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Abstract

Counting the degrees of freedom of the massless Rarita-Schwinger theory is revisited
using Behrends-Fronsdal projectors. The identification of the gauge invariant part of the
vector-spinor is thus straightforward, consisting of spins

1
2 and

3
2 . The validity of this

statement is supported by the explicit solution found in the standard gamma-traceless
gauge. Since the obtained systems are deterministic –free of arbitrary functions of time–
we argue that the often-invoked residual gauge symmetry lacks fundamental grounding
and should not be used to enforce new external constraints. The result is verified by the
total Hamiltonian dynamics. We conclude that eliminating the spin-

1
2 mode via the ex-

tended Hamiltonian dynamics would be acceptable if the Dirac conjecture was assumed;
however, this framework does not accurately describe the original Lagrangian system.
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1 Introduction

In supergravity, the kinetic term for the gravitino field is the so-called Rarita-Schwinger (RS)
Lagrangian (see, e. g., [1–3]),

L[ψ] := −
i
2
ψ̄µγ

µνλ∂νψλ . (1)

This is not, however, the Lagrangian originally proposed by Rarita and Schwinger [4], as
pointed out e.g., in Weinberg’s text [5].

Indeed, the study of relativistic quantum fields of arbitrary spin s > 1 was pioneered by
Dirac [6], and followed by Fierz and Pauli [7]. Subsequently, Rarita and Schwinger greatly
simplified the approach by describing a spin l +1/2 field employing a wave function that was
a spinor and a tensor of rank l,ψαµ1···µl

, symmetric in its spacetime indices (µ1 · · ·µl) satisfying
a massive Dirac equation,

( /∂ +M)ψµ1µ2···µl
= 0 , (2)

with the additional Lorentz-group irreducibility condition

γµψµµ2···µk
= 0 . (3)

If ψµ1µ2···µl
is a solution of (2) and (3) with M ̸= 0, then it also necessarily satisfies

ψµµµ2···µl
= 0 , (4)

∂ µψµµ2···µl
= 0 . (5)

The simplest nontrivial RS system is the spin–3
2 field (l = 1) and the field ψαµ is a vector-

spinor, for which the condition (4) is removed. Rarita and Schwinger [4]mention the existence
of a family of Lagrangians parametrized by the mass (M) and a dimensionless coefficient (A)
that gives rise to the equations (2) and (3). In [8–10] (for recent uses see [11]) such a family
is proposed for D = 4 in the form

L(M ,A) :=
i
2

�

ψ̄µ( /∂ +M)ψµ + Aψ̄µ(γµ∂ν + γν∂µ)ψ
ν +

1
2
(3A2 + 2A+ 1)ψµγµ /∂ γνψ

ν

−M(3A2 + 3A+ 1)ψµγµγνψ
ν
�

. (6)

The dimensionless constant A can take arbitrary values, but for A= −1/2 condition (3) with
l = 1 does not follow from (2). The RS Lagrangian [4] corresponds to A = −1/3, “which
permits a relatively simple expression of the equations of motion in the presence of electro-
magnetic fields.”

With the advent of supergravity in the 1970s [12, 13], the community regularly referred
to the massless limit of (6) with A = −1, which coincides with (1), as “the Rarita-Schwinger
Lagrangian.” The relativistic equation obtained from (1), often referred to as the RS equation
(see e.g. [2,3,5]), is1

γµνλ∂νψλ = 0 . (7)

Note, however, that the massless limit of (2)-(3) is not equivalent to (7), and the variation
of the massless Lagrangian (1) does not imply the irreducibility condition γµψµ = 0. This
means that the dynamical contents of (2)-(3), for l = 1, in the limit M → 0 are not guaranteed
to be exactly the same as those of Lagrangian (1).

1Here γµ, {γµ,γν} = 2ηµν, are Dirac matrices, ηµν = diag (−1, 1, . . . ) and γµ···ν = γ[µ · · ·γν] are completely
antisymmetric products. We assume the Majorana reality condition ψ† =ψ, ψ̄=ψt C , were C t = −C .
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Gauge symmetry

The Lagrangian (1) changes by a total derivative under the gauge transformation,

δψµ = ∂µε , (8)

consequently, the field equations (7) are invariant under (8). Equation (2), on the other hand,
does not exhibit a similar local invariance for an arbitrary local spinor parameter. In fact,
Rarita and Schwinger observed that “in the exceptional case of zero rest mass, the wave func-
tion admits a gauge transformation given by (8)” with the additional requirement /∂ ε = 0.
They saw this as a curious symmetry in an exceptional case but did not emphasize the gauge
invariance of the action. In the case A = −1, the condition /∂ ε = 0 is unnecessary, and the
gauge invariance under (8) is a true (off-shell) symmetry of the action.

