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Abstract

In the companion paper [1]we have studied the solution space at null infinity for gravity
in the partial Bondi gauge. This partial gauge enables to recover as particular cases
and among other choices the Bondi–Sachs and Newman–Unti gauges, and to approach
the question of the most general boundary conditions and asymptotic charges in gravity.
Here we compute and study the asymptotic charges and their algebra in this partial Bondi
gauge, by focusing on the flat case with a varying boundary metric δqAB ̸= 0. In addition
to the super-translations, super-rotations, and Weyl transformations, we find two extra
asymptotic symmetries associated with non-vanishing charges labelled by free functions
in the solution space. These new symmetries arise from a weaker definition of the radial
coordinate and switch on traces in the transverse metric. We also exhibit complete gauge
fixing conditions in which these extra asymptotic symmetries and charges survive. As a
byproduct of this calculation we obtain the charges in Newman–Unti gauge, in which one
of these extra asymptotic charges is already non-vanishing. We also apply the formula
for the charges in the partial Bondi gauge to the computation of the charges for the Kerr
spacetime in Bondi coordinates.

Copyright M. Geiller and C. Zwikel.
This work is licensed under the Creative Commons
Attribution 4.0 International License.
Published by the SciPost Foundation.

Received 19-01-2024
Accepted 12-03-2024
Published 18-03-2024

Check for
updates

doi:10.21468/SciPostPhys.16.3.076

Contents

1 Introduction 2

2 The partial Bondi gauge 5
2.1 Solution space 5
2.2 Asymptotic Killing vectors and transformation laws 7
2.3 Symplectic potential 9

3 Complete gauge fixings 10
3.1 Differential Newman–Unti gauges 11
3.2 Differential Bondi–Sachs gauges 13
3.3 Carrollian interpretation 14

4 Charges 15
4.1 Bare charges 15
4.2 Renormalization 16
4.3 Comparison with the literature 17
4.4 Kerr in the partial Bondi gauge 17

1

https://scipost.org
https://scipost.org/SciPostPhys.16.3.076
http://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21468/SciPostPhys.16.3.076&amp;domain=pdf&amp;date_stamp=2024-03-18
https://doi.org/10.21468/SciPostPhys.16.3.076


SciPost Phys. 16, 076 (2024)

5 Charge algebra with conformal boundary metric 19

6 Perspectives 22

A Computation of δξCA 24

B Computation of the charge algebra 26

C Computation of Kξ1,ξ2
(Ξ) 27

References 28

1 Introduction

Within the gauge-fixing approach to asymptotic symmetries in general relativity (see [2] for
a review), one uses diffeomorphism freedom to write the line element in a preferred gauge,
before then imposing physically-motivated boundary conditions. Loosely speaking, the asymp-
totic symmetries are then the residual diffeomorphisms which preserve both the gauge and the
chosen boundary conditions. One may then further distinguish, according to standard termi-
nology, the physical diffeomorphisms having a non-vanishing asymptotic charge from those
that are pure gauge and associated with a vanishing charge. This subtle interplay between
the choice of gauge-fixing, the boundary conditions, and the resulting asymptotic charges, is
at the heart of recent investigations on the asymptotic structure of spacetime, in particular in
relation with gravitational waves, holography, and the so-called infrared triangle.

In the companion paper [1] we have approached these questions in a broad setup called
the partial Bondi gauge. This gauge follows Bondi’s original idea of working in coordinates
(u, r, xA) adapted to the null geodesics of the spacetime [3], but is only a partial gauge fixing
since it is defined (in four spacetime dimensions) by the three conditions guu = 0 = guA, and
therefore has a residual freedom in the choice of the radial coordinate. Two convenient and
often used complete gauge fixings of this partial Bondi gauge are the Bondi–Sachs (BS) gauge
[4–8] and the Newman–Unti (NU) gauge [9], in which r is respectively an areal radius and
the affine parameter for the outgoing geodesics. Working in the partial Bondi gauge has the
advantage of encompassing both the BS and the NU gauge, as well as any other complete gauge
fixing corresponding to an arbitrary choice of the radius r. The study of such a partial gauge is
possible because the three aforementioned conditions on the metric are sufficient to solve the
Einstein equations once a radial expansion for the angular metric is chosen. In [1] we have
focused on the details of the resolution of the Einstein equations in the partial Bondi gauge, and
on the construction of a general solution space containing an arbitrary cosmological constant,
logarithmic terms, and a free time-dependent boundary metric. This is all the structure which
is allowed by the Einstein equations once a fall-off (in r2) for the transverse metric has been
chosen. In the present work we focus instead on the asymptotic symmetries and charges of
the partial Bondi gauge.

The charges for asymptotically-flat spacetimes in the Bondi–Sachs (BS) gauge have been
studied extensively, starting with the early work of BMS [4–8] and then investigating relax-
ations of the boundary conditions. This has lead in particular to the introduction of the so-
called generalized BMS (GBMS) [10–20] and BMS–Weyl (BMSW) [21, 22] frameworks, in
which the BS gauge is supplemented by boundary conditions which allow for an arbitrary
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metric on the asymptotic 2-sphere (whose volume is fixed in the case of GBMS and arbitrary
for BMSW). While in the structure of the BMS charges the mass and angular momentum can
be thought of as respectively paired with super-translations and super-rotations, in BMSW the
volume of the induced boundary metric is paired with the Weyl charge. This illustrates how
relaxing the gauge and/or the boundary conditions so as to have free functions in the met-
ric can lead to new free symmetry parameters and associated non-vanishing charges. In this
work we show that in the partial Bondi gauge1 at most two new asymptotic charges can exist,
and we exhibit complete gauge fixings in which these charges are indeed non-vanishing. At
the difference with mass and angular momentum, these new charges have no associated flux-
balance laws, and are therefore on a similar footing as the Weyl charge. In fact they appear
in the same way as the latter, i.e. via free symmetry parameters in the expansion of the radial
asymptotic Killing vector.

Curiously, by contrast with the vast existing literature on asymptotic charges in Bondi–
Sachs (BS) gauge, to the best of our knowledge the expression for the asymptotic charges
in Newman–Unti (NU) gauge has not appeared previously in metric form. The NU gauge
is indeed typically used in the Newman–Penrose formalism [23, 24], in which the asymptotic
charges have been studied for example in [25–28], but the translation to metric variables is not
straightforward and relies on a technical dictionary [29]. Computing the asymptotic charges
in the partial Bondi gauge enables to fill this gap and to obtain the charges of the NU gauge
in metric variables as a simple limiting case. This has potential applications to the study of
the interplay between asymptotic charges and gravitational radiation, since for example when
mapping harmonic coordinates to Bondi-type coordinates one is naturally led to the NU gauge
and not the BS one [30,31]. Interestingly, a similar situation is also encountered when bringing
the Kerr metric in Bondi form [32–34], where one is first naturally led by the diffeomorphism
to coordinates referred to by the authors of [32] as “generalized Bondi coordinates”, and in
terms of which the line element is neither in BS gauge nor in NU gauge. These so-called
generalized Bondi coordinates belong to the partial Bondi gauge, and instead of performing
an additional diffeomorphism to BS gauge as was done in [12], one can use the general form
of the asymptotic charges in the partial Bondi gauge to compute the charges of Kerr at null
infinity.

The study of the asymptotic charges in the partial Bondi gauge is also related to important
and deep conceptual aspects. Many recent attempts have been made at tackling the question
of the most general charges and boundary symmetries in general relativity [35–55], with ten-
tative applications to holography or a quasi-local generalization thereof [56, 57]. While for
arbitrary boundaries at finite distance it is possible to argue in favor of a preferred “universal
corner symmetry” algebra and its charges, little is known about how these quasi-local con-
siderations connect with the study of asymptotic symmetries and their charges. Part of the
difficulties in this question lies in the fact that the asymptotic symmetries are better studied
with a choice of gauge and boundary conditions, and require to have control over an asymp-
totic solution space. It is indeed well-known that finding a gauge and boundary conditions
which enable to solve the Einstein equations is a very subtle task for which there is unfortu-
nately no general guiding principle and one must often resort to trial-and-error. There are
however a few isolated occurrences in which this was achieved successfully and new asymp-
totic charges were discovered. This is for example the case of BMSW [21], where the study of
the asymptotic Weyl charge was precisely motivated by the question of whether finite distance
Weyl rescalings have an asymptotic counterpart. Many alternative gauge fixings and bound-

1More precisely, with respect to the general setup of [1] here we consider a sub-sector in which the cosmological
constant is vanishing, there are no logarithmic terms, and the boundary metric is time-independent and only
allowed to vary in the transverse directions. In equations, this means that Λ = 0, ∂uqAB = 0, UA

0 = 0, β0 = 0, and
δqAB ̸= 0 ̸= δpq.
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ary conditions have also been explored successfully in three-dimensional spacetimes, both in
Bondi gauge [42,53,58–64] and in Fefferman–Graham gauge [36,37,65–68]. In light of this
discussion, since the partial Bondi gauge enables to solve the Einstein equations and define
a very broad solution space [1], it is therefore natural and important to study the associated
asymptotic charges. That this is at all possible is in fact surprising and lucky. What the present
work reveals is that the partial Bondi gauge generically contains two new charges in addition
to those present in BMSW. The associated new symmetry parameters are the two subleading
contributions appearing after the Weyl generator in the radial part of the asymptotic vector
field, while the corresponding free functions in the solution space are the traces of the two
subleading tensors appearing after the leading angular boundary metric. Interestingly, one of
the two new asymptotic charges is already present if we simply use the NU gauge as a com-
plete gauge fixing of the partial Bondi gauge. We also exhibit new full gauge fixing conditions,
which are differential generalizations of the BS and NU gauge, and in which the two new
asymptotic charges survive. The resulting asymptotic symmetry algebra is given by (2.23).
We defer the study of its relationship with the corner symmetry algebra to future work.

The outline of this work and of the results is as follows. We begin in section 2 by recalling
the results of [1] on the structure of the solution space in partial Bondi gauge. We explain
in particular how the partial Bondi gauge contains an infinite amount of free functions of
the retarded time u, which are the traces of the two-dimensional tensors appearing in the
expansion of the angular metric. Completing the partial Bondi gauge to a full gauge fixing
leaves only a finite number of these traces as free data on I+. For example, in BS gauge there
is no free trace, while in NU gauge the trace of the first subleading term CAB in the expansion
of the angular metric is free. We then study in this same section the asymptotic Killing vectors,
and show that in the partial gauge the radial part of the vector field contains an infinite amount
of free functions of (u, xA) in its 1/r expansion. Only the first three contributions in this
expansion appear in the asymptotic charges. These free functions are paired with data in the
solution space: the first free function is the Weyl generator and is paired with the boundary
volume

p
q, while the second and third free functions are paired with the traces of CAB and the

subleading term DAB. We then study the symplectic potential in order to show which sources
of flux are turned on in the partial Bondi gauge.

In section 3 we introduce two new gauge fixing conditions, called the differential BS and
NU gauges, which enable to completely gauge fix the partial Bondi gauge while keeping an
arbitrary finite number of the angular traces as free functions. These are gauge fixings in
which the corresponding asymptotic symmetry parameters remain free as well, and therefore
lead to genuine new non-vanishing and independent charges. We also provide a Carrollian
interpretation of these new gauge fixings in terms of the inaffinity and the expansion of the
rigging vector.

