s2 · · · sN , (249)

with the local factor s j acting linearly on H j . A typical example is the Ising chain (202).
This example is referred to as on-site symmetry action.

• A more subtle situation occurs when the Hilbert space factorizes as in (247), the trans-
lation operator still maps as in (248), the internal symmetry factorizes in terms of local
factors as in (249), but the local factors s j act projectively on the local Hilbert spaces H j .
In order to avoid this projective action, we can enlarge the unit cell to include several
factors such that the local factors act linearly on them. For example, in the Heisenberg
chain, we can group pairs of local Hilbert spaces, H′k =H2k−1 ⊗H2k such that s2k−1s2k
acts linearly on them. However, in that case T does not act simply on the local factors
H′k, and only T2 acts simply H′k → H′k+1. This behavior is characteristic of the LSM
anomaly [3] and was used in the various papers analyzing it. We will show similar
anomalous behavior in a fermionic theory in [48]. Some authors refer to this projective
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action as being on-site, while other authors refer to it as not-on-site. (See a detailed
discussion of this terminology in [32].)

• An even more subtle situation occurs when the Hilbert space factorizes as in (247), the
translation operator still maps as in (248), but the internal symmetry does not have a
factorization as in (249) in terms of s j acting only on H j . This anomalous situation
arises in various examples including the Levin-Gu model [120] and the modified Villain
model [32]. This behavior is always being referred to as not-on-site. (See also [121] for
a related discussion about on-site symmetry action in Euclidean lattice models.)

• In the critical Majorana chain, discussed in this paper, we encountered a more subtle
situation. The unit cell includes a single site with a single Majorana fermion χℓ. There
is no local Hilbert space labeled by ℓ. We can have local Hilbert spaces H j as in (247),
but they are associated with two unit cells. Here, the internal Z2 symmetry generated
by G factorizes as in (249) with local factors acting linearly on H j (see the discussion
after equation (61).) The situation with T is more interesting. T acts simply on the
fundamental fermions χℓ → χℓ+1, but since H j is associated with two fermions, χ2 j−1
and χ2 j , T does not act simply on H j . However, unlike the second case above, where T2

acts simply on H j , this is not the case here. For this reason, the anomaly in the Majorana
chain differs from that of the LSM anomaly.

Finally, this work can be extended in many directions. In particular, in [47, 48], we will
present a more detailed discussion of this system, its symmetries, defects, anomalies, and
their consequences. We will also repeat this analysis for other related systems. It would be
nice to apply these techniques to all the minimal models and to relate the picture of the defects
in [122] to ours.57 The special case of the 3-state Potts model was recently studied in [123].
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A Review of the continuum Majorana and Ising CFTs

A.1 Partition functions

In this section, we will review the standard computations of the partition functions of a free
Majorana CFT in the continuum. We will find perfect agreement between the relations of these
continuum partition functions and those found on the lattice in Section 3.4.

57We thank the referee for making this interesting suggestion.
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NSNS

Define

ZNSNS(τ, τ̄; m, mL) = TrHNSNS

�

qhL−
1

48 q̄hR−
1
48
�

(−1)F
�m �
(−1)FL
�mL
�

, (A.1)

where q = e2πiτ, q̄ = e−2πiτ̄, and m, mL = 0, 1. They are

ZNSNS(τ, τ̄; m= 0, mL = 0) = q−
1

48 q̄−
1
48

∞
∏

k=1

|1+ qk− 1
2 |2 =
�

�

�

�

θ3(τ)
η(τ)

�

�

�

�

,

ZNSNS(τ, τ̄; m= 1, mL = 0) = q−
1

48 q̄−
1
48

∞
∏

k=1

|1− qk− 1
2 |2 =
�

�

�

�

θ4(τ)
η(τ)

�

�

�

�

,

ZNSNS(τ, τ̄; m= 0, mL = 1) = q−
1

48 q̄−
1
48

∞
∏

k=1

(1− qk− 1
2 )(1+ q̄k− 1

2 ) =

√

√

√θ4(τ)
η(τ)

√

√θ3(τ̄)
η(τ̄)

,

ZNSNS(τ, τ̄; m= 1, mL = 1) = q−
1

48 q̄−
1
48

∞
∏

k=1

(1+ qk− 1
2 )(1− q̄k− 1

2 ) =

√

√θ3(τ)
η(τ)

√

√

√θ4(τ̄)
η(τ̄)

.

