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Abstract

Quantum integrability has proven to be a useful tool to study quantum many-body
systems out of equilibrium. In this paper we construct a generic framework for integrable
quantum circuits through the procedure of Floquet Baxterisation. The integrability
is guaranteed by establishing a connection between Floquet evolution operators and
inhomogeneous transfer matrices obtained from the Yang–Baxter relations. This allows
us to construct integrable Floquet evolution operators with arbitrary depths and various
boundary conditions. Furthermore, we focus on the example related to the staggered
6-vertex model. In the scaling limit we establish a connection of this Floquet protocol with
a non-rational conformal field theory. Employing the properties of the underlying affine
Temperley–Lieb algebraic structure, we demonstrate the dynamical anti-unitary symmetry
breaking in the easy-plane regime. We also give an overview of integrability-related
quantum circuits, highlighting future research directions.
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1 Introduction

Starting from the Onsager’s exact solutions to the two-dimensional classical Ising model [1],
exactly solvable models prove to be important and useful in many fields of theoretical physics,
ranging from statistical mechanics [2,3] to high-energy physics [4]. Making use of techniques
such as Bethe Ansatz of quantum integrable models [3,5], one can obtain exact and sometimes
mathematically rigorous results on physically relevant properties and quantities such as phase
transitions and correlation functions. More recently, techniques in exactly solvable models
have been used to study the out-of-equilibrium physics of quantum many-body systems, which
is usually extremely difficult due to the astronomically large number of degrees of freedom
involved. One particular example is the quantum quenches in integrable quantum spin chains
that have been studied using the so-called quench action method [6,7], giving access to the late-
time dynamics with an initial state away from any eigenstate. Another important achievement,
the generalized hydrodynamics [8,9], allows us to study the transport properties of quantum
integrable systems in an analytic and efficient manner.

Even though exactly solvable models have been successful to study the out-of-equilibrium
physics of quantum many-body systems, applications to discrete space-time quantum systems
are not yet fully developed. Specifically, quantum circuits become accessible with the recent
advances on both theoretical and experimental sides [10], which is closely related to the
stroboscopic evolution of Floquet systems. A systematic understanding of the condition when
certain quantum circuits can be solved using quantum integrability is still missing. In addition,
when quantum integrability is present in a quantum circuit, the circuit might not be unitary,
which potentially leads to new “phases” with different choices of the parameters. In order to
remind the readers on the improvements between our work and the previous results, which are
presented in details in 3, we summarize the main results that are novel up to our knowledge as
follows.
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Summary of the main results. There have been already several examples of the integrable
quantum circuits under many guises, such as “light-cone Bethe Ansatz”, “integrable Trotterisa-
tion”, etc. A more detailed description and references are given in Sec. 3.1. A common feature
of those constructions is that the quantum circuits are of brick-wall structure of quantum gates
acting on two “qudits”, cf. Fig. 3. Instead, we propose a more general framework, dubbed
“Floquet Baxterisation”, that relates quantum circuits with n-qudit gates and depth n≥ 2 to an
inhomogeneous transfer matrices of certain integrable lattice statistical-mechanical models with
various boundary conditions. The previous results are mostly related to the n= 2 case. The
proper definitions and the statement of the theorems 1 and 2 can be found in Sec. 4.

In addition, we exemplify the construction with a renowned example of the integrable
Floquet circuit associated with the staggered 6-vertex model [2, 11, 12] in Sec. 6. We use
the Bethe Ansatz technique to obtain the spectrum of the Floquet evolution operator. Using a
connection with the underlying affine Temperley-Lieb algebraic structure we also show that in
the easy-plane regime the system exhibits a dynamical phase transition associated with the
breaking of a certain anti-unitary symmetry, which occurs even with finite system sizes.

Besides the main results of the article, we start with a brief overview of the crucial properties
of the Yang–Baxter integrability used in the article in Sec. 2 and several examples of quantum
circuits related to quantum integrability in Sec. 3.

2 The Yang–Baxter integrability

Before moving to the main results of the paper, in this section we briefly review the essential
ingredients of the Yang-Baxter integrability.

We consider the R matrix Ra,b(u, v) acting on the Hilbert space (CN )a⊗(CN )b and satisfying
the Yang–Baxter equation [2,3]

Ra,b(u, v)Ra,c(u, w)Rb,c(v, w) = Rb,c(v, w)Ra,c(u, w)Ra,b(u, v) . (1)

Hence we define the Lax operator La,m(u) = Ra,m(u, um) with inhomogeneity um ∈ C

Ra,b(u, v)La,m(u)Lb,m(v) = Lb,m(v)La,m(u)Ra,b(u, v) , (2)

which recovers the usual form of the Yang-Baxter relation for the Lax operator. Accordingly, we
define another R matrix Řa,b(u, v) such that

Řa,b(u, v) = Ra,b(u, v)Pa,b , (3)

with the permutation operator Pa,b satisfying

Pa,bFaPa,b = Fb , P2
a,b = 1 . (4)

From Eq. (1), we then arrive at a different Yang-Baxter relation for Řa,c(u), which reads

Řa,b(u, v)Řb,c(u, w)Řa,b(v, w) = Řb,c(v, w)Řa,b(u, w)Řb,c(u, v) . (5)

The R matrix Řa,b(u, v) is the main building block for the integrable Floquet evolution operator.
Let us now define the inhomogeneous monodromy matrix with period n ∈ Z+ (with respect

to lattice sites) and system size L mod n= 0 [2]

Ma

�

u, {u j}nj=1

�

=
L/n
∏

m=1

n
∏

j=1

Ra,n(m−1)+ j(u, u j) , u, u1, u2, . . . un ∈ C . (6)
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Figure 1: Diagrammatic demonstration of the R matrices and permutation operator.

Figure 2: Diagrammatic demonstration of the inhomogeneous transfer matrix of
period n= 3 with system size L = 6 and inhomogeneities {u j}3j=1.

Then, the inhomogeneous transfer matrix with period n acting on the physical Hilbert space
can be defined as the partial trace of the inhomogeneous monodromy matrix over the auxiliary
space,

T
�

u, {u j}nj=1

�

= Tra

�

Ma

�

u, {u j}nj=1

�

�

. (7)

In the rest of the paper we mostly focus on the transfer matrices with periodic boundary
condition. We shall make a few comments on the case of open boundary condition in Sec. 4.3.

From the Yang–Baxter equation (2), we have

Ra,b(u, v)Ma

�

u, {u j}nj=1

�

Mb

�

v, {u j}nj=1

�

=Mb

�

v, {u j}nj=1

�

Ma

�

u, {u j}nj=1

�

Ra,b(u, v) , (8)

which implies that the inhomogeneous transfer matrices are in involution, i.e.
�

T
�

u, {u j}nj=1

�

,T
�

v, {u j}nj=1

�

�

= 0 , ∀u, v ∈ C . (9)

Remark. In order to obtain a local Floquet protocol that is integrable, we do not need to
assume any property of the R matrix except that it satisfies the Yang-Baxter equation (1). In
most of the previous works, see e.g. [13–20], it has been assumed that the R matrix also satisfies
the regularity condition

Ra,b(0,0) = Pa,b , (10)

and/or the difference form property,

Ra,b(u, v) = Ra,b(u− v) , (11)

both of which are not necessary for the integrability of the local Floquet protocol as proven
below.

Note that one can represent the R matrix and the inhomogeneous transfer matrix in terms
of graphs, as demonstrated in Figs. 1 and 2. This will be convenient for demonstrating some
identities in Sec. 4.

3 Overview of quantum circuits related to concepts of integrability

Quantum circuits are well known tools in quantum information theory that are used to encode
quantum computation with quantum gates, represented by a single, two- and/or many-qubits
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Figure 3: Demonstration of the brick-wall structure of the quantum circuit. Boxes
correspond to two-qubit (qudit) gates and are realised by the Ř-matrices satisfying
the Yang-Baxter equation. We denote the layer of quantum gates as the depth of the
quantum circuit. For the brick-wall construction, the period of the quantum circuit
with respect to the lattice sites equals the depth.

or qudits, their initialization and measurements. Recently, there has been a surge of interest to
certain aspects of quantum circuits related to many-body physics. One important class of circuits
where dynamics can be computed explicitly is the case of random unitary circuits [21–24]. In
this case quantum gates are represented by large unitary matrices typically taken from the
circular unitary ensemble. Special attention has been paid to Floquet-type two-step protocols in
which case one layer of the circuit is represented by a unitary U1 acting for a time T1 between
even-odd gates, followed by the second layer with U2 acting for a time T2 between odd-even
gates.

Here we focus on the opposite case of integrable quantum circuits. These integrable
brick-wall circuits, see Fig. 3, are interesting for at least three reasons: (i) from the point of
view of quantum information theory they serve as a viable tool for preparing some highly
entangled states [25,26]; (ii) they are suitable for benchmarking existing quantum computers
and simulators, see [27–29] for recent examples; (iii) they could provide exact analytical tools
for studying dynamical phases and phase transitions as demonstrated in this paper.

At the moment we feel that one should distinguish between at least three different cases of
quantum circuits related to the concepts of quantum integrability. Below we provide a mixture
of a brief overview of existing approaches, some new results and future perspectives.

3.1 Integrable Floquet protocols

This class of protocols is related to integrable lattice statistical-mechanical models. They
represent a particular class of integrable Floquet dynamics introduced in [30]. These protocols
rely on the analytic continuation of the Boltzmann weights of integrable stat-mechanical systems
into the complex domain. In this case time steps T1,2 are finite, and except for the case of the
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Ising model are equal. The total unitary evolution operator is given by

U=
N
∏

i=1

(Ueven(T/2)Uodd(T/2))
i ≡ exp(−iTHF) , (12)

Ueven =
M
∏

j=1

Ř2 j(x , x0) , Uodd =
M
∏

j=1

Ř2 j−1(x , x0) , (13)

where the parameter x is some (known) function of time and HF is the Floquet Hamiltonian.
The index i labels layers in “time” direction while the index j labels sites in “spatial” direction
thus representing a circuit of size Ntime ×Mspace. The central object here is the two-qubit (or
qudit) gate, the Ř matrix that satisfies the celebrated Yang–Baxter equation, cf. (5). The proper
definition of the Yang–Baxter integrability is explained in Sec. 2.

Many of the exactly solvable statistical-mechanical models are related to the so-called
Temperley–Lieb (TL) algebra [2,31]. It is defined by a set of two-site generators ei,i+1 ≡ ei that
satisfy

e2
i = βei , eiei+1ei = ei , [ei , e j] = 0 , if |i − j| ≥ 2 . (14)

In this case x = β−1(eiTβ/2 − 1) and Ř j = 1+ xe j . Note that the generators of the TL algebra
have numerous representations, including those in terms of the quantum Ising/Potts and the
XXZ Hamiltonian densities. In particular the latter reads as

em ≡ em,n =
q+ q−1

4
−

1
2

�

σx
mσ

x
n +σ

y
mσ

y
n +

q+ q−1

2
σz

mσ
z
n

�

−
q− q−1

4
(σz

m −σ
z
n) , (15)

with β ≡ q+ q−1 = 2coshη, i.e. q = exp η.
Several first integrals of motion (i.e. a set of operators Qn that satisfy [HF ,Qn]=[Qn,Qm]=0)

for the TL algebraic Floquet protocol have been found in Ref. [26], whose results hold regardless
of the representation of the TL algebra. The first non-trivial integral is

Q1 =
∑

j

e j + a
∑

j

(−1) j[e j , e j+1] + b
∑

j

{e j , e j+1} , (16)

a =
i

2β
sin(βT ) , b = −

1
β

sin2
�

βT
2

�

. (17)

When the operator ei is written in the representation of the XXZ Hamiltonian density (15) it
coincides exactly with the Hamiltonian of the lattice limit of the SL(2,R)/U(1) black hole sigma-
model. Both the lattice spin model and its relation to the continuum theory have been carefully
studied by several groups, [32–38]. This observation was supported by a number of evidences,
both analytical and numerical, including the match of the density of states, various numerical
and analytical studies. Finally, a very recent series of works by Bazhanov et al. [37,38] on the
one hand confirms the coincidence of the partition function of the Euclidian black hole CFT with
one half of the partition function arising in the scaling limit of the lattice model with periodic
boundary condition, but on the other hand refines the original identification by proposing that
a part of the Hilbert space of the lattice model should coincide with the pseudo-Hilbert space
of the non-linear black hole sigma model with Lorentzian signature.