Using properties of the Dirac matrices, equation (7) can also be written as

/∂ψµ − ∂µ (γ ·ψ) = 0 , (9)

while
/∂ (γ ·ψ)− ∂ ·ψ= 0 , (10)

appears as a consistency condition.
It is a textbook argument that the gauge symmetry (8) can be used to choose the (γ-

traceless) gauge γµψµ = 0, which together with (9) become equivalent to,

/∂ψµ = 0 , γ ·ψ= 0 , (11)

and we obtain that
∂ ·ψ= 0 , (12)

as a consistency condition. Gauge conditions are necessary to eliminate the ambiguity in time
evolution, characterized by redundancies in solution space known as gauge orbits. As we shall
see, the set of equations (11)-(12) is deterministic: once the initial conditions are specified,
the field equations uniquely determine its evolution. An the explicit solution is given in (46)
with the vector-spinor containing both spins, half and three halves. Consequently, introducing
additional external conditions is unnecessary.

Based on the similarity between (12) and the Lorenz gauge in electromagnetism, one might
be led to think that the divergence-free and the gamma-trace constraints are in the same—
gauge-fixing type—footing and that they remove 2k degrees of freedom,2 the equivalent of
two spinor fields. In this logic, the system contains no spin–1

2 sector. This statement, how-
ever, is incorrect. The gauge freedom (8) is insufficient to set ψµ both gamma-traceless and
divergence-free simultaneously starting from a generic off-shell configuration since there is
only one spinor gauge-parameter to be used.

The consistency condition (12) is guaranteed for solutions of (11) and does not impose
further restrictions on the vector-spinor field. To assert the opposite would be analogous to
saying that the Klein-Gordon (consistency) condition imposes new restrictions on solutions of
the Dirac equation. The Dirac equation in (11) determines, for every µ, half of the ψµ com-
ponents, while the gamma-trace algebraic constraint removes k components, leaving D×k

2 − k
degrees of freedom. In D = 4, they amount to 2 spin–1

2 and 2 spin–3
2 propagating massless

helicities. In the massive case, the 4 helicities correspond to 2 × 3
2 + 1 polarization states in

the spatial rotation irreducible representation [4].
In [15] the Hamiltonian analysis of the massless RS system was carried out, and it was

shown that the Dirac algorithm produces two different outputs depending on whether the

2Here k = 2[D/2] is the number of components of a spinor in D dimensions.
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Dirac conjecture—that secondary first-class constraints are gauge symmetry generators—is
assumed or not.

In [16], Dirac states: “...it may be that all the first-class secondary constraints should be
included among the transformations which don’t change the physical state, but I haven’t been
able to prove it. Also, I haven’t found any example for which there exists first-class secondary
constraints which do generate a change in the physical state.”

Then, Dirac proposes that modifying the field equations by adding the secondary first-class
constraints to the total Hamiltonian, thus defining Dirac’s extended Hamiltonian HE , new arbi-
trary velocities appear for those phase space variables which do not change the physical state,
and that are equivalent to the first-class Lagrange multipliers associated with the secondary
first-class constraints. This procedure renders the evolution of the conjectured unphysical vari-
ables also non-deterministic. Thus, adopting Dirac’s modified dynamics, the results of the early
works [17–20] are reproduced, and the spin–1

2 sector is completely removed, a consequence
of a second “gauge fixing condition” for the secondary first-class constraints. In the oppo-
site case, the secondary first-class constraints are not regarded as gauge symmetry generators,
there are no corresponding gauge fixing conditions to be imposed, and the space of solutions
contains the aforementioned propagating Dirac field. The elimination or not of the spin–1

2 de-
gree of freedom yields physically different situations, which suffices to say that in this case the
Dirac conjecture [16]—that “it may be that all the first-class secondary constraints should be
included among the transformations which don’t change the physical state”—does not hold.

Complementing [15], here we show that the conclusion that the spin–1
2 sector of the mass-

less RS system propagates can also be reached by fixing the gauge in an alternative way,
and using the covariant spin-block projectors introduced by Behrends and Fronsdal [21] (see
also [1,22]). As we shall see, this result is also valid for supergravity [12,13] and one can write
explicitly the spin–1

2 content in basic supergravity, consisting of the Dirac action coupled to the
background geometry. As a corollary, truncating extended supergravities to their spin–1

2 sector
must yield a class of unified field theories on curved backgrounds with the coupling constants
determined by the supergravity model. This observation was instrumental in building a spin–1

2
model of Dirac fermions coupled to a U(1) gauge field and gravitational background starting
from a superalgebra in three dimensions [23–26], and in N = 2 extensions of Macdowell-
Mansouri supergravity [27–29]. Alternatively, this result also implies that spin–1

2 states may
be generically present in any supergravity theory.

