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Abstract

We study generalized global symmetries and their ’t Hooft anomalies in 3d N = 4 su-
perconformal field theories (SCFTs). Following some general considerations, we focus
on good quiver gauge theories, comprised of balanced unitary nodes and unbalanced
unitary and special unitary nodes. While the global form of the Higgs branch symmetry
group may be determined from the UV Lagrangian, the global form of Coulomb branch
symmetry groups and associated mixed ’t Hooft anomalies are more subtle due to po-
tential symmetry enhancement in the IR. We describe how Coulomb branch symmetry
groups and their mixed ’t Hooft anomalies can be deduced from the UV Lagrangian by
studying center charges of various types of monopole operators, providing a concrete
and unambiguous way to implement ’t Hooft anomaly matching. The final expression
for the symmetry group and ’t Hooft anomalies has a concise form that can be easily
read off from the quiver data, specifically from the positions of the unbalanced and fla-
vor nodes with respect to the positions of the balanced nodes. We provide consistency
checks by applying our method to compute symmetry groups of 3d N = 4 theories corre-
sponding to magnetic quivers of 4d Class S theories and 5d SCFTs. We are able to match
these results against the flavor symmetry groups of the 4d and 5d theories computed us-
ing independent methods. Another strong consistency check is provided by comparing
symmetry groups and anomalies of two theories related by 3d mirror symmetry.
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1 Introduction

Gauge theories in three spacetime dimensions are extremely interesting to study from a theo-
retical viewpoint. Since the gauge coupling has positive mass dimension, any gauge theory can
be given an ultraviolet (UV) complete definition, but in the infrared (IR) the effective gauge
coupling becomes strong, opening up the possibility of interesting strong coupling behaviour.
The case of 3d gauge theories with eight supercharges, i.e. N = 4 supersymmetry, has been
very well studied in this context, where it is known that with enough matter the gauge theory
flows in the IR to a 3d N = 4 superconformal field theory (SCFT).

There are many interesting non-perturbative phenomena that arise in the context of N = 4
supersymmetry. Of these, the most well-known phenomenon is that of 3d mirror symmetry
[1–4] which relates two different 3d N = 4 gauge theories such that the corresponding IR 3d
N = 4 SCFTs are the same, up to the exchange of Coulomb and Higgs branches.
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Arguably the most interesting aspect of 3d N = 4 supersymmetric gauge theories and
mirror symmetry is symmetry enhancement in the IR. The flavor symmetries of 3d N = 4
gauge theories arise from hyper-Kähler isometries of the Higgs and Coulomb branch moduli
spaces. While the Higgs branch and associated symmetries may be understood classically, the
Coulomb branch receives 1-loop and non-perturbative corrections and the hyper-Kähler metric
depends on the gauge coupling. This allows for the emergence of additional hyper-Kähler
isometries and associated symmetry enhancement on the Coulomb branch in the IR SCFT.
This phenomenon plays a fundamental role in mirror symmetry. This symmetry enhancement
was systematically explained in [5], using techniques developed in [6–8] based on the study
of monopole operators [9,10].

In this paper, we extend the discussion of symmetries in 3d N = 4 supersymmetric gauge
theories to include generalized symmetries [11], including global aspects of traditional 0-form
symmetries, 1-form symmetries, 2-groups symmetries and discrete ’t Hooft anomalies.

A key result is to identify the monopole operators in the UV gauge theory that allow a
determination of the global form of the IR Coulomb branch 0-form symmetry group. The
result matches the global form of the Higgs branch 0-form symmetry group of the mirror UV
gauge theory, which can be computed classically from the matter content pf the mirror gauge
theory without considering its monopole operators.

Once the global form of the IR Coulomb 0-form symmetry group is known, an important
question is to determine the ’t Hooft anomalies of the Coulomb 0-form symmetry with the Higgs
0-form symmetry. In three space-time dimensions, such anomalies are necessarily discrete.
The general structure of such anomalies for 3d gauge theories was explored in our previous
work [12]. This captured the information about the anomaly in terms of flavor charges carried
by mixed flavor-gauge monopole operators, which are in general non-genuine local operators
that arise at the end points of flavor-gauge vortex line defects. In N = 4 supersymmetric
gauge theories, there exist BPS configurations of flavor-gauge monopole operators sitting at
the ends of flavor-gauge vortex lines. These configurations thus descend to configurations of
local operators sitting at the ends of line operators in the corresponding IR N = 4 SCFTs.
During the flow the flavor charges of these non-genuine local operators get mixed, and the
mixing can be deduced using the methods of [11]. Finally, reversing the logic of [12], one can
use the information about the charges of these non-genuine local operators to deduce the ’t
Hooft anomaly of the IR SCFT. This provides a concrete and unambiguous way of implementing
’t Hooft anomaly matching from UV 3d N = 4 gauge theories to IR 3d N = 4 SCFTs.1

In a similar fashion, we also determine the ’t Hooft anomalies of the IR Coulomb 0-form
symmetry with 1-form symmetries. The requisite operators are now what were dubbed frac-
tional gauge monopole operators in [12], which are non-genuine local operators living at the
ends of topological line operators generating the 1-form symmetry. For 3d N = 4 gauge theo-
ries, there exist BPS configurations of fractional gauge monopole operators living at the ends
of topological line operators.2 These configurations survive in the IR SCFT and the charges of
such non-genuine local operators under IR Coulomb symmetry determine the precise form of
the mixed ’t Hooft anomaly between the Coulomb 0-form symmetry and the 1-form symmetry
of the IR 3d N = 4 SCFT. While this work was being written, we received [14] which also used
the analysis of [12] to obtain some of the results appearing in sections 3 and 6 of this paper.

The analysis of this paper also opens the door for the determination of symmetries and
anomalies of higher-dimensional (i.e. in d > 3) SCFTs with at least eight supercharges. This
can be done by applying the analysis of this paper to 3d N = 4 magnetic quivers (MQs) associ-
ated to these higher-dimensional SCFTs. MQs are 3dN = 4 gauge theories whose IR behaviour

1Note that similar logic of using BPS objects to match symmetry properties between UV and IR was recently
employed in [13].

2Note that a topological operator automatically preserves all supersymmetry.
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captures information about the Higgs branch of vacua of the corresponding higher-dimensional
SCFTs. MQs have been a subject of much interest and exploration recently [15–44]. In par-
ticular they have been instrumental in studying Higgs branches for 4d N = 2 and 5d N = 1
SCFTs, which are otherwise more difficult to access due to quantum corrections.

In some instances, we expect the symmetries of the 4d or 5d SCFT and that of its 3d MQ
theories to agree. This is in particular the case, when the higher-dimensional theory only
exhibits 0-form symmetries, which then should then agree with the 0-form symmetries of the
MQ theory.3 We test our proposal by computing the global 0-form symmetries of MQs, and
compare them to the global form of flavor symmetries of 4d class S theories and 5d SCFTs,
and find agreement.

Outlook. This paper opens up many interesting avenues to explore in the connection be-
tween generalized symmetries and their ’t Hooft anomalies and SCFTs (in particular with 8
supercharges).

As mentioned above, 0-form global symmetries act by hyper-Kähler isometries of Higgs
and Coulomb branch moduli spaces of vacua. A natural question is therefore whether there
exists such a geometric realization for generalised symmetries such as 1-form symmetries and
2-groups and their ’t Hooft anomalies. In forthcoming work [45], we will show that such
a realization may be found in the algebraic setting by promoting the Higgs and Coulomb
branch moduli spaces to moduli stacks. These stacky enhancements of moduli spaces keep
track of unbroken discrete gauge symmetry when flowing to the IR at points on the underlying
moduli space and carry actions of generalized symmetries. Moreover, the ’t Hooft anomalies
for generalised symmetries considered in this paper may be understood geometrically in terms
of equivariance properties of distinguished line bundles on these moduli stacks associated to
half-BPS line operators.

Another natural generalization in light of the fact that we consider invertible symmetries
in 3d, is the extension to non-invertible symmetries. There is a multitude of realizations now.
Most relevant for the field theoretic approach that was the focus in this paper are the following
constructions, which have direct 3d realizations [46–54]. Non-invertible symmetries in 3d
are of course very well explored in the context of modular tensor categories, however here
the interesting question is related to the interplay between non-invertible symmetries and
superconformal symmetry in 3d. One construction, which relies on the presence of mixed
anomalies has been explored in 3d in [46, 49]. To explore these in full it will be useful to
characterize systematically the symmetry topological field theories for SCFTs in 3d, as started
in [55,56].

Finally one can extend the considerations of this paper involving mostly continuous 0-form
symmetries to also include discrete 0-form symmetries and their associated ’t Hooft anomalies.
The two types of symmetries in general combine to form a disconnected 0-form symmetry (Lie)
group, which when combined with 1-form symmetries generally gives rise to disconnected 2-
group symmetries introduced recently in [57].

The paper is organized as follows. In section 2, we provide a discussion of supersymmetric
defect operators and generalized symmetries of A/B-type (Coulomb/Higgs in the gauge theory
setting) and their ’t Hooft anomalies in 3d N = 4 theories. This is an application of our general
results in [12] to this supersymmetric setting.

In section 3, we study the simplest example, in great detail, where one can apply the
considerations of this paper. This concerns T[SU(n)] theories and related theories that can be
obtained by gauging Higgs 0-form symmetry of T[SU(n)].