We believe that the phase transition found in this paper is related to the compact–to–non-
compact transition in the corresponding spectrum of this non-linear sigma model.

The lattice spin model is related to an inhomogeneous 6-vertex model for a special choice
of the inhomogeneity, introduced by Baxter in [11,12]. Meanwhile, the nonlinear sigma model
was introduced in [39–41]; it describes a gauged version of the SL(2,R) Wess–Zumino–Witten
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model and corresponds to a non-compact conformal field theory (CFT) with a continuum
spectrum of scaling dimensions and a central charge c = 2 k+1

k−1 related to the TL parameter
β as k = π/γ, where β = −2cosγ. The model has been intensively studied in string theory
literature, a highly incomplete list of papers includes [42–47].

We note that in the case of β = 0 the TL algebra has an infinite-dimensional sl2 loop algebra
structure of conserved charges and corresponds to a logarithmic CFT with the central charge
c = −2 [48].

We also mention that inhomogeneous lattice models have been used previously to define
the integrable lattice limit of relativistic field theories [13,14,49–52]. In those literatures, the
method is referred to as the “lightcone Bethe Ansatz”, which coincides with the n= 2 case of
the Floquet Baxterisation in Sec. 4.

The connection between a non-compact/non-rational CFT, inhomogeneous lattice models
and integrable Floquet quantum circuits is very promising and intriguing. It is fair to say
that here we have an example of a novel (and unusual) dynamical Floquet criticality, since the
Floquet Hamiltonian shares the same set of eigenstates as the operator Q1 in Eq. (17), namely
the spectrum of the CFT mentioned above.

3.2 Trotterised circuits

This type of circuits is constructed as a Trotterisation of the time evolution with the Hamiltonian
H =
∑

n hn,n+1 as follows [15], [17]

U(t)≡ e−iH t = lim
δt→0

�

exp

�

−iδt
∑

n even

hn,n+1

�

exp

�

−iδt
∑

n odd

hn,n+1

��t/δt

, (18)

Ueven ∼
M
∏

j=1

Ř2 j,2 j+1(δt) , Uodd ∼
M
∏

j=1

Ř2 j−1,2 j(δt) , (19)

where δt is an infinitesimal time step. For the most popular example of the integrable XXX
spin chain [15,17] one has

Ue/o = e−iδt
∑

e/o hXXX =
∏

e/o

eiJδt Ře/o(tan2Jδt) , (20)

where the R-matrix acting between neighboring even-odd (e/o) sites is given by1

Ře/o(λ) = (1 + iλP)(1 + iλ)−1. This protocol has been used in several recent works: the
multi-point correlation functions expressed in terms of particular transfer matrices [17], and
the temporal entanglement [53] have been computed; a dual unitary case of this circuit has
been introduced and studied [19].

Strictly speaking, integrability in this type of circuits (guaranteed by the underlying inte-
grable Hamiltonian) is achieved only when the time step goes to zero. As pointed out in [27],
the error in this circuit scales linearly with the Trotter time step i.e. with δt. While it can be
cured by taking a smaller step size, this could result in an overall increase in the computation
cost. Therefore, there is a need to balance accuracy and computation cost for which an efficient
circuit compression is needed.

3.3 Protocols related to set-theoretic solutions of the Yang–Baxter equation

Interestingly, Yang–Baxter dynamics can be extended to a more generic and abstract setup. We
remind the reader that the original quantum Yang–Baxter equation in (1) is defined for a linear
operator R acting in the tensor product of two vector spaces V ⊗ V : R : V ⊗ V → V ⊗ V .

1Operator P is the permutation operator, defined later in (43).
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In [54] Drinfeld suggested to consider a set-theoretic version of the Yang–Baxter equa-
tion defined as follows. Let X be any set (perhaps endowed with a certain topology) and
let R : X × X → X × X be a map from its square into itself.2 Let Ri j : X n → X n, with
X n = X × X × . . . × X , be the maps which act as R on ith and jth factors and as an iden-
tity on the others. More precisely, if R(x , y) = ( f (x , y), g(x , y)), where x , y ∈ X , then

Ri j(x1, . . . , xn) =
�

x1, . . . , x i−1, f (x i , x j), x i+1, . . . , x j−1, g(x i , x j), x j+1, . . . , xn

�

, (21)

for i < j and

Ri j(x1, . . . , xn) =
�

x1, . . . , x i−1, g(x i , x j), x i+1, . . . , x j−1, f (x i , x j), x j+1, . . . , xn

�

, (22)

otherwise. In particular, for n= 2 one has R21(x , y) = (g(y, x), f (y, x)). If P : X 2→ X 2 is the
permutation of x and y: P(x , y) = (y, x), then we obviously have R21 = PRP. In this setup,
the set-theoretical Yang–Baxter equation reads

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12 . (23)

The understanding of algebraic and geometric facets of the set-theoretic Yang–Baxter
equation has been fairly well developed in mathematical literature [55–65], while its dynamical
aspects have been considered in [66–68]. In addition, connection between the set-theoretic
Yang–Baxter equation and integrable discrete-time dynamics has been studied in Refs. [69–71],
and cellular automatons has been also anticipated, see [72] for a review. We believe that
development of these ideas for quantum circuits is an interesting direction for future research,
see [19,73–75] for recent activity in this direction.

Let us give an example of a solution to the set-theoretical Yang–Baxter equation.3 This is
motivated by the generalised Fibonacci substitution rules a→ b, b→ bl ak, so that we consider
the following Ansatz for the functions f (x , y) and g(x , y) introduced above:

f (x , y) = xn ym , g(x , y) = x p yq . (24)

The question is under what conditions of parameters n, m, p, q this map is consistent with the
set-theoretical Yang–Baxter equation (23).

Using the results of Appendix A, we come up with the following classes for arbitrary values
of n and q:

A14 : (n, 0, 0, q) , B124 : (n, 1− nq, 0, q) ,

B134 : (n, 0, 1− nq, q) , P : (0,1, 1,0) .
(25)

Here the notations are self-explaining: A-B-... is an alphabetical, and subscripts note the nonzero
positions in the string of n, m, p, q. Implementation of these classes in quantum dynamics will
be considered elsewhere.

3.4 Remarks on the exponential solutions

Two-qudit quantum circuits that we are considering here correspond to the brick-wall structure
shown in Fig. 3. An individual “brick” acts in the Hilbert space of two qudits, Vj ⊗ Vj+1, and is
supposed to satisfy the Yang–Baxter equation where spectral parameters are somehow related
to time.4

2To distinguish the set-theoretical R matrix from the quantum case we use here a different notation for the
former.

3To the best of our knowledge, this solution is new.
4In this subsection we focus on the Floquet protocol with depth n= 2.
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From the quantum dynamical perspective the individual gate Ř j should represent the
evolution operators on Vj ⊗ Vj+1 and as such one could require that Ř j would satisfy the
semi-group property

Ř j(t1)Ř j(t2) = Ř j(t1 + t2) , Ř j(0) = 1 , (26)

for arbitrary time steps t1,2. A natural Ansatz for Ř j(t) satisfying this requirement is an
exponential solution

Ř j, j+1(t) = exp
�

−i tu j

�

, (27)

for some operators u j. In [76] (see also [77] for the relation of this construction to special
types of symmetric polynomials) it was proven that exponential solutions of the Yang–Baxter
equation satisfying the semi-group property (26) are exhausted by the operators defined by
the following relations. Introducing C0(a, b) = a+ b for adjacent operators a = u j, b = u j+1
and Ci(a, b) = [a, Ci−1] for i ≥ 1, it was shown that the minimal set of relations to fulfill the
exponential solution of the Yang–Baxter equation is given by C j(a, b), which satisfies

[Ci(a, b), C j(a, b)] = 0 , ∀i, j ≥ 0 . (28)

There are many examples of algebraic structures satisfying the above relation. One of them is
provided by the Hecke algebra5

u ju j+1u j = u j+1u ju j+1 , u2
j = au j + b ,

u juk = uku j , | j − k|> 1 ,
(29)

where one requires b = 0. Another interesting example is given by the universal envelop-
ing algebra of upper triangular matrices with zero diagonal, U+(gln). In the latter case the
generators satisfy the Serre relation [ui , [ui ,ui±1]] = 0. One more example is given by the
Heisenberg algebra with [ui ,ui+1] = 0. In relation to the Trotterised circuits, we note that if
we require the semi-group relation to be satisfied only for infinitesimal times t (i.e. for such
t1,2 that the products t1 t2 and higher orders can be neglected) then the exponential form can
be generalised for b ̸= 0 in Eq. (29). We note that in the present paper we do not require
the regularity condition, e.g. the last identity in (26), which opens a room for more general
R-matrices.

3.5 Some possible future directions

Up to now, we would like to point out a few directions that could be interesting to pursue
further. In this respect we note that integrable quantum circuits can be understood in terms
of the evolution/update of density matrices, not only as the unitary evolution of initial pure
states.

• Non-regular circuits and higher dimensions. In his 1978 paper [78] R. Baxter intro-
duced a solvable version of the eight-vertex model (which he called “Z-invariant model”)
on an arbitrary lattice formed by a planar set of intersecting straight lines provided that
no three lines intersect at a point. In particular, this can be a kagome lattice, detailed
in [78], but any irregular lattice satisfying the property above works, quasicrystals in
particular [79]. We also note that higher-dimensional generalisations are, at least in
principle, possible using the Zamolodchikov tetrahedron equation [80]. We believe that
these integrable cases are natural extensions of the regular brick-wall protocol in Fig. 3.

5Note that the Temperley–Lieb algebra is a quotient of the Hecke algebra.
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• Monitored circuits. Proliferation of entanglement, generated by the unitary time evolu-
tion, competes with entanglement collapse due to local projective measurements, which
leads to the entanglement-type phase transitions. Various protocols were introduced
recently in the realm of random unitary circuits [81–83]. While most of the works focus
on numerics, we believe that monitored integrable circuits could provide some analytic
insights into this type of transitions. Since measurement is defined by the insertion of
projection operators (e.g. (1±σz)/2 in the spin-1/2 case) at certain space-time points of a
circuit, the problem may be translated into the task of evaluating multiple time-dependent
correlation functions. For a spin-1/2 example above, a two-point projective measure-
ment corresponds to a problem of evaluating the sum of zero-, one-, and two-point
time-dependent correlation functions of σz operators. While certain steady progress
in computing these correlation functions for integrable spin lattice models exists, see
e.g. [84–86] for recent developments, these results are still too complicated to extract
any analytical insights.

• Dissipative integrable circuits. The concept of integrability can be extended to the
realm of open quantum system dynamics of the density matrices [87–90]. Recently,
several groups started investigating integrable dissipative circuits [18,20,91]. We believe
that this is an interesting future direction by itself, which hopefully could unveil novel
universality classes of dissipative quantum systems.

