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Abstract

We study nonperturbative effects of quantum gravity in a system consisting of a coupled
pair of holographic CFTs. The AdS,;/CFT; system has three possible ground states: two
copies of empty AdS, a pair of extremal AdS black holes, and an eternal AdS traversable
wormbhole. We give a recipe for calculating transition rates via gravitational instantons
and test it by calculating the emission rate of radiation shells from a black hole. We
calculate the nucleation rate of a traversable wormhole between a pair of AdS-RN black
holes in the canonical and microcanonical ensembles. Our results give predictions of
nonpertubative quantum gravity that can be tested in a holographic simulation.
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1 Introduction

Without a Planck energy collider, it is unclear if or when we will directly observe quantum
gravity in the real world. However, we can make use of gauge/gravity duality to perform
quantum gravity experiments on quantum computers in the near future. By simulating quan-
tum theories that are dual to gravity in asymptotically AdS spacetime, we can test our gravity
predictions.
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In this paper, we consider a system where nonperturbative quantum gravity effects can
be studied. The system is holographic with two adjustable parameters. The boundary dual
theory is a coupled pair of CFTs with a coupling parameter h and a chemical potential u that
controls the charge of the system. The bulk dual theory is Einstein-Maxwell with a negative
cosmological constant and a charged fermion. By varying the coupling and the chemical po-
tential, there are three possible ground states: a traversable wormhole, a pair of extremal AdS
Reissner Nordstrom (RN) black holes, and empty AdS.

If we prepare the system in the state where the ground state is a pair of extremal black holes
and then dial couplings until the ground state is a traversable wormhole, the bulk geometry
will presumably transition dynamically. With mild assumptions, dynamical topology change
in semiclassical gravity is forbidden [1-3]. To evolve from a pair of disconnected extremal
black holes to a traversable wormhole requires a change in topology, so the dominant decay
channel will be quantum mechanical; tunnelling via gravitational instanton. We want to find
the tunnelling rate and the trajectory of the domain wall after the tunnelling event. By using
instanton techniques, we calculate transition rates between the black hole and traversable
wormhole geometries in the microcanonical and canonical ensembles. In other words, we
compute the non-perturbative, yet dominant decay rate between semi-classical solutions with
different topologies. Hence, if this model can be simulated, then these non-perturbative results
can in principle be tested experimentally.

Quantum effects are fundamental to the existence of traversable wormholes, as well as for
tunnelling between geometries. The traversable wormhole needs to be supported by negative
null energy, which in our holographic model comes from a quantum Casimir effect; traversabil-
ity requires a violation of the averaged null energy condition [4,5]. The existence of traversable
wormholes is less speculative than transitions through topology-changing fluctuations because
the wormbhole solutions do not require control over nonperturbative gravitational effects, but
only that we can couple gravity to quantum fields within the framework of semi-classical grav-
ity.

On the other hand, the regime of validity of the semiclassical approximation is not fully
understood, and breaks down in non-trivial ways, for example, for long wormholes, and it
would be interesting to test predictions outside of the semiclassical regime with measurements
of the boundary dual.

The tunnelling to and real-time production rate of traversable wormholes was previously
calculated in other settings in [6-8]. Compared to our work, there are similarities in moti-
vation, but also fundamental differences between the models within which the calculations
are done. The papers [7,8] study the problem in a lower dimensional SYK/JT gravity model,
and the basic mechanism of wormhole production in [6], the breaking of cosmic strings, is
different from ours.

Summary of results

In section 2, we review the traversable wormhole model of [9], give a new derivation of the
wormhole mass, and calculate the coupling at which the semiclassical approximation breaks
down. Our traversable wormhole model was introduced in [9]. The boundary Hamiltonian
couples a pair of CFTs through the operators \Ui’R dual to the bulk fermion and has a chemical
potential term that energetically favours charge differences:

ih —R —I
H=H, +HR—17 dQ, (w_wi+w+w§)+M(QL—QR). 1)

The mechanism that sources the negative energy density in the bulk was inspired by a con-
struction in asymptotically flat spacetime by Maldacena, Milekhin, and Popov [10]. In our
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opinion, our setup offers several advantages. Firstly, our wormhole is eternal and asymptot-
ically AdS,, and embedding the wormhole in AdS makes tests using AdS/CFT possible. This
is a feature that our model shares with the models of Gao, Jafferis, and Wall and the eternal
asymptotically AdS, model of Maldacena and Qi [11,12]. Secondly, our traversable wormhole
is the ground state of a simple Hamiltonian, which lends itself to preparation in the lab.

We are also interested in the phase structure of our model. With a view to more precisely
mapping out the phase boundary between our wormholes and empty AdS, we extend the
results of [9] to study wormholes with small charges, whose size is much smaller than the AdS
radius. We determine AM, the mass deficit of the wormhole solution with respect to a pair of
extremal AdS-RN black holes with the same U(1) charge Q, to be

AR

¢’ 9

Mh)zmp (2)
T Q*>(mpA, and F<{,

where A(h), given in (18), is a function of the non-local coupling, ¢ is the AdS length, and 7 is
the horizon radius of the extremal AdS-RN black hole. Additionally, in the large charge, large
black hole limit we recover the typical Q*/? scaling. More precise equations for the wormhole
mass are presented in section 2.1.

In section 3, we discuss the phases of our model in the canonical and microcanonical en-
sembles and discuss fragmentation. We determine in which regimes of parameters the worm-
hole is the ground state, see figure 1.

We also compute the temperature at which the traversable wormhole begins to dominate
in the regime of parameters where it is the ground state. Although the traversable wormhole
is the ground state, the black hole has a much larger entropy, so the wormhole only dominates

Q*> < tmpA,
AM ~

AdS WH

He

BH

Figure 1: A phase diagram of the ground states of our model for different values of
boundary coupling h and chemical potential u, and the corresponding bulk geome-
tries: a pair of empty AdS spacetimes, an asymptotically AdS traversable wormhole,
and a pair of extremal AdS-RN black holes. The identification of boundary states with
particular bulk geometries through the semiclassical approximation breaks down
near the phase boundaries in a way we make precise later.
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the canonical ensemble below the transition temperature T, ~ Sgé. We find that this is below
the temperature at which the semi-classical description of the black hole breaks down. The
wormbhole itself is well described semi-classically, but attempting to cool the black hole to a low
enough temperature that it wants to transition to a wormhole takes us out of the semi-classical
regime.

Despite this issue, in the following sections, we give a first estimate of the transition rate
from the black hole to the wormhole. Typically it is convenient to compute tunnelling in the
thin wall approximation. However, it is unclear what sort of domain wall should connect the
two geometries. We propose a simple domain wall with a ‘radiation’ equation of state. This
type of domain wall is suitable for describing transitions between two states that do not differ
by any conserved charges, and are also not separated by potential barriers.

In section 4, we give the recipe to compute transition rates. We first test our techniques by
calculating transition rates between charged black holes. Similar techniques have been used
in computations of Hawking radiation as tunnelling [13-16]. However, our actual instantons
differ from these references due to our use of a thin wall with radiation equation of state. It
is not obvious to us how to understand the results in the literature in the framework of the
thin wall approximation. We are not questioning these results, but simply offering a different
framework for computing transition rates. Our results agree with where we have compared
them. Our instantons are static Euclidean solutions that interpolate between black holes of
different masses.! For Schwarzschild black holes in asymptotically flat spacetime, the domain
wall sits at r = 3GM. From the Lorentzian point of view, radiation first tunnels to some radius
outside the black hole, and then classically moves out to infinity.

In section 5, we calculate the nucleation rates of traversable wormbholes in both the canon-
ical and microcanonical ensembles. We describe the instanton that is relevant for tunnelling
from black holes to wormholes and compute the tunnelling rate. Our fixed energy result is
perhaps unsurprising,

T ~ e 2%n 3)

The factor of 2 is due to the fact that the black hole ground state consists of two black holes.
We also determine the rate for a pair of finite temperature AdS-RN black holes to nucleate
a traversable wormhole connecting the geometries, by calculating the difference in on-shell

actions,
F(ﬂ) ~ e_ZSBH+2ﬁ(MBH_Mo) . 4

Mgy and Sgy are the mass and entropy of a single AdS-RN black hole at inverse temperature
p, and M, is the asymptotic mass of the geometry after the nucleation of the traversable worm-
hole, which is not fixed in the canonical ensemble. The transition rate exponent is proportional
to the change in free energy.

Lastly, in section 6, we summarise the main conclusions and discuss some of the many
remaining open questions and future directions.

2 AdS traversable wormholes from coupled CFTs

In this section we review the construction of the traversable wormhole solution found in [9],
and extend some of the results. We present an alternative derivation of the change in energy
due to the non-local coupling, and we discuss the breakdown of the semiclassical approxima-
tion we use when the wormhole throat becomes long.

In many textbook examples, such as in [17], instantons are localised in Euclidean time, as their name suggests.
Nonetheless, static instantons, such as the Hawking-Moss instanton [18], exist and are important [19,20].
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2.1 Traversable wormhole solution

The ingredients of our traversable wormhole solution are the following. We consider the
Einstein-Maxwell theory with a negative cosmological constant, together with a U(1)-gauge
field and a massless Dirac fermion coupled to the gauge field. A well-known solution to this
theory is the extremal magnetically charged Reissner-Nordstrom (RN) black hole in AdS. This
solution can be cast as a wormhole, albeit one that is not traversable, since spacetime has a sin-
gularity. Nevertheless, the extremal RN-AdS black hole forms an important stepping stone in
the construction of the traversable wormhole, since its near-horizon geometry is AdS, x S2. Be-
cause the sphere has a constant radius, only a small amount of negative energy is needed to de-
focus null geodesics, causing the sphere to re-expand. This renders the wormhole traversable.
The bulk action of the theory is given by

1 6 1 -
Spae = | d* (—(R——)——F2+'\P \IJ) 5
bulk J xy/g 16nGC ) 29 vy )
where we consider the gauge coupling g to be small, which implies that loop corrections are
negligible. We will work in a spherically symmetric static Ansatz with a nonzero magnetic field
for the geometry that is parametrized by the integer q:

ds® = e (—dt? + dx?) + R*(x) dQ2, A= % cos(6)d¢ . (6)

The radial coordinate x should be thought of as compact, and setting the range of it can be

seen as a gauge choice. We set x € [—2X, 2X]. Note that this geometry has no horizons or

2272
singularities. We will be interested in solutions that have two asymptotically AdS regions: one
in each of the regions approaching x = :l:%. Therefore, a consistent solution to the equations

of motion constitutes an eternal traversable wormhole in AdS.

2.1.1 Bulk fermion decomposition and equation of motion

We will use the following Ansatz for the Dirac fermion that allows us to decompose solutions

to the equations of motions on the sphere?>
_ox)
e 2
(e,%,0,9) = 2o D Um(6:2) @0 (0,6), %
m

with 1y and 7 bi-spinors. We will denote the components of i with v,, and choose the
eigenvectors of o, as basis for 1, i.e. n,.0, = £n.. In this Ansatz, the Dirac equation reduces

to
3

e_fo-(x) .
) (lax8t+cry8x)¢®n=—l,
é ¢® M+ (a +1 t(@)) =2 (8)
Rz 7= O\ %y Tange) T\ T2 =2

where o; denotes the i-th Pauli matrix, and different values of A illustrate the splitting into
Landau levels. For the lowest Landau level (which we will mostly be concerned with), given
by A =0, the solutions are
+
a ; 0 \jzEm 0 \jzFm .
_ k iwgx m_ | i 2 v im¢
‘Pi—gk — ek ni—(smz) (cosz) eme |

=

) ©))
where j, = E(_l Fq).

2We will suppress indices whenever possible.
3See appendix A for our conventions regarding the vielbein and gamma matrices.

6
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Here we have used lightcone coordinates x, := t £ x and we have introduced shorthand
notation Ax = Ax/m. If we take the integer g to be greater than zero, the solution on the
sphere is given by

Ny =0, and n_= ZCTJ;IT;T, (10)
m
where j=j_,and me{—j_,—j_+1---,j_—1,j_}. We fix the normalization C,jn such that

f d2Qqmn" =6, (11

2.1.2 Boundary couplings and boundary conditions

In order to have a well-defined variational principle, we add boundary terms to the action
that impose boundary conditions on exactly half the degrees of freedom. Furthermore, we
add a non-local boundary term that couples the two boundaries and modifies the classical
boundary conditions; this will provide an NEC-violating stress tensor, rendering the wormhole
traversable. The boundary action is simplest when we project the 4D Dirac spinor onto the
eigenspace of the gamma matrix in the holographic direction

1
U, =P, ¥,, where P,:= 5 (1£9?). (12)

The boundary action we pick is given by

d ._ g0 a
S = Sclassical + Snon—local ’ (13)
with
a — 3 3 IL L TR a,R
Sclassical - lfa d xﬁ(\ll_ﬁ_ﬁl_ - \II—\II+) > (14)
Sl?on—local = th d?’x‘/?(\flli\lli + \T’i\IJE) . (15)
2

Here h € R is the coupling constant for the non-local interaction. With this choice of boundary
action, the boundary conditions are given by

¥R +hel =0, and ¥'+hUR=0. (16)
A simple computation shows that under these boundary conditions, no energy or charge leaks
out at the boundary, as is required in any consistent solution.
2.1.3 Bulk fermion solution

Using the above boundary conditions, we can solve the equations of motion in the time and
radial directions, leading to the following frequencies and modes

2k +1 2A(h)

af =(-1)**a;, and Axw= S+ (-1) — 17)
with A(h) a function of h defined as
A(h) = %arctan(lli—th') . (18)
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Interestingly, the solution is invariant under h — 1/h. Therefore, the solution exhibits a form
of S-duality. By using the above solutions, imposing canonical commutation relations for the
fermionic fields, and defining a vacuum as

@ 0) =0, Vk€Z., and al|0)=0, VkeZy,, (19)
we can evaluate the fermionic two-point functions with the following result:*

xl—x— 1 202 xl—x— 1 200(h)

1 i (R i (3425)

(Pl (x ), (1))

= P ,
ﬂAx 1 _ 621 ~
(X —x1) (1 2iAh) Xh =X (1 2iAh)
1 e_lT(i T)+elT(5+T)

(wi(er)’L/)_(x;)) = — x! —x4 B) (20)
AxT s
" 1 ) ()
(Wl e (x)) = = /
AxT . ezix%x_

We can use these two-point functions to obtain the change in the stress tensor due to the non-
local coupling through point-splitting. Because our metric Ansatz (6) is static and spherically
symmetric, the only off-diagonal component of the stress tensor that can be nonzero is T;,.
Furthermore, from the tracelessness of the 4d stress tensor, and the tracelessness of the 2d
stress tensor obtained after dimensional reduction on the sphere, the only diagonal compo-
nents of the stress tensor that can be nonzero are T;; = T,,. The point-splitting procedure
results in

<T£v> - <T[}j°> = —%_q?idiag(l, 1,0,0). (21)
T Ax"R2(x)

One thing to notice is that the charge g of the black hole appears as a linear factor. This factor

g comes from the fact that when we dimensionally reduce, the four-dimensional fermionic

field leads to q effectively massless 2d fermions, each of which contributes to the stress tensor.