Section 4 is devoted to the computation of the asymptotic charges, using standard covariant
phase space methods. As announced above, we find that when the two-dimensional boundary
metric is allowed to fluctuate, i.e. when δqAB ̸= 0, two new asymptotic charges appear, with
symmetry generators corresponding to the two subleading terms after the Weyl parameter in
the radial part of the vector field. The charges are also divergent (as it is already the case with
GBMS), and we show how they can be renormalized. As a consistency check we match our
result in a particular case with the GBMS charges found in [20], and also compute the charges
for the Kerr solution using the partial Bondi gauge.

In section 5 we study the algebra of the charges. Since this is a very lengthy computation,
we perform it in a slightly simplified setup where we choose the boundary metric to be con-
formal to a fixed two-sphere, with the conformal factor as the only field space variable. We
compute the charge algebra using both the Barnich–Troessaert bracket [12] and the recently
introduced Koszul bracket [69,70]. With the former we find that the charge algebra contains a
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field-dependent two-cocycle, while with the Koszul bracket we find that the field-dependency
drops.

We finally give some perspectives for future work in section 6, and defer some lengthy
computations required for the charge algebra to appendices.

2 The partial Bondi gauge

In this section we gather from [1] the necessary ingredients about the partial Bondi gauge in
order to compute the charges and their algebra. We first recall the structure of the solution
space and the evolution equations, before studying the asymptotic symmetries, the associated
transformation laws, and the symplectic structure.

2.1 Solution space

Let us consider coordinates xµ = (u, r, xA), where u is the retarded time, r the radial coordi-
nate and xA the angular coordinates. The partial Bondi gauge is defined by the three gauge
conditions guu = 0= guA, or equivalently gr r = 0= grA. With these gauge conditions the line
element takes the form

ds2 = e2β V
r

du2 − 2e2βdu dr + γAB(dxA− UAdu)(dxB − UBdu) , (2.1)

where at this stage V (u, r, xA), β(u, r, xA), and UA(u, r, xB) are four unspecified functions of
the four spacetime coordinates. In [1] we have solved the Einstein equations using this partial
Bondi gauge in a very general setup, containing in particular a non-vanishing cosmological
constant, logarithmic terms, and a free time-dependent boundary metric on I+. Here we will
focus instead on a small subsector of this general solution space, as it will be sufficient to
reveal the appearance of extra boundary charges. More precisely, we will consider the case of
a vanishing cosmological constant, discard logarithmic terms, and freeze all but the transverse
part of the boundary metric.

In order to solve the Einstein equations, we first need to choose an expansion and fall-off
conditions for the transverse metric. We consider

γAB = r2qAB + rCAB + DAB +
1
r

EAB +O(r−2) = γAB = r2qAB + rCAB +
∞
∑

n=0

γn
AB

rn
, (2.2)

and exclude in particular logarithmic terms as mentioned above. We also consider that the
leading transverse metric is time-independent, i.e. that ∂uqAB = 0. The vacuum Einstein
equations with no cosmological constant can then be solved in a 1/r expansion, and we find
at leading order that

β =
β2

r2
+O(r−3) =

1
32r2

�

[CC]− 4D
�

+O(r−3) , (2.3a)

UA =
UA

2

r2
+

UA
3

r3
+O(r−4) =

1
2r2

�

∂ AC − DBCAB
�

+
NA

r3
+O(r−4) , (2.3b)

V = −
1
2

�

R+ ∂uC
�

r + 2M +O(r−1) . (2.3c)

Here R is the Ricci scalar of the metric qAB, we have denoted [C D] := CAB DAB, and the traces
are C := qABCAB and D := qAB DAB. Our boundary conditions such that the induced metric on
I+ depends only on qAB imply that β and UA contain no terms of order O(1). When comparing
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with [1] this means that here we are setting β0 = 0 = UA
0 . Finally, the integration constants

M(u, xA) and NA(u, xB) are the bare mass and angular momentum aspects.
The form of the solution (2.3) reveals the key feature of the partial Bondi gauge, which is

that the various tensors (appart from qAB) appearing in the expansion (2.2) have a free trace
in qAB. This is the reason why the traces C and D appear in the solution at leading order. In the
partial Bondi gauge, all the traces are free functions of (u, xA). As explained at length in [1], it
is only when further reducing the partial Bondi gauge to a complete gauge fixing that some of
these traces are determined. For example, the Bondi–Sachs (BS) gauge [5,6] is obtained from
the partial Bondi gauge by further imposing the determinant condition detγAB = r4 det q◦AB
where q◦AB is a fixed round sphere metric. At leading order, this determinant condition implies
that C = 0, while at subleading order it gives 2D = [CC] and at subsubleading order E = [C D].
Alternatively, one may consider the Newman–Unti (NU) gauge [9], which is a complete gauge
fixing of the partial Bondi gauge obtained with the additional condition β = 0. One can see
in (2.3a) that this will also determine the traces, starting with 4D = [CC], however while still
leaving C unconstrained. In this sense, the NU gauge can be considered as weaker than the BS
gauge: it fixes all the traces in the expansion of the transverse metric apart from that of CAB.
Again, we refer the reader to the companion paper [1] for more details about this mechanism.
In section 3 we will exhibit even weaker variants of the NU and BS gauges, i.e. complete gauge
fixings which leave an arbitrary but finite number of traces undetermined.

Going back to the solution space in partial Bondi gauge, let us now note that in order to
avoid ln(r) terms from appearing in the solution we need to impose the additional condition

DTF
AB =

1
4

CCTF
AB ⇒ DAB =

1
2

qAB D+
1
4

CCTF
AB, (2.4)

where TF denotes the symmetric and trace-free part in qAB. This is a generalization to the partial
Bondi gauge of the usual condition DTF

AB = 0 imposed in Bondi–Sachs gauge in order to remove
the logarithmic branches.

Finally, we can turn to the evolution equations for the mass and the angular momentum.
These are the (uu) and (uA) Einstein equations. They can be written more compactly in terms
of the so-called covariant functionals identified as the leading terms in the Newman–Penrose
Weyl scalars [23]. These covariant functionals are given by [1]

EAB := 3ETF
AB +

3
16

CTF
AB

�

[CC]− 4D
�

, (2.5a)

PA := −
3
2

NA+
3

32
∂A

�

4D− [CC]
�

+
3
4

CAB

�

DC CBC − ∂ BC
�

, (2.5b)

M := M +
1

16
∂u

�

4D− [CC]
�

, (2.5c)

ÝM :=
1
8

�

2DADB − NAB

�

eCAB
TF

, (2.5d)

JA :=
1
2

DBNAB +
1
4
∂AR, (2.5e)

NAB :=
1
2
∂uNAB . (2.5f)

Here the news is NAB := ∂uCTF
AB, and eCAB := εAC CC

B with εAB = ϵAB/
p

q the Levi–Civita tensor
and ϵAB the symbol. We can explicitly see through the appearance of the traces C and D how
the partial Bondi gauge (and different complete gauge fixings to e.g. BS or NU) affects the
various Weyl scalars. In particular, it is interesting to note that in NU gauge, where 4D = [CC],
the bare mass aspect M appearing in guu corresponds already to the covariant mass M, and
that a similar simplification occurs in EAB and PA.
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In terms of the covariant functionals (2.5), the evolution equations now take a compact
form which can be derived from the Newman–Penrose Bianchi identities. We find2

∂uJA = DBNAB, (2.6a)

∂uM=
1
2

DAJ A+
1
4

CTF
ABN

AB, (2.6b)

∂u
ÝM=

1
2

DA
eJ A+

1
4

CTF
AB
eN AB, (2.6c)

∂uPA = ∂AM+ e∂A
ÝM+ CTF

ABJ
B. (2.6d)

It is important to note that, at the end of the day, the traces C , D, . . . which are free in the
partial Bondi gauge have no associated equations of motion (or flux-balance laws). These
traces therefore represent completely free data.

In summary, the solution space contains data with a completely unspecified u depen-
dency (CAB and all the traces C , D, . . . ), as well as data constrained by the flux-balance laws
(M,PA,ETF

AB, and more generally all the trace-free subleading terms in γAB) and the boundary
data qAB. Now that we have characterized the solution space, we can turn to the study of the
asymptotic symmetries.

2.2 Asymptotic Killing vectors and transformation laws

The asymptotic Killing vectors are the vector fields which act on the metric while preserv-
ing the three partial Bondi gauge conditions as well as the fall-off conditions. Preserving
the partial Bondi gauge, i.e. imposing Lξgr r = 0 = LξgrA, implies that the vector field
ξ= ξu∂u + ξr∂r + ξA∂A has temporal and angular components given by

ξu = f , ξA = Y A+ IA = Y A−
∫ ∞

r
dr ′ e2βγAB∂B f = Y A−

∂ A f
r
+

CAB∂B f
2r2

+O(r−3) , (2.7)

with ∂r f = 0= ∂r Y A. From this, we can already deduce the transformation laws

δξγAB =
�

f ∂u + LY + LI

�

γAB + ξ
r∂rγAB − γ(AC UC∂B) f , (2.8a)

δξ lnγ= ( f ∂u + ξ
r∂r) lnγ+ 2DAξ

A− 2UA∂A f , (2.8b)

δξgur = −e2β
�

2ξµ∂µβ + ∂rξ
r + UA∂A f + ∂u f

�

, (2.8c)

where DA is the covariant derivative with respect to the metric γAB, and where the determinant
of this angular metric is γ := detγAB. Note that we also have

p
−g = e2βpγ.

At this stage the radial part of the vector field is still completely arbitrary. However, if we
now require that the asymptotic Killing vector preserves the expansion (2.2) of the angular
metric, we find that this constrains the radial component to be of the form

ξr = rh+
∞
∑

n=0

ξr
n

rn
. (2.9)

Importantly, the functions h(u, xA) and ξr
n(u, xA) are at the moment all free since we are in the

partial Bondi gauge. The reduction of this partial gauge to a complete gauge (e.g. to BS or NU
gauge, or to a more general choice) will later on determine how many functions remain free
in this expansion for ξr . With the form (2.9) of the radial component, we can now compute

δξ ln
p

q = DAY A+ 2h, (2.10)

2We omit the evolution equation for EAB since it will not play any role here.
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which shows that h parametrizes the Weyl transformations. Since the boundary sources have
been fixed by the boundary conditions β0 = 0 and UA

0 = 0, we also have h = −∂u f and
∂uY A = 0, and for a time-independent boundary metric ∂uqAB = 0 the above transformation
law tells us that ∂uh = 0 as well. Indeed, had we kept β0 ̸= 0 and UA

0 ̸= 0, we would have
found the transformation laws

δξβ0 =
�

f ∂u + LY

�

β0 +
1
2

�

h+ ∂u f + UA
0∂A f
�

, (2.11a)

δξU
A
0 =
�

f ∂u + LY + ∂u f + UC
0 ∂C f
�

UA
0 − ∂uY A, (2.11b)

which does indeed show that setting β0 = 0 = UA
0 leads to the constraints h = −∂u f and

∂uY A = 0.
In summary, in the partial Bondi gauge the asymptotic Killing vector has components given

by (2.7) and (2.9), together with the conditions h= −∂u f and ∂uY A = 0= ∂uh.
At this point, it is convenient to perform a field-dependent redefinition of the free functions

appearing in (2.9). For this, we write

ξr
0 = k+

1
2
∆ f , ξr

1 = ℓ+ UA
2∂A f = ℓ−

1
2

DACAB∂B f +
1
2
∂ AC∂A f . (2.12)

We are therefore trading the free functions ξr
0 and ξr

1 for k and ℓ. These redefinitions are
such that k(u, xA) and ℓ(u, xA) are free functions whose limits to BS and NU gauge correspond
simply to

k
�

�

BS = 0, k
�

�

NU = (free), ℓ
�

�

BS = −
1
4

CAB DA∂B f , ℓ
�

�

NU = 0. (2.13)

Accordingly, one should remember that when reducing the partial Bondi gauge to the BS or
NU gauge we have

C
�

�

BS = 0, C
�

�

NU = (free), D
�

�

BS =
1
2
[CC], D

�

�

NU =
1
4
[CC]. (2.14)

Let us also note that in the BS and NU gauges we have

ξr
n≥1

�

�

BS =
1
2

�

UA
n+1∂A f − DAIA

n+1

�

, ξr
n≥1

�

�

NU =
1
n

UA
n+1∂A f , (2.15)

where IA
n is the term of order r−n in the expansion of IA defined in (2.7), and similarly for UA

n
appearing in the solution (2.3b).