2 Unconventional supersymmetry

Its vector-spinor structure shows that the field ψαµ is in the reducible representation 1⊗ 1
2 of

the Lorentz group. Consider the decomposition of the identity

P
1/2 + P

3/2 = 1 , with P
1/2
µ
ν :=

1
D
γµγ

ν , P
3/2
µ
ν := δµ

ν −
1
D
γµγ

ν , (13)

in terms of spin-block projectors P(s)P(s
′) = δs

s′P
(s′), s = 1

2 , 3
2 . Then, the reducible representa-

tion 1⊗ 1
2 can be split into 3

2 ⊕
1
2 irreducible components as

ψµ := ρµ + γµκ , with ρµ ≡ P
3/2
µ
νψν , and κ≡

1
D
γµψµ , (14)

where the spin–3
2 part ρµ is gamma-traceless by construction and κ is a pure spin–1

2 mode. An
indication of the non-trivial role of the spin–1

2 sector is that the projection of the vector-spinor
to the component

ψ̃µ = γµκ , (15)
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in the Lagrangian functional (1) reproduces the Dirac term,

L[ψ̃µ = γµκ] = i
(D− 1)(D− 2)

2
κ̄ /∂ κ . (16)

This shows that the spin–1
2 sector is not in the kernel of the Lagrangian functional. It is not a

zero-mode of the action and (16) is not a boundary term. Hence κ does not qualify as a “pure
gauge” mode. A pure gauge configuration would make the Lagrangian identically vanish, as
in the case of Yang-Mills theories, or would reduce it to a total derivative, as in Chern-Simons
theories. On the contrary, (16) describes a propagating spin–1

2 field that contributes to the
energy-stress tensor of the theory.

The result (16), applied to three-dimensional Chern-Simons supergravity produces a spin–
1
2 model of Dirac fermions coupled to the U(1) gauge field and the gravity background [23,
28,29] that turns out to be suitable for the description of electrons in graphene-like materials
[30–43].

More generally, the projection (15), dubbed the matter ansatz, can be used to generate
models of spin–1

2 fermions coupled to gravity and gauge interactions starting from supersym-
metry gauge connections, of the form

Aµ =Wµ + Uµ +Qαψ
α
µ , (17)

where W is valued in a spacetime symmetry group, U in an internal gauge symmetry group,
and Q is the supercharge generator. If the matter ansatz is implemented in the fermion sec-
tor, the action principle S[A] acquires interactions with a few arbitrary coupling constants, a
welcome feature in (grand) unified models. For example, in 3D Chern-Simons supergravity,
such action principle is given by

∫

str(A∧ dA+ 2
3A∧A∧A). In five-dimensional Chern-Simons

supergravity, similar results were found in [44, 45]. The approach of generating spin–1
2 sys-

tems coupled to gauge and gravity backgrounds using these methods is often referred to as
“unconventional supersymmetry” [23–29, 44, 46–52]. Even though these models are not su-
persymmetric in general, they may have supersymmetric ground states, described by the van-
ishing curvature constraint F = dA+ A∧ A= 0, since under a supersymmetry transformation
δF = [F,Qαε

α]≡ 0.
The general statement that “the spin–1

2 mode of the gravitino is pure gauge” seems to be in
contradiction with the fact that the matter ansatz applied to the massless RS model (1) gives
rise to the Dirac Lagrangian (16) and that the unconventional supersymmetry models describe
propagating spin–1

2 degrees of freedom. This contradiction is resolved in [15], and here we
provide further evidence of the fact that spin–1

2 sector of the vector-spinor propagates.

3 Covariant analysis

3.1 Off-shell gauge fixing

In terms of the decomposition (14) the Lagrangian (1) reads

L[ρµ + γµκ] = −
i
2

�

ρ̄µ /∂ ρµ − (D− 1)(D− 2)κ̄ /∂ κ+ 2(D− 2)κ̄∂ ·ρ
�

, (18)

up to boundary term. The Euler-Lagrange equations (9)-(10) now take the form,

/∂ ρµ − γµ /∂ κ− (D− 2)∂µκ= 0 , (D− 1) /∂ κ− ∂ µρµ = 0 . (19)

We can use the gauge freedom (8) to make ρµ divergence-free in addition to being gamma-
traceless. Indeed, consider the gauge transformation ψ′µ =ψµ + ∂µε, then

ρ′µ + γµκ
′ = ρµ + γµκ+ ∂µε . (20)

5
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A spinor field ε can be found such thatρ′µ remains gamma-traceless and is also divergence-free,

∂ µρ′µ = 0 . (21)

Taking the gamma trace and the divergence of (20) it is easily checked that the gauge
parameter ε that meets these requirements must satisfy the single condition

□ε=
−D

D− 1
∂ ·ρ . (22)

In this gauge, equations (19) reduce to

/∂ ρ′µ = (D− 2)∂µκ
′ , /∂ κ′ = 0 . (23)

Thus, κ is a spin–1
2 field that obeys a free massless Dirac equation, while ρµ satisfies the mass-

less Dirac equation with a source—given by κ—and fulfills all the conditions of a propagating
massless spin–3

2 field. Thus, in this gauge, ρµ and κ propagate massless modes of spin–3
2 and

spin–1
2 , respectively.

