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Abstract

We present a new on-shell method for the matching of ultraviolet models featuring mas-
sive states onto their massless effective field theory. We employ a dispersion relation
in the space of complex momentum dilations to capture, in a single variable, the rele-
vant analytic structure of scattering amplitudes at any multiplicity. Multivariate complex
analysis and crossing considerations are therefore avoided. Remarkably, no knowledge
about the infrared effective field theory is required in dimensional regularisation. All
matching information is extracted from the residues and iscontinuities of the ultraviolet
scattering amplitudes, which unitarity expresses in terms of lower-point and lower-loop
results, respectively. This decomposition into simpler building blocks could deliver new
insight in the structure of the effective field theories obtained from classes of ultraviolet
scenarios and facilitate computations at higher loop orders.
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1 Introduction

Effective field theories (EFTs) are becoming the prime interpretation framework for collider
data. The lack of unambiguous sign of new resonance at the energy frontier, together with
the upcoming increases in luminosity and precision rather than energy, indeed motivates an
indirect approach to hypothetical heavy new physics. Understanding how specific ultraviolet
(UV) models —and classes thereof— populate the infrared (IR) EFT parameter space, and
grasping the implications of EFT results for concrete scenarios is however essential. The pro-
cedure of matching between full models and their low-energy EFTs establishes the needed
UV–IR correspondence.

The automation of matching computations has recently been pushed to the one-loop level
[1–5] using diagrammatic [6, 7] and functional [8–32] methods, together with the method
of regions in dimensional regularisation [33, 34]. Here, we devise a distinct approach which
relies on a dispersion relation in the complex plane of momentum dilations. It expresses the
low-energy EFT amplitudes in terms of the tree-propagator residues and loop cuts of UV am-
plitudes. Thereby, unitarity reduces the complexity of the amplitudes required for matching,
in the number of legs or loops. By exploiting simpler building blocks, it may moreover deliver
new insight.

The required computations are facilitated by the successful developments of unitarity
methods [35–45] and Feynman diagram integration techniques (see e.g. [46, 47] for de-
tailed reviews and references therein) in dimensional regularisation [48] applied to high-
multiplicity and high-order calculations in perturbation theory, for gauge theories [49, 50]
and gravity [51, 52]. Scattering-amplitude methods are also finding more and more ap-
plications in the study of EFTs and, in particular, that of the Standard Model (SMEFT).
They helped uncovering positivity constraints [53–55], non-interferences between renormal-
isable and dimension-six amplitudes [56], and non-renormalisation theorems between higher-
dimensional operators [57–61]. They provided an alternative means of computing anomalous
dimensions [62–70], of constructing SMEFT operator bases [71–77] as well as broken-phase
massive amplitudes [78–86].

Our on-shell approach to matching was inspired by the computation of Wilson coefficients
directly from unitarity cuts in [87] and from the procedure used to derive positivity constraints
on operator coefficients in terms of dispersion relations [88]. These hinted at the possibility of
expressing the Wilson coefficients of an IR EFT in terms of the discontinuities of UV amplitudes.
However, in the context of positivity bounds, only four-point amplitudes are accessible and
the analytic structure in a single Mandelstam invariant is most often exploited. We use form
factors [62] to control analytic properties at arbitrary multiplicity (they were first studied on-
shell in the context of the N = 4 super Yang-Mills theory [89, 90]). Moreover, we simplify
the multivariate complex analysis into a one-variable problem using an analytically continued
momentum dilation parameter, which is reminiscent of the BCFW shift [91].

Before providing a more rigorous discussion in section 3, we start by presenting the basic
principles of this new matching method in section 2. A working example of scalar theory is
discussed in section 4, and conclusions are presented in section 5.

2 Basic principles

For simplicity, let us focus here on an IR EFT containing only massless scalars. Matching would
make the IR and UV amplitudes identical for small enough external momenta pi:

AIR =AUV , for pi/M → 0 , (1)
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Figure 1: Each nth order of the tree-level IR EFT amplitude expanded in powers
of Mandelstam invariants is expressed as a contour integral of the subtracted UV
amplitude ÂUV(z)/zn+1 in the complex plane of momentum dilations. All matching
information is therefore extracted from the residues and branch cuts of the UV am-
plitude alone. For illustration, we picture one residue at z = M2

I /sI arising from the
1/(sI−M2

I ) pole of a tree propagator and one branch cut starting at z = M2
J /sJ which

could for instance arise from a log(M2
J − sJ ) term.

where M is the mass scale of the heavy UV states that are integrated out. As matching condi-
tion, we enforce the term-by-term equality of the amplitudes expanded at all orders in powers
of external momenta (squared into Mandelstam invariants). On the IR EFT side, this expan-
sion involves the tree-level contact terms which readily map onto operators and are multiplied
by the Wilson coefficients to be matched.1 From a purely on-shell perspective, these tree-level
amplitudes of higher-and-higher multiplicities fully characterise the EFT and allow to recon-
struct it entirely.