With all these ingredients we can now compute the variations of the components of the
transverse metric (2.2). Focusing separately on the trace-free parts and the traces, we first
find

δξqAB =
�

LY + 2h
�

qAB, (2.16a)

δξC
TF
AB =
�

f ∂u + LY + h
�

CTF
AB − 2(DA∂B f )TF, (2.16b)

δξDTF
AB =
�

f ∂u + LY

�

DTF
AB +

1
2

�

2k+∆ f
�

CTF
AB − (CAC DC∂B f )TF, (2.16c)

where we have used ∂uqAB = 0. The variations of the traces are

δξC =
�

f ∂u + LY − h
�

C + 4k, (2.17a)

δξD =
�

f ∂u + LY − 2h
�

D+ 4ℓ+ kC − CAB
TF

DB∂A f , (2.17b)

and that of the news NAB = ∂uCTF
AB is

δξNAB =
�

f ∂u + LY

�

NAB + 2
�

DA∂Bh
�TF

. (2.18)
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For the transformation of the bare mass and the covariant mass (2.5c) we find

δξM =
�

f ∂u + LY − 3h
�

M +J A∂A f − ∂uℓ, (2.19a)

δξM=
�

f ∂u + LY − 3h
�

M+J A∂A f , (2.19b)

while for the covariant momentum (2.5b) we find

δξPA =
�

f ∂u + LY − 2h
�

PA+ 3
�

M∂A+ÝM∂̃A

�

f . (2.20)

The transformation laws (2.17) illustrate the one-to-one correspondence between free traces
in the partial Bondi gauge and free functions in the asymptotic Killing vectors: if C is free then
k is free, and if D is free then ℓ is free. This is the continuation of what happens already at
leading order in the transverse metric with

p
q, since when the latter is allowed to vary then h

is a free function in the asymptotic Killing vector and the Weyl transformations are unleashed.
Moreover, since C and D have an arbitrary time-dependency, this is also the case for k and ℓ.
The transformation law (2.17a) has been used to argue that one can use the transformation
generated by k to set C = 0 [25–27]. In NU gauge this amounts to fixing the origin of the
affine parameter. However, we will see shortly that the symmetry parameter k appears in
the asymptotic charges. This indicates that one should see the symmetry generated by k as
physical and not pure gauge. In fact, we will see that also ℓ appears in the asymptotic charges
and should therefore be regarded as physical, while the rest of the expansion (2.9) for n ≥ 2
is pure gauge.

Finally, we close this analysis of the symmetries with the computation of the algebra of
vector fields. With the field redefinitions performed above and the knowledge of the various
transformation laws, we can compute the adjusted bracket to find
�

ξ( f1, k1,ℓ1, Y1),ξ( f2, k2,ℓ2, Y2)
�

∗ =
�

ξ( f1, k1,ℓ1, Y1),ξ( f2, k2,ℓ2, Y2)
�

−
�

δξ1
ξ2 −δξ2

ξ1

�

= ξ( f12, k12,ℓ12, Y12),
(2.21)

where

f12 = f1∂u f2 + Y A
1 ∂A f2 −δξ1

f2 − (1↔ 2) , (2.22a)

k12 = f1∂uk2 + Y A
1 ∂Ak2 + (∂u f1)k2 −δξ1

k2 − (1↔ 2) , (2.22b)

ℓ12 = f1∂uℓ2 + Y A
1 ∂Aℓ2 + 2(∂u f1)ℓ2 −δξ1

ℓ2 − (1↔ 2) , (2.22c)

Y A
12 = Y B

1 ∂BY A
2 −δξ1

Y A
2 − (1↔ 2) . (2.22d)

The remarkable result is that when ( f , k,ℓ, Y A) are field-independent we therefore obtain an
algebra (as opposed to an algebroid). This is due to the non-trivial field-dependent redef-
inition performed in (2.12). Decomposing the u part of the asymptotic Killing vector field
as f (u, xA) = T (xA) − uh(xA), where T is a supertranslation, we find that the commutation
relations (2.22) encode the algebraic structure of

�

�

Diff(S2) +RT

�

+Rh

�

+R2
k,ℓ. (2.23)

The main result of this work will be to show in section 4 that when δqAB ̸= 0 and δq ̸= 0 this
whole algebra is associated with non-vanishing asymptotic charges.

2.3 Symplectic potential

The study of the symplectic potential is useful for two main reasons. First, its finite part gives
information about the conjugate pairs on I+ and about the sources of flux and non-integrability
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in the charges. Second, its divergent part can be used to renormalize the divergencies in the
charges using a corner term. The (pre-)symplectic potential of interest for us is that arising
from the Einstein–Hilbert Lagrangian, namely

θµ =
p

−g
�

gαβΓµ
αβ
− gµαΓ β

αβ

�

. (2.24)

The time component of this potential has an expansion of the form θu = rθu
div + θ

u
0 +O(r−1),

with

θu = 2rδ
p

q−
1
2

�p
q qABδCTF

AB −δ
p

q C
�

+O(r−1) . (2.25)

The radial part has a similar expansion θ r = rθ r
div+θ

r
0 +O(r

−1), where the divergent piece is

θ r
div =

1
2
∂u

�p
q qABδCTF

AB −δ
p

q C
�

−δ
�p

q R
�

. (2.26)

One can note that this divergent contribution is the sum of a total variation and a so-called
corner term, and in particular that we have

θ r
div = −∂uθ

u
0 −δ(

p
q R) . (2.27)

This can be traced back to the fact that on-shell we have δL = ∂uθ
u+∂rθ

r+∂Aθ
A, which shows

that the divergent part of θ r is related to the leading corner term in θu. The latter will be used
in section 4.2 to renormalize the charges.

Finally, in terms of the news NAB = ∂uCTF
AB the finite part of the radial component of the

potential is given by

θ r
0 =

1
4
p

q qABδ
�

RCTF
AB − 2DADC CTF

BC + DA∂BC
�

+
1
2
p

q NABδCAB
TF
+

1
4
p

qδCR

+δ
p

q
�

2M −
1
2

DA

�

∂ AC − DBCAB
�

+
1
2

CAB∂uCAB −
1
2

C∂uC
�

+δ
�

2
p

q M −
1
2
p

q CAB∂uCAB −
1
4
p

q C
�

R− ∂uC
�

�

+
1
4
p

q ∂u

�

1
4
δ
�

4D− 3[CC]
�

+ 2qABδDAB

�

+
1
2
p

q DA

�

�

∂ AC − DBCAB
�

δ ln
p

q
�

. (2.28)

In addition to the usual Ashtekar–Streubel contribution [71], this symplectic potential contains
the contributions arising from the fact that δqAB ̸= 0 and δq ̸= 0, and also from the use of the
partial Bondi gauge (through the appearance of C and D).

3 Complete gauge fixings

We have seen so far that the partial Bondi gauge contains a varying volume element
p

q and
unspecified traces C , D, . . . , and that, correspondingly, the radial part of the asymptotic Killing
vector contains and infinite amount of free functions h, k,ℓ, . . . appearing in the expansion
(2.9). In section 4 we will show that, generically, when working in the partial Bondi gauge
the three functions h, k,ℓ actually appear in the asymptotic charges. A natural question is
therefore whether this statement remains true, in some form, when completing the partial
Bondi gauge to obtain a full gauge fixing with four gauge conditions.
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A different way to look at this question is to ask whether there exist complete gauge fixings
in which some of the traces in the expansion (2.2) remain free, such that the parameters
h, k,ℓ themselves remain free. In the BS gauge, we already know that when keeping the
volume element

p
q free the Weyl parameter h is free (by virtue of (2.10)) and appears in the

asymptotic charges [21]. The NU gauge, by extension, allows to have both
p

q and C free at
the level of the solutions, and therefore both h and k free at the level of the symmetries. We will
now exhibit generalizations of the NU and BS gauge conditions for which an arbitrary finite
number of traces can be free. In particular, this contains the cases where both C and D are free,
which are full gauge fixings in which both parameters k and ℓ appear in the asymptotic charges.
For reasons which will become clear in a moment, we call these generalized gauge conditions
the differential Newman–Unti and Bondi–Sachs gauges. We will conclude this section with a
Carrollian interpretation of the new gauges.

3.1 Differential Newman–Unti gauges

In order to complete the gauge fixing of the partial Bondi gauge (2.1), let us consider for a
given integer b ∈ N the differential gauge condition

∂ b
r (r

b−1β) = ∂ b
r

�

r b−1 ln
p

−gur

� !
= 0. (3.1)

This is solved for b > 0 by an expansion of the form

β =
b−1
∑

n=0

βn

rn
, (3.2)

which shows that for a fixed b we obtain an extension of the NU gauge where a finite number
of terms in the radial expansion of β are non-vanishing. More precisely, the family of gauge
conditions (3.1) encompasses the following cases:
∗ For b = 0 we obtain the usual NU gauge where the gauge condition is setting β = 0

at every order in 1/r. All the traces in (2.2) appart from that of CAB are then fixed by the
vanishing 1/r expansion of the solution (2.3a) to the (r r) Einstein equation.
∗ For b = 1 the gauge condition (3.1) becomes ∂rβ = 0, which implies that β = β0(u, xA).

This is the relaxation of the NU gauge already considered in [1] in order to describe a free
boundary metric on I+. Recall however that here we have chosen boundary conditions such
that β0 = 0 regardless of the gauge condition. In addition, one can note that the gauge
condition ∂rβ = 0 obtained with b = 1 preserves the geometrical meaning of the NU gauge,
which is to take the radial coordinate r as the affine parameter for ∂r . This follows from the
fact that the inaffinity of ∂r is 2∂rβ [1].
∗ For b = 2 we obtain a gauge in which β = β0(u, xA)+β1(u, xA)/r. However, it turns out

that the vacuum (r r) Einstein equation actually enforces the condition β1 = 0. This implies
that the gauges obtained with b = 1 and b = 2 are equivalent on-shell.
∗ For b ≥ 3 we obtain new gauges which extend the NU gauge b = 0 by allowing a finite

number of consecutive terms in the expansion of β to be non-vanishing. In terms of free
functions in the solution space, one should recall that already b = 0 allows to have a free
trace C . Taking b = 1 or b = 2 then enables to have β0 itself as a free function (and we have
discarded this option with our choice of boundary conditions). Taking b = 3 then leads to a
free trace D, and more generally b ≥ 3 leads to free traces up to qABγb−3

AB in the expansion
(2.2).