(A.2)

The fact that ZNSNS(τ, τ̄; m, mL = 0) is invariant under Re(τ)→ −Re(τ) agrees with the first
line of (136) with even n on the lattice. Similarly, ZNSNS(τ; τ̄; m, mL = 1) with m = 0, 1 are
related by Re(τ)→−Re(τ) corresponds to the first line of (136) with odd n.

Next, we insert the parity operator and define

ZP
NSNS(t; m, mL) = TrHNSNS

�

e−2πt(∆− 1
24 )P
�

(−1)F
�m �
(−1)FL
�mL
�

, (A.3)

where∆= hL+hR. In the presence of the parity operator, the partition function is independent
of m, and we have

ZP
NSNS(t; m, mL = 0) = q−

1
24

∞
∏

k=1

(1+ q2k−1) =

√

√θ3(2it)
η(2it)

,

ZP
NSNS(t; m, mL = 1) = q−

1
24

∞
∏

k=1

(1− q2k−1) =

√

√

√θ4(2it)
η(2it)

,

(A.4)

where q= e−2πt with real t. Note that these partition functions with a parity operator insertion
depend only on one real modulus t. This is consistent with the fact that on the lattice, n can be
set to be ±1 by the second line of the lattice (136), which further implies that these partition
functions are independent of m.

RR

In the RR Hilbert space, we define

ZRR(τ, τ̄; m, mL) = TrHRR

�

qhL−
1
48 q̄hR−

1
48
�

(−1)F
�m �
(−1)FL
�mL
�

. (A.5)

They are

ZRR(τ, τ̄; m= 0, mL = 0) = 2q
1
24 q̄

1
24

∞
∏

k=1

|1+ qk|2 =
�

�

�

�

θ2(τ)
η(τ)

�

�

�

�

,

ZRR(τ, τ̄; m, mL) = 0 , otherwise.

(A.6)
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This is consistent with the lattice relation in (131). Furthermore, the fact that
ZRR(τ, τ̄; m = 0, mL = 0) is invariant under Re(τ) → −Re(τ) is consistent with the lattice
relation (132).

Next, we insert the parity operator and define

ZP
RR(t; m, mL) = TrHRR

�

e−2πt(∆− 1
24 )P
�

(−1)F
�m �
(−1)FL
�mL
�

. (A.7)

Again, it depends only on one real modulus t. This is consistent with the fact that on the
lattice, n can be set to be ±1 when there is a parity operator insertion mP = 1 in (134).

The two nonzero partition functions are

ZP
RR(t; m= 0, mL = 1) = TrHRR

�

e−2πt(∆− 1
24 )P (−1)FL
�

=
p

2q
1

12

∞
∏

k=1

(1+ q2k) =

√

√θ2(2it)
η(2it)

,

ZP
RR(t; m= 1, mL = 1) = TrHRR

�

e−2πt(∆− 1
24 )P (−1)F (−1)FL

�

=
p

2iq
1
12

∞
∏

k=1

(1+ q2k) = i

√

√θ2(2it)
η(2it)

,

(A.8)

while the other two partition functions vanish

ZP
RR(t; m, mL = 0) = 0 . (A.9)

This is consistent with the lattice relation (133).
Using (37), we derive the following general relation between the partition functions:

ZP
RR(t; m= 0, mL = 1) = −iZP

RR(t; m= 1, mL = 1) . (A.10)

This is consistent with (134) with n= ±1 and m= 0.

NSR

Define the NSR partition functions as

ZNSR(τ, τ̄; mL) = TrHNSR

�

qhL−
1
48 q̄hR−

1
48
�

(−1)FL
�mL
�

. (A.11)

We have

ZNSR(τ, τ̄; mL = 0) = q−
1

48 q̄
1

24

∞
∏

k=1

�

1+ qk− 1
2

�

(1+ q̄k) =
1
p

2

√

√θ3(τ)
η(τ)

√

√θ2(τ̄)
η(τ̄)

,

ZNSR(τ, τ̄; mL = 1) = q−
1

48 q̄
1

24

∞
∏

k=1

�

1− qk− 1
2

�

(1+ q̄k) =
1
p

2

√

√

√θ4(τ)
η(τ)

√

√θ2(τ̄)
η(τ̄)

.

(A.12)

Here we choose to quantize the fermion zero mode using a one-dimensional irreducible rep-
resentation as in Section 2.3.