To count powers of squared external momenta, let us introduce momentum dilations, act-
ing on Mandelstam invariants and amplitudes as

sI → ŝI = z sI , and A→ Â(z) , (2)

where I is a unordered subset of external particles and sI ≡ (
∑

i∈I pµi )
2. Analytically continuing

z to the complex plane, the power-by-power matching is enforced by equating the z = 0
residues of the two amplitudes divided by an integer powers of z:

Res
z=0

ÂIR(z)
zn+1

= Res
z=0

ÂUV(z)
zn+1

. (3)

Note that negative n’s are allowed but that the associated residues vanish unless Â(z) itself
contains poles at z = 0, corresponding to massless factorisation channels.

On the IR EFT side, the residues straightforwardly extract terms of the tree-level amplitude
homogenous in the Mandelstam invariants, e.g. cnsn

I +c′nsn+1
I /sJ . On the UV side, let us express

each residue as an integral over a small contour surrounding the origin, at z = 0 (in blue on
Figure 1). Deforming this contour towards infinity extracts the residues and discontinuities of
AUV in all Mandelstam invariants (in orange on Figure 1). Indeed, the non-analycities in z are
inherited from the poles and branch cuts in Mandelstam invariants: sI = M2

I poles give rise to
z = M2

I /sI ones, and sJ ≥ M2
J branch cuts give rise to z ≥ M2

J /sJ ones. The contour at infinity
may also yield a non-vanishing contribution if n is small enough.

Unitarity can then be used to express these residues and discontinuities in terms of lower-
point and lower-loop amplitudes. The matching at tree level only involves pole residues which

1As will be seen more rigorously below, our power-by-power matching does not capture contributions which
do not admit a Laurent expansion at zero external momenta. Heuristically, dimensionally regulated loops in our
scaleless EFT have branch points in this limit, i.e. no zero-momentum expansion, and do not contribute. On the
IR EFT side, the Laurent expansion therefore only captures tree-level contributions.
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can be expressed as products of two lower-point on-shell amplitudes:

Atree
IR ⊃ −
∑

poles

Res
z=M2

I /sI

ÂUV(z)
zn+1

=
∑

z=M2
I /sI

Âleft
UV (z)Â

right
UV (z)

sI zn+1
. (4)

At the one-loop level, unitarity turns discontinuities into two-particle cuts involving two tree-
level amplitudes and an intermediate phase-space integration:

Atree
IR ⊃ +

1
2πi

∑

branch
cuts

∫ ∞

M2
J

sJ

dz
zn+1

�

ÂUV(z + iε)− ÂUV(z − iε)
�

=
1

2π

∑

branch
cuts

∫ ∞

M2
J

sJ

dz
zn+1

∫

dLIPS Âleft
UV (z)Â

right
UV (z) , (5)

with the appropriate symmetry factor left implicit on the right-hand side.
Subtleties omitted in the above discussion and addressed below are the following:

• A form factor with an additional momentum influx q has to be considered instead of the
UV amplitude to confine all non-analyticities to known locations, namely on the positive
real z axis.

Note the polynomial dependence of the obtained result in Mandelstam invariants renders
the crossing and q→ 0 limit trivial. Calculations at four points and above can therefore
in practice be performed directly on amplitudes.

• The UV amplitude may have branch cuts extending all the way down to z = 0, in which
case one needs to formally consider the expansion around a small z = −δ < 0. After
taking δ→ 0, the IR divergence of the cut integral can be handled, as customary, within
dimensional regularisation.

Simplest examples Before closing this section, let us give simple examples for which the
subtleties above are irrelevant (more complicated cases are discussed in section 4). Let us
consider a φ3Φ theory, involving a massless scalar φ and a heavy Φ of mass M to be integrated
out. The tree-level exchanges

k
j
i g4 g4

(6)

generate six-point contact terms in the IR EFT, which can trivially be obtained from the lower-
point A(φφφΦ) = g4 amplitude:

Atree,(0)
IR,6 ⊃
∑

z=M2/si jk

Â(φφφΦ)2

si jk zn+1
=

g2
4

M2

∑

10 (i jk) perm.

� si jk

M2

�n
, (7)

where the sum on the right-hand side runs over the 10 independent unordered permutations
of i jk external legs. At the loop level, four-point contact terms are generated by the bubbles

j

i
g4 g4 (8)

whose cut can be expressed as the square of the tree-level A(φφφΦ) amplitude and a two-
particle φΦ Lorentz invariant phase-space integral,

∫

dLIPS= 1
8π(1−

M2

zsi j
). The last ingredient

4

https://scipost.org
https://scipost.org/SciPostPhys.16.3.071


SciPost Phys. 16, 071 (2024)

is the z integral along the cut:

Atree,(1)
IR,4 ⊃

1
2π

∑

si j=s,t,u

∫ ∞

M2/si j

dz
zn+1

∫

dLIPS Â(φφφΦ)2

=
g2

4

16π2n(n+ 1)

∑

si j=s,t,u

� si j

M2

�n
, for n> 0 .

(9)

The renormalisable n = 0 term is UV divergent and requires a regulator to be computed (see
section 4).

Remarkably, both at tree and loop levels, the EFT amplitude is obtained at once, to all
orders in the derivative expansion, thereby fixing a whole tower of Wilson coefficients.

3 Matching formula

We aim to match a UV theory involving heavy states to the corresponding EFT of light IR states
only. For simplicity, we focus on massless light states.2 After matching, the EFT truncated at a
given order should approximate the predictions of the UV theory for momenta much smaller
than the heavy masses.