Now that we understand how the gauge conditions (3.1) affect the solution space by allow-
ing for a finite number of traces to survive as free functions, we want to study what happens
at the level of the symmetries. We expect that allowing for more undetermined functions in
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the solution space will lead to more freedom in the asymptotic Killing vector. Indeed, one
can see from (2.11a) that keeping β0 free leads to an arbitrary time dependency in f , while
instead setting β0 = 0 (as we have done with our boundary conditions) leads to ∂u f = −h.
With the transformation laws (2.17), we then see that keeping the traces C and D unspecified
leads to the arbitrary symmetry parameters k and ℓ in the radial part of the asymptotic Killing
vector field. Let us now explain the general mechanism behind this observation for b > 0. For
this, note that preserving the gauge condition (3.1) requires for the vector field to satisfy the
equation

1
2
∂ b

r

�

r b−1(gur)
−1δξgur

�

= 0, (3.3)

where δξgur is given by (2.8c). Explicitly, this amounts to imposing

1
2
∂ b

r

�

r b−1
�

2 f ∂uβ + 2ξA∂Aβ + 2ξr∂rβ + ∂rξ
r + UA∂A f + ∂u f

�

�

= 0 . (3.4)

This equation is solved by a radial component ξr which satisfies

2ξr∂rβ + ∂rξ
r = ξ̄r −
�

2 f ∂uβ + 2ξA∂Aβ + UA∂A f + ∂u f
�

, ξ̄r =
b−1
∑

n=0

ξ̄r
n−1

rn
, (3.5)

where the expansion of ξ̄r is in terms of b radial integration constants ξ̄r
n(u, xA). At the end

of the day, the solution for ξr can be put in the form3

ξr = k+
1
2
∆ f + e−2β

�∫ ∞

r
dr ′ e2β
�

− ξ̄r + 2 f ∂uβ + 2ξA∂Aβ + UA∂A f + ∂u f
�

�

, (3.6)

where we have used the freedom of redefining the radial integration constant k(u, xA) in a
field-dependent manner so as to obtain ξr

0 as in (2.12). We should recall that we have β0 = 0
because of our choice of boundary condition, and β1 = 0 because of the vacuum Einstein
equations.

The above calculation shows that the final expression (3.6) for the radial vector field pre-
serving the gauge condition (3.1) contains (b+1) free functions of (u, xA), which are therefore
candidates for new symmetry parameters. Expanding the above solution for the radial vector
field for various values of b, we find

(ξr)b=1 = rh+ k+
1
2
∆ f +O(r−1) , (3.7a)

(ξr)b=2 = rh+ k+
1
2
∆ f + (ln r)ξ̄r

0 +O(r−1) , (3.7b)

(ξr)b=3 = rh+ k+
1
2
∆ f + (ln r)ξ̄r

0 +
1
r

�

ℓ+ UA
2∂A f
�

+O(r−2) , (3.7c)

where the free functions h(u, xA) and ℓ(u, xA) have been obtained respectively from ξ̄r
−1(u, xA)

and ξ̄r
1(u, xA) by field-dependent redefinitions so as to be consistent with (2.12). Importantly,

in this expansion of ξr for various values of b (i.e. for the different gauge choices), the first
(b+1) terms contain independent and undetermined integration constants, and the subleading
terms which have been omitted contain no new free functions. The freedom in defining a gauge
with a choice of b therefore has the consequence of making completely arbitrary the terms up
to order O(r2−b) in ξr , which are the candidates for new symmetry parameters. One should

3Note that the bound in the integral should not be taken to be∞ for the first terms in r in order to avoid r and
ln(r) divergencies.
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note that for b ≥ 2 if ξ̄r
0 ̸= 0 the action of ξ on the metric creates logarithmic terms at order

O(r), i.e. at the same order as the shear. From now on we will therefore set ξ̄r
0 = 0 in order

to prevent the generation of such terms and preserve our choice of fall-offs for the transverse
metric (such log terms at the order of the shear were considered in [72–74]).

Let us emphasize once again that only ℓ requires the use of the generalized gauge (3.1)
with b ≥ 3 in order to be a free function. By contrast, h and k are naturally present as free
symmetry parameters already with the standard NU gauge condition β = 0. One could then
argue that ℓ is appearing because the gauge conditions (3.1) with b ≥ 3 are differential, and
therefore “too weak”. However, this is not different from what happens when relaxing the de-
terminant condition γ = r4q◦ and considering instead the differential condition ∂r(γ/r4) = 0
in order to access the Weyl transformations h in BS gauge [13, 21]. In fact, instead of the
NU-type differential gauge condition (3.1), one could consider a generalized differential BS
gauge condition with similar properties at the level of the solution space and the radial vector
field.

3.2 Differential Bondi–Sachs gauges

In the BS gauge it is the determinant condition which is responsible for the determination of
the traces of the tensors appearing in (2.2). If we want that some of these traces remain free
in the solution space, we therefore need to relax the determinant condition. For this, one can
use formula (D.10b) of [1], which gives the expansion of the determinant γ in terms of the
traces of the tensors appearing in (2.2). One can then write a BS analogue of (3.1) in the form

∂ b
r

�

r b−3pγ
�

= ∂ b
r

�

p
q r b−1
�

1+
C
2r
+

1
4r2

�

2D− [CCTF]
�

+O(r−3)
��

!
=

1
r
∂ b

r

p

q◦, (3.8)

where the term O(r−3) contains the trace E = qAB EAB and so on, and where q◦ is the determi-
nant of a fixed boundary metric. This family of gauge conditions indexed by b encompasses
the following cases:
∗ For b = 0 we obtain the standard BS determinant condition

p
γ= r2pq◦, which implies

at leading order C = 0, at subleading order 2D = [CC], and so on. One can then see from
(2.8a) and (2.8b) that the radial vector field preserving preserving both (2.2) and the gauge
condition contains no free functions.
∗ For b = 1 we obtain the differential BS condition ∂r(

p
γ/r2) = 0. This condition still

starts at leading order with C = 0, and therefore does not allow to obtain a free trace in (2.2).
However, with this gauge condition the boundary metric qAB is allowed to differ from the fixed
metric q◦AB. We then obtain from (2.8b) that ξr can contain a radial integration constant, which
is the free function h(u, xA) allowing for the Weyl rescalings of qAB [1, 13, 21]. As explained
below (2.10), if qAB is chosen as time independent we then have that ∂uh = 0 as well. Once
again, this illustrates the link between the introduction of a new freedom in the solution space
and the appearance of a new symmetry parameter.
∗ For b = 2 we naturally obtain that the gauge condition does not constrain C(u, xA), which

therefore survives the gauge fixing and remains a free function. As expected, the radial vector
field preserving this differential gauge condition now contains a free function k(u, xA). The
construction can then be extended to b ≥ 3 in a similar fashion. One can notice that there is
a (innocent) “mismatch” of the order b in the properties of the differential NU and BS gauge
conditions. For example, b = 0 allows to have a free trace C in the NU gauge, but for the
differential BS gauge this requires to take b = 2.

Now that we have explained how a finite number of free functions in the expansion (2.9)
can survive the full gauge fixing of the partial Bondi gauge with the fourth gauge conditions
(3.1) or (3.8), we are going to show in section 4 that at most the first three functions h, k,ℓ can
appear in the asymptotic charges. At the end of the day, according to the standard classification
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the only relevant criterion at this stage is whether the symmetry parameters are associated with
vanishing asymptotic charges or not.

3.3 Carrollian interpretation

Before computing the charges, let us say a word about the geometrical and Carrollian interpre-
tation of the new differential NU and BS gauges (3.1) and (3.8). Future null infinity I+, being
a null hypersurface, comes equipped with a weak Carrollian structure [49, 62, 75–77]. This
consists of a degenerate metric qI and a nowhere-vanishing null vector ℓI such that qI ·ℓI = 0.
Explicitly, these are given by

qI = qIabdxadx b = qAB

�

dxA− UA
0 du
��

dxB − UB
0 du
�

, ℓI = e−2β0
�

∂u + UA
0∂A

�

, (3.9)

where the coordinates on I+ are xa = (u, xA), and where we are allowing here for generality
to have β0 ̸= 0 and UA

0 ̸= 0. This Carrollian structure represents intrinsic boundary data to
I+. In order to probe the bulk of spacetime we need to introduce a transverse quantity, the
so-called Ehresmann connection form kI , which is dual to ℓI and given here by

kI = −e2β0du, ℓI · kI = 1. (3.10)

This form kI can then be extended into the bulk as a null rigging vector such that its projection
to I+ is kI . We take this extension to be simply given by

k = kµdxµ = −e2βdu. (3.11)

The inaffinity parameter of the corresponding vector kµ = gµνkν = δ
µ
r is then defined via

∇kk = κk and turns out to be given by κ = 2∂rβ . In terms of this inaffinity the differential
NU gauge condition (3.1) is therefore

∂ b−1
r (r bκ)

!
= 0. (3.12)

Similarly, the differential BS gauge condition (3.8) can also be characterized by a geometrical
quantity associated to the rigging vector k, namely its expansion scalar

Θk = ∂r ln
p
γ=

3− b
r
+ ∂r log
�

r b−3pγ
�

. (3.13)

The strict BS determinant condition with b = 0, i.e.
p
γ = r2pq◦, gives Θk = 2/r. This

explains why in this case the radial coordinate is an areal radius. For different values of b ≥ 1
we can then rewrite (3.8) in terms of the expansion to find e.g.

b = 1 : Θk =
2
r

, (3.14a)

b = 2 : ∂rΘk −
2
r
Θk +Θ

2
k +

2
r2
= 0 ⇒ Θk =

1
r
+

1
r +τ1

, (3.14b)

b = 3 : ∂ 2
r Θk + 3Θk∂rΘk +Θ

3
k = 0 ⇒ Θk =

2τ1(r +τ2)
3+τ1(r +τ2)2

, (3.14c)

where the τi ’s are radial constants.
This shows that the two differential gauge conditions (3.1) and (3.8) can also be under-

stood as geometrical conditions on the null rigging vector, involving its inaffinity for the NU
gauge and its expansion for the BS gauge.
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4 Charges

We now turn to the study of the asymptotic charges in the partial Bondi gauge. We first
compute the “bare” charges, which contain a divergent contribution, and then show that they
can be renormalized using the symplectic potential studied in section 2.3. We then perform
a consistency check by comparing our result in the limiting case of GBMS with the charges
derived in [16,17,20], where the metric qAB is constrained to have a fixed determinant but is
free to fluctuate otherwise. Finally, as a simple application of our formula for the charges (and
as a further consistency check), we compute the charges of the Kerr solution using the partial
Bondi gauge metric of [32].