The result can also be appreciated off-shell. The gauge (21) can be reached from any off-
shell configuration (20). For those configurations the Lagrangian (1), in the form (18), takes
value

L[ρ′µ + γµκ
′] = −

i
2

�

ρ̄′µ /∂ ρ′µ − (D− 1)(D− 2)κ̄′ /∂ κ′
�

, (24)

to which the spin–1
2 and spin–3

2 sectors contribute independently. In the next section, it will
become clear that (24) describes the gauge invariant part of the vector spinor field.

3.2 Irreducible Poincaré representations

Wigner’s classification of particles describes them mathematically as fields in irreducible rep-
resentations of the Poincaré group. In this case, the vector-spinor ψαµ can be decomposed in

irreducible representations of spins (1⊕ 0)⊗ 1
2 =

3
2 ⊕

1
2 ⊕

1
2 [1].

The spin content can be made manifest using spin-block projectors [21]. Following [1], let
us consider the operators

γ̂µ = γµ −wµ , wµ = /∂
−1
∂µ , (25)

which span a basis of orthogonal vector operators satisfying

γ̂µγ̂
µ = (D− 1)1 , wµwµ = 1 , γ̂µwµ = 0 . (26)

Hence, the identity operator, acting on vector-spinors, admits the decomposition

1= P
3/2T + P

1/2
11 + P

1/2
22 , (27)

P
3/2 T
µν = θµν −

1
D− 1

γ̂µγ̂ν , P
1/2
11µν =

1
D− 1

γ̂µγ̂ν , P
1/2
22µν = wµwν , (28)

where

θµν := ηµν −wµwν , wµθµν = 0 , γ̂µθµν = γ̂ν , θµνθ
νλ = δλµ 1 . (29)

Then, the following identities are verified

(γ̂µ, wµ)P3/2 T
µν = (0,0) , (γ̂µ, wµ)P

1/2
11µν = (γ̂ν, 0) , (γ̂µ, wµ)P

1/2
22µν = (0, wν) . (30)

Defining,

ρT
µ := P

3/2 T
µν ψ

ν , (31)

6
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we see that the traceless-transverse projector P3/2 T removes the gamma-trace and the diver-
gence of the vector-spinor,

γµρT
µ = 0 , ∂ µρT

µ = 0 . (32)

The projector P1/2
11µν yields a vector along γ̂, orthogonal to w, and P1/2

22µν projects onto w:

κ̃= wµψµ =
∂ µ

/∂
ψµ , κ= (D− 1)−1γ̂µψµ . (33)

The space of vector-spinors ψµ decomposes as

ψµ = ρ
T
µ + γ̂µκ+wµκ̃ , ψ̄µ = ρ̄

T
µ − κ̄γ̂µ − ¯̃κwµ . (34)

The gauge transformation (8) adds to the vector spinor a component, i.e. ∂µε that is anni-

hilated by the projectors P3/2 T
µν and P

1/2
11µν, while it belongs to the eigenspace of the longitudinal

projector ∂µε= P
1/2
22µ

ν∂νε. It follows that the gauge invariant parts of the vector-spinor consists

of ρT
µ and κ, while the non-invariant part transform as δκ̃ = /∂ ε. Introducing the projector

operators the RS equations read,
�

P
3/2
µ
ν − (D− 2)P

1/2
11 µ

ν
�

/∂ψν = 0 , (35)

which, projected onto the Poincaré irreducible spin–1
2 and spin–3

2 spaces, yield

/∂ ρT
µ = 0 , /∂ κ= 0 , (36)

which confirms the redundancy of the longitudinal mode and the physical meaning of ρT
µ and

κ as propagating degrees of freedom. It is then evident that a suitable gauge fixing condition
is simply κ̃= 0, which may then be used in a Gupta-Bleuler quantization scheme.