The central objects of our matching procedure are the form factors of a local operator O,
having a momentum influx q, a set of m particles carrying quantum numbers m⃗ as out-state,
and the vacuum as in-state,3

FO(m⃗) =

∫

dd x ei x ·q
out〈ψm⃗|O(x)|0〉= (2π)d δ(d)(q− p1 · · · − pm) out〈ψm⃗|O(0)|0〉 , (10)

which are formally defined as the limiting value of a complex function FO(si j + iε) using the
Feynman-iε prescription. In particular, we consider form factors of the Lagrangian operator
which are the closest to (purely on-shell) S-matrix elements. Matching to all orders in inverse
powers of the heavy mass scale M would result in identical UV and IR predictions

FLIR
(m⃗) = FLUV

(m⃗) , (11)

for q2 = (p1 + ... + pm)2 < M2, where LUV includes the modes that are dynamical at high
energies, while LIR only contains light modes interacting through higher-dimensional local
operators.

As sketched in section 2, we realise this matching by imposing an order-by-order identifica-
tion in the momentum expansion or, equivalently, in powers of a momentum dilation variable
z. Let us thus consider the continuous form-factor deformation FO(m⃗; z), by the complex mo-
mentum dilation (2), away from the physical z = 1 + iε configuration. Since all external
particles are outgoing, the Mandelstam invariants are all positive, sI ≥ 0. This ensures that all
the form-factor singularities on the physical sheet of the complex z plane are confined to the

2In the presence of massive external states, ensuring momentum conservation and on-shell conditions would
naively require masses to be dilated in addition to momenta. Non-analyticities in z would therefore be introduced
which are not related to non-analyticities in Mandelstam invariants (e.g. arising from logarithms of the masses).
It remains to be examined how those could be consistently handled.

3It is worth emphasising that, when we consider form factors, there is no relation between the different kine-
matic invariants arising from momentum conservation: (p1 + ... + pn)2 = q2 ̸= 0. In particular, it is necessary
to consider qµ time-like. Alternatively, form factors can be thought of as the decay amplitude of a very massive
(non-dynamical) scalar of square mass equal to q2. In practice, we will however consider q ̸= 0 only in the three-
point case. At and above four points, we can set q = 0 after performing crossing of some of the out-states into the
in-state, with the proper normalisation. The form factors are strictly related to the S-matrix elements by the simple
relation out〈ψn⃗|O(0)|ψm⃗〉in|q2=0 = ∂g out〈ψn⃗|ψm⃗〉in where g is the coupling of the operator O in the Lagrangian.
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Re z

Im z

−δ

FLx
(m⃗, z)

(z +δ)n+1

Figure 2: Analytic structure of FLx
(m⃗, z)/(z +δ)n+1 in the complex z plane of mo-

mentum dilations. We isolate terms of the Taylor expansion in z + δ by integrating
on a small contour around z = −δ, before taking δ→ 0. This small contour is then
deformed towards infinity, thereby capturing the discontinuities and residues of the
form factor on the positive real axis.

positive real axis (see e.g. [62]). The discontinuity across the z ≥ 0 branch cut is then given
by the sum of the physical discontinuities in each Mandelstam invariant:

Disc
z

FO(m⃗; z) =
∑

I

Disc
sI

FO(m⃗; z) , (12)

where I is an unordered subset of external particles. The discontinuity across a mI -particle cut
is given by the product of form-factors and amplitudes (at lower loop order, in perturbation
theory), integrated over the appropriate Lorentz-invariant phase space [92]:

Disc
sI

FO(m⃗; 1+ iε) = i
∑

X

(−1)mX

SX

∫

dLIPSX FO(m⃗ Ī , m⃗X ; 1− iε)A(m⃗X → m⃗I) , (13)

where the sum runs over all possible sets of internal states of mX particles in the cut and where
the external state is partitioned as m⃗= {m⃗I , m⃗ Ī}. Similarly, the residues are directly related to
the physical residues appearing in Mandelstam invariants:

Res
z=M2

I /sI

FO(m⃗; z) =
1
sI

Res
sI=M2

I

FO(m⃗; 1)

�

�

�

�

sJ→sJ M2
I /sI

, (14)

which are given by the factorisation onto lower-point form factors and amplitudes:

Res
sI=M2

I

FO(m⃗; 1+ iε) = −
∑

X

FO(m⃗ Ī , X ; 1− iε)A(X → m⃗I) , (15)

where the sum is over all possible one-particle state exchanges.
In z-space, the identification between the UV and IR theories can be imposed within the

smallest |z| < M2
I /sI radius. To avoid possible singularities at z = 0, we formally perform our

power-by-power matching of the form factors expanded around z = −δ for a small δ > 0,
where analyticity is guaranteed. Our matching condition therefore becomes:

P IR
n (m⃗) = PUV

n (m⃗) ,

with Px
n(m⃗)≡ lim

δ→0
Res

z=−δ

FLx
(m⃗, z)

(z +δ)n+1
= lim
δ→0

1
2πi

∮

−δ

dz
(z +δ)n+1

FLx
(m⃗, z) .