4.1 Bare charges

In order to compute the charges we first choose the Barnich–Brandt prescription [78, 79],
according to which the charge aspect is given by /δQBB = kur

BB with

kµνBB =
p

−g
�

2ξ[µ∇ν]δg − 2ξ[µ∇αδgν]α + 2ξα∇[µδgν]α +δg∇[µξν] +δg[µα
�

∇ν]ξα −∇αξν]
�

�

. (4.1)

Here [µν] = (µν−νµ)/2 and the variations are δgµν = δ(gµν) and δg = gµνδgµν = −δ ln g.
We find that the expansion of the charges takes the form

/δQBB = r/δQdiv
ξ + /δQfinite

ξ +O(r−1) , (4.2)

where the divergent part is

/δQdiv
ξ = f
�

1
2
p

q ∂uCABδqAB −δ
�p

q R
�

−δpq ∂uC
�

− (2k+∆ f )δ
p

q− 2Y Aδ
�p

q U2
A

�

+
1
2

h
p

q
�

qABδCAB −δC
�

, (4.3)

and the finite part is

/δQfinite
ξ = /δQY + /δQh + /δQk + /δQℓ + /δQ f , (4.4a)

/δQY = Y Aδ

�

p
q
�

2PA−
3

16
∂A

�

4D− [CC]
�

+ CABUB
2 − CU2

A

��

, (4.4b)

/δQh = hδ
�

p
q
�

3
2

D+
1
4

C2 −
5
8
[CC]
��

, (4.4c)

/δQk =
1
2

k
�p

q CAB
TF
δqAB − C δ

p
q
�

, (4.4d)

/δQℓ = −3ℓδ
p

q, (4.4e)

/δQ f = 4 f δ
�p

qM
�

−
1
2

f
p

q CTF
ABδNAB −

1
4

f Cδ
�p

q R
�

+
p

qδqAB

�

f
�

DAUB
2 +

1
4

RCAB
TF
+

1
8
∂uCCAB

TF
+

1
8

CNAB
�

+ 2∂ A f UB
2 +

1
4
∆ f CAB

TF

�

+δ
p

q
�

f
�

2M− 3
4
∂uD−

3
16
∂u[CC] +

1
8
∂uC2 − 2DAUA

2

�

− 4UA
2∂A f −

1
4

C∆ f
�

+
p

q DA

�

f δUA
2 + 2 f UA

2δ ln
p

q
�

. (4.4f)

One can see as announced that the three free functions (h, k,ℓ) in the radial part of the vector
field are associated with non-vanishing charges, in addition to the usual contributions involv-
ing f and Y . This is one of the main results of the present work. In particular, k appears
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as soon as we work with GBMS and consider δqAB ̸= 0 (with
p

q fixed), while ℓ requires in
addition that we allow for δ

p
q ̸= 0 as in BMSW [13,21].

The expressions in (4.4) are also valid for field-dependent parameters (Y A, h, k,ℓ, f ) since
we have not commuted any of the variations δ with these functions. This will be useful later
on in section 5 when considering field-dependent redefinitions corresponding to changes of
slicings. Importantly, one should note that even for field-independent symmetry parameters
the charges contain many non-integrable contributions, which are not only sourced by the
news NAB. This is of course already the case when working with δqAB ̸= 0 and δ

p
q ̸= 0,

but here we see that in the partial Bondi gauge (or in any complete gauge fixing allowing for
free traces as discussed above) also C and D contribute to the non-integrability. This non-
integrability reflects the fact that the symplectic potential (2.28) contains symplectic pairs in
addition to that formed by the news and the shear (i.e. the Ashtekar–Streubel pair). Due to this
complicated structure we will not discuss here the full-fledged Wald–Zoupas prescription for
conserved integrable charges [48,80–83] (which would require to study the flux, the notion of
stationarity, and that of covariance). We will however take preliminary steps in this direction
in section 5 below.

Finally, let us point out that the same result as (4.2) is found using the Iyer–Wald prescrip-
tion [84], according to which the charges are given in terms of the Noether–Komar charge and
the symplectic potential by the (ur) component of

kµνIW = δKµν
ξ
− Kµν

δξ
+ ξ[µθν], (4.5)

where Kµν
ξ
= −
p
−g∇[µξν] is the Noether–Komar contribution arising from the Einstein–

Hilbert Lagrangian and the potential (2.24). There is therefore no ambiguity at this stage, and
cohomological as well as covariant phase space methods both lead to (4.4).

4.2 Renormalization

The charges (4.2) contain the r-divergent contribution (4.3). This divergent contribution can
be renormalized with the corner term inherited from the divergent part (2.26) of the radial
symplectic potential, or equivalently from θu by virtue of (2.27) [20, 85–87]. Performing an
innocent integration by parts on δ, this corner term can be chosen as

ϑren =
1
2
p

q
�

qABδCTF
AB +δC
�

. (4.6)

To show that this corner potential does indeed renormalize the charges (4.2), one can compute
its contribution to the charges. Using the transformation laws (2.16) and (2.17), we find4

ξ⌟⌟ (δϑren) = /δQdiv
ξ +
p

q DAΥ
A, (4.7)

where the boundary term is

Υ A =
1
2

Y AδC + Y ACBC
TF
δqBC − Y C
�

1
2
δqABCBC +

1
2

CABδqBC + qABδCTF
BC

�

− f DBδqAB +δqAB∂B f − 2 f ∂ Aδ ln
p

q+ 2∂ A f δ ln
p

q. (4.8)

As expected, the renormalization via a corner term works in the same way as in the case of
GBMS or BMSW. It would be interesting to obtain this corner term as the symplectic potential
of a boundary Lagrangian, following the prescription of [44,45,48,88,89], but we leave this
investigation for future work.

4Here ξ⌟⌟ denotes the contraction in field space between a variational vector field δξ and a variational 1-form.
For example ξ⌟⌟δQ = δξQ. The notations ξ⌟⌟ and ξ⌟ are sometimes denoted by Iξ and ιξ respectively.
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4.3 Comparison with the literature

As a consistency check for the involved expression (4.2), we can now compare the results with
the expressions given in [20] for GBMS. For this we reduce the solution space by setting

C = 0, D =
1
2
[CC], δ

p
q = 0, NA = −

2
3

NBT
A +

1
3

CAB DC CBC , (4.9)

which accounts for the fact that the setup of [20] is the Bondi–Sachs gauge with a fixed vol-
ume element and with a different definition of the bare angular momentum. With this, the
symmetry parameters in BS gauge become

h= −
1
2

DAY A, k = 0, ℓ= −
1
4

CAB DA∂B f . (4.10)

Recalling that when C = 0 and δ
p

q = 0 we have CTF
AB = CAB, δ[CC] = 2CABδCAB, and

δ(DAV A) = DA(δV A), we find that the finite part of the charge reduces to

/δQY = Y Aδ

�

p
q
�

2PA−
3

16
∂A[CC] + CABUB

2

��

= 2Y Aδ
�p

q NBT
A

�

, (4.11a)

/δQh =
1
8

hδ
�p

q [CC]
�

=
1
16

Y Aδ
�p

q ∂A[CC]
�

−
1

16
p

q DA

�

Y Aδ[CC]
�

, (4.11b)

/δQk = 0, (4.11c)
/δQℓ = 0, (4.11d)

/δQ f = 4 f
p

qδM− 1
2

f
p

q CABδNAB +
p

q DA

�

f δUA
2

�

+
p

qδqAB

�

f
�

DAUB
2 +

1
4

RCAB
�

+ 2∂ A f UB
2 +

1
4
∆ f CAB
�

. (4.11e)

These are exactly the ingredients of equation (5.31) of [20]. Further imposing δqAB = 0 then
leads to the result of [12], in which the split between integrable charge and flux was chosen
as δQξ +Ξξ[δ] with

Qξ
◦
=
p

q
�

4 f M + Y A
�

2NBT
A +

1
16
∂A[CC]
��

, Ξξ[δ] =
1
2

f
p

q NABδCAB, (4.12)

where
◦
= denotes an equality which holds modulo total divergencies on the 2-sphere (i.e. terms

which drop when integrating the charge aspect).

4.4 Kerr in the partial Bondi gauge

As explained above, the symmetry parameters (h, k,ℓ) appear in the charges only when the
induced boundary metric is such that δqAB ̸= 0 ̸= δpq. However, our analysis brings a novelty
even in the case where the boundary metric is completely fixed, namely an expression for the
charges valid in the partial Bondi gauge. This enables to compute for example the charges
in Newman–Unti gauge for “standard” asymptotically-flat boundary conditions, i.e for fixed
boundary data. Another interesting application is to compute the charges for the Kerr metric
in Bondi gauge. Indeed, as explained in [32], when writing the Kerr metric in Bondi gauge one
is first naturally led to what the authors of this reference call “generalized Bondi–Sachs” coor-
dinates. These represent an example of a partial Bondi gauge. While it is of course possible to
then perform a redefinition of the radial coordinate in order to bring the metric in Bondi–Sachs
gauge (i.e. such that the BS determinant condition is satisfied), this step becomes superfluous
once an expression for the charges in the partial Bondi gauge is available. This is essentially
what (4.4) provides.
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With this motivation in mind, let us consider a subsector of the general solution space
studied above, obtained by setting δqAB = 0 while staying within the partial Bondi gauge. In
this case, using the fact that when δ

p
q = 0 we have 2h = −DAY A and δ(DAV A) = DA(δV A),

the finite charge (4.4) reduces to

/δQfinite ◦= Y Apqδ
�

−3NA+
1
16
∂A

�

12D− 5[CC]− 2C2
�

+ CAB DC CBC +
1
2

DB(CCAB)−
3
2

CAB∂
BC
�

+ 4 f
p

qδM− 1
2

f
p

q CTF
ABδNAB, (4.13)

where as indicated by the equality
◦
=we have dropped a total derivative. Importantly, it should

be noted that the traces C and D still appear in this expression.
The Kerr metric in generalized Bondi–Sachs coordinates (u, r,θ ,φ) can be found in [32]

(see also [33,34]). With our choice of mostly plus signature, the asymptotic form of this metric
is given by the non-vanishing components

guu = −1+
2m
r
+O(r−2), (4.14a)

gur = −1+
a2

r2

�

1
2
− cos2 θ

�

+O(r−3), (4.14b)

guθ = −a cosθ +
2
r

a(m− a sinθ ) cosθ +O(r−2), (4.14c)

guφ = −
2
r

am sin2 θ +O(r−2), (4.14d)

gθφ = −
2
r

a2m sin2 θ cosθ +O(r−2), (4.14e)

gθθ = r2 + 2ra sinθ + a2(3 sin2 θ − 1) +O(r−1), (4.14f)

gφφ = r2 sin2 θ − 2ra sinθ cos2 θ + a2(1− 3 sin2 θ cos2 θ ) +O(r−1), (4.14g)

where the parameters are m and a. From this we can then extract the data appearing in the
solution space described in section 2.1. For the tensors in the transverse metric we find

qAB dxAdxB = dθ2 + sin2 θ dφ2, (4.15a)

CAB dxAdxB = 2a sinθ dθ2 − 2a sinθ cos2 θ dφ2, (4.15b)

DAB dxAdxB = a2(3 sin2 θ − 1)dθ2 + a2(1− 3 sin2 θ cos2 θ )dφ2. (4.15c)

One can then read in guu that the mass is M = m. Finally the bare angular momentum, which
can most easily be extracted from the inverse metric using

g rA = −
UA

2

r2
−

NA

r3
+O(r−4), (4.16)

is given by

NA∂A = 2am(∂φ − cosθ∂θ ), NAdxA = 2am(sin2 θ dφ − cosθ dθ ). (4.17)

As expected, qAB is the round sphere metric. However, while the line element (4.14) is clearly
in the partial Bondi gauge, one can see that the trace of CAB is non-vanishing and given instead
by C = qABCAB = −2a cos(2θ ) cscθ . The line element is therefore not in BS gauge. From
(4.14b) one can furthermore see that β ̸= 0, meaning that the line element is not in NU gauge
either. One possibility to deal with this is to redefine the radial coordinate so as to bring the
line element in BS gauge, as was done in [12]. However the result (4.13) enables us to bypass
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this step and to directly compute the charges using the line element (4.14). Since ∂uCAB = 0,
the charge aspects are integrable and reduce to /δQKerr = δQKerr with

QKerr = 2a
�

(a+ 3m sinθ ) cosθ Y θ (xA)− 3m sin3 θ Yφ(xA)
�

+ 4m sinθ T (xA). (4.18)

The smeared charges associated to the exact Killing vectors ∂u and ∂φ are then obtained re-
spectively for (T = 1, Y θ = 0, Yφ = 0) and (T = 0, Y θ = 0, Yφ = 1), and are given by

QKerr
∂u
=

∫ π

0

dθ

∫ 2π

0

dφQKerr
∂u
= 16πm, QKerr

∂φ
=

∫ π

0

dθ

∫ 2π

0

dφQKerr
∂φ
= −16πam.

