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Abstract

We obtain analytic and numerical results for the non-perturbative amplitudes of topo-
logical string theory on arbitrary, compact Calabi–Yau manifolds. Our approach is based
on the theory of resurgence and extends previous special results to the more general
case. In particular, we obtain explicit trans-series solutions of the holomorphic anomaly
equations. Our results predict the all orders, large genus asymptotics of the topologi-
cal string free energies, which we test in detail against high genus perturbative series
obtained recently in the compact case. We also provide additional evidence that the
Stokes constants appearing in the resurgent structure are closely related to integer BPS
invariants.
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1 Introduction

String theory was originally formulated as a purely perturbative theory, but there are many
indications that a complete description of it will also involve non-perturbative corrections in
the string coupling constant. One of these indications is the factorial growth of the genus
expansion, discovered in [1] in the case of the bosonic string and generalized afterwards to
other situations [2]. It has been proposed that D-brane amplitudes supply the non-perturbative
corrections connected to the factorial growth of perturbation theory [3], although a detailed
verification of this statement has only been made in non-critical string theory (see e.g. [4]).

The connection between the factorial divergence of perturbative series and the existence
of non-perturbative sectors is a universal feature of quantum theories, pointed out by Dyson
[5] and first tested quantitatively by Bender and Wu, in the context of quantum mechanics
[6]. This connection is the basis of the modern theory of resurgence, which provides a far-
reaching mathematical framework to understand the emergence of non-perturbative sectors
(see [7–10] for recent introductions to resurgence). In this theory, one can extract from the
Borel singularities of the perturbative expansion a collection of new formal power series which
characterize the non-perturbative sectors, as well as a set of analytic invariants called Stokes
constants. In quantum field theory, these sectors correspond to instantons and renormalons. In
some cases, Stokes constants turn out to be closely related to BPS invariants [11–16], making
the theory of resurgence a powerful tool in mathematical physics.
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Topological string theory on Calabi–Yau 3-folds provides a very rich testing ground for
our understanding of string theory, and it has many applications both in mathematics and in
quantum field theory. In view of this, there have been many efforts to understand its non-
perturbative aspects. In [17–19] it was proposed to use the theory of resurgence as a rigorous
tool to understand the emergence of non-perturbative sectors in topological string theory from
its perturbative series. One expects to find in this way non-perturbative amplitudes, exponen-
tially small in the string coupling constant, as well as a set of Stokes constants potentially
related to BPS invariants of the Calabi–Yau manifold.

A significant advance in this program was made in [20,21], inspired by Écalle’s theory of
ODEs. In this theory, the non-perturbative sectors associated to the perturbative solution to
an ODE can be found by considering formal “trans-series” solutions, i.e. formal power series
with exponentially small prefactors. Guided by this principle, [20, 21] proposed to find the
non-perturbative sectors of the topological string by considering trans-series solutions to the
holomorphic anomaly equations of [22]. [21] developed this framework in the case of a local
Calabi–Yau example and provided concrete evidence that these solutions have the expected
properties. In particular, they explain quantitatively the factorial divergence of the perturbative
series. In a more recent development, [23] found explicit, closed formulae for these trans-
series solutions in the case of local Calabi–Yau manifolds with one modulus. They showed
in particular that these solutions are generalizations of the eigenvalue tunneling amplitudes
characterizing instanton sectors in matrix models.

So far the results obtained with the trans-series approach have focused on local Calabi–Yau
manifolds with one modulus, and it was not clear whether one can extend it to the compact,
generic case. In this paper we show that this can be done, and we present explicit, closed for-
mulae for multi-instanton trans-series, for general Calabi–Yau manifolds. Interestingly, they
are natural generalizations of the formulae of [23] in the local case, once the theory is for-
mulated in the big moduli space. In particular, the non-perturbative amplitudes take the form
of generalized eigenvalue tunneling. As already pointed out in [23] in the local case, this is
suggestive of some underlying “bit” model of the Calabi–Yau manifold, in which the local co-
ordinates of the moduli space are quantized in units of the string coupling constant. Such a
picture is not completely unexpected in the local case, due to various large N dualities, but it
is more striking in the compact case.

A defining property of the trans-series obtained in the theory of resurgence is that they
should provide precise asymptotic formulae for the perturbative series, and this can be re-
garded as a test of the theory, as already pointed out in this context in [21]. Armed with the
explicit trans-series solutions for the compact case, we verify this property in detail in the case
of compact, one-parameter Calabi–Yau manifolds. For this we rely on the important progress
in the calculation of perturbative topological string series started by [24], and recently devel-
oped in [25]. We find that our trans-series describe with very high precision the asymptotic
behavior of the topological string free energies at large genus. These are new results on the
generating functionals of Gromov–Witten invariants of compact Calabi–Yau manifolds.

The formal trans-series solutions obtained in this paper provide explicit descriptions of the
non-perturbative amplitudes associated to a given Borel singularity. A complete description
of this resurgent structure includes the list of actual Borel singularities and their associated
Stokes constants. On this front, our results are partial. The leading Borel singularities at MUM
and conifold points can be shown to be given by periods over distinguished integral cycles of
the mirror Calabi–Yau. Based on general principles and explicit computations, we conjecture
that the correspondence between Borel singularities and integral periods holds generally.1 In
addition, we identify a family of Borel singularities associated to A-periods, whose Stokes

1The conjecture that the singularities correspond to periods was stated in the local case in [26], and confirmed
in [20,21]. The precise integrality condition and the extension to the compact case are new.

3

https://scipost.org
https://scipost.org/SciPostPhys.16.3.079


SciPost Phys. 16, 079 (2024)

constants are genus zero Gopakumar–Vafa invariants. This verifies the general expectations
that these constants are related to BPS counting, although much more work is needed in this
direction.

We find that the propagators of the topological string on compact Calabi–Yau 3-folds are
related to the periods on compact Calabi–Yau 4-folds, making the perturbative topological
string theory expansion reminiscent of the evaluation of perturbative quantum field theory
amplitudes in terms of master integrals [27], which are periods on (degenerate) higher di-
mensional Calabi–Yau varieties. It would be interesting to understand if the non-perturbative
behavior of these quantum field theory amplitudes is likewise related to integral periods that
are singled out by their behavior at the Landau singularities.

This paper is organized as follows. In section 2, we provide a detailed review of the special
geometry of general Calabi–Yau 3-folds, which is crucial both for the original theory of [22]
and for the non-perturbative generalization developed in this paper. We also review aspects of
one-parameter compact Calabi–Yau 3-folds which will serve as testing grounds for our theory.
Section 3 reviews the holomorphic anomaly equations of [22], while section 4 recalls some
basic ingredients of the theory of resurgence. In section 5, we find trans-series solutions to
the holomorphic anomaly equations for general Calabi–Yau 3-folds. We first do some warm-up
calculations in the compact, one-modulus case, and then develop an operator formalism which
allows us to write down exact multi-instanton amplitudes. This generalizes in particular the
results of [23] to the most general case. The results of section 5 are based on boundary condi-
tions which fix holomorphic ambiguities in the non-perturbative amplitudes, and we explain
these boundary conditions in detail at the end of the section. In section 6, we present numer-
ical evidence for our results from compact, one-modulus Calabi–Yau 3-folds. This evidence
covers the structure of Borel singularities, as well as the large genus asymptotics controlled by
instanton amplitudes. Section 7 contains some conclusions and prospects for future work.

2 Period geometry for compact Calabi–Yau 3-folds

In this section, we shall describe aspects of the period geometry of complex families of compact
Calabi–Yau 3-folds W that are central to computing the topological string partition function,
or equivalently, its free energy. After discussing such geometries in general in subsection 2.1,
we will specialize to the case of hypergeometric one-complex parameter Calabi–Yau manifolds
in the ensuing subsection. These models will serve as instructive examples for the period
geometry and will provide the principal testing ground for our non-perturbative predictions.

The topological string partition function Z (0) is related to the genus g topological string
free energies Fg(z) via

Z (0)(gs, z) = exp(F (0)(gs, z)) = exp

 

∞
∑

g=0

g2g−2
s Fg(z)

!

. (1)

We have attached a superscript (0) to the conventional topological string free energy and par-
tition function to distinguish them from the non-perturbative sectors of the theory which we
shall be studying below. The RHS of (1) is a perturbative, asymptotic series in the topological
string coupling constant gs and depends on the complex structure moduli z of W . Accord-
ing to a theorem of Tian [28] and Todorov [29], one has h2,1(W ) = r unobstructed complex
moduli parameterizing the complex structure moduli space Mcs(W ). A property of F (0)(gs, z)
which is absent for the topological string on local Calabi–Yau spaces and many other familiar
asymptotic series is that gs and the Fg(z) are non-trivial sections of powers of the Kähler line

bundle L over Mcs(W ), the canonical compactification of the complex structure moduli space
Mcs(W ). We shall review this structure below.
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The computation of F (0)(gs, z) via the holomorphic anomaly equations will be the topic of
Section 3. A principal feature of the setup is that by the construction of the involved quanti-
ties from the solutions of a Picard-Fuchs differential ideal, all Fg(z) have good (real) analytic
properties in z. In particular, convergent series expressions for them exist in a neighborhood
of any point of Mcs(W ).

2.1 Differential properties of the Calabi–Yau 3-fold periods

The defining property of a complex analytic Calabi–Yau 3-fold W is the existence of a unique
(1, 1) Kähler form ω in H1,1(W,R) and a holomorphic (3,0)-form Ω(z), unique up to normal-
ization, spanning H3,0(W,Q). In the case of complete intersections, the (3, 0)-form is explicitly
given by Griffiths residuum expressions. Choosing a fixed basis γi in H3(W,C), we can expand
Ω as

Ω=
b3(W )
∑

i=1

fi(z)γi , (2)

with coefficients given by periods

fi(z) =

∫

Γi

Ω(z) . (3)

Here, the Γi furnish a basis of H3(W,C) dual to {γi}. There is a symplectic intersection pairing

Σ : H3(W,Z)×H3(W,Z)→ Z , (4)

on the integral homology H3(W,Z) of W , which allows defining a dual integral symplectic
basis also in H3(W,C), as we shall discuss below. The b3(W ) periods span a vector space that
is identified with the solution space of a linear Picard-Fuchs differential ideal,

L(θz , z) fi(z) = 0 , (5)

where θz = z d
dz are logarithmic derivatives. In the case of one-parameter families (where

b3(W ) = 2r+2= 4), this ideal is generated by a fourth order Picard-Fuchs operator L(4), given
below for the hypergeometric families in equation (74). In general, the ideal is generated by
many linear differential operators in the complex moduli z,

L(θz , z) = {L(k)i (θz , z) | i = 1, . . . , |L|, k = 2, 3,4} . (6)

2.1.1 Special geometry

The moduli space Mcs(W ) of complex structures of a Calabi–Yau manifold W is a special Käh-
ler manifold [30,31]. Here, we will review the basic aspects of this geometric structure, which
underlies the holomorphic anomaly equations of [22] and their non-perturbative generaliza-
tion.

Special geometry derives entirely from two bilinear relations: one real bilinear involving
the holomorphic (3,0) form Ω(z) and the complex conjugate (0,3) form Ω̄(z̄),

e−K = i

∫

W
Ω∧ Ω̄> 0 , (7)

and the other a complex bilinear relation involving Ω(z) and its derivatives with regard to the
complex moduli,

∫

W
Ω∧ ∂zI1

. . .∂zIk
Ω=

¨

0 , if k < 3 ,

CI(z) ∈Q[z] , if k = 3 .
(8)
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With regard to the Hodge decomposition on H3(W,C), the ∧ pairing has the property that
∫

W
αmn ∧ βpq = 0 , unless m+ p = n+ q = 3 , (9)

for αmn ∈ Hm,n(W ) and βpq ∈ H p,q(W ). Griffiths transversality implies

∂ IΩ= ∂zI1
. . .∂zIk

Ω ∈
min(k,3)
⊕

p=0

H3−p,p(W ) , (10)

for each index set I with Ii ∈ {1, . . . , r} and |I | = k. This together with (9) implies the zero
in (8). The derivatives of order k ≤ 3 redundantly span H3(W,Q); beyond k = 3, no new
classes arise. The redundancies are encoded in L, which can be derived by systematically2

finding all cohomological relations among the derivatives ∂ IΩ that generate L. The CI(z)
occurring in (8) are rational functions labeled, taking the symmetry in the indices into account,
by 1

3!

∏2
m=0(r+m) 3-tuples I . They are called three point functions or Yukawa couplings. Note

that (8) can be expressed as bilinears in the periods (3). Hence, by (5), L imposes differential
relations on the CI(z); they are determined by these up to one multiplicative normalization.
For instance, in the case of the one-parameter hypergeometric differential equation (74) which
we shall introduce below, one can easily check that

C111 =
(2π i)3κ

z3(1−µ−1z)
, (11)

where the normalization is in accord with the one chosen below in (79).
Note that the variables z are globally defined on Mcs(W ). All of the metric data which

follows from the Kähler potential (7), such as the Weil–Petersson metric on Mcs(W ),

Gi ȷ̄ = ∂zi
∂̄z̄ ȷ̄K(z) , (12)

as well as the associated covariant derivatives

Di F j = (∂i + nKi)F j − Γ k
i j Fk , F jdz j ∈ Γ (Ln ⊗ (T ∗Mcs)

1,0) , (13)

Di F
j = (∂i + nKi)F

j + Γ j
ikF k , F j∂ j ∈ Γ (Ln ⊗ (TMcs)

1,0) , (14)

D0F = nF , F ∈ Γ (Ln) , (15)

with regard to the Weil–Petersson connection on the holomorphic (co)tangent bundles of Mcs,

Γ k
i j = Gkl̄∂l̄∂i∂ jK , (16)

and the connection on the Kähler line bundle Ln,

nKi = n∂iK , (17)

are equally globally defined quantities. We recall that the Kähler line bundle L is trivial, hence
defined via its global section Ω ∈ Γ (L) (likewise, for L and Ω̄ ∈ Γ (L)). By (7), a rescaling

Ω→ Ω e f (z) , (18)

of Ω induces a Kähler gauge transformation

K → K − f (z)− f (z) . (19)

2Using the Griffiths reduction formula and Gröbner basis calculus.
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As follows from its definition in (8), Ci jk(z) is a section of L2 ⊗ Sym3((T ∗Mcs)1,0).3 The
Kähler gauge transformation extends to the sections of Ln in the obvious way. The quantities
just introduced have anti-holomorphic counterparts D0̄, D ȷ̄, as well as

Γ ı̄
ȷ̄k̄
= G i ı̄∂i∂ ȷ̄∂k̄K . (20)

We recall that Christoffel symbols with mixed holomorphic and anti-holomorphic indices van-
ish. Let us note that the covariant derivatives appearing in (13) have the properties that

DιGi ȷ̄ = 0 , Die
nK = 0 , D0enK = −nenK , for ι = 0,1, . . . , r , i = 1, . . . , r . (21)

Throughout this paper, we shall have Greek indices ι,α, . . . run over the range 0, 1, . . . , r, while
Latin indices i, k, . . . are meant to run over 1, . . . , r.

Using (7), (8) and (9), one concludes that

DiΞ0 = Ξi , DiΞ j = ieK Ci jkGkk̄Ξ̄k̄ , DiΞ̄k̄ = Gik̄Ξ̄0̄ , DiΞ̄0̄ = 0 , (22)

where Ξ0 := Ω and Ξ̄0̄ := Ω̄ span H3,0(W ), H0,3(W ), and Ξi and Ξ̄k̄ span H2,1(W ), H1,2(W ),
respectively. Since (22) are cohomological relations, they can be integrated over closed cycles
Γ to yield relations between periods. Introducing

χΓα :=

∫

Γ

Ξα , χ̄Γᾱ :=

∫

Γ

Ξ̄ᾱ , α, ᾱ= 0, . . . , r , (23)

and combining these into a b3 dimensional vector

χ⃗Γ = (χ0,χi , χ̄ı̄, χ̄0̄)
T , (24)

we can express the relations (22) and their conjugates as

(Di + Ai)χ⃗Γ = 0 , (D ı̄ + Āı̄)χ⃗Γ = 0 . (25)

Here, Ai and Āı̄ are b3 × b3 upper diagonal and lower diagonal matrices respectively, whose
explicit form follows from (22). These two sets of identities imply a relation between the
Riemann tensor and the Yukawa couplings,

−R k
i ȷ̄ l = ∂ ȷ̄Γ

k
il = δ

k
l G ȷ̄i +δ

k
i G ȷ̄l − Ckm

ȷ̄ Cilm , (26)

easily obtained from the second of the following relations:

[Di , D̄ ȷ̄]Ξ0 = −Gi ȷ̄Ξ0 , [Di , D̄ ȷ̄]Ξk = −Gi ȷ̄Ξk − R p
i ȷ̄ k Ξp . (27)

In (26),
Ckl
ȷ̄ := e2K C ȷ̄k̄l̄ G

kk̄G l l̄ ∈ Γ
�

L−2 ⊗ (T ∗Mcs)
0,1 ⊗ Sym2((TMcs)

1,0
�

, (28)

is a section of the indicated bundle. Note that by holomorphicity of the Yukawa coupling and
by (21), it is covariantly constant,

DiC
kl
ȷ̄ = 0 . (29)

By using (27), we find that (26) is equivalent to the integrability condition

[Di + Ai , D ȷ̄ + Ā ȷ̄] = 0 . (30)

3More precisely, Ci jkdz i⊗dz j⊗dzk is such a section. We will leave the inclusion when necessary of differentials
and derivative operators in such statements to the reader in the following.
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It is convenient to introduce a fixed topological integral symplectic basis {AI , B I |I = 0, . . . , r}
for H3(W,Z), such that

AI ∩ AJ = B I ∩ BJ = 0 , AI ∩ BJ = −BJ ∩ AI = δ
J
I . (31)

Such a basis is determined only up to a symplectic transformation Γ in Sp(b3(M),Z).
Given a choice of basis, we can define a dual integral symplectic basis in cohomology,
{αI ,β

I | I = 0, . . . , r}, defined via the non-vanishing pairings
∫

AI

αJ = δ
I
J ,

∫

B I

β J = δJ
I . (32)

Let us introduce the rank b3(W ) period vector Π⃗ as the first column of the period matrix4 Π

Π⃗=

�
∫

B I Ω
∫

AI
Ω

�

=

�

PI
X I

�

, Π=

�
∫

B I Ξ
T

∫

AI
ΞT

�

=

�

DαPI Dᾱ P̄I
DαX I DᾱX̄ I

�

=

�

ρIα ρ̄Iᾱ
χ I
α χ̄ I

ᾱ

�

. (33)

In the integral symplectic basis (31), the intersection pairing (4) is represented by the
b3(W )× b3(W ) matrix

Σ=

�

0 1
−1 0

�

, (34)

and symplectic transformations Γ are defined by the property Γ TΣΓ = Σ. In terms of Σ, we
can write the bilinears in (7), (8) as

∫

W
Ω∧ Ω̄= Π⃗† ·Σ · Π⃗ ,

∫

W
Ω∧ ∂ IΩ= −Π⃗

T ·Σ · ∂ I Π⃗ . (35)

Let P∗ be a point in Mcs(W ) and δ local coordinates near this point, chosen in such a way that
δ(z) are rational functions in the original variables z, and such that δ = 0 specifies P∗. For any
complete basis of solutions Π⃗T

∗ (δ) with L(δ)Π⃗T
∗ (δ) = 0 near P∗, the Griffiths bilinear relation

(8) determines an intersection matrix Σ∗ associated to this basis by expanding

ΠT
∗ (δ) ·Σ

∗ · ∂ ∗I3
Π∗(δ) = −C∗I3

(δ) , (36)

in δ. Here, ∂ ∗I3
is a triple derivative in the coordinates δ and C∗I3

(δ) is the tensor transform of
CI3
(z) to the δ coordinates.
In physics applications, H3(W,Z) is identified with the electric-magnetic charge lattice,

and ZΓ (z) =
∫

Γ
Ω(z) with the central charge of special Lagrangian D-branes wrapping a cycle

Γ ∈ H3(W,Z). The integrality of the charge lattice is natural due to the geometric origin of
charged objects as wrapped branes; it is also required by the Dirac–Zwanziger quantization
condition for electric and magnetic charges. By convention, electric and magnetic charges are
associated to the A- and B-periods respectively. From the symplectic or Hamiltonian point of
view, the choice of basis (31) for H3(W,Z) defines a polarization of H3(W,K) for K =C, R or
Q. The generating set {αI ,β

I} for the lattice H3(W,Z) also provides a basis of H3(W,K) over
the respective field K.

2.1.2 Special geometry in special coordinates

The local Torelli theorem states that a sufficiently small domain U∗ ⊂Mcs(W ) can be identified
with an open set in Pr using the period map z 7→ (X 0

∗ (z) : . . . : X r
∗ (z)) ∈ P

r , see (33), and
parametrized by inhomogeneous or affine coordinates

t i
∗(z) = X i

∗/X
0
∗ . (37)

4Here, we define the canonical order α= 0, 1, . . . , r and ᾱ= 1, . . . , r, 0.
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A priori, there is no preferred choice of the 3-cycles A∗I yielding the homogeneous coordinates
X I
∗; in particular, they do not need to furnish an integral basis of H3(X ). At generic points of

Mcs(W ), this choice does not matter much. Near special points in moduli space, however, one
wants to make a choice so that the period map and the t i

∗ have the simplest possible branch
behavior over U∗.

By singling out (1+ r) non-intersecting A-cycles and considering the associated periods X I
∗

as homogeneous coordinates on Mcs(W ), we are choosing a projective frame. An affine frame
is obtained by singling out one cycle A∗0 among the A-cycle, whose associated period we divide
by to define the affine coordinates t i

∗ =
∫

A∗i
Ω/
∫

A∗0
Ω= X i

∗/X
0
∗ .

The relations (8) allow us to define a prepotential F∗(X∗) via

2F∗(X∗) = X I
∗P
∗
I (X∗) , (38)

such that

P∗I (X∗) =
∂

∂ X I
∗

F∗(X∗) . (39)

Here and in the following, we will use Einstein summation conventions also on repeated ho-
mogeneous indices I , J , etc. Equation (38) is Euler’s relation. It implies that F(X∗) is a homo-
geneous function of degree two in the X I

∗, and hence a section of L2, consistent with the fact
that the P∗I are sections of L, hence must be homogeneous functions of the X I

∗ of degree 1.
Traditionally, the P∗I are denoted FI , but the symplectic structure on H3(W,R) suggests think-
ing of the X I

∗ as coordinates, the P∗I as momenta, and exp(F∗(X )) as a state, thus motivating
our notation. The star as a superindex is intended as a reminder that a particular polarization
– a symplectic frame in phase space – has been chosen, organizing periods into coordinates
and momenta.

Introducing the inhomogeneous prepotential F∗(t∗) ∈ Γ (L0) by

F∗(X∗) = F∗(t∗)(X 0
∗ )

2 ∈ Γ (L2) , (40)

the period vector Π⃗∗ can be written as

Π⃗∗ = X 0
∗ (2F∗(t∗)− t i∂t i

∗
F∗(t∗),∂t i

∗
F∗(t∗), 1, t i) . (41)

The third derivative of the prepotential yields the three point functions in terms of the nor-
malized holomorphic 3-form,

Ct i
∗ t

j
∗ tk
∗

:=

∫

Ω

X 0
∗
∧ ∂t i

∗
∂t j
∗
∂tk
∗

Ω

X 0
∗
= ∂t i

∗
∂t j
∗
∂tk
∗
F∗(t∗) . (42)

One of the special points in Mcs(W ) is the point of maximal unipotent monodromy
(m). We will choose our complex coordinates in such a way that the MUM point
occurs at z = 0. This point is characterized by the property that the symbol
S(L) = {L(k)i (θz , z)|z=0, i = 1, . . . , |L|, k = 2,3, 4} is maximally degenerate, i.e. has a (2r+2)-
fold degenerate zero in the formal variables θzi

. Let us assume for simplicity that all local
exponents are zero. We then have a unique holomorphic solution X 0

m, and r single logarithmic
solutions X a

m, a = 1, . . . , r. Introducing inhomogeneous coordinates ta
m = X a

m/X
0
m, the period

vector reads

Π⃗=







Pm
0

Pm
a

X 0
m

X a
m






=









∫

B0 Ω
∫

Ba Ω
∫

A0
Ω

∫

Aa
Ω









= X 0
m









2Fm(tm)− t i
m∂t i

m
Fm(tm)

∂ta
m
Fm(tm)

1
ta
m









. (43)
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If the Calabi–Yau manifold W has a known mirror manifold M , the MUM point corresponds to
the so-called large radius point of the mirror. Mirror symmetry identifies the Kähler parameters

ta =

∫

Ca

(b+ iω) = Ba + iAa , (44)

with
ta
m(z) = 1/(2πi) log(za) +O(z) . (45)

This is the so-called mirror map (see (79) for the one parameter case). In (44), Aa is the area
of a complex curve Ca on the boundary of the the Mori cone of M . With this identification of
variables, the instanton corrected genus zero prepotential F(t) of M is identified with Fm(tm).
We will denote by

κi jk = Di · Dj · Dk , γi =
c2(T M) · Di

24
, χ(M) , (46)

the intersection numbers among the divisor classes Di in M , the normalized components of the
second Chern class of the tangent bundle of M , and the Euler number χ of M , respectively. In
terms of this topological data, the instanton corrected prepotential near the large radius point
has the structure

Fm(tm) = (X
0
m)
−2F0(Xm) = −

κi jk t i t j tk

3!
+
σi j t

i t j

2
+γ j t

j−
1

(2π i)3
∑

β∈H2(M ,Z)

n0,βLi3(Qβ) . (47)

To lighten the notation, we have dropped the subindex m on t and Q on the RHS and also
in (48) below. We have σi j = (κii j mod 2), and the ng,β ∈ Z are BPS indices, which count
stable sheaves with one complex dimensional support. We have introduced the world-sheet
instanton counting parameter

Qβ = e2πiβ ·t , with β · t =
h2(M)
∑

a=1

βa ta . (48)

Note that n0,0 = χ(M)/2 ∈ Z, such that the β = 0 contribution to the sum in (47) yields the
constant contribution ζ(3)χ/2 to the prepotential.5 The cycles {AI , B I} which lead to (43)
with Fm(tm) given by (47) are integral. Mirror symmetry thus provides a preferred period
vector Π⃗ based on a symplectic basis of H3(W,Z).

Another set of special loci in the complex structure moduli space are the so-called conifold
loci. These are loci in Mcs(W ) where W develops a node due to a shrinking three-sphere
ν = S3 (or, more generally, a shrinking lens space S3/N for some N ∈ N). This singles out
a vanishing period ΠS3 which can be normalized to be part of an integral symplectic basis.
We can also define an affine variable tc = ΠS3/ΠΓc = Xν/X

0
c at this point, where, for the

application to the gap condition which we shall introduce below, X 0
c should be a period which

stays finite at the conifold locus, and Γc should not involve the symplectically dual cycle to the
shrinking cycle; see Section 3.2 for a more detailed discussion. Note that the general form
of the transition matrix in the hypergeometric one-modulus cases (86) makes it possible to
choose Γc to be part of the same integral symplectic basis as ν. Hence, the affine variable in
the conifold frame can be chosen to be a quotient of two integral symplectic periods, in analogy
with the affine coordinate in the maximal unipotent monodromy frame.