3If the higher dimensional theory has higher-form symmetries, then these can in principle contribute to the
0-form symmetry of the 3d MQ theory.
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In section 4, we generalize the methods employed in the previous section 3 to study a large
class of 3d N = 4 SCFTs that can be obtained in the IR of good 3d N = 4 quiver gauge theories
composed of balanced unitary and unbalanced unitary and special unitary gauge groups along
with matter hypermultiplets transforming in fundamental and bifundamental representations.
We describe how the Coulomb 0-form symmetry groups and its mixed ’t Hooft anomalies with
1-form and Higgs 0-forms symmetries can be obtained easily by a visual analysis of the UV
quiver and noting the placement of unbalanced and flavor nodes with respect to the positions
of balanced nodes.

In section 5, we present a variety of consistency checks of our general results of section 4.
We check that the IR Coulomb 0-form symmetry groups of magnetic quivers of Class S theories
and 5d SCFTs match the flavor symmetry groups of these higher dimensional SCFTs computed
via other methods. We also check that the IR Coulomb 0-form symmetry group matches the
Higgs 0-form symmetry group of the 3d mirror gauge theory.

In the final section 6, we study a few interesting theories that lie outside the general class
of theories studied in section 4. Our methods presented in section 4 can be easily generalized
to include such theories and lead to many interesting phenomena not observed in the class of
theories studied in section 4. These include pure ’t Hooft anomalies for 1-form symmetry, the
existence of 2-group symmetries in 3d N = 4 SCFTs, and mixed ’t Hooft anomalies between
2-group and 0-form symmetries of 3d N = 4 SCFTs. The latter two phenomena are exhibited
by the 3d N = 4 SCFT called T[SU(2)]/ZC

2 that can be obtained from T[SU(2)] by gauging a
Z2 subgroup of SO(3)C Coulomb 0-form symmetry of T[SU(2)], and can be obtained as the
IR SCFT corresponding to 3d N = 4 SQED with U(1) gauge group and 2 hypermultiplets of
charge 2.

Appendix A provides details on the computation of global forms of flavor symmetry groups
of 5d SCFTs from Calabi-Yau threefold singularities.

2 Generalized symmetries of 3d N = 4 theories

In this section, we consider general aspects of invertible generalized symmetries in 3d N = 4
supersymmetric theories, including 0-form symmetries, 1-form symmetries and 2-group sym-
metries as well as their ’t Hooft anomalies. For ordinary 0-form symmetries, we distinguish
between R-symmetries and flavor symmetries. We focus on flavor symmetries, which com-
mute with all of the supercharges, and consider possible 2-group symmetries that combine
flavor symmetries and 1-form symmetries.

We will introduce two types of such symmetries called “A-type” and “B-type” depending
on which class of BPS operators are charged under them. For continuous 0-form symme-
tries, this corresponds to the known classification of supermultiplets that conserved currents
or background gauge fields for continuous symmetries may transform in, or equivalently cen-
tral extensions of the supersymmetry algebra. However, we explain how this classification can
be applied more broadly to both finite and continuous symmetry groups, in addition to 1-form
and 2-group symmetries.4

These symmetries may have various ’t Hooft anomalies, which we study using the tech-
niques introduced in our previous paper [12]. In particular, we consider “A-type” and “B-type”
BPS solitonic local operators and line defects that source background fields for the above sym-
metries and explain how their properties capture different types of ’t Hooft anomaly. We also
explain how gauging discrete symmetries interchanges A-type and B-type symmetries in a

4This does not preclude the existence of additional discrete global symmetries that are not of this type. Examples
of such symmetries include outer automorphisms of gauge groups such as charge conjugation or automorphisms
of quiver diagrams, and anomalous 1-form symmetries that arise when coupling to a 3d TQFT.
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manner compatible with such ’t Hooft anomalies and how this leads to examples of mirror
symmetry involving generalised symmetries.

Our primary example throughout this section will be standard 3d N = 4 supersymmetric
gauge theories built from vectormultiplets and hypermultiplets. In such case, the A-type and B-
type symmetries are associated to Coulomb and Higgs branch geometry respectively. It is also
possible to consider gauge theories with less supersymmetry that flow toN = 4 supersymmetry
in the IR [58–60]. In these cases, the identification of the A-type and B-type symmetries from
a UV perspective is more intricate.

2.1 BPS defects

We begin with a discussion of BPS local operators, line defects and junctions that will play
a role in the classification of flavor symmetries. First recall that a theory with 3d N = 4
supersymmetry has R-symmetry algebra so(4)∼= su(2)⊕ su(2) and supercharges QAȦ

α where α
is a euclidean space-time spinor index and the indices A, Ȧ denote the spinor representation
of the two factors of the R-symmetry group.

Local operators. The half-BPS genuine local operators come in two types:

• A-type: annihilated by the four supercharges QA+̇
α .

• B-type: annihilated by the four supercharges Q+Ȧ
α .

The A-type operators are constructed from the bottom scalar components of vectormultiplets
and twisted hypermultiplets, while the B-type operators are constructed from the bottom scalar
components of hypermultiplets and twisted vectormultiplets. This classification into A-type
and B-type applies equally well to non-genuine twisted sector local operators attached to a
topological line defect.

The two sets of half-BPS genuine local operators generate two chiral rings CA,CB whose
spectra define complex affine moduli spaces

XA := Spec(CA) , (1)

XB := Spec(CB) . (2)

In a standard supersymmetric gauge theory constructed from vectormultiplets and hypermul-
tiplets, they coincide with the Coulomb and Higgs branch respectively, in the absence of reso-
lution or deformation parameters, viewed as complex algebraic varieties.

We might consider the possibility that there are local operators annihilated by all of the su-
percharges. Such operators are necessarily topological. We will assume that there is a unique
(up to multiplication by a complex number) such topological local operator, namely the iden-
tity operator. This is tantamount to the statement that the theory is irreducible or equivalently
that there are no 2-form symmetries.

In the opposite direction, we may have occasion to consider more general quarter-BPS
operators annihilated by two supercharges Q++̇α . They are half-BPS for the 3d N = 2 super-
symmetry algebra generated by Q++̇α , Q−−̇α .

Line operators. We consider half-BPS line defects along the x3-axis preserving a 1d N = 4
supersymmetric quantum mechanics sub-algebra of the 3d N = 4 supersymmetry algebra.
Such line operators were first introduced in supersymmetric gauge theories in [61] and have
been further studied in [62–64].
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There are two classes of half-BPS lines:

• A-type: annihilated by four supercharges QA+̇
+ , QA−̇

− .

• B-type: annihilated by four supercharges Q+Ȧ
+ , Q−Ȧ

− .

The line defects can be described uniformly by consistent couplings to 1d N = 4 supersym-
metric quantum mechanics with super-multiplets obtained by dimensional reduction from 2d
N = (2, 2) and N = (0, 4) supersymmetry respectively. Examples include B-type Wilson lines
for dynamical vectormultiplets and A-type Wilson lines for dynamical twisted vectormultiplets.
We note that this classification applies equally well to half-BPS twisted sector line defects that
are attached to a topological surface.

A special case is line defects annihilated by all of the supercharges, which are simultane-
ously A-type and B-type and therefore necessarily topological line defects. Such line defects
are normally considered as generators of 1-form symmetries, but may also be charged under
them in the presence of ’t Hooft anomalies. This situation may arise when coupling to a general
3d TQFT in a way that preserves N = 4 supersymmetry but does not arise in theories con-
structed from standard supermultiplets. Incorporating such topological line defects as charged
objects will require a refinement of the classification of symmetries presented here and some
examples are presented in subsequent sections.

In the opposite direction, we may have occasion to consider more general quarter-BPS line
defects preserving the common pair of supercharges Q++̇+ , Q−−̇− . They can be regarded as half-
BPS line defects for the 3d N = 2 supersymmetry algebra generated by the supercharges Q++̇α ,
Q−−̇α .

Junctions. Finally we consider various local junction operators between pairs of line defects.
We consider two classes of quarter-BPS junctions between pairs of A-type and B-type lines
and preserve two supercharges lying in the intersections of the two sets of four supercharges
preserved by genuine local operators and line defects:

• A-type: annihilated by two supercharges QA+̇
+ .

• B-type: annihilated by two supercharges Q+Ȧ
+ .

It is also possible to consider local junction operators between a half-BPS A-type and a B-type
line defect, or alternatively between a pair of quarter-BPS line defects, which both preserve
the single supercharge Q+++ .

Comment on relation to topological twist The above classification of BPS operators is re-
lated but distinct to the classification of operators in topological twists of 3d N = 4 super-
symmetry, where A-type and B-type operators are defined as those in the cohomology of the
nilpotent supercharges

QA :=Q++̇+ +Q−+̇− , (3)

QB :=Q++̇+ +Q+−̇− . (4)

Correspondingly, we are interested only in genuine symmetries generated by extended opera-
tors that are topological in the full 3d N = 4 theory, not merely after performing a topological
twist.
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2.2 A- and B-type symmetries

We now consider the classification of invertible flavor symmetries in 3d N = 4 theories. As
mentioned above, we assume that the theory is irreducible and therefore restrict ourselves to
at most 2-group symmetries. In particular, there is a unique genuine local operator that is
simultaneously A-type and B-type, which is the identity operator.

The proposal is then that the most general flavor symmetry is a product of A-type and
B-type 2-group symmetries associated to the above classification of BPS defects.

2.2.1 0-form symmetry

For continuous 0-form symmetries, it is well known that the flavor symmetry takes the form
of a product FA×FB for compact Lie groups FA, FB. The two factors are known as A-type and
B-type symmetry groups.