The gauge transformation (8) affects only the mode along wµ, and is equivalent to

δρT
µ = 0 , δκ= 0 , δκ̃= /∂ ε , (37)

and we have two gauge invariant sectors, ρT
µ and κ. Substituting (34), the Lagrangian (1)

reduces to

L[ρT
µ +wµκ̃+ γ̂µκ] = −

i
2

�

ρ̄T
µ
/∂ ρT µ − (D− 1)(D− 2)κ̄ /∂ κ

�

, (38)

which coincides with (24). We conclude that the RS Lagrangian does not depend on the
longitudinal mode κ̃ and the physical degrees of freedom are the gauge invariant ones, (ρT

µ ,κ).

4 Space-time splitting

Splitting the RS fieldψµ into its time- and space-like components (ψ0, ψi; i = 1, 2, · · · , D−1),
the Lagrangian (1) reads

L= −iψ̄0γ
0i j∂iψ j +

i
2
ψ̄iγ

0i jψ̇ j −
i
2
ψ̄iγ

i jk∂ jψk . (39)

The spatial spin-vector ψi can be further decomposed by the action of three orthogonal
spatial rotation group spin-block projectors, Behrends-Fronsdal’s analogs, that add up to the
identity. These projectors are

(PN )i j :=
1

D− 2
NiN j , (P L)i j := Li L j , PT = 1− PN − P L , (40)

7

https://scipost.org
https://scipost.org/SciPostPhys.16.3.065


SciPost Phys. 16, 065 (2024)

where Ni := γi − Li and Li := /∇−1
∂i . Then, a spatial vector-spinor splits as

ψi = ξi + Niζ+ Liλ , (41)

where

ξi = PT
i
jψ j , ζ=

1
D− 2

N iψi , λ= L iψi , (42)

which can be verified with the help of the identities Ni N i = D− 2, Li L i = 1, Ni L i = 0.

4.1 Explicit solution with spin-
1
2 and spin-

3
2

The above decomposition of ψµ has not used the gauge symmetry. If one uses the gauge
freedom to impose the gamma traceless condition, γµψµ = 0,

ψ0 + γ0γ
iψi = 0 , (43)

ψ0 + γ0((D− 2)ζ+λ) = 0 , (44)

implies that ψ0 is not an independent field.
Together with decomposition (41), the field equations (9) reduce to

/∂ ξi = 0 , /∂ λ̃= 0 , ζ̇= 0 , /∇ζ≈ 0 , (45)

where λ̃ = γ0λ. From the last two equations, it follows that the auxiliary spinor ζ is constant
and it cannot be normalized. Thus, we find the explicit solutions to the field equations (9)

ζ= 0 , ψ0 = γ
0λ , ψi = ξi + ∂i /∇

−1
λ , (46)

where λ̃ and ξi satisfy the standard Dirac equations (45), and ξi is standard double-transverse
solution found in [19, 53] for gauge fixed RS equations. It follows that ξi and λ propagate
massless fields of spin–3

2 and spin–1
2 , respectively. Upon (46) the Pauli-Lubanski pseudo-vector

yields the standard relation Wµψ = sPµψ, s = ±3
2 ,±1

2 respectively for the chiral projections,
1±γ5

2 ξi and 1±γ5
2 ∂i /∇

−1
λ.

Since no arbitrary functions of time remain in the system, the dynamical equations (45)
ultimately determine the evolution of the fields from initial data on a Cauchy surface, and
there is no need for additional gauge fixing conditions.

5 Hamiltonian analysis

The previous discussion establishes the degrees of freedom of the RS system from the La-
grangian equations of motion in a particular gauge. The time-honored constrained Hamilto-
nian formalism of Dirac [16, 54, 55] provides an independent and reliable test for the consis-
tency of this result.

Dirac’s algorithm starts from the Hamiltonian, separating spacetime and fields into their
temporal and spatial components (39), and carrying out the Legendre transform defining the
canonical momenta, πµ := ∂L/∂ ψ̇µ. In the case at hand, this yields the primary constraints

π0 ≈ 0 , (47)

χ i := πi −
i
2
C i jψ j ≈ 0 , {χ i ,χ j}= iC i j . (48)

8
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Since the matrix C i j
αβ

:= −(Cγ0i j)αβ = C ji
βα

is invertible, C i j
αβ
(C−1)βκjm := δi

mδ
κ
α,

(C−1)αβi j =
�

−
1

(D− 2)
γiγ jγ0C−1 +δi jγ0C−1

�αβ
, (49)

and consequently, the constraints χ i are second-class. The primary constraints (47, 48) result
from the non-dynamical nature of ψ0 and the first-order character of the system, respectively.
The total Hamiltonian includes the Canonical Hamiltonian and a linear combination of the
primary constraints,