5Due to the negative sign in front of the enumerative contribution to (47) proportional to Li3, we will have the
negative of (47) contribute to the total perturbative prepotential F (0). Also, in the following, whenever a formula
for Fg for general g appears, the g = 0 specialization will refer to the negative of (47).
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Note that we can write the Gauss-Manin connection in terms of the periods

(V 0, V b, Vb, V0)
T = (1, t b

∗ ,∂t b
∗
(2F∗ − ta

∗∂ta
∗
F∗), 2F∗ − ta

∗∂ta
∗
F∗)T , (49)

of the normalized holomorphic 3-form Ω
X 0
∗

as

∂ta
∗







V 0

V b

Vb
V0






=









0 0 0 0
δb

a 0 0 0
0 −Cta

∗ t b
∗ t c
∗

0 0
0 0 δac 0















V 0

V c

Vc
V0






. (50)

This can be seen as the holomorphic version of the first equation from (22). This is compatible
with the holomorphic limit of the metric data

e−K → e−K = X 0
∗ , Ki →Ki = −∂i log(X 0

∗ ) , Γ i
jk→ Υi

jk =
∂ z i

∂ ta
∗

∂ 2 ta
∗

∂ z j∂ zk
, (51)

that can be taken once a frame has been chosen together with associated affine coordinates.
In the following, we will use calligraphic symbols instead of straight symbols to indicate holo-
morphic limits. In particular, we will introduce the higher genus topological string amplitudes
Fg and their holomorphic limits Fg(X∗) below. We will sometimes drop the ∗ in our notation,
since the holomorphic limit of an anholomorphic quantity always depends on the choice of
a frame. When we wish to emphasize the dependence on the frame, we include the periods
defining the frame in parentheses, e.g. F (k)g (X

0
m, X 1

m) will indicate, in a one-parameter model,

the holomorphic limit of the amplitude F (k)g (Xm) in the MUM frame. We will also require nota-

tion for the Kähler gauge invariant quantity Fg(t∗) = (X 0
∗ )

2g−2Fg(X∗). To avoid a proliferation
of symbols, we somewhat inelegantly distinguish between the section of Γ (L2g+2) and its im-
age in Γ (L0) by indicating the argument as X∗ or t∗, respectively. We have already used this
notation at genus 0 above.

We will end this section by recalling some relation between projective and affine coordi-
nates, following [32]. For ease of presentation, we will drop the star from our notation and
assume that a frame has been fixed. Two choices of frame related by a symplectic transforma-
tion Γ ∈ Sp(b3,R) yield the same expression for (7) and (8) in terms of the associated periods,
as follows immediately from (35). Writing

Γ =

�

A B

C D

�

, (52)

the periods and their covariant derivatives introduced in (33) transform as

ρIα 7→ ρΓIα = AJ
IρJα +BI Jχ

J
α ,

χ I
α 7→ χ

I
α Γ = CI JρJα +DI

Jχ
J
α .

(53)

Since F(X ) is homogeneous of degree 2, we have

τI J :=
∂ PI

∂ X J
, X IτI J = PJ , CI JK :=

∂

∂ X K
τI J , X I CI JK = 0 , (54)

and the symmetric (1+ r)× (1+ r) matrix τI J transforms as

τΓ = (Aτ+B) (Cτ+D)−1 . (55)
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As pointed out in [32], the inverse of the matrix ImτI J , which we will denote by (Imτ)−1,I J ,
transforms as

(ImτΓ )
−1,I J = (Cτ+D)IK(Cτ+D)JL(Imτ)

−1,K L − 2iCIK(Cτ+D)JK . (56)

As we have just seen, quantities written in terms of the projective coordinates X I on Mcs(W )
transform straightforwardly under the symplectic group. When we write these functions as
transcendental functions of global coordinates z on moduli space by substituting explicit ex-
pressions for the periods X I , their transformation properties become obscured. However, they
undergo monodromy upon analytic continuation around singular points of Mcs(W ); the mon-
odromy group will generically be a subgroup of the symplectic group, but will act in accordance
with the symplectic action determined before substitution.

As pointed out in [32], where the special geometry formalism was developed in detail both
in projective and in affine coordinates, the matrix χ I

α appearing in the period matrix (33) and
its inverse

χ I
αχ
α
J = δ

I
J , χ I

αχ
β
I = δ

β
α , (57)

play an important role in relating projective and affine quantities; in a sense, the two can be
used to raise and lower the I , J . . .= 0, . . . , r indices while simultaneously converting them to
the α,β , . . .= 0, . . . , r indices. Note that the theorem of Tian and Todorov in combination with
the local Torelli theorem imply that the inverse matrix exists outside the discriminant locus of
L. The second relation in (54) implies that ρIα = τI Jχ

J
α. Due to (57), the χαI transform

inversely to χ I
α under a symplectic transformation Γ .

2.1.3 The propagators and their transformations

To solve the holomorphic anomaly equations, [22] introduces a set of an-holomorphic sections
S i j , S i , S of L−2⊗Sym2(TM1,0

cs ), L
−2× TM1,0

cs and L−2 respectively, called propagators. They
are defined by

∂ı̄S
jk = C jk

ı̄ , ∂ ȷ̄S
k = Gi ȷ̄S

ik , ∂ ȷ̄S = Gi ȷ̄S
i , (58)

where C jk
ı̄ was introduced in (28). In this section, we will list some properties of the propa-

gators that follow from special geometry, and discuss their holomorphic limit upon the choice
of local special coordinates.

The first equation in (58) is integrated by using (26): one observes that all terms con-
tributing to Ckm

ȷ̄ Cilm are ∂̄ ȷ̄-derivatives. Therefore, as long as the matrix [C(i)]lm is invertible
for one fixed index i, one finds

Skm = C (i)kl
�

δm
l K(i) +δ

m
(i)Kl − Γm

(i)l + qm
(i)l

�

, (59)

where qm
(i)l is the holomorphic propagator ambiguity. While the inversion is not necessarily

possible over all indices (i), it is easy to see that if L is complete and determines the Cklm
through (8), the inversion is possible at least over one index. If it is possible over more than
one index, then the qm

il can always be chosen as rational functions of z so that all i = 1, . . . , r
equations (59) are compatible. We can therefore drop the brackets which specify the special
index i.

One can integrate (26) with regard to z ȷ̄ and show that Christoffel symbols can be written
in terms of propagators and Ki , up to a holomorphic ambiguity. Furthermore, applying ∂̄ı̄ to
the covariant derivatives DiS

ab, DiS
a, DjS, DiK j and using (26), (58) and (29), one can express

the results as ∂̄ı̄ derivatives of second order polynomials in the propagators and Ki . Integrating,
one gets expressions for the covariant derivatives up to additional holomorphic ambiguities.
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The Ki dependence in the equations for the derivatives of the propagators can be absorbed in
a redefinition [33]

S̃ i = S i − S i jK j ,

S̃ = S − S iKi +
1
2

S i jKiK j .
(60)

This leads to

∂iS
jk = CimnSmjSnk +δ j

i S̃
k +δk

i S̃ j − q j
imSmk − qk

imSmj + q jk
i ,

∂i S̃
j = CimnSmj S̃n + 2δ j

i S̃ − q j
imS̃m − qikSk j + q j

i ,

∂i S̃ =
1
2

CimnS̃mS̃n − qi j S̃
j + qi ,

∂iK j = KiK j − Ci jnSmnKm + qm
i j Km − Ci jkS̃k + qi j .

(61)

Again as a consequence of the rationality of the coefficients in L and (8), the holomorphic
ambiguities qi

jk, q jk
i , qi j , qi

jand qi can be chosen non-uniquely as rational functions in zi , and

one observes that q̃m
il = qm

il zizl/zm, q̃i j
k = qi j

k zk/(ziz j) etc. are polynomials. It is computationally
advantageous to choose the degree as low as possible.

Explicit expressions for S̃ i and S̃ can be obtained by solving successively the first and the
second equation in (61) for these propagators:

S̃k =
1
2

�

∂kSkk − CklmSklSkm + 2qk
klS

lk − qkk
k

�

,

S̃ =
1
2

�

∂l S̃
l − CklmS̃kS lm + ql

lmS̃m + qlmS lm − ql
l

�

.
(62)

Note that there is no sum over the index k on the RHS of the first and over the index l in the
second of these equations.

The holomorphic limits of the propagators are defined by invoking (51). The holomorphic
limit Skm of Skm thus is given by

Skm = C (i)kl
�

δm
l K(i) +δ

m
(i)Kl −Υm

(i)l + qm
(i)l

�

. (63)

It satisfies [34]
Ci jmSmk − qk

i j = −χ
k
I ∂

2
i j X

I . (64)

As proved in Lemma 3.7 in [34], the χk
I are holomorphic, hence independent of the Ki . It is

thus not necessary to take the holomorphic limit on the RHS. The holomorphic limits of S̃k

and S̃ follow from (63) and (62). Equation (63) and the last relation in (61) imply

Ci jmS̃m − qi j = hI∂
2
i j X

I , (65)

with the functions hI (which are holomorphic and hence independent of the Ki , again by
Lemma 3.7 in [34]) given by

hI = χ
0
I + Kaχ

a
I . (66)

We next turn to the transformation behavior of the propagators under the symplectic
group. The propagator ambiguities q·· are rational functions in z and therefore do not un-
dergo monodromy upon analytic continuation around singular points of Mcs. We hence
take them to be frame-independent. From their occurrence in the covariant derivatives
DiS

jk, DiS
k, DjS and DiK j , from which (61) follow, we can easily read off which bundles

Lk⊗Symm(TMcs)1,0⊗Symn(T ∗Mcs)1,0 they belong to. As all other quantities contributing to
the propagator S i j given in (59) are metric, and as S̃k and S̃ can be expressed in terms of S i j ,
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metric data, and propagator ambiguities, we can conclude that the propagators we have intro-
duced are invariant under symplectic transformations. On the other hand, the holomorphic
limits of these propagators do undergo monodromy, as they involve interesting transcenden-
tal functions inherited from the holomorphic limit of the metric data. This observation fits in
nicely with the picture proposed in [32] regarding the transformation behavior of the propa-
gators: it was pointed out there that the propagators obtained from the expression

∆I J = −(Imτ)−1,I J + E I J (X ) , (67)

via

SαβE =

�

2SE −S i
E

−S i
E S i j

E

�αβ

= χαI ∆
I Jχ

β
J , (68)

with E I J (X ) an arbitrary holomorphic function, satisfy (58). If E is taken to be invariant – we
will denote such choices as ε – the behavior of these propagators under symplectic transfor-
mations follows easily from (56), (53) and (57):

Sαβε,Γ = Sαβε +χ
α
I [(Cτ+D)−1C]I Jχ

β
J . (69)

As the monodromy invariance of the topological string amplitudes Fg relies on the propagators
being monodromy invariant, [32] proposed that in analogy to the behavior of the almost holo-
morphic form Ê2, the transformation of (Imτ)−1,I J should be cancelled by the transformation
of the holomorphic contribution E I J to ∆I J .

We now compare the triple (S i j , S i , S) that we have introduced above to the triple that
follows from Sαβε . As both triples solve (58), we can conclude that

S i j − S i j
ε = hi j , (70)

S i − S i
ε = K jh

i j + hi , (71)

S − Sε =
1
2

KiK jh
i j + Kih

i + h , (72)

where the functions hi j , hi and h are holomorphic. Via the inverse of the map ∆I J 7→ SαβE
applied in (68), these differences map to a function E I J

S which, by holomorphicity of χk
I and

hI , is holomorphic. By invariance of the propagators Sαβ , E I J
S is an explicit realization of the

holomorphic contribution to ∆I J which cancels the transformation behavior of (Imτ)−1,I J .
And indeed, the transformations of the holomorphic limits of the propagators (S i j , S i , S) under
the symplectic group can easily be calculated. The transformation of the propagators S i j and
S̃ i follow from (63) and (65), keeping in mind that X I CI JK = 0 and CI JKχ

I
aχ

J
bχ

K
c = Cabc .

The transformation of S̃ follows with somewhat more work from the holomorphic limit of its
expression in (62); the identities χαL X L = δα0 and hL∂l X

L = 0 are useful in this calculation.
The transformation properties that thus follow are

Skl → Skl
Γ = Skl − [(Cτ+D)−1C]I Jχk

I χ
l
J ,

S̃k→ S̃k
Γ = S̃k + [(Cτ+D)−1C]I Jχk

I hJ ,

S̃ → S̃Γ = S̃ − 1
2
[(Cτ+D)−1C]I JhIhJ .

(73)

Mapping (73) to the transformation behavior of the holomorphic untilded propagators by
inverting (60), one discovers, as expected, the same transformation behavior as in (69), up to
the opposite sign in front of the inhomogeneous term.
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2.2 The class of hypergeometric one parameter Calabi–Yau 3-folds

Completeness, richness and simplicity make the class of hypergeometric models an ideal sam-
ple to study non-perturbative aspects in compact, one-parameter Calabi–Yau 3-folds. The be-
havior of the perturbative higher genus amplitudes at the various types of singularities which
occur in these models is relatively well understood. In particular, a gap condition occurs at
some conifold loci, which can be used as boundary condition to fix the holomorphic ambiguity
and solve these theories to high genus [24]. Boundary conditions arising at the z = 0 MUM
point have recently been better understood [25], as have the critical points at 1/z = 0 in [35],
see also [25]. This advance has made it possible to fix the holomorphic ambiguity to higher
genus than achieved in [24]. One other useful aspect of these models is that they have four
small cousins that describe one parameter families of local Calabi–Yau spaces; these are defined
as the total space O(−KdP)→ dP over del Pezzo surfaces with dP = {P2,P1 × P1, dP5, dP6}.
See [36] for enumerative and [37] for arithmetic aspects of these models, and [23] for a study
of their resurgence structure, which we sometimes use as comparison below.

2.2.1 Introducing the class

Topological string theories and mirror symmetry on Calabi–Yau manifolds have been developed

on one parameter families, starting with the mirror pair (M , W ) = (M5,ÙM5/Z3
5) of quintic

hypersurfaces in P4. The quintic example was solved for genus zero in [38], for genus one
in [39], for genus two in [22], and for higher but finite genus (g ≤ 53)6 in [24]. It was soon
realized that in addition to the quintic example, there are twelve additional smooth complete
intersection Calabi–Yau families M in (weighted) projective spaces with one Kähler parameter.
Their mirrors W all have Picard-Fuchs differential operators of hypergeometric type [40–44],
i.e. they are given by

L(4) = θ4 −µ−1z
4
∏

k=1

(θ + ak) , (74)

where z parametrizes the complex structure moduli space Mcs(W ) = P1 \ {0,µ,∞} of W .
It was later proven [45], independently of geometric representations, that these are the only
possible hypergeometric Calabi–Yau motives.7

Table 1 contains comprehensive local and global information regarding these hyperge-
ometric motives. The local information at the special points {0,µ,∞}8 is captured by the
Riemann symbol, which for all hypergeometric models is of the form

P



















0 µ ∞
0 0 a1
0 1 a2
0 1 a3
0 2 a4



















. (75)

Recall that the columns of P list the rational local exponents of the four independent entries
of the solution vector f , L f = 0, at the three special points. According to a theorem of Land-
man [46], the principal properties of the monodromy matrix M∗ transporting f along a path
γ∗ ∈ Π1(Mcs) around the special point ∗ are captured by two minimal integers 1 ≤ k <∞

6See footnote 15.
7In [45], a fourteenth hypergeometric Calabi–Yau motive was found that does not correspond to a smooth

Calabi–Yau family, and to which many geometrical considerations therefore do not apply.
8The systems are associated to the hypergeometric functions 4F3

� a1 ,a2 ,a3 ,a4
1,1,1,1 ;µz

�

or closely related Meijer G func-

tion Gn,4
4,4 (µz), with n= 1, . . . , 4 and the same indices, and have no apparent singularities.
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Table 1: The manifolds M are generically smooth, complete intersections of r polyno-
mials Pj of degree d j in the weighted projective ambient spaces P3+r(w1, . . . , w4+r).
They are denoted as Xd1,...,dr

(w1, . . . , w4+r). We list the triple intersection number
κ = D3 of M , with D denoting the restriction of the hyperplane class of the ambient
space to M , the intersection number of D with the second Chern class of the tangent
bundle c2(T M), the Euler number χ(M), the local exponents at z =∞, the inverse
of the location of the third singularity (thus giving all data required to specify the dif-
ferential operator L(4) in (74)), and finally the degeneration type dT∞ of the mixed
Hodge structure at z =∞.

# M κ c2 · D χ(M) a1, a2, a3, a4 µ−1 dT∞
1 X5(15) 5 50 −200 1

5 , 2
5 , 3

5 , 4
5 55 ODG

5

2 X6(1421) 3 42 −204 1
6 , 1

3 , 2
3 , 5

6 2436 ODG
6

3 X8(1441) 2 44 −296 1
8 , 3

8 , 5
8 , 7

8 216 ODG
8

4 X10(132151) 1 34 −288 1
10 , 3

10 , 7
10 , 9

10 2855 ODG
10

5 X4,3(1521) 6 48 −156 1
4 , 1

3 , 2
3 , 3

4 2633 O12

6 X6,4(132231) 2 32 −156 1
6 , 1

4 , 3
4 , 5

6 21033 O24

7 X4,2(16) 8 56 −176 1
4 , 1

2 , 1
2 , 3

4 210 C4

8 X6,2(1531) 4 52 −256 1
6 , 1

2 , 1
2 , 5

6 2833 C6

9 X3,2,2(17) 12 60 −144 1
3 , 1

2 , 1
2 , 2

3 2433 C6

10 X3,3(16) 9 54 −144 1
3 , 1

3 , 2
3 , 2

3 36 K3

11 X4,4(1422) 4 40 −144 1
4 , 1

4 , 3
4 , 3

4 212 K4

12 X6,6(122232) 1 22 −120 1
6 , 1

6 , 5
6 , 5

6 2836 K6

13 X2,2,2,2(18) 16 64 −128 1
2 , 1

2 , 1
2 , 1

2 28 M2

14 X n.s.
12,2(1

44161) 1 46 −484 1
12 , 5

12 , 7
12 , 11

12 21236 O12

(the unipotency index) and 0≤ p ≤ dimC(W ) (the nilpotency index), such that

(M k
∗ − 1)p+1 = 0 . (76)

In the one-parameter cases at hand, k and p are determined by the local exponents. For
these models, the theory of degenerations of Hodge structures applied to the Calabi–Yau case
implies, as reviewed in [47], that only three types of nilpotent degenerations can occur:

• p = 3 corresponds to MUM points, also called M-points. M∗ has one maxi-
mal rank Jordan block. These points occur if all local exponents are equal, i.e.
(a1, a2, a3, a4) = (a, a, a, a).

• p = 1 corresponds either to K-points, if M∗ has two 2×2 Jordan blocks, or to conifold or
C-points, if M∗ has one 2×2 Jordan block. K-points occur iff two pairs of local exponents
are equal, i.e. (a1, a2, a3, a4) = (a, a, b, b), C-points iff two local exponents are equal and
different from the others, i.e. (a1, a2, a3, a4) = (a, b, b, c), (a, b, c) pairwise unequal.

• At regular points, also called R-points, p = 0 and all local exponents are different, i.e.
(a1, a2, a3, a4) = (a, b, c, d), (a, b, c, d) pairwise unequal.

We note that R- and C-points are at finite distance in the Weil–Petersson metric on Mcs(W ),
while K- and M-points are at infinite distance [48]. Conjecturally, this implies that an infinite
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number of stable BPS states become massless at the latter. The least common multiple of the
denominators of the local exponents determines the unipotency index k. Points with p = 0
and k > 1 are referred to as orbifold points, or O-points.

From the form of the Riemann symbol (75), we can read off that all hypergeometric models
have an M-point at z = 0 and a C-point at z = µ. Furthermore, from Table 1, we see that all
types of nilpotent points occur at z =∞ in the hypergeometric cases; in the last column of the
table, we have indicated the nature of the point at z =∞, and included the unipotency index k
at this point as a subscript.9 The superscript DG (for Doron Gepner) indicates that a description
of the string world-sheet theory as an exact rational (N ,N ) = (2,2) superconformal field
theory is known here.

The relation between the nilpotency index and the structure of the local exponents follows
from the theory of differential equations with only regular singular points. An n-fold degener-
ate local exponent a implies the existence of a power series solutionϖ0(z) = za

∑

n≥0 cnzn and
n− 1 logarithmic solutionsϖ0(z) log(z)k + . . ., k = 1, . . . , n− 1 [49]. The logarithmic branch
behavior of the latter is responsible for the nilpotent part of M∗. The fact that these theorems
apply in the geometric setting follows immediately upon identifying the Picard-Fuchs system
satisfied by the periods. Specifically geometric statements, e.g. the absence of the index struc-
ture (a, b, b, b) in the geometric setting, are more difficult to prove. The Lefshetz monodromy
theorem relatesϖ0(z) to periods over actual geometric (vanishing) cycles V in H3(W,Z).

Calabi–Yau 3-fold systems described by differential operators such as (74) have another
interesting property that follows from special geometry: the anti-symmetric square of the dif-
ferential operator corresponds to a one-parameter Calabi–Yau 4-fold operator. Concretely, the
2 × 2 minors of the Wronskian (W )i j = ∂ i

z f j are the solutions of a one parameter 5th order
Calabi–Yau 4-fold operator [47]. For the hypergeometric families, the latter can be written in
closed form as

L(5) = θ5 −
z
µ
(2θ + 1)

�

θ4 + 2θ3 + (5−α)θ2 + (4−α)θ − (3−α− γ)
�

+
z2

µ2
(θ + 1)

3
∏

k=2

(θ + a1 + ak)(θ + a4 + ak) . (77)

Here α =
∑

i≤ j aia j and γ =
∏4

i=1 ai . This operator is not hypergeometric and corresponds
to a one-parameter Calabi–Yau 4-fold with M-point at z = 0. Note that the discriminant
∆(4) = (1−µ−1z)2 of the 4-fold is the square of the discriminant of the 3-fold. The existence
of L(5) has interesting consequences for the properties of the holomorphic limit of propagators
of the 3-fold: they can be expressed up to rational functions as ratios of the 4-fold periods, see
equations (99) further below.

2.2.2 Global properties of the periods

Note that monodromy preserves the intersection form, so that in an integral symplectic ba-
sis, the monodromy matrices M∗ ∈ Sp(b3(W ),Z) generate (up to van Kampen relations) an
irreducible (paramodular) subgroup ΓW ⊂ Sp(b3(W ),Z) of the corresponding Siegel modular
group.10 Consequently, one can find an integral symplectic basis by taking an arbitrary basis of
solutions f to the Picard-Fuchs system corresponding to the choice of cycles in H3(W,C), ana-
lytically continuing it, and considering linear combinations of these global solutions so that all

9Clearly, k = 1 can always be achieved by a local coordinate change. As the choice of z is canonical however,
the entry nevertheless tells us something about the global symmetries of the family.

10The subgroup is not necessarily of finite index. Both finite and infinite index arise for the hypergeometric
families, see [50].
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monodromies are simultaneously in Sp(b3(W ),Z).11 However, this procedure is cumbersome,
and we prefer invoking homological mirror symmetry and the Γ̂ class formalism to construct a
distinguished integral symplectic basis at an M-point. We will review this procedure in the fol-
lowing for the example of one-parameter hypergeometric models, but the discussion is easily
generalizable to multi-moduli cases, see e.g. the appendix of [51].

A Q-basis Lm, m= 0, 1,2, 3, of solutions to (74) at the M-point at z = 0 can be constructed
using the definition

(2πi)3
∞
∑

k=0

∏r
l=1 Γ (dl(k+ ε) + 1)

∏r+4
l=1 Γ (wl(k+ ε) + 1)

zk+ε =:
∞
∑

m=0

Lm(z)(2πiε)m , (78)

where the weights wl and the degrees dl are given in Table 1. In terms of the Lm, a canonical
integral symplectic basis Π⃗ is given as

Π⃗ =







P0
P1
X 0

X 1






=









∫

B0 Ω
∫

B1 Ω
∫

A0
Ω

∫

A1
Ω









=









κL3 +
c2·D
12 L1

−κL2 +σL1
L0
L1









= (2πi)3









ζ(3)χ(M)
(2πi)3

c2·D
24·2πi 0 κ

(2πi)3
c2·D
24

σ
2πi − κ

(2πi)2 0
1 0 0 0
0 1

2πi 0 0









Π⃗0 . (79)

In the last equality, we have related this basis to a C-basis of solutions with rational coefficients
which arises as an application of the Frobenius method. Following this method, one solves the
differential system via an ansatz involving power series and logarithms, depending on the form
of the local exponents, leading to a rational recursion on the expansion coefficients [49]. We
refer to Π⃗0 as a local Frobenius basis. To render it unique, additional normalization conven-
tions must be imposed. The logarithmic structure of this basis takes the form

Π⃗0(z) =









f0(z)
f0(z) log(z) + f1(z)

1
2 f0(z) log2(z) + f1(z) log(z) + f2(z)

1
6 f0(z) log3(z) + 1

2 f1(z) log2(z) + f2(z) log(z) + f3(z)









, (80)

for power series fn normalized by f0(0) = 1 and f1(0) = f2(0) = f3(0) = 0. Following equation
(79), linear combinations of the Frobenius periods determined in terms of the topological data
recorded in Table 1 and the parameter σ := (κ mod 2)/2 yield the canonical integral period
vector.

At the generic conifold point with local exponents (0, 1,1, 2), we choose the Frobenius
basis in local coordinate δ = (1− z/µ) to have the form

Π⃗µ =









1+O
�

δ3
�

πS3(δ)
δ2 +O

�

δ3
�

πS3(δ) log(δ) +O
�

δ3
�









. (81)

Here, πS3(δ) = δ + O
�

δ2
�

is the unique power series which multiplies the logarithm in the
logarithmic solution, up to normalization. As indicated, it corresponds to the period over the

11The above mentioned fact that vanishing periods are proportional to integrals over vanishing cycles
V ∈ H3(M ,Z) greatly simplifies this approach.
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cycle with S3 topology which vanishes when z approachesµ (shrinking lens spaces do not occur
in the class of one-parameter hypergeometric models). This solution is (up to normalization)
the analytic continuation of the period P0 introduced in (79); in particular, this implies that
the cycle B0 ∈ H3(W,Z) has a representative with topology S3. The transition matrix Tµ
introduced below in (86) implies this identification and also fixes the normalization constant:
P0 =
p
κ(2πi)2πS3 = ΠS3 . The dual cycle A0 ∈ H3(W,Z), whose associated period is the unique

holomorphic period at z = 0 (up to normalization), has a representative with topology T3. In
the A model, P0 is related to the mass of the D6 brane, and X 0 to the mass of the D0 brane.
These statements are universal for the hypergeometric class of models and also apply to the
majority of the models in [52]; the conifold point in question is the closest conifold point to
the standard M-point.