At the level of the associated Lie algebra fA ⊕ fB, this decomposition may be understood
from the allowed central extensions of the 3d N = 4 supersymmetry algebra. This admits a
pair of central charges ZAB, Z ȦḂ transforming in the adjoint representations of the two su(2)
R-symmetries. The central charges are proportional to the generators of the A-type and B-type
symmetries respectively with coefficients given by scalar fields σAB, σȦḂ in vectormultiplets
and twisted vectormultiplets respectively. In summary, A-type symmetries couple to vector-
multiplets and B-type symmetries to twisted vectormultiplets.

However, in order to provide a definition of the flavor symmetry group FA×FB, which also
applies to discrete symmetries, and in addition to formulate obstruction classes that appear in
’t Hooft anomalies for these symmetries, it is convenient to define symmetries starting from
the BPS operators on which they act.

Definitions. The flavor symmetry groups FA, FB are defined as the maximal compact Lie
groups with Lie algebras fA, fB that act faithfully on A-type and B-type genuine half-BPS local
operators respectively. This definition also applies when fA, fB are trivial, in which case the
flavor symmetry groups are discrete. These symmetry groups (or rather their complexification
in the continuous case) will act by complex isometries on the moduli spaces XA, XB.

In the construction of 2-group symmetries involving these flavor symmetries and their ’t
Hooft anomalies, we will also need to consider non-genuine local operators that sit at the
junctions between half-BPS line defects.

Let us consider A-type or B-type half-BPS line defects that preserve the whole symmetry
group FA or FB respectively. Such line defects may then end on A-type or B-type quarter-BPS
local operators that transform in representations of central extensions of FA, FB by discrete
abelian groups, that are not representations of FA, FB. It is convenient to write down the short
exact sequences

0 −→ ZA −→ FA −→ FA −→ 0 , (5)

0 −→ ZB −→ FB −→ FB −→ 0 , (6)

where ZA, ZB are finite abelian groups and FA, FB denotes the extended symmetry groups.
Equivalently, we have the quotients FA = FA/ZA, FB = FB/ZB. In summary, local operators at
the end of line defects may be charged under ZA, ZB.

There are associated obstruction classes

wA
2 ∈ H2(BFA,ZA) , (7)

wB
2 ∈ H2(BFB,ZB) , (8)
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for lifting FA,FB bundles to FA, FB bundles, which play an important role in the description of
2-groups and ’t Hooft anomalies involving these symmetries. In particular, introducing back-
ground fields BA

1 , BB
1 : M → BFA, BFB, there are associated obstruction classes on spacetime

via pull-back (BA
1)
∗wA

2, (BB
1 )
∗wB

2 . In what follows, we will often abuse notation and denote
these spacetime obstruction classes also by wA

2, wB
2 .

Gauge theories. Let us consider standard supersymmetric gauge theories constructed from
vectormultiplets and hypermultiplets. In such cases, it is appropriate to replace the monikers
A/B by C/H, which refer to Coulomb and Higgs respectively.

The B-type symmetry FH acts faithfully on gauge-invariant combinations of hypermultiplet
fields, while the central extension FH is constructed by examining the charges of non-gauge
invariant combinations of hypermultiplet fields attached to B-type half-BPS Wilson lines for
the dynamical vectormultiplet.

This is conveniently captured by introducing the structure group S, which captures the
combination of gauge and B-type flavor symmetries acting faithfully on all supermultiplets.
In other words, the bundles for S correspond to the most general combination of gauge and
B-type flavor symmetry bundles (transforming in dynamical and background vectormultiplets
respectively) to which the theory may be consistently coupled. It takes the form

S =
G × FH

E
, (9)

where G denotes the gauge group, which we assume is connected, and E is a subgroup of the
center Z(G × FH) of G × FH such that pH(E) = ZH where pH : Z(G)× Z(FH)→ Z(FH) is the
natural projection.

On the other hand, the A-type symmetry group FC acts faithfully on genuine half-BPS
monopole operators. This is the topological symmetry

FC =Øπ1(G) , (10)

where the hat denotes the Pontryagin dual. It measures the topological class of the G-bundles
on a sphere surrounding the monopole operator. It may be continuous or discrete. Unlike the
B-type symmetry group, this may undergo enhancement at an IR superconformal fixed point.
Determining the precise global form of the enhanced symmetry group is a major goal of this
paper.

The gauge theory may couple to bundles for the structure group S. Correspondingly, there
exist A-type half-BPS line defects corresponding to gauge-flavour vortex lines for the structure
group labelled by a co-character φ : U(1)→ S.

These vortex lines may include fractional gauge vortex lines, which by definition are vor-
tices associated to co-characters for the quotient group

G = G/Zg , (11)

that do not lift to co-characters for the gauge group G. Here Zg = pg(E) where
pg : Z(G) × Z(FH) → Z(G) is the natural projection. Such configurations must, in general,
be paired with fractional flavour vortex lines to determine a well defined line defect labelled
by a co-character for the structure group φ : U(1)→ S.

The gauge-flavour vortex line defects may then end on non-genuine monopole operators
of fractional magnetic charge, which results in a short exact sequence

1 −→ ZC −→ FC −→ FC −→ 1 , (12)

where
FC =Øπ1(G) , (13)
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and we identify ZC = ÒZg .
Let us note that in general 3d gauge theories it is necessary to include such topological

symmetries as part of the structure group, thus extending the above discussed structure group
S into an extended structure group eS. Thus is due to the fact that monopole operators receive
charges under gauge and flavor symmetries due to effective Chern-Simons levels, as discussed
in our previous paper [12]. However, with N = 4 supersymmetry and only standard super-
multiplets, this extended structure group factorises as eS = S ×FC .

Example. A basic example to illustrate these points is supersymmetric QED with G = U(1)
and N hypermultiplets of charge q. We assume without loss of generality that q > 0.

The hypermultiplets contain complex scalar fields X j , Yj of charge q,−q transforming in the
fundamental and anti-fundamental representations of the flavor symmetry algebra fH = su(N).
The B-type genuine local operators are the gauge-invariant combinations X iYj transforming in
the adjoint representation. The B-type flavor symmetry group is therefore FH = PSU(N).

There are B-type Wilson lines Wn labelled by an integer charge n. Consider the case where
n > 0. If n is a multiple of the minimal charge q, the Wilson line may end on local operators
consisting of homogeneous polynomials in X j of degree m= n/q, which transform in the m-th
symmetric power of the fundamental representation of su(N). This includes representations
of the central extension FH = SU(N) that are not representations of FH = PSU(N) forming a
short exact sequence

1 −→ ZN −→ SU(N) −→ PSU(N) −→ 1 , (14)

with ZH = ZN . The associated obstruction class may be denoted by wH
2 ∈ H2(X ,ZN ). This

information is also catpured in the structure group

S = U(1)× SU(N)
ZqN

, (15)

where the denominator is generated by the central element (e2πi/qN , e2πi/N 1N ).
The genuine A-type local operators correspond to half-BPS monopole operators labelled

by a co-character m : U(1)→ G, which is an integer magnetic charge m ∈ Z. Correspondingly,
the A-type symmetry group is the topological symmetry

FC =Øπ1(G) = U(1) , (16)

whose charge measures the topological type of a G-bundle on a two-sphere surrounding a
monopole operator.

To determine the required extension of the topological symmetry, consider A-type fractional
gauge-flavour vortex line defects labelled by co-characters of the structure groupφ : U(1)→ S.
Such co-characters take the explicit form

φ : eiθ 7→
�

eimθ , diag
�

eim1θ , . . . , eimNθ
��

, (17)

where

m= n−
ℓ

qN
, m j = n j −

ℓ

N
, (18)

where n, n j ∈ Z and ℓ ∈ {0,1, . . . , qN − 1} with the condition
∑

j n j = ℓ to ensure unit deter-

minant. Note that θ → θ + 2π multiplies by (e−2πℓ/qN , e−2πℓ/N 1N ), which is trivial under the
quotient. In particular, ℓ ∈ {0,1, . . . , qN − 1}, viewed additively as an element of E ∼= ZqN , is
the obstruction to lifting to a co-character for the numerator U(1)× SU(N).

Let us summarise some examples that will play a role in what follows:
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• Let us first consider pure gauge fractional vortex lines. This requires choosing m j = 0
and therefore n j = ℓ/N for all j = 1, . . . , N . This is only possible if ℓ = N p and n j = p.
There are then two distinct situations:

– p = 0: this is a dynamical gauge vortex and therefore corresponds to a trivial line
defect. It ends on genuine A-type gauge monopole operators of integer magnetic
charge m= n.

– p = 1, . . . , N − 1: this is a fractional gauge vortex and defines a non-trivial A-
type line defect. It ends on non-genuine gauge monopole operators of fractional
magnetic charge m= n− p

q .

• More general mixed gauge-flavour fractional vortex lines with ℓ ̸= 0 may end on A-type
monopole operators of fractional magnetic charge m= n− ℓ

qN .

The final bullet point means we must introduce an qN -fold cover of the topological symmetry
group, FC =Øπ1(G) ∼= U(1), which is an extension of the topological symmetry by ZC = ZqN .
The associated obstruction class for background fields is wC

2 = cC
1 mod qN , where cC

1 denotes
the first Chern class of a background FC = U(1) bundle.

2.2.2 1-form symmetry

Following the same philosophy, we define A/B-type 1-form symmetries by applying the recipe
studied in [12], but restricted to half-BPS A/B-type line defects.