HT =

∫

dD−1 x
�

iψ̄0γ
0i j∂iψ j +

i
2
ψ̄iγ

i jk∂ jψk +χ
i
αµ
α
i +π

0
αµ
α
0

�

, (50)

where µi and µ0 are Lagrange multipliers. Preservation in time of the constraint π0 ≈ 0 yields
a secondary constraint,

π̇0 = −
δHT

δψ0
= −iCγ0i j∂iψ j ≈ 0 ⇔ ϕ := −iC i j∂iψ j ≈ 0 , (51)

which is the field equation obtained by varying (39) with respect to ψ0. Here, the Poisson
bracket is given by

{ f (t, x⃗) , g(t, y⃗)} := (−1)| f |
∫

dD−1z

�

δ f (t, x⃗)
δψαµ(t, z⃗)

δg(t, y⃗)
δπ

µ
α(t, z⃗)

+
δ f (t, x⃗)
δπ

µ
α(t, z⃗)

δg(t, y⃗)
δψαµ(t, z⃗)

�

. (52)

Demanding preservation in time of the second-class constraint χ i ≈ 0 yields

χ̇ i = −(Cγiγ0C−1)ϕ + iC i j∂ jψ
β
0 + iC∂ iγ jψ j − iC /∇ψi + iC i jµ j ≈ 0 , (53)

which determines µi in terms of the canonical variables and introduces no new constraints.
The preservation of the secondary constraint ϕ yields conditions on part of the second-class
constraint Lagrange multipliers µi ,

ϕ̇ = iC i j∂iµ j = −Cγ0 /∇N jµ j ≈ 0 . (54)

This is equivalent to setting Niµ
i = 0 in a decomposition analogous to (41), and is consistent

with the stationary condition (53) on the primary second-class constraints. Thus, the preser-
vation in time of ϕ ≈ 0 implies the vanishing of the component of µi along N i . Since first-class
constraints do not determine Lagrange multipliers, this shows that ϕ is not a first-class gener-
ator. Indeed, it can be easily checked that the linear combination

ϕ̃ := ϕ + i∂iχ
i ≈ 0 , (55)

is first-class. It follows that the secondary constraint ϕ is a linear combination of first-class
and second-class constraints.

The second-class constraints can be eliminated by setting χ i strongly to zero, reducing the
system to the surface of the second-class constraints and replacing Poisson brackets with Dirac
ones, { f , g}D := { f , g} − { f ,χ i

α}C
−1αβ

i j {χ
j
β

, g},

{ f , g}D = (−1) f
∫

dD−1z

�

−i
δ f
δξi

PT
i jγ0C−1 δg

δξ j
− i

D− 3
D− 2

δ f
δλ
γ0C−1δg

δλ

+i
1

D− 2

�δ f
δλ
γ0C−1δg

δζ
+
δ f
δζ
γ0C−1δg

δλ

�

+
� δ f
δψα0

δg
δπ0

α

+
δ f
δπ0

α

δg
δψα0

�

�

. (56)
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The first-class Hamiltonian (50) in the reduced phase space becomes

HR =

∫

dD−1 x
�

i(D− 2)ψ̄0γ
0 /∇ζ−

i(D− 2)(D− 3)
2

ζ̄ /∇ζ+
i
2
ξ̄i /∇ξi +π

0
αµ
α
0

�

, (57)

where the secondary first-class constraint ϕ ≈ 0 is equivalent to /∇ζ≈ 0. Thus, we arrive at a
constrained Hamiltonian system for the reduced phase space where π0 ≈ 0 and ϕ ≈ 0 are the
only remaining first-class constraints.

5.1 Consequences of the constraint ϕ ≈ 0

Up to this point, our analysis agrees with the Hamiltonian analysis in references [17–20].
Henceforth, two paths can be followed depending on whether the Dirac conjecture3 (DC) is
adopted or not, with the two options resulting in distinct physical systems, i.e. with different
numbers of propagating degrees of freedom.

The action principle,

S =

∫

d t(ψ̇µπ
µ −HT ) , (58)

given in terms of the total Hamiltonian (50), yields field equations equivalent to the Euler-
Lagrange equations. This is because only primary constraints are necessary to recover the
starting Lagrangian.

In Dirac’s extended dynamics, secondary first-class constraints are considered indepen-
dent gauge symmetry generators and are added to the Hamiltonian with their corresponding
Lagrange multipliers. In this case the extended Hamiltonian reads,

HE := HT +τ
αϕ̃α , (59)

where τ is a new Lagrange multiplier. In this framework, gauge fixing conditions should be
imposed to intersect the gauge orbits generated by the ταϕ̃α component and determine τ.