A tensor product of two copies of the Hilbert space of our NSR theory has a single ground
state. However, the canonical quantization of that system as two Majorana fermions that
anticommute with each other doubles the Hilbert space and leads to

ZNSR2(τ, τ̄; mL) = 2ZNSR(τ, τ̄; mL)
2 . (A.13)

Therefore, it is common to define ZNSR as the square root of ZNSR2 , which differs from our
definition by a factor of

p
2, but does not admit a Hilbert space interpretation of the NSR

problem. See the related discussion in footnote 1.
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The RNS partition functions are similarly obtained from the NSR partition function by
exchanging L with R and q with q̄.

As in the discussion around (A.13), we face a question how to quantize the tensor product
of the NSR and RNS theories. The tensor product of their Hilbert spaces differs from the tensor
product of the NSNS and RR Hilbert spaces, as each state in the latter problem appears twice.
Hence,

2ZNSR(τ, τ̄; mL = 0)ZRNS(τ, τ̄; mR = 0) = ZNSNS(τ, τ̄; m= 0, mL = 0)ZRR(τ, τ̄; m= 0, mL = 0) .
(A.14)

This might motivate us to absorb a factor of
p

2 in ZNSR, but then the NSR problem does not
have a Hilbert space interpretation. Again, compare with footnote 1.

A.2 Modular transformation and the interval Hilbert spaces

We study the modular S transformations of the various partition functions. The following
identities will be useful:

θ3(−1/τ) =
p

−iτθ3(τ) ,

θ2(−1/τ) =
p

−iτθ4(τ) ,

θ4(−1/τ) =
p

−iτθ2(τ) ,

η(−1/τ) =
p

−iτη(τ) .

(A.15)

The modular S transformation leaves the NSNS partition functionZNSNS(τ, τ̄; m=0, mL=0)
without operator insertion invariant. On the other hand, the modular S transformation of
ZNSNS(τ, τ̄; m = 1, mL = 0) with a (−1)F operator insertion turns the latter into a defect that
modifies the NSNS Hilbert space into the RR one:

ZNSNS(τ, τ̄; m= 1, mL = 0) =

�

�

�

�

�

θ2(−
1
τ)

η(− 1
τ)

�

�

�

�

�

= ZRR

�

−
1
τ

,−
1
τ̄

; m= 0, mL = 0
�

. (A.16)

Next, the modular S transformation of the NSNS partition function ZNSNS(τ, τ̄; m=1, mL=1)
with a (−1)FR operator insertion turns the latter into a defect that modifies the Hilbert space
to the NSR theory:

ZNSNS(τ, τ̄; m= 1, mL = 1) =

√

√

√
θ3(−

1
τ)

η(− 1
τ)

√

√

√
θ2(−

1
τ̄)

η(− 1
τ̄)
=
p

2ZNSR

�

−
1
τ

,−
1
τ̄

; mL = 0
�

. (A.17)

As in footnote 1 and in the discussion in around (A.13) and (A.14), the extra factor of
p

2
shows the confusing relation between the canonical quantization of the system and its path
integral description. The trace over the Hilbert space HNSR (A.12) lacks the factor of

p
2, while

the functional integral description of the system leads to the partition function (A.17). This
issue arises whenever we have an odd number of quantum mechanical real fermions.

Alternatively, as discussed in footnote 1 and in Section 2.3, one can quantize the zero mode
in the NSR Hilbert space using a two-dimensional irreducible representation. The resulting
NSR partition function is Z ′NSR = 2ZNSR. It is still incompatible with the modular transforma-
tion (A.17). We conclude that neither of the two canonical quantizations of the NSR theory is
compatible with the functional path integral.

Similarly, the modular S transformation of ZNSNS(τ, τ̄; m = 0, mL = 1) gives the RNS
partition function with the same relative factor of

p
2.
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The modular transformation of ZP
NSNS(t; m, mL = 0) is

ZP
NSNS(t; m, mL = 0) = e

2πℓ
48

∞
∏

k=1

�

1+ e−2πℓ(k− 1
2 )
�

= TrHo
NS

�

e−2πℓ(∆− 1
48 )
�

, (A.18)

where

ℓ=
1
2t

. (A.19)

This is the partition function of a free Majorana fermion on an interval with the NS boundary
conditions

NS : χL

�

�

�

x=0
= χR

�

�

�

x=0
, χL

�

�

�

x=π
= −χR

�

�

�

x=π
. (A.20)

Ho
NS stands for the interval Hilbert space with the above boundary conditions. The superscript

“o” stands for the open string channel. Before the modular transformation, the parity twist is
in the time direction. After the transformation, it becomes a parity twist in space, which can
be interpreted as an interval. The factor of 1/2 in (A.19) is due to the parity twist.