(16)

The contour integral can then be deformed towards |z| →∞ as in Figure 2, which captures
the non-trivial analytic structure of FLIR

(m⃗; z) and FLUV
(m⃗; z) along the positive real axis.
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On the IR side of this matching condition (16), we obtain

P IR
n (m⃗) =+

1
2πi

∫ ∞

0

dz
(z +δ)n+1

Disc
z

FLIR
(m⃗; z)

−
1
δn+1

Res
z=0

FLIR
(m⃗; z)

− Res
z=∞

FLIR
(m⃗; z)

zn+1
,

(17)

where the δ→ 0 limit is understood. It is particularly advantageous to regulate all divergences
using dimensional regularisation. Contributions from the discontinuities then become scaleless
integrals in z and vanish. The loop contributions to the residue at infinity similarly vanish: The
residue at infinity is tree-level exact. Indeed, as the IR theory has no mass scale, the dilated
form factor is a sum of terms each homogenous in z. In d = 4−2ε dimensions, the integrands
in both cases have a zα−ε form for some integer α and therefore vanish for a suitable choice of
dimensional regularisation parameter ε. A more detailed discussion is provided in Appendix B.
Therefore, the residue at infinity of the full form factor is that of the tree-level one, which can
in turn be identified with the one at z = 0 since there is no other non-analyticity at tree level:

− Res
z=∞

FLIR
(m⃗; z)

zn+1
= − Res

z=∞

F tree
LIR
(m⃗; z)

zn+1
= +Res

z=0

F tree
LIR
(m⃗; z)

zn+1
. (18)

So (17) simplifies to

P IR
n (m⃗) = −

1
δn+1

Res
z=0

FLIR
(m⃗; z) +Res

z=0

F tree
LIR
(m⃗; z)

zn+1
. (19)

Let us now consider the UV side of the matching condition (16). Again, we express the
residue at z = −δ as a small contour integral subsequently deformed towards |z| →∞ as in
Figure 2, which captures the non-analyticities of FLUV

(m⃗; z):

PUV
n (m⃗) =−
∑

I

�

sI

M2
I

�n+1

Res
z=M2

I /sI

FLUV
(m⃗; z)

+
1

2πi

∫ ∞

0

dz
zn+1

Disc
z

FLUV
(m⃗; z)

−
1
δn+1

Res
z=0

FLUV
(m⃗; z)

− Res
z=∞

FLUV
(m⃗; z)

zn+1
,

(20)

where the δ → 0 limit is still understood. Possible non-analyticities are poles and branch
points at z = M2

I /sI generated by massive tree propagator and loop cuts, a massless tree
propagator pole and loop branch point at z = 0, and a pole at infinity. The δ → 0 limit of
the z ≥ 0 discontinuity integral is by definition singular, but the associated singularities can
be traded for singularities in the IR regulator as δ is taken to zero. More details are provided
in Appendix B. The residue at z = 0 is the only term in which a δ dependence remains. As
it is generated by massless IR poles, it however cancels against the analogous term in the IR
part of the matching in (19). The residue at infinity is again tree-level exact, as the z integral
is again scaleless in the |z| →∞ limit (see Appendix B).

Imposing the matching condition P IR
n (m⃗) = PUV

n (m⃗) and cancelling the 1/δn+1 terms be-
tween the UV and the IR, one can therefore extract each term of the tree-level expansion of
the IR form factor from the non-analyticities of the UV form factor:
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Res
z=0

F tree
LIR
(m⃗; z)

zn+1
=−
∑

I

�

sI

M2
I

�n+1

Res
z=M2

I /sI

FLUV
(m⃗; z)

+
1

2πi

∫ ∞

0

dz
zn+1

Disc
z

FLUV
(m⃗; z)

− Res
z=∞

F tree
LUV
(m⃗; z)

zn+1
.

(21)

We emphasise that, combining the analytic properties of the form factors and dimensional reg-
ularisation, we managed to isolate the tree-level IR form factor, bypassing the subtraction of IR
loops (which contribute to the renormalisation-group running). Note that our master formula
(21) is also valid for n negative, in which case the factorisable components of the tree-level
form factor (having poles at z = 0) are also extracted from the UV. In practice, both sides of
(21) however vanish identically, providing no matching information, unless

n≥ p , for p ≡
min
�

d −m
� d

2 − 1
�

− [cIR]
	

2
, (22)

where d is the space-time dimension and [cIR] is the total mass dimension of the couplings
appearing in the IR form factor. The full tree-level IR form factor can thus be reconstructed
from the sum of (21) over n:

F tree
LIR
(m⃗) =

∞
∑

n=p

Res
z=0

F tree
LIR
(m⃗; z)

zn+1
. (23)

The computation of a residue at infinity is scarcely needed. Dimensional analysis implies
that it vanishes unless n≤max(d−m (d/2− 1)−[cUV])/2. Combined with the condition (22),
it is thus only necessary when min[cUV]≤ d−m (d/2− 1)−2n≤max[cIR]. The most relevant
local operator coefficient leading to four- and higher-points contact-term amplitudes in the IR
is marginal (max[cIR]≤ 0), just as the most irrelevant coupling of a renormalisable UV theory
(0 ≤ min[cUV]). In these particularly relevant cases, the computation of a residue at infinity
is therefore at most required for a single value of n saturating the inequalities above, and for
the extraction of a marginal coupling. Since only the leading high-energy component of the
renormalisable UV amplitude is then needed, this computation can moreover be performed
in a strict massless limit (assuming that it is well-defined).4 Instead, if the UV theory is non-
renormalisable, min[cUV] can be negative and the computation of a residue at infinity can be
needed for more than one value of n. Masses then also become relevant.