(4.19)

Up to a normalization factor of 16πG which we have dropped from the onset, these are the
expected results.

5 Charge algebra with conformal boundary metric

We now turn to the study of the charge algebra. This is a subtle task because of the complicated
expression (4.4) for the charges, and especially because these contain many non-integrable
contributions in addition to the one arising from the news. This non-integrability is also in-
timately tied to the choice of charge bracket, since proposals such as the Barnich–Troessaert
bracket [12] require a split between integrable and non-integrable parts. While for standard
asymptotically-flat boundary conditions with δqAB = 0 the split can be singled out by the
Wald–Zoupas criterion [80, 83], an extension of the prescription to the case δqAB ̸= 0 is still
missing. Setting this issue aside, here we aim at showing that under the Barnich–Troessaert
bracket the charges represent the symmetry algebra (2.22) up to a field-dependent 2-cocycle.
We will choose the integrable part of the charges to be conserved in the radiative vacuum
where J A = 0 = N AB. We will then show that the modified prescription of [70] (which we
will refer to as the Koszul bracket) leads to a vanishing cocycle.

In order to compute the algebra of the charge (4.2), we will consider for simplicity the
conformal gauge for the boundary metric. This is defined by the choice qAB = eΦq◦AB, so that
δqAB = qABδΦ and therefore

δΦ= δ ln
p

q, δΓ C
AB =

1
2

�

δC
B∂A+δ

C
A∂B − q◦AB∂

C
�

δΦ, δR= −δΦR−∆δΦ. (5.1)

From the transformation laws (2.10) and (2.16a), one can see that using the above conformal
boundary metric requires to impose the consistency condition

δξqAB = DAYB + DBYA+ 2hqAB
!
= qABδξΦ= qAB

�

DAY A+ 2h
�

⇒ DAYB + DBYA = qAB(DC Y C), (5.2)

which therefore means that Y A has to satisfy the conformal Killing equation.
When using the conformal gauge for the boundary metric, the contribution (4.4d) of k

to the charge becomes proportional to kCδ
p

q. This contribution can then be removed with
a field-dependent redefinition of the function ℓ in (4.4e), also known as a change of slicing
[42,59,79]. At the end of the day, this therefore means that in the conformal gauge k can be
viewed as pure gauge, so that one can set C = 0 and CTF

AB = CAB. Let us now introduce for
convenience the objects5

D̃ := −
3
8

D+
5

32
[CC], CA :=

1
4
∂A[CC] + CAB DC CCB, (5.3)

5The transformation of D̃ is given in (5.8), while that of CA is derived in appendix A.
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and perform a change of slicing by substituting the parameter ℓ by ℓ̃ defined as

ℓ̃ := −
3
2
ℓ+ f ∂uD̃−

1
4

DA∂B f CAB, (5.4)

where now δℓ̃= 0. Let us also write the symmetry parameter f as f (u, xA) = T (xA)−uh(xA).
Using CABδNAB = CABδNAB − 2[CN]δΦ and discarding total derivative terms, the finite part
of the charge (4.4) finally becomes6

/δQξ = δQint
ξ +Ξξ[δ], (5.6)

where

Qint
ξ = 2

p
q
�

Y A
�

PA− u∂AM+ ∂AD̃
�

+ 2TM+ ℓ̃− 2hD̃
�

, (5.7a)

Ξξ[δ]
◦
= −

1
2

f
p

q CABδNAB −
1
2

Y Aδ
�p

q CA

�

+δ
p

q
�

2 f M+ 2uDA(Y
AM) + 1

2
DADB

�

f CAB
�

�

− 2u
�

2h+ DAY A
�

δ
�p

qM
�

. (5.7b)

The notation
◦
= means that for this equality we have dropped a total derivative, i.e. a term

which would vanish upon integration over the celestial sphere. The motivation for this split is
that the integrable part is conserved in the vacuum defined by the conditions J A = 0 =N AB,
provided we impose as well that ∂uD̃ = 0= ∂uℓ̃. These two conditions are compatible since D̃
transforms as

δξD̃ = (LY − 2h)D̃+ ℓ̃. (5.8)

One can easily check the conservation of the integrable part of the charge using the evolution
equations (2.6). Moreover, after the change of slicing defined by (5.4), for field-independent
functions (T, h, ℓ̃, Y ) the vector fields still form an algebra. The commutation relations are

�

ξ(T1, h1, ℓ̃1, Y1),ξ(T2, h2, ℓ̃2, Y2)
�

∗ = ξ(T12, h12, ℓ̃12, Y12), (5.9)

with

T12 = −T1h2 + Y A
1 ∂AT2 − (1↔ 2), (5.10a)

h12 = Y A
1 ∂Ah2 − (1↔ 2), (5.10b)

ℓ̃12 = Y A
1 ∂Aℓ̃2 − 2h1ℓ̃2 − (1↔ 2), (5.10c)

Y A
12 = Y B

1 ∂BY A
2 − (1↔ 2). (5.10d)

The fact that we obtain an algebra in this slicing is yet another motivation for the above choice
of charges (5.7).

We are now ready to compute the algebra of the charges (5.7), first using the Barnich–
Troessaert bracket [12], and then the Koszul bracket [69, 70] in order to remove the field-
dependent central extension. The Barnich–Troessaert bracket is defined as

�

Qint
ξ1

,Qint
ξ2

	

BT
:= δξ2

Qint
ξ1
+Ξξ2

[δξ1
]. (5.11)

6Let us also mention for completeness that when using the conformal gauge and when setting C = 0 the
symplectic potential (2.28) reduces to

θ r
0
◦
= 2δ
p

q
�

M+ ∂u D̃+
1
4

DADBCAB
�

−
1
2
p

q CABδNAB +δ(. . . ) . (5.5)
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A lengthy calculation detailed in appendix B leads to the result
�

Qint
ξ1

,Qint
ξ2

	

BT
◦
=Qint

ξ12
+Kξ1,ξ2

, (5.12)

where

Kξ1,ξ2
= 2u
p

q
�

2h12 + DAY A
12 + h1DAY A

2 − h2DAY A
1

�

M

+ 2u
p

q
�

�

2h1 + DAY A
1

�

δ f2M−
�

2h2 + DAY A
2

�

δ f1M
�

+
p

q
�

2J A( f1∂A f2 − f2∂A f1) +
1
2

Y A
12CA+

1
2

Y A
1 δ f2 CA−

1
2

Y A
2 δ f1 CA

�

. (5.13)

As expected, one can see that the charges represent the symmetry algebra up to a field-
dependent cocycle K (which is antisymmetric in 1, 2, as it should). A drawback of the Barnich–
Troessaert bracket (5.11) is however that it depends on the choice of split (5.6) between in-
tegrable part and flux (we use the term flux loosely since it may contain non-integrable terms
other than the news). More precisely, the cocycle changes with redefinitions of the split as in
(3.9) of [12]. As mentioned above, one possibility for determining the integrable part is to
use the Wald–Zoupas prescription. We defer its study in the case of the partial Bondi gauge to
future work.

Let us now consider instead the Koszul bracket of charges introduced in [69,70]. This is an
improvement of the Barnich–Troessaert bracket which has precisely the advantage of being in-
dependent of the split (5.6) (while still requiring an arbitrary “reference” split to be computed).
This new bracket has been used in three-dimensional Einstein–Maxwell theory and shown to
lead to a field-dependent central extension in the case of the Wald–Zoupas charges [90]. Once
again, here we are going to remain agnostic about the Wald–Zoupas charges, and simply con-
sider the reference split (5.7). The Koszul bracket is then defined as

�

Qint
ξ1

,Qint
ξ2

	

K
:=
�

Qint
ξ1

,Qint
ξ2

	

BT +

∫

γ

Kξ1,ξ2
(Ξ), (5.14)

where the second term is the integral along a path in field space of the variational 1-form

Kξ1,ξ2
(Ξ) := −δξ1

(Ξξ2
[δ]) +δξ2

(Ξξ1
[δ])−Ξ[ξ1,ξ2]∗[δ]. (5.15)

Since the Barnich–Troessaert bracket has been computed above in (5.12), we only need to
compute the additional contribution coming from the variational object (5.15). We defer this
tedious calculation to appendix C. The upshot is that with (5.7b) we find

Kξ1,ξ2
(Ξ) = −δKξ1,ξ2

, (5.16)

where Kξ1,ξ2
is the cocycle appearing in (5.12). This implies that the Koszul bracket gives

�

Qint
ξ1

,Qint
ξ2

	

K =Qint
ξ12

, (5.17)

up to a possible constant central charge due to the field space integration in (5.14).
In summary, we have shown in this section that the algebra of the charges (4.4) in the con-

formal gauge forms a representation of the asymptotic Killing vector algebra, with or without
field-dependent central extension depending on the bracket being used. This is a non-trivial
cross-check of our result for the charges.
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6 Perspectives

In this work we have continued the study of the partial Bondi gauge initiated in the companion
paper [1], by focusing on the asymptotic symmetries and charges. We have first recalled in
section 2 the structure of the solution space in the partial Bondi gauge, and how the key
property of the latter is that it contains free functions of (u, xA) which are the traces of the
tensors appearing in the radial expansion of the transverse metric. We have then shown that
the asymptotic Killing vector field contains, correspondingly, free functions of (u, xA) which
are candidates for new symmetry parameters in the asymptotic charges.

In section 3 we have then exhibited new gauge fixing conditions in which only a finite num-
ber of these parameters survive as unspecified functions. These new differential Bondi–Sachs
and Newman–Unti gauge conditions follow a similar mechanism as the Barnich–Troessaert
differential determinant condition [13] which enables to access the Weyl transformations. By
increasing the degree of the differential condition, one can access more symmetry transforma-
tions while still completely fixing the gauge. One could argue that by doing so one is introduc-
ing spurious gauge freedom, but it is the computation of the asymptotic charges which shows
precisely what should be considered as gauge or not.

In section 4 we have computed the asymptotic charges, and shown that when allowing for
variations δqAB ̸= 0 ̸= δpq there are indeed two new asymptotic charges in addition to the
charges for super-translations, super-rotations, and Weyl transformations. These two extra
charges correspond to the two subleading terms after the Weyl generator in the asymptotic
Killing vector field. In fact, one of these extra charges is already genuinely present in the
standard Newman–Unti gauge [9]. This has not been noticed previously because it is common
in Newman–Unti gauge to fix the origin of the affine parameter, which amounts to setting this
charge to zero by hand. As an application of the general expression for the charges in the
partial Bondi gauge we have then computed the charges for the Kerr spacetime in Bondi-type
coordinates.

In section 5 we have then computed the charge algebra in a simplified setting as a con-
sistency check. For this computation we have used two definitions of the bracket of charges
adapted to dealing with their non-integrability, namely the Barnich–Troessaert bracket [12]
and the Koszul bracket [69, 70]. The former enables to represent the algebra of asymptotic
symmetries up to a field-dependent two-cocycle, while the latter enables to remove this field-
dependency.