We can use this fact to enhance the negative energy while at the same time only having to

non-locally couple one 4d field.

2.1.4 Wormbhole geometry solution

We can now finally solve for the wormhole geometry sourced by the above stress tensor (21)

through the semiclassical Einstein equations. Note that the geometry has to be consistent with

our Ansatz (6). It turns out that we can solve the linearized Einstein equations analytically
4GqA(h)

when the parameter { := Z25~ is small.”> Here
m2Ax" 72

ZZ r2
FZZE 1+12£—‘;—1 , (22)

is the horizon radius of the extremal RN-AdS black hole with magnetic charge r, = @. Deep
inside the wormhole throat, the metric takes the form of AdS, x $? with a small deformation:
)

EG)

dp
1+p%+7y(p)
*Compared to [9] here the correlators are computed at arbitrary separation.

>We can solve the full equations numerically. In the linearized limit, the numerical and analytical solutions
agree.

ds? (—(1 +p%+7(p))dt* + )+f2(1+1p(p))dQ2, (23)
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where

-2
C(F):= % +1. (24)

The functions v and y denote the deformation away from AdS, x S2, and are given by

Y(p) ={(1+ parctan(p)), (25)

and

(1+4%)

v(p)=— o)

(p2 +p(3+p2)arctan(p)—log(1 +p2)) . (26)
We have chosen coordinates so that the t coordinate matches between the metrics (23) and (6).
Note that indeed these functions are small when ¢ is small. This geometry deep inside the

wormhole throat can be matched onto the near-horizon limit of a super-extremal RN-AdS
black hole

2
ds? =—f(r)drz+%+r2dﬂé, 27)
with )
2 2GM T
f(r)=2—2+1—T+r—62. (28)

Here M, and r, denote the asymptotic charges. The matching relates the coordinates 7 and r
on the outside to the coordinates t and p used in the throat

[ C(H)T and _4(r—r)
T P="rr °

(29)

where L is an integration constant that denotes up to what p we can trust the throat geometry,
i.e. the p coordinate has a cutoff at p ~ % In other words: L measures the length of the
wormhole, and is given by

47
L=—, 30
v (30)
which implies
Lir—F
_Lr=n, 31)
r

The effect of the non-local coupling can be seen in the asymptotic mass, which is equal to the
mass of the extremal RN-AdS black hole M,,, together with a negative contribution AM, so
that

P2

My = Mgy + AM, with Moy = E + @ .

(32)
We will find the value of AM after we fix the gauge by computing Ax in section 2.1.6. To sim-

plify the upcoming discussions, we first describe the geometry and split it into three convenient
regions.
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2.1.5 Far, mouth and throat regions of the wormhole geometry

Before we discuss the different regions in the geometry we must introduce the geometry in the
near horizon limit of a super-extremal RN black hole. The near horizon metric can be found
by analyzing the zeros of the fourth-order polynomial r?f(r), with f given in (28). This
polynomial has four zeroes; in the case of the super-extremal black hole, they are two pairs
of complex conjugates. We parametrize one pair of zeroes by r; , = (1 £ i€), with € € R.,.
Here € measures the ‘distance’ from extremality, i.e. € = O corresponds to an extremal black
hole. The remaining roots r3 4 can then be found by comparing

4
2= o=, 33)
i=1

to (28). In the near-extremal limit, which is given by € < 1, the remaining parameters 7, and
r3 4 take the simple form

Pefoe L (1+2 2)+(9(e4)
2C(7) ’

(34)
02(r 4+ 47) + 27%(r + 6r) - 2

(2 4+ 612

With this parametrization of the emblackening factor, we can easily find the near-horizon

geometry, by expanding in % <1
= 2 _ 213
)62—2(1+4€2)(r’:r) +-o,  (35)

Yol

where we have kept terms up to third order in € and == combined.
By comparing the near-extremal, near-horizon geometry to the wormbhole throat geometry
we can identify € with the dimensionless inverse wormhole length

+0(eh).

(r—r3)(r—ry) =L0>+1r*+2ri +37% —

£ =C@)e +C(r)(

€= (36)

=~

Therefore, the longer the wormhole, the closer to extremality the asymptotic black hole ge-
ometry is. The matching to the throat geometry of the wormhole in (29) is precisely in the
near-extremal, near-horizon limit of the super-extremal RN black hole geometry.

Now that we found the black hole geometry that matches the wormhole throat, we can
specify the different regions of the wormhole geometry. The geometry can be split into three
regions:

I: Far region In this region the radial coordinate is r and it lives in the range r < 0o extending
all the way down to the mouth region that we describe next. The geometry is given by
(27) with emblackening factor (28) and mass Myyy.

IT: Mouth region This is the region where the asymptotic and throat geometries match, i.e. it
can be described by both (23) and (27) with emblackening factor (35). This region can
be specified by € < =L < 1, or equivalently 1 < p << 2=1L,

r

III: Throat region This is the region where there is no description in terms of the usual black
hole metric (27). Only the wormhole throat geometry given by the deformation of
AdS, x S? given in (23) describes this region. The region can be specified by p > 0
up to the throat region.

The wormhole geometry with the regions described above is depicted in figure 2.

10
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Figure 2: Diagram showing the different regions of the wormhole geometry.

2.1.6 Fixing the gauge Ax

Now we need to compute Ax. Comparing the metrics given above, we see that x is related to
p via

d

— %P _ . (37)

1+p2+y

The length Ax of the throat and mouth region is

Pm oo
dp dp
Axp =2f —sz —— =, (38)
throat o l+p2+y o 1+p2

where we have used that the matching radius p,, is large.
Now how about the region outside the throat? In this region, the metric takes the form

dr?

ds? =—fd72+T+r2dQ§. (39)
Compared to the x metric, we must have
d
?r =adx, (40)

where a is a constant to be determined. Using this definition,
2_ 2 24,2 2 2 702
ds®=a f(—a “dt"+dx*)+r°dQ;. 41

To determine a, we use the matching formulas (29) together with the relation between x and

p to obtain
d 72d
dx ~ —[; R r—r_ , in region II. (42)
o} L(r—r7)2
On the other hand, since

r—7\?
fmC(F)(T) ~Cp2r2/L?, (43)
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in the matching region II, we require

d Ld
dx =L & 28P (44)
af aCp?
By comparing to the previous formula for dx, this fixes
L
==, 45
=5 (45)
We can now compute the ‘length’ Ax in the far region
oo o
dr C dr
Axpr=2| —=2=| —. 46
xfar er af I . f ( )

There are two main contributions, one near the matching radius r,, and the other at larger r.
The function f can be simplified in these two regimes, so

1 (™ arr2 ¢ (T dr
A 2~ — + = . 47
Xfar/ I ﬁ (r—f)z L J; 2 ( )

The matching regime is p,, ~ L/ which implies

~1. (48)

The small r part of the integral gives order %, which is small and can be neglected. For the
large r part, we make a small error by approximating r,, ~ ', giving

oo

Axfar/Zw%J ar (49)

= -
F 1+Z—2

This can clearly be computed exactly, but it is more convenient to compute it approximately
in two regimes:

Ct? -
ﬁ’ 7”>>€,
Axfar/z A ool (50)
—, K.
2L

In the large 7 regime, using L = 47 /(n{) and C ~ 72 /€2,
AXfq/2~C, for 74, (51

which can be neglected compared to the throat contribution.
In the small 7 regime, C ~ 1, so

94

Axfar/Zmﬁ, for T<{. (52)
Recall now that .,
. P rAx 53)
- Gqr

so in the small  regime,

Glqr iAg®

2AX T3 2m32@2lAx

Axfar/Z a4 (54)
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Recall that

__  Ax + Ax
Ax — throat far >1, (55)
T

where the inequality arises due to the throat contribution. For g2 > Afmpg> the far contri-
bution is again small and can be neglected. However, for g smaller than this value, this far
contribution cannot be neglected.

We can now solve for Ax via

— iAg®

Ax=1+—"—. (56)
5/2q21p Ax

This is a cubic equation so the answer is unwieldy. For our purposes, it is sufficient to have the
formula in the two limits:

A 3
1, 2> Elg :
—3 p
Ax = 57
Ags 2<<€Ag3 7
5221, ° lp

The rough intuition behind this is straightforward: as the black hole becomes small, the
total length of the wormhole is dominated eventually not by the near horizon region, but the
asymptotic region. Alternatively, it is clear that the far region must eventually dominate if we
fix all other length scales and take the AdS radius ¢ arbitrarily large. We do not have a quick
argument for the particular scaling seen in the small g regime.

2.1.7 Wormhole mass

The effect of the non-local coupling can be seen in the asymptotic mass, which is equal to the
mass of the extremal RN-AdS black hole M,,, together with a negative correction AM. There
are two contributions to the asymptotic correction to the mass AM. The first can be read off
from the matching, which determines the mass of the RNAdS black hole fits smoothly onto the
throat solution. The result is

_C(RHFmPg* . C(P)F® . Cqh

A]wl'hroat = - - R .
32G 2GL2 27’[AX2L

(58)

There is an additional contribution due to the Casimir energy in the asymptotic region,
which becomes important for smaller black holes. The conserved Killing energy due to the
Casimir energy in the far region is

o o
Efg; = J d’x /g TyEn" =2- 4nf d—\/;rzTW% =8n drr®T",  (59)
'm 'm
where the integral is over a constant time slice, £ is the timelike Killing vector corresponding
to the asymptotic time 7, and n” is the unit normal to the time slice.

In fact, although this is the natural quantity to compute from the perspective of QFT in a
fixed background, once we backreact the solution it is more convenient to consider one of the
definitions of mass that is guaranteed to agree with the ADM mass. A convenient choice is the
so-called “p mass”, which is simply given by

M, = 4nf drr®T?. (60)
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This formula agrees with the above Killing energy in the region of interest.
Using the previous formula for T,, together with the relation t = Ct/L gives

gl

(Ter) =————.
2m3Ax r2L2

(61)

Since this correction is only important for small black holes we have set C = 1. This gives

292 2 (T adr
Bo=—"D| | T (62
nAx L \ 7L f

'm

The factor in parentheses is simply Ax ¢, so this contribution is

Cas _ _ZqAAxfar

far = (63)

—2
nAx L
We would like to translate this into a correction to AM. There is a factor of 2 because the total
energy shift is 2AM due to the two asymptotic regions so that

gAAX
AMj,, = ———1 (64)
nTAXx L

Comparing the throat and far contributions, for large black holes the length in the far
region is small, and also the mass shift from this region is negligible. However, in the regime
where the far contribution Hfar to the wormhole length dominates, AM is dominated by the
far contribution.

Plugging in the value of L gives

A
_;117: q2<<€mp7tg3,
AM ~ 65
CGg*A? 9 3 (©5)
- 27273 , g >>€mp7(,g .

Note that 7 is determined by q.
One may want to further consider the limits within the larger charge regime above

A
_E%’ ¢ < tmprg®,
A2g3 » ) \
AMN<_TC7/2?> q°>{0mpAg’, and F <L, 66)
22 /g35/4 13/243/2
- \/9§/4 Pgscfz , ¢*>UmpAg®, and F> L.
Vi

This last case demonstrates the characteristic large charge behaviour identified by [21]. All in
all, we thus have

Foo2r
Mwy = Mgy + AM, where My, = —

2r 67)
eTEk

and AM as given in (65).

We end this subsection with some comments. First of all, the wormhole solution presented
here is consistent with the Ansatz we made in (6). There are no horizons or singularities
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anywhere in the solution. From outside of the wormhole throat, the solution is that of a super-
extremal black hole, that naively has a naked singularity at its centre. Before one reaches that
singularity, the geometry smoothly interpolates to a deformation of AdS, x S2, which has no
horizons or singularities. Second, we comment on the number of parameters. There are three
independent parameters that determine the wormhole solution uniquely: the AdS length Z,
the charge g, and the non-local coupling h.® As soon as these parameters are fixed the solution
presented is the unique static spherically symmetric solution. Third, note that the deformations
1 and y break Poincaré invariance. Therefore, our solution evades the no-go result of [22].

2.2 Alternative derivation of the Casimir energy

In this subsection, we show an alternative derivation of the energy difference between the
extremal RN solution and our wormhole, by summing over the frequencies. This shows that
we could have found the Casimir energy without evaluating the backreaction on the geometry.

The effect of the non-local coupling manifests itself in the shift of the frequencies w, of the
fermionic modes.” Moreover, the quantized fermionic field gives rise to a fermionic harmonic
oscillator, whose energy is given by minus half the sum over the frequencies. This infinite sum
over frequencies formally diverges. However, we know that for h = 0, the regularized sum
over frequencies results in the total energy of the extremal RN black hole. We can thus evaluate
the sum over Awy ‘= wy — coZ:O, and find the energy difference between the wormhole and
the extremal RN black hole. Using (17), we see that

AE =—q (Z Awy — Z Awk> =—qAwg= _2q7£1) . (68)

k>0 k<0 TAX

Here the factor g comes from the fact that in the lowest Landau level approximation, we have g
(complex) fermionic harmonic oscillators. Note that this is the energy difference with respect
to the Killing vector J, in the metric (6). We can relate it to the asymptotic metric (27) by the
coordinate transformation

T - _ 1 1 _
t= ZC(T‘), X = f drsz(r), (69)

and by setting

e — Ly/f(r) '

70
o) (70)
Therefore, in the asymptotic coordinates, we find the energy difference to be
) 2qA(h
Ap, =S 2024 0 (71)
L  nAx

This energy difference agrees exactly with (63) in the limit Ax ~ Ax far- Evaluating the sum
over frequencies is thus a much faster derivation for AM in this limit. For small black holes,
it agrees with the total AM, while for large black holes, the sum over frequencies cannot
account for the total AM due to the backreaction effects that are not captured in this purely
QFT calculation; it only accounts for the difference in Casimir energy in the fixed background,
and not for the gravitational effects that are important in the throat region.