4 Floquet Baxterisation

In this section we present the procedure of the Floquet Baxterisation, i.e. finding the transfer
matrices of certain integrable models that commute with the proposed Floquet evolution
operators. We start with defining the Floquet evolution operator, describing the time evolution
of a Floquet quantum circuit with depth n ∈ Z+. Then we prove that the previously defined
Floquet evolution operator commutes with the inhomogeneous transfer matrices of a certain
integrable vertex model, which contain one additional spectral parameter. Even though the
procedure differs from the original Baxterisation construction by Jones [92], the philosophy
here is the same. Namely, one introduces an additional spectral parameter to certain transfer
matrices (in our case, the Floquet evolution operators), which are in involution guaranteed by
the Yang–Baxter integrability.

Before we start to state the main theorems, we would like to make a few remarks. We note
that previous works on the topic either focus on explicit examples [13–18] or make certain
assumptions such as the regularity of the R-matrix [19,20], cf. (10). In this work, we present
the most general construction of the Floquet Baxterisation without making the assumptions
that the R-matrix satisfying the Yang–Baxter equation is regular or is of the difference form.

Moreover, we generalise previous constructions that focus on the Floquet evolution operators
with depth n= 2. Let us focus on the systems with periodic boundary condition here. In the
previous cases, people have considered the Floquet evolution operator with n= 2 (system size
L mod2= 0), i.e.

UF

�

{u j}2j=1

�

=
1
∏

k=2

Vk

�

{u j}2j=1

�

, (30)

where Vk are expressed as products of R matrices,

V2

�

{u j}2j=1

�

= Ř1,2(u1, u2)Ř3,4(u1, u2) · · · ŘL−1,L(u1, u2) ,

V1

�

{u j}2j=1

�

= ŘL,1(u1, u2)Ř2,3(u1, u2) · · · ŘL−2,L−1(u1, u2) .
(31)
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This construction appears in several places under different guises, such as “light-cone Bethe
Ansatz” [13, 14] and “integrable Trotterisation” [15]. It has been shown that the Floquet
evolution operator UF

�

{u j}2j=1

�

commutes with the staggered transfer matrix,

�

UF

�

{u j}2j=1

�

,T
�

u, {u j}2j=1

�

�

= 0 , ∀u ∈ C , (32)

hence integrable. The quantum circuits built on the Floquet evolution operator UF

�

{u j}2j=1

�

can thus be viewed in the brick-wall structure in Fig. 3.
As what Theorem 1 shall explain, our results are more generic, extending to an arbitrary

depth n ∈ Z+. We would like to exemplify here the n= 3 case, before presenting the proof of
the general theorem. We hope that this example would offer the reader a concrete example in
mind while proceeding with the general scenario.

For the depth n= 3 (system size L mod 3= 0), the Floquet evolution operator with depth
n= 3 becomes

UF

�

{u j}3j=1

�

=
1
∏

k=3

Vk

�

{u j}3j=1

�

, (33)

which consists of three parts,

V3

�

{u j}3j=1

�

=
�

Ř1,2(u1, u2)Ř2,3(u1, u3)
��

Ř4,5(u1, u2)Ř5,6(u1, u3)
�

· · ·

× · · ·
�

ŘL−2,L−1(u1, u2)ŘL−1,L(u1, u3)
�

,

V2

�

{u j}3j=1

�

=
�

ŘL,1(u1, u2)Ř1,2(u1, u3)
��

Ř3,4(u1, u2)Ř4,5(u1, u3)
�

· · ·

× · · ·
�

ŘL−3,L−2(u1, u2)ŘL−2,L−1(u1, u3)
�

,

V1

�

{u j}3j=1

�

=
�

ŘL−1,L(u1, u2)ŘL,1(u1, u3)
��

Ř2,3(u1, u2)Ř3,4(u1, u3)
�

· · ·

× · · ·
�

ŘL−3,L−2(u1, u2)ŘL−2,L−1(u1, u3)
�

.

(34)

As we shall show, the Floquet evolution operator with depth n = 3 commutes with the inhomo-
geneous transfer matrices with inhomogeneities of period 3, i.e.

�

UF

�

{u j}3j=1

�

,T
�

u, {u j}3j=1

�

�

= 0 , ∀u ∈ C , (35)

hence integrable too. This construction of Floquet evolution operator of period/depth n= 3
is novel compared to the ones in the literatures as depicted in Fig. 4. By using the Floquet
Baxterisation procedure outlined below, we can easily generalise to higher periods n ≥ 4
following the two examples.

4.1 Floquet Baxterisation with periodic boundary condition: Generic case

Equipped with the notion of Yang–Baxter integrability, and bearing in mind the two examples
above, we are ready to proceed by applying the Floquet Baxterisation to a Floquet evolution
operator with depth n ∈ Z+ with periodic boundary condition.

Theorem 1. The periodic Floquet evolution operator with depth n and the system size L satisfying
L mod n= 0

UF

�

{u j}nj=1

�

=
1
∏

k=n

Vk

�

{u j}nj=1

�

,

Vk

�

{u j}nj=1

�

=
L/n
∏

m=1

n−1
∏

j=1

Řn(m−1)+k+ j,n(m−1)+k+ j+1(u1, u j+1) ,

(36)
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Figure 4: Demonstration of the brick-wall circuits with period/depth n= 3.

is integrable, i.e.
�

UF

�

{u j}nj=1

�

,T
�

u, {u j}nj=1

�

�

= 0 , ∀u ∈ C , (37)

where the inhomogeneous transfer matrix is defined in Eq. (7). The inhomogeneous transfer matrix
T(u, {u j}nj=1) is regarded as the Baxterised Floquet evolution operator.

We call Theorem 1 the Floquet Baxterisation, making the connection between the Floquet
evolution operator (which can be considered as a tilted transfer matrix of the underlying
integrable vertex model [93]) and the inhomogeneous transfer matrix.

Proof. We start with defining the operator W({u j}nj=1) acting on the physical Hilbert space

(CN )⊗L ,

W
�

{u j}nj=1

�

=
�

L/n
∏

m=1

n−1
∏

j=1

Řn(m−1)+ j,n(m−1)+ j+1(u1, u j+1)
�

G−1

= Vn

�

{u j}nj=1

�

G−1 ,

(38)

where the right translation operator G is expressed in terms of permutation operator Pa,b as

G=
L−1
∏

m=1

Pm,m+1 , G−1 =
1
∏

m=L−1

Pm,m+1 . (39)

Taking into account Eq. (4) we immediately see that G translates an arbitrary operator Fm to
the right by one site:

GFmG−1 = Fm+1 . (40)

Similar to the way how we obtain the transfer matrix from the monodromy matrix, we rewrite
the operator W({u j}nj=1) as

W
�

{u j}nj=1

�

= Trb W̃b

�

{u j}nj=1

�

, (41)

W̃b

�

{u j}nj=1

�

=
L/n
∏

m=1



Pb,n(m−1)+1

n−1
∏

j=1

Ra,n(m−1)+ j+1(u1, u j+1)



 . (42)
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Here we have used the properties of the permutation operator together with the “train trick” [52],
i.e.

Pa,b = Pb,a , Pa,bPa,c = Pb,cPa,b , Tra Pa,b = 1b . (43)

The properties of the permutation operator (43) also imply that

Ra,b(u, u1)Ra,m(u, u1)Pb,m = Pb,mRa,m(u, u1)Ra,b(u, u1) . (44)

Together with the Yang–Baxter equation (1), we realise that Ra,b(u, u1) is essentially the
intertwiner between the inhomogeneous monodromy matrix Ma(u, {u j}nj=1) and W̃b({u j}nj=1),

Ra,b(u, u1)Ma

�

u, {u j}nj=1

�

W̃b

�

{u j}nj=1

�

= W̃b

�

{u j}nj=1

�

Ma

�

u, {u j}nj=1

�

Ra,b(u, u1) , (45)

which implies the commutation relation
�

T
�

u, {u j}nj=1

�

,W
�

{u j}nj=1

�

�

= 0 , ∀u ∈ C . (46)

Moreover, using the right translational operator G, we have

Vm

�

{u j}nj=1

�

= Gm−pVp

�

{u j}nj=1

�

Gp−m , (47)

with m, p ∈ {1, 2, · · ·n}. We can therefore express the periodic Floquet evolution operator with
period n [see Eq. (36)] as

UF

�

{u j}nj=1

�

=
1
∏

k=n

Vk

�

{u j}nj=1

�

=Wn
�

{u j}nj=1

�

Gn . (48)

Since the inhomogeneous transfer matrix commutes with Gn,6 it also commute with the periodic
Floquet evolution operator with period n,

�

UF

�

{u j}nj=1

�

,T
�

u, {u j}nj=1

�

�

= 0 , ∀u ∈ C . (49)

From this construction, we define the local Floquet quantum gate acting on n sites,

Um,m+n−1

�

{u j}nj=1

�

=
n−1
∏

j=1

Řm+ j−1,m+ j(u1, u j+1) , (50)

acting on the physical Hilbert space from mth site to (m+ n− 1)th site. The Floquet evolution
operator can be thus expressed as

UF

�

{u j}nj=1

�

=
1
∏

k=n

L/n
∏

m=1

Un(m−1)+k,nm+k−1

�

{u j}nj=1

�

. (51)

The relation to the Floquet dynamics is shown as follows. We define a Hamiltonian with periodic
boundary conditions,

H(n) =
L
∑

m=1

hm,m+1,··· ,m+n−1 , hm,m+1,··· ,m+n−1 =
i
t0

logUm,m+n−1 , t0 ∈R , (52)

6The period in terms of the lattice sites of the inhomogeneous transfer matrix is exactly n, hence commuting
with Gn.
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Figure 5: Diagrammatic demonstration of the Floquet evolution operator with period
2 as a tilted transfer matrix, the so-called “light-cone transfer matrix”.

such that
Um,m+n−1 = exp

�

− it0hm,m+1,··· ,m+n−1

�

. (53)

Then, we divide the Hamiltonian into n parts,

H(n)j =
L/n
∑

m=1

hn(m−1)+ j+1,n(m−1)+ j+2,··· ,nm+ j , H(n) =
n
∑

j=1

H(n)j , (54)

and the Floquet evolution operator becomes

UF({u j}nj=1) =
1
∏

j=n

exp
�

− iH(n)j t0

�

, (55)

describing a Floquet dynamics with Floquet period T = nt0. Note that even though the Floquet
evolution operator is integrable, the Hamiltonian H(n) might not be integrable itself.

Using the graphic representation of the R matrix, we can view the Floquet evolution operator
(36) as a tilted transfer matrix of the underlying vertex model in a cylinder [13, 14, 93], as
shown in Fig. 5. Note that the tilted transfer matrices do not commute with each other generally,
i.e.

�

UF

�

{u j}nj=1

�

,UF

�

{v j}nj=1

�

�

̸= 0 , (56)

when {u j}nj=1 and {v j}nj=1 do not coincide.
The case of n = 2 has been studied in many previous works [13–15]. The cases with depth

n≥ 3 can be obtained analogously, resulting in a different tilted transfer matrix, as illustrated
in Figs. 6 and 7 for n= 3. This is precisely the case exemplified in (35).