It follows from (79), the transition matrix Tµ introduced below in (86) and from the fact
that hypergeometric models have three singular points that ΓW is generated by12

M0 =









1 −1 κ
6 +

c2·D
12

κ
2 +σ

0 1 σ− κ2 −κ
0 0 1 0
0 0 1 1









, Mµ =







1 0 0 0
0 1 0 0
−1 0 1 0
0 0 0 1






, M∞ = (M0Mµ)

−1 .

(82)
To analytically continue the integral basis of periodsΠ defined in (79) everywhere on Mcs(W ),
we express it in terms of local Frobenius bases Π∗ on the overlap of their respective domains
of convergence. The transition (or connection) matrices T∗ encode the respective linear com-
binations of the latter yielding the former, Π = T∗Π∗. These matrices can be easily deter-
mined numerically. The period matrix (or Wronskian) W∗ of a local solution is defined via
[W∗(z)]i j = ∂ i

zΠ
∗
j , i, j = 0, . . . 3. For the integral basis at z = 0, this is

W (z) :=







X 0 X 1 P0 P1
∂zX 0 ∂zX 1 ∂z P0 ∂z P1
∂ 2

z X 0 ∂ 2
z X 1 ∂ 2

z P0 ∂ 2
z P1

∂ 3
z X 1 ∂ 3

z X 1 ∂ 3
z P0 ∂ 3

z P1






. (83)

The local Frobenius solutions at z = µ and z =∞ yield corresponding expressions Wδ(z),
Ww=1/z(z). Evaluating these matrices at the optimal intermediate points with regard to the
respective radii of convergence13 yields

Tµ =W (µ/2)Wδ(µ/2)
−1 , T∞ = TµWδ

�

µ
1+
p

5
2

�

Ww

�

µ
1+
p

5
2

�−1

. (84)

To obtain results to at least n significant digits, all series contributing to these expressions
must be expanded roughly to order 5n. To evaluate the logarithms, we choose the points to
lie above the real z-axis from z = 0 to z = µ and z =∞, and the branch cuts to run along the
positive real axis.

The matrix T∞ can be calculated exactly using a Mellin-Barnes integral representation for
the Meijer G-functions,

Gn4
44 =

1
2πi

∫

C

Γ (s)4
∏n

k=1 Γ (aσ(k) − s)((−1)n x)s
∏4

k=n+1 Γ (1− aσ(k))
ds . (85)

12Note that the Hirzebruch-Riemann-Roch theorem identifies κ6 +
c2 ·D
12 with the holomorphic Euler characteristic

χ(OD), which explains its integrality.
13To obtain the optimal intermediate point between the conifold point at z = µ and the third singular point at

w= 1/z = 0, solve µ+λµ= 1
0+λ 1

µ

.
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Figure 1: The values of t = X 1/X 0 over the cut z-plane for the model X5(15) with an
O-point of unipotency l = 5 at z =∞ (left) and the model X4,2(16) with a C-point
of unipotency l = 4 at z =∞ (right). The plots depict the t image of rays in the
z-plane emanating from the semi-circle with radius 10−5 in radial direction towards
infinity. Im t →∞ corresponds to z = 0.

Here, z = µ/x , and the values of n and the permutation of the indices σ(k) have to be chosen
to get four independent solutions. Two choices of contours for |x | < 1 and |x | > 1 have to be
picked to perform the residua in (85). As a consequence, the exact expression for T∞ with
regard to a Frobenius basis Π∞ contains π factors, l-th unit roots and values of the Γ -function
at rational arguments for O-, C-, K-points, and in addition a ζ(3) value for M-points at z =∞,
see [37] for explicit expressions.

The arithmetic properties of the transition matrix Π⃗= TµΠ⃗µ,

Tµ =







0
p
κ(2πi)2 0 0

σw+ +w− σa+ + a− σe+ + e− 0
b c d −

p
κ2πi

w+ a+ e+ 0






, (86)

are more intriguing [37], as the entries w± and e± are related to periods and quasi periods
of modular forms of Γ0(N); the other entries can also be also written as integrals of modular
forms using fibering out techniques. With this information, the periods can be approximated
to arbitrary precision over the entire moduli space Mcs(W ).

We extract graphical information in Figures 1 and 2 for representative models with O-, C-,
K-, M-point at z =∞ respectively. We see that the periods of all models behave uniformly,
and in fact similarly to the local cases, in the region of convergence of the generic M-point at
z = 0, which is bounded by the location of the generic conifold, i.e. |z| ≤ µ. Along the real
axis, the periods of all models exhibit the phases

φ(P0) =

�

π , if z ≤ µ ,
0 , if µ < z ,

φ(P1) =

�

−π2 , if σ = 0 ,
�

−π2 ,−aπ2
�

, if σ = 1
2 ,

(87)

φ(X 0) =

�

−π2 , if z ≤ µ ,
�

−π2 ,−bπ2
�

, if µ < z ,
(88)
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Figure 2: The values of t = X 1/X 0 over the cut z-plane, plotted as explained in the
caption of Figure 1, for the model X33(16) with a K-point of unipotency l = 3 at
z =∞ (left) and the model X2222(19) with an M-point of unipotency l = 2 at z =∞
(right).

and φ(X 1) = 0, where a and b are slightly model dependent constants close to one:
2/3 < a, b < 9/10 and the phase is monotonously increasing in the interval. The real val-
ues are plotted in Figure 3. In the region |z| ≤ µ, which is qualitatively similar for all models,
the most significant point for us in the following will be where the masses of the dual D6 and
D0 brane cross. We list the numerical values for all crossing points of masses in the region
0≤ z ≤ µ in Table 2.

Close to the MUM point at z = 0, the D-brane masses grow exponentially and the relative
behavior is not obvious from Figure 3. With the definition of the area below (43), we find
for the one parameter case A = − 1

2π log(Rez), i.e. we get a more suitable logarithmic scale
A→∞ for z→ 0. The leading order behavior for the real quantity (7) is

−i e−K = (2π)6
�

4A3κ

3
+

2χ(W )ζ(3)
(2π)3

�

+O(e−A) , (89)

which is interpreted as the quantum (instanton) corrected volume. The leading behavior of
the D-brane masses is

�

mD6
, mD4

, mD0
, mD2

�

∼

�

1
4

s

κ

3
A3/2,

1
4

p
3κA1/2,

1
2

√

√3
κ

A−3/2,
1
2

√

√3
κ

A−1/2

�

, (90)

up to exponentially suppressed terms and lower powers in A. Hence, the D6, D4 brane masses
become exponentially large, while the D0, D2 brane masses are exponentially suppressed.

Another noticeable feature of Figure 3 is that for the orbifold models 1 to 6 of Table 1, none
of the D-brane masses in the basis (90) vanish in the region µ < |z| ≤∞, despite the fact that
the absolute values of the periods do vanish, as is clear from the local exponents listed in Ta-
ble 1. Notice also that Figure 3 looks similar at first glance for all models. The physics however
differs from model to model, depending on the existence of integral charge combinations of
vanishing D-branes which create the corresponding CKM–boundary conditions at z =∞ and

Table 2: The three rows in this table list X 0 = z0/µ, where mD6(z0) = mD0(z0),
x4 = z4/(µ10−7), where mD6(z4) = mD4(z4), and x2 = z2/(µ10−2), where
mD6(z2) = mD2(z2).

# 1 2 3 4 5 6 7 8 9 10 11 12 13 14
X 0 .1409 .0884 .0581 .0228 .1618 .0557 .1997 .1173 .2568 .2153 .1150 .00209 .2998 .00246
x4 1.687 1.567 .9822 .5478 1.983 1.991 1.786 1.393 1.777 1.898 2.164 1.646 1.683 .2663
x3 5.483 1.693 .4683 .02596 0.5161 7.876 12.30 3.321 20.897 14.73 35.67 0.2904 28.06 0.02376
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Figure 3: The mass of the D6 brane, |P0|eK/2, the D4 brane, |P1|eK/2, the D1
brane, |X 1|eK/2, and the D0 brane, |X 0|eK/2, along the real z-axis for the model
X5(15). Note that up to the factor of eK/2, this Figure, together with the informa-
tion in (87), also gives the values of the corresponding periods. The mass of the
D6 brane vanishes at the conifold point C . For us, the most interesting point is at
z = 0.14086550800127323750µ, where the absolute value of P0 starts exceeding
the one of X 0, which stays hierarchically smaller as we approach the M -point.

dominate the non-perturbative features of the topological string in the region µ ≤ |z| ≤ ∞.
We will discuss both points in section 3.2.2.

2.2.3 Wronskian, frames and holomorphic limits

The Wronskian W of a Calabi–Yau motive has very special properties that follow from Griffiths
transversality. Let [W (z)]i j = ∂ iΠ j be defined as in (83) with Π an integral symplectic basis
as in (79) with regard to an intersection form Σ defined as in (34), or more generally defined
for any frame by expanding (36). We can then define the skew symmetric matrix

Z =W ·Σ ·W T , i.e. [Z(z)]i j = ∂
i

zΠ
T ·Σ · ∂ j

z Π , for i, j = 0, . . . , 3 . (91)

As a consequence of (8), we conclude that for any 4th order Calabi–Yau 3-fold operator

L(4) =
4
∑

i=0

ci(z)∂
i , (92)

with rational coefficients ci(z), hence in particular for operators of the form (74), the [Z]i j are
rational up to a prefactor (2πi)3, which corresponds to a Tate twist. Indeed, the entries of Z
can be calculated recursively by considering (8) and using

ΠT ·Σ · ∂ i
z L(4)Π= 0 , i = 0, . . . (93)

In particular, the inverse of the matrix Z can be evaluated in terms of the Yukawa coupling
C = Czzz and its derivatives C ′ = ∂zC etc. to be

Z−1 =
(2πi)3

C











0 C ′′
C − 2 C ′

C +
c2
c4
− C ′

C 1

2 C ′
C −

C ′′
C −

c2
c4

0 −1 0
C ′
C 1 0 0
−1 0 0 0











, (94)

where c2 and c4 are the coefficients appearing in (92). As a consequence, the inverse of the
Wronskian,

W−1 = Σ ·W T · Z−1 , (95)
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depends, up to the dependence on the rational function c2/c4, linearly on the periods and
its derivatives, just as the Wronskian itself. One consequence of (95) and the rationality of
Z is that while the Wronskian transforms with right multiplication under monodromy and
symplectic frame changes

W →W ·M T , (96)

its inverse transforms as
W−1→ (M T )−1W−1 . (97)

Another important consequence is that disc amplitudes [53] or multiloop Feynman inte-
grals [54] fulfill an inhomogeneous extension of the linear differential equation, of the form
L(4)Π= g(z). The variation of constants method applied to solving this inhomogeneous equa-
tion implies by (95) that its solutions are simply, up to rational functions and f (z), integrals
over periods and their derivatives.

Let now X 0
∗ and X 1

∗ be two A-periods in a particular frame, and define by W ∗(z) the corre-
sponding Wronskian as in (83). Then, (63) and (62) with Ki and Υm

il given by the holomorphic
limit (51) imply that the propagators Szz , S̃z , S̃ can be expressed by the determinants of the
2× 2 minors of the Wronskian matrix W ∗(z), defined to be

wi, j = ∂
j

z X 0
∗∂

i
z X 1
∗ − ∂

i
z X 0
∗∂

j
z X 1
∗ , (98)

in the following manner:

Szz = −
1
C

�

w0,2

w0,1
− qz

zz

�

, S̃z = −
1
C

�

w1,2

w0,1
− qzz

�

,

S̃ = − 1
2C

�

w1,3

w0,1
− ∂zqzz − qzzqz

zz

�

+
∂zC
2C2

�

w1,2

w0,1
− qzz

�

−
qz

z

2
.

(99)

As mentioned above, the entries of the Wronskian are themselves periods of a Calabi–Yau
4-fold; the transcendental functions in (99) are thus affine 4-fold periods. For the hypergeo-
metric cases, the associated 5th order Picard-Fuchs operator is given in (77).

We comment here that GL(4,C) transformations changing the frame can be decomposed
into two sets of GL(2,C) transformations acting on the A-periods X 0, X 1 and B-periods P0, P1
respectively, and generators that exchange A- and B-periods. Since the minors are invariant
under SL(2,C) and the holomorphic limits of the propagators involve only ratios of the latter
and rational functions of the modular parameter z, they are invariant even under GL(2,C)
actions on the A-periods.

3 Solution of the holomorphic anomaly equations

The perturbative free energies Fg (g ≥ 1) can be computed recursively by using the holomor-
phic anomaly equations of [22], up to the mentioned holomorphic integration kernel. The
starting point of the recursions is the genus zero data defined in Section 2.1. Genus one is
special due to the existence of an extra Killing vector field; the holomorphic anomaly here
reads [39]

∂̄ ȷ̄∂i F1 =
1
2

Cikl C
kl
ȷ̄ −

�

χ(M)
24
− 1

�

Gi ȷ̄ . (100)

Beyond genus 1, one has [22]

∂̄k̄Fg =
1
2

C i j
k̄

�

Di Dj Fg−1 +
g−1
∑

r=1

Di Fr Dj Fg−r

�

. (101)
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An immediate consequence of (40), (100), (101) and (28) is that the Fg(z) are sections of
Γ (L2−2g). For the sum of topological string amplitudes in (1) yielding the perturbative topo-
logical string partition function to make sense, the topological string coupling gs must be a
section of L:

Fg ∈ Γ (L2−2g) , gs ∈ Γ (L) . (102)

In this section, we will give a quick review of the solution of the holomorphic anomaly equa-
tions using the properties of the propagators defined in Section 2.1.3. In the following sections,
we will extend the holomorphic anomaly equations non-perturbatively.

3.1 Solving the holomorphic anomaly equations

Using (58) and Gi ȷ̄ = ∂ ȷ̄∂iK = ∂ ȷ̄Ki we can integrate (100) with regard to z ȷ̄ to obtain

∂i F1 = Ci −
�χ(M)

24
− 1

�

Ki , (103)

where we have defined

Ci =
1
2

S jkCi jk + f (1)i . (104)

Using (59), the complete integration of (103) can be performed. After taking into account the
formula Ri ȷ̄ = −∂i ∂̄ ȷ̄ logdet(Gab̄), we can write [39]

F1 = −
1
2

logdet(Gab̄)−
�

χ(M)
24
−

1
2
(h11(M) + 3)

�

K + log( f1 f̄1) . (105)

The holomorphic limit of this expression can be taken directly. Alternatively, one can use (103)
and the holomorphic limit of S i j in (63). One finds,

F1 = −
1
2

log det

�

∂ ta
∗

∂ zi

�

+
�

χ(M)
24
−

1
2
(h11(M) + 3)

�

log
X 0
∗

(2πi)3
+ f1(z) . (106)

In the hypergeometric one-parameter cases discussed mostly in the paper, the genus one holo-
morphic ambiguity is of the form

f1(z) = log
�

z−
c2 ·D+12

24 (1−µ−1z)−
1
12

�

. (107)

The exponent of z is fixed by the leading behavior of F1 at the MUM point at z = 0 by (122),
the definition of tM (43) and c2 · D as given in Table 1. The exponent of the discriminant
(1− µ−1z) is fixed by the behavior (124) at the conifold point at z = µ. This fixes the genus
one perturbative free energy for the hypergeometric one-parameter models in terms of the
genus zero data entering Ci jk, S i j and Ki . The general situation is described in Section 3.2.

Note that f (1)i (z) in (104) is related to f1(z) in (106) by

∂i f1(z) = f (1)i (z) +
1
2

ql
il . (108)

The free energies of higher genus g ≥ 2 can be determined up to the holomorphic ambi-
guity by using the Feynman graphs of an auxiliary theory in which the S’s are the propagators
(hence their name) and the genus g n-point functions called C (g)i1,...,in

are the vertices [22]. Al-
ternatively, one can use direct integration [24, 32, 33, 55], which is combinatorially a much
more efficient approach. The direct integration method relies on the assumption that there
are finite and functionally independent an-holomorphic objects which carry all an-holomorphic
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dependence of Fg . In the approach of [22], the propagators S i j , S i , S and the Ki are the an-
holomorphic objects that appear in the Fg . Note that Ki appears in the covariant derivatives
that are used to define the n-point functions, but in an explicit way it only enters in ∂i F1. As-
suming that these generators are all independent, and using (58), the holomorphic anomaly
equations (101) are equivalent to

∂ Fg

∂ S i j
=

1
2

Di Dj Fg−1 +
1
2

g−1
∑

h=1

Di FhDj Fg−h ,
∂ Fg

∂ Ki
+ S i

∂ Fg

∂ S
+ S i j

∂ Fg

∂ S j
= 0 . (109)

If one uses the shifted propagators (60) then the second equation in (109) becomes

∂ Fg

∂ K j
= 0 , (110)

while the first equation reads

∂ Fg

∂ S jk
−

1
2

∂ Fg

∂ S̃k
K j −

1
2

∂ Fg

∂ S̃ j
Kk +

1
2

∂ Fg

∂ S̃
K jKk =

1
2

Dj DkFg−1 +
1
2

g−1
∑

h=1

Dj FhDkFg−h . (111)

Hence, the explicit Ki dependence in the Fg can be removed by expressing them as Fg(S i j , S̃ i , S̃)
for g > 1, as observed in [33].

The holomorphic anomaly equations can also be formulated for the sum of the topological
string amplitudes, rather than individually for each order in gs (see [20–22,56] and in partic-
ular [23,57]). This will be the starting point of the analysis in section 5. As g = 0 and g = 1
play distinguished roles, we need to introduce

eF (0) = F (0) − g−2
s F0 =

∑

g≥1

Fg g2g−2
s , (112)

as well as
bF (0) = eF (0) − F1 =

∑

g≥2

Fg g2g−2
s , (113)

for this purpose. A difficulty that needs to be overcome in this formulation is to incorporate
the dependence on the Kähler potentials which the covariant derivatives on the RHS of (111)
entail, even though the objects eF (0) and bF (0) are sections of L0, by (102). For this purpose, we
define the operator

D̂i =Di − Ki gs
∂

∂ gs
, (114)

where Di is the covariant derivative with regard to the Kähler metric, i.e. it involves the
Christoffel symbol but not the connection on L. With these ingredients, the holomorphic
anomaly equations (111) lead to the master equation

∂ bF (0)

∂ S i j
−

1
2

Ki
∂ bF (0)

∂ S̃ j
−

1
2

K j
∂ bF (0)

∂ S̃ i
+

1
2
∂ bF (0)

∂ S̃
KiK j =

g2
s

2
D̂i D̂j eF

(0) +
g2

s

2
D̂i eF

(0)D̂j eF
(0) , (115)

together with the constraint coming from (110),

∂ bF (0)

∂ Ki
= 0 . (116)

To solve the equations (111), it is convenient to render the implicit dependence on the
Kähler potential of the Christoffel connection arising in the first term on the RHS explicit by
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invoking (59). Then, as the Ki are assumed to be functionally independent, one can write down
equations for the derivatives with respect to individual propagators separately by comparing
Ki powers in (111). This leads to [58]

∂ Fg

∂ S i j
=

1
2
∂i(∂

′
j Fg−1) +

1
2
(Ci jl S̃

lk − qk
i j)∂
′
k Fg−1 +

1
2
(Ci jkS̃k − qi j)cg−1 +

1
2

g−1
∑

h=1

∂ ′i Fh∂
′
j Fg−h ,

∂ Fg

∂ S̃ i
= (2g − 3)∂ ′i Fg−1 +

g−1
∑

h=1

ch∂
′
i Fg−h ,

∂ Fg

∂ S̃
= (2g − 3)cg−1 +

g−1
∑

h=1

chcg−h .

(117)

Here we used the last equation in (61) and the fact the only explicit Ki dependence arises in
∂i F1. We also define cg and the action of ∂ ′ on the free energies for F1 as

cg =

� χ
24 − 1 , g = 1 ,

(2g − 2)Fg , g > 1 ,
∂ ′i Fg =

�

∂i Fg + (
χ
24 − 1)Ki , g = 1 ,
∂i Fg , g > 1 .

(118)

In this way we only have to use the first three equations of (61) when computing the r.h.s of
(117), so that its integration closes manifestly on the genus zero data S i j , S̃ i and S̃, up to a
holomorphic ambiguity fg(z) in each step. Specializing to one modulus one gets e.g. for F (2)

F2 =
5

24
C2

111

�

S11
�3
+

1
8

�

∂1C111 − 3C111q1
11 + 4C111 f (1)1

�

�

S11
�2

+
�

1
4

q11
1 C111 +

1
2
∂1 f (1)1 +

1
2

f (1)1

�

f (1)1 − q1
11

�

+
1
2

�

1−
χ

24

�

q11

�

S11

+
χ

48

�

C111S11 + 2 f (1)1

�

S̃1 +
χ

24

� χ

24
− 1

�

S̃ + f2(z) .

(119)

Here f2(z) is the genus two holomorphic ambiguity. This does not look too impressive com-
pared with the multi moduli expression (6.7) in [22], but the point is that the terms in the
latter grow factorially with g (see [59] for a recent evaluation of the asymptotic growth based
on graph combinatorics for various actions), while the integration of (117) leads to expres-
sions Fg(S i j , S̃ i , S̃), which are weighted polynomials with rational coefficients of degree 3g−3
in the S′s with weight (1,2, 3) respectively (the denominators of these polynomials can be
absorbed by writing them in terms of the Ci jk). This makes the calculation of the higher Fg
rather efficient and one can reach up to genus 60− 70 on a good (2023) workstation.

Requiring only a few generators, singled out by automorphic symmetries such as (52), to
re-sum a Feynman graph expansion might be viewed as too good to be true for people doing
realistic perturbative quantum field theories. The current attempt of reducing the Feynman
graph expansion to master integrals is a step in this direction [27]. The comparison is not so far
fetched, as the coefficients of a perturbative amplitude in the Laurent expansion, with regard
to the dimensional regularization parameter, are in the same class of functions as periods and
chain integrals of Calabi–Yau manifolds, whose dimension grows with the loop order [54] [60].
In this context, it is quite remarkable that the propagators needed to increase the loop order
in the topological string are also defined, as explained around (99), in terms of affine periods
of higher dimensional Calabi–Yau manifolds with Picard-Fuchs operator (77). Note also that
despite the polynomial growth of terms contributing to Fg(z), the leading asymptotic of their
values at a point in Mcs is expected to go with (2g)!, as e.g. at z = 0 in (322). The growth of
the transcendentality of asymptotic values is again very reminiscent of the situation in more
general evaluations of perturbative amplitudes and might be another reason for the factorial
growth.
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In the compact Calabi–Yau case, fixing the holomorphic ambiguities is the major obstacle
to solving for the perturbative free energies. This is in contrast to the local case where the
conifold gap conditions and orbifold regularity prove sufficient [61]. We discuss methods to
fix the holomorphic ambiguity next.

3.2 Fixing the holomorphic ambiguity

Solving the holomorphic anomaly equation (100) at g = 1 and determining the topological
string amplitudes Fg for g > 1 recursively from the equations (101) at higher genus requires
specifying holomorphic functions fg(z) at each genus. These are known as holomorphic ambi-
guities, as they lie in the kernel of the anti-holomorphic derivatives ∂k̄. The holomorphic am-
biguities should not contribute to the transformation of the Fg under the monodromy group.
They are thus naturally chosen to be rational functions (except for f1(z), which is the log of
a rational function) on Mcs(W ). Physically, it is expected that their singularities lie at the
singularities of the geometry W . The latter form a subset of the discriminant locus of L. The
form for f1 for the hypergeometric cases was given in (107); as we will explain below, the
general ansatz for fg≥1(z) is

fg>1(z) =

∑2g−2
k=0 akzk

(1−µ−1z)2g−2
+

cm
∑

k=1

bkzk , (120)

where cm ∈ N is a model dependent integer and ak, bk ∈Q are constants to be determined by
physical or geometric boundary conditions. Typically, these come from expansions of the Fg in
a holomorphic limit, which, as explained in Section 2.1.2, requires the choice of a projective
frame ∗ of A-periods X I

∗, I = 0, . . . , r. Recall our conventions: the topological string amplitudes
in the holomorphic limit in the projective frame ∗ are denoted as Fg(X∗), whereas the Käh-
ler gauge invariant functions of the affine parameter t∗, obtained by the homogeneity of the
topological string amplitudes, are notationally distinguished by their argument and denoted
as

Fg(t∗) = (X
0
∗ )

2g−2Fg(X∗) ∈ Γ (L0) . (121)

In the following, we will first discuss the boundary conditions which can be imposed at torsion
free MUM points using mirror symmetry, as well as the gap conditions imposed at general-
ized conifolds points, at which a lens space shrinks to zero size in W . Then, we will turn to
the boundary behavior at more general degenerations, which in the case of one-parameter
hypergeometric families occur in the z =∞ region.

As we discuss in section 5.7, knowledge of the leading asymptotics at the MUM point
and conifold divisor permits determining the instanton contributions to the associated Borel
singularities analytically [20, 21, 23]. It would be interesting to extend this discussion to the
regions dominated by the more general degenerations discussed in section 3.2.2 below.

3.2.1 Torsion free MUM points and generalized conifold points

The discussion of the boundary behavior of Fg requires special considerations at genus 1. We
will discuss this case first, and then turn to the discussion of higher genus.

Genus 1 at points of maximal unipotent monodromy (m): One can fix the ambiguity
f1(z) at g = 1 by imposing the appropriate leading order behavior of F1 at points of maximal
unipotent monodromy. This was determined in [39] by a geometric calculation on the mirror
M :

F1(t) = −
2πi
24

r
∑

a=1

ta c2 · Da +
∑

β∈H2(M ,Z)\0

�n0,β

12
+ n1,β

�

Li1(Qβ) . (122)
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Here, ta are coordinates parameterizing the Kähler cone on M . Via mirror symmetry, they
can be identified with the affine coordinate ta = ta

m = X a
m/X

0
m = X a/X 0 defined in (43). As

explained above, the X I follow uniquely from the log structure of periods at the MUM point
and provide a preferred integral symplectic basis of periods. For the one-parameter models,
the first term in (122) determines the exponent of z in (107). If the mirror M of W is known,
the intersection of the second Chern class of the tangent bundle of M with the divisors Da dual
to the Mori cone generators can be readily calculated. Else, the constants c2 ·Da can be read off
from the transition matrix T0, whose form for one-parameter models we have explicitly given
in (79). The form of the world sheet instanton corrections, the O(Qβ) contribution in (122),
is determined by the Gopakumar–Vafa formula, given below in (126), if H2(M ,Z) is torsion
free.