®Note that for the construction to work we must have that q is large and ¢ small. g has to be large to be able
to restrict to the lowest Landau level, while { must be small for the linearized Einstein equations to be a good
approximation.

Notice that in our conventions, the frequencies are given by |w,|, and we have modes for all k € Z.
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We end with a comment: the computation in this subsection, although much simpler, is not
enough to show that there exists a traversable wormhole solution. To ensure that the solution
is in fact traversable, one has to show that the backreacted geometry, sourced by the stress
tensor computed in the Ansatz (6) is self-consistent. In other words, one needs to show that
the backreacted geometry can be written in the form (6), without any horizons or singularities,
as demonstrated in the previous subsection. Moreover, we also need the gravity analysis to
determine the correct value of Ax, allowing us to solve for the energy in terms of the charge.

2.3 Semiclassical breakdown for long wormholes

The traversable wormhole has a maximum length for the semiclassical approximation to be
valid; this can be argued through their similarity to nearly-extremal RN black holes [23]. The
semiclassical approximation of RN black holes breaks down at sufficiently low temperatures be-
cause the average energy of Hawking quanta becomes the same order as the mass of the black
hole above extremality, so fluctuations in the near horizon geometry cannot be neglected [24].
The difference in mass between a nearly extremal RN black hole and an extremal one of the
same charge is

M =My, = Mg, T? +0(T°), (72)
where -
2m4r
-1
= . 73
84 GC(r) 73)

When TM;;p < 1, (72) is less than the average energy of Hawking quanta, which is (E) ~ T.
Thus, to be in the semiclassical regime, requires

GC(1)

T> .
2m273

(74)

The lower bound on temperature places an upper bound on the length of the near-horizon
throat region of the near-extremal black hole, through the relation between throat length and
RN black hole temperature, given by

3

L< ngB . (75)
The length of our wormbhole is given by (53), which for large q is
L= nmg " . (76)
qA(h)

This, in combination with (75), places a lower bound on our boundary coupling h. The form
of the bound on h depends on our input parameters. For r, < £ the bound is h > q~!. If
the boundary coupling h is too small, then our wormhole is too long for the semiclassical
approximation to be valid.

3 Phases

In this section, we will revisit and expand on some results first presented in section 4.1 of [9].
We clear up a subtlety that went unnoticed and generalize the discussion to finite non-local
coupling. We also discuss the effects of working in either the canonical or microcanonical
ensemble and the possibility of fragmentation.
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3.1 Boundary Hamiltonian

In the boundary theory, the dual of the wormhole solution is some highly entangled state.
Moreover, this entangled state is expected to be the ground state of a local Hamiltonian for
some range of the parameters [25,26]. In the bulk theory, given boundary conditions, grav-
ity fills in the geometry smoothly. We will consider three possible gravitational solutions at
zero temperature: Empty AdS, two disconnected extremal RN black holes, and the wormhole
solution. To simplify matters, we will focus on the setup that has some additional symmetry
between the left and right sides: the magnetic charge is Q := Qg = —Q; = q/g, and the mass is
M = M; = Mg. Our goal is then to propose a boundary Hamiltonian, for which our traversable
wormhole is the ground state in some region of parameter space.

We start by computing the on-shell Hamiltonian of the traversable wormhole solution pre-
sented in section 2. The on-shell Hamiltonian is given by the charge associated with a symme-
try given by a boundary Killing vector {, which can be computed using the Brown-York stress
tensor as

2 &S
VT ey

where X is a constant timeslice, u is the unit normal to it, and /o is volume element at its
boundary . We will be interested in the gravitational energy, which is given by the charge
associated with symmetry under time-translations. In other words, we take { = J,.

In [9], (77) was applied to the interacting part of the action (15). However, this is not
the correct way to think about the effect of the non-local interaction on the on-shell Hamilto-
nian. The manner in which the on-shell Hamiltonian knows about the non-local interaction
is through the backreacted geometry [27]. This has been known for “ordinary matter”, but
the matter action also does not contribute to the on-shell Hamiltonian when including our
non-local boundary action. To see this we first note that from (77) it follows that only the
boundary contributions to any matter action can contribute to the on-shell Hamiltonian. One
should however be mindful of boundary terms coming from the bulk matter action. We will
show that once we combine all boundary terms associated with the fermionic field ¥, the on-
shell action vanishes due to the boundary condition on ¥, given in (16). To do so we first need
to consider the bulk action. As is well-known, the action is proportional to the equations of
motion. In the presence of boundaries, however, there are terms localized on the boundary
that one should be careful about. To see this we rewrite the bulk matter action as bulk terms
that vanish on-shell and some boundary terms that do not by themselves vanish:®

H[g]:J dzx\/Euag'ﬂTaﬁ, where Top := (77)
ox

S = J d*x v (YLaap, +vlan, — Loy +ylayp )n' (78)
. -+ S 0
:_Jd4xﬁ[ax (¢1¢+—¢Lw_)+m
(79)
- €.0.m
DRTREER VARV E7
=— j d*xy7 (i =9Iy _)n'n (80)
a
:f Ex /(T v, —v, v ). (81)
d

8We restrict ourselves to the lowest Landau level.
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M_

Note that here n = (77 ), withn, =0,andn_= ), CfnnT, and 1, given by the sum over
+

modes given in (9). Combining this with the boundary action as given in (13), we find

sl = f @ 7] TR —BROF Tt + TL +FRUR + BLOL +RTAGL + 1Tl |
a

—~ —~

bulk 2 5

Sclassical Snon-local
(82)
_ J Ee T[T (R + ) + B (4 het) ] (83)
5}
=0, (84)

due to the boundary condition. Therefore, the matter action does not contribute to the on-shell
Hamiltonian, even in the presence of non-standard boundary conditions.
In four dimensions, the Brown-York stress tensor is given by

Taﬂ = Ka/5 _KYa/} - %Yaﬁ _EGaﬂ > (85)
where G, is the Einstein tensor due to the boundary metric y,g, and we have included the
contribution of the local counterterm that is needed to regulate IR divergences.

At the asymptotic boundary, the timelike unit vector is given by u = 4/ f(r)dt. It is then a
simple exercise to show that the expectation value of the on-shell Hamiltonian is given by the
asymptotic gravitational energy

(H)wn = 2Myy - (86)

In the above equation, the factor of two appears due to the fact that we integrate (77) over
the entire boundary i.e. both the left and right boundary.

Inspired by this result, we can define a local boundary Hamiltonian. First, we define the
boundary spinors \Ui’L, which are related to the bulk spinors W, in the following way

Rl = RIYRL (87)
In terms of the boundary data, the local boundary Hamiltonian we propose is given by

ih —R —r
Hi=H, + Hy— 17 0, (\u_wi + U, WR ) +u(Q, —QR). 88)

Here H; and Hy should be interpreted as the local Hamiltonians associated with two identical
systems of the boundary theory without the non-local interaction, and Qg = —Q; = q/g.
This Hamiltonian governs the time-evolution with respect to the asymptotic time 7, and is
conserved due to time-translation symmetry.

We propose this particular Hamiltonian because, for the wormhole solution, the terms
independent of the chemical potential evaluate precisely to (86) by construction. For the phase
consisting of two disconnected extremal RN black holes the interacting part of the Hamiltonian
does not explicitly contribute for the same reason as in the wormhole phase and the expectation
value of the Hamiltonian is given by

(H)opn = 2Meye — 2uQ, (89)

with M, the mass of the extremal black hole of charge Q. Finally, for the empty AdS phase,
the Hamiltonian vanishes.
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3.2 Identifying the ground state

Since AM < 0, we always have that

(H)opy — (H)wn > 0. (90)

It is then easy to see that (H),py is minimized by

. |2 u?
FZE m—g—ﬂ, for m—g>ﬂ. 91)
Moreover, for these values (H),py < 0, and hence both the black hole and the wormhole phase
have lower energy than empty AdS. From this, we can conclude that for the values u > u,
with

Ue =m,V/T, (92)

the wormhole phase is the ground state whenever it exists.

One may wonder whether once h is turned on, the wormhole can be the ground state
even when u < u.. We cannot analytically solve the equation needed to answer this question
precisely, which is

(H)wn <O. (93)

We can however infer some information about the phase transition between the wormhole and
empty AdS phases using symmetry, by investigating the scales involved and we can solve in an
appropriate approximation. First, (H)wy only depends on the non-local coupling h through
A(h), which is symmetric under h — h™!. Therefore, the phase diagram should be symmetric
under this transformation. Second, we can argue that there is no value of h for which the
wormhole phase extends all the way to u — 0. We can argue that this is not the case by
solving (93) for u = 0. This leads to the following inequality

=2

r
S AR, (94)

Gvq
where we have ignored order one numbers. By noting that A(h) < 7, it follows that (93) is

never satisfied at very small u (while at the same time being in the semiclassical regime). Even
though we cannot solve (93) analytically, we can do perturbation theory around u = .. For
such u it follows from (91) that 7 is small compared to £ in this regime. Therefore, solutions
of (93) are well approximated by solutions to the same equation with

r -
Myt R AM =— g and re2 =72, (95)
In this approximation, we find that (93) is solved by
gA(M)lp
u(h) > u, (1 ~ g ) (96)

First of all, we note that this bound is consistent with our aforementioned arguments. Also,
notice that the correction to u, is very small for typical parameter values.

Using the results we infer that the phase diagram is approximately as shown in figure 1.
Moreover, near the transition, we have

N 2 3/2£ 32
(H/2>~—(m) E(M—Mc) : (97)
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3.3 Ensembles and when the traversable wormhole dominates

The question of when the traversable wormhole is the dominant bulk configuration can be
asked in various ensembles. Just like for small black holes in asymptotically AdS spacetime,
interesting differences can arise between different ensembles. Recall that in asymptotically
AdS; spacetime, small black holes (with a radius less than the AdS radius) never dominate the
canonical ensemble, but they do dominate the microcanonical ensemble for a wide range of
masses [28].

Before coupling the two CFTs there are two conserved U(1) charges, but after coupling
only the total charge Q; + Qi remains. One can consider turning on a chemical potential for
this conserved charge, but in the following, we will simply fix Q; + Qg = 0 for simplicity.

3.3.1 Microcanonical ensemble

We have seen above the region of parameters (u,h) for which the traversable wormhole is
the ground state. Now consider higher energy states. In the microcanonical ensemble, the
dominant state is determined by the state with the largest entropy at the given energy. We
work in the limit of small G so that the only entropy we consider is horizon entropy.
Consider the region of parameters where the ground state is the traversable wormhole.
For energies in the range
E < 2M . —2uQ, (98)

the traversable wormbhole is the only solution. (Recall that in this regime of parameters, the
above energy is negative, so empty AdS is also not an allowed solution.) The relevant solu-
tion is a ‘hot’ traversable wormhole: a traversable wormhole with some additional thermal
radiation to raise the energy above the ground state energy.

Now consider the range of energies

E > 2M. —2uQ. (99)

In this regime, both the hot traversable wormhole and the black hole are allowed solutions.
(At some energy the hot traversable wormhole will become unstable due to the backreaction,
but we expect this to happen at higher energy than where it stops dominating the ensemble.
It would be interesting to check this.) To the order we are working to in the G expansion,
the hot traversable wormhole has zero entropy, while the black hole has a significant horizon
entropy. Therefore, in the full regime where the black hole solution exists, it dominates the
microcanonical ensemble.

Empty AdS does not dominate at any energy in this range of parameters, because the
black hole is a possible solution for all E > 0 and has larger entropy than empty AdS. To recall,
this happens because the chemical potential-like term in our Hamiltonian shifts the conserved
energy from 2M to 2(M — uQ), where M is the asymptotic mass as measured by the metric.

3.3.2 Canonical ensemble

To see which phase dominates the canonical ensemble, we need to compute the free energy
F = E—TS. We again work in the purple regime of parameters where the traversable wormhole
is the ground state. The free energy of the traversable wormhole is

Frwy = 2(Mey + AM —uQ). (100)

Recall that M,,; is determined by Q and AM is determined by Q and the coupling h, so this
result is independent of the temperature.
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The free energy of the black hole solution is

Fopy =2(M(Q, T)—uQ—TS(Q,T)), (101)

where M(Q, T) is the mass of a black hole with charge Q and temperature T. Due to the
entropy term, this solution will begin to dominate at low temperatures. At low temperatures,
the free energy takes the simpler form

FZBH A2 (Mext(Q) - .U'Q - TSext(Q)) . (102)

Like in the microcanonical case discussed above, in this range of parameters, the dominant
phase is always the traversable wormhole or the black holes. Comparing the free energies of
these two solutions, we find that the black hole begins to dominate at the temperature

AM
T, = . 103
Son(@) (103)

This transition temperature is lower than the temperature (73) at which the semiclassical
description of the black hole breaks down; T, larger than (73) is inconsistent with g < 1. For
example, for a small 7, AM is given by

2)12
AM ~ -2 (104)
r
so that its magnitude is bounded by
1
IAM|S <, (105)
r

and the critical temperature is bounded by

1
T. S

. 1
S (oo
Our energy gap AM is not particularly small, as can be seen from the above equation. However,
the fact that the black hole solution begins to dominate at very low temperatures may indicate
difficulties in preparing the traversable wormhole state.

The situation is similar to the small black holes in AdS mentioned above. In the micro-
canonical ensemble, the traversable wormhole dominates for a range of energies up to AM
above the ground state, and its temperature can be as high as T ~ AM. But in the canonical
ensemble, these hot traversable wormholes never dominate, except at extremely low temper-
atures.

To summarize: If one can prepare the system in a particular range of energies, it is straight-
forward to choose a range of parameters where the traversable wormhole dominates, but if
one can only fix the temperature preparation will be difficult. While it may be more natural to
do experiments at a fixed temperature, it is easier to do simulations at fixed energy. Therefore,
this issue does not pose a problem for simulating traversable wormholes.

3.4 Fragmentation

Is the true ground state in the wormhole phase a single large wormhole, or a collection of
small wormholes?

Results on AdS fragmentation [29] and holographic vitrification [30] indicate that near-
extremal black holes are able to fragment. In the above-mentioned cases, often entropy con-
siderations make the un-fragmented black hole the dominant configuration. However, our
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wormholes do not have a large entropy, so the dominant configuration will be determined by
energetic considerations.