We note that the tilted transfer matrices of depth n ≥ 3 for the integrable vertex models
might be useful in the context of thermodynamic limit of integrable vertex models with different
geometries/topologies. Another observation is that the tilted transfer matrices with depth
n≥ 3 are not “symmetric” with respect to the number of left and right directed lines, cf. Fig. 7.
We also note that one can similarly obtain the integrable Floquet evolution operator with local
terms

Ũm,m+n−1 = Řm+n−1,m+n−2(un, un−1) · · · Řm+2,m+1(un, u2)Řm+1,m(un, u1) , (57)

by the same procedure of the Floquet Baxterisation. The relation between the two “chiral”
and “anti-chiral” tilted transfer matrices (Floquet evolution operators) is postponed to future
investigation.
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Figure 6: Diagrammatic demonstration of the local gate Um,m+2 with period 3.

Figure 7: Diagrammatic picture of the Floquet evolution operator with period 3 as a
tilted transfer matrix.

Remark. This construction for integrable Floquet dynamics (or integrable quantum circuits)
with depth n≥ 3 is new. It generalises the known results for the integrable Floquet dynamics
of depth n = 2. The construction is different from the recent results on the medium-range
integrable spin chain, where one can construct integrable Floquet dynamics of depth n = 3 [19].
However, the operator Um,m+2 cannot be decomposed into the product of two Ř operators, as
discussed in this section. We think that there are different mechanisms to construct integrable
Floquet dynamics of period n≥ 3, within which our method is not exhaustive.

4.2 Floquet Baxterisation for regular R matrix

After presenting the results for the generic case, where the regularity condition for the R matrix
(10) is not assumed, for completeness we present the results for the scenario when the R matrix
is regular, which has been studied previously [15,17].

If the R matrix is regular (Ra,b(0,0) = Pa,b) and the inhomogeneity u1 = 0, the Floquet
evolution operator can be expressed directly in terms of the inhomogeneous transfer matrix,
i.e.

W
�

{u j}nj=1

�

�

�

�

u1=0
= T
�

0, {u j}nj=1

�

�

�

�

u1=0
,

UF

�

{u j}nj=1

�

�

�

�

u1=0
= Tn
�

0, {u j}nj=1

�

�

�

�

u1=0
Gn .

(58)

This relation is useful, since we obtain the complete spectrum of the Floquet evolution
operator in terms of the eigenvalues of the inhomogeneous transfer matrix, which in turn can
be expressed in terms of the solutions to the Bethe equations, quantum numbers that label the
eigenstates of integrable transfer matrices.7 This allows us to use thermodynamic Bethe Ansatz
to study the behaviour of the spectra of the Floquet evolution operators in the thermodynamic
limit. A diagrammatic demonstration of the relation between the Floquet evolution operator
and the inhomogeneous transfer matrix with n= 2 is shown in Fig. 8.

7We explain the procedure with the example of the 6-vertex model in Sec. 5.
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Figure 8: Diagrammatic demonstration of the relation between the Floquet evolution
operator and the inhomogeneous transfer matrix with n = 2 when the R matrix is
regular.

4.3 Floquet integrability with reflecting ends

In addition to the Floquet Baxterisation with periodic boundary condition presented in Sec.
4.1, we generalise the construction to the case with reflecting ends (for depth n = 2), i.e. open
boundary condition, using the boundary Yang–Baxter equations. The boundary Yang–Baxter
equations only apply when the R matrix satisfies the following properties [94,95]: (1) the R
matrix is of difference form, cf. (11); (2) the R matrix is regular, cf. (10); (3) the R matrix has
the inversion and crossing symmetries, explained below. We assume the R matrix satisfies all
these properties. Since the R matrix is of difference form, we denote the R matrix as Ra,b(u).
The system size L is assumed to be even to accommodate the depth of the Floquet evolution
operator n= 2.

We begin with defining the inversion and crossing symmetries of the R matrix. The inversion
symmetry of the R matrix means that

Ra,b(u)R
t
a,b(−u) = 1 , (59)

where Rt
a,b := Rta ,tb

a,b , i.e. the transpose of the R matrix in both spaces a and b. Meanwhile, the
crossing symmetry of the R matrix implies the existence of a constant operator va acting on
space a such that

Ra,b(u)∝ vaRtb
a,b(−u−η)v−1

a . (60)

The crossing symmetry (60) can be equivalently expressed as

Rta
a,b(u)waRtb

a,b(−u− 2η)w−1
a ∝ 1 , (61)

where the operator wa is
wa = vt

ava . (62)

When all three properties are satisfied, the boundary Yang–Baxter equations [94,95] read

Ra,b(u− v)K−,a(u)Rb,a(u+ v)K−,b(v) = K−,b(v)Ra,b(u+ v)K−,a(u)Rb,a(u− v) , (63)

Ra,b(−u+ v)Kta
+,a(u)w

−1
a Rt

a,b(−u− v − 2η)waKtb
+,b(v)

= Ktb
+,b(v)waRa,b(−u− v − 2η)w−1

a Kta
+,a(u)R

t
a,b(−u+ v) . (64)
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Using the boundary Yang–Baxter equations, we define the inhomogeneous monodromy
matrix of period n= 2 with open boundaries (reflecting ends)

Mo
a

�

u, {u j}2j=1

�

=Ma

�

u, {u j}2j=1

�

K−,a(u)M
−1
a

�

− u, {u j}2j=1

�

K+,a(u) , (65)

where after using the inversion symmetry (59) we obtain

M−1
a

�

− u, {u j}2j=1

�

= Rt
a,L(u+ u2)R

t
a,L−1(u+ u1) · · ·Rt

a,1(u+ u1)

=
1
∏

m=L/2

Rt
a,2m(u+ u2)R

t
a,2m−1(u+ u1) .

(66)

The inhomogeneous transfer matrix with open boundary is obtained by tracing over the
auxiliary space of the monodromy matrix,

To
�

u, {u j}2j=1

�

= Tra Mo
a

�

u, {u j}2j=1

�

. (67)

Using boundary Yang–Baxter equations (63) and (64), the inhomogeneous transfer matrices
with open boundary condition are thus in involution,

�

To
�

u, {u j}2j=1

�

,To
�

v, {u j}2j=1

�

�

= 0 , ∀u, v ∈ C . (68)

Theorem 2. The Floquet time evolution operator with open boundary condition with system size
L mod2= 0 is defined as

Uo
F(α) =

L/2
∏

m=1

Ř2m−1,2m(−α)K−,L

�α

2

�
L/2−1
∏

m=1

Řt
2m,2m+1(−α)K̃+,1

�α

2

�

, (69)

where
K̃+,1

�α

2

�

= Tra

h

Rt
a,1(−α)K+,a

�α

2

�i

. (70)

The Floquet time evolution operator with open boundary condition is integrable, i.e.
h

Uo
F(α),T

o
�

u,
nα

2
,−
α

2

o�i

= 0 , ∀u ∈ C . (71)

Proof. To begin with, we express the transpose of the R matrix in terms of Ř,

Rt
a,b(u) = Pa,bŘt

a,b(u) . (72)

We consider the inhomogeneous transfer matrix with open boundary at u= u1 = −u2 =
α
2 ,

where the constant α ∈ C,

To
�α

2
,
nα

2
,−
α

2

o�

= Tra





L/2
∏

m=1

(Pa,2m−1Řa,2m(−α)Pa,2m)K−,a

�α

2

�

×
1
∏

m=L/2

(Pa,2mPa,2m−1Řt
a,2m−1(−α))K+,a

�α

2

�



 .

(73)

For the first part of the expression, we move all the permutation operators to the right, i.e.

L/2
∏

m=1

(Pa,2m−1Řa,2m(−α)Pa,2m)K−,a

�α

2

�

=
L/2
∏

m=1

Ř2m−1,2m(−α)K−,L

�α

2

�

G−1Pa,1 , (74)
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Figure 9: Diagrammatic demonstration of the Floquet evolution operator Uo
F(α).

while for the remaining part, we move all the permutation operators to the left,

1
∏

m=L/2

(Pa,2mPa,2m−1Řt
a,2m−1(−α))K+,a

�α

2

�

= Pa,1G
L/2−1
∏

m=1

Řt
2m,2m+1(−α)Ř

t
a,1(−α)K+,a

�α

2

�

. (75)

After multiplying the two parts, we observe that the dependence of the auxiliary space only
exists on the last two terms, with which we could easily perform the operation of taking trace
in the auxiliary space, i.e.

Tra

h

Řt
a,1(−α)K+,a

�α

2

�i

= K̃+,1

�α

2

�

. (76)

Combining all the steps, we arrive at the following identity:

To
�α

2
,
nα

2
,−
α

2

o�

=
L/2
∏

m=1

Ř2m−1,2m(−α)K−,L

�α

2

�
L/2−1
∏

m=1

Řt
2m,2m+1(−α)K̃+,1

�α

2

�

= Uo
F(α) ,

(77)

which means that the Floquet evolution operator with open boundary condition is precisely
the inhomogeneous transfer matrix with open boundary condition with specific choices of the
spectral parameter and inhomogeneities.

Therefore, one has
h

Uo
F(α),T

o
�

u,
nα

2
,−
α

2

o�i

=
h

To
�α

2
,
nα

2
,−
α

2

o�

,To
�

u,
nα

2
,−
α

2

o�i

= 0 , (78)

valid for any u ∈ C, as a consequence of the boundary Yang–Baxter equations.

We can visualise the relation between the Floquet evolution operator with open boundary
condition and the inhomogeneous transfer matrix in Fig. 9.

The Floquet evolution operator with open boundary condition can be used to (partially)
prove the conjectured integrability of a certain class of Temperley–Lieb algebraic Floquet
protocols, which we will elaborate more on in Sec. 5 with the representation of the Temperley–
Lieb (TL) algebra being the 6-vertex model.
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5 Example: Floquet integrability in the staggered 6-vertex model

5.1 The affine Temperley–Lieb algebra

Before discussing integrability of the staggered 6-vertex model, we introduce the affine
Temperley–Lieb (aTL) algebra [2,31]. As we will see shortly, the Lax operator of the staggered
6-vertex model can be expressed in terms of a representation of the aTL algebra.

The aTL algebra is a unital associated algebra with the generators g and
{em|m ∈ {1, 2, · · · L − 1}} that satisfy the relations:

e2
m = βem , emem±1em = em , gem g−1 = em+1 , (79)

where em = em mod L . The aTL algebra is of great use in statistical mechanics, closely related to
various loop and vertex models [2,96,97].

Recently, the authors of [26] found that the integrability criterion for any Floquet protocol
can be written in terms of a representation of the (affine) Temperley–Lieb algebra. Using the
construction of Floquet Baxterisation discussed in Sec. 4 we can readily generalize some of the
results given in [26].

We consider a representation of the aTL algebra on the Hilbert space (CN )⊗L ,

em→ em,m+1 , g → G , (80)

where em,m+1 acts locally on the mth and (m+ 1)th sites. From the aTL algebra, we have the
following R matrix,

Řm,m+1(u) = 1−
sinh(u)

sinh(u+η)
em,m+1 , Rm,m+1(u) = Řm,m+1(u)Pm,m+1 , (81)

where β = 2 coshη. The R matrix (81) satisfies the Yang–Baxter relation (1) of difference form,

Řm,m+1(u− v)Řm+1,m+2(u)Řm,m+1(v) = Řm+1,m+2(v)Řm,m+1(u)Řm+1,m+2(u− v) . (82)

Moreover, the R matrix can be put into the exponential form using the properties (79), i.e.