Genus 1 at lens space conifolds (c): If a lens space ν = S3/ZN vanishes at a point zc
in Mcs(W ), the Lefshetz monodromy theorem in odd dimensions implies that the Picard-
Fuchs system exhibits a single logarithmic solution fν̂ = πν log(z − zc) +O((z − zc)), where
πν is the solution that vanishes at z = zc, see e.g. (81). We refer to the locus z = zc as the
(generalized, if N > 1) conifold locus; it is a divisor in Mcs(W ). As indicated, this vanishing
period corresponds, up to normalization, to the period over the geometric vanishing cycle ν.
Together with its dual ν̂, it can be chosen to be part of an integral symplectic basis. Lefshetz
theory implies then that ν̂∩ν= N . For the one-parameter hypergeometric models, one obtains
such an integral basis from the transition matrix (86) acting on the Frobenius solution (81).
In particular,

Πν =

∫

ν

Ω= P0 =
p
κ(2πi)2πν , (123)

and Fν̂ =
∫

ν̂
Ω= X 0. Πν extended to any integral symplectic basis will be the only element of

this basis which vanishes on the conifold locus. This follows from the fact that the values in
the first column of the transition matrix Tµ, which, by the form of the Frobenius solution (81),
give the values of the periods in an integral basis at z = zc, are arithmetically independent
over Z [37].

As argued in [62] based on physical considerations, the leading behavior of F1(tc) near zc
is given by

F1(tc) = −
N
12

log(tc) +O(t0
c ) . (124)

Here, tc = Πν/ΠΓ , where ΠΓ =
∫

Γ
Ω is a period which is finite at z = zc and does not involve

logarithmic terms. In order for (124) to hold, the local exponents have to be (1, 1,0, . . . , 0),
with 1 for Πν and Fν̂ and 0 for the other periods. The exponents thus do not discriminate
between vanishing cycles of topology S3/N for different N . Determining this topology ge-
ometrically can be challenging: typically, the mirror manifolds W are obtained as resolved
quotients, and the quotient action on the vanishing cycle needs to be determined.14 A simpler
way to determine N is to calculate the (generalized) conifold monodromy: the shift is given by
ν̂∩ν= N , as a consequence of the Lefshetz theorem. For the hypergeometric cases, it follows
from inspection of Mµ in (82) that N = 1 in all cases.

The boundary conditions at z = 0 and z = µ fix the holomorphic ambiguity at genus 1
completely. This is in contradistinction to higher genera, where the behavior at 1/z = 0 must
also be invoked.

Note that the normalization of tc is not fixed in (124), and it follows from (79) and (86)
that the cycle Γ may be chosen to be an element of the integral symplectic basis containing ν.

14See the Hulek-Verrill manifold for an easy example in which lens spaces arise upon quotienting [63].
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We can hence define

tc =
Πν
ΠΓ
=

X 1
c

X 0
c

, (125)

with ν, Γ ∈ H3(W,Z), ν∩ Γ = 0 and ΠΓ (zc) ̸= 0.

Genus > 1 at points of maximal unipotent monodromy (m): The leading behavior of
the topological string amplitudes at a MUM point can be extracted from the Gopakumar–Vafa
formula [64]

F (0)(X ) = c(t)
λ2
+ l(t) +

∑

g≥0

∑

β∈H2(M ,Z)

∑

k≥1

ng,β

k

�

2sin
kλ
2

�2g−2

Qk
β . (126)

Here, we have introduced a Kähler gauge-invariant loop counting parameter

λ=
(2πi)3/2 gs

X 0
∈ Γ (L0) , (127)

and Qβ was defined in (48). The Gopakumar–Vafa formula follows from a one-loop Schwinger
calculation in the effective N = 2 supergravity theory obtained from compactifying on M , the
mirror manifold to W ; this computation yields the couplings between the self-dual curvature
and the self-dual field strength of the graviphoton, Fg(t∗)(R+)2F2g−2

+ , and is sensitive to the
BPS indices ng,β ∈ Z known as Gopakumar–Vafa invariants. c(t) and l(t) in (126) are the
cubic and linear logarithmic contributions to F0 and F1 at degree β = 0, as displayed in
(47) and (122); they reflect classical topological data of M . While these are not part of the
Schwinger-Loop amplitude, they are encoded in the large order behavior of the ng,β , see [65].

To extract the leading contributions to the topological string amplitudes around a MUM
point, we use the identities

sin−2 x =
∞
∑

n=0

(−1)n−1 4(2n− 1)B2n(2x)2n−2

(2n)!
, sin2 x =

∞
∑

n=1

(−1)n−1 (2x)2n

2(2n)!
, (128)

and obtain the so-called bubbling contributions, which for g ≥ 2 take the form

�

λ

gs

�2−2g

Fg(X ) =
∑

β∈H2(M ,Z)

�

(−1)g+1
(2g − 1)B2g

(2g)!
n0,β +

2(−1)g n2,β

(2g − 2)!
+ · · ·

�

Li3−2g(Qβ) .

(129)
The polylogarithm function Li3−2g captures the contributions of multi-coverings to Fg . The
form of these contributions was proven for genus zero in [66] and for higher genus in [67].

Note that equation (129) contains the leading constant map contributions to the topolog-
ical string amplitudes at β = 0. Setting

n0,0 = χ(M)/2 , ng,0 = 0 , for g > 0 , (130)

reproduces the constant contribution ζ(3)χ/2 to F0 visible in (47). To obtain the constant
map contribution at g > 1, we need to use ζ-function regularization, replacing the divergent
infinite sums that occur by evaluating the polylogarithm at Q0 = 1 by ζ(−n) = −Bn+1/(n+ 1)
for n ∈ N0. This yields

�

λ

gs

�2−2g

Fg(X ) =
(−1)g+1B2g B2g−2

4g(2g − 2)(2g − 2)!
χ(M) +O(Qβ)≃

(−1)g(2g)!
(2π)4g−2 g(2g − 2)

χ(M) +O(Qβ) .

(131)
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This formula was first obtained in [68] and proved in [67] for smooth M without torsion in
H2(M ,Z). The approximation for large g on the RHS of (131) uses

B2n

(2n)!
=

2(−1)n−1

(2π)2n
ζ(2n) =

2(−1)n−1

(2π)2n

∏

p:prime

1
1− p−2n

, (132)

with ζ(2n)∼ 1 to leading order.
Formula (126) is inspired by the calculation of heterotic one-loop amplitudes in het-

erotic/type II duality [68, 69] and needs to be modified, together with the above conclusions
drawn from it, if M has torsion classes in H2(M ,Z). This phenomenon already occurs for an
example in the class of hypergeometric models: to obtain the topological string amplitudes
on X2222 to genus g = 32, we need to extract boundary conditions from the second MUM
degeneration of the mirror family to this geometry; this degeneration is mirror dual to the
degeneration of the X8 geometry with 84 nodes and Z2 torsion [35].

In general, the exact leading behavior (131) of the topological string amplitudes at a MUM
point yields one constraint on the holomorphic ambiguity. Many more constraints at MUM
points arise by imposing Castelnuovo bounds on the Gopakumar–Vafa invariants. These state,
roughly, that ng>gmax(β),β = 0, where gmax(β) ≤ c β · β for some constant c. These bounds
can be formulated more precisely for the generic MUM point at z = 0 of the hypergeometric
one parameter models, which correspond to torsionless geometries. Writing β = d ∈ N, the
following bounds hold for these cases:

gmax(d)≤
�

d2

2κ
+

d
2

�

+ 1 , gmax(d)≤
�

2d2

3κ
+

d
3

�

+ 1 , 0< d < κ . (133)

This was observed in [24] and recently proved rigorously in [25] using vanishing results in
Donaldson-Thomas theory, see also [70] for a proof in the case of the quintic. As the curves
of degree β of maximal genus gmax(β) are smooth, the associated invariants can be obtained
via the formula

ng,β = (−1)dimC(Mβ )χ(Mβ) , (134)

where Mβ denotes their deformation space [71]. For the complete intersection cases in Table
1, one gets

ngmax(κd),κd =

¨

ω(ω−1)
2 , for d = 1 ,

(−1)κd(d−1)/2ω
�

ω+ κd(d−1)
2

�

, otherwise,
(135)

where ω is the number of weights equal to one in the weighted projective ambient space.
Using the boundary conditions (131), (133), and (135), together with boundary conditions
at the conifold at z = µ and at the orbifold at z =∞, both of which we shall discuss below,
one can solve the quintic to genus g = 53 [24].15 The maximal genus to which one can obtain
the topological string amplitudes solely by imposing the bounds described above are given
in [24,25] for all hypergeometric models.

To fix the holomorphic ambiguity to even higher genus in the class of hypergeometric mod-
els, one can invoke modularity of the D4D2D0 rank 1 BPS indices and wall crossing transitions
to the rank 1 D6D2D0 Donaldson–Thomas invariants that capture the BPS invariants of the
topological string [25]. This permits predicting the value of invariants ngmax(β)−∆,β near the
Castelnuovo bound (so far only for small ∆ ∈ N) and imposing these values as constraints on
the topological string amplitudes. The currently available data can be found at [72]. More in-
formation on attempts to classify non-hypergeometric one-parameter families are summarized
in [47] and in the data list [52].

15In [24], the bound was given as g = 51 and the constraints n52,20 = n53,20 = 0 which follow from (133) and
permit solving up to g = 53 were cited as a prediction.
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Genus > 1 at lens space conifolds (c): As before, we define the conifold locus as the divisor
in Mcs at which a 3-cycle with the topology of a lens space ν = S3/ZN vanishes. Following
[69, 73], it was observed in [24] that the expansion of the perturbative g > 1 amplitudes for
any choice of local coordinates tc in the form (125) is given by

(X 0
c )

2g−2Fg(Xc) =
(−1)g−1B2g

2g(2g − 2)

�

(2πi)1/2

tc

�2g−2

+O((tc)0) , g > 1 , (136)

as long as Γ ∈ H3(W,Z) satisfies ν ∩ Γ = 0 and ΠΓ (zc) ̸= 0. Fg(tc) is said to satisfy the gap
condition. Imposing (136) yields 2g − 1 conditions on the holomorphic ambiguity fg>1 for
each conifold divisor. In [74], the lens space factor was interpreted as scaling gs to N gs.

3.2.2 Orbifolds, attractors, small gaps, K-points and torsion MUM points

As we have just reviewed, distinguished frames, specified by a choice of A-periods X I
∗ over

cycles in H3(W,Z) are associated to both MUM points and conifold loci. In both cases, X 0
∗

is the integral period with the most regular behavior at the critical locus, and the additional
choice of X 1

∗ yields an affine t∗ coordinate that transforms simply under the local monodromy
and stays small near the critical locus. We now want to discuss how these considerations
extend to the various types of critical points in the w = 1/z = 0 region indicated in the last
column of Table 1. We shall then briefly describe what boundary conditions at these points, if
any, can be imposed to fix the holomorphic ambiguity for the Fg , and highlight features which
might be relevant to extending a non-perturbative analysis of the Fg to this region.

The first six models listed in Table 1 exhibit orbifold points at z =∞, four of which have
a known rational conformal field theory description (in this case, the orbifold points are also
referred to as Gepner points). At these points, W is smooth, hence (X 0

o )
2g−2Fg(Xo) must be

regular. Postponing the discussion of integrality, a natural local frame given the observations
above is defined by the A-periods X 0

o = wa1+O(wa1+1), X 1
o = wa2+O(wa2+1)with to = X 1

o /X
0
o .

The ai here indicate the local exponents at z =∞, see (75). They are listed for all hyperge-
ometric one-parameter models in Table 1. Note that the factor (X 0

o )
2g−2 ∼ wa1(2g−2) shields

a possible singularity from positive powers of z = 1/w in the second sum contributing to the
holomorphic ambiguity in the form (120). Hence, powers of z up to

cm = ⌊a1(2g − 2)⌋ , (137)

are admissible in the holomorphic ambiguity at genus g. This shielding is absent in local
models; therefore, cm = 0, and b0 and ak can be completely determined by imposing the
constant map contribution and the (generalized) conifold gap. This is why local models can
be solved completely [61]. We can pick Po

1 = wa3+O(wa3+1), Po
0 = wa4+O(wa4+1) as B-periods,

so that the Frobenius basis at w= 0 isΠT
o = (X

0
o , X 1

o , Po
1 , Po

0 ). The reason that this identification
of A- and B-periods is possible is that periods of the form wai+O(wai+1) transform by a factor of
exp(2πiai) under the monodromy w→ e2πiw. Since the right hand side of (36) is monodromy
invariant and ai + a5−i = 1, the intersection matrix Σ∗ can only have anti-diagonal entries.
Note that to, which transforms with a unit root phase under the local monodromy w→ e2πiw,
defines the right coordinate to compare with equivariant orbifold Gromov-Witten theory [75].

To answer the question whether there is a hierarchy of vanishing periods over inte-
gral cycles, let us first consider the quintic. Here, −ie−K = αΓ

�1
5

�10
/(2(2πi)8)|w|2/5 with

α=
p

50− 22
p

5 and the masses at w= 0 are

�

mD6
, mD4

, mD0
, mD2

�

=
1
p
α

 

Æ

25− 11
p

5,

√

√15−
p

5
5

,
Æ

7− 3
p

5,2

√

√5− 2
p

5
5

!

, (138)
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Table 3: Models with rank two attractor points at their orbifold points. The leading
behavior of ΠΓi is ΠΓi ∼ wa2 +O(wa3). The two cycles have non-vanishing intersec-
tion, hence yield mutually non-local charged states. Similarly to conformal Argyres–
Douglas points, one does not expect logarithmic behavior of the periods near w = 0
even if both charges correspond to massless stable BPS states at w= 0. The fact that
the entry in the last column is not rational implies that we cannot find an integral
combination of ΠΓ1 ,ΠΓ2 that vanishes to order wa3 .

M a1, a2, a3, a4 ΠΓ1 ΠΓ2 Γ1 ∩ Γ2 ΠΓ1/ΠΓ2 |w=0

X6
1
6 , 1

3 , 2
3 , 5

6 P0 − X 1 2P0 − P1 + 3X 0 2 e2πi/6

X4,3
1
4 , 1

3 , 2
3 , 3

4 P0 − 2X 1 3X 0 − 3X 1 − P1 1 e2πi/6 − i
3

p
3

X6,4
1
6 , 1

4 , 3
4 , 5

6 P0 − X 1 2X 0 − P0 − P1 1 i

hence in particular non-zero. Given the form of eK , a massless state at w= 0 would arise from
a D-brane wrapping an integral cycle with associated period vanishing faster than w1/5. The
coefficients of the leading w1/5 contribution to the four integral periods determined by the
action of the transition matrix To on the Frobenius basis, Π = ToΠo, can be read off (up to an
overall normalization) from the entries (To)i,1. For the quintic, these are independent over Z,
demonstrating that such states do not exist. The same is true for the orbifold models 1, 3,4 in
the Table 1. However, in an extension of the analysis of Moore in [76], we find that besides
the model 2, the models 5 and 6 have rank two attractor points at w = 0. This implies that
there are two independent integral cycles Γi ∈ H3(W,Z) , i = 1, 2, which intersect (hence yield
mutually non-local charged states) and have vanishing central charges Zi = eK/2ΠΓi at w= 0.
Incidentally, this also implies that one can choose flux potentials that drive the theory into a
supersymmetric vacuum at w = 0. The corresponding periods for these models are listed in
Table 3.

We will next discuss conifold degenerations with small or no gaps. As can be seen from
Table 1, the models 7,8, 9 have exactly two degenerate local exponents a2 = a3 =

1
2 at w= 0.

These imply the existence of a vanishing integral period X νc and a dual logarithmic integral
period Pc

ν̂
, just as in the case of the generic conifold. The Frobenius basis is chosen to be of

the form X 0
c = wa1 +O(wa1+1), 2πX νc = X 1

c = wa2 +O(wa2+1), Pc
1 = X 1

c log(w) +O(wa2+1)
and Pc

0 = wa4 +O(wa4+1), yielding tc = X 1
c /X

0
c = w

1
b and a mirror map w= t b

c +O(t2b
c ), with

b = 1/(a2− a1). The local expansion of the Fg>1 around the w= 0 locus for the models 7 and
8 is of the form

(X 0
c )

2g−2Fg(Xc) = c
(2πi)3g−3B2g

2g(2g − 2)

�

a
tc

�2g−2

+O
�

t
2−2g+

 

2g−2
b

£

b
c

�

, (139)

where the parameters a and c are read off at low genus, where imposing them is not required
to fix the holomorphic ambiguity. They are given in Table 4. Due to the orbifold structure,
the expansion parameter in (139) on top of the (tc)2−2g off-set is (tc)b. For this reason, (139)
imposes only

1+
�

2g − 3
b

�

, (140)

constraints on the holomorphic ambiguity: one coming from the coefficient of the leading
pole, the remaining ones from the absence of further negative powers in tc.

The three models 9, 10, and 11 have K-points at w = 0. The pattern (a, a, b, b) of local
exponents with a, b ∈Q, a ̸= b, implies that there exist two independent logarithmic solutions
to the Picard-Fuchs system with corresponding vanishing cycles. A natural choice of local
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Table 4: Models with conifold rank two attractor points. Unlike at
the generalized conifold loci discussed above, X νc = 1

2π
p

w + O(w
3
2 ) and

Pc
ν̂
= 1
(2π)2 i
p

w log(w) + O(w
3
2 ) both vanish at w = 0, as does the associated cen-

tral charge. The numbers a, c describe the expansion (139), while d enters in
F1(tc) = −

d
12 log(tc) + O(t b

c ). The X3,2,2 case has the same order of the leading
singularity as in (139), however a genus dependent coefficient c and no gap as ob-
served in [24].

M a1, a2, a3, a4 Pc
ν̂

X νc ν∩ ν̂ a c d

X4,2
1
4 , 1

2 , 1
2 , 3

4 P0 − 2X 1 2P0 + P1 − 4X 0 2 2 2 2

X6,2
1
6 , 1

2 , 1
2 , 5

6 P0 − X 1 2P0 + P1 − 4X 0 3 8 1 1

X3,2,2
1
3 , 1

2 , 1
2 , 3

3 P0 − 3X 1 2P0 + P1 − 4X 0 1 1
2 2 · 7(22g−2 − 1) 12

frame is X 0
k = wa1 +O(wa1+1), X 1

k = wa3 +O(wa3+1). As discussed in [48], two combinations
X i

Ik = (αiX
0
k +βiX

1
k ), i = 0,1 span a lattice of vanishing central charges at w= 0 over integral

cycles, which are mutually local, i.e. have vanishing intersection number. E.g. for X4,4, we

have with α0 = −
1
2Γ
�1

4

�4
, β0 =

1
32Γ

�3
4

�4
, α1 = iα0 and β1 = iβ0

X 0
Ik = P0 − 2X 1 , X i

Ik = 2X 0 − P0 − P1 . (141)

The universal leading behavior eK/2 ∼ −c 1
wa1
p

log(w)
, c > 0, at all K-points implies that the

masses of these states vanish with − log(w)−1/2. The local structure of the periods for the X3,3
central charges and masses can be found in [48]. As pointed out in [24], one can choose a
frame in which the (X 0

k )
2g−2Fg(Xk) are regular at the K-points. This regularity imposes the

same number of constraints as for the model with orbifold points at w= 0.
The last model M = X2,2,2,2 in Table 1 exhibits a second MUM point at w = 0. One

can choose here local coordinates X 0
m =

p
w + O(w

3
2 ), X 1

m = X 0
m log(w) + O(w

3
2 ) and

q = exp(X 1
m/X

0
m). As observed in [24], one has the following constant contribution to the

higher genus amplitudes

(X 0
m)

2g−2Fg(Xm) =
(−1)g−1(2πi)3g−3

22g−2
(20− 84 · 22g−2)

B2g B2g−2

2(2g − 2)(2g − 2)!
+O(q) . (142)

This MUM point has a geometric interpretation provided by the resolution of a degeneration
of the X8 model with ns = 84 nodes which carries Z2 torsion and has a transition to the X2,2,2,2
model [35]. Reading off the torsion BPS invariants requires a modification of (126) suggested
in [35, 77]. In the case at hand this explains the term inside the parentheses in (142) as due
to the corresponding constant map contribution χ(M)

2 + (1 − 22g−2)ns. Likewise, the higher
degree torsion BPS invariants can be calculated to some extent from the local expansion (142)
and the BPS invariants of X8. These provide new boundary conditions, allowing to solve the
model to genus 32 [35].

The general situation indicating the maximal genus to which each model listed in Table 1
can be solved using all available boundary conditions is summarized in Table 1 of [25].16

16The resulting topological string amplitudes for all hypergeometric models can be downloaded from the website
http://www.th.physik.uni-bonn.de/Groups/Klemm/data.php. We thank Claude Duhr for letting us run some of
these computations on his MacPro workstation.
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3.2.3 A note on normalization conventions

As Fg(t) ∈ Γ (L0), expressions such as (129) or (136) do not depend on the choice of nor-
malization for the periods. In this sense, the RHS of these expressions can be considered as
universal. One can, however, rescale these expressions by rescaling gs while keeping the topo-
logical string amplitude F (0) =

∑

Fg g2g−2
s fixed. The expressions we have presented in this

section are based on the normalization of the holomorphic anomaly equations that we have
introduced in section 3. Rescaling gs→ αgs amounts to introducing a factor of α2 on the RHS
of (101), as is most clearly visible from the equations in the form (115); the rescaling

∂̄k̄F (0),αg =
α2

2
C i j

k̄

�

Di Dj F
(0),α
g−1 +

g−1
∑

r=1

Di F
(0),α
r Dj F

(0),α
g−r

�

, (143)

results in a rescaling of the topological string amplitudes as

F (0),αg = α2g−2Fg . (144)

We will mostly work with the convention α = 1 in this paper. When we turn to numerics in
section 6, however, we will offer the reader a larger palette of normalizations from which to
choose.

4 Resurgent structures and trans-series

One of the basic ideas of the theory of resurgence is that the large order behavior of a per-
turbative series encodes secretly information about the non-perturbative sectors of the theory.
Perhaps the first quantitative statement of this connection was made in [6], in the case of the
perturbative series for the quartic anharmonic oscillator. It turns out that this series contains
information about the instanton that implements quantum tunneling in the unstable quartic
oscillator with negative coupling constant. Therefore, one can “discover” this instanton sec-
tor by looking at perturbation theory. This idea was generalized to many other situations in
quantum mechanics and quantum field theory in subsequent work (see e.g. [78] for an early
collection of articles) and continues to be explored in many different contexts.

The connection between perturbation theory and non-perturbative sectors can be formu-
lated in a very precise mathematical form mainly due to the work of Jean Écalle [79], and
leads to what was called in [80] a resurgent structure associated to a perturbative series. We
will now review the definition and construction of a resurgent structure.

Let us suppose that we are given a factorially divergent series, of the form,

ϕ(z) =
∑

n≥0

anzn , an ∼ n! . (145)

Such series are also called Gevrey-1. The Borel transform of ϕ(z) is defined by

bϕ(ζ) =
∑

k≥0

ak

k!
ζk . (146)

It is by construction a holomorphic function in a neighborhood of the origin. In favorable
cases, this function can be analytically continued to the complex ζ-plane (also called Borel
plane). This is the property of “endless analytic continuation” in Écalle’s theory, and the formal
series whose Borel transforms have this property are called resurgent functions. The function
obtained by analytic continuation of bϕ(ζ) will have singularities. Let Ω be the possibly infinite
set of indices ω labeling the singularities {ζω ∈ C}ω∈Ω of bϕ(ζ) in the Borel plane. We shall
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assume that all these singularities are logarithmic branch cuts, i.e. the local expansion or bϕ(ζ)
near all ζ= ζω is

bϕ(ζω + ξ) = −
Sω
2π

log(ξ) bϕω(ξ) + regular, (147)

where the series
bϕω(ξ) =

∑

n≥0

bcnξ
n , (148)

has a finite radius of convergence. Resurgent functions with this property are called simple in
Écalle’s theory. Note that we might want to make specific choices of normalization for bϕω(ξ),
and that’s why we have introduced an additional (in general complex) number Sω in (147),
which is called a Stokes constant. We will regard bϕω(ξ) as the Borel transform of

ϕω(z) =
∑

n≥0

cnzn , cn = n!bcn . (149)

Through this simple route we have reached the following conclusion: given a formal power
series ϕ(z), the expansion of its Borel transform around its singularities generates additional
formal power series:

ϕ(z)→ {ϕω(z)}ω∈Ω . (150)

We call the resulting set of formal power series and Stokes constants the resurgent structure
associated to the formal power series ϕ(z). In practice, one uses the formal objects

Φω = e−ζω/zϕω(z) , (151)

which include an exponential small term with the location of the Borel singularity. These
objects are examples of trans-series.

In many situations in physics, the trans-series (151) correspond to non-perturbative sec-
tors of the theory. For example, there are situations in which ϕ(z) is the expansion of the path
integral around a reference saddle point, while the Φω are obtained by expanding the path
integral around a different saddle point and can be identified as instantons. In other examples
in quantum field theory, the trans-series correspond to so-called renormalons (see e.g. [81]
for recent progress on renormalons from the point of view of resurgence). We should how-
ever point out that not all non-perturbative sectors are necessarily included in the resurgent
structure associated to the perturbative series, but determining this structure is a crucial and
necessary step.

One important application of the resurgent structure of the power series ϕ(z) is a precise
determination of its asymptotic behavior. Let A be the Borel singularity which is closest to the
origin of the Borel plane, and let

ΦA = e−A/z
∑

k≥0

ckzk , (152)

be the corresponding trans-series,where we have assumed again that we have only log singu-
larities. With the analytic structure of the Borel transform bϕ thus governed by the relations
(146) and (147), the all-orders asymptotic behavior of the perturbative coefficients an is de-
termined by

an ∼
SA

2π

∑

k≥0

ckAk−nΓ (n− k) , n≫ 1 , (153)

where SA is the Stokes constant associated to the singularity. If there are more than one
Borel singularity at the same distance from the origin, their contributions simply add in the
asymptotic formula (153).
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A natural step after building the Borel transform ϕ(ζ) of a resurgent Gevrey-1 series ϕ(z)
is the construction of the Borel resummation, which is the Laplace transform of the Borel
transform:

s(ϕ)(z) =

∫ ∞

0

bϕ(ζz)e−ζdζ=
1
z

∫

Carg z

bϕ(ζ)e−ζ/zdζ , (154)

where Cθ = eiθR+. The Borel resummation provides a “sum” of the divergent series, returning
a finite value of the series for a finite input value of z. Nevertheless, the singularities ζw of
the Borel transform may obstruct the integration in the definition of Borel resummation. In
the Borel plane, the ray Cargζω = ei argζωR+ that passes through a singular point ζω is called
a Stokes ray. When the argument of z equals that of a singular point, so that the contour of
integration Carg z coincides with a Stokes ray Cθ , the Borel resummation is not defined. Instead
we can define a pair of lateral Borel resummations

s±(ϕ)(z) =

∫ ei0±∞

0

bϕ(ζz)e−ζdζ=
1
z

∫

Cθ±0

bϕ(ζ)e−ζ/zdζ , (155)

with the integration path bent slightly above or below the Stokes ray. The values of the lateral
Borel resummations are certainly different, and the difference, known as the Stokes discon-
tinuity, is exponentially suppressed. By using (147), one finds that the Stokes discontinuity
is in fact related to the Borel resummation of the new asymptotic series ϕω(z) for all the
singularities ω ∈ Ωθ on the Stokes ray Cθ :

discθϕ(z) = s+(ϕ)(z)− s−(ϕ)(z) = i
∑

ω∈Ωθ

Sωe−ζω/zs−(ϕω)(z) . (156)

Sometimes it is more convenient to rewrite the formula (156) for the Stokes discontinuity,
which involves Borel resummed power series, as a relationship between formal power series
themselves. The idea is to introduce the operator Sθ called the Stokes automorphism along
the ray Cθ by

s+ = s−Sθ . (157)

Then, after dropping the Borel resummation s−, (156) can be written as

Sθ (ϕ) = ϕ + i
∑

ω∈Ωθ

Sωe−ζω/zϕω , (158)

which is a linear transformation of the formal power series. We can further define the (pointed)
alien derivative ∆̇ζω associated to the individual singular point ζω,ω ∈ Ωθ by

Sθ = exp

 

∑

ω∈Ωθ

∆̇ζω

!