We do not keep track of order one-factors in this section. For simplicity, we also neglect
the gauge coupling g and the strength of the Casimir interaction A,

g~A~T. (107)

Consider a configuration with a total charge of q. We first work with small black holes with
a horizon size much smaller than the AdS radius. Calculations in the previous sections of the
paper give

Am~—9L e (108)
r3 q

The fact that the energy is inversely proportional to g suggests that fragmentation is energet-
ically favoured. Naively, two wormholes with charge q/2 would have more negative energy
than a single wormhole with charge q. We want to compute whether this naive expectation is
correct.

We first need a better formula for the length L, of the wormhole, applicable also for very
small wormholes. Recall that

Ly~L~"C, (109)
€

which is computed under the assumption that most of the wormhole length comes from the
near-horizon region. A more general formula is

Ly~L+0~l+0, (110)
€

which simply adds the distance in the external region. This can be justified further via confor-

mally mapping the metric. Using
GAM
e*~———, (111)
r

we have "
fg/z qB/ZZP/

L +¢. (112)

~N— i~ ——P
Y L (—AM)2 (—AM)1/2

We can solve for AM by combining the above equation with

cas =AM = _i . (113)

w

E

Solving for AM gives the messy formula

(AM = q+2 P g% —2)\ l” q®/%\ lpq3+q (114)

This simplifies in limits:

l 14
—q+2\?Pq2+---, q <<l_

{AM = é’ (115)
lpq lp

Now we want to consider breaking up the total charge g into N wormholes, each with
charge q; = q/N. If these wormholes are not too close together, the Casimir contribution
to each wormhole can be computed independently and is given by the formula above, with
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g given by the charge of the individual wormhole. If we only take into account the Casimir

energy, we have a total energy
lp 5 q)? 4
oo\ g, (O <L,
q Eq/ N L

‘%j*"‘ (g)z {

(AM,,, = (116)

N

As long as N is large enough so that we are in the upper case, this is minimized by making a
very large number of wormholes, N — oo; the total energy is independent of N for large N
and is simply

AM ~ —% . 117)

Considering smaller N so that we are in the lower case, we want to choose the minimal N,
giving N2 = ¢21p /¢ so that

AM,,, ~—%, (118)
which agrees with the previous formula. To the accuracy that we are computing, this agrees
with the formula for a single wormhole in the small g regime. It is more negative than the
single wormhole formula in the large q regime.

However, so far we have neglected the interaction between the wormholes. We want to
now estimate the corrections. There are two types of corrections: the wormholes interact
with each other gravitationally and through electromagnetic interactions, and experience the
AdS gravitational potential. A more careful analysis is possible, but for now, we assume the
wormholes are in a region much smaller than the AdS radius so that we can use flat space
formulae. In that case the interactions between the wormholes nearly cancel because they are
near extremal. The correction is due to AM,

GM;AM,;

Eint ~—Z—, (119)
T |71

where the sum goes over all wormholes. The interactions of the nearby wormholes do not

dominate, so if the wormholes are spread over a region of size d the interaction energy is

approximately

GM,;AM
Egne ~ =N =———. (120)
Using NAM; = AM,,, and M; = q;1;! gives
AM,, 1 2l
Eppp ~— tot'Pd dtp (121)

d de -

Note that the factors of N have cancelled each other, so this contribution does not care how
much we fragment the black hole, within our approximation here.
The AdS potential contributes

d2 qu
Epas ~ZMi<I’(Xi)~NM1E—2 ~ e (122)
1
Again the factor N has cancelled out of the answer.
Optimizing d gives
ZZ
a3 ~qu2 =312 (123)

€2
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The above formula is valid as long as d < ¢, requiring q < £2/ l%. This is already implied since
we are considering small black holes with 7 ~ [,q < £.

An additional bound on d is that the separation between the wormholes has to be larger
than their Schwarzschild radii. For the above formulas to be valid, the separation should be
much larger,

d3 -3 qlp 3 qlP
ﬁ>>r N(W) = d>>]m (124)
Additionally, the whole collection of wormholes should be outside its Schwarzschild radius,
G
M1 = d>ql, (125)
dlp

which is a stronger requirement than the previous one. This is satisfied by the optimal d if

qll2>q’3, and q<\ l£ (126)
p

But this (to the accuracy we are working) implies that we are in the small q regime, where the
single wormhole has the same energy as the fragmented wormhole. For larger charges, our
fragmented analysis breaks down.

Plugging in the optimal d gives the energy of the configuration,

qzl 1/3
Enon—cas ~ @° 2132073 ~ |E gl (TP) : (127)

To summarize: when the total charge is small enough, q < +/£/lp, the wormhole can fragment
into a large number N of small wormholes, with a total energy shift

2l 1/3
AMmEcas[l—(Q’T”) +] with Ecas~—%. (128)

The mass shift AM is independent of the number of fragments to the order we have ana-
lyzed it. Therefore, we cannot conclude from this analysis whether wormholes in this range
of charges want to fragment or not. In computing the phase diagram, we can simply use the
single wormhole formulas for the energy of the configuration. Fragmentation could correct
the entropy of the configuration, but since we only include terms of order G™! in the entropy,
this correction can be neglected. The much more detailed results of [30] indicate that stable
fragmented configurations in AdS require the fragments to have mutually non-local charges;
therefore, our simple configuration with purely magnetic charges would not be expected to be
stable.

For a larger total charge, the above analysis breaks down as we described, but the nat-
ural expectation is that larger wormholes do not want to fragment. This can be checked by
computing the dynamics of a small wormhole outside a larger wormhole. Treating the small
wormhole as a probe point particle, the action is

Sprobe :—mfdr—efA, (129)

where m is the mass of the probe, e is its charge, and the integral is over the worldline of the
particle. The wormhole is slightly super-extremal,

m=emp+6m, (130)
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with é§m < 0. This small correction will prove inconsequential.
Considering static configurations, the probe action is

Sstatic = _J dt (m f(r) + ﬂ) . (131)
r

We identify the integrand with a potential V(r). For a large AdS radius, compared to all other
scales, the large r behaviour is

GM
m_ eq

Vi)~ — s (132)

r r

simply the usual gravitational and electrostatic potentials. Since both the large wormhole and
the probe are super-extremal, the probe is pushed towards infinity, indicating a tendency to
fragment.

Now, however, consider the effect of the AdS radius. The effective potential,

V:m\/f+%, (133)

increases at large r as V &~ mr/{. For large black holes, # > {, one can check that the
potential is monotonic, so fragments are pushed back into the wormhole. Thus fragmentation
is irrelevant for larger black holes.

3.5 Other potential instabilities

Besides the stability of the traversable wormhole, one might also worry about the stability of
the near-extremal black hole phase, which we envision as the starting point of our tunneling
experiment. It is well-known that AdS-RN black holes develop instabilities once they approach
zero temperature and become extremal, see for example [31-37]. The experiment we have in
mind is conducted either at fixed non-zero (but low) temperatures or at fixed energy.

An important question to ask is whether the decay channel to the wormhole phase is the
dominant one. As mentioned in section 3.4, near extremal black holes can fragment, how-
ever, due to entropy considerations, the un-fragmented black hole is expected to be the domi-
nant one. One could also worry about stability under Schwinger pair production of magnetic
monopoles. We expect that one can make the mass of the monopoles sufficiently large such
that the corresponding decay channel is a subleading effect. The Schwinger decay rate is ex-
ponentially suppressed by the mass of the monopole, and heavy monopoles are confined by
the effective radial potential.

One further decay channel of concern is Hawking radiation because of its enhancement
for near-extremal magnetic black holes due to the large degeneracy in the lowest Landau
level [38]. From the considerations of section 3.3 it follows that for the region of parameters
of interest, the black hole and wormhole phase dominate over empty AdS in either ensemble.
Hence, instabilities concerning Hawking radiation are not relevant for our computations. The
underlying reason is that in asymptotically AdS spacetimes, Hawking radiation is in thermal
equilibrium with incoming thermal radiation.

4 Recipe for computing decay rates
In this section, we provide the recipe that we will use to compute decay rates. First we discuss
the different choices for ensembles and boundary conditions in subsection 4.1, after which we

discuss the example of emitting Reissner-Nordstrém black holes in 4.2 where we show that
the recipe leads to sensible decay rates.
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Instanton methods were originally formulated in flat non-dynamical spacetimes [39, 40],
but have since been incorporated into gravitational theories [41-44], and used to study in-
stabilities of spacetime [45-48]. Instantons have also been generalised to finite temperatures
where they are also known as thermalons or calorons [49,50]. Instantons and domain walls
have also played a prominent role in cosmology [51-59].

4.1 Ensembles and boundary terms

In computing the decay rate via instantons, it matters what we hold fixed at the boundary. We
can ask two different physical questions: what is the decay rate at fixed energy (microcanon-
ical) or at fixed temperature? The decay rates for different ensembles may coincide in some
situations, for example, due to ensemble equivalence, but in general, they can be different.
We are familiar with examples where certain black holes are stable in the microcanonical en-
semble but unstable in the canonical ensemble, for example for certain small black holes in
AdS. So clearly gravity admits situations where the two ensembles are quite different.

The recipe for computing the decay rate is to compute the Euclidean action for the instan-
ton and subtract it from the Euclidean action for the background solution. The appropriate
instanton solution will depend on what is held fixed at the boundary. In addition, the action
will depend on which boundary terms are present in the action, which of course is correlated
to what quantity is held fixed.

4.1.1 Canonical ensemble

The most familiar formulation is the canonical ensemble. In Euclidean, this corresponds to
fixing the metric at infinity. The appropriate action with these boundary conditions includes
the Gibbons Hawking York boundary term,

e ][ VR (134
aM 8nG

SEuc = J d4x1/§|:_16R

M G
where K is the trace of the extrinsic curvature of the boundary and h is the induced metric of
the boundary. There are differing sign conventions: this is the correct sign convention if the
extrinsic curvature is defined with respect to an outward pointing normal at the boundary and
R is defined so that spheres have positive curvature. In rather general situations, the Euclidean
matter Lagrangian is equal to the (Euclidean) energy density, £,, = Tyg.

When using this formulation, our instanton must have the same asymptotic values of the
metric at infinity; the temperature is fixed. This means that in general, the mass at infinity for
the instanton is different from the asymptotic mass of the background. This appears to happen
in relatively simple situations, such as the emission of neutral particles by Reissner-Nordstrém
black holes. There is nothing wrong with this: In the canonical ensemble, the energy is not
fixed. However, if we are interested in a physical situation where the energy is fixed, we need
to use a different formalism.

4.1.2 Microcanonical ensemble

In many physical situations, the total energy is conserved, so the microcanonical ensemble is
more relevant. Microcanonical ensembles in AdS/CFT have previously been studied to under-
stand the bulk physics of black holes at temperatures below the Hawking-Page transition [60].
One option is to not fix the asymptotic mass but to fix the induced metric on the sphere. This is
treating the Euclidean time and space directions on unequal footing but is a physically sensible
question to ask. Brown and York [61] defined a suitable action for these boundary conditions,
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given in our current notation and conventions by

t, K", t

R
Spue= | d* [— +£m} — = 135
Buc JM V8| "Tonc . Vs (135)

where “t is the scalar field on the boundary that labels the foliation, ... and ¢, is the time
vector field” defined on the boundary.
This formula is written by Iyer and Wald [62] as

I=f L—f dtAQ, (136)
M oM

where L is the bulk Lagrangian density and Q is the Noether charge 2-form.

4.1.3 Alternative boundary conditions

Fixing all normal derivatives. The above proposal treats space and time differently. It is
also possible to fix only the (suitably defined) normal derivatives of the metric and let the
boundary metric fluctuate. In this case, the appropriate action, in 34+1 dimensions, has no
boundary term. In general dimensions, the needed boundary term is a multiple of the GHY
term.

Fixing the conformal data of the boundary metric and K. Witten [63] points out that

gravitational perturbation theory is more well-behaved if, instead of fixing the full boundary

metric, we fix only the conformal data of the boundary metric, and fix the trace of the extrinsic

curvature of the boundary metric. The needed boundary term is a multiple of the GHY term,
1

w _ GHY
S = =—=sgH". (137)

4.2 Emission of thin radiation shells from Reissner-Nordstrom black holes

To test that we get sensible answers from this Euclidean procedure, we compute the emis-
sion of neutral radiation by a Reissner-Nordstrom black hole. For previous work on AdS-RN
thermodynamics and instabilities, see [64-66]. For simplicity, we work in asymptotically flat
spacetime in 4 dimensions. Since we do not want to treat the radiation in detail, we go to the
regime where the mass emitted is large compared to the temperature. For convenience, we
remain in the regime where the change in mass is small:

TKAMKLM. (138)

In this regime, we expect that the rate is given by a Boltzmann-type factor. Computing the
prefactor correctly would require a more careful treatment of the radiation but in the regime
AM > T we can extract the Boltzmann factor.

For convenience, we describe the radiation as a thin shell. Domain walls that separate two
different phases naturally have a brane equation of state P = —p, corresponding to a stress
tensor simply proportional to the induced metric. On the other hand, a thin shell that models
radiation should have its energy density decrease as it expands. A simple and natural choice
for the equation of state is P = % p, corresponding to radiation living on the brane.

As an aside, one can begin with free massless particles living in the bulk spacetime and try
to take a thin-wall limit. We have encountered obstacles in trying to take this limit- it appears
that the thin wall limit is only consistent when the wall moves at the speed of light.” While this

“We thank Diego Hofman for discussions on this topic.
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is sensible for massless particles, it is not conducive to a computation of Hawking radiation
via tunnelling, which requires that the system have classically allowed and forbidden regions,
and in particular turning points. One can think of our thin wall as modelling some massless
particles that interact in such a way as to stay in equilibrium in a relatively thin shell. At a
large radius, as the shell expands, the energy redshifts just like radiation. Since the exponential
part of the tunnelling rate should not depend on the details of the particles being emitted, we
are free to choose this convenient thin shell model, which makes backreaction computations
tractable.

The tunnelling rate can be computed in a number of ways, which we detail below in order
to establish the equivalence (and lack thereof) between them.