The formula (21) above constitutes the main result of this paper. It refines the argument
of [87] that one-loop rational terms are not relevant for the matching at four points. Indeed,
the z discontinuity of these terms only arises in non-integer dimensions, from a zε dependence,
and vanish in the ε→ 0 limit. On the other hand, for higher-point loop amplitudes, rational
terms may give additional contributions to the pole residues of FLUV

and thus contribute to the
matching.

Remarkably, this matching procedure, combined with a purely on-shell construction of the
full IR amplitude, does not require the specification of an EFT operator basis. Unless Wilson
coefficients defined from a Lagrangian are desired, no information about the IR is actually
needed and all matching information is extracted from the UV alone. The full UV amplitude

4Note that the contributions from the arc at infinity comes purely from the UV, contrary to the case of positivity
bounds from 2→ 2 scattering amplitudes where one can have high-energy scattering and small scattering angle
(large distance). Indeed, we are in the physical kinematic configuration for which q2 = s+ t+u> 0 and s ∼ t ∼ u.
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is not even required since only lower-point factorisations and lower-loop cuts are necessary. If
present, the residue at infinity only needs to be evaluated at tree level and in the high-energy
limit. Matching is thus expressed in terms of simpler building block which may also allow to
uncover new patterns and selection rules in the EFT of UV models.

Finally, as a by-product of our analysis, we have also generalised the method of [62] for
computing anomalous dimensions from S-matrix elements with internal massive states (see
Appendix A). The decoupling of heavy modes in the renormalisable group evolution is manifest
within this framework.

4 Scalar working example

In this section, we study the matching of a toy scalar UV model using our central formula
(21). This scalar theory exhibits all the singularity structures (coming from Feynman integrals)
potentially appearing in our matching procedure. Additional subtleties arising from spinors
(e.g. evanescent operators) and tensor structures (e.g. gauge and gravitational theories) will
be discussed elsewhere.

This toy scalar theory features a single heavy scalar Φ of mass M to be integrated out, and
a massless φ which remains dynamical in the low-energy EFT. It is defined by the following
Lagrangian:

LUV =
1
2
∂µφ∂

µφ +
1
2
∂µΦ∂

µΦ−
1
2

M2Φ2 −
λ

4!
φ4 −

g3

2!
Φφ2 −

g4

3!
Φφ3 . (24)

Radiative corrections will generate a φ3 term (for example, at order g3 g4) because the g4
interaction breaks the Z2 symmetry of φ. In the following, we however focus on higher-point
interactions for which we can take the momentum influx of form factors to zero (q→ 0) and
effectively consider amplitudes in different channels, after crossing.

Tree-level four points Let us start with the four-φ tree-level amplitude:

j

i λ g3 g3
(25)

Although we do not need to write them down explicitly when proceeding on-shell, let us give
the UV amplitude and the expected form of the IR one:

Atree
UV,4 = λ−
∑

s,t,u

g2
3

si j −M2
, (26)

Atree
IR,4 = λ+

∞
∑

n=0

g2
3

cn

M2n+2
(sn + tn + un) , (27)

where cn are the Wilson coefficients to be determined.
In this tree-level example, only the residues appearing in the master formula (21) need to

be evaluated. The massive propagator gives rise to poles at z = M2/si j (for si j = s, t, u) whose
residues are just the product of two A(φφΦ) = g3 amplitudes:

Atree,(0)
IR,4 ⊃ −
∑

si j=s,t,u

Res
z= M2

si j

Âtree
UV,4(z)

zn+1
=
∑

z= M2
s,t,u

A(φφΦ)2

M2zn
=

g2
3

M2n+2
(sn + tn + un) , (28)
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which implies that cn = 1. Note that in a scalar theory, −p defined in (22) equivalently counts
the number of massless propagators. Since no massless propagator is present in this case (i.e.
p = 0), one only needs to consider n≥ 0.

For completeness, note that the residue at infinity yields the extra quartic coupling depen-
dence of the n= 0 term of Atree,(0)

IR,4 expansion:

Atree,(0)
IR,4 ⊃ − Res

z=∞

Âtree
UV,4(z)

z
= λ . (29)

Tree-level six points Let us now go to six points, still at the tree level. UV amplitude topolo-
gies (the last one was already examined in section 2) are:

k
j
i λ λ

j

i

k
g3 g3

λ

k
j
i g4 g4

(30)

where we ignore a g4
3 contribution, for simplicity. The second and third topologies generate

residues at z = M2/si j and M2/si jk which are picked up in our matching formula, giving:

Atree,(0)
IR,6 ⊃
∑

20 (i jk) perm.

−
1

si jk

λg2
3

M2

sn+1
i j + sn+1

jk + sn+1
ki

M2n+2
, and

∑

20 (i jk) perm.

1
2

g2
4

M2

� si jk

M2

�n
.

(31)
In the first case, only n ≥ min(−2 − 2[ ])/2 = −1 is needed, while in the second case
n≥min(−2− [ ])/2= 0 is sufficient.

The first topology in (30) only generates a renormalisable contribution which appears as
a residue at infinity for n=min(−2− 2[ ])/2= −1:

Atree,(0)
IR,6 ⊃
∑

20 (i jk) perm.