Definition. The construction begins by considering equivalence classes of A-type or B-type
line defects. We say that two line defects L1, L2 are equivalent L1 ∼ L2 if there exists a
non-trivial quarter-BPS junction of the appropriate type connecting them. In other words,
equivalence classes capture the half-BPS line defects that cannot be screened by quarter-BPS
junctions of A-type or B-type.

The equivalence classes of A-type and B-type lines inherit the structure of abelian groups
bΓA, bΓB from the OPE of parallel line defects. The A-type and B-type 1-form symmetries are
defined as the Pontryagin dual groups

ΓA := Hom(bΓA, U(1)) ,

ΓB := Hom(bΓB, U(1)) ,
(19)

such that these 1-form symmetries act on half-BPS lines via the natural pairings Γ ×bΓ → U(1).
Correspondingly, we can introduce ΓA, ΓB-valued 2-cochain backgrounds BA

2 , BB
2 for these

1-form symmetries. If the 1-form symmetries do not participate in 2-groups, the background
field are closed and define ΓA, ΓB-valued 2-cocycles.

Gauge theories. In standard gauge theories built from vectormultiplets and hypermultiplets,
the A-type and B-type 1-form symmetries may be determined from the properties of vortex
lines and dynamical Wilson lines respectively.

The B-type symmetry arises from half-BPS Wilson lines in representations of the gauge
group G. In the absence of hypermultiplets, quarter-BPS junctions may only arise from vector-
multiplet fields in the adjoint representation of the gauge group. In this case, Wilson lines in
representations R1, R2 are equivalent if and only if the central characters of the representations
coincide. Therefore

bΓH = Hom(Z(G), U(1)) , (20)
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is the abelian group of central characters and the 1-form symmetry coincides with the centre
of the gauge group ΓH = Z(G).

More generally, incorporating hypermultiplet fields, the 1-form symmetry ΓH is the sub-
group of the center of the gauge group that acts trivially on hypermultiplets. This can be
formulated in terms of the structure group

S =
G × FH

E
, (21)

where the B-type 1-form symmetry may be identified with the intersection ΓH = Z(G)∩E . This
naturally forms a short exact sequence

1 −→ ΓH −→ E −→ ZH −→ 1 , (22)

which will play a role in the construction of 2-group symmetries below.
An A-type 1-form symmetry may arise in gauge theories with discrete or continuous but

disconnected gauge groups, which we will not discuss here. We will instead explain below how
A-type 1-form symmetries arise generally when gauging discrete B-type 0-form symmetries.

Example. Let us again consider supersymmetric QED with G = U(1) and N hypermultiplets
of charge q > 0. It is a standard result that this has a B-type 1-form symmetry ΓB = Zq as
B-type Wilson lines Wn cannot be screened unless n is a multiple of q.

2.2.3 2-group symmetry

The 0-form and 1-form symmetries defined above may combine to form A-type and B-type
2-group symmetries. See [65] for the first systematic study of 2-group global symmetries, and
references therein for previous discussions about 2-groups in quantum field theory. In order
to define the 2-group symmetry structure, we will need to consider a more refined equiva-
lence relation for line defects that takes into account the fact that junctions may transform
in representations of central extensions of symmetry groups. For further background on the
perspective taken here see [12,66–69].

Definition. We first define another equivalence relation such that L1 ∼′ L2 if the two line
operators admit quarter-BPS junctions of the appropriate type transforming in honest repre-
sentations of FA, FB that are not charged under ZA, ZB.

These equivalence classes form larger abelian groups ÒEA,cEB sitting in short exact sequences

0 −→ cZA −→ ÒEA −→ ÒΓA −→ 0 , (23)

0 −→ÓZB −→cEB −→ ÒΓB −→ 0 . (24)

The first terms in the sequence can be understood as follows. The quarter-BPS local opera-
tors screening line operators in equivalence classes corresponding to elements bzA ∈ cZA ⊂ ÒEA,
bzB ∈ÓZB ⊂cEB transform in representations of FA, FB with charges bzA,bzB under ZA,ZB.

The Pontryagin dual exact sequences are

1 −→ ΓA −→ EA −→ ZA −→ 1 , (25)

1 −→ ΓB −→ EB −→ ZB −→ 1 . (26)

The 0-form symmetries FA, FB and 1-form symmetries ΓA, ΓB now combine into 2-groups
whose Postnikov classes are given by

ΘA = Bock(wA
2) , (27)

ΘB = Bock(wB
2) , (28)
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using the appropriate Bockstein homomorphisms Bock : H2(X ,ZA) → H3(X , ΓA) or
Bock : H2(X ,ZB)→ H3(X , ΓB) associated to the above short exact sequences. If the Postnikov
classes are trivial the 2-group symmetry is a product of a 0-form and a 1-form symmetry.

We may then introduce backgrounds for the 2-group symmetry given by the EA, EB-valued
combinations

BA
w = i(BA

2) + ew
A
2 , (29)

BB
w = i(BB

2 ) + ew
B
2 , (30)

where i : ΓA, ΓB → EA,EB denotes the relevant inclusion maps and ewA
2, ewB

2 are co-chain lifts of
wA

2, wB
2 under the projections p : EA,EB → ZA,ZB in the above short exact sequences. These

combinations are closed by construction and define EA, EB-valued co-cycles. If the Postnikov
class is trivial, we may work independently with closed backgrounds BA

2 , BB
2 and wA

2, wB
2 for the

1-form and 0-form symmetries respectively.

Gauge theories. Consider a standard supersymmetric 3d N = 4 gauge theory built from
ordinary vectormultiplets and hypermultiplets. The data determining the B-type 2-group is
encoded in the structure group

S =
G × FH

E
. (31)

In particular, we have already identified ZH = pH(E) and the 1-form symmetry ΓB = Z(G)∩E .
The remaining ingredient is simply the identification EH = E , which forms the appropriate
short exact sequence.

Example. Let us consider again supersymmetric QED with G = U(1) and N hypermultiplets
of charge q > 1. Recall that there are B-type symmetry groups FH = PSU(N) and ΓH = Zq
sitting in short exact sequences

1 −→ ZN −→ SU(N) −→ PSU(N) −→ 1 , (32)

and
1 −→ Zq −→ ZqN −→ ZN −→ 1 , (33)

respectively. There is therefore a potential Postnikov class Θ = Bock(wH
2 ) where wH

2 is the
obstruction class for the first sequence and Bock : H2(PSU(N),ZN )→ H3(PSU(N),Zq) is the
Bockstein homomorphism for the second. The Bockstein homomorphism may or may not be
trivial. In the former case, there is no 2-group symmetry. An example of vanishing Bockstein
is provided if the first sequence splits, which requires gcd(q, N) = 1. A non-supersymmetric
version of this example was considered already in [12].

There is also an A-type 0-form symmetry FA = U(1), which does not participate in a 2-
group. However, we will show later that it has a mixed ’t Hooft anomaly with the above B-type
2-group.

2.3 Solitonic defects

The A-type and B-type local, line and junctions operators may induce background fields for
flavor symmetries and correspond to solitonic defects in the terminology of [12]. More specif-
ically they induce vortex and monopole configurations for background fields associated to
flavor symmetries. Such defects play a crucial role in determining ’t Hooft anomalies from the
spectrum of BPS charged objects.

The proposal is that A-type defects may source background fields for B-type flavor symme-
tries and vice-versa. We substantiate this claim for vortex and monopole backgrounds in the
remainder of this subsection.
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Definitions. For concreteness, let us first consider A-type line defects. The most general
situation is that they induce a background field configuration for the B-type 2-group symmetry
such that

∫

D2

BB
w = αB , (34)

where D2 denotes a small disk intersecting the line defect transversely and αB ∈ EB. We refer
to this as a background vortex configuration for the 2-group symmetry. Such line defects may
end on A-type quarter-BPS local operators with the property that

∫

S2

BB
w = αB , (35)

where S2 is now a small 2-sphere surrounding the local operator and intersecting the line
defect transversely. We refer to this as a background monopole configuration for the 2-group
symmetry. Entirely analogous statements hold with A-type and B-type symmetries and defects
interchanged.

This reduces to simpler statements in special cases of individual 0-form and 1-form sym-
metry groups. For example, an A-type line defect may induce a vortex background for a B-type
0-form symmetry such that

∫

D2

wB
2 = αB , (36)

where now αB ∈ ZB. Similarly, if there is a B-type 1-form symmetry that does not participate
in a 2-group symmetry then an A-type line defect may induce a vortex background for the
1-form symmetry such that

∫

D2

BB
2 = αB , (37)

where now αB ∈ ΓB. Similar comments apply to local operators and monopole backgrounds.
Again, entirely analogous statements fold with A-type and B-type symmetries and defects in-
terchanged.

Gauge theory. In a standard supersymmetric gauge theory, the B-type symmetry back-
grounds sourced by A-type line defects can be understood systematically. Let us consider
fractional vortex lines labelled by co-characters of the structure group φ : U(1)→ S.

They source background field configurations for the B-type 2-group symmetry such that
∫

D2

BH
2 = αH , (38)

where αH ∈ E is the obstruction for lifting φ to a co-character for G × F . This reduces to
corresponding simpler statements for individual 0-form and 1-form symmetries. There are
many special cases of interest considered in the example below.

In the opposite direction, B-type Wilson lines for a dynamical vectormultiplet source a
background vortex configuration for the dual A-type topological symmetry. This is discussed
for G = U(1) in the example below.