On the surface of second-class constraint χi = 0, the Hamiltonian reduces to

H̃E := HR +τ
αϕα . (60)

Then, the evolution defined by the (reduced) extended Hamiltonian (60) is given by,

ξ̇i = −γ0 /∇ξi , λ̇= −(D− 3)γ0 /∇ζ+ /∇ψ0 + /∇τ , (61)

ψ̇0 = −µ0 , π0 = 0 , ζ̇= 0 , /∇ζ= 0 . (62)

The gauge orbits generated by µ0π
0 are intersected by a surface defined by fixing ψ0,

which can be chosen to implement the standard gamma-traceless condition (43)-(44). This
and the constraint π0 ≈ 0 form a second-class pair. Hence, the Lagrange multiplier µ0 can be
eliminated by demanding (44) to be stationary, relating µ0 to λ and to the Lagrange multi-
plier τ,

µ0 ≈ /∇λ− γ0 /∇τ . (63)

The gauge choice (44) is accessible since π0 generates arbitrary shifts in ψ0. In particular
the shift δψ0 = −(ψ0+γ0γ

iψi) rendersψµ gamma-traceless. Thus in the phase space spanned
by ξi ,ζ,λ, the system (61, 62) reduces to

ξ̇i + γ0 /∇ξi = γ0 /∂ ξi = 0 , λ̇− γ0 /∇λ= /∇τ , ζ̇= 0= /∇ζ . (64)

3At the end of Chapter 1 of [16], Dirac conjectured that all first-class constraints generate gauge symmetries.
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Here τ is the only arbitrary function of time remaining in the system. In order to eliminate τ,
an external gauge fixing condition conjugate to ϕ ≈ 0 becomes necessary. Since λ is conjugate
to the constraint sourced by τ, it must be gauge-fixed, and nothing can prevent its removal,
leaving ξi as the only propagating field in the system. This is how the spin–1

2 mode is removed
in [17–20].

5.2 Consequences of Dirac’s conjecture

Some comments are in order here. First, the Euler-Lagrange equations (45) match the Hamil-
tonian evolution equations obtained from (64) only if τ = 0. Second, the equation for λ in
(64) reads

/∂ λ̃= /∇τ , λ̃ := γ0λ , (65)

and it has the form of an inhomogeneous Dirac equation. The solution of this equation can be
expressed as the sum of a homogeneous plus an inhomogeneous part, λ̃= λ̃ho+ λ̃in, such that

/∂ λ̃ho = 0 , λ̃in = /∂
−1 /∇τ , (66)

where /∂ −1 is the Green function for the Dirac operator. Thus λ = γ0λ̃ contains a part with
indeterminate time evolution (λ̃in) that depends on the arbitrary Lagrange multiplier τ, and
the homogeneous part λ̃ho whose time evolution is entirely deterministic. We conclude that
the arbitrary time dependence in the spin–1

2 field comes from the “human input” τ, and is,
therefore, an artifact of the procedure brought about by the insistence on assuming ϕ as a
gauge generator.

This shows that the DC is not logically necessary and therefore, ϕ need not be regarded as a
gauge generator to be added to HT . Dropping ϕ from the set of gauge generators is equivalent
of setting τ= 0 in (64) and, consequently, allowing the Hamiltonian field equations to match
the Lagrangian ones (45). With τ = 0, the Lagrange multiplier µ0 is completely determined
from (63), as expected, and λ̃ = λ̃ho propagates as a standard Dirac field, thus recovering
solution (46).4

5.3 Unified models from supergravity

The result (16) can be extended to supergravity. Assuming the matter Ansatz (15) –and al-
lowing γµψµ ̸= 0–, the spin–3

2 sector is completely removed. This produces a theory in which
the fermionic sector is purely made of spin–1

2 fermions coupled to gravity and gauge fields.
For example, consider the basic supergravity model [12,13] given by

Lsugra[e
a
µ,ωab

µ ,ψµ] = LRS +
1
2

e Rab
µν eµa eνb , (68)

where eµa is the inverse vielbein. A straightforward computation shows that this Lagrangian
restricted to the sector ψµ = γµκ reduces to

LU-sugra[e
a
µ,ωab

µ ,γµκ] =
i(D− 1)(D− 2)

2
e κ̄ /Dκ+

i(D− 1)
2

κ̄ γµνT a
µνγa κ+

1
2

e Rab
µν eµa eνb , (69)

4The reader can verify that ϕ does not generate an independent symmetry of the field equations induced by
the total Hamiltonian, equivalent to (61)-(62) with τ= 0. The true gauge generator corresponds to the Castellani
chain [56],

G :=

∫

dD−1 x(π0ε̇− ε̄γ0 /∇ζ) . (67)

More generally, each independent gauge orbit corresponds to a different Castellani chain, naturally superseding
the DC [56–58].
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where e = det[ea
µ], and T a

µν = ∂µea
ν +ω

a
bµeb

ν − (µ↔ ν) is the torsion.
A Lagrangian of the form (69) is contained in every extension of most supergravity mod-

els [12, 13], including AdS supergravity [59–61], extensions with auxiliary fields [62–65],
interactions with gauge [66–68] and matter [69–73], as well as in the superspace formulation
of SUGRA [74–78]. The resulting unified theories will be reviewed in a forthcoming article.