We now list a few interesting directions in which this work could be developed:

• Charges for the full partial Bondi gauge solution space. The first obvious extension
of this work would be to compute the asymptotic charges for the general solution space
in partial Bondi gauge studied in [1]. This is a daunting task since this general solution
space contains all the data allowed by the Einstein equations once the transverse fall-
offs have been chosen. This includes a non-vanishing cosmological constant, logarithmic
terms, and a free time-dependent boundary metric (parametrized by β0, UA

0 , and qAB).
Indeed, recall that in the present work we have turned off all this data appart from a
time-independent qAB. This is indeed the context which was sufficient in order to reveal
the existence of the two new asymptotic charges. It would be reasonable to generalize
this study by studying separately the effect of a non-vanishing cosmological constant
and of the logarithmic terms. The study of the charges at null infinity in the presence of
logarithmic terms and violations of peeling has been initiated in [91]. There is also an
existing literature on the charges and the flat limit in (A)dS [18,19,92–97], and it would
be interesting to study whether the partial Bondi gauge and its extra set of charges could
play a role in this context.
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• Wald–Zoupas charges. In section 5 we have chosen to split the non-integrable charge
as (5.7) because the resulting integrable part is conserved in the radiative vacuum. Al-
though this is inspired by the Wald–Zoupas prescription for conserved charges [48,80–
83], we have not worked out the details of the prescription, which requires in principle
to introduce a Wald–Zoupas symplectic potential and study the stationarity conditions
and the possible anomalies. This is a very important yet subtle issue, because when
working in the partial Bondi gauge and allowing for δqAB ̸= 0 many new sources of
non-integrability appear in the charges, which reflects the flux terms appearing in the
symplectic potential (2.28). Ultimately, this question is presumably related to the phys-
ical interpretation of the fields C ̸= 0 and D ̸= 0 and of a varying boundary metric qAB,
which falls outside of the standard framework for gravitational waves emitted by binary
systems.

• Relationship with finite distance corner symmetries. An important conceptual ques-
tion is that of the relationship between the asymptotic symmetry algebra (2.23) dis-
covered here and the universal corner symmetry algebra found at finite distance in
[51, 52, 54]. The computation presented here, as far as we know, gives so far the
largest asymptotic symmetry algebra in four spacetime dimensions. This algebra is
(6 · ∞)-dimensional, with the 6 components given by super-translations, two super-
rotations, Weyl transformations, and the subleading transformations generated by k and
ℓ. This is to be compared with the (8·∞)-dimensional universal corner symmetry group
G = Diff(S2)⋉
�

GL(2,R)⋉R2
�

found in [51,52,54]. It has been argued previously that
the (4·∞)-dimensional BMSW group (obtained by dropping k and ℓ) corresponds to the
asymptotic realization of a subgroup of G [21]. A natural question is therefore whether
the extension by k and ℓ found in (2.23) is also represented at finite distance in the cor-
ner symmetry algebra. If this is the case, one should then investigate whether there is yet
another set of gauge and boundary conditions for which the full universal corner sym-
metry algebra is realized asymptotically, and how exactly this happens. Relatedly, one
should also investigate the relationship between the extension of the boundary symme-
try algebra presented here, and the analysis of [64], which shows that a generic causal
surface in d dimensions has d + 1 surface charges. In the three-dimensional case the
connection between asymptotic and finite null boundaries was explicitly done in [62].
It would be interesting to extend their result to four dimensions, and also to understand
to what extend the prescriptions of [51,52,54] and [62,64] differ.

• Carrollian and celestial holography. Finally, it would be interesting to study the role
of the new charges found in the partial Bondi gauge in approaches to flat space holog-
raphy such as Carrollian and celestial holography [98–103]. A related and even more
relevant question is already that of the role of the Weyl charges in four-dimensional flat
holography, as the connection between celestial holography and asymptotic symmetries
is only established so far at the level of the BMS algebra, and not BMSW.
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A Computation of δξCA

In (5.3) we have defined the object CA. Its transformation law is required in order to compute
the charge algebra. Since we compute the latter in the case where C = 0 and k = 0, let us
also focus on this particular case to find the transformation of CA. Our goal is to arrive at
formula (A.18) for the transformation under δ f . The computation uses the definition (5.3)
and the transformation law (2.16b) with CTF

AB = CAB since C = 0. When C = 0 we have
δ[CC] = 2CABδCAB − 2[CC]δ ln

p
q. This implies that

δξ[CC] = 2CAB
�

f ∂u + LY + h
�

CAB − 4CAB DA∂B f − 2[CC]
�

DAY A+ 2h
�

=
�

f ∂u + LY − 2h
�

[CC]− 4CAB DA∂B f , (A.1)

where for the second equality we have used

2CABLY CAB = 2CAB
�

Y C∂C CAB + 2CAC∂BY C
�

= 2CAB
�

Y C DC CAB + 2CAC DBY C
�

= LY [CC] + 4CABCAC DBY C

= LY [CC] + 2[CC]DAY A, (A.2)

and here we have used 2CAC CC
B = [CC]qAB. Using ∂A

�

LY [CC]
�

= LY

�

∂A[CC]
�

, this leads to

δξ∂A[CC] = ∂Aδξ[CC]

=
�

f ∂u + LY − 2h
�

∂A[CC]− 2[CC]∂Ah+ 2[CN]∂A f − 4∂A

�

CBC DB∂C f
�

. (A.3)

Next, using the identities

δξΓ
C
AB =

1
2

�

δC
B DA+δ

C
A DB − qAB DC
��

DEY E + 2h
�

, (A.4a)

δξΓ
C
AC = δξ∂A ln

p
q = ∂A

�

DBY B + 2h
�

, (A.4b)

and the fact that for conformal Killing vectors satisfying (5.2) we have

DA

�

LY CAB
�

+ 2CAB∂A

�

DC Y C
�

= LY

�

DACAB
�

, (A.5)

we obtain

δξ
�

DACAB
�

= DAδξC
AB +δξΓ

C
AC CAB +δξΓ

B
AC CAC

= DAδξC
AB + 2CAB∂A

�

DC Y C + 2h
�

=
�

f ∂u + LY − 3h
�

DACAB + ∂A f NAB + ∂AhCAB + ∂ B∆ f − 2∆∂ B f . (A.6)

Putting this together, we get

δξ
�

CAB DC CCB
�

= δξCAB DC CCB + CABδξ
�

DC CCB
�

=
�

f ∂u + LY − 2h
��

CAB DC CCB
�

+
�

qAB∆ f − 2DA∂B f
�

DC CCB

+ CAB

�

∂C f N CB + ∂ B∆ f − 2∆∂ B f
�

+
1
2
[CC]∂Ah. (A.7)

Using (A.3) and (A.7), we can now write the final form of the transformation law for CA, which
is

δξCA =
�

f ∂u + LY − 2h
�

CA+
1
2
[CN]∂A f + CABN BC∂C f

+ DB
�

∆ f CAB

�

− 2
�

DA∂B f
�

DC CCB − ∂A

�

CBC DB∂C f
�

− 2CAB∆∂
B f . (A.8)
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Note for later use that we also have

∆∂ B f = ∂ B∆ f +
1
2

R∂ B f . (A.9)

Using the identities

CAC N C
B =

1
2

qAB[CN] +
1
2

�

CAC N C
B − CBC N C

A

�

=
1
2

qAB[CN] + 4ϵAB
ÝM−
�

DADC CC
B − DB DC CC

A

�

, (A.10)

CBC DAN BC = CAB DC N BC + CBC DBNAC , (A.11)

we can now write the transformation of CA under f as

δ f CA = f ∂uCA+
1
2
[CN]∂A f + CABN BC∂C f

+ DB
�

∆ f CAB

�

− 2
�

DA∂B f
�

DC CCB − ∂A

�

CBC DB∂C f
�

− 2CAB∆∂
B f

= f
�

1
2
∂A[CN] + CAB DC N CB + NAB DC CCB

�

+
1
2
[CN]∂A f + CABN BC∂C f

+ DB
�

∆ f CAB

�

− 2
�

DA∂B f
�

DC CCB − ∂A

�

CBC DB∂C f
�

− 2CAB∆∂
B f

= f
�

1
2
∂A[CN] + CAB DC N CB + NAB DC CCB

�

+ [CN]∂A f

+ 4ÝM∂̃A f −
�

DADBCB
C − DC DBCB

A

�

∂C f

+ DB
�

∆ f CAB

�

− 2
�

DA∂B f
�

DC CCB − ∂A

�

CBC DB∂C f
�

− 2CAB∆∂
B f . (A.12)

The first line of this expression can now be rewritten with the following steps:

f
1
2
∂A[CN] + f CAB DC N CB + f NAB DC CCB + [CN]∂A f

= f
1
2
∂A[CN] + DC

�

f CABN CB
�

− DC

�

f CAB

�

N CB + f NAB DC CCB + [CN]∂A f

= f
1
2
∂A[CN] + DC

�

f CABN CB
�

− DC

�

f CAB

�

N CB + NAB DC

�

f CCB
�

− ∂C f NABCCB + [CN]∂A f

= f
1
2
∂A[CN] + DC

�

f CABN CB
�

− 2DC

�

f CAB

�

N CB + N BC DA

�

f CBC

�

− ∂C f NABCCB + [CN]∂A f

= f
1
2
∂A[CN]− 2DC

�

f CAB

�

N CB + N BC DA

�

f CBC

�

+ [CN]∂A f + ∂C

�

f CABN CB
�

− ∂C f NABCCB

= ∂A

�

f [CN]
�

− 2DC

�

f CAB

�

N CB + N BC DA

�

f CBC

�

+ DB
�

4 f ϵAB
ÝM− f
�

DADC CC
B − DB DC CC

A

�

�

+ DB f
�

4ϵAB
ÝM− DADC CC

B + DB DC CC
A

�

= ∂A

�

f [CN]
�

− 2DC

�

f CAB

�

N CB + N BC DA

�

f CBC

�

+ 8ÝM∂̃A f + 4 f ∂̃A
ÝM

+ DB
�

f
�

DB DC CC
A − DADC CC

B

�

�

+ DB f
�

DB DC CC
A − DADC CC

B

�

. (A.13)

With this, (A.12) can finally be rewritten as

δ f CA = ∂A

�

f [CN]
�

− 2DC

�

f CAB

�

N CB + N BC DA

�

f CBC

�

+ 4
�

3ÝM∂̃A f + f ∂̃A
ÝM
�

+ DB
�

f
�

DB DC CC
A − DADC CC

B

�

�

+ 2DB f
�

DB DC CC
A − DADC CC

B

�

+ DB
�

∆ f CAB

�

− 2
�

DA∂B f
�

DC CCB − ∂A

�

CBC DB∂C f
�

− 2CAB∆∂
B f . (A.14)
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We are now going to use the fact that in the conformal gauge Y has to satisfy the conformal
Killing equation (5.2). When integrating by parts (and dropping the total derivative) and using
this equation, this implies that

p
q YADB TAB

TF

◦
= −pq DBYATAB

TF
= −

1
2
p

q
�

DC Y C
�

qAB TAB
TF
= 0, (A.15)

where TAB
TF

is any symmetric and trace-free tensor. We will also use the identity

�

DB DA− DADB

�

V B = RABV B =
1
2

R VA. (A.16)

Using these properties we can write
p

q Y A
1 δ f2 CA

◦
=
p

q Y A
1

�

∂A

�

f [CN]
�

− 2DC

�

f CAB

�

N CB + N BC DA

�

f CBC

�

+ 4
�

3ÝM∂̃A f + f ∂̃A
ÝM
�

+ f2CB
A ∂BR− DADB DC( f2CAB)

�

=
p

q Y A
1

�

∂A

�

f2[CN]
�

− 2DC

�

f2CABN CB
�

+ N BC DA

�

f2CBC

�

+ 4
�

3ÝM∂̃A f2 + f2∂̃A
ÝM+ f2CABJ B
�

− DADB DC( f2CAB)
�

. (A.17)

This finally leads to

1
2
p

q Y A
1 δ f2 CA =

p
q
�

2Y A
1

�

3ÝM∂̃A f2 + f2∂̃A
ÝM+ f2CABJ B
�

+
1
2

DADB

�

f2CAB
�

(DAY A
1 )

−
1
2

f2CABY C
1 DC NAB − f2CABNAC DBY C

1

�

, (A.18)

which we will use in appendix B below to compute the Barnich–Troessaert bracket.