Example. Consider again supersymmetric QED with N hypermultiplets of charge q > 0. We
consider A-type gauge-flavor vortex lines labelled by a co-character of the structure group
φ : U(1)→ S. Recall that such co-characters are labelled by fractional magnetic fluxes

m= n−
ℓ

qN
, m j = n j −

ℓ

N
, (39)
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where n, n j ∈ Z and
∑

j n j = ℓ with obstruction ℓ= 0, 1, . . . ,qN −1 to lifting to a co-character
for U(1)× SU(N). Such a fractional vortex line sources a background for the B-type 2-group
symmetry such that

∫

D2

BH
w = ℓ . (40)

Let us now assume for simplicity that gcd(q, N) = 1 so that the 2-group is split. Then we have
the following decomposition:

• Consider fractional gauge vortex lines, which correspond to co-characters with ℓ = N p
and n j = p where p = 0, . . . , q − 1. They exclusively source backgrounds for the B-type
1-form symmetry ΓB = Zq such that

∫

D2

BH
2 = p . (41)

• More general fractional gauge-flavour vortex lines induce combinations of 0-form and
1-form symmetry backgrounds wH

2 , BH
2 . Let us parametrize the obstruction by ℓ= N p+r

with p = 0,1, . . . , q− 1 and r = 0, . . . , N − 1. Then they source backgrounds
∫

D2

wH
2 = r ,

∫

D2

BH
2 = p .

(42)

In the opposite direction, the B-type Wilson lines Wn source a background for the A-type
topological symmetry FC = U(1) such that

∫

D2

wC
2 = n mod qN . (43)

These statements will be utilised to derive mixed ’t Hooft anomalies below.

2.4 ’t Hooft anomalies

We now consider the ’t Hooft anomalies captured by BPS operators considered so far. These
are primarily mixed ’t Hooft anomalies between A-type and B-type symmetries.

The most general situation assuming potential A-type and B-type 2-group symmetries is as
follows. Let us consider A-type line defects that source background field configurations for the
B-type 2-group symmetry labelled by elements αB ∈ EB. Such line defects define equivalence
classes in bEA and this provides a homomorphism

bγ : cEB → EA . (44)

In this situation there is a mixed ’t Hooft anomaly represented by the four-dimensional SPT
phase

A4 =

∫

BA
w ∪ γ(B

B
w) . (45)

This construction may be performed exchanging A-type and B-type defects and symmetries
and these constructions must be compatible.
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There are various simpler special cases that are worth considering:

• Let us assume there are 1-form symmetries ΓA, ΓB that do not participate in 2-groups.
The A-type line defects may source backgrounds for a B-type 1-form symmetry labelled
by elements αB ∈ ΓB and simultaneously charged under the A-type 1-form symmetry ΓA.
This determined a homomorphism

γ : ΓB → bΓA , (46)

and mixed ’t Hooft anomaly

A4 =

∫

BA
2 ∪ γ(B

B
2 ) . (47)

• Consider an A-type 0-form symmetry FA and a B-type 1-form symmetry ΓB not partici-
pating in a 2-group. The A-type line defects may source backgrounds for a B-type 1-form
symmetry labelled by elements αB ∈ ΓB and simultaneously end on A-type local opera-
tors charged under ZA. This determines a homomorphism

γ : ΓB → cZA , (48)

and mixed ’t Hooft anomaly

A4 =

∫

wA
2 ∪ γ(B

B
2 ) . (49)

• Consider an A-type 0-form symmetry FA and a B-type 0-form symmetry FB. The A-
type line defects may source backgrounds wB

2 for a B-type 0-form symmetry labelled by
elements αH ∈ ZB and simultaneously end on A-type local operators charged under ZA.
This determines a homomorphism

γ : ZB → cZA , (50)

and mixed ’t Hooft anomaly

A4 =

∫

wA
2 ∪ γ(w

B
2) . (51)

Gauge theory. For a standard supersymmetric gauge theory with connected gauge group,
there may be a mixed ’t Hooft anomaly between the A-type topological symmetry and the
B-type 2-group symmetry. This may be determined, for example, by examining gauge-flavor
vortex line defects that induce backgrounds for the B-type flavor symmetry and the fractional
A-type topological charges of the monopoles on which they end. An example is presented
below.

Example. Let us consider again supersymmetric QED with N hypermultiplets of charge q>0.
The symmetries are summarised as follows:

• An A-type topological symmetry FA = U(1) whose background field has an ZqN -valued
obstruction class wC

2 = c1 mod qN .

• A B-type 2-group symmetry with FH = PSU(N) and ΓH = Zq with ZqN -valued back-
ground field BH

w = NB2 + ewH
2 .
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The mixed ’t Hooft anomaly between these symmetries is derived from the fractional mag-
netic charges of the A-type local operators on which gauge-flavour vortex lines end. A slight
generalisation of the examples presented in [12] shows that this is represented by the 4d SPT
phase

A4 = exp

�

2πi
qN

∫

wC
2 ∪ BH

w

�

. (52)

When gcd(q, N) = 1 and the 2-group is split, this simplifies to a sum of mixed anomalies for
the individual B-type 0-form and 1-form symmetries

A4 = exp

�

2πi
q

∫

(cC
1 mod q)∪ BH

2 +
2πi
N

∫

(cC
1 mod N)∪wB

2

�

. (53)

2.5 Discrete gauging

In three dimensions, gauging a discrete abelian 0/1-form symmetry Γ group results in a Pon-
tryagin dual 1/0-form symmetry group bΓ := Hom(A, U(1)). In the context of symmetries in
theories with N = 4 supersymmetry these operations interchange A-type and B-type symme-
tries. In summary:

• Gauging an A-type discrete abelian 0/1-form symmetry Γ results in a B-type Pontryagin
dual 1/0-form symmetry bΓ := Hom(Γ , U(1)).

• Gauging an B-type discrete abelian 0/1-form symmetry Γ results in a A-type Pontryagin
dual 1/0-form symmetry bΓ := Hom(Γ , U(1)).

This is compatible with our discussion of mixed ’t Hooft anomalies between A-type and B-type
symmetries. A slight generalisation of the above is that gauging a normal subgroup Γ ⊂ Γ ′ of
a 0-form symmetry results in a 1-form symmetry bΓ with a mixed anomaly with the remaining
quotient group Γ ′/Γ controlled by the extension class [70].5 In theories with N = 4 super-
symmetry and with the above identifications, this is always a mixed anomaly between A-type
and B-type symmetries considered above.

This provides a clean and general method to construct new examples of mirror symmetry
that involved 1-form symmetries and their anomalies can be explicitly matched. Examples are
presented below and in the remainder of the paper.

Example. An example of this phenomenon arises in U(1) supersymmetric gauge theories,
which have an A-type topological symmetry FC = U(1) under which genuine monopole oper-
ators are charged. Gauging a subgroup Zq ⊂ U(1) of the topological symmetry is equivalent
to multiplying the charges of all hypermultiplet fields by q. This results in a B-type 1-form
symmetry ΓH = Zq due since a subgroup of the gauge group now acts trivially on all hyper-
multiplet fields. This B-type symmetry has a mixed anomaly with the remaining topological
symmetry after gauging.

As an example consider supersymmetric QED with N hypermultiplets of charge 1. This
has A-type topological symmetry FC = U(1) and B-type symmetry FH = PSU(N) with mixed
’t Hooft anomaly

A4 = exp

�

2πi
N

∫

(cC
1 mod N)∪wH

2

�

. (54)

We now gauge Zq ⊂ FC assuming gcd(q, N) = 1. This results in a dual B-type 1-form symmetry
ΓH = Zq and an additional mixed anomaly with the remaining topological symmetry such that

5This conclusion holds even when Γ ′ is continuous.
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the total anomaly is

A4 = exp

�

2πi
q

∫

(cC
1 mod q)∪ BH

2 +
2πi
N

∫

(cC
1 mod N)∪wH

2

�

. (55)

This is indeed the anomaly of supersymmetric QED with N hypermultiplets of charge q. A
slightly more intricate argument is required when gcd(q, N)> 1.

The mirror of supersymmetric QED with N hypermultiplets of charge q can therefore be
obtained from the mirror of supersymmetric QED with N hypermultiplets of charge 1 by gaug-
ing a Zq symmetry. This results in a circular quiver gauge theory with (N −1) U(1) nodes and
1 Zq node, which has an A-type 1-form symmetry ΓA = Zq. In particular, when N = 1, the
mirror theory is a Zq-quotient of a free hypermultiplet.

3 Warmup: T[SU(n)] and its gaugings

In this section, we study the simplest example, which is provided by 3d N = 4 SCFTs known
as T[SU(n)] theories. We study the global forms of flavor symmetry groups of T[SU(n)] along
with their ’t Hooft anomalies. We also study some other 3d N = 4 SCFTs closely related to
T[SU(n)], in that they can be obtained by gauging (along with the addition of extra flavors
for balancing purposes) the Higgs branch flavor symmetries of the UV unitary quiver theory
whose IR fixed point is T[SU(n)].

3.1 T[SU(2)] and its gaugings

Let us begin with T[SU(2)] and theories related to it by gauging. Some of the results on the
symmetries and anomalies of the T[SU(2)] theory are known already in the literature [71,72].
We derive them here using the perspective of our earlier paper [12].

3.1.1 T[SU(2)]

The T[SU(2)] theory arises as an IR fixed point of the following 3d N = 4 Lagrangian theory

U(1) [su(2)H] , (56)

having a U(1) gauge group and 2 hypermultiplets of charge 1 that are rotated by an su(2)H
flavor symmetry algebra,6 where the subscript H indicates that the su(2)H symmetry acts non-
trivially (i.e. is spontaneously broken) on the Higgs branch of vacua of the theory.