4.2.1 Probe calculation

Since AM /M is small, the radiation is a small perturbation on the background, and we can
simply treat the shell as living in a fixed background. The action for the shell is

S=Jpr2d2§22dr, (139)

where 7 is the proper time along the wall and p is the energy density.
For spherically symmetric walls, the action is just

S= 47'EJ p ridr. (140)

For our radiation wall, p redshifts as the wall expands as r =, so

o
pP=-3 (141)
r
and the action is just
dt
S=4no | —. (142)
r

It looks as though the equation of motion will be trivial, but note that the function we should
vary is r(t) rather than r(7). They are related by

2
de? = fd2— dTr. (143)

To get the equation of motion it is convenient to think of ¢ rather than r as the dynamical

variable, so we use
dt=dry/ft2—-1/f, (144)

S:4710'Jg\/ft’2—1/f. (145)

so that

The equation of motion is then
4noft’

Having varied the action, we now go back to the more intuitive parameterization of the path
in terms of r(7), so that the equation is just

=E. (146)

_ 4naff_ 4o

E f+i2, (147)
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This has an intuitive explanation as the energy of the shell; recalling the definition of o, it is

just
E=4nr’py/f +i2, (148)

where the square root can be thought of as a curved space gamma factor. Once we backreact
this solution, we will see that this conserved quantity E is indeed the energy associated with
the shell, or equivalently the change in black hole mass.

The equation of motion of the shell is

4o

2
r2+f—( Er) —0. (149)

This can be thought of as the equation of motion of a particle moving in a potential

V=f-— (%)2. For many choices of the energy of the shell, there is a classically allowed
and forbidden region of the potential, so we are in a good position to compute tunnelling.
This equation describes the motion of the shell in Lorentzian space.

Assuming we choose an energy such that there is a forbidden region. The Euclidean equa-

tion of motion just differs by a sign,

2
) =0 (Euclidean). (150)
o

Static solution

The Euclidean geometry is periodic in time, so our shell has to respect that periodicity. The
simplest solution is simply to have the shell sit at the maximum of the Lorentzian potential.
This means that we have to choose the conserved quantity E so that the maximum of the po-
tential has V = 0. We discuss whether this simplest solution is actually the dominant instanton
in appendix F.

Let’s call the location of the static solution . We need

E’\ 2

f(f)z( d ) , and (151)
4no
E 2
f’(f)=2(—) . (152)
4no

Combining these equations gives an equation for 7,

fiy=219 (153)

r
For Schwarzschild black holes, this simply corresponds to r = 3GM, and more generally prob-

ably still corresponds to the location of the innermost circular orbit.
Let’s compute the action! Since the shell is static, it is not too difficult:

4o AT 47‘6(7\/?AtE 4750\/?[5
— - = : , (154)

SEuc = 2

where we have denoted f(#) = f and used the period of Euclidean time . Using equation
(151), we can write this in terms of the energy E of the shell as

Sgue = BE. (155)

So, all of these shell computations serve only to compute the usual Boltzmann factor! This,
however, is encouraging that our computations are sensible.
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One might wonder whether there should be a correction due to the entropy of the shell.
The shell has energy density p ~ T and entropy S ~ r2T2 where T is the temperature of the
radiation, so S ~ p2/3r2. Using p ~ o /r>, we have

Entropy of shell ~ o3, (156)

At least for Schwarzschild black holes, this is subleading: the Euclidean action is Sg,. ~ o and
we need to be in the regime where Sg,. > 1 for the tunnelling analysis to apply.

Fixed shell energy density

Given an initial black hole, it has some probability to emit a shell with a range of energies
E. What we have computed here is the exponential part of the transition rate to a fixed final
energy. Conventional domain walls are analogous to having a fixed ¢, but since our walls model
radiation, it is reasonable to treat o as an adjustable parameter whose value determines how
much energy is in the wall. Our proposal is that to emit energy E we choose the value of o
that minimizes the action.

In the above calculation, we held o fixed while allowing the trajectory to vary. When the
trajectory varies, the conserved quantity E varies. So the new instanton will describe emission
of a different amount of energy, and tunnelling to a different final state.

What may be more sensible is to fix E, since we want to compute the rate of transitioning by
a fixed amount (i.e. to a fixed final state). Of course, one could later integrate over the possible
final states, if that is the physical quantity of interest. Although E is fixed, it is reasonable to
allow o to vary. This corresponds to changing the proper energy density in the wall in order
to extremize the action. (For traditional domain walls interpolating between two vacua, we
typically treat the domain wall tension as fixed; however, we could think of this tension as the
result of a minimization procedure where we find the minimum action field configuration that
interpolates between the vacua.)

So, we have motivated fixing E and varying the tension parameter o in order to extremize
the action. We do not have a general argument, but the problem is tractable for small pertur-
bations around the static solution. We confine attention to solutions of the equation of motion
(since we are looking for a saddle), and ask how the action depends on ¢ for fixed E. Plugging
the equation of motion into the expansion of the action (see appendix F) gives

2
S=4nafd—7=4nojg=mjdti. (157)
r E r2

tr

Recall that the static solution sits at an extremum of the integrand. So small perturbations
around the static solution do not change the integrand to first order and only change the
prefactor. This indicates that o should take the minimum possible value consistent with the
existence of a Euclidean solution. Looking back at the Euclidean equation of motion

2
fz—f+( Er ) -0, (158)

it is evident that decreasing o increases the effective potential so that for o below some critical
value there is no real Euclidean solution. The minimum allowed o gives precisely the static
solution. Note that in the above analysis, we do not worry about whether the solution has the
correct periodicity; this would further reduce the solutions under consideration.

So with this logic (fixed E), it appears that the static solution is an extremum. It would be
nice to justify this further, for example via the gravity calculation.
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4.2.2 Gravity calculation

We would now like to test our gravity formulas by comparing them to the above computation
in the overlapping regime of validity. The equation of motion for the wall is given by the Israel
junction condition,

4nG
V=, 47 = anGpr = 7, (159)

where f; and f, denote the emblackening factors inside and outside the shell.
Let’s again look for static shells. These satisfy

VEO-ViH =222, and (160)
L (Vv | =252

73

. (161)

i;

Since we already used the approximation AM < M above, we use it here as well to simplify,
although it is not needed in principle. The two metrics differ only by their mass, so let

fi=f+Af, f,=f—Af, and Af=GAM/r, (162)

with AM = M, — M;. The equations become
GAM  4nGo

= =0
/A

fl®)y=2f({)/r. (164)

and (163)

The second condition is the same condition for #* as before, while the upper condition confirms
that the change in mass appearing in the metric agrees with the conserved quantity E of the
probe computation,

AM=4n\/?o/F=4nr2p\/?:E. (165)

Now we should compute the action!
It is at this point that we open the can of worms regarding the boundary conditions in

gravity.

Boundary conditions

The most common boundary conditions (which seem to be the most sensible in asymptotically
AdS spacetime) involve fixing the metric at infinity. This requires adding the GHY boundary
term, as reviewed above.

Even before computing the action, we encounter an issue with our RN black holes. Since
we are fixing the metric at infinity, we fix the temperature 3. We then do not get to fix the
mass at infinity. Our static instanton has interior mass M; and exterior mass M,. The period of
Euclidean time in the interior region is given by demanding regularity at the tip of the cigar,
B; = 4n/f’(ry). The exterior period is then determined by matching the geometry at the
location of the domain wall. The proper imaginary time of the domain wall must agree inside

and outside, requiring
Vb= 7., (166)
This equation determines f,.

For Schwarzschild black holes, a lucky accident occurs and the 3, determined from this
equation happens to agree with the mass for a black hole with inverse temperature 3,. How-
ever, for RN black holes, these do not agree.
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So for RN black holes, our instanton has a geometry near infinity which corresponds to a
black hole with mass M, but with the ‘wrong’ periodicity in imaginary time, 3, # (M,). There
is nothing illegal about this: within the canonical ensemble, this instanton computes the rate
for a process where the temperature at infinity is held fixed at ;. (In all these computations,
the charge is held fixed, and the domain walls are uncharged.) The relevant background
solution is a black hole with period f, and the corresponding mass, M = M(f},) determined
by the RN solution.

So this instanton computes the rate of a process where a black hole with initial mass M ex-
changes some energy with the heat bath, and nucleates a shell of radiation with energy AM, in
a geometry with interior mass M; and exterior mass M,. We can compute the Euclidean action
for this process. We now need to include the gravitational and electromagnetic contributions
to the action.

Several simplifications are possible in computing the gravity action, which all arise from
the statement that the Hamiltonian is a boundary term in gravity. Hawking and Horowitz [67]
showed that the integral of the gravity action over a region simplifies as

f @R:f JECR—K2+ K, k) +2 | Vhnu’v,u®. (167)
M M

oM

Here, we have decomposed the manifold in a 3+ 1 decomposition, n“ is the outward pointing
unit normal to the boundary, and u® is the unit normal to the time slices. An important point
is that since we have used the 3 + 1 decomposition, we need to include locations where this
slicing degenerates (i.e. the horizon) as part of d M, even though from a covariant point of
view there is no boundary at this location, and no localized term in the action.

The nice simplification is that for static solutions, the bulk terms cancel with the sources
due to the Hamiltonian constraint. Gregory, Moss, and Withers [68] gave a convenient formula
for geometries of the form

dr 2
s =—f(r)dt? +f( ) +r2dQs. (168)
The Euclidean gravity action becomes
~Terg f J/ER =bulk + 6 - \/Enrf’(r). (169)

This formula applies even if we have a static region of spacetime bounded by a non-static
domain wall. Again, n® is the outward pointing unit normal to the boundary, and h is the
determinant of the induced metric on the boundary.

Since the bulk term in the action will cancel with the matter Lagrangian, the full action
will be given by just the boundary terms. It is convenient to compute this in special cases.
Evaluated on the black hole horizon, we get

A
Stor =——. 170
hor 4G ( )

Evaluated at infinity, we get (for asymptotically flat black holes)
1
Seo = 5 BM, (171)
where f3 is the period of Euclidean time, and M is the asymptotic mass of the solution.

With this simplification for computing the bulk action in hand, we can compute the full
action for the static domain walls.
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For general moving shells, we will need to decompose the action into an integral over the
interior and exterior regions in order to use the Gregory et al formula. But for static walls, we
can simply include the thin shell as part of the matter action so that

R 1
e J V& "T6ne )T TnG ., Vin i (172)
1
ﬁ \/Enrf (r),
for static solutions. This can be further simplified to
A 1
Pue =35 * 5 Moo- (173)

Microcanonical ensemble

As described above, we can follow Brown and York in fixing the mass of the solution, as well
as the size of the spatial sphere at infinity. This requires adding the boundary term

t, KH*V0,t
Seem=—| VvhE—= (174)
oM 8m

Evaluating this term simply cancels the term at infinity coming from the evaluation of the bulk
action [61, 62] yielding simply
A

Spue = ~ic (175)

To compute the rate, we need to subtract the background action from the action of the in-
stanton. Our instanton has interior mass M; and exterior mass M, = M; + AM. In the micro-
canonical ensemble, the mass at infinity is fixed, so we do not care too much about the exterior
period of Euclidean time.

Since the mass is fixed, the background solution is simply the black hole with mass M,.
The action difference is therefore

AM,) —AM;)

ASEuc 4G

=S, 5i> (176)
where the last equation contains the entropies S,, S; rather than action. Black hole thermo-
dynamics guarantees that AS = SAM when the charge and volume are fixed. (Or we could
compute the areas explicitly.) Therefore, our result here agrees with the probe computation.
Note that in principle the question of the number of negative modes may have a differ-
ent answer once we allow gravity to be dynamical. Fully characterizing the fluctuations in
Euclidean quantum gravity is beset with subtleties due to an apparently infinite number of
negative modes, related to the conformal factor problem. See [69] for interesting recent work
on this. We will not delve into this issue here, and content ourselves with finding the saddles.

Canonical ensemble

For the canonical ensemble, we fix the boundary metric. In the action, we have to add the
standard GHY term given above. Recall that our instanton has interior and exterior masses
M;, M, and inverse temperatures f3;, 3,. Recall that, except for the Schwarzschild case, there
is a mismatch between f, and M,. The background solution has the same f3,, but a different
mass M = M(f3,).
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The GHY term is divergent for each solution separately, but the divergence cancels. Eval-
uating the GHY term gives

1 1
SEuc, GHY _S}guc’ GHY — _% J(K _KO) = EﬁM . 77
Combining this with the bulk action gives
AA
ASEuc, can — BooAMeo — — . (178)
4G
This has a very natural thermodynamic interpretation:
ASEuc, can — ﬂAF 5 (179)
where F is the free energy.
The action difference becomes
ASgye = Po(M, — M)+ S(M) — S(M,) . (180)

As a reminder: f3, is the inverse temperature, which is held fixed. M, is the asymptotic mass
after tunnelling, M; is the mass of the black hole after tunnelling, while M is the asymptotic
mass before tunnelling, which is determined by f,.

This equation is sensible in the sense that it is simply related to the difference in free
energies, but it does not agree with the probe computation above due to the presence of three
different masses in the equation.

So, apparently, the probe calculation corresponds to the microcanonical computation,
which may be the most physically sensible one. This is the main computation we will rely
upon in our analysis of the traversable wormhole.

5 Tunnelling to traversable wormholes

Now we will apply the recipe introduced in section 4 to the traversable wormhole solution
presented in this work. We imagine ourselves to be in the black hole phase of the phase
diagram (fig. 1) after which we turn on the nonlocal coupling and the true ground state is
given by the traversable wormhole. We then want to compute the decay rate for tunnelling to
the new ground state. In section 5.1 we do this in the canonical ensemble, and in section 5.2
we consider the microcanonical ensemble.

5.1 Canonical ensemble

We want to consider the nucleation rate of a traversable wormhole at a finite temperature. The
wormhole geometry in its AdS, x S? throat region, € < (r —7)/F < 1 is identical, up to and
including quadratic order in € and (r—7)/7, to a super-extremal AdS-RN geometry of the same
asymptotic U(1) charge and a mass shift AM < 0 [9]. Thus, the wormhole’s emblackening
factor is identical to that of an extremal AdS RN black hole of the same charge,

r—r

2
fore (1) = e%( ) (02 +r? 4+ 2r7 +372), (181)

except for a shift in the mass term,

2GAM
o

filr) = foxe (1) — (182)

34


https://scipost.org
https://scipost.org/SciPostPhys.16.3.066

Scil SciPost Phys. 16, 066 (2024)

The geometry we are considering the decay of is an AdS Reissner-Nordstrom black hole. Our
bounce solution has an exterior geometry which is AdS-RN with an emblackening factor

2GAM
fo(r)zfext.(r)_foa (183)

where AM, := M, — M, is the asymptotic mass above extremality of the exterior geometry
specified by f,(r).