B Computation of the charge algebra

In this appendix we give details about the computation of the Barnich–Troessaert bracket
(5.11) for the split (5.7). For the first term in the bracket we find

δξ2
Qint
ξ1
=Qint

ξ12
− 2
p

q T2

�

2h1 + DAY A
1

�

M+ 2
p

q Y A
1

�

3ÝM∂̃A f2 + f2∂̃A
ÝM+ f2CABJ B
�

+ 2
p

q
�

2 f1 + u
�

2h1 + DAY A
1

�

�

δ f2M, (B.1)

where the transformation (2.19b) and the equation of motion (2.6b) give

δ f M= f
�

1
2

DAJ A+
1
4
[CN ]
�

+J A∂A f . (B.2)

We then compute the contributions to Ξξ2
[δξ1
]. For the first line of (5.7b) we find

−
1
2

f2
p

q CABδξ1
NAB = − f2

p
q CAB
�

f1NAB +
1
2

Y C
1 DC NAB + NAC DBY C

1 + DA∂Bh1

�

, (B.3a)

−
1
2

Y A
2 δξ1

�p
q CA

�

=
1
2
p

q
�

Y A
12CA− Y A

2 δ f1 CA

�

. (B.3b)

Then for the second line of (5.7b) we find

δξ1

p
q
�

2 f2M+ 2uDA

�

Y A
2 M
�

+
1
2

DADB

�

f2CAB
�

�

− 2u
�

2h2 + DAY A
2

�

δξ1

�p
qM
�

=
p

q
�

4T2h1M+ 2 f2MDAY A
1 +

1
2

DADB

�

f2CAB
��

2h1 + DAY A
1

�

�

+ 2u
p

q
�

Y A
12∂AM+ 2h12M− Y A

2 ∂A

�

h1M
�

�

− 2u
�

2h2 + DAY A
2

�p
qδ f1M. (B.4)
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Putting the above contributions together, we find after integrating by parts and dropping the
boundary terms that
�

Qint
ξ1

,Qint
ξ2

	

BT
◦
=Qint

ξ12
+ 2u
p

q
�

Y A
12∂AM+ 3h12M+

�

Y A
1 h2 − Y A

2 h1

�

∂AM
�

+ 2u
p

q
�

�

2h1 + DAY A
1

�

δ f2M−
�

2h2 + DAY A
2

�

δ f1M
�

+
p

q
�

2J A( f1∂A f2 − f2∂A f1) +
1
2

Y A
12CA−

1
2

Y A
2 δ f1 CA

�

+
p

q
�

2Y A
1

�

3ÝM∂̃A f2 + f2∂̃A
ÝM+ f2CABJ B
�

+
1
2

DADB

�

f2CAB
�

(DAY A
1 )

−
1
2

f2CABY C
1 DC NAB − f2CABNAC DBY C

1

�

. (B.5)

Using (A.18) to rewrite the last square bracket, we obtain
�

Qint
ξ1

,Qint
ξ2

	

BT
◦
=Qint

ξ12
+ 2u
p

q
�

Y A
12∂AM+ 3h12M+

�

Y A
1 h2 − Y A

2 h1

�

∂AM
�

+ 2u
p

q
�

�

2h1 + DAY A
1

�

δ f2M−
�

2h2 + DAY A
2

�

δ f1M
�

+
p

q
�

2J A( f1∂A f2 − f2∂A f1) +
1
2

Y A
12CA+

1
2

Y A
1 δ f2 CA−

1
2

Y A
2 δ f1 CA

�

. (B.6)

Finally, after integrating by parts and dropping the boundary terms we arrive at
�

Qint
ξ1

,Qint
ξ2

	

BT
◦
=Qint

ξ12
+ 2u
p

q
�

2h12 + DAY A
12 + h1DAY A

2 − h2DAY A
1

�

M

+ 2u
p

q
�

�

2h1 + DAY A
1

�

δ f2M−
�

2h2 + DAY A
2

�

δ f1M
�

+
p

q
�

2J A( f1∂A f2 − f2∂A f1) +
1
2

Y A
12CA+

1
2

Y A
1 δ f2 CA−

1
2

Y A
2 δ f1 CA

�

, (B.7)

which is the result (5.12) quoted in the main text.

C Computation of Kξ1,ξ2
(Ξ)

In order to compute the contribution of Kξ1,ξ2
(Ξ) to the Koszul bracket, let us rewrite the flux

(5.7b) up to a boundary term as

Ξξ[δ]
◦
=

1
2

f CAB
�

DADBδ
p

q−pqδNAB

�

+ 2 f Mδpq−
1
2
δ
�p

q Y ACA+ 4u
p

q
�

2h+ DAY A
�

M
�

, (C.1)

and then evaluate (5.15) for each of the terms. Using

δ
�p

q DA

�

Y A
1 Y B

2 CB

�

�

=
p

q DA

�

Y A
1 Y B

2 δCB + Y A
1 Y B

2 CBδ ln
p

q
�

, (C.2)

and dropping the total derivatives when using similar formulas, we find the contributions

Kξ1,ξ2

�

f CAB DADBδ
p

q
� ◦
= 4
p

q f1CABδ
�

DA∂Bh2

�

−δ
�p

q f1∂A f2∂
AR
�

− (1↔ 2), (C.3a)

Kξ1,ξ2

�

f
p

q CABδNAB

� ◦
= 4
p

q f1CABδ
�

DA∂Bh2

�

+ 2δ
�p

q f1∂A f2DBNAB
�

− (1↔ 2), (C.3b)

Kξ1,ξ2

�

f Mδpq
� ◦
= 0, (C.3c)

Kξ1,ξ2

�

δ
�p

q Y ACA

�� ◦
= δ
�p

q
�

Y A
12CA+ Y A

1 δ f2 CA− Y A
2 δ f1 CA

��

, (C.3d)

Kξ1,ξ2

�

δ
�p

q hM
�� ◦
= δ
�p

q
�

h1δ f2M− h2δ f1M
��

, (C.3e)

Kξ1,ξ2

�

δ
�p

q DAY AM
�� ◦
= δ
�p

q
�

2h12M+ DAY A
12M+ h1DAY A

2 M− h2DAY A
1 M

+ DAY A
1 δ f2M− DAY A

2 δ f1M
��

. (C.3f)
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Combining all of these terms to compute Kξ1,ξ2
(Ξ) with Ξ given by (C.1), we find that the

result is a total variation

Kξ1,ξ2
(Ξ) = −δKξ1,ξ2

, (C.4)

where Kξ1,ξ2
is given by (5.13).
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tion in de Sitter: Displacement memory and Bondi metric, (arXiv preprint)
doi:10.48550/arXiv.2309.02081.

[94] B. Bonga, C. Bunster and A. Pérez, Gravitational radiation with Λ>0, Phys. Rev. D 108,
064039 (2023), doi:10.1103/PhysRevD.108.064039.

[95] P. B. Aneesh, S. J. Hoque and A. Virmani, Conserved charges in asymptotically de
Sitter spacetimes, Class. Quantum Gravity 36, 205008 (2019), doi:10.1088/1361-
6382/ab3be7.

[96] D. Anninos, G. S. Ng and A. Strominger, Asymptotic symmetries and charges in
de Sitter space, Class. Quantum Gravity 28, 175019 (2011), doi:10.1088/0264-
9381/28/17/175019.

[97] A. Campoleoni, A. Delfante, S. Pekar, P. M. Petropoulos, D. Rivera-Betancour
and M. Vilatte, Flat from anti de Sitter, J. High Energy Phys. 12, 078 (2023),
doi:10.1007/JHEP12(2023)078.

[98] S. Pasterski, S.-H. Shao and A. Strominger, Flat space amplitudes and con-
formal symmetry of the celestial sphere, Phys. Rev. D 96, 065026 (2017),
doi:10.1103/PhysRevD.96.065026.

33

https://scipost.org
https://scipost.org/SciPostPhys.16.3.076
https://doi.org/10.1007/JHEP07(2022)029
https://doi.org/10.1103/PhysRevD.107.084028
https://doi.org/10.1103/PhysRevD.50.846
https://doi.org/10.1007/JHEP10(2019)126
https://doi.org/10.1007/JHEP11(2023)034
https://doi.org/10.1007/JHEP08(2023)154
https://doi.org/10.1088/0264-9381/25/19/195014
https://doi.org/10.1007/JHEP10(2020)146
https://doi.org/10.48550/arXiv.2311.09156
https://doi.org/10.1088/1361-6382/ab117c
https://doi.org/10.48550/arXiv.2309.02081
https://doi.org/10.1103/PhysRevD.108.064039
https://doi.org/10.1088/1361-6382/ab3be7
https://doi.org/10.1088/1361-6382/ab3be7
https://doi.org/10.1088/0264-9381/28/17/175019
https://doi.org/10.1088/0264-9381/28/17/175019
https://doi.org/10.1007/JHEP12(2023)078
https://doi.org/10.1103/PhysRevD.96.065026


SciPost Phys. 16, 076 (2024)

[99] A. Fotopoulos, S. Stieberger, T. R. Taylor and B. Zhu, Extended BMS algebra of celestial
CFT, J. High Energy Phys. 03, 130 (2020), doi:10.1007/JHEP03(2020)130.

[100] L. Donnay, S. Pasterski and A. Puhm, Asymptotic symmetries and celestial CFT, J. High
Energy Phys. 09, 176 (2020), doi:10.1007/JHEP09(2020)176.

[101] L. Donnay and R. Ruzziconi, BMS flux algebra in celestial holography, J. High Energy
Phys. 11, 040 (2021), doi:10.1007/JHEP11(2021)040.

[102] S. Pasterski, M. Pate and A.-M. Raclariu, Celestial holography, (arXiv preprint)
doi:10.48550/arXiv.2111.11392.

[103] L. Donnay, A. Fiorucci, Y. Herfray and R. Ruzziconi, Carrollian perspective on celestial
holography, Phys. Rev. Lett. 129, 071602 (2022), doi:10.1103/PhysRevLett.129.071602.

34

https://scipost.org
https://scipost.org/SciPostPhys.16.3.076
https://doi.org/10.1007/JHEP03(2020)130
https://doi.org/10.1007/JHEP09(2020)176
https://doi.org/10.1007/JHEP11(2021)040
https://doi.org/10.48550/arXiv.2111.11392
https://doi.org/10.1103/PhysRevLett.129.071602

	Introduction
	The partial Bondi gauge
	Solution space
	Asymptotic Killing vectors and transformation laws
	Symplectic potential

	Complete gauge fixings
	Differential Newman–Unti gauges
	Differential Bondi–Sachs gauges
	Carrollian interpretation

	Charges
	Bare charges
	Renormalization
	Comparison with the literature
	Kerr in the partial Bondi gauge

	Charge algebra with conformal boundary metric
	Perspectives
	Computation of bold0mu mumu CACA2005/06/28 ver: 1.3 subfig packageCACACACA
	Computation of the charge algebra
	Computation of bold0mu mumu K1,2()K1,2()2005/06/28 ver: 1.3 subfig packageK1,2()K1,2()K1,2()K1,2()
	References