−
1
2
λ2

si jk
. (32)

As in the second part of (31), a symmetry factor of 1/2 is included since only half of the (i jk)
permutations are independent.

One-loop four points At the one-loop level, the four-point topologies are the following:

j

i
g4 g4

j

i
λ

g3

g3 j

i
λ

g3

g3

(33)

ignoring again terms of order g4
3 , for simplicity.

The first one was considered already in section 2. Let us re-examine it in d dimensions, to
be able to also extract its n= 0 renormalisable component which diverges in four dimensions.
In the first line of (9), we thus need to evaluate the d-dimensional phase-space integral:

∫

dLIPSd =

∫

dd l
(2π)d−2

δ+(l2 −M2) δ+((pi + p j − l)2)

=
1

(16π)1−ε
s−εi j

Γ [3
2 − ε]

�

1−
M2

si j

�1−2ε

,

(34)

with δ+(l2 −m2) ≡ θ (l0) δ(l2 −m2). After dilation and integration over the branch cut, one
then gets:
∫ ∞

M2
si j

dz
zn+1

∫

dLIPSd =
� si j

M2

�n p
π Γ [2− 2ε]Γ [n+ ε]

(16π)1−ε Γ [3
2 − ε]Γ [n+ 2− ε]

M−2ε , (35)
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which leads to the result obtained in section 2:

Atree,(1)
IR,4 ⊃

g2
3

16π2n(n+ 1)

� si j

M2

�n
, (36)

in the four-dimensional limit and for n> 0. For n= 0, one gets

Atree,(1)
IR,4 ⊃

g2
3

16π2

�

1
ε̄
+ log

µ2

M2
+ 1

�

, where
1
ε̄
≡

1
ε
− γE + log4π . (37)

The UV divergence can be cancelled by a quartic coupling counterterm, and it is easy to check
that the results above match those obtained from the hard-region expansion of the loop inte-
gral.

The second and third topologies in (33) give rise to branch cuts extending down to z = 0.
The second topology also generates a residue at z = M2/si j , proportional to a bubble loop
function. Together with the integral along the discontinuity of the bubble and triangle loops,
we thus obtain:

Atree,(1)
IR,4 ⊃+λg2

3

sn
i j

M2n+2
B(M2 − iε; 0, 0)

+
λg2

3

2π

∫ ∞

0

dz
zn+1

−1
zsi j −M2 + iε

∫

dLIPSd

+
λg2

3

2π

∫ ∞

0

dz
zn+1

∫

dLIPSd

�

−
1

(l −
p

zpi)2 −M2
−

1
(l −
p

zp j)2 −M2

�

,

(38)

where a factor of 2 × 1/2 arising from the exchange of initial and final states and from the
Bose symmetry of the light scalars in the loop is understood. The massless bubble integral
B(P2; 0, 0) is:

B(P2; 0, 0) = −
π

d
2 (−P2)

d
2−2

(4π)d−
3
2 sin πd

2 Γ
� d−1

2

�
, (39)

and the M2 − iε prescription is fixed by the position of the z = M2/s − iε pole. The on-shell
integration measure can be parametrised as

dd l δ+(l2) = dl0 θ (l0)δ((l0)2 − l2) dl ld−2dcosθ (sinθ )d−4 2πd/2−1

Γ [ d
2 − 1]

, (40)

with lµ = (l0, l Ω⃗d−2, l cosθ ) and note that the two contributions in the last line of (38) are
identical. One can explicitly check that the first two lines of (38) add up to zero, i.e. the residue
and the discontinuity of the second diagram in (33) cancel each other. This should not be a
surprise, as the hard-region expansion of the bubble diagram from which they both originate
corresponds to a scaleless integral, as discussed in Appendix B. To perform the cut-triangle
integral, we follow the integration strategy outlined in [93] and find

∫ ∞

0

dz
zn+1

∫

dLIPSd
1

(l − pi)2 −M2
=
� si j

M2

�n M d−6

8(4π)
d
2−2

(−1)n+1n! csc πd
2

Γ [ d
2 + n]

, (41)

which agrees with the hard-region expansion of the full integral. Then, (38) becomes

Atree,(1)
IR,4 ⊃

λg2
3

16π2M2

(−1)n

n+ 1

� si j

M2

�n�1
ε̄
+Hn+1 + log

µ2

M2
+O (ε)
�

, (42)
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where Hn ≡
∑n

k=1
1
k are the harmonic numbers. As discussed in Appendix B, the soft-regions

of the bubble and triangle loops (l2 ∼ si j ≪ M2), which encode the renormalisation-group
running of the EFT, do not contribute to our matching formula.

The result (42) exhibits a 1/ε pole at any n, which is understood as an IR divergence
associated with the mass of the heavy state in the UV theory. The associated logarithm does
not contribute to the running of the EFT, as shown in Appendix A. Such divergences however
always match UV divergences of opposite sign in the EFT (see, for example, the reviews [94,
95]). In the present case, this is clear because the full triangle integral is both UV and IR finite.

Note that the results obtained from the computation of cuts in a single channel may not be
polynomial in Mandelstam invariants as those of (36), (37) and (42). In general, loops may
have discontinuities in multiple channels (e.g. the box appearing in the four-point matching
at order g4

3) giving rise to transcendental functions of ratios of Mandelstam invariants. Only
the sum over all channels is guaranteed to be polynomial and reproduces the hard-region
expansion of the loop integrals.