The modular transform of ZP
NSNS(t; m, mL = 1) is

ZP
NSNS(t; m, mL = 1) =

√

√θ2(1/2t)
η(1/2t)

=
p

2e
−2πℓ

24

∞
∏

k=1

�

1+ e−2πℓk
�

. (A.21)

One might want to interpret it as the trace TrHo
R
[e−2πℓ(∆− 1

48 )] over the Hilbert space of a system
on an interval with R boundary conditions

R : χL

�

�

�

x=0
= χR

�

�

�

x=0
, χL

�

�

�

x=π
= χR

�

�

�

x=π
. (A.22)

But the factor of
p

2 shows that this cannot be right. Again we see that the path integral
description, which leads to (A.21), is incompatible with the canonical quantization over Ho

R.
The source of this factor of

p
2, both in Ho

R and in HNSR or HRNS, is due to an odd number of
fermion zero modes. See [53, 54] for more discussions of a free 1+1d Majorana CFT on an
interval, and the relation to the factor of

p
2 in the quantum mechanical model of odd number

of real fermions mentioned in footnote 1.
The modular transformation of ZP

RR(t; m, mL = 1) is

ZP
RR(t; m= 0, mL = 1) = e

2πℓ
48

∞
∏

k=1

(1− e−2πℓ(k− 1
2 )) = TrHo

NS

�

(−1)Fo e−2πℓ(∆− 1
48 )
�

, (A.23)

which is interpreted in the dual channel as the partition function of a Majorana fermion on
an interval of length ℓ = 1/2t with NS boundary condition (A.20). The symmetry operator
(−1)Fo is the fermion parity operator on the interval.

A.3 Bosonization and fermionization

Here we review the standard bosonization and fermionization in 1+1d CFT. We assume
cL−cR = 0 mod 8 throughout, which is a necessary condition for every bosonic CFT. Our review
follows the recent discussions in [36–41,124–129], which builds on the classic paper [130].

Let F be a 1+1d fermionic CFT with a fermion parity symmetry (−1)F . We consider two
Hilbert spaces associated with F . The first one is the NS Hilbert space HNS, which is in one-to-
one correspondence with the local operators of F by the operator-state correspondence. The
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second one is obtained from HNS by a (−1)F twist, which we call the R Hilbert space HR.58

We can further grade each Hilbert space by (−1)F , i.e., HNS =H+NS⊕H
−
NS and HR =H+R ⊕H

−
R .

In 1+1d, there is an invertible fermionic topological field theory, denoted as (−1)Arf. On a
closed spin spacetime manifold, (−1)Arf = +1 if the spin structure is even and (−1)Arf = −1 if
the spin structure is odd. It can be viewed as a fermionic local counterterm.

Given any fermionic CFT F , we can stack it with (−1)Arf. The stacking flips the (−1)F

eigenvalue in HR and thus exchanges H+R with H−R .
Starting with a fermionic CFT F , we can sum over the spin structures to obtain a bosonic

CFT B. This is also known as bosonization, which is equivalent to gauging (−1)F . Since (−1)F

is gauged, it is no longer a global symmetry in B. Rather, we obtain a quantum Z2 symmetry η
(which is free of ’t Hooft anomaly) in the bosonic CFT B, which is implemented by the Wilson
line of the gauged (−1)F symmetry. Let Huntw be the (untwised) Hilbert space of B, which is in
one-to-one correspondence with the local operators of B. We can also twist the Hilbert space
by η to obtain a twisted Hilbert space Htw. We can grade Huntw and Htw by the Z2 symmetry
η, i.e., Huntw = H+untw ⊕H−untw and Htw = H+tw ⊕H−tw. The Z2 symmetry η is free of ’t Hooft
anomaly.

In both F and B, there are four sectors of Hilbert spaces, and they are mapped to each
under the bosonization as follows:

H+untw =H+NS , H−untw =H−R ,

H+tw =H+R , H−tw =H−NS .
(A.24)

Conversely, one can start with B and couple it to a fermionic topological field theory to re-
trieve F .