B-type 0-form symmetry. The genuine local operators charged under su(2)H arise from
gauge invariant combinations of hypermultiplets. Such gauge invariant combinations all form
representations of the Lie group SO(3)H with Lie algebra su(2)H .

Thus, the Higgs branch 0-form symmetry group is

FH = SO(3)H = SU(2)H/Z2 , (57)

where SU(2)H is the simply connected group with Lie algebra su(2)H .
Another way of deducing the above 0-form symmetry group is as follows. Let us put the

theory (56) on a non-trivial compact 3-manifold M3. The charges of the vector and hypermul-
tiplets allow us to turn on bundles for the structure group

S =
U(1)× SU(2)H

Z2
, (58)

6Note that the flavor symmetry is not u(2)H = su(2)H ⊕ u(1)H . One way to see it is to note that the u(1)H part
acts in the same way as the u(1) gauge algebra and hence is absorbed into that.
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where U(1) is the gauge group. The Z2 in the denominator is the diagonal combination of
the Z2 element in U(1) and the non-trivial element in the Z2 center of SU(2)H . This diagonal
combination leaves all vector and hyper multiplets invariant. Thus the flavor symmetry group
associated to su(2)H is

SO(3)H = SU(2)H/Z2 , (59)

because, according to (58), we can couple the theory (56) to non-trivial background bundles
for SO(3)H , provided we turn on non-trivial bundles for U(1)/Z2. In more detail, let wH

2 be the
obstruction class for lifting the SO(3)H bundle to an SU(2)H bundle, i.e. the second Stiefel-
Whitney class of the SO(3)H bundle. The obstruction class for lifting the U(1)/Z2 bundle to a
U(1) bundle can then be written as c1 (mod 2), where c1 is the first Chern class for the U(1)/Z2
bundle. The group (58) then requires that

wH
2 = c1 (mod 2) . (60)

That is, SO(3)H bundle can be lifted to SU(2)H bundle if and only if U(1)/Z2 bundle can be
lifted to U(1) bundle. Once an SO(3)H bundle is specified, the gauge theory sums over all
U(1)/Z2 bundles satisfying the constraint (60).

A-type 0-form symmetry. In addition of the SO(3)H 0-form symmetry, the Lagrangian theory
(56) admits a magnetic

FUV
C = U(1)C , (61)

0-form symmetry whose associated topological operators are

exp

�

iα

∮

F

�

, (62)

parametrized by α ∈ [0, 2π), where F is the field strength of the U(1) gauge group. The
subscript C denotes that the U(1)C symmetry acts non-trivially on the Coulomb branch of vacua
of the theory. Indeed, the monopole operators, whose vacuum expectation values parametrize
the Coulomb branch, are charged under this symmetry, with the charges valued in Z.

It is well-known, from the analysis of [5], that at the level of Lie algebras, the u(1)C 0-form
symmetry enhances in the IR to an su(2)C 0-form symmetry. In particular, the Cartan of the
simply connected Lie group SU(2)C with Lie algebra su(2)C is a double cover of U(1)C , or in
other words we have an inclusion map

U(1)C ,→ SO(3)C = SU(2)C/Z2 , (63)

which embeds U(1)C as the maximal torus of SO(3)C .
Since the gauge monopole operators have integer charges under U(1)C in the UV, they

descend to genuine local operators of the IR SCFT transforming in representations of SO(3)C .
Thus the Coulomb 0-form symmetry group of the IR SCFT is

F IR
C = SO(3)C . (64)

In other words, at the level of Lie groups the U(1)C 0-form symmetry group enhances in the
IR to SO(3)C 0-form symmetry group.

Mixed 0-form symmetry anomaly. As is well-known, there is a mixed ’t Hooft anomaly be-
tween the SO(3)H and SO(3)C 0-form symmetries of T[SU(2)], see [71,72]. Here we describe
how this ’t Hooft anomaly can be derived as a consequence of a mixed ’t Hooft anomaly be-
tween the SO(3)H and U(1)C 0-form symmetries in the UV gauge theory. For this purpose, we
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will use the analysis of [12] which described a general way of deducing ’t Hooft anomalies for
any 3d gauge theory by computing center charges of flavor-gauge monopole operators. The
relevant monopole operator is associated to a co-character

U(1)→ S , (65)

where S is the structure group of the gauge theory appearing in (58), with winding number
half around the U(1) factor in the numerator of S and winding number half around the U(1)
maximal torus of SU(2)H . This is an allowed co-character because of theZ2 quotient appearing
in the denominator of S.

The mixed flavor-gauge monopole operator O associated to such a co-character is neces-
sarily a non-genuine local operator of the gauge theory lying at the end of a vortex line defect.
From the methods of [12], we can compute that O carries a charge 1/2 under U(1)C . A quick
way to see this is to note that a purely gauge monopole operator associated to a co-character
with winding number 1 around U(1) gauge group has charge 1 under U(1)C ; a purely flavor
monopole operator associated to a co-character with winding number 1 around U(1)maximal
torus of SU(2)H is uncharged under U(1)C ; and twice of the co-character associated to O is a
product of such purely gauge and purely flavor co-characters.

As explained in [12], the half-integral charge under U(1)C of the monopole operator O
is equivalent to a mixed ’t Hooft anomaly between the Coulomb and Higgs 0-form symmetry
groups of the UV gauge theory

AUV
4 = exp

�

πi

∫

wH
2 ∪
�

c1

�

U(1)C
�

(mod 2)
�

�

, (66)

where wH
2 denotes the Stiefel-Whitney class for the background SO(3)H bundle and c1

�

U(1)C
�

denotes the first Chern class of the background U(1)C bundle.
After flowing to the IR, the monopole operator O descends to a non-genuine local operator

of the T[SU(2)] theory that is now a purely flavor monopole operator (because there is no
gauge group in the IR SCFT) associated to a co-character having winding number 1 around
the SO(3)H 0-form symmetry group of T[SU(2)]. Any flavor monopole operator is a non-
genuine local operator living at the end of a flavor vortex line defect associated to the same
co-character. The flavor monopole operator O must transform in a representation of su(2)C
which is not an allowed representation of SO(3)C . This is a straightforward consequence of
the embedding (63). Again using the analysis of [12], this fact is equivalent to a mixed ’t Hooft
anomaly between the Coulomb and Higgs 0-form symmetry groups of the IR SCFT T[SU(2)]

AIR
4 = exp

�

πi

∫

wH
2 ∪wC

2

�

, (67)

where wC
2 is the second Stiefel-Whitney class of the background SO(3)C bundle.

One can think of the IR anomaly (67) as being obtained from the UV anomaly (66) by ’t
Hooft anomaly matching. The above analysis in terms of charges of flavor-monopole operators
thus provides a precise and unambiguous way of performing such a ’t Hooft anomaly matching.

3.1.2 SU(2)H gauging

Consider now the 3d N = 4 theory

T[SU(2)] SU(2)H , (68)

obtained by gauging the su(2)H flavor symmetry of T[SU(2)] by an SU(2)H gauge group. We
can reach a very closely related cousin of this theory by flowing from the 3d N = 4 quiver

U(1) SU(2)H , (69)
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if the gauge coupling for SU(2)H is extremely small compared to the U(1) gauge coupling.
However, in this way we never land precisely on the theory (68).

Note that (68) is a “bad” theory in the sense of [5]. After a discussion of the symmetries
and anomalies of this theory, we will add flavors for the SU(2)H gauge group converting the
above theory into a “good” theory and study its symmetries.

1-form symmetry. This theory carries a

Γ (1) = Z2 , (70)

1-form symmetry, as can be seen by the following argument. After gauging we obtain Wilson
line defects valued in representations of SU(2)H . A genuine local operator of T[SU(2)] trans-
forming in representation R of SU(2)H becomes a non-genuine local operator of the gauged
theory (68) that lives at the end of Wilson line defect in representation R. In other words, the
Wilson line in representation R is screened in the gauged theory (68). From our previous dis-
cussion, we know that the genuine local operators transform only in those representations of
SU(2)H that are also representations of SO(3)H . Thus, only Wilson lines in representations of
SO(3)H are screened, but the Wilson lines in representations of SU(2)H that are not represen-
tations of SO(3)H are not screened. The non-screened Wilson lines are non-trivially charged
under the ZH

2 center of SU(2)H , which descends to a Z2 1-form symmetry of the gauged theory
(68).

0-form symmetry. We claim that the SO(3)C 0-form symmetry of T[SU(2)] is not impacted
by the gauging procedure and the gauged theory (68) also has

FC = SO(3)C , (71)

0-form symmetry. To see this, we need to show that all genuine local operators of the gauged
theory form representations of SO(3)C . It is sufficient to show this fact for the following two
types of genuine local operators:

1. The genuine local operators of T[SU(2)] that are uncharged under SU(2)H descend to
genuine local operators of the gauged theory (68). Since such operators form SO(3)C
representations before gauging, they also form SO(3)C representations after gauging.

2. The flavor monopole operators for su(2)H are non-genuine in T[SU(2)] as they are at-
tached to vortex line defects. Some of these vortex line defects become invisible after
gauging and the attached flavor monopole operators thus become genuine local oper-
ators of the gauged theory (68). The co-characters associated to such monopoles are
those which have even winding numbers around the maximal torus of SO(3)H . Such
monopole operators form SO(3)C representations before gauging, so only lead to SO(3)C
representations after gauging.

Is there a 2-group symmetry? The question we would now like to address is whether the
above Z2 1-form and SO(3)C 0-form symmetries combine to form a 2-group symmetry with a
non-trivial Postnikov class. We claim that the answer is negative, due to the following reason.