5 Conclusions

We presented a new method for the matching of UV models onto their massless EFT. Relying
only on on-shell quantities, it avoids the gauge and field-redefinition redundancies arising in
the Lagrangian formalism. A dispersion relation in the space of complex momentum dilations
is applied to form factors and captures the relevant analytic structure at any multiplicity and
for generic kinematics. The IR tree-level amplitudes, which fully characterise the EFT and
can be employed to bootstrap it, are extracted from the residues and discontinuities of the UV
amplitudes regularised dimensionally. Contributions to all EFT orders are extracted at once.
No operator basis or EFT computation is required, unless Wilson coefficients defined from a
Lagrangian are desired. The full UV amplitudes are not even needed since unitary expresses
their non-analyticities in terms of lower-point and lower-loop results. The possible contri-
bution from a residue at infinity is tree-level exact, mostly needed to extract renormalisable
contributions, and can be computed in the strict massless limit of a renormalisable UV theory.

The main computational difficulty arises from the evaluation of phase-space integrals
across loop cuts, especially when the loop involves several uncut propagators (cut bubbles
are trivial) and masses. Understanding how to introduce the method of regions at the level
of such integrals, drawing inspiration from recent analyses [96–99], could ease such calcu-
lations. On the other hand, our conclusion that no other information than non-analyticities
is needed for EFT matching could also be used to facilitate the computation at higher orders
with traditional techniques.

By expressing matching in terms of simpler lower-point and lower-loop building blocks,
our procedure may shed light on the structure of EFTs obtained from classes of UV models
and make manifest selection rules. Examples of matched Wilson coefficients exhibiting magic
zeros, with no immediate symmetry explanation, have notably been discussed in the literature
recently [87, 100, 101]. Finally, since our method enables the dispersive extraction of Wilson
coefficients appearing in amplitudes of any multiplicity, it may open the door to the derivation
of positivity constraints in scatterings beyond the 2-to-2 case.
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A Renormalisation-group running with intermediate massive
states

When considering a generic z, we know that

FO(m⃗; z) = z
D
2 FO(m⃗; 1+ iε) , (A.1)

where D =
∑

i pµi
∂

∂ pµi
is the dilation operator. Homogeneity in mass dimension5 tells us that

D = dFO −
∑

i

[gi] gi
∂

∂ gi
+ Dµ , (A.2)

where dFO = dimO−m is the mass dimension of the m-point form factor, dimO is the classical
dimension of the operator considered, gi are the couplings of the theory, [gi] their dimension
and

Dµ = −µ
∂

∂ µ
, (A.3)

is also usually referred to as the (anomalous) dilation operator, as it only differs from D by clas-
sical dimensions. The renormalisation scale µ is introduced in dimensional regularisation and
controls the UV anomalous dimension of the operator (and the IR anomalous dimensions of
the external states) as well as the beta functions of the couplings, through the Callan-Symanzik
equation [102,103].

In particular, combining equation (A.1) with unitarity, one finds

FO(m⃗; 1+ iε) = e−iπDFO(m⃗; 1− iε) =
∑

n
out〈ψm⃗|ψn⃗〉in FO(n⃗; 1− iε) . (A.4)

In the second equality, the optical theorem was used by introducing a complete set of on-shell
states ψn⃗ (and an integral over the associated phase space is left implicit). This is the central

5The dimension of the asymptotic states, defined as free-theory states, is fixed and does not run. If the asymp-
totic states are not well-defined because of long-range interactions, anomalous IR divergences appear in the Callan-
Symanzik equation.

Re z

Im z

Figure 3: Analytical structure in z of a three-point form factor, with massive particles
in the spectrum of the theory. From left to right, the empty circles correspond to
z = M2/s123 and the three M2/si j . The filled one are located at z = 4M2/s123 and
4M2/si j . All the si j = 0 and s123 = 0 singularities are superimposed at z = 0.
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formula proven in [62], which has found various applications in the computation of SMEFT
anomalous dimensions [60,63,64,66] and in the formulation of non-renormalisation theorems
at the two-loop level and beyond [58].

Considering a theory of massive particles and performing a 2π rotation of the form factor
in z-space (see Figure 3), we notice that the right-hand side of (A.4) now depends on the
kinematic configuration, i.e. on which branch points arise to the left of z = 1 on the real axis.
In other words, for a fixed external kinematic configuration, only the discontinuities from the
cuts with branch points at z < 1 contribute to the anomalous dimension, after modifying
equation (A.2) to include contributions from the mass:

D = dFO −M
∂

∂M
−
∑

i

[gi] gi
∂

∂ gi
+ Dµ . (A.5)

We can distinguish two cases:

• If the mass is smaller than the typical energies in the process, i.e. M2 < q2, there are a
finite number of thresholds contributing to the running of the theory, up to n intermedi-
ate massive states such that n2M2 > q2. Beyond that, the loops give virtual corrections
which can be encapsulated into contact interactions. Desirable configurations to con-
sider are either n2M2 > q2 or n2M2 < sI for all the Mandelstam invariants, as otherwise
the renormalisation and matching would be process-dependent and give non-local re-
sults. This is a strong version of the requirement to not have any hierarchy among the
external momenta, when performing matching.