Starting from F , we can first stack it with (−1)Arf, and then gauge the diagonal (−1)F .
This gives another bosonic CFT B′, whose four sectors are related to the fermionic ones as in
(A.24) but with H+R and H−R exchanged. The new bosonic CFT B′ is related to B by gauging
the Z2 symmetry η, i.e., B′ = B/Z2.59

Let us illustrate this bosonization procedure in the case of the massless Majorana CFT F .
The states in HNS correspond to the following Virasoro primary operators

H+NS : 1,χLχR , H−NS : χL,χR , (A.25)

where χL and χR have conformal weights (hL, hR) = (
1
2 , 0) and (0, 1

2), respectively. The states
in HR correspond to the following Virsoro primary operators

H+R : µ , H−R : σ , (A.26)

where µ,σ are the spin fields with conformal weights (hL, hR) = (
1
16 , 1

16).
The bosonization of the Majorana CFT gives the bosonic Ising CFT B, a.k.a., the (3,4)

Virasoro minimal model. The states in the untwisted Hilbert space correspond to the following
local Virasoro primary operators

H+untw : 1,ϵ , H−untw : σ , (A.27)

where σ is the order operator with (hL, hR) = (
1
16 , 1

16), and ϵ is the thermal operator with
(hL, hR) = (

1
2 , 1

2). The states in the Z2 twisted Hilbert space Htw correspond to non-local

58In general, there are other global symmetries of F that one can use to define a twisted Hilbert space. For
instance, for the massless Majorana CFT, we also have a chiral fermion parity (−1)FL , which together with (−1)F ,
lead to four Hilbert spaces, HNSNS,HRR,HNSR,HRNS. In this appendix we do not assume any other symmetry than
(−1)F . In this setting there are only two relevant Hilbert spaces of interest to us. When we apply this general
discussion to the massless Majorana CFT, we should replace HNS,HR by HNSNS,HRR, respectively.

59In the string theory literature, B′ is sometimes called the Z2 orbifold of B. It is also common to refer to the
two theories B and B′ as type 0A and type 0B.
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operators attached to a Z2 topological line. The Virasoro primaries in this twisted Hilbert
space are

H+tw : µ , H−tw : χL,χR , (A.28)

where µ is the disorder operator with (hL, hR) = (
1
16 , 1

16). Indeed, we see that these Hilbert
spaces are related to each other as (A.24), where we have identified ϵ in B as χLχR in F under
bosonization.

Importantly, while the fermion operators χL and χR are local operators in F , they are
non-local operators attached to a Z2 line in B. Conversely, while the order operator σ is a
local operator in B, it becomes a non-local operator attached to a (−1)F line in F . This is the
continuum counterpart of the discussion in Section 5.1 for the Jordan-Wigner transformation.

If we stack (−1)Arf in the Majorana CFT before bosonization, then we would obtain B′
which has µ in H−untw and σ in H+tw. In this case, B′ = B/Z2 happens to be isomorphic to B
because the critical Ising CFT is invariant under gauging the Z2 symmetry, which exchanges
the order operator σ with the disorder operator µ. This is related to the fact that the Majorana
CFT F is invariant under stacking it with (−1)Arf.

We summarize the bosonization/fermionization and Z2 orbifold below for the case of the
Majorana and the Ising CFTs. In the entries we record the Virasoro primary operators in each
sector.

F (−1)F -even (−1)F -odd
NS 1,χLχR χL,χR

R µ σ

⊗ (−1)Arf

←−−−−−−−→

F ⊗ (−1)Arf (−1)F -even (−1)F -odd
NS 1,χLχR χL,χR

R σ µ

fermionization
x



ybosonization fermionization
x



ybosonization

B Z2-even Z2-odd
untwisted 1,ϵ σ

twisted µ χL,χR

Z2 orbifold
←−−−−−−−→

B′ Z2-even Z2-odd
untwisted 1,ϵ µ

twisted σ χL,χR

(A.29)
We can couple the bosonic CFT B to a 2+1d Z2 gauge theory by gauging the Z2 symmetry.

In this new system, B becomes a gapless boundary of a 2+1d theory. The four sectors now
become the Hilbert spaces of the 2+1d Z2 gauge theory on a disk with a topological line
insertion in the middle, and the above gapless boundary condition at the boundary of the
disk. (These topological lines arise from the anyon lines of the microscopic toric code.) More
explicitly, H+untw,H−untw,H+tw,H−tw correspond to the trivial line 1, the electric boson line e, the
magnetic boson line m, and the fermion line ψ, respectively [86,98].
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