. (159)

Then the formal power series ϕw are also related to the perturbative series ϕ by

∆̇ζωϕ = sωe−ζω/zϕw , (160)

where the coefficients sω can be obtained from the Stokes constants Sω appearing in the Stokes
discontinuity, see e.g. [9] for further clarifications. The alien derivatives and the Stokes dis-
continuity therefore contain the same amount of non-perturbative information, and one could
be derived from the other. The alien derivatives, however, have better analytic properties. The
most important property is that they are indeed derivations, and they satisfy the Leibniz rule
when acting on a product of formal power series:

∆̇ζω(φ1(z)φ2(z)) =
�

∆̇ζωφ1(z)
�

φ2(z) +φ1(z)
�

∆̇ζw
φ2(z)

�

. (161)
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5 Trans-series solution to the holomorphic anomaly equations

Note: In all other sections of this paper, (X I , PI) denote integral periods as determined at a MUM
point in accordance with (43). When we wish to leave the basis of periods unspecified, we write
(X I
∗, P∗I ). To avoid a proliferation of ∗’s in this section, we shall take the starless (X I , PI) to denote

the periods corresponding to the holomorphic limit we wish to consider.

5.1 Resurgence and topological strings

As we discussed in section 2, the free energies Fg(z) appearing in the formal power series (1)
can be computed in different frames, and they are well-defined in a neighbourhood of a base
point in the Calabi–Yau moduli space. For a fixed value of z in this neighbourhood, we expect
to have the factorial growth

Fg(z)∼ (2g)! , (162)

which has been verified in many different situations in the local case (see e.g. [17,18,21,23,
82]). Some evidence for this growth in the case of the quintic Calabi–Yau manifold was also
found in [83].

In view of the factorial growth (162), we can ask what the resurgent structure of the series
(1) is, which we will regard as a Gevrey-1 series in gs in which the odd terms vanish (in asking
this question, we assume the endless analytic continuation of the Borel transform). This turns
out to be a difficult mathematical problem. One case where a detailed solution can be found is
when the Calabi–Yau manifold is the resolved conifold. This was first addressed by Pasquetti
and Schiappa in [84] (see [85–87] for further results building on [84]). In that case, the
functions Fg(z) are known for all g ≥ 0 and the Borel transform can be calculated explicitly.

Let us review the result of [84], since it will be useful in the following. We recall that
X 0 = cnst since we are considering a toric Calabi–Yau manifold, and X 1 ∼ t, where t can be
identified with the complexified Kähler parameter of the resolved conifold. Then, the Borel
singularities are located at A= ℓAm, where ℓ ∈ Z\{0} and

Am ∼ (X 1 +mX 0) , m ∈ Z , (163)

with the normalization constant depending on a choice of conventions. The trans-series asso-
ciated to the Borel singularity is of the form

ΦA =
1

2π

�

1
ℓ

Am

gs
+

1
ℓ2

�

e−ℓAm . (164)

With this choice of normalization for the trans-series, the Stokes constant is the same for all
A, and it has the value

SA = 1 . (165)

We can think about (164) as an ℓ-instanton amplitude for the topological string. Although
this result is for a very simple Calabi–Yau 3-fold, it will have a counterpart in the more general
case studied in this paper, as we will see below.

For more general Calabi–Yau 3-folds, we do not have the luxury of analytic results in gs
for the free energies, and other methods to find the resurgent structure have to be found.
It turns out that there is one aspect of the resurgent structure which is more amenable to a
formal treatment, and this is the determination of the trans-series (151) associated to a given
singularity. A powerful method to address this problem was proposed by Couso, Edelstein,
Schiappa and Vonk (CESV) in [20,21]. Their idea is inspired by the theory of ODE’s of Écalle
(see [7,88,89] for introductions to this theory). Let us suppose that we have an ODE with an
irregular singular point at z = 0, so that the power series solution around this point, yp(z), is
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factorially divergent. Then, much information about the resurgent structure of yp(z) can be
obtained by considering a trans-series ansatz for the solution, of the form

y(z) = yp(z) + Ce−A/z y(1)(z) +O(C2) , (166)

where C is a so-called trans-series parameter. Since yp(z) is a solution, A and y(1)(z) are found
by solving the linearized ODE around yp(z). One can then show that e−A/z y(1)(z) is the trans-
series associated to a Borel singularity at A (the proof of this statement uses the so-called
“bridge equations", see e.g. [7,88]).

Note that, in Écalle’s theory, the variable appearing in the ODE is the expansion parameter
in the divergent series. We have a similar situation in non-critical string theory, where one
can often obtain the free energy as a solution to an ODE in the string coupling constant. In
the case of topological strings with a Calabi–Yau target, we do not have such an ODE. Rather,
we have the holomorphic anomaly equations reviewed in the last section. The proposal of
CESV is to solve these equations with an ansatz similar to (166), involving exponentially small
terms. Detailed calculations in [21] in the local case provided evidence that this ansatz leads
to solutions that are indeed related to the trans-series attached to the singularities. The picture
of [21] was developed in [23] in two ways. First, the trans-series solutions were obtained in
closed form. Second, a precise conjecture was put forward relating the resurgent structure
to the trans-series solution to the holomorphic anomaly equations. This was done for local
Calabi–Yau models with one modulus. In this paper, we will extend the results of [20,21,23]
to arbitrary Calabi–Yau 3-folds.

5.2 Warm-up: trans-series in the one-modulus case

Before presenting the general case, we will focus on compact Calabi–Yau manifolds with a
single modulus, and we will solve for the trans-series ansatz “by hand.” In the next sections
we will introduce and develop an operator formalism which generalizes [23,57].

The starting point of the analysis is the holomorphic anomaly equation (115) written in
terms of the total topological free energy. As in [20, 21,23], we consider the following trans-
series ansatz for the solution of this master equation:

F =
∑

ℓ≥0

CℓF (ℓ) = F (0) + CF (1) +O(C2) , (167)

where F (1) is of the form
F (1) = e−A/gs

∑

n≥0

F (1)n gn−1
s . (168)

This is similar to the ansatz (166) for ODEs. We will refer to F (1) as the one-instanton correc-
tion. By gs ∈ Γ (L), this ansatz requires A ∈ Γ (L), i.e. A should be a period of the Calabi–Yau
manifold. Furthermore, by F (0) ∈ Γ (L) and (167), we must have F (1)n ∈ Γ (L

1−n). We will find

below that independently of the choice of leading power of F (1) in gs, F (1)0 ∼A. This confirms
that having the series (168) start with the power g−1

s is the correct choice. After plugging the
trans-series ansatz in (115), we find that the one-instanton correction solves the linearization
of the master equation,

∂ F (1)

∂ S i j
−

1
2

Ki
∂ F (1)

∂ S̃ j
−

1
2

K j
∂ F (1)

∂ S̃ i
+

1
2
∂ F (1)

∂ S̃
KiK j =

g2
s

2
D̂i D̂j F

(1) + g2
s D̂i eF

(0)D̂j F
(1) , (169)

as well as
∂ F (1)

∂ Ki
= 0 . (170)
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We will solve this equation in full generality in section 5.3, but to get a taste for the structure
of the trans-series, we will solve for the very first orders of the one-instanton correction “by
hand,” and in the one-modulus case, as in [20,21].

In the one-modulus case, the propagators are Szz , S̃z and S̃. The first equation which
follows from (169) is

∂A
∂ Szz

=
∂A
∂ S̃z

=
∂A
∂ S̃
=
∂A
∂ Kz

= 0 . (171)

This means that A is a purely holomorphic object. In addition, we find

∂ F (1)0

∂ Szz
−
∂ F (1)0

∂ S̃z
Kz +

1
2

∂ F (1)0

∂ S̃
K2

z =
1
2
(DzA)2 F (1)0 ,

∂ F (1)0

∂ Kz
= 0 ,

(172)

where
DzA=DzA+ KzA . (173)

Note that A indeed transforms as a section of L, as required by the consistency of the ansatz
(168). As we will see, A is in fact an integral period of the Calabi–Yau manifold.17 By expand-
ing the first equation in (172) and comparing terms in Kz , we find three equations

∂ F (1)0

∂ Szz
=

1
2
(∂zA)2 F (1)0 ,

∂ F (1)0

∂ S̃z
= −A∂zAF (1)0 ,

∂ F (1)0

∂ S̃
=A2F (1)0 , (174)

which integrate to

F (1)0 = f (1)0 exp
�

1
2
(∂zA)2 Szz −A∂zA S̃z +A2S̃

�

. (175)

Here, f (1)0 (z) is independent of the propagators and of Kz , so it is an undetermined function of
the modulus z. It is the non-perturbative counterpart of the holomorphic ambiguity, and it has
to be fixed with additional information. This was done in [20,21] in the local case by relying
on a conjecture which can be generalized to the compact case. The conjecture goes as follows.
Since A is a period of the Calabi–Yau manifold, one can define a frame (X I

A, PA
I ) such that

A= ℵX 1
A . (176)

The proportionality constant ℵ depends on the normalization of gs, as we explained at the end
of section 3.2. For the conventions chosen in section 3.1, we have

ℵ= i
p

2π i . (177)

We will denote the holomorphic limits of the propagators in this frame as Szz
A , S̃z

A, S̃A. The
holomorphic limit of the coefficient (175) is then

F (1)0,A = f (1)0 exp
�

1
2
(∂zA)2 Szz

A −A∂zAS̃z
A +A2S̃A

�

. (178)

The conjecture states that in any such frame, the one-instanton amplitude has the form that
was found in [84] for the resolved conifold, i.e. F (1)A must take the form (164) with ℓ = 1.

17Recall that integral periods are defined only up to one overall normalization, which corresponds to the choice
of normalization of the holomorphic 3-form Ω. Having fixed a normalization for Ω in (79), the relation between
A and integral periods in this normalization will involve a proportionality constant.
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We will demonstrate that this conjecture holds for the dominant instanton actions both in the
vicinity of MUM points and of conifold divisors in section 5.7, and provide further numerical
evidence for its validity in section 6. For now, let us see how this conjecture allows us to fix
the non-perturbative holomorphic ambiguity. It implies

F (1)A =
1

2π

�A
gs
+ 1

�

e−A/gs , (179)

and therefore (recall the expansion introduced in (168)),

F (1)0,A =
1

2π
A . (180)

This fixes

F (1)0 =
1

2π
Aexp

�

1
2
(∂zA)2 (Szz −Szz

A )−A∂zA (S̃z − S̃z
A) +A2(S̃ − S̃A)

�

. (181)

It is not very difficult to obtain a general equation for the coefficient F (1)n , n≥ 1. From the
coefficient gn−1

s , we conclude that F (1)n ∈ Γ (L
1−n). Hence, the covariant derivative acts as

Dz F (1)n = (Dz − (n− 1)Kz) F
(1)
n . (182)

We then find the following holomorphic anomaly equation for the coefficients F (1)n :

∂ F (1)n

∂ Szz
−
∂ F (1)n

∂ S̃z
Kz +

1
2

∂ F (1)n

∂ S̃
K2

z =
1
2
(DzA)2 F (1)n +

1
2

D2
z F (1)n−2 −

1
2

�

D2
z A+ 2DzADz

�

F (1)n−1

− DzA
[ n+1

2 ]
∑

ℓ=1

Dz F (0)
ℓ

F (1)n+1−2ℓ +
[ n

2]
∑

ℓ=1

Dz F (0)
ℓ

Dz F (1)n−2ℓ ,

(183)

as well as
∂ F (1)n

∂ Kz
= 0 . (184)

In this section, we will sometimes denote the perturbative topological string amplitudes Fg

as F (0)g , to clearly set them apart from their non-perturbative counterparts. The equation for
n= 0 was solved above. For n= 1 we find,

∂ F (1)1

∂ Szz
−
∂ F (1)1

∂ S̃z
Kz +

1
2

∂ F (1)1

∂ S̃
K2

z =
1
2
(DzA)2 F (1)1 −

1
2

�

D2
z A+ 2DzADz

�

F (1)0 − DzADz F (0)1 F (1)0 .

(185)
To solve this, we proceed as in [20, 21]: we factor out the exponent appearing in (181), and
we write

F (1)1 = eφ
(1)
0 Φ

(1)
1 , (186)

where

φ
(1)
0 =

1
2
(∂zA)2 (Szz −Szz

A )−A∂zA (S̃z − S̃z
A) +A2(S̃ − S̃A) , (187)

and Φ(1)1 satisfies

∂Φ
(1)
1

∂ Szz
−
∂Φ
(1)
1

∂ S̃z
Kz +

1
2

∂Φ
(1)
1

∂ S̃
K2

z = −
1
2
AD2

z A− DzA
�

DzA+A∂zφ
(1)
0

�

−ADzADz F (0)1 . (188)

The equation simplifies significantly if we use that

A′′ =A
�

Cz S̃z
A − hzz

�

−A′
�

CzSzz
A − szz

z

�

. (189)
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This follows from the explicit formulae for the propagators (99) in the one-modulus case. The
non-perturbative ambiguity is fixed by the boundary condition (179), which implies

F (1)1,A =
1

2π
. (190)

One then finds

Φ
(1)
1 =

1
2π

�

1−∆(A′)2 + 2∆1AA′ − 2A2∆2 −
1
6

CzA(∆A′ −∆1A)3

−A
�

1
2

CzSzz + f (1)z

�

(A′∆−A∆1) +A
� χ

24
− 1

�

�

2A∆2 −∆1A′
�

�

, (191)

where we have denoted

∆= Szz −Szz
A , ∆1 = S̃z − S̃z

A , ∆2 = S̃ − S̃A . (192)

This result is valid for any compact Calabi–Yau manifold with a single modulus.
The formula obtained above for F (1)n , with n = 0,1, can be checked in the local limit con-

sidered in [20,21,23], by setting to zero the propagators S̃z and S̃, as well as the holomorphic
functions hzz , hz

z , hz appearing in (61).
One can in principle push the integration of the equations further and find expressions

for the F (1)n . However, the complexity of the answers grows very fast and one needs a better
approach.

5.3 Operator formalism

In [23], based on previous insights of [57,90], an operator formalism was introduced to study
the holomorphic anomaly equations in the one-modulus, local case. This formalism made it
possible to find exact solutions for the multi-instantons. We will now construct this operator
formalism for arbitrary Calabi–Yau manifolds.

The construction requires working in the big moduli space of the Calabi–Yau manifold,
involving the r complex deformation coordinates za, as well as an additional coordinate given
by the string coupling constant. We recall that, as in section 2, the Greek index α takes the
values 0 and a = 1, · · · , r. We first define derivative operators acting on the functions of za, gs
and the propagators, as follows:

dα = (d0,da) , (193)

where

d0 = −gs
∂

∂ gs
, da =Da − Ka gs

∂

∂ gs
. (194)

Here, Da acts on a function of za, Sab, S̃a, S̃ and Ka as

Da f =
∂ f
∂ za

+ ∂aSde ∂ f
∂ Sde

+ ∂aS̃c ∂ f

∂ S̃c
+ ∂aS̃

∂ f

∂ S̃
+ ∂aKc

∂ f
∂ Kc

, (195)

where the derivatives of the propagators are computed with the rules (61). As in [32,34], we
will unify the propagators in a matrix Sαβ with

S00 = 2S , S0a = −Sa . (196)

The operators (193) are formulated in the same spirit as the operator (114) introduced above:
they act only on sections of L0, i.e. on functions. Sections of Ln are mapped to functions by
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dividing by the appropriate power of gs. Then18

gn
s dα

�

f
gn

s

�

= Dα f , f ∈ Γ (Ln) . (197)

So for example, we have

d0

�

X I

gs

�

=
X I

gs
, (198)

and we can write the matrix χ I
α in (33) as

χ I
α = gsdα

�

X I

gs

�

, α, I = 0, 1, · · · , h2,1(X ) . (199)

As in [23, 57], we want to find an operator depending on the instanton action A and the
propagators which, in the holomorphic limit, gives the derivative with regard to the coordi-
nates X I in moduli space. Let us first define

tα = g2
s Sαβdβ

�A
gs

�

. (200)

The propagators appearing in this equation are the unshifted ones. We will shortly pass to
shifted propagators as defined in (60). We have introduced the appropriate factors of gs ev-
erywhere: the propagators have charge −2, so that they should be multiplied by a factor g2

s .
In (200) we have made implicitly a choice of frame, through the propagators Sαβ . We now
recall that there is a frame associated to A and defined by (176), which we will call the A-
frame. This frame is not necessarily unique, but as we will see, the final physical answer we
are looking for, namely the holomorphic limit of the instanton amplitudes, will not depend on
that choice of frame. We now define

tαA = g2
s S
αβ
A dβ

�A
gs

�

, (201)

where SαβA is the holomorphic limit of the propagator in the A-frame. We consider as well the
holomorphic limit of the operator da in the A-frame,

dAa =
∂

∂ za
−KA

a gs
∂

∂ gs
, (202)

where

KA
a = −

∂aX 0
A

X 0
A

, (203)

is the holomorphic limit of the connection Ka in the A-frame. We note that d0 does not depend
on the frame, and we will denote dA0 = d0. With all these ingredients, we can already define
the wished-for operator,

D= tαdα − tαAd
A
α . (204)

An explicit calculation shows that

D= Tαdα = T jd j + T0d0 , (205)

18More generally, the operators can act on sections of Symk(T ∗Mcs)1,0, but in this case, the covariant derivative
on the RHS of (197) is the one associated to the bundle L, i.e. does not involve the Christoffel connection.
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where
T j = gs

¦

−A
�

S̃ j − S̃ j
A

�

+ ∂mA(Smj −Smj
A )

©

,

T0 = gs

�

2A(S̃ − S̃A)− ∂mA(S̃m − S̃m
A)
	

− K j T
j ,

(206)

which we have expressed already in terms of the shifted propagators. We will sometimes
decompose

D=D0 +D1 , (207)

where
D0 = T0d0 , D1 = T jd j . (208)

An important fact is that the only dependence of the total operator D on Ki stems from the
Ki dependence of the operator Da defined in (195); this dependence is tucked away in the
contribution from ∂aKc , see (61). If we introduce

T̃0 = T0 + K j T
j = gs

�

2A(S −SA)− ∂mA(S̃m − S̃m
A)
	

, (209)

we can write
D= T jD j + T̃0d0 , (210)

such that the coefficients of the operators D j and d0 are manifestly independent of Ki .
We finally note the following property: any quantity of the form D f vanishes in the A-

frame, since T j
A = T0

A = 0.
As an illustration, let us consider the one-modulus case. We have,

T1 = gs

�

A′∆−A∆1

�

, T0 = gs

�

2∆2A−A′∆1 − Kz

�

A′∆− A∆1

�	

, (211)

and the operator D can be written as

D= gs

�

A′∆−A∆1

�

Dz − gs

�

2∆2A−A′∆1

�

gs
∂

∂ gs
. (212)

In the case of one-modulus, toric Calabi–Yau manifolds we recover the operator introduced
in [23,57].

In the following, a crucial role will be played by the relations

di T
j = −Γ j

ikT k − T0δ
j
i ,

di T
0 = 0 .

(213)

These relations can be obtained from the following ingredients. We noted the holomorphic
limits of the shifted propagators in (64) and (65). From these, one can easily deduce the
following result, generalizing (189):

∂ 2
i jA= −∂lA

�

Ci jmSml
A − ql

i j

�

+A
�

Ci jmS̃m
A − qi j

�

. (214)

By using (64), (65) and (214), (213) follow by direct calculation.
As a consequence of (213), we have (when acting on sections of (T ∗Mcs)0,0)

D2
1 = T i T j D̂i D̂j − T0D1 . (215)

It also follows that the operators D0, D1 do not commute:

[D0,D1] = −T0D1 . (216)
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The operator D plays the role of the covariant derivative, but the holomorphic anomaly
equations also involve derivatives with regard to the propagators. We will now introduce an
appropriate operator for this. We define

δS
i j =

1
g2

s

�

∂

∂ S i j
− K(i

∂

∂ S̃ j)
+

1
2

KiK j
∂

∂ S̃

�

,

δS
0i = −

1
g2

s

�

∂

∂ S̃ i
− Ki

∂

∂ S̃

�

,

δS
00 =

1
2g2

s

∂

∂ S̃
.

(217)

Let us now define the operator

ωS = T i T jδS
i j + T0T iδS

0i + T2
0 δ

S
00 . (218)

Then, by using (216), we can rewrite the equations (111), (117) in the form

ωS bF
(0) =

1
2

¦

D2
eF (0) +

�

DeF (0)
�2©

. (219)

In this equation, F1 requires special treatment: we have to set

DF1 = T jC j − T̃0
� χ

24
− 1

�

= T j Dj F1 − T0
� χ

24
− 1

�

, (220)

where C j was defined in (104). We note that DF1 does not depend on K j .
The goal of this formalism is to find closed-form solutions for the instanton amplitudes. Let

us first consider the one-instanton amplitude, which satisfies the linearized equation (169). In
the operator language that we have just introduced, this equation reads simply

ωS F (1) −DeF (0)DF (1) =
1
2
D2F (1) . (221)

This suggests defining the operator

W =ωS −DeF (0)D , (222)

so that (221) becomes

WF (1) =
1
2
D2F (1) . (223)

As in [23, 57], the basic operators of our algebra will be D and W, and we need to calculate
their commutator. The building blocks are the following commutators:

�

δS
i j ,dk

�

= −Γm
ikδ

S
jm − Γ

m
jkδ

S
im ,

�

δS
0i ,d j

�

= −2δS
i j − Γ

m
i j δ

S
0m +

1
g2

s
Ci jm

∂

∂ Km
,

�

δS
00,di

�

= −δS
0i ,

(224)

which leads to the simple result

[ωS ,dk] =
1
g2

s
T0T iCikm

∂

∂ Km
. (225)

With some additional work, one finds

[W,D] =DGD+K , (226)
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where

G =
A
gs
+DeF (0) =

A
gs
+
∑

g≥1

D
�

g2g−2
s Fg

�

, (227)

and

K= fm
∂

∂ Km
, fm =

1
g2

s
T0T i T jCi jm . (228)

With this, the operator formalism is set up. Before exploiting it to obtain exact results for the
instanton amplitudes, let us consider the holomorphic limit of the operators.

5.4 Holomorphic limit

Since A is a linear combination of Calabi–Yau periods, we can write (recall the notational
conventions fixed at the beginning of this section)

A= cJ PJ + dJ X J , (229)

and

dα

�A
gs

�

=
1
gs
χ I
α(c

JτJ I + dI) , (230)

where one uses the property X IτI J = PJ noted in (54). As we have explained, in the A-
frame A = ℵX 1

A, so that the coefficients appearing in (229) are entries of the symplectic
transformation (52):

cJ = ℵC1J , dJ = ℵD1
J , (231)

so that we can write

dα

�A
gs

�

=
ℵ
gs
(Cτ+D)1I χ

I
α . (232)

We will now show that, in the holomorphic limit, D becomes a derivative operator in the big
moduli space with regard to the periods X I . Let us denote by T̃0

h , T j
h the holomorphic limit of

the quantities introduced in (206), (209). By using (73), we find

T j
h = gs

�

(Cτ+D)−1C
�I J �
∂mAχm

I +AhI

�

χ
j
J ,

T̃0
h = gs

�

(Cτ+D)−1C
�I J �
∂mAχm

I +AhI

�

hJ .
(233)

From the explicit expression for hI in (66), as well as (232), we can simplify

T j
h = gsc

Jχ
j
J , T̃0

h = gsc
JhJ . (234)

Let f be a homogeneous function of degree n in the X coordinates, i.e. f ∈ Ln. As
explained above, D is defined to act on the image g−n

s f of such a function in L0. By Euler’s
theorem, we have

nf = X I ∂ f
∂ X I

. (235)

Therefore, in the holomorphic limit

D(g−n
s f )→ g−n

s

�

T j
h
∂ X I

∂ z j
+ T̃0

h X I

�

∂ f
∂ X I

, (236)

which simplifies to

D(g−n
s f )→ g−n+1

s c I ∂ f
∂ X I

. (237)

Note that this expression only depends on the coefficients c I .
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The holomorphic limit of (220) is slightly different. We have

T j
h∂ j F1 = gsc

J ∂ F1

∂ X J
, (238)

where we used that F1 is homogeneous of degree zero. Furthermore,

T0
h = gsc

Jχ0
J ,h , (239)

where χ0
J ,h denotes the holomorphic limit of χ0

J . An explicit computation shows that

χ0
J ,h =

1
X 0
δJ0 . (240)

We conclude that, in the holomorphic limit,

DF1→ gsc
J ∂F1

∂ X J
− gs

c0

X 0

� χ

24
− 1

�

. (241)

5.5 One-instanton amplitude

We are now ready to present an explicit, exact result for the one-instanton amplitude, gener-
alizing the local, one-modulus case studied in [23]. As in [23], let us first consider the ansatz

E = exp(Σ) . (242)

We want to solve for Σ so that E satisfies the one-instanton equation (223). It is easy to see
that this is equivalent to the following equation for Σ:

WΣ=
1
2

�

D2Σ+ (DΣ)2
�

. (243)

We will now prove that this is solved by

Σ=
∑

k≥1

(−1)k

k!
Dk−1G . (244)

The proof is very similar to what was done in [23] in the local case, although some steps are
more involved. We first note that, in terms of the operators D and W introduced above, the
holomorphic anomaly equations for the perturbative series can be written as

W bF (0) =
1
2
D2
eF (0) −

1
2

�

DeF (0)
�2
+DF (0)1 DeF (0) . (245)

As in [23], the first step is to prove

WG =
1
2
D2G . (246)

This is done by direct calculation. We have

WG =W

�A
gs

�

+WDF (0)1 +WDbF (0) . (247)

We can now use the commutation relation (226) and (245) to write

WG =W

�A
gs

�

+WDF (0)1 −DGDF (0)1 +DeF (0)D
�A

gs

�

+
1
2
D3
eF (0) +D

�

DF (0)1 DeF (0)
�

, (248)
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where we have used that bF (0) is independent of Km, as follows from (116). On the other hand,

1
2
D2G =

1
2

�

D2
�A

gs

�

+D3
eF (0)

�

. (249)

By using the definition of G on the RHS of (248), we conclude that

WG −
1
2
D2G =ωS

�

DF (0)1

�

−D
�A

gs

�

DF (0)1 −
1
2
D2
�A

gs

�

. (250)

The RHS can be seen to vanish by a direct calculation, starting from (220).
We are now ready to prove (243). We note that Σ can be written as

Σ=OG , (251)

where the operator O is

O=
∑

k≥1

(−1)k

k!
Dk−1 =

1
D
(e−D − 1) = −

∫ 1

0

du e−uD . (252)

Let us define the iterated commutator [A, B]n as

[A, B]n≥1 = [A, [A, B]n−1] , [A, B]0 = B . (253)

Then, Hadamard’s lemma says that

eABe−A =
∞
∑

n=0

1
n!
[A, B]n . (254)

Let us compute [D,K]n, where K is the operator introduced in (226). We have
�

D, fm
∂

∂ Km

�

=
�

T jd j + T0d0, fm
∂

∂ Km

�

=
�

D( fm)− T jΓ r
jm fr

� ∂

∂ Km
. (255)

This suggests defining the following transformation acting on a vector vm:

I(vm) =D(vm)− T jΓ r
jmvr , (256)

such that

[D,K]n = f (n)m
∂

∂ Km
, n≥ 0 , (257)

where f (0)m = fm and
f (n)m = In( fm) , n≥ 1 . (258)

From here, we deduce that

[D,W]0 =W , [D,W]n≥1 = −DnGD− f (n−1)
m

∂

∂ Km
. (259)

We now note that G is independent of Km. This follows from the fact that DF1 does not depend
on Km, as noted after (220), and from the commutation relation (255), together with (116).
We conclude that

euDWe−uDG =WG −
∑

n≥1

un

n!
DnGDG . (260)
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This result allows us to express WΣ as

WΣ=WOG = −
∫ 1

0

duWe−uDG = −
∫ 1

0

du

�

e−uDWG − e−uD
∑

n≥1

un

n!
DnGDG

�

. (261)

To evaluate the RHS, we use the crucial identity (246) for G in the first term to obtain 1
2D

2Σ.
In the second term, we use the identity

eD( f g) =
�

eD f
� �

eDg
�

, (262)

to write
∫ 1

0

du e−uD((euD − 1)G)DG =

∫ 1

0

du [(1− e−uD)G][e−uDDG] . (263)

Combining these results yields

WΣ=
1
2
D2Σ+

∫ 1

0

du [(1− e−uD)G][e−uDDG] . (264)

It remains to prove that the last term is equal to 1
2(DΣ)

2. This can be shown by a direct
calculation:

1
2
(DΣ)2 =

1
2

∫ 1

0

du

∫ 1

0

dv (e−uDDG)(e−vDDG) (265)

=

∫ 1

0

du

∫ u

0

dv (e−uDDG)(e−vDDG)

=

∫ 1

0

du (e−uDDG)(1− e−uDG) .