Řm,m+1(−α) = exp
�

−iTem,m+1

�

= 1+
1
β

�

exp(−iβT )− 1
�

em,m+1 , (83)

where the relation between α and T is

α= −
1
2

log
�

cosh(η+ iT coshη)
cosh(η− iT coshη)

�

+ imπ , m ∈ Z . (84)

Then, using the results of Theorem 1 we construct the integrable Floquet evolution operator
with period n= 2 in terms of the aTL generators, which reads

UF({0,α}) =
L/2
∏

m=1

Ř2m−1,2m(−α)
L/2
∏

m=1

Ř2m,2m+1(−α)

=
L/2
∏

m=1

exp
�

−iTe2m−1,2m

�

L/2
∏

m=1

exp
�

−iTe2m,2m+1

�

,

(85)

confirming one of the results of [26], which states that the Floquet evolution operator

UF(x) =
∏

m

�

1+ xe2m−1

�

∏

m

�

1+ xe2m

�

, (86)

is integrable for em taking any representation of the (affine) Temperley–Lieb algebra. It is easy
to see that the Floquet evolution operator in (85) is a special case of (86).

We discuss the case of open boundary condition (which requires considering representations
of the usual Temperley–Lieb algebra instead of the affine one) in Sec. 5.3.
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5.2 The staggered 6-vertex model

From now on, let us focus on a specific representation of the aTL algebra, where the underlying
integrability structure of the Floquet evolution operator (85) with depth n = 2 is the staggered
6-vertex model (with even system size L). In this case, we introduce the operators em,n acting
on the Hilbert space (C2)⊗L (with periodic boundary condition em,L+1 = em,1)

em,n =
q+ q−1

4
−

1
2

�

σx
mσ

x
n +σ

y
mσ

y
n +

q+ q−1

2
σz

mσ
z
n

�

−
q− q−1

4
(σz

m −σ
z
n) , (87)

with β = q + q−1 = 2coshη, i.e. q = exp η. One can easily check that the operators em,m+1
provide a representation of the aTL algebra (79). We also need the operator G, the right
translation operator on (C2)⊗L ,

G=
L−1
∏

m=1

Pm,m+1 , Pa,b =
1
2
(σ⃗a · σ⃗b +1) . (88)

The quantum spin-1/2 XXZ model is expressed in terms of the aTL generators [96],

HXXZ = −
L
∑

m=1

em,m+1 . (89)

From the representation of the aTL algebra (15), the R matrix of the 6-vertex model
reads [2,96]

Řa,m(u) = 1a,m −
sinh u

sinh(u+η)
ea,m ,

Ra,m(u) = Řa,m(u)Pa,m

=
1

sinh(u+η)







sinh(u+η) 0 0 0
0 sinh u eu sinhη 0
0 e−u sinhη sinh u 0
0 0 0 sinh(u+η)






,

(90)

satisfying Yang–Baxter relations (2), (1) and (5).
For the purpose of studying the properties of the Floquet evolution operator (85), we

concentrate on the staggered monodromy matrix,8

Ma(u,α) =
L/2
∏

m=1

Ra,2m−1(u)Ra,2m(u−α) =
�

A(u,α) B(u,α)
C(u,α) D(u,α)

�

a
. (91)

The staggered transfer matrix is defined as

T(u,α) = [sinh(u+η) sinh(u−α+η)]L/2 Tra Ma(u,α) , (92)

where the scalar prefactor is included for later convenience. From the Yang–Baxter relation
(2), we have

Ra,b(u, v)Ma(u)Mb(v) =Mb(v)Ma(u)Ra,b(u, v) . (93)

Therefore, the staggered transfer matrices are in involution, i.e.

[T(u,α),T(v,α)] = 0 , ∀u, v ∈ C . (94)

8We set the inhomogeneities u1 = 0, u2 = α without losing generality due to the properties of the R matrix (11).
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In fact, the Yang–Baxter equation (2) implies that the relations between the “quantum operators”
[ i.e. A(u,α), B(u,α), C(u,α) and D(u,α)] are the same as for the algebraic Bethe Ansatz in
the homogeneous case.

In order to find the eigenvalues of the Floquet evolution operator, we need to obtain the
complete spectrum of the staggered transfer matrix first. In fact, the (unnormalised) eigenstates
of the staggered transfer matrix are labelled by the set of quantum numbers {um}Mm=1, the so
called Bethe roots or rapidities, as follows from the algebraic Bethe Ansatz:

|{um}Mm=1〉=
M
∏

m=1

B(um,α)| ⇑〉 , (95)

where the ferromagnetic pseudo-vacuum is | ⇑〉 = | ↑↑ · · · 〉. In addition, the Bethe roots are
zeros of the eigenvalues of the Baxter’s Q operator,

Q(u)|{um}Mm=1〉=
M
∏

m=1

sinh(u− um)|{um}Mm=1〉 , (96)

where the Q operator satisfies the renowned TQ relation [2] with the staggered transfer matrix,

T(u,α)Q(u) = T0(u+η)Q(u−η) + T0(u)Q(u+η) , (97)

where the scalar function T0 is

T0(u,α) =
L
∏

n=1

sinh(u− ξn) = [sinh(u) sinh(u−α)]L/2 . (98)

The Q operator commutes with the staggered transfer matrix, and it can be constructed from the
∞-dimensional highest weight representation of the underlying quantum group Uq(sl2) [98].
The factorisation of the transfer matrices in the homogeneous limit in [98] can be applied to
the inhomogeneous cases too. We postponed the algebraic constructions of the Q operator to
future work.

By taking the limit u→ um, we obtain a set of non-linear equations that the Bethe roots
must satisfy, i.e. the Bethe equations [3],

�

sinh(um +η) sinh(um −α+η)
sinh um sinh(um −α)

�L/2

=
M
∏

n̸=m

sinh(um − un +η)
sinh(um − un −η)

. (99)

Defining λm = um −
α
2 +

η
2 , we have

�

sinh(λm +α/2+η/2) sinh(λm −α/2+η/2)
sinh(λm +α/2−η/2) sinh(λm −α/2−η/2)

�L/2

=
M
∏

n̸=m

sinh(λm −λn +η)
sinh(λm −λn −η)

. (100)

When α ∈ R, the values of λm satisfy certain constraints, as shown in Appendix B.
When the value of q is at root of unity (qn = 1, n ∈ Z+), there exist solutions with Bethe

roots belonging to the so called “exact strings”, similar to the homogeneous case studied
in [99–101]. In this case, the algebraic Bethe Ansatz (ABA) for the staggered 6-vertex model
becomes subtle. However, construction of the Q operator and the eigenstates with “exact
strings” is very similar to the homogeneous case, which has been demonstrated in [98,102].
We postpone the discussion on the details about the impact of the “exact strings” to future work.
Meanwhile, the existence of the “exact strings” does not affect the eigenvalues of the transfer
matrix, hence the results of the present work remain correct even at root of unity values of q.
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The eigenvalues of the staggered transfer matrix for any eigenstate are expressed in terms
of the Bethe roots, i.e.

T(u,α)|{um}Mm=1〉= [T0(u+η)Q(u−η) + T0(u)Q(u+η)]Q
−1(u)|{um}Mm=1〉

= τ(u,α, {um}Mm=1)|{um}Mm=1〉 ,
(101)

τ(u,α, {um}Mm=1) =
1

∏M
m=1 sinh(u− um)

�

[sinh(u+η) sinh(u−α+η)]L/2

×
M
∏

m=1

sinh(u− um −η) + [sinh(u) sinh(u−α)]L/2
M
∏

m=1

sinh(u− um +η)
�

.

(102)

Before we move to the spectrum of the Floquet evolution operator, we would like to take a
look at the local conserved charges of the staggered 6-vertex model. In order to construct the
conserved charges with a local density, we define a two-row transfer matrix T̃(u,α),

T̃(u,α) = T(u,α)T(u+α,α) . (103)

The physical momentum is defined through

T̃(0,α)
�

sinh2η sinh(η−α) sinh(η+α)
�L/2

= G−2 = exp(−ip) . (104)

For a Bethe state |{um}Mm=1〉 one has

G−2|{um}Mm=1〉=
M
∏

m=1

sinh(um +η) sinh(um −α+η)
sinh(um) sinh(um −α)

|{um}Mm=1〉 . (105)

Thus the momentum eigenvalue of the eigenstate |{um}Mm=1〉 becomes

i
M
∑

m=1

log
sinh(um +η) sinh(um −α+η)

sinh(um) sinh(um −α)
. (106)

We obtain the staggered Hamiltonian by taking the logarithmic derivative of the two-row
transfer matrix

Hst =
sinhη

2
∂u log T̃(u,α)

�

�

�

�

u=0
. (107)

The staggered Hamiltonian can be nicely expressed in terms of the TL generators, i.e.

Hst = −
L
∑

m=1

�

em +
sinh2α coshη

cosh(2η)− cosh(2α)
{em,em+1} − (−1)m

sinhα coshα sinhη
cosh(2η)− cosh(2α)

[em,em+1]

−
coshη(cosh(2η)− cosh2α)

cosh(2η)− cosh(2α)

�

, (108)

where em := em,m+1. This staggered Hamiltonian coincides with the first non-trivial conserved
quantity found in [26] [see Eq. (17)] with periodic boundary condition. It also precisely
recovers the corresponding expression in [35] up to a constant. As discussed in Sec. 3.1, this
Hamiltonian is nothing else that the lattice limit of the black hole sigma model (non-compact
CFT), which we shall not repeat again.
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5.3 Floquet time evolution operator: Open boundary condition

When we consider the case with open boundary condition, the aTL algebra reduces the TL
algebra,9 whose representation on (C2)⊗L is the centralizer of the representation on the same
space of the quantum group Uq(sl2) [96] due to the quantum Schur–Weyl duality. Subsequently,
this leads to the renowned quantum group invariant spin-1/2 XXZ model that can be studied
through the representation theory of Uq(sl2) [96,103]. In the context of the Floquet evolution
operator with open boundary condition, we need to study the inhomogeneous transfer matrix
of the staggered 6-vertex model with open boundary condition.

Since the R matrix satisfies the regularity (10), inversion (59) and crossing symmetries (60)
and (61), the boundary Yang–Baxter relations also hold for the 6-vertex R matrix. We take a
slight detour to present a special choice of the K matrices that correspond to the Uq(sl2)-invariant
Floquet evolution operator [96].

In the case of the R matrix in (90), for the crossing symmetries (60) and (61), we have

va =

�

0 e−η/2

eη/2 0

�

a
, wa = vt

ava =

�

eη 0
0 e−η

�

a
. (109)

Let us consider the Uq(sl2)-invariant case. Then, the boundary K matrices that satisfy the
boundary Yang–Baxter relations (63) and (64) are independent of the spectral parameter u, i.e.

K+,a(u) = K+,a =wa , K−,a(u) = K−,a = 1a . (110)

Moreover,

K̃+,1(−α/2) = Tra

�

Řa,1(−α)K+,a

�

=
sinh(2η−α)
sinh2(η−α)

. (111)

Therefore, the Uq(sl2)-invariant Floquet evolution operator (with open boundaries) becomes

Uo
F(α) = sinhL−2(η−α) sinh(2η−α)

L/2
∏

m=1

Ř2m−1,2m(−α)
L/2−1
∏

m=1

Ř2m,2m+1(−α) . (112)

The Uq(sl2)-invariant Floquet evolution operator coincides with the Floquet evolution operator
in [26] when using the representation in (15). This result demonstrates a special case of the
Floquet integrability associated with the TL algebra, conjectured in [26]. The corresponding
staggered 6-vertex model with open boundary condition has been studied in [36], where the
low-energy spectrum are discussed. The charges with local density found in [26] for the TL
representation in Eq. (15) can be obtained by taking the logarithmic derivatives of the staggered
transfer matrix with open boundary condition [36].