6 Discussion and Summary

An argument usually used to discard the spin–1
2 component is attributed to a “residual” gauge

symmetry, with a gauge parameter satisfying the Dirac equation (see e.g. [14]). However,
shifting the solution of the Dirac equation by a parameter field that also satisfies the Dirac
equation merely results in a trivial redefinition of the integration constants. On the other
hand, demanding that residual symmetry leaves the initial conditions invariant would force
the gauge parameter to vanish. Note that this sort of “symmetry” would be present in any linear
field equation, but this cannot be invoked to say that every field satisfying a linear equation
could be gauged away.

The use of the decomposition of the vector-spinor gauge field in Poincaré group irreducible
components (34), ρT

µ + γ̂µκ + wµκ̃, in the RS Lagrangian reveals the off-shell gauge invari-

ant components of the massless RS system, as shown in (38), consisting the spin–3
2 com-

ponent ρT
µ , and spin–1

2 κ. The analog approach to Maxwell’s theory would split the gauge
field into transverse and longitudinal components, Aµ = AT

µ + AL
µ, reducing the Lagrangian to

−1
4 F2 = AT

µ□AT µ, which depends only on the gauge invariant transverse mode. Note that us-

ing the explicit expression for the transverse projector PT
µν := ηµν−□−1∂µ∂ν, the field equation

□AT
µ = □PT

µνA
ν = 0 is identical to Maxwell’s equation. Although we do not normally work with

these expressions, the differential projection operators are useful to identify the field compo-
nents that belong to the kernel of the action functional and those that contribute non-trivially
to the action and propagate, as in (36).

We have argued that the massless vector-spinor system usually considered in supergravity,
referred to as massless RS system, describes not only spin–3

2 degrees but also spin–1
2 . We have

shown this by four alternative methods. In the first approach, we fix the gauge to make the
separation of the spin–1

2 sector manifest, described by the standard Dirac equation. In the
second approach, spin-block projectors are employed to decouple the gauge invariant and the
pure gauge mode of the vector-spinor. The pure gauge mode is in the kernel of the Lagrangian
functional, while two gauge-invariant sectors remain and propagate as spin–1

2 and spin–3
2

massless fields, respectively. In the third approach, we split the vector spinor into time-like
and space-like vector-spinor components and build an explicit solution of the RS equation
containing spin–1

2 and spin–3
2 sectors.

Our results are compatible with reference [79], where Heidenreich demonstrates that
within the quantum field theory of the massless Rarita-Schwinger one of the spin–1

2 mode is
associated with states possessing 0-norm (the pure-gauge mode), while the spin–1

2 and spin–3
2

sectors have positive norms.
Following Dirac’s Hamiltonian analysis, we arrive at the same results if the Dirac conjec-

ture is not assumed in the formalism. Indeed, the RS system (1) could be seen as a fermionic
counterexample to the DC, complementing the bosonic cases found in, e.g., [55,80,81]. Pos-
tulating the Dirac conjecture to be valid, a priori, yields a system with no inconsistencies.
However, the Hamiltonian and Euler-Lagrange equations would not be equivalent, and the
spin–1

2 propagating degrees of freedom would be lost as in [17–20,53]. In the counterexam-
ples to the DC, considered in [55], it is claimed that the reduction under secondary first-class
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constraint without gauge fixing conditions leads to odd-dimensional reduced phase spaces,
where the Dirac bracket is ill-defined, preventing its quantization. Consequently, it is pro-
posed to assume the validity of the DC as a general rule [55]. However, it has been shown that
quantizing first and then restricting to the surface of secondary first-class constraints avoids
these obstructions [82]. Furthermore, in fermionic systems, such as the one that concerns
us here, the Dirac bracket is symmetric in Grassmann-odd variables and the constraints are
self-conjugate [83].

We also conclude that basic supergravity reduces in spin–1
2 sector of the vector-spinor to

a coupled Einstein-Dirac system, including torsion terms (69). More generally, in extended
supergravity, the spin–1

2 sectors will inherit the coupling constants of the gravitational, gauge,
and matter interactions, and the spin–1

2 projection of these supergravities are grand unification
models including gravity. These results encourage exploring this missed supergravity sector
as unification candidates. This observation also applies to the group theoretical approach of
supergravity [84–87], and to higher dimensional Chern-Simons supergravity [88,89].
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