Although (242) solves the equation (223) for the one-instanton amplitude, it does not
satisfy the boundary condition (179). Indeed, we have GA =A/gs, therefore

EA = e−A/gs , (266)

and it misses the prefactor in (179). We then write an ansatz of the form

F (1) =
1

2π
aexp(Σ) . (267)

Proving that the ansatz (267) solves (223) is equivalent to showing that

Wa=
1
2
D2a+DΣDa . (268)

We now show that
a= 1+ G +DΣ , (269)

provides a solution to (268) and implements the correct boundary condition, since

aA =
A
gs
+ 1 . (270)

To show that (269) solves (268), we compute

Wa=WG +WDΣ=
1
2
D2G +DGDΣ+ fm

∂

∂ Km
Σ+

1
2
D3Σ+DΣD2Σ , (271)
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where we have again used the identity (246) and the commutation relation (226), as well as
the relation (243). It is easy to see that Σ does not depend on Km, by repeatedly using (255),
so the third term on the RHS vanishes. By

Da=DG +D2Σ , D2a=D2G +D3Σ , (272)

(268) follows immediately from (271) and (272). This concludes the demonstration that the
ansatz (267) solves (223).

Let us now determine the holomorphic limit of the one-instanton amplitude. Since the
holomorphic limit of D is the derivative operator (237), it follows from (244) and (227) that
the holomorphic limit of Σ is

F
�

X I − gsc
I
�

−F
�

X I
�

, (273)

where the coefficients c I were defined in (229). Here,

F = 1
g2

s
F̃0 + F̃1 +

∑

g≥2

g2g−2
s Fg , (274)

with the tildes indicating that the genus zero and genus one free energies appearing in the
total free energy of (273) are special. F̃0 is defined by the equation

cJ ∂ F̃0

∂ X J
= cJ PJ + dJ X J =A , (275)

so it might differ from the usual F0 in quadratic terms in the X J . By (241), the genus one free
energy appearing in (273) is

F̃1 = F1 −
� χ

24
− 1

�

log X 0 . (276)

Similarly, the holomorphic limit of a is

1+ gsc
J ∂F
∂ X J

�

X I − gsc
I
�

. (277)

We conclude that the holomorphic limit of F (1) is19

F (1) = 1
2π

�

1+ gsc
J ∂F
∂ X J

�

X I − gsc
I
�

�

exp
�

F
�

X I − gsc
I
�

−F
�

X I
��

. (278)

The exponential of (273) gives

e−A/gs exp

�

c I cJ

2
τI J

�

�

1+ gsΥ1 + g2
s

�

Υ2 +
1
2
Υ 2

1

�

+ · · ·
�

, (279)

where

Υ1 = −
1
3!

c I cJ cK CI JK − c I ∂F1

∂ X I
+

c0

X 0

� χ

24
− 1

�

,

Υ2 =
1
4!

c I cJ cK cL ∂ 4F0

∂ X I∂ X J∂ X K∂ X L
+

c I cJ

2
∂ 2F1

∂ X I∂ X J
+

�

c0
�2

2 (X 0)2

� χ

24
− 1

�

.

(280)

We have used the standard notation for the derivatives of the prepotential, as in (54),

τI J =
∂ 2F̃0

∂ X I∂ X J
, CI JK =

∂ 3F0

∂ X I∂ X J∂ X K
. (281)

19It has been pointed out by S. Shatashvili that this expression is reminiscent of the string field theory of [91,92].
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The prefactor gives

1
2π

�

A
gs
+ 1− c I cJτI J + gs

�

1
2

c I cJ cK CI JK + c I ∂F1

∂ X I
−

c0

X 0

� χ

24
− 1

�

�

+O(g2
s )

�

. (282)

If we now write, as in (168),

F (1) = 1
gs

e−A/gs

∑

n≥0

F (1)n gn
s , (283)

we obtain

F (1)0 =
1

2π
Aexp

�

c I cJ

2
τI J

�

,

F (1)1 =
1

2π

�

1− c I cJτI J +AΥ1

�

exp

�

c I cJ

2
τI J

�

,

F (1)2 =
1

2π

�

A
�

Υ2 +
1
2
Υ 2

1

�

+ Υ1

�

1− c I cJτI J

�

+
1
2

c I cJ cK CI JK

+ c I ∂F1

∂ X I
−

c0

X 0

� χ

24
− 1

�

�

exp

�

c I cJ

2
τI J

�

.

(284)

5.6 Multi-instanton amplitudes

We will now solve for the multi-instanton amplitudes. The derivation will closely follow the
local case in [23].

Recall that the holomorphic anomaly equation (223) for the one-instanton amplitude F (1)

is linear in F (1). We can arrive at very similar equations in the multi-instanton case, as demon-
strated in [23], by considering the holomorphic anomaly equations for the partition function,
rather than for the free energy [22,56].

Following [23], we define the reduced partition function Zr by

Zr = Z/Z (0) = eFr , (285)

where
Z = eF , Z (0) = eF (0) , (286)

are respectively the full and the perturbative partition function. The correction terms to the
holomorphic anomaly equations involving F (0)0 and F (1)0 (requiring the introduction of F̃ (0) and
F̂ (0) above) largely cancel when considering the quotient (285); it satisfies the linear equation

WZr =
1
2
D2Zr . (287)

We now look for trans-series solutions to (287) in the multi-instanton sectors with the
primitive instanton action A. We first comment that, as pointed out in [20,21,23], there could
be both instanton solutions of magnitude e−A/gs and anti-instanton solutions of magnitude
eA/gs . So a generic trans-series solution should include both instanton and anti-instanton
sectors, as well as mixed sectors. We therefore make the ansatz

Zr = 1+
∑

n,m≥0
(n,m)̸=0

Cn
+Cm
− Z (n|m) , (288)

for the reduced partition function, where the components are such that in the small gs limit,
they behave as

Z (n|m) ∼ exp
�

−
n−m

gs
A
�

. (289)
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When m = 0, i.e. in the absence of anti-instantons, we will often drop it from our notation.
The non-perturbative free energies in the multi-instanton sectors can easily be obtained by
considering a similar decomposition of the reduced free energy

Fr =
∑

n,m≥0
(n,m)̸=0

Cn
+Cm
− F (n|m) , (290)

taking the logarithm of both sides of (285) and then comparing coefficients of C±. For example

F (2) =Z (2) −
1
2

�

Z (1)
�2

, (291a)

F (1|1) =Z (1|1) − Z (1|0)Z (0|1) . (291b)

As the equation for the reduced partition function Zr is linear, it is easy to write down the
equations satisfied by its components:

WZ (n|m) =
1
2
D2Z (n|m) . (292)

To solve this equation, we also need to specify boundary conditions. As in the one-instanton
sector, we will impose these in the A-frame, with A proportional to an A-period. To begin
with, we will impose the rather generic boundary condition

Z(n|m)A =

�

∑

k

ak(A/gs)
k

�

e−(n−m)A/gs , (293)

in such a frame, where on the LHS, the subscript A means that the partition function is evalu-
ated in the A-frame. The actual boundary conditions of interest will be a specialization of this
class. Note that unlike the local cases discussed in [23], it is appropriate to always accompany
A with a factor of 1/gs, such that the instanton partition function, like Z (0), is a section of L0.

As the equation satisfied by Z (n|m) and by F (1), (292) and (221), coincide, we can make
the same ansatz

Z (n|m) = a(n|m) expΣ(n|m) , (294)

as before to solve it. In particular, we will search for solutions such that the exponent satisfies
the equation

WΣ(n|m) =
1
2

�

D2Σ(n|m) + (DΣ(n|m))2
�

, (295)

while the prefactor satisfies

Wa(n|m) =
1
2
D2a(n|m) +DΣ(n|m)Da(n|m) . (296)

In fact, equation (295) can be solved by setting

Σ(n|m) = Σ(n−m) =O(n−m)G , (297)

where

O(ℓ) =
∑

k≥1

(−1)k

k!
ℓkDk−1 =

1
D
(e−ℓD − 1) = −

∫ ℓ

0

e−uD du . (298)

The proof follows by repeating the argument from the previous section, and noting that it did
not depend on the value of the upper bound on the integration in (298). Changing this value
from 1 to ℓ is required to obtain the correct small gs limit (289)
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By introducing the operator M(n|m)

M(n|m) =W−DΣ(n|m)D−
1
2
D2 , (299)

equation (296) becomes the condition that a(n|m) is annihilated by M(n|m)

M(n|m)a(n|m) = 0 . (300)

Since the equation (292) is linear, we can without loss of generality consider the simpler
boundary condition

a
(n|m)
A = (A/gs)

k . (301)

Our problem is to find a(n|m) which satisfies both equations (300) and (301). We first notice
that the following object

X (n|m) = G +DΣ(n|m) , (302)

satisfies the equation (300), as follows from the computation (272) in section 5.5. But it only
satisfies the simplest boundary condition

X (n|m)A =A/gs . (303)

We claim that equation (300) with the generic boundary condition (301) is solved by

mk(X ) =
∑

k,d(k)=k

CkXk , (304)

with coefficients

Ck =
k!

∏

j≥1 k j!( j!)
k j

, (305)

and generators Xk given by words made out of the letters X ,DX ,D2X , . . ., X being short for
X (n|m),

Xk = X k1(DX )k2(D2X )k3 · · · . (306)

Each word is labelled by a partition k = (k1, k2, . . .) of the integer k so that

d(k) =
∑

j

jk j = k . (307)

The same proof as in [23] goes through here, and we will not repeat it. Some examples of mk
are

m2 = X 2 +DX , (308a)

m3 = X 3 + 3XDX +D2X . (308b)

We note that the generator X (n|m) = X (n−m) in fact also depends only on the difference n−m,
as this is the case for Σ(n|m) from which it derives its n, m dependence.

To summarize, (292) is solved by the ansatz

Z (n|m) = a(n|m) expΣ(n|m) , Σ(n|m) =O(n−m)G , (309)

with G given in (227) above, O(ℓ) defined in (298), and a(n|m) given by (304) for the boundary
condition (301), from which the general boundary condition (293) is obtained by superposi-
tion.
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Let us make some comments regarding this exact solution. Note that with (237), one can
easily evaluate the multi-instanton partition functions in the holomorphic limit. For instance,
the letter Dk−1X for the prefactor evaluates to

Dk−1X → gk
s cJ1 . . . cJk∂X J1 . . .∂X JkF (0)(X I − (n−m)gsc

I) , (310)

while the exponent Σ(n−m) evaluates to

Σ(n−m)→ F (0)(X I − (n−m)gsc
I)−F (0)(X I) . (311)

As emphasized in [23], this form of the exponent is very similar to instanton amplitudes in
matrix models, obtained by eigenvalue tunneling (see e.g. [93]). It suggests that the flat coor-
dinates X I are quantized in units of the string coupling constant. Such a picture is somewhat
expected in the local Calabi–Yau case considered in [23], but it is certainly more surprising in
the case of compact Calabi–Yau manifolds.

Up to now, we have considered the generic boundary condition (293) for the partition
function. The numerical studies in this paper show that similar to the case of local Calabi–Yau
manifolds [20, 21, 23], there is a special family of boundary conditions for the free energies
which is relevant for the resurgent structure of the topological string, given by

F (k|0)A =
τk

k2

�

1+
kA
gs

�

e−kA/gs , F (0|k)A =
τk

k2

�

1−
kA
gs

�

e+kA/gs . (312)

The subscript A is to indicate a special choice of frame as in section 5.2. Note that due to the
symmetry F (0)(−gs) = F (0)(gs) of the perturbative free energy, the anti-instanton boundary
condition (on the right in (312)) can be obtained from the instanton boundary condition (on
the left in (312)) by the map gs → −gs. We will further specialize the boundary conditions
(312) by restricting the constants τk to be of the form

τℓk =
δkℓ

2π
, (313)

yielding a subfamily of boundary conditions labelled by a positive integer ℓ. The partition
functions as well as free energies solved with this particular boundary condition will be de-
noted by Z (n|m)

ℓ
, F (n|m)
ℓ

, respectively. In this notation, the multi-instanton contributions in the

MUM and conifold frame we shall identify in section 5.7 are of the form F (ℓ)
ℓ

. The specialized
boundary conditions on the free energy translate to the following boundary condition on the
partition function:

Z(a|b)
ℓ,A =

(

1
(2π)n+mn!m!ℓ2n+2m

�

1+ ℓAgs

�n �
1− ℓAgs

�m
e−

(n−m)ℓA
gs , if a = nℓ, b = mℓ ,

0 , else.
(314)

Note that a vanishing boundary condition Z(a|b)
ℓ,A = 0 implies that the associated non-

holomorphic partition function Z (a|b)
ℓ

vanishes. The same does not hold for the free energies,
as e.g.

F (2)1 = Z (2)1 −
1
2

�

Z (1)1

�2
, (315)

and the RHS does not vanish. Note further that the relation between F (ℓ)
ℓ

and Z (ℓ)
ℓ

is particu-
larly simple. In fact,

F (ℓ)
ℓ
= Z (ℓ)

ℓ
, (316)
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as F (k) is a polynomial in Z ( j) for j ≤ k, but Z ( j)
ℓ
= 0 for j < ℓ. More general boundary con-

ditions than ℓ for F (ℓ) are needed to discuss the general resurgent structure of the topological
string, as we briefly touch upon in the introduction to section 6.

When applying the results (294), (297), (304), (227) to find the multi-instanton partition
function or free energies, we can use the trick that while a monomial boundary condition
(A/gs)k leads to the prefactor mk(X ) of the exact solution, a monomial boundary condition
(1± ℓA/gs)k leads to the prefactor mk(1± ℓX ).

Let us now give a concrete examples. In the family of solutions with boundary condition
ℓ= 1, when n= 2, m= 0, our construction gives

Z (2)1 =
1

(2π)2
1
2

�

(1+ X (2))2 +DX (2)
�

expΣ(2) , (317)

where we have explicitly written down the superscripts for both X and Σ. In the holomorphic
limit, this becomes

Z(2)1 =
1

(2π)2
1
2

�

(1+ gscJ∂XJ
F (0)(X I − 2gscI))

2 + g2
s cJ cK∂XJ

∂XK
F (0)(X I − 2gscI)

�

× exp(F (0)(X I − 2gscI)−F (0)(X I)) . (318)

5.7 Boundary conditions for the non-perturbative holomorphic anomaly

As we saw above, determining a trans-series solution to the holomorphic anomaly equations
requires as external input two pieces of information: an action A, and appropriate boundary
conditions at each loop order to fix the holomorphic ambiguities.

We make the following conjectures about this input, in analogy to the case of local Calabi–
Yau manifolds: [20,21,23]:

• The action A is a period over an integral cycle (see footnote 17 regarding the question
of normalization).

• The relevant boundary condition is the following: The action A determines, non-
uniquely, a frame in which it is (up to normalization) an A-period. In this frame (the
A-frame), the holomorphic limit of the multi-instanton amplitude in the instanton sector
of action ℓA is of the simple form (312), (313).

These conjectures are made based on the analysis of the resurgent structure of topological
string theory. As reviewed in Section 4, the analytic structure of the Borel transform of a
perturbative series encodes the instanton corrections to it, and can be determined from the
series via various methods, including by studying its large order behavior (153) or its Stokes
discontinuities (156). The former method proves particularly powerful in topological string
theory. Trans-series associated to the instanton sectors labelled by (ω) of the form20

F (ω) = g bω−2
s e−Aω/gs

�

F (ω)0 + gsF
(ω)
1 + . . .

�

, (319)

imply the following asymptotic behavior of the perturbative free energy:

Fg ∼
∑

ω

Sω
2π

∑

k≥0

F (ω)k

Γ (2g − bω − k)

A2g−bω−k
ω

=
∑′

ω

Sω
π

Γ (2g − bω)

A2g−bω
ω

�

F (ω)0 +
F (ω)1 Aω

2g − bω − 1
+

F (ω)2 A2
ω

(2g − bω − 1)(2g − bω − 2)
+ . . .

�

.

(320)

20We have argued above that consistency of our formalism requires bω = 1. We will find this value confirmed
below.
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Note that we have indicated the instanton sector as a superscript in parentheses. This is com-
patible with the notation introduced above in (167), if we label instanton sectors with the
associated actions, and interpret the (ℓ) appearing there as shorthand for (ℓA). As the pertur-
bative free energies Fg vanish at odd g, the Borel plane has an A 7→ −A symmetry. The primed
sum in (320) takes this into account by summing over only one representative for each pair
of instanton actions ±Aω. If one instanton sector has an action which is smaller in absolute
value than all others, it will typically dominate the asymptotic behavior of Fg .21

If we have analytic control over the asymptotics of Fg in a given frame, we can draw
conclusions regarding the leading instanton contribution, together with the associated loop
corrections. In topological string theory, we have such analytic control over Fg in two frames:
the large radius frame, with asymptotics determined via the Gopakumar–Vafa formula (126),
and the conifold frame, with asymptotics governed by the gap condition, (136). We can thus
verify the two conjectures rigorously in these two frames.

5.7.1 Boundary conditions in the MUM frame

We start with the discussion of the Fg(X ) near the MUM point, where the BPS indices ng,β in
the Gopakumar–Vafa expansion (129), specifically the constant contribution n0,0 = χ/2 lead-
ing to (131) and the first subleading n0,|β |=1 contribution, yield the asymptotic behavior. This
implies a dominating instanton sector with actions ℵℓX 0. We will show that the subleading
asymptotics is governed by simple instanton amplitudes with actions ℵℓ(β ·X +nX 0) (|β | ≥ 1).
Here X = (X 1, . . . , X h2(M)) and the · is used like in (48). In particular, we will show that the
genus zero Gopakumar–Vafa invariants are realized as Stokes constants, as found empirically
in a special case in [94].

We first consider the leading asymptotics, which is obtained from (131), as

Fg(X )

Γ (2g − 1)
∼ χ

�

X 0

(2π i)3/2

�2−2g (−1)g+1B2g B2g−2

(2g)!(2g − 2)!
2g − 1

2(2g − 2)

= −
χ

2π2

�

ℵX 0
�2−2g

�

1+
1

2g − 2

�

, (321)

where the constant ℵ was defined in (177). Comparing to (320) allows us to identify

S= −χ , A= ±ℵX 0 , b = 1 , F (1)0 =
A
2π

, F (1)1 =
1

2π
. (322)

Recall that (1) is shorthand for (A). The subleading asymptotics of the Bernoulli numbers given
in (132), keeping in mind

ζ(2g) =
∑

ℓ≥1

ℓ−2g , (323)

allows us to identify the multi-instanton contributions in this sector. From

∑

k≥1

∑

m≥1

k−2g+2m−2g =
∑

ℓ≥1

∑

m|ℓ

l−2g
�

ℓ

m

�2

=
∑

ℓ≥1

σ2(ℓ) l
−2g , (324)

where σ2(ℓ) is the divisor sigma function

σ2(ℓ) =
∑

m|ℓ

m2 , (325)

21Below, we will see instances of instanton actions which are appreciably different in absolute value competing
against each other, as the associated instanton amplitudes differ by many orders of magnitude.
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we conclude

Fg(X )∼ −
χ

2π2

∑

ℓ≥1

ℓ−2σ2(ℓ)
�

ℵℓX 0
�2−2g

Γ (2g − 1)
�

1+
1

2g − 2

�

. (326)

Hence,

Sℓ = −χσ2(ℓ) , Aℓ = ℓA= ±ℵℓX 0 , bℓ = 1 , F (ℓ)0 =
A

2πℓ
, F (ℓ)1 =

1
2πℓ2

, (327)

which is again of the simple form (312), (313). Note that the Stokes constants are proportional
to the Euler character of the Calabi–Yau manifold.

To move beyond the contribution of the dominant action, consider the Gopakumar–Vafa
formula (129) and substitute the leading asymptotics of the Bernoulli numbers (132) given by
setting ζ(2n)∼ 1 to obtain

Fg(X )∼
∑

|β |≥1

2(2g − 1)
(2π)2g

n0,β

�

X 0

(2π i)3/2

�2−2g

Li3−2g(Qβ)

=
∑

|β |≥1

n0,β

2π2
Γ (2g)

(−1)g−1

(2g − 2)!

�

X 0

p
2πi

�2−2g

Li3−2g(Qβ)

=
∑

|β |≥1

n0,β

2π2
Γ (2g − 1)

�

1+
1

2g − 2

�

∑

n∈Z

�

1
ℵ(β · X + nX 0)

�2g−2

.

(328)

In the final step, we have used that

∑

n∈Z

1
(2πn− 2π t · β)2g−2

=
(−1)g−1

(2g − 3)!
Li3−2g(Qβ) . (329)

Comparing to (320), we read off an infinite number of Borel singularities, each in accord with
the boundary conditions in the form (312), (313):22

Sβ = n0,β , A(β ,n) = ±ℵ(β · X + nX 0) , F (1)0 =
Aβ ,n

2π
, F (1)1 =

1
2π

. (330)

Subleading contributions to the Bernoulli numbers given by contributions to (323) at ℓ > 1
lead to multi-instanton sectors governed by Borel singularities at

A(β ,n),ℓ = ±ℵℓ(X · β + nX 0) , (331)

with associated Stokes constants and instanton amplitudes

Sβ ,ℓ = n0,β , F (ℓ)0 =
A(β ,n)

2πℓ
, F (ℓ)1 =

1
2πℓ2

. (332)

Let us note that this computation leads to an identification of an infinite number of Stokes
constants with genus zero Gopakumar–Vafa invariants, which are in particular integers. The
integrality of Stokes constants has been conjectured in [23] and is in line with a similar sit-
uation in complex Chern-Simons theory [15, 16]. Here, it follows from the Gopakumar–Vafa
formula, in which the multicovering-multibubbling of rational curves gets unravelled into a
sequence of Borel singularities.

22In the one parameter cases discussed in section 6, we will write d, which stands for degree, instead of β and
accordingly dX 1 + nX 0 for β · X + nX 0 etc.
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Let us note further that higher genus Gopakumar–Vafa invariants do not seem to appear
in the contributions from these singularities. The g = 1 contribution is entirely absent from
(129): as is evident from the Gopakumar–Vafa form (126) of the topological string amplitude,
there are no multi-covering contributions from g = 1 to other genera, n1,β only contributes
to (122). Terms involving ng,β with g ≥ 2 do arise in (129), but they do not have factorial
growth: by (329), they lead to corrections of order 1/g to the factorial asymptotics. Of course,
we expect to be able to find an exact formula for the Fg by adding contributions from all
the Borel singularities. It seems that the part of the Fg due to genus zero Gopakumar–Vafa
invariants comes directly from the Borel singularities that we studied above. The higher genus
contributions must be contained in other singularities on the Borel plane.

5.7.2 Boundary conditions in a conifold frame

We will begin by slightly generalizing the result [20,21] that the asymptotics of the topological
string amplitudes near a generalized conifold point in the associated conifold frame is dom-
inated by an instanton sector whose action is N times the conifold period X 1

c = Πν =
∫

ν
Ω,

where ν= S3/ZN is the vanishing lens space. The corresponding instanton amplitudes in the
conifold frame are of the simple form (312), (313).

As explained in section 3.2, we can choose the coordinate

tc =
Πν
ΠΓ
=

X 1
c

X 0
c

, (333)

to parametrize the transversal direction to a lens space conifold divisor Dc ∈Mcs(W ). Here,
ν, Γ ∈ H3(W,Z), ν∩ Γ = 0 and ΠΓ (zc) ̸= 0. From the gap condition (136), we obtain

Fg(Xc)∼
(−1)g−1B2g

2g(2g − 2)

�

X 1
c

(2π i)1/2N

�2−2g

. (334)

Let us evaluate the asymptotics of

Fg(Xc)

Γ (2g − 1)
∼

(−1)g−1B2g

2g(2g − 2)(2g − 2)!