5.4 Spectrum of the Floquet evolution operator

We now return our focus to the Floquet evolution operator with periodic boundary condition.
Using the properties (79) of the aTL generators, the Floquet evolution operator UF(T ) can be
written as the products of the exponentials of the aTL generators (85),

UF(T ) := UF({0,α}) =
L/2
∏

m=1

exp
�

−iTe2m−1,2m

�

L/2
∏

m=1

exp
�

−iTe2m,2m+1

�

. (113)

This Floquet evolution operator UF(T ) generates the Floquet stroboscopic time evolution of the
following protocol with Floquet period 2T ,

H(t) =

¨

H1 =
∑L/2

m=1 e2m−1,2m , 0≤ t < T ,

H2 =
∑L/2

m=1 e2m,2m+1 , T ≤ t < 2T ,
H(t + 2T ) = H(t) . (114)

9In our case, the TL algebra can be easily obtained by neglecting the generators eL and g in the aTL algebra.
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It is physical to consider the Floquet period 2T ∈ R+.
The relation between the spectral parameter α and the Floquet period 2T is given in (84).

The Floquet Hamiltonian HF is the effective Hamiltonian of the Floquet evolution operator,

UF(T ) =
L/2
∏

m=1

�

1+
exp(iβT )− 1

β
e2m−1,2m

� L/2
∏

m=1

�

1+
exp(iβT )− 1

β
e2m,2m+1

�

=
L/2
∏

m=1

Ř2m−1,2m(−α)
L/2
∏

m=1

Ř2m,2m+1(−α)

= exp (−2iHF(α)T ) ,

(115)

with α = α(T ) as in (84). The extra factor of 2 is due to the fact that the total Floquet period is
Ttotal = 2T .

The relation between the Floquet evolution operator and the staggered 6-vertex transfer
matrix is

UF(T ) =
1

[sinhη sinh(η−α)]L/2
T2(0, {0,α})G2 , (116)

which allows us to obtain the eigenvalues of the Floquet evolution operator in terms of the
Bethe roots using (101) and (105),

UF(T )|{um}Mm=1〉=
M
∏

m=1

sinh(um +η) sinh(um −α)
sinh(um) sinh(um −α+η)

|{um}Mm=1〉

=
M
∏

m=1

sinh(λm +α/2+η/2) sinh(λm −α/2−η/2)
sinh(λm +α/2−η/2) sinh(λm −α/2+η/2)

|{um}Mm=1〉 .

(117)

In the meantime, the Floquet Hamiltonian is

HF(T ) =
i

2T
logUF(T )

=
i
T

log
T(0, {0,α})

[sinhη sinh(η−α)]L/2
−

1
2T

p ,
(118)

where the momentum is defined in Eq. (104),

p= −i logG2 . (119)

Therefore, the eigenvalues of the Floquet Hamiltonian become

HF(T )|{um}Mm=1〉=
i

2T

M
∑

m=1

log
sinh(um +η) sinh(um −α)
sinh(um) sinh(um −α+η)

|{um}Mm=1〉

=
i

2T

M
∑

m=1

log
sinh(λm +α/2+η/2) sinh(λm −α/2−η/2)
sinh(λm +α/2−η/2) sinh(λm −α/2+η/2)

|{um}Mm=1〉 .

(120)

In general, the Floquet Hamiltonian cannot be expressed in terms of local operators.
We now move on to study under what circumstance the eigenvalues of the Floquet Hamil-

tonian are real, or equivalently, the eigenvalues of the Floquet evolution operator locate on the
unit circle.

We start with the easy-axis and isotropic regime (η ∈ R or |∆| ≥ 1). In this case, the
inhomogeneity parameter α ∈ iR with T ∈ R+ by solving (84). The isotropic limit |∆|= 1 is
discussed in Appendix C.
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Using the properties of the aTL generators (79), we obtain

Řa,b(α)Řa,b(−α) = Řa,b(−α)Řa,b(α) = 1 . (121)

Moreover, since in the easy-axis and isotropic regime one has α ∈ R, and

e†
a,b = ea,b , η ∈ R , (122)

we immediately obtain
Ř†

a,b(α) = Řa,b(−α) = Ř−1
a,b(α) . (123)

This implies that the Floquet evolution operator UF(α) is unitary, i.e.

U†
F(T )UF(T ) = UF(T )U

†
F(T ) = 1 , η ∈ R . (124)

Equivalently, in this case the Floquet Hamiltonian is Hermitian. i.e. has a real spectrum.
Therefore, in the easy-axis and isotropic regime, the Floquet evolution operator generates a
unitary time evolution, or a unitary quantum circuit.

It turns out that the situation is different for the easy-plane regime, i.e. η ∈ iR/{0} (|∆|< 1),
as the Floquet evolution operator UF(T) is no longer unitary. Moreover, the eigenvalues of
HF(T) acquire a non-zero imagianry part at a certain value of T , leading to a (dynamical)
phase transition between the anti-unitary symmetric and anti-unitary symmetry broken phases,
which are highlighted as follows.

In the easy-plane regime (η ∈ iR/{0} or |∆| < 1), the Floquet evolution operator UF(T)
becomes non-unitary. The reason is that

e†
a,b ̸= ea,b , η ∈ iR/{0} , (125)

and therefore
U†

F(T ) ̸= UF(−T ) = U−1
F (T ) , η ∈ iR/{0} . (126)

Since the Floquet evolution operator is not unitary, we do not expect the eigenvalues of the
Floquet evolution operator to locate along the unit circle. Thus, let us take a closer look at the
eigenvalues of the Floquet evolution operator in terms of Bethe roots (117). Using the results
of Appendix B, one can show that λn belongs to one of the following three categories:

• λn ∈ R,

• Im λn =
π
2 , i.e. single Bethe root with imaginery part being π/2 (also known as odd-

parity Bethe root in the literatures),

• {λm}Mm=1 contains both λn and λ̄n , i.e. bound states with string centre at the real axis
(which implies that the Bethe roots of the bound state are in complex conjugate pairs),

for η ∈ iR/{0} and α ∈ R. This implies that the eigenvalues of the Floquet evolution operator
are uni-modular, i.e.
�

�

�

�

�

M
∏

m=1

sinh(λm +α/2+η/2) sinh(λm −α/2−η/2)
sinh(λm +α/2−η/2) sinh(λm −α/2+η/2)

�

�

�

�

�

= 1 , η ∈ iR/{0} , α ∈ R . (127)

Therefore, the eigenvalues of the Floquet Hamiltonian

HF(α) =
i logUF(α)

2T
, (128)
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Figure 10: α as a function of βT with η = iπ/3. The blue and red curves depict Reα
and Imα changing with βT , respectively. Note that Reα diverges at βT = π± 2iη.

are real with η ∈ iR/{0} and α ∈ R. In this case, the Floquet Hamiltonian can be transformed
into a Hermitian Hamiltonian via a similarity transformation x,

H′F(α) = xHF(α)x
−1 ,
�

H′F(α)
�†
= H′F(α) . (129)

The Hermiticity condition of H′F(α) can be rewritten as

XHF(α) = H†
F(α)X , X= x†x , (130)

where the Hermitian operator X is known as the Dyson map [104].
For any eigenstate of HF(α) |ψ〉 with eigenvalue E, we have

xHF(α)|ψ〉= Ex|ψ〉= H′F(α)x|ψ〉 . (131)

Hence, HF(α) has the same real spectrum as the Hermitian operator H′F(α). Their eigenstates
are related by the operator x. When Hermitian operator X is positive and invertible, the Floquet
Hamiltonian is pseudo/quasi-Hermitian [105]. From the Dyson map, we are able to define
proper inner product for the left and right eigenstates of the Floquet Hamiltonian. A detailed
discussion on this can be found in [106].

The exact form of the Dyson map X can be constructed from the (left and right) eigenstates
of the Floquet Hamiltonian HF. Moreover, when the Floquet Hamiltonian contains Jordan blocks
after block-diagonalising the matrix, the Hermitian operator X contains further complications,
as shown in [107]. We shall leave the investigation of the exact form of the Dyson map X to
future work.

Above all, from (84) that relates the inhomogeneity α and the Floquet period 2T and Fig.
10, we observe that the imaginary part of α experience a π

2 jump, which implies a sudden
change with respect to the spectra of the Floquet evolution operators.

In the case η ∈ (0, π2 ]i, we define two separate regimes

I : α ∈ R ⇒ T ∈
�

0,
π+ 2iη
2 coshη

�

∪
�

π− 2iη
2 coshη

,
π

coshη

�

, (132)

and

II : Imα=
π

2
⇒ T ∈
�

π+ 2iη
2 coshη

,
π− 2iη
2 coshη

�

, (133)
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Figure 11: Spectrum of the Floquet evolution operator UF(T ) with η = i/2 (not at root
of unity) and system size L = 6. T = π+2iη−0.1

2 coshη , π+2iη
2 coshη (phase transition), π+2iη+0.1

2 coshη
for the panels from left to right respectively.

where the period T is defined modulo π
coshη . In Regime I we have Imα = 0, while in Regime II

one has Imα= π
2 .

Similarly, for η ∈ (π2 ,π)i, we define the two regimes accordingly

I : α ∈ R ⇒ T ∈
�

0,
−π− 2iη
2coshη

�

∪
�

3π+ 2iη
2coshη

,
π

coshη

�

, (134)

and

II : Imα=
π

2
⇒ T ∈
�−π− 2iη

2coshη
,
3π+ 2iη
2coshη

�

. (135)

From (127), we know that in Regime I the eigenvalues of the Floquet evolution operator
are uni-modular (the eigenvalues of the Floquet Hamiltonian are real). However, we cannot
generalise the argument to the Regime II. Instead, we numerically diagonalise the Floquet
evolution operators with finite system sizes, as described in Figs. 11 and 13. Interestingly, we
find out that the eigenvalues of the Floquet evolution operator are no longer uni-modular in
Regime II. When taking into account the Floquet Hamiltonian, the results above are equivalent
to the fact that the eigenvalues of the Floquet Hamiltonian are complex in Regime II. Moreover,
the same behaviour occurs with any system size L mod 2 = 0. We shall expand on this point in
Sec. 6.2.

6 Dynamical anti-unitary symmetry breaking in the easy-plane
regime

In this section we concentrate on the easy-plane regime, i.e. η ∈ iR/{0} (|∆|< 1).

6.1 Anti-unitary symmetry of the Floquet Hamiltonian

As we have shown in the previous sections, the Floquet Hamiltonian HF is not unitary when we
are in the easy-plane regime. In addition, we show that the Floquet Hamiltonian has a real
spectrum in Regime I of Fig. 15. There have been numerous studies on the non-Hermitian
systems with real spectra, which usually possess the so-called PT symmetry (or more generally
anti-unitary symmetry) [105–108]. In the case of the Floquet Hamiltonian that we consider, it
commutes with an anti-unitary operator, which can be seen as a generalisation of the usual
PT symmetry. We demonstrate the anti-unitary symmetry of the Floquet Hamiltonian HF as
follows.
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Figure 12: Spectra of the Floquet Hamiltonian HF(T) with η = i/2 (not at root of
unity) and system size L = 6. T = π+2iη−0.1

2 coshη , π+2iη
2coshη (phase transition), π+2iη+0.1

2coshη for
the figures from left to right respectively.