Suppose that there is a spherically symmetric gravitational instanton that mediates the de-
cay from a black hole to a traversable wormhole. If we assume that the thin wall approximation
is valid, the instanton geometry is approximated by the (Euclidean) wormhole geometry glued
inside the (Euclidean) extremal AdS-RN geometry. The trajectory of a domain wall separating
the two geometries is determined by the Israel junction conditions [51]. The equation of mo-
tion of a thin, spherically symmetric domain wall separating a geometry with emblackening
factor f, on the outside and f; on the inside, is R* + V, £ ¢(R) = 0, with potential

(fi(r) = fo(r) —k*r?)?

4x2r2

Vepp(r) = fo(r)— ; (184)

which for us evaluates to
G*(AM —AM,)?  «%*r?
K2r4 4

Vg () = Foce (1) = Z(AM + AM,) — (185)
We know that the wormhole geometry is approximately super-extremal AdS-RN, i.e. has em-
blackening factor (182), but only for (r—7)/7 > ¢, so the domain wall effective potential (185)
cannot be trusted for smaller values of r. We discuss domain wall trajectories in the throat
region in appendix B.

We assume that the surface stress tensor of the domain wall is that of a perfect fluid. The
dependence of the wall’s energy density x as a function of the radial position depends on
the fluid equation of state. In appendix D we analyse the trajectory of a general perfect fluid
domain wall. It has a radius-dependent energy density

k(r)=or %, (186)

where o is a constant, and a = 0 for the vacuum, a = 2 for dust, and a = 3 for radiation. We
discuss domain wall trajectories for vacuum equation of state in appendix C.

We need to check the orientations of the outward normals, to derive the necessary con-
dition to be gluing the correct parts of the spacetimes together. The Lorentzian domain wall
equation of motion only has real solutions when V,¢r < 0. To find the turning points of the
domain walls, we need to find the roots of the potential. Sign information is lost in deriving
the domain wall effective potential, so, besides finding a solution for the wall trajectory in
the effective potential, we also need to check the orientation of the outward normals of the
geometries we are glueing together [51]. We want to confirm that we are glueing the interior
r < R of the wormhole geometry to the exterior r > R of AdS-RN and not, say, interior to
interior, so we need to check the direction of the outward normals by calculating the signs of
the 60 component of the extrinsic curvatures, which is denoted by 3 in the literature. For the
inner geometry,

2G(-AM +AM,) | ,

2kRB; = f:(R) — f,(R) + k?R% = = K’R?, (187)

while for the exterior geometry

2G(—AM + AM
_ 26( 4 o) _2p2. (188)

2kRpB, = fi(R) — f,(R) — k*R?
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To have both 3, and f3; positive, and so have both outwards normal vectors point in the positive
r direction, requires

2G(-AM +AM,) |

K’R>>0, (189)
R

for all R in the range of the domain wall trajectory. This condition is valid in both Lorentzian
and Euclidean signatures. Two immediate consequences of this condition are that the asymp-
totic mass cannot be lower than the wormhole mass, and that if the domain wall energy density
is R-independent then the wall cannot reach the asymptotic boundary.

5.1.1 Static domain wall

For fixed asymptotic temperature 3, non-static domain walls must have a Euclidean time pe-
riodicity 3 /N, otherwise, their radial position is multi-valued as a function of Euclidean time.
In contrast, any static domain wall is a consistent solution.

For a given domain wall energy density k and asymptotic temperature f3, allowed asymp-
totic masses of the bounce solution M, are found by solving the Israel junction equation

VAR +R2—/f,(R)+R2 = kR. (190)

Finding the allowed values of M, for a given k and f is not straightforward, especially with
the constraint on the Euclidean time periodicity. The condition on the outward normals (189)
for static walls is satisfied if and only if'°

AM, > AM. (191)

If this is satisfied then the energy density of the wall k is also non-negative. If we assume that
the domain wall is static, R = 0, then we are at a double zero of the effective potential:

Verf(R)lg=p =0, (192)
Vo (R)lpep =0, (193)

where R is the radius that the static wall sits at. We discuss non-static domain walls in ap-
pendix E. Solving (192) is equivalent to solving (190) with R = 0, which gives

K2R3 [ 2 \J .. 2GAM
AM, =AM + = R — =" 1. 194
0 2\ fext.(R) 2 (194)

Solving (193) depends on the R dependence of k; if we assume a radiation equation of state
then the equation to solve is

= (R (VAR = VD)) et = 0. (195)

We can solve the pair of equations to find the external mass as a function of the energy density
of the static radiation-composed domain wall. This is a complicated formula in general, ! but
we can get a simple approximation when o is large:

o
Gam, ~ 7, (196)
100 see this, note that (190) is v/ f;—+/f, = kR for a static wall, and that (189) can be written as f;—f,+x2R> > 0.
We also calculated the discriminant of the effective potential as a function of R, which immediately gives a
necessary condition for there to be a static wall, i.e. for the effective potential to have a double zero, but we also
found the discriminant as a function of the interior and exterior masses to be too complicated to be useful.
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and

R~ ==, 1
27 (197)

This large o domain wall is a dilute shell of radiation gas with a large total mass but low
energy density. Fortunately, this approximation will not be needed in the final computation of
the action.

5.1.2 Nucleation rate

The nucleation rate is
[ ~ e B/ , (198)

where the tunnelling exponent B is the difference between the Euclidean actions of the bounce
and false vacuum solutions:

B = Spounce — SfAv. . (199)
Both actions include bulk and boundary terms. The bulk Lagrangian is
1
Lotk == —=R=20) + Linateer (200)

where our L, has Dirac fermions and a U(1) gauge field. The appropriate boundary
Lagrangian to use depends on which boundary conditions we impose. Since we are working
with the canonical ensemble, we want to fix the asymptotic Euclidean time periodicity. If we
fix the asymptotic temperature with Dirichlet boundary conditions on the boundary metric,
then the boundary Lagrangian has a gravitational GHY term, boundary terms for the matter
fields, and counterterms to cancel divergences in the action,

1

_%K + Ematter, bdy + ‘Cc.t . (201)

Ebdy =
Our sign convention has the normal to d M pointing in the direction of increasing r. If were
to fix the asymptotic mass, as relevant for the microcanonical ensemble, then the appropriate
boundary term for the gravitational action would be (135).

Both the false and true vacuum solutions are static so we can foliate both M,, and My, with
time slices ¥ on which the time derivatives of the 3-metric and matter fields vanish. We can
make use of this to simplify the evaluation of the on-shell action. The false vacuum solution
is two copies of Euclidean AdS-RN, both with thermal periodicity 3. To be a genuine on-shell
solution, the mass of the black hole is fixed once f is fixed. The false vacuum action is

Spy. = f Lipuik +J Lhpay - (202)
M oMy,

v

The Euclidean time slices of M, intersect at the black hole horizon. Let us split the integral
over M, by excising an infinitesimal ball-shaped region centred on the horizon. The gravita-
tional action of such an infinitesimal ball B is [68, 70]

1 1 Ay
_ R— K="1h (203)
16G |, 8nG J,, 4G

The complementary region My, — B has an inner boundary at the black hole horizon and an
outer boundary at asymptotic infinity. We can write the Ricci scalar on the slices in terms of
the extrinsic and intrinsic 3-geometry of those slices using the contracted form of the Gauss-
Codazzi equations

R=R® —K2+ KK -2V, (u*V,ub) + 2V, (uV, u?), (204)
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where u is the unit normal to the slices. The 3 + 1 form of the Lagrangian is

Lputk = ﬁ(g’i(f)nij +¢my —NH—N"H;)+ ﬁ (Va(uavbub) — Vb(uaVaub)) . (205)
Here ¢ represents the matter fields with 7, their conjugate momenta, and dots are derivatives
with respect to Euclidean time. The Hamiltonian constraint 4 and momentum constraint #;,
which depend on the matter content, vanish on-shell. Because our solution is static, the terms
with time derivatives also vanish.

There are two total derivative terms in (205). The first does not contribute: u®V,u® is
proportional to u and cancels the GHY terms on the initial and final time slices. The second
total derivative term is important: u®V  u? is orthogonal to u and combines with the GHY terms
K = V,r? on the inner and outer boundaries, where r is the unit normal to the boundaries of
the time slice, to give a term proportional to the extrinsic curvature of the 2d boundaries of
the time slices [67]

B B
f dt (Vara+rbuavaub)=J dt (6g—u“ub)varb
0 0

% %
B
=f d’rf @,
0 )

The contribution of this term to the inner boundary of My, — B is negligible [68]. Our false
vacuum action has so far simplified to

(206)

A 1
Spy. =2 |- —— J @r—L..)] - (207)
oM;,

The holographic counter term for AdS, is [27]

2 3
[’c.t. = Z 1+ Z R|. (208)

Recall that M, is the geometry of a near-extremal AdS-RN black hole. The boundary terms
on a r = r, radial cutoff surface evaluate to

r3
J DK =8np (6—; +r,—2GM + O(rc_l)) , (209)
and
r3
f L., =8np (E_CZ +r.—GM + O(rc_l)) , (210)

where M is the asymptotic mass. The divergences in the boundary terms cancel, as expected.
The final result for the false vacuum action is

Ay ]
S, =2|———+M|. 211
f=2] kP 211)
This is the expected result: the total free energy of the two black holes.

Our bounce action has the same bulk and boundary Lagrangians as the false vacuum action.
We evaluate these Lagrangians on the bounce solution:

Sbounce = f ﬁbulk + J ‘dey . (212)
Mbouru:e aMbounce
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The bounce solution My,,,.. has an interior and exterior geometry, glued together by domain
walls. It has the traversable wormhole geometry of mass M,,, + AM in the interior and two
AdS-RN black holes of mass M, in the exterior

Mbounce = Int(]MWH) U EXt(MRN) . (213)

Here My unc. is the traversable wormhole solution for 0 < r < R(7) and AdS-RN for r > R(7),
where r = R(7) is the (in general time-dependent) radial position of the domain wall.

For a bubble solution with a static domain wall, the bulk Lagrangian reduces to the total
derivative terms in (205), just as it did for the black hole. The action of the bubble is iden-
tical to (207) except that: (1) unlike the black hole, the bounce solution has the horizonless
traversable wormhole geometry in the interior, so there is no horizon contribution to the on-
shell action, and (2) the asymptotic mass is M,, not M, the mass of an AdS-RN black hole of
inverse temperature 3. The resulting action is

Shounce = 2ﬁMo P (214)

and the tunnelling exponent is

_ _ An
B =2p(M,—M)+27 " (215)

This is the main result of this subsection. It is the exponent for the finite temperature transi-
tion rate from a pair of AdS-RN black holes with masses M(f3) to the traversable wormhole
geometry glued, by a static domain wall, inside of AdS-RN with asymptotic mass M,. Since
we are at a fixed temperature, not fixed energy, M, is free; however, our decay rate shows that
fluctuations to higher energies, M, > M, are Boltzmann-suppressed. The transition destroys
the black hole, and this leads to the large entropic suppression given by the horizon area in
the exponent.

The low temperature limit of (215) needs a comment because, for low values of the asymp-
totic mass M, in the bounce solution, the transition rate apparently diverges. The mini-
mum allowed value of M, saturates the bound (191) and is given by the wormhole mass
M,,: + AM, and the low temperature limit of the rate exponent for this decay channel di-
verges like B ~ 23 AM. However, (215) is not valid outside of the regime of validity of the
semiclassical approximation within which we calculated our decay exponent. This semiclas-
sical breakdown temperature was given in (74), and our decay exponents are positive above
this temperature, giving reasonable and small decay rates, even for the minimum allowed
M,. This is one resolution. It would be interesting to extend the decay rate exponent to low
temperatures outside of the semiclassical regime, for example along the lines of [71].

5.2 Microcanonical ensemble

We now want to consider the tunnelling from the zero temperature extremal AdS RN black
hole to a traversable wormhole of the same charge, at fixed asymptotic mass. For this, we
need to be in the region of the (h, u) phase diagram where the extremal black hole is a false
vacuum and the traversable wormhole is the true vacuum; h > 0 and y > u, suffices. With
mild assumptions, dynamical topology change in semiclassical gravity is forbidden [1-3]. To
evolve from a pair of disconnected extremal black holes to a traversable wormhole requires a
change in topology, so the dominant decay channel will be quantum mechanical; tunnelling via
gravitational instanton. We want to find the tunnelling rate and the trajectory of the domain
wall after the tunnelling event.
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The geometry we are considering the decay of is an AdS Reissner-Nordstrém black hole
with an emblackening factor

r2 r2 2GM
fo(r)= 1+—+—— .

(216)
r

Our bounce solution, whose action determines the decay rate, is our traversable wormhole ge-
ometry in the interior and extremal AdS-RN with metric (216) in the exterior. The wormhole’s
emblackening factor is identical to that of the extremal black hole (216), except for a shift in
the mass term,

£ = £, () - 2921

(217)

5.2.1 Domain wall effective potential

The trajectory of a domain wall separating the two geometries is determined by the Israel
junction conditions [51]. The equation of motion of a thin, spherically symmetric domain
wall separating a geometry with emblackening factor f; on the outside and f; on the inside, is
R*+V,;(R) = 0, with potential

(fi(r) — fo(r) —x2r?)?

2 2
2GAM + f: + 0
_ Jothi _PotAC (219)
r 2 2
which for us evaluates to
1« , 2GM +GAM 17 G*AM?
Veff(r):(E—Z—I)r +1—f E—W (220)

Making use of the extremality of the exterior geometry, we can write the effective potential
in terms of the extremal radius and e, which quantifies the proximity to extremality of the
super-extremal AdS-RN approximation of the wormhole geometry:

=82 = 200272
Veff(r):elz(rrr) (€2+r2+2rf+3fz)—%(1<r—r6 C(r)) . (221)

K12

To trust the approximations made in deriving this effective potential, we require (r—7)/7 > e,
since otherwise (182) is not expected to be approximately true. We generalize this assumption
in appendix B.