�

X 1
c

(2π i)1/2N

�2−2g

= (−1)g−1
B2g

(2g)!

�

X 1
c

(2πi)1/2N

�2−2g �

1+
1

2g − 2

�

. (335)

Invoking once again the asymptotics of the Bernoulli numbers which follows from (132) by
setting ζ(2n)∼ 1, we obtain

Fg(Xc)

Γ (2g − 1)
∼

1
2π2

�

ℵX 1
c

N

�2−2g �

1+
1

2g − 2

�

. (336)

Comparing to (320), this allows us to identify

Sµ = 1 , Aµ = ±
ℵX 1

c

N
, b = 1 , F (1)0 =

Aµ
2π

, F (1)1 =
1

2π
. (337)

Using (323) in (132) allows us to also identify multi-instanton sectors. From

Fg(Xc)∼
1

2π2

∑

ℓ≥1

ℓ−2

�

ℵℓX 1
c

N

�2−2g

Γ (2g − 1)
�

1+
1

2g − 2

�

, (338)
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we conclude that

Sℓ = 1 , Aℓ = ℓAµ =
ℵℓX 1

c

N
, bℓ = 1 , F (ℓ)0 =

Aµ
2πℓ

, F (ℓ)1 =
1

2πℓ2
. (339)

The instanton action is indeed an integral period, while the instanton amplitude is of the form
(312), (313). We also find that the associated Stokes constant is trivial.

Note that for hypergeometric one-parameter models, the transition matrix (86) implies
that we can choose

(X 0
c , X 1

c ) = (X
1, P0) . (340)

6 Experimental evidence for resurgent structure

The computation of topological string amplitudes in one-parameter hypergeometric models
via the holomorphic anomaly equations, described in detail in section 3, yields a trove of data
to numerically test predictions following from the non-perturbative structure of topological
string we obtained above, including the two conjectures concerning boundary conditions.

For this purpose, we will need additional tools from resurgence theory, in addition to for-
mula (320) governing the large order behavior of the perturbative series as reviewed in sec-
tion 4. Let Fg(X ∗) be the holomorphic free energies at genus g in a given frame. The Borel
transform

ÒF (0)(ζ) =
∑

g≥0

1
(2g)!

Fg(X
∗)ζ2g , (341)

of the perturbative free energy F (0)(gs)

F (0)(gs) =
∑

g≥0

g2g−2
s Fg(X

∗) , (342)

will have singular points filling a subset of a lattice in the complex plane. These so-called
Borel singularities of F (0)(gs) coincide with instanton actions A, and therefore can be used to
identify the latter.

In practice, F (0)(gs) is only known to finite order in gs, so the Borel transform and con-
sequently the Borel singularities cannot be computed exactly. Instead, we consider the Padé
approximant of the Borel transform of the truncated series to approximate the exact Borel
transform, and the position of the poles of the Padé approximant approximates the position of
the Borel singularities. In the case of topological string theory, the Borel singularities of F (0)
turn out to be logarithmic branch points. Poles of the Padé approximants then accumulate
to indicate the location of the branch cuts, and allow us to read off the location of the Borel
singularities as the associated branch points.

Once we have identified instanton actions via a determination of the Borel singularities, we
can proceed to test the associated instanton amplitudes. As reviewed in section 4, in addition
to the large order formula (320), another useful numerical tool is the Stokes discontinuity.
Suppose the perturbative free energy has Borel singularities ℓAω (ℓ≥ 1) along the Stokes ray
Cθ . The Stokes discontinuity of the perturbative free energy across the Stokes ray Cθ is a linear
combination of the Borel resummation of the associated instanton amplitudes:

discθF (0)(gs) = sθ+F (0)(gs)− sθ−F (0)(gs) = i
∑

ω∈Ωθ

∑

ℓ≥1

SℓAωsθ−F (ℓAω)(gs) . (343)

In contradistinction to the large order formula (320), this allows the study of instanton sectors
with instanton actions lying on a particular ray, independently of whether these are dominant.

Before turning to our numerical analysis, we wish to make several comments:
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• The maximal genus to which perturbative free energies are available in compact models
is not sufficient to check the non-trivial multi-instanton amplitudes presented in sec-
tion 5.6. However, analogous results for local Calabi–Yau manifolds are testable [23],
as the topological string amplitudes can be computed to higher genus in these cases.

• Although we will mainly focus on testing solutions of instanton amplitudes in the instan-
ton sectors of action X 1 and P0, the results derived in section 5 should apply generally.
Once an instanton sector of action A has been identified (e.g. by studying the Borel
singularities of F (0)), the first conjecture in section 5.7 implies that we can find a frame
ΓA in which A is an A-period; the second conjecture in section 5.7 then dictates that the
instanton amplitude in frame ΓA is of the simple form (312) and (313). We can then use
the results of sections 5.5 and 5.6 to write down the instanton amplitudes in any other
frame.

• Both the evaluation of perturbative and instanton free energies depend on the choice of
frame. Nevertheless, our numerical studies seem to indicate that the resurgent structure
of topological string is independent of the choice of frame. In particular, this means that
the location of Borel singularities as well as the associated Stokes constants do not seem
to change across different frames, at least as far as the leading Borel singularities, which
are accessible by numerics, are concerned.

• When we are not in an A-frame, the instanton amplitude F (ℓ) in the ℓA instanton sector
itself contains a nontrivial power series and we can apply the same resurgent analysis as
before: looking for Borel singularities and studying the associated higher instanton am-
plitudes. On the other hand, as already pointed out in [23] in the case of local Calabi–Yau
manifolds, the instanton amplitudes are expressed completely in terms of the perturba-
tive free energy, and consequently the resurgent structure of the former can be deduced
from the latter. To discuss this point, it is convenient to use the language of alien deriva-
tives. The formula (343) for the Stokes discontinuity suggests

∆̇ℓAF (0)(gs) = sℓAF
(ℓ)
ℓ
(gs) , (344)

where the constants sℓA can be derived from the Stokes constants SℓA. The subscript
notation F (n)

ℓ
used on the RHS was introduced below (313) to specify that the instanton

amplitude is computed with the boundary condition (313). Then, for the full family of
trans-series F (n|m)

ℓ
, we conjecture that

∆̇ℓAF
(ℓn|ℓm)
ℓ

= sℓA(n+ 1)F (ℓ(n+1)|ℓm)
ℓ

(gs) . (345)

This should follow directly from (344) by taking derivatives. The derivation of the case
ℓ= 1 goes through exactly as in [23].

Another note on normalization conventions:

The numerical calculations performed in this section require choosing a normalization
for the periods, as well as a normalization of the topological string amplitudes, determined
by the choice of constant α introduced in (143). We will indicate the normalization of the
periods by citing the constant term of the holomorphic period at the MUM point. E.g., for the
normalization chosen in (79), this constant is (2π i)3. The values cited in this section are in
terms of a proportionality constant ℵ. We performed our computations with a normalization
(2π i)3/2 of the periods (this is the normalization for which the triple intersection number Czzz
has no factors of 2π i) and α2 = 1; for this choice, ℵ coincides with the value cited in (177).
It is however equally possible to relate our results to a different normalization of the periods,
by adjusting both α2 and ℵ. Two additional choices are indicated in table 5.
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Table 5: The normalization constant ℵ appearing in the numerical results cited in
this section as a function of the normalization of the periods and of the topological
string amplitudes Fg .

normalization of periods α2 ℵ
1 (2π i)−3 i(2π i)2

(2π i)3/2 1 i
p

2π i
(2π i)3 (2π i)3 1

2π

6.1 Mapping out the Borel plane

In this subsection, we investigate the Borel singularities of the perturbative free energy F (0)
evaluated in different frames and at different points of moduli space.

We first consider the vicinity of the MUM point z = 0. For the perturbative free energy
F (0)(X 0, X 1) evaluated in the MUM frame, the discussion in section 5.7.1 predicted Borel
singularities at23

±ℵℓX 0 , ±ℵ(dX 1 + nX 0) , ℓ, d ≥ 1, n ∈ Z . (346)

The first few of these, in the case of the quintic, are nicely visible in the plot reproduced in
Figure 4 (left). In particular, we find the branch cuts due to±ℵX 0 along the positive and nega-
tive imaginary axes, and the two towers of Borel singularities due to ℵ (±X 1+ZX 0), forming a
peacock pattern already observed in local Calabi–Yau manifolds [80,84]. The peacock pattern
becomes more prominent if we subtract the dominant constant map contributions from the
free energies. The result is plotted in Figure 4 (right). On the other hand, the Borel singulari-
ties ℵℓX 0 with higher ℓ are hidden behind the branch cuts of ℓ = 1. But we can uncover the
first few by combining the Padé approximant of the Borel transform with a conformal map

ζ=
1
i

2Aξ
1− ξ2

. (347)

See for example [95] for a summary of this type of techniques in Borel analysis. The resulting
plot, shown in Figure 5, displays clearly the singularities with ℓ= 2, . . . in the ξ-plane.

We can also evaluate the free energies in other frames, for example in the conifold frame
defined by (X 1, P0), or frames that are not associated to special points in the moduli space,
such as e.g. the frame defined by specifying as A-periods (P0, P1). The Borel singularities of
F (0)(X 1, P0) and F (0)(P0, P1) near the MUM point are plotted in Figure 6. We find that the
positions of the visible singularities coincide with those of F (0)(X 0, X 1).

Next, we consider loci in moduli space close to the conifold point z = µ. Figure 7 (left)
shows a plot of the Borel singularities of F (0)(X 1, P0). The only singular points that are visible
are the branch points at

±ℵP0 , (348)

consistent with the asymptotic analysis in section 5.7.2 based on the gapped form (136) of the
topological string amplitudes Fg close to the conifold locus. Figure 7 (right) shows the Borel
singularities of F (0)(X 1, P0) upon subtracting the leading poles before the gap to obtain the
regularized free energies

F reg
g (X

1, P0) = Fg(X
1, P0)−

(−1)g−1B2g

2g(2g − 2)

�

(2πi)1/2

P0

�2g−2

, g > 1 . (349)

23Due to the symmetry of perturbative free energies under gs → −gs, Borel singularities ±A always appear in
pairs.
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Figure 4: The location of the poles of the Padé approximant to ÒF (0)(X 0, X 1) (the hat
indicates the Borel transform), evaluated to order g = 64 at z = 10−2µ. On the right,
the leading constant map contribution is subtracted. The black dots correspond to
the position of the periods ℵ (mX 0 + nX 1), (m, n) = (1,0) (on the imaginary axis),
(0, 1), (1, 1), (2, 1), . . .

-2 -1 1 2
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Figure 5: The location of the poles of the Padé approximant to ÒF (0)(X 0, X 1) as a
function of ζ, evaluated to order g = 61 at z = 10−3µ, mapped to the ξ-plane by
the conformal map (347). The black dots correspond to the position of the periods
ℵmX 0, m = 1,2, 3. The red dots inside a circle of radius one are mappings of the
singularities from the two towers.
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Figure 6: The location of the poles of the Padé approximant to ÒF (0)(X 1, P0), on the
left, and ÒF (0)(P0, P1), on the right, evaluated to order g = 64 at z = 10−2µ. The
black dots correspond to the position of the periods ℵ(mX 0 + nX 1), (m, n) = (1, 0)
(on the imaginary axis), (0,1), (1,1), (2,1), . . .
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-0.00005

0.00005

0.00010
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Figure 7: The location of the poles of the Padé approximant to ÒF (0)(X 1, P0), without
(left) and with (right) the leading singularity removed, evaluated to order g = 61 at
z = (1 − 10−6)µ. In the left diagram, the black dot is at the position of the period
ℵP0. In the right diagram, the black dots are at the position of the periods ℵX 0, ℵX 1,
ℵ(X 0 + X 1).

Compared to the figure on the left, additional singularities located at

±ℵX 0 , ±ℵX 1 , ±ℵ(X 0 ± X 1) , (350)

become visible. Their location cannot be predicted analytically. We will study these additional
singular points in section 6.2.

Similarly, we can evaluate the free energies in other frames, for instance in the MUM frame
defined by the designation of A-periods (X 0, X 1) or the frame defined by the designation of A-
periods (P0, P1). The Borel singularities of F (0)(X 0, X 1) and of F (0)(P0, P1) close to the conifold
point are plotted in Figure 8. They coincide with the Borel singularities in the conifold frame
close to this point, plotted in Figure 7 (left).

We note that all three frames considered exhibit the same visible Borel singularities both
close to the MUM point and close to the conifold point. As far as the leading singularities are
concerned, the reason for this universality can perhaps be traced to the fact that the domi-
nant contribution to the topological string amplitudes in both of these regions is due to the
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Figure 8: The location of the poles of the Padé approximant to ÒF (0)(X 0, X 1), on the
left, and ÒF (0)(P0, P1), on the right, evaluated to order g = 64 at z = 5

6µ. The black
dots correspond to the position of the period ℵP0.

holomorphic ambiguity fg . In Figure 9, we plot the singularities of the Borel transform of

Fhol(gs) =
∑

g

fg g2g−2
s , (351)

close to the conifold and the MUM point. Indeed, the dominant Borel singularities coincide
with those in the three frames considered above.

Before ending this subsection, we comment on an interesting observation regarding the
monodromy action on the Borel singularities. As we have seen, the Borel singularities of the
perturbative free energies are given by geometric periods of the Calabi–Yau manifolds. The
periods are known to enjoy monodromy actions around singular points of the moduli space.
For example, in the case of the quintic, if we start from some locus in the moduli space, circle
around the MUM point and come back to the original locus, the periods transform by (we omit
here the transformation of the other two periods, which are also non-trivial)

X 1→ X 1 + X 0 . (352)

Therefore, near the MUM point the peacock pattern of Borel singularities arises by consistency:
as long as there exists one singular point of the type ℵ(dX 1 + nX 0) with d ̸= 0, all the other
singular points of the type ℵ(dX 1 + ZX 0) will appear by repeatedly applying the MUM mon-
odromy action, generating a vertical tower of Borel singularities displaced by dX 1 from the
origin. In other words, the distribution of Borel singularities near the MUM point is invariant
under the MUM monodromy action.

The same phenomenon is observed near an orbifold point. Taking again the quintic as an
example, which has an orbifold point at z =∞, it is natural to use the orbifold frame defined
by the periods (X 0

o , X 1
o ) = (w

1/5(1 + O(w)), w2/5(1 + O(w))) with w = 1/z. A plot of Borel
singularities of F (0)(X 0

o , X 1
o ) is given in Figure 10. The visible Borel singularities are located at

ℵ q⃗ · Π⃗ , (353)

with charge vectors

q⃗ ∈ {±(0, 0,0,1), ±(0,0,−1,1), ±(−1,−1,3,−1), ±(2, 1,−3,−2), ±(−1,0, 1,1)} , (354)

defined relative to the period vector defined in (79). This distribution of Borel singularities is
also invariant under the monodromy action around the orbifold point given by

q⃗→ q⃗ ·M∞ , (355)

where the orbifold monodromy action is

M∞ =







1 1 −5 2
0 1 −3 5
1 1 −4 2
0 0 −1 1






. (356)
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Figure 9: The location of the poles of the Padé approximant to ÒFhol evaluated
to order g = 64 at the point z = 10−2µ on the left, and z = 5

6µ on the
right. The black dots on the left give the positions of the periods ℵ(mX 0 + nX 1),
(m, n) = (1,0), (0,1), (1,1), (2,1), while the black dot on the right gives the position
of ℵP0.

In fact, the ten charge vectors in (354) with the overall ± signs form two orbits of length 5 of
the monodromy action M∞.

The situation near the conifold point z = µ is different. The monodromy action around
the conifold point of the quintic is

X 0→ X 0 + P0 . (357)

By the same argument as near the MUM point, near the conifold point we would expect due to
the presence of the Borel singularities at ±ℵX 0 two (horizontal) towers of Borel singularities
given by ℵ(X 0 +ZP0), which are nevertheless conspicuously absent in Figure 7.

The failure of monodromy invariance is reminiscent of a phenomenon pointed out by
Seiberg and Witten [96] regarding the BPS spectrum of N = 2 supersymmetric gauge the-
ory. Stokes constants in topological string theory have been conjectured to be related to BPS
invariants [14, 80]. Above, we have found Borel singularities of perturbative free energies to
be located at geometric periods, which according to homological mirror symmetry are propor-
tional to central charges of D-branes in type IIA superstring theory. It is tempting to link the
Borel singularities to stable D-branes. Then, if a wall of marginal stability ends in the coni-
fold point, it cannot be avoided when circling the conifold point and some stable D-branes
will decay. As a consequence, we shall not expect the spectrum of stable D-branes, hence
the distribution of Borel singularities, to be invariant under the conifold monodromy action.
Conversely, when the distribution of Borel singularities is observed to be invariant under the
MUM (resp. orbifold) monodromy action near the MUM point (resp. orbifold point) as above,
this may indicate that walls of marginal stability can be avoided upon circling the MUM point
(resp. orbifold point).
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Figure 10: The location of the poles of the Padé approximant to F (0)(X 0
o , X 1

o ), evalu-
ated to order g = 60, at z = 108µ. The black dots correspond to periods with charge
vectors (0, 0,0, 1), (0,0,−1,1), (−1,−1, 3,−1), (2,1,−3,−2), (−1, 0,1, 1).

6.2 Experimental evidence for boundary conditions

In this subsection, we provide additional numerical evidence for the conjecture that the in-
stanton amplitudes simplify in a frame where the instanton action A is an A-period and take
the form given in (312), (313).

We start by numerically verifying the subleading asymptotics ofF (0)(X 0, X 1) near the MUM
point, as worked out based on the Gopakumar–Vafa form of the topological string amplitude
in section 5.7.1.

Let us consider the sequence

sg = 2π2
�

A(1,0)
�2g−2 Fg(X 0, X 1)

Γ (2g − 1) + Γ (2g − 2)
, (358)

which, according to (328) restricted to d = 1 and n ∈ {0,±1}, should have an oscillatory
behavior

sg ∼ n0,1

n

1+ 2
�

1+
�

X 0/X 1
�2�1−g

cos (2(g − 1)φ)
o

, (359)

where
φ = tan−1

�

X 0/X 1
�

. (360)

In Figure 11, on the left, we show the sequence sg (black dots) as compared to the expected
oscillatory behavior on the r.h.s. of (359) (red line), when z = 10−5. We can subtract the
oscillatory part from sg to obtain a sequence that converges to n0,1 = 2875 (without subleading
1/g corrections). This is shown in Figure 11, on the right. This gives an approximation to 2875
with a precision of 10−10.

The discussion regarding the implications of the Gopakumar–Vafa formula for the asymp-
totics of F (0)(X ) is general. It applies to multi-parameter Calabi–Yau manifolds as well as
to local Calabi–Yau manifolds. As the topological string amplitudes are computable to higher
genus in the local case, the asymptotics displayed in (328) can be numerically checked beyond
degree 1. Consider e.g. local P2. Having tested the asymptotics (328) for d = 1, one subtracts
the resolved conifold piece corresponding to d = 1, so as to eliminate all the Borel singularities
with d = 1. One then proceeds with d = 2, and so on. Let us give an example. Consider the
sequence

sg = π
2 Γ (2g)

2g − 2
A2g−2
(3,0)

�

Fg(t)−
(−1)g−1B2g

2g(2g − 2)!

�

3Li3−2g(e
−t)− 6Li3−2g(e

−2t)
�

�

. (361)
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Figure 11: On the left, the sequence sg (black dots) as compared to the expected
oscillatory behavior (359) (red line), when z = 10−5. On the right, the sequence sg
minus its oscillatory part (red dots) and the prediction 2875 (black line).
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Figure 12: The sequence sg for z = −10−8 in local P2 is represented in black dots
and compared to the expected oscillatory behavior (362) (red line), where we include
only a finite number of terms in the sum. In the first figure, we include only m = 0,
in the second m= 0, 1,2, and in the third m= 0, 1, · · · , 8.

Here, we have subtracted the pieces that correspond to the Gopakumar–Vafa invariants of
degree one, n0,1 = 3, and two, n0,2 = −6. What remains is the asymptotics governed by the
degree 3 genus zero Gopakumar–Vafa invariant n0,3 = 27. Therefore, according to (328), the
sequence should asymptote to

sg ∼ 27
∑

m≥0

�

�

�

�

A(3,m)

A(3,0)

�

�

�

�

2−2g

cos (2(g − 1)φm) , (362)

where φm = arg(A(3,m)) and only the term with ℓ = 1 is kept (the terms ℓ ≥ 2 lead to ex-
ponential corrections to the asymptotics). In order to check this, we have to go to a region
where A(3,0) is smaller than the conifold action. Since the actions A(3,m) are quite close to
each other in absolute value, for small values of m, one has to add them to correctly reproduce
the asymptotics. In Figure 12, we make this comparison, for z = −10−8. When enough terms
are added, the asymptotic formula reproduces the sequence with high precision. Note that the
flat region at the very beginning of the sequence is only reproduced when we included many
oscillations, as in Fourier analysis.

We will now move beyond the analytic predictions in Section 5.7, and check the boundary
conditions in an instanton sector for which we have no analytic control over the asymptotics
of the topological string amplitudes. We will focus on the X 1 instanton sector in the conifold
frame defined by the A-periods (X 1, P0). As X 1 is an element of the set of A-periods defining the
frame, the second conjecture formulated in section 5.7 predicts that the associated instanton
amplitude should be of the simple form (312), (313).

We first consider the case of the quintic. Unfortunately, X 1 is never the dominant instanton
sector in the range between the MUM point and the conifold point. This is because, as we have
seen from Figure 6 (left) and Figure 7 (right), both X 0 and X 1 appear as Borel singularities
in this region, and the X 0 instanton sector always dominates the X 1 instanton sector, as X 0 is
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Table 6: For the quintic in the conifold frame defined by the A-periods (X 1, P0) at
z = (1 − 10−6)µ, we compare the Stokes discontinuity (underlined are stabilized
digits) across the positive real axis where the Borel singular point ℵX 1 is located,
and the value of the simple one-instanton amplitude (312) with τk = δk,1/(2π) of
instanton action A = ℵX 1, evaluated with F (0) up to order g = 61. The ratio of the
two results is constant for a suitable range of gs and it is close to n0,1 = 2875.

gs disc0F (0) F (1)A disc0F (0)/F
(1)
A

1/2 2.0727336107126× 10−40 i 7.2095082301714× 10−43 i 2874.99999
1 1.5789470403404× 10−18 i 5.4919897055452× 10−22 i 2874.99999

3/2 2.6261206071978× 10−11 i 9.1343325745150× 10−15 i 2874.99999
2 9.8839645377145× 10−8 i 3.4379000230359× 10−11 i 2875.00057

5/2 1.3181344321030× 10−5 i 4.5848197859366× 10−9 i 2874.99725

smaller than X 1 in absolute values here, cf. Figure 3. As the X 0 instanton amplitude is non-
trivial in the conifold frame, its effect on the asymptotics of perturbative free energies cannot
be easily subtracted. It is therefore difficult to extract information on the X 1 instanton sector
from the large order asymptotics of the perturbative free energies of the quintic.

Instead, we compute the Stokes discontinuity across the positive real axis, on which X 1 is
located. By (343), the result will be proportional to the sum over all Borel resummed instanton
amplitudes associated to actions lying on the real axis. In addition to X 1, P0 ∈ R close to the
conifold point. However, unlike the contribution of the X 0 instanton sector, the contribution
of the P0 sector (and the associated multi-instanton sectors) can readily be subtracted from
the asymptotics. To compute the Stokes discontinuity associated to the X 1 instanton sector, we
therefore consider the Borel transforms of the sum of the regularized free energies F reg

g (X 1, P0)
defined in (349). As we only have access to finitely many orders in the perturbation series, the
Borel transforms we work with numerically do not exhibit logarithmic singularities. It turns
out however that the poles of the Padé approximant suffice to obtain the discontinuity of the
Borel resummation to high numerical precision. The Laplace transform integral (154) can
either be performed numerically along a path slightly above/below the positive real axis, or
the discontinuity (156) can be computed directly as a sum over the residues of the integrand
(the difference of the upper/lower semi-circle contributions from the (+), (−) integration path
respectively yield the full residue at each pole). Either way, the result should be proportional
to the Borel resummed X 1 instanton amplitude, with proportionality constant the associated
Stokes constant. We give the result of the ratio of the discontinuity and the instanton amplitude
F (1)A given by (312) associated to the instanton action A = ℵX 1, evaluated at the special
boundary condition τk = δ1,k/(2π), in Table 6. We find that this ratio is constant for a suitable
range of gs (dependent on the order to which the perturbative series is available), and it agrees
with

n0,1 = 2875 . (363)

Note that this is the same Stokes constant associated to the X 1 instanton sector in the MUM
frame, cf. (330).

Another Calabi–Yau manifold which is of particular interest is X2,2,2,2(18), which has the
property that near the conifold point, ℵX 1 is smaller than ℵX 0 in magnitude, so that ±ℵX 1

are the dominant Borel singularities for the regularized conifold free energy F (0)reg
(X 1, P0)

defined in (349). For instance at z = (1− 10−6)µ,

ℵX 0 = 44.1619 . . . i , ℵX 1 = 35.6383 . . . (364)
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We can then apply the technique of large order asymptotics. We find that

F (0)reg
g (X

1, P0)∼
S1

π

Γ (2g − 1)

A2g−1
1

�

F (1)0 (X
1, P0) +F (1)1 (X

1, P0)
A1

2g − 2

�

, (365)

where

S1 = n0,1 = 512 , A1 = ℵX 1 , F (1)0 (X
1, P0) =

A1

2π
, F (1)1 (X

1, P0) =
1

2π
. (366)

This implies that the one-instanton amplitude associated to the instanton action A1 is indeed
of the type (312), (313). For instance, to find S1 F

(1)
0 (X

1, P0)/π, we can study the sequence

s(1)g = F (0)reg
g (X

1, P0)
A2g−1

1

Γ (2g − 1)
, (367)

which asymptotes to S1 F
(1)
0 (X

1, P0)/π in large g and the convergence can be made faster

using the Richardson transformation. Similarly, once S1 F (1)0 (X
1, P0)/π is found, we can study

the sequence

s(2)g =

�

F (0)reg
g (X

1, P0)
A2g−1

1

Γ (2g − 1)
−
S1 F

(1)
0 (X

1, P0)

π

�

2g − 2
A1

, (368)

which asymptotes to S1 F
(1)
1 (X

1, P0)/π at large g. Finally, we can use the sequence

s(3)g =

�

F (0)reg
g (X

1, P0)
A2g−1

1

Γ (2g − 1)
−
S1 F

(1)
0 (X

1, P0)

π
−
S1 F

(1)
1 (X

1, P0)

π

A1

2g − 2

�

(2g − 2)(2g − 3)
A2

1

,

(369)
to explore a possible third term S1 F

(1)
2 (X

1, P0)/(π). Here we always use

S1 = n0,1 = 512 . (370)

The sequences of s(1)g , s(2)g , s(3)g are illustrated in Figs. 13. It is clear that F (1)0,1(X
1, P0) fit well

and F (1)2 (X
1, P0) should be zero.