To begin with, we define the parity and time reversal symmetries on quantum lattice models.
The parity symmetry is defined as

P : Om→ OL−m+1 , (136)

or equivalently, the parity conjugation operator is

P =
L/2
∏

m=1

Pm,L−m+1 . (137)

From its definition, parity conjugation operator is unitary.
As for the time reversal symmetry, it is defined as

T : Om→ Ōm , (138)

which is anti-unitary [109,110].
Using the properties of two symmetries, we arrive at

P2 = T 2 = 1 , [P ,T ] = 0 . (139)

We define an anti-unitary operator A as the combination of the PT operator and the right
translation opeartor G (88),

A= GPT , A−1 = PT G−1 . (140)

In the following, we shall show that the (non-Hermitian) Floquet Hamiltonian in both
Regime I and II commutes with the anti-unitary operator A.

From the properties of the aTL generators (79), we have

Pem,m+1P = eL−m,L−m+1 , (141)

T ea,bT = ēa,b =
q+ q−1

2
−
�

σx
aσ

x
b +σ

y
aσ

y
b +

q+ q−1

2
σz

aσ
z
b

�

−
q− q−1

2
(σz

b −σ
z
a)

= eb,a , η ∈ iR .

(142)

As for the inhomogeneity α ∈ C, we have

T sinhα
sinh(η−α)

T = − sinh ᾱ
sinh(η+ ᾱ)

, ∀η ∈ iR/{0} . (143)
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Hence, acting the operator A to the R matrix, we obtain

AŘm,m+1(−α)A−1 = ŘL−m+1,L−m+2(ᾱ) . (144)

Now we would like to investigate how the Floquet evolution operator changes under the
action of anti-unitary operator A. From (36), we decompose the Floquet evolution operator
into two parts,

UF(T ) = UF({0,α}) = V2(α)V1(α) ,

V2(α) =
L/2
∏

m=1

Ř2m−1,2m(−α) , V1(α) =
L/2
∏

m=1

Ř2m,2m+1(−α) .
(145)

We start with V2(α), i.e.

AV2(α)A−1 =A
L/2
∏

m=1

Ř2m−1,2m(−ᾱ)A−1

=
L/2
∏

m=1

ŘL−2m,L−2m+1(ᾱ) = V1(−ᾱ) .

(146)

Similarly, for the operator V1(α),

AV1(α)A−1 = V2(−ᾱ) . (147)

Together we obtain
AUF(α)A−1 = V1(−ᾱ)V2(−ᾱ) . (148)

Moreover, it is straightforward to derive the following inversion formulae

V j(α)V j(−α) = V j(−α)V j(α) = 1 , j ∈ {1,2} , (149)

from (121).
If we consider the case when α ∈ R, we obtain

AUF(α)A−1 =AV(α)W(α)A−1 =W(−α)V(−α) = U−1
F (α) . (150)

Since the Floquet evolution operator is the exponential of the Floquet Hamiltonian, we
have

AUF(T )A−1 =Aexp (−2iHF(T )T )A−1

= exp
�

2iAHF(T )A−1T
�

= exp (2iHF(T )T ) = U−1
F (T ) .

(151)

This implies that the Floquet Hamiltonian is invariant under the anti-unitary operator A when
α ∈ R, i.e.

AHF(T )A−1 = HF(T ) , (152)

when α ∈ R.
Moreover, when Imα= π

2 , we have

ᾱ= α− iπ . (153)

Since α is defined up to iπ, cf. (117), we have

UF({0,−ᾱ}) = UF({0,−α}) , α− i
π

2
∈ R , (154)
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Figure 13: Spectra of the Floquet evolution operator UF(T ) with η = iπ/3 (at root of
unity) and system size L = 6. T = π+2iη−0.1

2 coshη , π+2iη
2coshη (phase transition), π+2iη+0.1

2coshη for
the figures from left to right respectively.

i.e.

AUF(T )A−1 = U−1
F (T ) ,

AHF(T )A−1 = HF(T ) , α− i
π

2
∈ R .

(155)

Since in Regime I α ∈ R and in Regime II Imα = π
2 , the Floquet Hamiltonian HF commutes

with A with all possible values of the Floquet period 2T ∈ R+ in the easy-plane regime, despite
being non-Hermitian.

6.2 Dynamical breaking of anti-unitary symmetry in the easy-plane regime

Even though the Floquet Hamiltonian HF commutes with the anti-unitary operator A as shown
above, it is not enough to assert that all the (right) eigenstates of the Floquet Hamiltonian are
also the eigenstates of the anti-unitary operator A [111].

However, we can already deduce some properties of the eigenvalues of the Floquet Hamil-
tonian HF. Assume that all the (right) eigenstates |ψ〉 of the Floquet Hamiltonian HF(T ) are
also eigenstates of the anti-unitary operator A in certain range of values of T , i.e.

HF(T )|ψ〉= Eψ|ψ〉 , A|ψ〉= λ|ψ〉 . (156)

Therefore, all the eigenvalues in this case must be real, i.e.

AHF(T )|ψ〉= ĒψA|ψ〉= EψA|ψ〉 , (157)
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Figure 14: Spectra of the Floquet Hamiltonian HF(T ) with η = iπ/3 (at root of unity)
and system size L = 6. T = π+2iη−0.1

2 coshη , π+2iη
2 coshη (phase transition), π+2iη+0.1

2 coshη for the
figures from left to right respectively.
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i.e. Eψ = Ēψ ∈ R. We denote this phase as the GPT symmetric phase, since the anti-unitary
symmetry is preserved (not broken) for all the eigenstates.

However, if there exist eigenstates of the Floquet Hamiltonian that are not eigenstates of the
anti-unitary operator A in another phase, we denote the phase as the GPT symmetry broken
phase. In this scenario, we start with an eigenstate of the Floquet Hamiltonian |ψ〉 which is
not an eigenstate of A,

HF(T )|ψ〉= Eψ|ψ〉 , A|ψ〉= |ϕ〉��∝|ψ〉 . (158)

In this case, we have
HF(T )|ϕ〉=AHF(T )|ψ〉= Ēψ|ϕ〉 , (159)

i.e. the spectrum of HF(T ) consists of complex conjugate pairs in the GPT symmetry broken
phase.

When the condition (132) or (134) is satisfied, i.e. in Regime I, the spectrum of UF(T)
is uni-modular and the spectrum of the Floquet Hamiltonian HF(T ) is real, as demonstrated
in the left figures of Figs. 11, 12 and 13, 14. Therefore, Regime I corresponds to the GPT
symmetric phase. Meanwhile, when the condition (133) or (135) is satisfied, i.e. in Regime II,
due to the anti-unitary symmetry, the spectrum of the Floquet Hamiltonian HF(T ) is no longer
real, but consists of complex conjugate pairs, as shown in the right figures of Figs. 12 and
14. Hence, Regime II corresponds to the GPT broken phase. We expect a “phase transition”
occurring between the two phases. This phenomenon is demonstrated in Figs. 11, 12 and 13,
14: in Regime I the spectrum of UF(T) is uni-modular, denoting the GPT symmetric phase,
cf. the left figures of Figs. 11 and 13; when T = π±2iη

2coshη (mod π
coshη), i.e. the phase transition,

the eigenvalues of UF(T ) attain additional discrete symmetries, cf. the middle figures of Figs.
11 and 13; in Regime II the spectrum of UF(T) is no longer uni-modular, denoting the GPT
broken phase, cf. the right figures of Figs. 11 and 13.

Remarks. The phase transition that we observe here is different from the conventional phase
transition originated from the spontaneous breaking of a unitary symmetry in a Hermitian
system. First of all, the phase transition here is a property of the entire spectrum, while the
conventional phase transition is usually about the property of the ground state(s). Furthermore,
the phase transition here does not require the thermodynamic limit (i.e. system size goes to
infinity), as we observe the same behaviour of the spectra of the Floquet evolution operator for
different system sizes. Moreover, at root of unity η= iπ/2 (β = 0), we need to analyses the
phases differently, since (84) does not apply any more. In that case, the phase transition is still
present, but with finite T (βT → 0), which is discussed in [48].

6.3 Phase transition at root of unity: conjecture of the spectra

As we discussed in the previous sections, the phase transition between the anti-unitary symmetry
preserved and broken phases happens throughout the entire easy-plane regime. In addition,
we observe that the spectra of the Floquet evolution operators behave in a special way at root
of unity anisotropies, i.e.

qϵℓ2 = 1 , η= iπ
ℓ1

ℓ2
, with ϵ =

¨

2 , if ℓ1 is odd,

1 , if ℓ1 is even.
(160)

More specifically, when we are at the phase transition point, i.e. α→ ±∞, the Floquet
evolution operator becomes

UF({0,±∞}) =
L/2
∏

m=1

�

1− e∓ηe2m−1,2m

�

L/2
∏

m=1

�

1− e∓ηe2m,2m+1

�

. (161)
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Figure 15: Left figure: Phase diagram in the easy-plane regime. When the system is in
Regime I, the spectrum of the Floquet Hamiltonian is real and it possesses the GPT
symmetry. On the contrary, in Regime II, the spectrum of the Floquet Hamiltonian
is complex and the GPT symmetry is broken. Anisotropic parameter η= iγ. Right
figure: Demonstration of how the eigenvalues of UF(T) change across the phase
transition. We start with eigenvalues of UF within Regime I, which are depicted as
blue diamonds. When we are approaching the phase transition, the blue diamonds
move toward each other and becomes degenerate at the black dot at phase transition
(which is the root of unity value conjectured in (162) if the anisotropy is at root of
unity too). When we cross the phase transition into Regime II, the eigenvalues (as
the orange squares) are no longer necessarily uni-modular and they move away from
the black dot in the complex plane.

The eigenvalues of this scenario are shown in the middle figures of Figs. 11 and 13.
Interestingly, when the anisotropy ∆ is at root of unity value, i.e. the case of Fig. 13, we

conjecture that eigenvalues of UF locates at a different set of roots of unity depending on both
the denominator ℓ2 and the system size L, i.e.

exp
�

2iπn
ℓ2 L/2

�

, n ∈ Z . (162)

Remark. The conjecture that the eigenvalues of UF at phase transition locate at the root of
unity values is further exemplified in the second figure of Fig. 13, where the eigenvalues are
equally distributed at exp

�2iπn
9

�

, where 9= ℓ2 ×
L
2 . However, in the general case, e.g. Fig. 16,

not all possible root of unity values appear in the spectra of UF(±∞), while the degeneracies
at each eigenvalues might vary too.

We can infer part of the conjecture from the relation between UF and the staggered transfer
matrix. Since

UF({0,±∞}) = lim
α→∞

1

sinhL η sinhL(η−α)
T2(0,α)G2 , (163)

the eigenvalues of UF(±∞) are proportional to the ones of G2 = exp(ip), i.e. the exponential
of the total momentum. The eigenvalues of G2 are

exp
�

2iπn
L/2

�

, (164)
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Figure 16: Spectra with L = 8, η = 5iπ
9 . Black diamonds are all the possible root

of unity values of exp
�

2iπn
ℓ2 L/2

�

, n ∈ Z. Red dots are the ones that are present in the
spectra of UF(+∞). The spectrum is mirror symmetric, revealing further symmetries
hidden in the spectrum.

which consists of a part of the conjectural values (162). The eigenvalues of the part that
proportional to T2(0,α) in principle can be obtained from (117) by taking the limit α→∞.
However, we cannot naively take for granted that Bethe roots u j are of order 1. In fact, the
existence of Bethe roots located at infinity makes it nontrivial taking the limit α→±∞. We
postpone the proof of the conjecture (162) and the study of the spectra of the Floquet evolution
operators at phase transitions to future investigations.