The existence of such a 2-group symmetry requires the presence of a local operator O in
the gauged theory (68) which sits at the end of a Wilson line operator transforming in an
allowed representation of SO(3)H and transforms in a representation of SU(2)C that is not an
allowed representation of SO(3)C . This means that in the ungauged theory T[SU(2)], O must
be a local operator (transforming in the same representations of SO(3)H and SU(2)C) of one
of the following two types:

21

https://scipost.org
https://scipost.org/SciPostPhys.16.3.080


SciPost Phys. 16, 080 (2024)

1. O is a genuine local operator in T[SU(2)]. But then O must transform in an SO(3)C
representation because the Coulomb 0-form symmetry group of T[SU(2)] is SO(3)C .

2. O is a flavor monopole operator in T[SU(2)] associated to a co-character with even
winding number around the maximal torus of SO(3)H . But then O must transform in an
SO(3)C representation as already discussed above.

Thus, we conclude that there is no non-trivial 2-group symmetry in the gauged theory (68).

Mixed 0-/1-form symmetry ’t Hooft anomaly. A flavor monopole operator in T[SU(2)]with
odd winding number around maximal torus of SO(3)H becomes a gauge monopole operator in
the gauged theory (68). Such a gauge monopole operator is not a standard gauge monopole
operator usually discussed in the literature. The latter monopole operators are genuine local
operators while the former monopole operator must be non-genuine attached to a non-trivial
solitonic line defect which induces a non-trivial flux for the background field B2 for the Z2 1-
form symmetry [12]. For this reason, such monopole operators were referred to as fractional
gauge monopole operators in [12] to distinguish them from the standard (non-fractional)
gauge monopole operators. Some fractional monopole operators lie in the twisted sector of
the Z2 1-form symmetry, that is, they lie at the end of a topological line operator generating
the Z2 1-form symmetry.

Since such a fractional gauge monopole operator forms a representation of SU(2)C that is
not an allowed representation of SO(3)C , using the analysis of [12] we learn that there is a
mixed ’t Hooft anomaly

A4 = exp

�

πi

∫

B2 ∪wC
2

�

, (72)

between the Z2 1-form symmetry and SO(3)C 0-form symmetry of the gauged theory (68).
A more straightforward way of deriving the above anomaly is to first note that the back-

ground field B2 for the Z2 1-form symmetry can be identified with the obstruction class wH
2

B2 = wH
2 , (73)

and then the anomaly (72) follows simply from the anomaly (67) of T[SU(2)].

Adding flavors. We are interested in understanding the global form of the Coulomb symme-
try group of the IR SCFT obtained (for large enough N) from the UV 3d N = 4 Lagrangian
theory

U(1) SU(2)H N F , (74)

where we have N hypermultiplets transforming in fundamental representation of SU(2)H
along with the bifundamental hypermultiplet between U(1) and SU(2)H . Note that the corre-
sponding IR SCFT can also be obtained by starting from the good version

T[SU(2)] SU(2)H N F , (75)

of the theory (68), obtained from (68) by adding N fundamental hypers for SU(2)H . The
relationship between theories (74) and (75) is that the theory (74) flows very close to the
theory (75) at intermediate energy scales if the gauge coupling for SU(2)H is extremely small
compared to the gauge coupling for U(1).

We can thus use the symmetry properties of the theory (68) to deduce symmetry properties
for the IR SCFT associated to (74) as follows. The additional flavors in the theory (75) screen
the fundamental Wilson line of SU(2)H and thus the Z2 1-form symmetry of the theory (68)
is lost in the theory (75). On the other hand, the only new genuine local operators we obtain
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are gauge invariant combinations of these hypers. These carry trivial charge under SO(3)C ,
and hence the Coulomb 0-form symmetry group of the theory (75) is SO(3)C . For generic N ,
there is no enhancement of SO(3)C and the IR SCFT originating from (74) (which is the same
as the IR SCFT originating from (75)) has Coulomb 0-form symmetry group

F IR
C = SO(3)C . (76)

3.1.3 SO(3)H gauging

Consider now the 3d N = 4 theory

T[SU(2)] SO(3)H , (77)

obtained by gauging the su(2)H flavor symmetry of T[SU(2)] by an SO(3)H gauge group. One
can reach a very closely related theory by flowing from a 3d N = 4 Lagrangian theory

u(1) su(2)H (78)

(where we have only displayed gauge algebras), with the gauge group

G =
U(1)× SU(2)H

Z2
, (79)

where the Z2 being quotiented out is the diagonal combination of the Z2 subgroup of U(1)
and the ZH

2 center of SU(2)H . Note that (77) is again a bad theory just like (68). Later, we
also consider its good versions obtained by adding adjoint flavors for the SO(3)H gauge group.

0-form symmetry group. In fact, this theory (77) can be obtained by gauging the Z2 1-form
symmetry of the theory (68). As a consequence, we expect the above theory (77) to contain
a dual Z2 0-form symmetry, alongside the residual SO(3)C 0-form symmetry descending from
(68). However, the combined group structure of the 0-form symmetry is not Z2 × SO(3)C .
Instead, the mixed anomaly (72) between Z2 1-form and SO(3)C 0-form symmetries of the
theory (68) dualizes to a non-trivial extension between the Z2 and SO(3)C 0-form symmetries
of the theory (77). Thus, in total the 0-form symmetry of the theory (77) is

FC = SU(2)C , (80)

which is a non-trivial extension of the form

1→ Z2→ SU(2)C → SO(3)C → 1 . (81)

To see it more concretely, following [73] let us explicitly perform the gauging over B2 with the
term B2∪B1 added to the 3d action, where B1 is background field for dual Z2 0-form symmetry.
This modifies the anomaly as

A4→ B2 ∪wC
2 +δB2 ∪ B1 + B2 ∪δB1 . (82)

The second term δB2∪B1 = 0 as B2 is closed. The rest of the anomaly B2∪(δB1+wC
2 ) is a gauge

anomaly (because B2 is a gauge field now), so it must vanish. This gives us the constraint

δB1 = wC
2 , (83)

which implies that Z2 and SO(3)C 0-form symmetries indeed combine to form SU(2)C 0-form
symmetry.
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The same conclusion can also be reached by studying the monopole operators discussed
above. Recall that (68) contains a fractional gauge monopole operator O living at the end
of topological line operator generating the Z2 1-form symmetry, such that O transforms in a
representation of SU(2)C which is not a representation of SO(3)C . As we gauge the 1-form
symmetry, the topological line generating the Z2 1-form symmetry disappears, and O becomes
a genuine local operator of the theory (77). Thus, the 0-form symmetry group associated to
su(2)C 0-form symmetry algebra in the theory (77) is SU(2)C .

Adding flavors. We are interested in understanding the global form of the Coulomb symme-
try group of the IR SCFT obtained (for large enough N) from the UV 3d N = 4 Lagrangian
theory

u(1) su(2)H N A , (84)

where we have N hypers transforming in adjoint representation of su(2)H along with the
bifundamental hyper between u(1) and su(2)H , and the gauge group is chosen to be (79).
Note that the corresponding IR SCFT can also be obtained by starting from the good version

T[SU(2)] SO(3)H N A , (85)

of the theory (77), obtained from (77) by adding N adjoint hypers for SO(3)H . The relationship
between theories (84) and (85) is that the theory (84) flows very close to the theory (75) at
intermediate energy scales if the gauge coupling for su(2)H is extremely small compared to
the gauge coupling for u(1).

We can thus use the symmetry properties of the theory (77) to deduce symmetry properties
for the IR SCFT associated to (84) as follows. Recall that (77) has a gauge monopole operator
transforming in SU(2)C representation that is not an SO(3)C representation. This operator is
not impacted by the addition of adjoint hypers. Thus, we deduce that the Coulomb 0-form
symmetry group of the theory (85) is SU(2)C . For generic N , there is no enhancement of
SU(2)C and the IR SCFT originating from (84) (which is the same as the IR SCFT originating
from (85)) has Coulomb 0-form symmetry group

F IR
C = SU(2)C . (86)

3.1.4 U(2) gauging

We are interested in understanding the global form of Coulomb and Higgs symmetry groups
of the IR SCFT obtained (for large enough N) from the UV 3d N = 4 Lagrangian theory

U(1) U(2) [su(N)H] , (87)

where we have N hypers transforming in fundamental representation of U(2) along with the
bifundamental hyper between U(1) and U(2).

0-form symmetry algebras. As shown in (87), there is a Higgs branch flavor symmetry

fH = su(N)H , (88)

rotating the N fundamental hypers.
We will focus on the case N > 3 for which the IR Coulomb symmetry algebra is

fIRC = u(2)C = su(2)C ⊕ u(1)C . (89)

The N = 3 case has a further enhancement of IR Coulomb symmetry algebra to su(3)C that
will be discussed in the following subsection on T[SU(n)] theories.
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The su(2)C subalgebra of fIRC is usually associated to the balanced node provided by the
U(1) gauge group, and the u(1)C subalgebra of fIRC is usually associated to the unbalanced
node provided by the U(2) gauge group. However, we will need a more precise identification
of these subalgebras, which we discuss in what follows.

0-form symmetry groups. The Higgs 0-form symmetry group of the IR SCFT is the same as
that of the UV Lagrangian theory

FH = PSU(N)H = SU(N)H/ZN , (90)

and can be easily deduced by noticing that the gauge invariant combinations of hypermultiplets
all form representations of PSU(N)H .