As in the case of the quintic, another test we can perform is to compute the Stokes discon-
tinuity. The Stokes discontinuity of the perturbative free energy across the positive real axis
should be

disc0F (0)
reg
(X 1, P0) =

S1

2π

�A1

gs
+ 1

�

e−A1/gs . (371)

This is also verified by numerical calculation as shown in Table 7.

6.3 Checking one-instanton amplitudes against asymptotics and Stokes discon-
tinuities

In this section, we provide strong evidence for the solution of the nontrivial one-instanton
amplitude (278) from the holomorphic anomaly equations. We will focus on two instanton
sectors: the P0 instanton sector in the MUM frame defined by the A-periods (X 0, X 1), and the
X 0 instanton sector in the conifold frame defined by the A-periods (X 1, P0).

The asymptotic behavior of Fg = Fg(X 0
∗ , X 1
∗ )(z) at large g is governed by instanton ampli-

tudes via the relation

Fg ∼
∑

ω

Sω
2π
Γ (2g − bω)

A2g−bω
ω

�

F (ω)0 +
F (ω)1 Aω

2g − bω − 1
+

F (ω)1 A2
ω

(2g − bω − 1)(2g − bω − 2)
+ . . .

�

, (372)
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Figure 13: Comparison between auxiliary sequences (367),(368), (369) (red dots)
which asymptote to S1 F

(1)
0,1,2(X

1, P0)/π with S1 = n0,1, their Richardson transforms
(1st-order, blue dots), and the prediction (366) (black lines) for the example of the
X2,2,2,2(18) model at z = (1− 10−6)µ.

according to (320). The RHS of this relation depends on the Stokes constants Sω, the constants
bω, the instanton actions Aω, and the associated instanton amplitudes F (ω)g . As noted above,
we will also label, when convenient, an instanton sector ω by the associated action Aω.

The instanton sectors which dominate the asymptotics of Fg can be read off the Borel plane
plots studied in section 6.1. When the asymptotics is dominated by a single instanton sector,24

the corresponding instanton action can be extracted from the asymptotics by considering the
auxiliary sequence

s(A)g = 2g

√

√

√

Fg

Fg+1

g≫1
−−→ A . (373)

We can accelerate the convergence of the sequence by using Richardson transformations.
As argued for in section 5, consistency of our ansatz requires bω = 1. This condition can

also be verified numerically: if the asymptotics is dominated by the instanton action A, then
the associated constant b will be the limit of the sequence

s(b)g = −
1
2

�

A2

2g

Fg+1

Fg
− 2g − 1

�

g≫1
−−→ b . (374)

Most significantly, the one-instanton amplitudes can be extracted from the asymptotics and
compared to our theoretical prediction. Again assuming that the asymptotics is dominated by

24Recall that due to the occurrence of only even powers of gs in the asymptotic series (1), all instanton sectors
occur in pairs ±A. In the following, we will refer to such pairs as a “single” instanton sector.
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Table 7: For the model X2,2,2,2(18) in the conifold frame defined by the A-periods
(X 1, P0) at z = (1 − 10−6)µ, we compare the Stokes discontinuity (underlined are
stablised digits) across the positive real axis where the Borel singular point ℵX 1 is
located, with F (0) evaluated up to order g = 32, and the value of the simple one-
instanton amplitude (312) with τk = δk,1/(2π) of instanton action A= ℵX 1. The ra-
tio of the two results is constant for a suitable range of gs and it is close to n0,1 = 512.

gs disc0F (0) F (1)A disc0F (0)/F
(1)
A

1/2 6.532093616× 10−28 i 1.275799523× 10−30 i 512.00000
1 9.942777405× 10−13 i 1.941948685× 10−15 i 512.00000

3/2 9.693393658× 10−8 i 1.893240419× 10−10 i 512.00014
2 2.798526539× 10−5 i 5.465895145× 10−8 i 511.99784

5/2 8.007846050× 10−4 i 1.563991489× 10−6 i 512.01340

the instanton action A, we have

Fg ∼
SA
2π
Γ (2g − 1)
A2g−1

F (A)0 +
S−A
2π
Γ (2g − 1)
(−A)2g−1

F (−A)0 . (375)

Assuming symmetry under A→−A, such that SA = S−A and F (A)0 = −F (−A)0 , this implies

s0
A,g =

A2g−1

Γ (2g − 1)
Fg

g≫1
−−→

SA
π

F (A)0 . (376)

Given a theoretical prediction for F (A)0 , we can similarly obtain a numerical prediction for the
one-loop contribution to the one-instanton amplitude via

s1
A,g =

�

A2g−1

Γ (2g − 1)
Fg −

SA
π

F (A)0

�

2g − 2
A

g≫1
−−→

SA
π

F (A)1 . (377)

These asymptotic estimates for the loop coefficients F (A)g of the one-instanton amplitude
can be compared to our theoretical predictions, extracted from the exact formula (278). The
first few loop orders are extracted from the general formula in (284). These formulae depend
on the two constants c0 and c1 defined in (229). In the one-modulus case, we can evaluate all
derivatives in terms of the free energies F0(t) and F1(t) as

τ00 = 2F0(t)− 2t∂tF0(t) + t2∂ 2
t F0(t) ,

τ01 = ∂iF0(t)− t∂ 2
t F0(t) ,

τ11 = ∂
2
t F0(t) ,

(378)

and

C000 = −
t3

X 0
∂ 3

t F0(t) , C001 =
t2

X 0
∂ 3

t F0(t) ,

C011 = −
t

X 0
∂ 3

t F0(t) , C111 =
1

X 0
∂ 3

t F0(t) ,
(379)

as well as
∂F1(t)
∂ X 0

= −
t

X 0
∂tF1(t) ,

F1(t)
X 1

=
1

X 0
∂tF1(t) . (380)

When the contributions from two instanton sectors are comparable, we can still extract
numerical predictions under the condition that the contribution of one of the instanton sectors
is known completely. We will see instances of this in examples, to which we now turn.

70

https://scipost.org
https://scipost.org/SciPostPhys.16.3.079


SciPost Phys. 16, 079 (2024)

Table 8: The asymptotic estimate of the instanton action obtained via the sequence
s(A)g compared to the periods P0 and X 0. The computation is based on Fg(X 0, X 1)
evaluated up to genus 64 for the example of the quintic.

z Asymptotic estimate of action ℵP0 ℵX 0

10−6µ 39.4784191203291289117078 i −1138.03925609468142282947 −39.4784191203291289125828 i
10−4µ 39.47856920606554978139 i −494.0326608439227865458 −39.47856920606554978519 i
10−2µ 39.4936233785076876 i −141.223891994711932 −39.4936233785077847 i
1/8µ 39.67553248 i −42.99972954 −39.67553551 i
1/7µ 39.704120 i −39.321466 −39.705033 i
1/6µ 44. i −35. −40. i
1/5µ 30.73 −30.65 −39.80 i
1/3µ 19.0714633228 −19.0714633440 −40.0447429295 i
1/2µ 11.1503736933130532 −11.150373693313239 −40.390151835645641 i
5/6µ 2.65608862910239270 −2.65608862910239633 −41.3365927932450749 i

23/24µ 0.6030509245517648306 −0.6030509245517648990 −41.92408741381918292 i

We will begin by studying the asymptotics of the topological string amplitudes Fg(X 0, X 1)
in the MUM frame. We will perform this analysis for the quintic.

We numerically evaluate the Fg(X 0, X 1), at real values of z in between the MUM point and
the conifold point,

0< z < µ= 5−5 , (381)

and obtain a sequence of values of Fg(X 0, X 1). We then substitute these values into the se-
quence s(A)g defined in (373) and perform the number of Richardson transformations which
best stabilizes the sequence (i.e. which leads to the largest number of coincident digits in the
last two entries of the Richardson transformed sequence). These values are given in Table 8
for a range of values for z. From our study of the Borel plane, see Figure 4, we expect the
dominant instanton action to transition from ℵX 0 close to the MUM point to ℵP0 close to the
conifold point. These two periods are also listed in Table 8 for each value of z. We find that the
respective actions are reproduced to high precision by the asymptotics close to the associated
singular point. The method fails when the two actions are of comparable size.

We next determine asymptotic estimates for b at points in moduli space at which the asymp-
totics is dominated by one instanton action. The results are collected in Table 9, and not
surprisingly confirm the theoretical value b = 1.

Finally, we turn to the asymptotic predictions for F (1)0 and F (1)1 . Close to the MUM point,

Table 9: The asymptotic estimate of the the constant b via the sequence s(b)g evaluated

for A = ℵP0, A = ℵX 0 as appropriate. The computation is based on Fg(X 0, X 1)
evaluated up to genus 64 for the example of the quintic.

z Asymptotic estimate of b
10−6µ 1.00000000000000000376
10−4µ 1.00000000000000000376
10−2µ 1.0000000000000157
1/8µ 1.0000042
1/3µ 1.00000000537
1/2µ 1.0000000000001046
5/6µ 1.00000000000001197

23/24µ 1.000000000000001512
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Table 10: Comparison, in the frame (X 0, X 1), between the asymptotic estimate for

the normalized genus 0 one-instanton amplitude
Sµ
π F

(µ)
0 and the prediction, using

Sµ = 1, for the example of the quintic.

z Asymptotic estimate I Asymptotic estimate II Prediction

µ/8 1.× 109 −2.0685× 10−8 −2.0618× 10−8

µ/7 10000. −4.659137× 10−8 −4.658992× 10−8

µ/6 0.01 −1.163074023× 10−7 −1.163074007× 10−7

µ/5 −3.335× 10−7 −3.313309985143× 10−7 −3.313309985104× 10−7

µ/3 −5.1510310321251× 10−6 −5.151031032069825626× 10−6 −5.151031032069825187× 10−6

µ/2 −0.000038081205262381317350 −0.000038081205262381317350 −0.000038081205262381316984
5µ/6 −0.000374000001694825755160 −0.000374000001694825755160 −0.000374000001694825754743

23µ/24 −0.0004997585182539551567396 −0.0004997585182539551567396 −0.0004997585182539551566954

the asymptotics will be governed by the analytically derived instanton amplitudes (322) as-
sociated to the instanton action AMUM = ℵX 0. Recall that these were imposed as boundary
conditions in our computations. Close to the conifold point, we predict that the instanton
amplitudes (284) associated to the instanton action Aµ = ℵP0, i.e. evaluated with

c0 = ℵ , c1 = 0 , (382)

should govern the asymptotics. In the second column of Table 10 and of Table 11, under

the heading “Asymptotic estimate I”, we have listed the asymptotic estimates for
Sµ
π F

(µ)
0 and

Sµ
π F

(µ)
1 respectively, based on the sequences s0

Aµ,g and s1
Aµ,g introduced above.

The estimates match the prediction based on (382), given in the fourth column of Table 10
and of Table 11, convincingly close to the conifold point, but break down around z ∼ µ6 . At this
value of z, |Aµ|< |AMUM|, i.e. the conifold action is still dominant, see Table 8. Given that the
action enters in the asymptotics to the power of 1−2g, the breakdown of our estimate already
at this value of z implies that the instanton amplitudes associated to AMUM must be appreciably
larger than the amplitude associated to Aµ. And indeed, at genus g = 64, we compute

�

�

�

�

�

Γ (2× 64− 1)
A2×64−1
µ

�

�

�

�

�

∼ 2× 1015 ,

�

�

�

�

Γ (2× 64− 1)
A2×64−1

MUM

�

�

�

�

∼ 8× 107 , (383)

while
|F (µ)0 | ∼ 10−7 , |F (MUM)

0 | ∼ 40 , (384)

and
|F (µ)1 | ∼ 10−7 , |F (MUM)

1 | ∼ 1 . (385)

Table 11: Comparison, in the frame (X 0, X 1), between the asymptotic estimate for

the normalized genus 1 one-instanton amplitude
Sµ
π F

(µ)
1 and the prediction, using

Sµ = 1, for the example of the quintic.

z Asymptotic estimate I Asymptotic estimate II Prediction

µ/8 −4.× 109 −1.6724× 10−8 −1.6650× 10−8

µ/7 −50000. −3.206806× 10−8 −3.206579× 10−8

µ/6 −0.05 −6.405055587× 10−8 −6.405055488× 10−8

µ/5 −1.3× 10−7 −1.280693556310× 10−7 −1.280693556226× 10−7

µ/3 5.88102454425421× 10−7 5.88102454418872040× 10−7 5.88102454418871349× 10−7

µ/2 0.000025534824045449402553 0.000025534824045449402553 0.000025534824045449402293
5µ/6 0.001214358107695072071777 0.001214358107695072071777 0.001214358107695072070550

23µ/24 0.00609369882423593493007 0.00609369882423593493007 0.00609369882423593492297
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Figure 14: The significant digits of the asymptotic estimates for 1 instanton genus
1,2, 3 contributions without (left) and with (right) constant map subtraction for the
quintic X5(15) to g = 64.

Hence, beyond z ∼ µ5 , the contribution of the two instanton sectors associated to Aµ and AMUM

to the asymptotics become first comparable and then dominated by the latter. However, as we
know the leading asymptotics of Fg(X 0, X 1) close to the MUM point exactly – it is given by
(322) – we can subtract it from Fg(X 0, X 1) and test the prediction based on (382) also in this
region. The results of this computation, s0

Aµ,g s1
Aµ,g evaluated on Fg(X 0, X 1) with the leading

asymptotics subtracted, are given in the third column, under the heading “Asymptotics II” of
Table 10 and Table 11 respectively and show convincing agreement with the predictions.

Very close to the MUM point (e.g. at the values 10−2µ, 10−4µ, 10−6µ considered in Ta-
ble 8 and Table 9), our numerical precision is no longer sufficient to resolve the subleading
contribution of the Aµ instanton sector to the asymptotics.

The numerical study of asymptotic estimates is illustrated graphically in Figure 14, which
also compares the asymptotic estimates for F (µ)2 and F (µ)3 to the theoretical predictions. In-

deed, as we have predictions for the instanton amplitudes F (µ)g at arbitrary loop order, we can

obtain asymptotic predictions for F (µ)n from a sequence sn
Aµ,g in which the contributions from

the lower loop coefficients to the asymptotics of Fg(X 0, X 1) have been subtracted. With in-
creasing n, we must compute the topological string amplitudes to increasingly high genus and
evaluate them with ever increasing numerical precision. Below, we will compute asymptotic
estimates of the one-instanton amplitudes up to loop order 8 for Fg(X 1, P0).

We now change frames and perform the analogous asymptotic analysis for the topological
string amplitudes Fg(X 1, P0) in the conifold frame. Here, the leading asymptotics close to the
conifold point is known exactly – it is given by (337). We can hence test the prediction of
(284) for the instanton sector associated to the instanton action A= ℵX 0, i.e. for

c0 = 0 , c1 = ℵ . (386)
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Table 12: Comparison, in the frame (X 1, P0), between the asymptotic estimate for
SMUM
π F (AMUM)

0 and the prediction, using SMUM = −χ, for the example of the quintic.

z Asymptotic estimate I Asymptotic estimate II Prediction

10−6µ −382.257657577866488 i −382.257657577866488 i −382.257657577867968 i
10−4µ −364.260537318513919 i −364.260537318513919 i −364.260537318518819 i
10−2µ −312.00085776255 i −312.00085776255 i −312.00085777409 i
µ/8 −401.997458 i −402.2 i −401.997221 i
µ/7 300 i −229.4055067 i −229.4055313 i
µ/6 2× 107 i −221.78747 i −221.78865 i
µ/5 2× 1013 i −212.105904 i −212.106060 i

Table 13: Comparison, in the frame (X 1, P0), between the asymptotic estimate for
SMUM
π F (AMUM)

1 and the prediction, using SMUM = −χ, for the example of the quintic.

z Asymptotic estimate I Asymptotic estimate II Prediction

10−6µ −19.96043925387713 −19.96043925387713 −19.96043925387822
10−4µ −32.52506815749229 −32.52506815749229 −32.52506815749648
10−2µ −49.74119660140 −49.74119660140 −49.74119660508
µ/8 10.132210 10.33 10.132118
µ/7 −1000 −53.5985829 −53.5985968
µ/6 −6× 107 −53.1246552 −53.1246694
µ/5 −5× 1013 −52.3718764 −52.3718908

According to the Borel plane plots on the left in Figure 6 and Figure 8, this should capture
the leading asymptotics near the MUM point and the subleading asymptotics near the conifold
point. In the second column of Table 12 and Table 13, under the heading “Asymptotics I”, we
have listed the asymptotic estimates for SMUM

π F (AMUM)
0 and SMUM

π F (AMUM)
1 respectively, based on

the sequences s0
AMUM,g and s1

AMUM,g . The estimates match the prediction based on (386), given
in the fourth column of the tables, all the way up to z = µ/8. By z = µ/7, the instanton
action Aµ has inched closer to the origin of the Borel plane than AMUM. The prediction (386)
now applies to the subleading asymptotics. Subtracting the leading asymptotics yields the
asymptotic estimates listed in the third column of Table 12 and Table 13, under the heading
“Asymptotics II” – these show good agreement with the predictions for all points z in the moduli
space studied. Note that unlike the case for Fg(X 0, X 1), the breakdown of the asymptotic
estimate for the instanton amplitudes (“Asymptotics I” in the tables) coincides with the point
in moduli space at which Aµ moves past AMUM to become the closest action to the origin of
the Borel plane. The difference between the two cases is that for Fg(X 1, P0), the size of the
instanton actions in the two sectors is comparable, and cannot compensate for the difference
in the contribution from the actions to the asymptotics (cf. discussion around (383)).

As pointed out above, we can push the comparison between asymptotic estimates for the
one-instanton amplitudes and the theoretical prediction based on (278) to higher loop order.
In Figure 15, we perform this comparison for F (0)(X 1, P0) at z = 10−2µ up to loop order 8,
and find good agreement.

Finally, we check the entire one-instanton amplitude formula using the Stokes discontinuity
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Table 14: Comparison, in the frame (P0, P1), between the asymptotic estimate for
SMUM
π F (AMUM)

0 and the prediction using SMUM = −χ for the first three values of z, and

between the asymptotic estimate for
Sµ
π F

(µ)
0 and the prediction using Sµ = 1 for the

last four values of z, for the example of the quintic.

z Asymptotic estimate Prediction

10−6µ 2.578293673861729631− 350.320544587085132123 i 2.578293673861729616− 350.320544587085132654 i
10−4µ 4.283968180390488729− 314.909621199366985163 i 4.283968180390488721− 314.909621199366985961 i
10−2µ 6.26156388754039− 241.46605914584608 i 6.26156388754057− 241.46605914585064 i

µ/3 −0.966171619903455385 −0.966171619903454465
µ/2 −0.5648845303304413622559 −0.5648845303304413621804
5µ/6 −0.13455902187980453773105 −0.13455902187980453771306

23µ/24 −0.03055091673609547562773 −0.03055091673609547562365

Table 15: Comparison, in the frame (P0, P1), between the asymptotic estimate for
SMUM
π F (AMUM)

1 and the prediction using SMUM = −χ for the first three values of z, and

between the asymptotic estimate for
Sµ
π F

(µ)
1 and the prediction using Sµ = 1 for the

last four values of z, for the example of the quintic.

z Asymptotic estimate Prediction

10−6µ −22.118606937252992852+ 0.154244032879358745 i −22.118606937252992805+ 0.154244032879358748 i
10−4µ −25.715437369360251839− 0.575488280479718081 i −25.715437369360252154− 0.575488280479718072 i
10−2µ −23.58594545231497− 2.10986661318608 i −23.58594545232135− 2.10986661318582 i

µ/3 0.050660591821169677 0.050660591821168886
µ/2 0.05066059182116888572605 0.05066059182116888572194
5µ/6 0.05066059182116888572605 0.05066059182116888572194

23µ/24 0.05066059182116888572605 0.05066059182116888572194

relation (343). The Stokes discontinuity of F (0)(X 1, P0) across the negative imaginary axis
should be proportional to the Borel resummation of the one-instanton amplitude with action
ℵX 0. At z = 1/100µ and with gs = −i, the Stokes discontinuity, with F (0)(X 1, P0) expanded
up to order g = 61, evaluates to

discπ/2F (0)(X 1, P0)(z = 1/100, gs = −i) = 1.85787242132104924598× 10−16 , (387)

where stable digits are underlined. The Borel resummation of F (1)(X 1, P0) is

s−F (1)(X 1, P0)(z = 1/100, gs = −i) = 1.8578724213210491439127620868310874× 10−16

− i 2.144138518276324130× 10−31, (388)

where stable digits are underlined. Both the real and the imaginary part of these two results
agree up to 10−31, which is the order of magnitude of the second instanton amplitude with
action 2ℵX 0.

As a final example, we consider the asymptotics of the topological string amplitudes
Fg(P0, P1). Unlike the two previous cases, we do not have access to exact asymptotics in this
frame anywhere on moduli space. Hence, we are restricted to studying leading asymptotics.
The predictions in Table 14 and Table 15 are for SMUM

π F (AMUM)
g , g = 0,1 for the first three values

of z close to the MUM point, and for
Sµ
π F

(µ)
g , g = 0, 1, for the remaining four values of z. We

find convincing agreement at all loop orders considered.
All of the analysis in this section so far has been for the quintic. We can of course equally

well study other one-parameter models. A comparison of asymptotic estimates and theoretical
prediction for one-instanton amplitudes of Fg(X 0, X 1) is performed for the dectic X10(13, 2, 5)
in Figure 16.
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Figure 15: Comparison between auxiliary sequences (similar to (376), red dots) that
asymptote to SMUM

π F (MUM)
g (g = 0, 1, . . . , 7) constructed from evaluation of Fg(X 1, P0)

up to g = 61 with SMUM = −χ, their Richardson transformations (8-th order, blue
dots), and the prediction from the 1-instanton formula (278) (black line) for the X 0

instanton sector in the case of the quintic.
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Figure 16: The significant digits of the asymptotic estimates for the one-instanton
genus 1, 2,3 contributions without (left) and with (right) constant map subtraction
for the dectic X10(13, 2, 5) to g = 50.

7 Conclusions

The asymptotic nature of the perturbative series in topological string theory indicates that
there are additional non-perturbative sectors which can be decoded from perturbation theory.
These sectors are characterized by their Borel singularities or instanton actions, by asymptotic
series or instanton amplitudes, and by Stokes constants. In this paper, we have found general
results for the instanton amplitudes for arbitrary compact Calabi–Yau manifolds, as well as
particular results on the structure of Borel singularities, providing a far-reaching generalization
of previous results in [20, 21, 23, 94], which focused on the one-modulus, local case. More
concretely, we have found that the Borel singularities of perturbative topological string free
energies in a generic compact Calabi-Yau threefold are integral periods of the form

A= ℓ(cJ PJ + dJ X J ) , (389)

similar to the findings made in the local cases [20, 21, 26]. Here X J , PJ are integral A- and
B-periods respectively whose choice determines a symplectic frame, {cJ , dJ} are coprime in-
tegers, and ℓ = 1,2, . . .. We checked this result with the examples of hypergeometric one
parameter Calabi-Yau threefolds listed in Table 1. We have found elegant closed-form expres-
sions for the instanton amplitudes, i.e. the non-perturbative corrections to free energies, in the
form of exponentially small trans-series, by solving the trans-series extension of the holomor-
phic anomaly equations. They are encoded in terms of non-perturbative partition functions
given in (309), related to the free energies through the usual exponential-logarithm relation.
The non-perturbative partition functions can be evaluated in the holomorphic limit associated
to a chosen symplectic frame. The results depend on the type of the Borel singularity the in-
stanton amplitude is evaluated at. If the Borel singularity is an A-period, in the sense that all
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the coefficients cJ vanish, the holomorphic limit reduces simply to (312), (313); otherwise,
the holomorphic limit is obtained with the rules (310), (311). In the case of one-instanton sec-
tors with ℓ= 1, the two types of holomorphic limit of the instanton amplitude are respectively
(179) and (278).

Our results for the amplitudes show that, in the holomorphic limit, they are simple func-
tionals of the perturbative free energies, as showcased by (278) in the case of one-instanton
amplitude, and by the replacement rules (310),(311) in the multi-instanton amplitudes. They
also have experimental implications, since they determine the large genus asymptotics of the
topological string free energies. We have verified that this is the case in many one-parameter
compact Calabi–Yau 3-folds, including the famous quintic Calabi–Yau manifold – see Section 6.

The structure of the instanton amplitudes is intriguing from the physics point of view.
These amplitudes involve shifts of the background – specified by the coordinates X I of the big
moduli space – by integer multiples of the string coupling constant. This phenomenon was
observed in [23] in the local case, but as we have mentioned in this paper, its appearance in
the compact case is somewhat unexpected. It suggests a quantization of the big moduli space
coordinates in units of the string coupling constant, as in large N dualities.

Another surprising aspect of the non-perturbative sectors that we have described in this
paper is that the corresponding instanton actions are closed string periods, i.e. masses of
even/odd-dimensional D-branes in the A/B model, respectively. It has been sometimes sug-
gested (see e.g. [97]) that non-perturbative corrections in the A/B topological string should be
due to Lagrangian/holomorphic D-branes, respectively. These corrections do not seem to ap-
pear in the resurgent structure uncovered in this paper and in the previous works [20,21,23].
We should however emphasize that the resurgent structure associated to the perturbative se-
ries does not necessarily cover all the relevant non-perturbative sectors in a physical theory.
Consider for example the non-linear O(3) sigma model. There are instanton amplitudes in
this model that capture the dependence of observables on the topological θ angle, and that
cannot be detected from perturbation theory alone (this has been made completely explicit
in recent studies [98, 99]). Therefore, it is conceivable that the non-perturbative sectors that
we have described in this paper should be thought of as “renormalon” sectors of topological
string theory, controlling the factorial divergence of the perturbative series due to integration
over moduli space. There could be in addition purely “instanton” sectors, perhaps due to La-
grangian/holomorphic branes as suggested in [97], and undetectable in the topological string
perturbative series. This possibility remains for the moment rather uncertain in the compact
case, since in the absence of a concrete non-perturbative definition of the theory, it is difficult
to talk about non-perturbative sectors, other than the ones obtained from the perturbative
series.

Perhaps the main challenge is to find methods, other than numerical, to determine the
remaining ingredients of the resurgent structure, namely the location of Borel singularities
and the values of the Stokes constants. We believe that these ingredients are deeply related
to stability structures and BPS invariants, and we have indeed shown in this paper that genus
zero Gopakumar–Vafa invariants are realized as Stokes constants. A complete and more pre-
cise picture however is still lacking. Perhaps an extension of our non-perturbative analysis to
degeneration points other than the MUM and conifold points studied above (those that occur
at z =∞ in hypergeometric models) could shed further light on these matters.
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