Instead, we would like to offer a phenomenological description of the phase transitions.
The eigenvalues of the Floquet evolution operator UF move toward the eigenvalues at the phase
transition as the Floquet period T approaches the phase transition point from Regime I. At the
phase transition, the eigenvalues of UF become degenerate. Once the Floquet period T moves
away from the phase transition and is inside Regime II, the eigenvalues repel and move away
from the unit circle, corresponding to the dynamical breaking of the anti-unitary symmetry.
This procedure is illustrated in the right figure of Fig. 15. Beware that the right figure of Fig.
15 is meant as only an illustration of the phenomenon. In fact, there might be more than two
eigenvalues become degenerate at the phase transition. And there might be other additional
degeneracies within both phases that are not due to the mechanism above. At the phase
transition, the spectrum of UF obtains extra degeneracies, corresponding to the appearance of
the Jordan blocks in the Floquet Hamiltonian. Further discussions will be postponed to later
work.

7 Conclusion

In this paper, we have proven a generic method of constructing the integrable Floquet circuits
with depth n≥ 2 from the inhomogeneous transfer matrices using the Floquet Baxterisation.
Our proof does not require any specific properties for the R matrices, for instance the regularity

33

https://scipost.org
https://scipost.org/SciPostPhys.16.3.078


SciPost Phys. 16, 078 (2024)

condition and the difference form of the spectral parameter. Our proof generalizes several
known cases with the depth n= 2. When the depth n≥ 3, the Floquet Baxterisation provides
a systematic way of obtaining the integrable Floquet evolution operators that has not been
discussed before. Moreover, one can interpret the integrable Floquet evolution operator as
a non-reciprocal tilted transfer matrix of integrable lattice statistical-mechanical models. In
addition to the periodic case, we also prove a similar method of constructing integrable Floquet
dynamics with open boundary condition using the boundary Yang–Baxter relations.

After proving the general methods of constructing integrable Floquet dynamics, we focus
on the explicit example of the Floquet Baxterisation using the R matrix of the 6-vertex model,
which confirms parts of the conjecture on the Floquet integrability from the (affine) Temperley–
Lieb algebra in [26] motivated from the explicit calculations on the local density of conserved
charges.

When the 6-vertex model is in the easy-axis and isotropic regimes, the Floquet evolution
operator is unitary, alas the Floquet Hamiltonian is Hermitian, leading to a unitary discrete
time evolution. However, when we concentrate on the easy-plane regime, the Floquet evolution
operator is no longer unitary (hence the Floquet Hamiltonian is non-Hermitian). The Floquet
Hamiltonian in this case possesses an anti-unitary symmetry. The anti-unitary symmetry can be
broken with respect to different Floquet period T , leading to a diamond-shape phase diagram
shown in Fig. 15. In Regime I of Fig. 15, the anti-unitary symmetry is not broken, and the
Floquet Hamiltonian is pseudo-Hermitian with a real spectrum, leading to a norm preserving
time evolution. On the other hand, in Regime II of Fig. 15, the anti-unitary symmetry is broken,
resulting in a Floquet Hamiltonian with a spectrum consisting of complex conjugate pairs. The
phase transition between two regimes happens even with finite system sizes, with interesting
behaviours at root of unity values of anisotropy.

Equipped with the results obtained in this paper, we are ready to focus on other intriguing
questions. For instance, we can use the Bethe Ansatz technique to further investigate the
quantum quenches of certain initial states with the integrable Floquet circuits, which are
expected to have different appearances for physical quantities such as the correlation functions
and the entanglement entropies. It seems promising for developing the hydrodynamic theory
for the integrable Floquet circuits, since the existence of the extensively many local (and
quasi-local) conserved quantities are accessible from the underlying inhomogeneous transfer
matrices.

Furthermore, the integrable Floquet circuits with depth n≥ 3 have not been systematically
studied. From the procedure of the Floquet Baxterisation, we offer a new perspective, different
from the existing constructions of the quantum cellular automaton. It would be useful to
understand the similarities and differences of these constructions. Moreover, we would like
to understand better the semi-classical limit of the integrable Floquet circuits considered in
this paper, which should correspond to the discrete space-time classical integrable models
studied in [112,113] when depth n = 2. With numerous open questions, we conclude that the
Floquet Baxterisation offers us extraordinary opportunities to understand better many aspects
of out-of-equilibrium physics and exactly solvable models.
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A New solution to the set-theoretical Yang–Baxter equation

In this Appendix we present the solutions to the set-theoretical Yang–Baxter equation using the
substitution rules (24).

Using the substitution rule (24), we consider the triple (x1, x2, x3). From the left-hand side
of (23) we have

R23(x1, x2, x3) = (x1, xn
2 xm

3 , x p
2 xq

3) , (A.1)

R13(R23(x1, x2, x3)) = R12(x1, xn
2 xm

3 , x p
2 xq

3)

= (xn
1(x

p
2 xq

3)
m, xn

2 xm
3 , x p

1(x
p
2 xq

3)
q)

= (xn
1 x pm

2 xqm
3 , xn

2 xm
3 , x p

1 x pq
2 xq2

3 ) , (A.2)

R12(R13(R23(x1, x2, x3))) = R12(x
n
1 x pm

2 xqm
3 , xn

2 xm
3 , x p

1 x pq
2 xq2

3 )

= ((xn
1 x pm

2 xqm
3 )

n(xn
2 xm

3 )
m, (xn

1 x pm
2 xqm

3 )
p(xn

2 xm
3 )

q, x p
1 x pq

2 xq2

3 )

= (xn2

1 x pnm+nm
2 xqmn+m2

3 , xnp
1 x p2m+nq

2 xqmp+mq
3 , x p

1 x pq
2 xq2

3 ) . (A.3)

Similarly, from the right-hand side of (23) we obtain

R12(x1, x2, x3) = (x
n
1 xm

2 , x p
1 xq

2, x3) , (A.4)

R13(R12(x1, x2, x3)) = R13(x
n
1 xm

2 , x p
1 xq

2, x3)

= ((xn
1 xm

2 )
n xm

3 , x p
1 xq

2, (xn
1 xm

2 )
p xq

3)

= (xn2

1 xmn
2 xm

3 , x p
1 xq

2, xnp
1 xmp

2 xq
3) , (A.5)

R23(R13(R12(x1, x2, x3))) = R23(x
n2

1 xmn
2 xm

3 , x p
1 xq

2, xnp
1 xmp

2 xq
3)

= (xn2

1 xmn
2 xm

3 , (x p
1 xq

2)
n(xnp

1 xmp
2 xq

3)
m, (x p

1 xq
2)

p(xnp
1 xmp

2 xq
3)

q)

= (xn2

1 xmn
2 xm

3 , x pn+npm
1 xqn+m2p

2 xqm
3 , x p2npq

1 xqp+mqp
2 xq2

3 ) . (A.6)

Comparing both sides, we arrive at the conclusion that the following requirements have to
be satisfied

n2 = n2 , pn+ pnm= np , p2 + npq = p ,

mn= pmn+mn , qn+m2p = p2m+ nq , qp+mqp = qp ,

m= qmn+m2 , qm= qmp+ qm , q2 = q2 ,

(A.7)

in order to guarantee that the set-theoretical Yang–Baxter equation (23) is fulfilled. Note that
there are n↔ q and p↔ m symmetries in these equations.

This remark and a straightforward analysis leads to the following classes of solutions [where
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we use the notation (n, m, p, q)]:

A14 : (n, 0, 0, q) ,

B124 : (n, 1− nq, 0, q) ,

B135 : (n, 0, 1− nq, q) ,

C34 : (0,0, 1, q) ,

D24 : (0,1, 0, q) ,

C13 : (n, 0, 1, 0) ,

D12 : (n, 1, 0, 0) .

(A.8)

In fact, the equations above can be further reduced to the following four classes with arbitrary
parameters n and q, i.e.

A14 : (n, 0, 0, q) ,

B1235 : (n, 1− nq, 0, q) ,

B1345 : (n, 0, 1− nq, q) ,

P : (0,1, 1,0) .

(A.9)

B The allowed value for Bethe roots in the easy-plane regime

From the definition of the staggered transfer matrix (91), we obtain the following identity in
the easy-plane regime η ∈ iR/{0}, i.e.

T†(u,α,η) =
L
∏

m=1

σx
mT(ū−η, ᾱ,η)

L
∏

m=1

σx
m . (B.1)

We consider the case with α = ᾱ ∈ R. In that case, the eigenvalues of T†(u,α,η) and
T(ū−η,α,η) coincide. (though the eigenvectors are related by the spin-flip operator.) Therefore,
we expect the eigenvalues of the staggered transfer matrix

τ̄
�

u,α, {um}Mm=1

�

= τ
�

ū−η,α, {um}Mm=1

�

, (B.2)

which in terms of the spectral parameter λ becomes

τ̄
�

λ,α, {λm}Mm=1

�

= τ
�

λ̄,α, {λm}Mm=1

�

. (B.3)

We consider the case with λ= λ̄, which leads us to the following equation,

h

sinh
�

λ+
α

2
+
η

2

�

sinh
�

λ−
α

2
+
η

2

�iL/2
� M
∏

m=1

sinh(λ−λm −η) sinh
�

λ− λ̄m

�

−
M
∏

m=1

sinh
�

λ− λ̄m −η
�

sinh(λ−λm)

�

=
h

sinh
�

λ+
α

2
−
η

2

�

sinh
�

λ−
α

2
−
η

2

�iL/2
� M
∏

m=1

sinh
�

λ− λ̄m +η
�

sinh(λ−λm)

−
M
∏

m=1

sinh(λ−λm +η) sinh
�

λ− λ̄m

�

�

.

(B.4)
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Comparing the zeros of the trigonometric polynomials on both sides of the equation, we realise
that

M
∏

m=1

sinh(λ−λm −η) sinh
�

λ− λ̄m

�

=
M
∏

m=1

sinh
�

λ− λ̄m −η
�

sinh(λ−λm) . (B.5)

In order to matching the zeros of the trigonometric polynomials on each side of the equation,
we can conclude that the Bethe roots λn satisfies one of the three conditions

• λn ∈ R,

• Im λn =
π
2 ,

• if λn ∈ {λm}Mm=1, λ̄n ∈ {λm}Mm=1 .

C Isotropic limit

When we consider the isotropic case (|∆| = 1), the R matrix consists of rational functions
instead of trigonometric functions in terms of the spectral parameter. Here we only focus on
the case with ∆ = 1 (η = 0). The case with ∆ = −1 (η = iπ) can be obtained analogously.
More specifically, the R matrix becomes

Řiso
a,b(u) = 1−

u
u+ i

ea,b , ea,b =







0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0






, (C.1)

with β = 2 coshη= 2.
The staggered transfer matrices are defined similarly (92),

Tiso(0,α) = (u+ i)L/2(u−α+ i)L/2 Tra





L/2
∏

m=1

Riso
a,2m−1(u)R

iso
a,2m−1(u−α)



 , (C.2)

and the relation to the Floquet evolution operator (85) becomes

Uiso
F (T ) = Uiso

F ({0,α}) =
1

(i−α)L iL

�

Tiso(0,α)
�2

G2 . (C.3)

The relation between the inhomogeneity α and period T has changed accordingly, i.e.

α

i−α
=

exp(2iT )− 1
2

, or α=
i(exp(2iT )− 1)
exp(2iT ) + 1

. (C.4)

In this case, we have

Uiso
F (T ) =

L/2
∏

m=1

Řiso
2m−1,2m

�

i(1− exp(2iT ))
exp(2iT ) + 1

� L/2
∏

m=1

Řiso
2m,2m+1

�

i(1− exp(2iT ))
exp(2iT ) + 1

�

. (C.5)
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