• Conversely, if we have M2 > q2, the heavy states decouples for every observables [104]
and the thresholds do not contribute to the renormalisation group evolution of the the-
ory [105]. This is equivalent to the (DS) renormalisation scheme [106]. In this case,
the hard regions of the loop integrals are analytic and the discontinuity vanishes. Then,
only the soft region of integration contributes and the derivative expansion in ∂ 2/M2

determines the mixing of the EFT operators.

B Soft loops and arcs at infinity as scaleless integrals

In this appendix, we explain how the loop discontinuities in the EFT and in the soft region of
the UV theory, as well as the loop corrections to the arcs at infinity, are scaleless integrals within
dimensional regularisation and therefore vanish. Explicit examples of such cancellations are
seen in section 4.

We start from the first term in (17), which can be evaluated for generic values of δ in terms
of an Euler integral:

Iδ =
1

2πi

∫ ∞

0

dz
(z +δ)n+1

Disc
z

FαLIR
(m⃗; z)

=
∑

I

Disc
sI

FαLIR
(m⃗)

�

�

�

�

sJ→−sJ

∫ ∞

0

dz
(z +δ)n+1

(−z)α−ε

=
∑

I

Disc
sI

FαLIR
(m⃗)

�

�

�

�

sJ→−sJ

Γ [α− ε+ 1] Γ [α+ n+ ε]
Γ [n+ 1]

δα−n−ε ,

(B.1)

where FLIR
(m⃗; z) =
∑

α cαFαLIR
(m⃗; z), cα are collections of couplings with fixed mass dimension

and α is the corresponding mass dimension of the kinematic part of the form factor. In par-
ticular, we notice that the integral has a branch point at δ = 0, as expected from the pinching
of the contour of integration by the pole of the integrand at z = −δ and the branch point at
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z = 0. A suitable choice of ε makes the δ→ 0 limit finite and vanishing. We can thus take the
defining values of limδ→0 Iδ = 0 and analytically continue to ε ∼ 0 in the complex plane to
circumvent the poles generated by the Γ -functions on the real axis. An alternative approach
is to split the integral on the second line of (B.1) into two pieces: from 0 to Λ and from Λ
to +∞. A suitable choice of the regulator (different for each integral) makes the two terms
finite and equal up to an overall sign. Analytically continuing in ε, their sum does not depend
on Λ and is vanishing.

A similar fate is shared by the soft-region contributions of the UV integrals with a branch
cut starting at z = 0. This is clear from dimensional analysis, once we analyse the integrals
using the method of regions. In the soft region, the loop momenta are of the order of the
external momenta and much smaller than the heavy mass

l2 ∼ sI ≪ M2 . (B.2)

We can thus perform a Taylor expansion of the loop integrand in inverse powers of the heavy
mass. After integration over loop momenta, each term of the expansion involves (dynamical)
transcendental functions which depend of the ratio of Mandelstam invariants (which are all
equally rescaled by z) and a kinematic factor which carries the transcendental dimensional-
ity of the dimensionally regularised integral. The latter include all the z dependence and is
proportional to zk−ε (where k ∈ N). The z integral along the branch cut is thus scaleless, and
hence vanishing. We emphasise that such contributions, before integrating over z, determine
the anomalous dimensions.

This does not mean that the loops with branch cuts starting at z = 0 in the UV theory do
not contribute to the matching because the heavy mass introduces a new scale in the Feynman
integrals. In the hard region characterised by

sI ≪ l2 ∼ M2 , (B.3)

the loop integrand can be expanded in powers of the external momenta. The transcendental
dimension of the amplitude in this region is carried by the heavy-mass M−2ε and the z integral
is not scaleless.

Then, equation (19) is strictly correct under two assumptions: There is no non-dynamical
mass scale in the IR theory6 (i.e. all the states are massless) and dimensional regularisation
is employed. Relaxing any of these two assumptions restores the contributions from the EFT
loops:

P IR
n (m⃗) ⊃

1
2πi

∫ ∞

0

dz
zn+1

Disc
z

FLIR
(m⃗; z) , (B.4)

which would then cancel against additional contributions in the UV.
Similarly, we can show that the loop contribution from the arc at infinity vanishes in dimen-

sional regularisation (see e.g. [107]). The form factor is a sum of terms each homogeneous in
z in this |z| →∞ limit. This is true even before the |z| →∞ limit for the massless EFT, while
for the UV theory, it occurs after expanding in powers of M2

I /zsI . Then, the loop contributions
regulated dimensionally give rise to integrals of the form:

Res
z=∞

F loop,α
L (m⃗; z)

zn+1
= lim

si j/M2
i j→∞

F loop,α
L (m⃗)

�

�

�

�

�

sJ→−sJ

1
2πi

∮

∞

dz
(−z)n+1−α+ε

∝ lim
r→∞

1
rα+n+ε

,

(B.5)

where ε must be chosen carefully to make such integral convergent, which is then vanishing.
6The integrals are not scaleless with dimensionful regularisation parameters or for EFTs with light massive

states. Moreover, in the latter case we should be aware of the possibility of having anomalous thresholds in the z
complex plane. We leave this analysis for future investigation and limit ourselves to the study of massless EFTs.
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