Now we derive the necessary condition in order to have the correct outward normal orien-
tation. The 60 component of the extrinsic curvatures of the interior and exterior geometries
are

2G6AM

2kRpB; = fi(R)— f,(R) + k*R* = — +x?R?, (222)

and

2kRB, = fi(R) — f,(R) — K?R? = —ZG}?M K2R 223)

To have both 3, and f3; positive, and so have both outwards normal vectors point in the positive
r direction, requires

2G(—AM
26(-aM) | k?R2>0, (224)

for all R in the range of the domain wall trajectory. This condition is valid in both Lorentzian
and Euclidean signatures.

40


https://scipost.org
https://scipost.org/SciPostPhys.16.3.066

Scil SciPost Phys. 16, 066 (2024)

5.2.2 Tunnelling rate

The instanton tunnelling rate is
T ~e B/ (225)

where
B = Spounce — Sf.v. > (226)

is the difference between the Euclidean actions of the bounce and false vacuum solutions.
The false vacuum solution is two copies of Euclidean AdS-RN. The false vacuum action is

Spv. = f Lipuik +J Lhpay - (227)
M, oMy,

Since we fix the asymptotic mass then the appropriate boundary term for the gravitational
action is (135).

Both the false and true vacuum solutions are static so we can foliate both M,, and My,
with time slices on which the time derivatives of the 3-metric and matter fields vanish. We can
make use of this to simplify the evaluation of the on-shell action. The final result for the false
vacuum action only has contributions from the horizon

s —z(—ﬁ) (228)
fv. — 4G .

The instanton solution M[X] has two domain walls glueing together two copies of AdS-RN
with disks cut from their centres and our Euclidean traversable wormhole solution,

M[X] = Int;;(M,,) U Exts, (M, ), (229)

which is the traversable wormhole solution for 0 < r < R(7) and AdS-RN for r > R(7). We
are working at fixed charge and temperature which, for regularity, fixes the asymptotic mass
of the AdS-RN geometry My,. When glueing Euclidean black hole solutions together, one has
to check that the instanton boundary conditions are consistent with a smooth geometry. For
us, the size of the transverse sphere in the wormhole geometry never becomes zero, so there
is no constraint on its thermal periodicity from regularity, and the instanton solution can have
the same asymptotic boundary conditions, i.e. temperature and mass, as M.

Now we can calculate the on-shell action of the bubble solution. Two key differences
compared to the calculation of the false vacuum action are that there is a domain wall and
that there is no inner horizon. The action has bulk, boundary, and wall contributions,

Shounce = f ‘Cbulk + f [’bdy + f 'Cwall . (230)
M[x] oM[x] by

We can split the integral over M[X] into integrals over the regions inside and out of the domain
wall. In general, doing so introduces a difference of GHY terms localised to the wall coming
from the gravitational action, but these vanish for us. This is because the wall is composed of
radiation; taking the trace of the junction condition gives AK o< Tr(S), and the surface stress
tensor for radiation is traceless in four dimensions, so AK = 0.'? We can also just integrate the
bulk action over the wall directly. While the bulk stress tensor has a delta function singularity

12Since perfect fluid stress tensors with a radiation equation of state are only traceless in 4d, and the wall is 3d
not 4d, the claim that our wall surface stress tensor is traceless may be surprising. Nonetheless, from the definition
in appendix D, one can show that Tr(S) = 0, in part because the normal components of the surface stress tensor
are zero.
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at the wall, which would usually give a finite contribution to the gravitational action, for us
that tensor is traceless so the Ricci scalar in the gravitational Lagrangian on the wall vanishes.

We have assumed that the surface stress tensor of the bubble wall is a perfect fluid with
a radiation equation of state.!®> The Lagrangian of a perfect fluid is proportional to its energy
density [72,73]. For a radiation equation of state and our conventions, this gives

1 o
=——. 231
wall 47G R3 ( )
The decay exponent for a general radiation-composed domain wall is thus
B_Av, 1 (o 1 (dfz(R)de _dfl(R)drl)_ (232)
2 4G 4nG J,R® 167G )\ dR dr7 drR dr
5.2.3 Static bubble solution and tunnelling rate
The domain wall potential has a double zero when o = 04;;. Where
Ostatic _ ___ 4T(L?+372)°/2 (233)

o ((2+272)12(02 1 672)302

For this value of the energy density, the potential has a static domain wall solution that sits at
radius

Rstatic =2r+ —-. (234)

For the static domain wall, the integrands in (232) cancel and the decay exponent is simply

B_ A

= . 235
2 4G (235)

To see the cancellation, note that the time dilation factors for the static domain wall are
T12= (f1,2(R))_1/2, and that

(le _ f1/ ) — 4Ustatic+o(64) (236)
\/f_z \/f_]. R=Rqqtic ?tatic

This cancels against the wall action term in (232) to give the decay exponent (235).

The result (235) can be written as T’ ~ e 25 where AS is the total entropy of the black
hole pair we are tunnelling from. Even though the wormhole has lower energy than the pair
of black holes, tunnelling to it is entropically suppressed.

6 Discussion

In this paper, we have studied some nonperturbative effects of quantum gravity in a system
of a coupled pair of holographic CFTs. There are three relevant phases: thermal AdS, a pair
of extremal RN-AdS black holes and a traversable wormhole. We study the phase diagram
of the system in detail, and in particular, we compute the transition rate for the transition of
the black hole phase to the wormhole phase, which constitutes a nonperturbative effect of
quantum gravity due to the difference in topology between the states. A very large number of
open questions and future directions remain. We conclude by describing some of them:

131t would be interesting to generalize beyond this assumption. We discuss some basic results to this effect in
appendices C and D.
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Simulating black holes with matrix models Recently, [74] estimated the number of qubits
needed to simulate black hole features in the lab/on a quantum computer using a matrix
model. It would be interesting to understand whether you would need more qubits to
see the transitions discussed in this work. The upshot of keeping the degrees of freedom
as small as possible, while still simulating gravitational physics is that effects that are
(exponentially) suppressed in G are not as suppressed as in the real world, where G is
very small.

Our system provides a valuable complementary approach to the wormholes constructed
using the Gao-Jafferis-Wall protocol [11], adapted to the 2d setup of Maldacena and
Qi [12] in [75,76]. Recent claims to have simulated these wormholes [77] have been
controversial, in part due to the difficulty in preparing the initial state [78]. Our setup
provides a simple way to prepare the wormhole state, as the ground state of a simple
Hamiltonian. A tradeoff is that our dual theory is higher dimensional, which is harder
to simulate. It would be interesting to combine these approaches to try to have the best
of both worlds: a lower dimensional system where the traversable wormbhole is still the
ground state of a simple Hamiltonian.

Wormbholes in the lab One of the main upshots of our work is that it provides a computa-
tion that seems possible to test experimentally. In order to do so one just needs to
simulate/construct two copies of a holographic CFT, couple them, and implement time
evolution according to our proposed Hamiltonian. We imagine dialling the chemical po-
tential such that the ground state is a pair of extremal black holes. Then we turn on the
non-local coupling and the system presumably transitions dynamically to the traversable
wormhole, with the transition rate as computed in section 5.

Instabilities/relevant deformations of AdS, In many constructions there are relevant oper-
ators present that deform the infrared away from pure AdS,; see e.g. [79]. When these
operators are present, they will modify the description we have presented here. It would
be interesting to analyze the effects of these operators.

Fragmentation At the level of our analysis in this paper, wormholes with sufficiently small
charges are energetically allowed to fragment into smaller wormholes. Naively, this
process would seem to increase the entropy and therefore be the preferred ground state.
A more careful computation is needed in this regime.

Negative modes of the instanton Our instanton is static. Especially when the temperature
becomes low, one might expect that there is an instability towards developing oscillations
in Euclidean time. These would appear as extra negative modes of the instanton.

Gravitational instanton prescription Additionally, there are some technical and conceptual
questions related to our instanton computations. In the canonical ensemble calculation,
it is not clear to us what fixes the external mass of the instanton, since the usual boundary
conditions fix the temperature rather than the mass. In order to get a sensible answer, we
assume the asymptotic mass of the instanton should match the initial asymptotic mass
of the black hole. While this seems quite sensible physically, it is not clear to us how
the prescription for computing decay rates enforces this choice. This ambiguity does not
arise for tunnelling between different black holes, because regularity at the horizon fixes
the additional ambiguity, whereas the traversable wormhole geometry does not have any
preferred periodicity in Euclidean time.

Quantum effects A crucial question is whether our semi-classical analysis here gives the cor-
rect decay rate. As we described, the temperature below which the wormhole dominates
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the canonical ensemble is so low that the semi-classical description of the black hole
breaks down above the transition temperature. It would be interesting to incorporate
quantum effects in our analysis along the lines of [71,80-82]

Supersymmetry Embedding our system in a supersymmetric theory would add additional
theoretical control. It would be interesting to see whether this can be done in a simple
manner and if and how it would affect the computations in this work. Additional charges
would need to be added, and BPS black holes in asymptotically AdS spacetime must
rotate (see e.g. [83]). At this point, it is not altogether clear whether supersymmetry is
important in the regimes we study. One reason to suspect that it does play an important
role is the disparity between the density of states near extremality between SUSY and
non-SUSY black holes [80-82].

Graviton mass Since our model is constructed by coupling two different theories, one might
worry that the coupling induces a graviton mass. This occurs for example in situations
where entanglement wedges contain islands, which appear in AdS theories coupled to
a bath [84]. We believe that in our model the graviton remains massless, because the
coupled CFTs form a closed system, and there is no way for energy to leave it. It would
be interesting to analyze this question more carefully.'*

Entanglement entropy We can use the Ryu-Takayanagi (RT) prescription to calculate the en-
tanglement entropy of boundary subregions and determine the properties of the entan-
glement structure of the different ground states [85]. In the black hole thermofield
double state, the result is standard: the RT surface is the black hole horizon and the
entanglement entropy Sy y of the state reduced to either of the CFTs equals the black
hole entropy. In the wormhole state, there are no horizons and the RT surface is the S>
sphere in the middle of the wormhole throat. From (23), this gives an entanglement en-
tropy Sy, g that is greater than the black hole entropy by the factor (1 +¢). The increased
entanglement is related to the increased connectedness of the spacetime.

CFT description of the wormhole Although the wormhole is the ground state of a simple
Hamiltonian, we do not have an explicit description of the CFT state. Presumably, the
state looks something like a thermofield double state with chemical potential, but it
must differ slightly because the thermofield double is dual to the eternal black hole. The
entanglement entropy computations mentioned above give one clue to the CFT state.
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A Conventions

In the metric Ansatz (6) we can pick the following vielbein
el =e%dt, e?=e%dx, e>=RdO, e*=Rsinfd¢. (A1)

b

The spin connection w*’ can then be found by solving

de®+w®neb =0, w®=-wh?, (A.2)
which has a solution given by the nonzero components
w2=0'dt, w3?=Re?d0, w*?=R'sinfe%d¢, w*=cosbdg. (A.3)

Here a prime denotes differentiation with respect to the radial coordinate x. Moreover, we
write spinors as tensor products between the spherical components and the time and radial
components. This can be done with the convention for gamma matrices given below

4

yl=io, ®1, y2=cry®1, Y’=0,80,, y'=0,80,. (A4)

B Domain wall trajectories in static, spherically symmetric space-
times

We want to study the existence and dynamics of domain walls deep in the throat region of the
wormhole geometry, (r —7)/7 S €, where the geometry is no longer approximately (super-
extremal) AdS-RN. The traversable wormhole geometry is static and spherically symmetric, so
can be written in the form

ds? =—f1(r)dt2+d—r2+r2df22 (B.1)

fa(r) >
The analysis of domain wall dynamics in [51] applies to geometries which can be written in
the form where f;(r) = f,(r), but, unlike AdS-RN and other spherically symmetric vacuum
solutions, the traversable wormhole geometry cannot, so we need to generalise.
Let us work in Gaussian normal coordinate suited to the domain wall:

ds® =dn?+ gij(x, n)dx'dx’, (B.2)

with x' € {t,0,¢} the coordinates on the wall, and 1 = 0 the domain wall location. To
determine the dynamics of the domain wall, we will need to calculate its extrinsic curvature,
which has a simple form in GNC,

1
Kij = Eangij, (BB)

and, in particular, we will need the 86 components,

1 1 1
KQQ = Eanggg = Eanrz = Eguaurz, (B.4)
where &* is the unit normal to the wall. To find the components of £, and so determine Kyq,
we use that the normal is orthogonal to the 4-velocity of the domain wall, g,,,U*£” = 0, where

U* .= (t,r,0,0), with the dot denoting differentiation with respect to the proper time 7 of the

45


https://scipost.org
https://scipost.org/SciPostPhys.16.3.066

Scil SciPost Phys. 16, 066 (2024)

wall. Solving this orthogonality relation in combination with the normalisation conditions,
|U| =—1 and |£| =1, gives the components of the norm:

E =4/ fo(r)+ 72, d gf=;. (B.5)
AT, an NAGEG)

The component ' is also sometimes denoted by 8. The domain wall effective potential comes
from the 86 component of the junction condition (in GNC)'®

‘ 1.
i i i
AK]. =—-81G (Sj 25].T1’S) R (B.6)
which is
AKgg =—Kggg =—Kr?, (B.7)
where
AK] := lim (Kitn=e)—Kitn=—¢)). (B.8)

Here we have separated from the global stress tensor the term that is localised to the domain
wall, known as the surface stress tensor

TH = S*(x1)6(n) + regular terms, (B.9)

and we have assumed that the surface stress tensor is that of a perfect fluid with a vacuum
energy equation of state,
Sij =—4NLGgij. (B.10)

When f; = f,, K., is not an independent constraint on the wall dynamics than Kyg; the
latter is the proper time derivative of the former [51]. It is not a priori clear whether this
is still true in our geometry where f; # f,. In [51], the functional interdependence follows
from the conservation of the full stress tensor T;’ff = 0. Said another way, there is a functional
dependence between components of the junction conditions because of the divergencelessness
of the Einstein tensor. The stress tensor is non-zero away from the domain wall in our set-up,
but it is still conserved.

The end result is that the equation of motion of a vacuum energy domain wall in the f;-f,
metric (B.1) is identical to the standard domain equation of motion with effective potential,
except with f — f,.

C Domain wall with vacuum equation of state

Let us assume the domain wall is composed of vacuum energy so that its energy density x is r-
independent. The condition (224) is inconsistent with non-zero tension domain walls reaching
the asymptotic boundary. The physical interpretation is the following: for a constant tension
domain wall to reach the boundary requires an infinite amount of energy, and nucleating the

15A one paragraph review of how the Israel junction conditions are derived: Einstein’s equations are written in
Gaussian normal coordinates. The terms that can be singular on the domain wall are picked out. Continuity of the
metric across the wall ensures the extrinsic curvature has no delta function singularity there. The equation quoted
here is the ij component of the Einstein’s equations - the in and nn components are automatically satisfied if K;;
is non-singular.
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traversable wormhole only gives us a finite, order AM amount of energy; the wall cannot
reach the boundary by energy conservation. Furthermore, since our analysis is only valid for
R > r, the maximum tension domain wall the condition (224) allows us to consider is bounded

by

(C.1)

Physically, this upper bound on the domain wall tension is controlled by € because of the dif-
ference between the true and false vacuum energies; the wormhole geometry is approximately
super-extremal AdS-RN in the throat, and ¢ quantifies the distance from extremality.

We would like to know how many positive real roots the effective potential can have; roots
are turn-around radii for domain walls. r*V, 7 ¢(r) is a sixth-order polynomial so a priori there
could be up to six roots. To reduce the set of possible domain wall trajectories and simplify
our analysis, we use Descartes’ sign rule: the maximum number of the positive real roots
of a polynomial equals the number of sign changes between consecutive coefficients in the
polynomial expansion. We expand r*V, 7¢(r) in powers of (r —7), as we are not interested in
roots where r < 7. For arbitrary ¢, 7 and k, we can show that there can be at most two sign
changes - at most two roots in the effective potential. For certain ranges of x, the sign rule can
further restrict the maximum number of roots:

Domain wall tension | Number of roots of V¢ (r)
K2 < liQ 1
A<ki<p+ 0or2
eiz + 527 <2 2

We require (C.1), for which only the k2 < liZ case is consistent. The potential for this range
of domain wall tension has exactly one root, and lim,_,., V,¢(r) = +00, so this potential
confines the domain wall to r less than the root of V,;¢(r). The domain wall always collapses.

When is the domain wall confined to the throat region? In the throat region,
€ L (r—r7)/r < 1, the effective potential to quadratic order is

Vs (r) =C(f)(rj)2— S (1‘4(?% 1°(r;f)2)

S (e (5)(5))+o ()

Whether the domain wall is trapped in the throat region depends on the scaling of its
tension with e. If k < €, then the effective potential is negative and without roots in the
throat region - the domain wall escapes the throat, though it still cannot reach the asymptotic
boundary. If k ~ €, then the effective potential has a root at

r—F _ (CF) (xFY2 . 1 (xi)2)
- —6( 4 (?) +ﬁ(?)) +O(€2), (C.3)

which allows for a turnaround radius in the throat. Recall that we still need (r —7)/7 > ¢,
which further restricts the tension to be far smaller than the maximum allowed in (C.1).

In summary, for any x? < €2C(#)/72, there is an allowed vacuum energy domain wall
containing a bubble of wormhole geometry which inevitably collapses towards r < 7 where
the wormhole geometry is no longer approximately super-extremal AdS-RN and we need a new
approach in our analysis. While we know what the relevant geometries are in this range of r,
we need to use the domain wall trajectory tools of appendix B, and we have not determined
whether the bubble of wormhole geometry will completely collapse or whether it will oscillate.

(C.2)
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D Perfect fluid domain wall trajectories

We want to determine the thin domain wall dynamics when the wall is composed of a general
perfect fluid; the literature has predominantly focused on the case where the perfect fluid is
vacuum energy.

Our stress tensor has three terms: one each for outside, on, and inside the domain wall:

THY(x) = S*”(x)6(n) + TEY (x)0(n) + Tiﬁv(x)e(—n). (D.1)

The junction condition
. 1.
i_ i_ —«<i
AK; =—8nG (Sj 25].Tr8) . (D.2)

is true for arbitrary S;..
Stress tensor conservation gives us

0=V,T" = (vE‘”sU +2K187 + Tr(K)S™ + T — Tl.i:) 5(n)S5’(n) + regular terms.
(D.3)

In order for this to be satisfied, it is required that require S7 = 0 and

(3 cij in n_
ViISU 4 T, — T, =0. (D.4)
This implies the conservation of the domain wall’s surface stress tensor if the momentum flux
across the wall is continuous _ _
Toue =T (D.5)
When the stress tensor in and outside the wall is that of vacuum, so that it is proportional to
the metric, then (D.5) is satisfied because g'7 = 0.

The surface stress tensor is given by:
4nGS*” = k(7)U*U” - Z(7)((g"” —n*n")+ U*U"), (D.6)

where U* is the 4-velocity of the domain wall, n* the unit normal, k the energy density,'® and
¢ the tension. Plugging this into the conservation equation VES)S i =0 gives

k:—Z(K—C)g. (D.7)

We assume the equation of state
a
=(1- —) K, D.8
¢=(1-2 (D.8)
and solve the conservation equation (D.7) to get

k(r)ocr @, (D.9)

If the domain wall is composed of dust, then the surface tension is zero, so a = 2. a = 3
corresponds to radiation, for which S*” is traceless. A domain wall composed of vacuum
energy has an energy density equal to its tension, so a = 0 and its energy density is radius-
independent.

We would like to check whether the equation of motion for the domain wall depends on
its equation of state. If we plug the general perfect fluid surface stress tensor (D.6) into the
66 component of the junction condition (D.2) we get

AK§ =—x. (D.10)

16Strictly speaking,  is only proportional to the energy density, see its definition in (B.10).
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This junction condition does not depend on the domain wall tension ¢ and it is true for any
domain wall equation of state i.e. whether it is composed of dust, radiation, or vacuum en-
ergy. The domain wall dynamics follow from (D.10) without further assumptions about the
composition of the wall.

E Non-static domain walls with radiation equation of state

Here we analyse the general dynamics of radiation-composed domain walls glueing together
the traversable wormhole and the extremal AdS-RN geometries. For a radiation-composed
domain wall, with energy density x = o>, the domain wall effective potential as a power
expansion in r is

1 G*AM?) , 2GM +GAM r; o?
2 re+
o

veff(r)z(e—z— i M A (E.1)

Equation (224), the condition that needs to be satisfied to be glueing the wormhole interior
to the black hole exterior, for « = 3 becomes

o2l

R®> .
20,

(E.2)

This rules out finite energy density domain walls collapsing to zero size. o, is the critical
value for o that determines the large r behaviour of the potential:

+oo, ifo>o,,

2
. _ . — _ €
rlirgo Vers(r) = {—oo ifo<o,, with o, := G|AM|L 2 c(rre. (E.3)

We can rewrite (E.1) in a form that will be convenient for approximations in the throat region,
in terms of o, and taking advantage of M and r, being related for an extremal black hole,

r—r

o.r o )2 (E.4)

2
) (£2+r2+2rf+3f2)—(———

_ 1
Vers (=13 ol 22

The first term is the emblackening factor of an extremal AdS RN black hole.

E.1 Sub-critical energy density

Let us first consider radiation domain walls with sub-critical energy densities, o < o, whose
distinguishing feature is that V,;;(r = 00) = —oo. The condition (E.2) is satisfied every-
where in the relevant domain, (r —)/7 > €, as the right-hand side is subleading in €. In the
effective potential (E.4), the o/2r? term can be neglected at leading order in e for the domain
(r—r1)/7 > e. This simplified effective potential is proportional to a quartic polynomial in
r, and by calculating the polynomial’s Sturm sequence we can show that the potential has at
most two roots in the domain 7 < r, and that it can only have two roots when o < o.. These
two roots can be found exactly. Their perturbative expansions as o approaches criticality are

i} F.F 72 [o. .
r1=r(1+z(2z+ 1+4€—2))+O( ;—1), (ES)

=2
rz:#—f”(1+2%)+(’)( &—1). (E.6)
(e L i
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The effective potential is negative above r, and below r;, and positive between. In the
Lorentzian section, r, is the closest-approach radius for a domain wall going to or from the
asymptotic boundary. The turnaround radius becomes arbitrarily large as o approaches its
critical value (from below), so sub-critical o guarantees that the domain wall stays out near
the asymptotic boundary, away from the wormhole mouth. Solving the domain wall equation
of motion R2 + V, 7¢(R) =0 in the large R regime gives the Lorentzian trajectory:

2(Z=-1
RL(T)N#COS}I MT s (E.7)
2(%-1) @

where 7 is the (Lorentzian) proper time of the wall. This was derived by solving the equation
of motion after dropping terms that are O(R™!) in Verf(R). The domain wall accelerates out
to the asymptotic boundary.

When the domain wall is at the turnaround radius r,, we are at a point of time-reflection
symmetry and we can Wick rotate to Euclidean signature. The trajectory of the domain wall
in Euclidean signature is a gravitational instanton solution whose action determines the tun-
nelling rate. The effective potential that determines the trajectory of the domain wall in
Euclidean signature is minus the effective potential of the domain wall in Lorentzian signa-
ture [86]. A domain wall that is initially at rest at R = r, will accelerate towards increasing
r in Lorentzian signature and decreasing r in Euclidean signature. In Euclidean signature,
the radial position of our domain wall will decrease monotonically from R = r, and oscillate
within the interval [rq, r,]. For previous work on oscillating instantons, see [20, 87, 88].

The periodicity of the domain wall with respect to the asymptotic Euclidean time is

" drdr
dr, =2 dR——2. E.8
f To L dR dt (E8)

The two derivatives in this equation are known: the time dilation factor between the asymp-
totic time and domain wall proper time is given by

d -
— = I RVR - R2

= £, R/ fo(R) =V (R),

with f, the emblackening factor of an extremal AdS-RN black hole, and the second line follow-
ing from the domain wall equation of motion. The domain wall periodicity is logarithmically
divergent as we approach the critical energy density:*”

(E.9)

Jdro =£log( i )4—(’)(1). (E.10)
o.—0O
E.2 Throat region

To satisfy (E.2) when the domain wall is in the throat region, i.e. when R ~ 7, requires'®

21
\|==, forF>{(,
3e
ral2
z\—, forr <,
£ \e

70One method for performing the integral over R is to first transform 2R — (r; +1,) + (r, —r;) sin(@). This is the
standard transformation for integrals of the form f ;12 dx((x — x1)(x, — x))™Y2f (x). The resulting denominator

9 < (E.11)
O-C

is the sum of two terms, one of which can be dropped because it is subleading o, — o for all 8, though it is not
obvious to show around 6 = —m/2. Then one integrates over 6 and expands in o, — 0.
18We need to take 7*/{ to be either perturbatively small or large in order to write o, as a simple function of 7.
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which is not a strong constraint on ¢. In the throat region, the a = 3 effective potential to
quadratic order in (r —7)/7 < 1 is*’

=\2 2.2
_[r—r O.r
Vs =c(5) - % £12)

For this potential to have a root requires

S (E.13)

0. [4/C(F)
and this root is at

. r
9 L4/C(F)

There is no value of o /o, for which the domain wall potential has both a root in the throat
region and the large r region; (E.13) is not compatible with o < o.. If 0 < o, then the
effective potential is negative throughout the throat region, and there must be a second root
at or outside the mouth of the wormhole’s throat, i.e. in the region (r —7) 2 7.

F Perturbations around static domain wall solutions

To really confirm whether the static domain wall gives the correct decay rate, one needs to
verify whether this convenient, static instanton is actually dominant. Note that only a discrete
set of solutions is allowed, due to the periodicity in imaginary time. In addition to our static
solution, one can also consider solutions that oscillate around the minimum of the Euclidean
potential. While these are difficult to compute, a useful test is whether our static solution has
the correct number of negative modes- namely, only one. Having more negative modes is an
indication that we have not found the dominant instanton because we can flow down along
these negative directions to an instanton with lower action.

To do this, we just need to expand our equations around the static location 7. For this, it
is most convenient to write the action in terms of an integral over Euclidean time,

2
s=4ncrfd—T:4n-aJﬂ f+f—1(£) . E1)
r r dt

Note the different sign inside the square root because we are in Euclidean signature.
We are interested in small perturbations around the static solution, so the time derivative
will be small, and we can expand to get

N dt 1, g (dr)?
s_4naf7[\/?+5f 32(—)] (E2)

dt

Now we expand for r near 7. Define r = + 6r. Note that the condition for # guarantees that
the function +/f /r has zero derivative at #, so to second order in the perturbations,

~ Vi 1a (VT 2 1 pg(d(E))2

YThe o,r~" and or™* terms that we have dropped are subleading in e with respect to the o?r*/c%l* term
as long as o/0. < €7, i. e. as long as we are no close to saturating the upper bound allowed for large black
holes in (E.11). In that edge case, all o and o,-dependent terms are subleading in € with respect to the first term
in (E.12), and there are no roots.
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The first term is the action for the static wall. The last term is a positive kinetic term, but the
middle term is negative. We can analyze this by Fourier transforming in time. Recalling the
periodicity, the allowed frequencies are

21n
=—, (E4)
“T7B

for integer n. There is clearly one negative mode, coming from «w = 0. In order for the static
instanton to dominate, the other modes should be positive. This requires

f3R (Znn)z o4 (\/7)

r

> (E5)

A

# dr?

B

P
for all nonzero n.

For Schwarzschild black holes, this can be checked explicitly and it is satisfied, indicating
that the static instanton dominates. This extends to near-Schwarzschild black holes since
the inequality is not saturated for Schwarzschild. However, for near-extremal black holes,
it appears that  — oo while the other quantities in the above equation remain finite. In
particular, for an extremal black hole # = 2r, and

2
L ( \/?) =——. (E6)

dr2 \ r

-
Therefore, it appears that for near-extremal black holes, the static instanton is not dominant.
This is puzzling because it appears to give the ‘correct’ answer. Perhaps the additional negative
modes develop when the charge is large enough that the RN black hole begins to have a positive
specific heat. Schwarzschild black holes have negative specific heat, but above some critical
charge, the specific heat becomes positive. In this regime, perhaps they are in a sense no
longer unstable to emitting neutral particles. In addition, it is known that the number of
negative modes of the background solution changes at this threshold.
Incidentally, generalizing to RNAdS black holes we get,

T‘2
f=2=5, (E7)
r
and (E5) becomes
. 24
2> (1+22)(1+6%
(zg") >( 7)(1+65) . (ES)

6473 (1+35)’

This expression is consistent with (E5). Note from (E7) that when the black hole becomes
large compared to the AdS radius, the static solution disappears.
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