On the other hand, the Coulomb 0-form symmetry group of the IR SCFT is more subtle to
deduce. Let us begin with the Coulomb 0-form symmetry group of the UV theory. We have
a U(1)1 0-form symmetry associated to the U(1) gauge node and a U(1)2 0-form symmetry
associated to the U(2) gauge node. First, we need to understand the precise identification of
the U(1) subgroup of UV 0-form symmetry group

FUV
C = U(1)1 × U(1)2 , (91)

which becomes the maximal torus of the Lie group SU(2)C associated to the su(2)C subalgebra
of fIRC . This is done by studying FUV

C charges of BPS monopole operators of low R-charge. We
look for a combination7 q = n1q1+n2q2, where qi is the U(1)i charge of monopole and ni ∈ Z,
such that the set of monopole operators at a fixed value of R-charge have q-charges coinciding
with the Dynkin coefficients of the weights of a representation of su(2)C . This fixes

q = 2q1 − q2 . (92)

Now the u(1)C factor is determined such that the BPS monopole operators furnishing the
weights of adjoint of su(2)C are uncharged under u(1)C . This determines that the u(1)C charge
is proportional to q2, or more precisely there is a Lie group U(1)C with Lie algebra u(1)C , such
that the charge qC under U(1)C is

qC = q2 . (93)

In order to determine the global form of the IR Coulomb flavor groupF IR
C we need to determine

the charges
�

q (mod 2), qC

�

, (94)

of non-fractional gauge monopole operators, where the charge q (mod 2) is the charge of the
monopole operator under theZ2 center of the IR SU(2)C . The fundamental monopole operator
from U(1) gauge node has (q1, q2) = (1, 0) implying

�

q (mod 2), qC

�

=
�

0 (mod 2), 0
�

, while
the fundamental monopole operators from U(2) gauge node have (q1, q2) = (0, 1) implying
�

q (mod 2), qC

�

=
�

1 (mod 2), 1
�

. The only non-trivial charge is the latter one, which implies
that the Coulomb 0-form symmetry group of the IR SCFT is

F IR
C = U(2)C =

SU(2)C × U(1)C
Z2

. (95)

3.2 T[SU(n)] and its gaugings

In this subsection we generalize to T[SU(n)] theories the results obtained in the previous
subsection regarding T[SU(2)] theories.

7We thank Antoine Bourget for a discussion regarding this point.
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3.2.1 T[SU(n)]

B-type 0-form symmetry. The T[SU(n)] theory arises as an IR fixed point of the following
3d N = 4 Lagrangian theory

U(n− 1) [su(n)H] ,· · ·U(2)U(1) (96)

where we have a bifundamental hyper between adjacent unitary gauge nodes, and n funda-
mental hypers for U(n− 1) that are rotated by an

fH = su(n)H , (97)

Higgs flavor symmetry algebra.
The genuine local operators charged under su(n)H arise from gauge invariant combinations

of hypermultiplets. Such gauge invariant combinations all form representations of the Lie
group PSU(n)H with Lie algebra su(n)H . Thus, the Higgs branch 0-form symmetry group is

FH = PSU(n)H = SU(n)H/Zn , (98)

where SU(n)H is the simply connected group with Lie algebra su(n)H .
Equivalently, we can deduce the above 0-form symmetry group by putting the theory (96)

on a non-trivial compact 3-manifold M3. The charges of the vector and hypermultiplets allow
us to turn on bundles for the group

S =
U(1)× U(2)× · · · × U(n− 1)× SU(n)H

Zn
. (99)

The Zn in the denominator is the diagonal combination of the Zn subgroups of U(1) centers of
U(i) gauge groups and the Zn center of SU(n)H . This diagonal combination leaves all vector
and hyper multiplets invariant. Thus the Higgs flavor symmetry group is PSU(n)H because,
according to (99), we can couple the theory (96) to non-trivial (in the sense that they cannot be
lifted to SU(n)H bundles) background bundles for PSU(n)H , provided we turn on non-trivial
(in the sense that they cannot be lifted to U(i) bundles) bundles for U(i)/Zn.

A-type 0-form symmetry. In addition to the PSU(n)H 0-form symmetry, the Lagrangian
theory (96) admits a magnetic

FUV
C = U(1)n−1

C =
n−1
∏

i=1

U(1)C ,i , (100)

0-form symmetry, where U(1)C ,i is the magnetic symmetry arising from the U(i) gauge node.
The above Coulomb 0-form symmetry enhances in the IR to an su(n)C Coulomb 0-form

symmetry. The fundamental monopole operators associated to each node i describe roots of
su(n)C , which carry charge 0 (mod n) under the center Zn of SU(n)C . As a consequence, all
gauge monopole operators form representations of SU(n)C having charge 0 (mod n) under
the center Zn. Thus the Coulomb 0-form symmetry group of the IR SCFT is

F IR
C = PSU(n)C . (101)

Mixed 0-form anomaly. There is a mixed ’t Hooft anomaly between the PSU(n)H and
PSU(n)C 0-form symmetries of T[SU(n)]. The relevant flavor-gauge monopole operator is
associated to a co-character of the structure group S appearing in (99) with winding number
1/n around the U(1) center of each U(i) gauge group and winding number 1/n around a U(1)
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subgroup of the maximal torus of SU(n)H . This is an allowed co-character because of the Zn
quotient appearing in the denominator of S.

The mixed flavor-gauge monopole operator O descends to a flavor monopole operator in
the IR SCFT T[SU(n)], which is a non-genuine local operator lying at the end of a flavor vortex
line defect. O carries a charge qi = i/n under U(1)C ,i . This implies that the Dynkin coefficients
di of the weight of su(n)C carried by O are

(d1, d2, · · · , dn−2, dn−1) = (2q1 − q2,−q1 + 2q2 − q3, · · · ,−qn−3 + 2qn−2 − qn−1,−qn−2 + 2qn−1)

= (0, 0, · · · , 0, 1) .
(102)

The charge of O under the Zn center of SU(n)C is computed in terms of di as

n−1
∑

i=1

i × di (mod n) = −1 (mod n) . (103)

Using the analysis of [12], this fact is equivalent to a mixed ’t Hooft anomaly between the
Coulomb and Higgs 0-form symmetry groups of the IR T[SU(n)] SCFT

AIR
4 = exp

�

−
2πi
n

∫

wH
2 ∪wC

2

�

, (104)

where wC
2 , wH

2 areZn valued obstruction classes capturing the obstruction of lifting background
PSU(n)C , PSU(n)H bundles to SU(n)C , SU(n)H bundles.

3.2.2 SU(n)H gauging

Consider now the 3d N = 4 theory

T[SU(n)] SU(n)H , (105)

obtained by gauging the su(n)H flavor symmetry of T[SU(n)] by an SU(n)H gauge group. We
can reach very close to this theory by flowing from the 3d N = 4 quiver

U(n− 1) SU(n)H ,· · ·U(2)U(1) (106)

if the gauge coupling for SU(n)H is extremely small compared to the U(i) gauge couplings.
Note that (105) is a bad theory. We will later also discuss its good versions obtained by

adding flavors for the SU(n)H gauge group.

1-form symmetry. This theory carries a

Γ (1) = Zn , (107)

1-form symmetry, as can be seen by the following argument. After gauging we obtain Wilson
line defects valued in representations of SU(n)H . A genuine local operator of T[SU(n)] trans-
forming in representation R of SU(n)H becomes a non-genuine local operator of the gauged
theory (105) that lives at the end of Wilson line defect in representation R. In other words, Wil-
son line in representation R is screened in the gauged theory (105). From our previous discus-
sion, we know that the genuine local operators transform only in representations of PSU(n)H .
Thus, Wilson lines transforming in representations of SU(n)H with non-zero charge (modulo
n) under its Zn center are left unscreened, implying that Zn center of SU(n)H descends to a
Zn 1-form symmetry of the gauged theory (105).
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0-form symmetry. There are two types of genuine local operators of the gauged theory (105)
to consider:

1. The genuine local operators of T[SU(n)] that are uncharged under SU(n)H descend to
genuine local operators of the gauged theory (105). Since such operators form PSU(n)C
representations before gauging, they also form PSU(n)C representations after gauging.

2. The flavor monopole operators of T[SU(n)] associated to co-characters of SU(n)H be-
come genuine local operators (non-fractional gauge monopole operators) after gauging,
despite being non-genuine before gauging. Such monopole operators form PSU(n)C
representations before gauging, so only lead to PSU(n)C representations after gauging.

Thus, the PSU(n)C 0-form symmetry of T[SU(n)] is not impacted by the gauging procedure
and the gauged theory (105) also has

FC = PSU(n)C , (108)

0-form symmetry.

Is there a 2-group symmetry? The question we would now like to address is whether the
above Zn 1-form and PSU(n)C 0-form symmetries combine to form a 2-group symmetry with
a non-trivial Postnikov class. We claim that the answer is negative, due to the following reason.

The existence of such a 2-group symmetry requires the presence of a local operator O
in the gauged theory (105) which sits at the end of a Wilson line operator transforming in a
representation of PSU(n)H and transforms in a representation of SU(n)C that is not an allowed
representation of PSU(n)C . This means that in the ungauged theory T[SU(n)], O must be a
local operator (transforming in the same representations of PSU(n)H and SU(n)C) of one of
the following two types:

1. O is a genuine local operator in T[SU(n)]. But then O must transform in a PSU(n)C
representation because the Coulomb 0-form symmetry group of T[SU(n)] is PSU(n)C .

2. O is a flavor monopole operator in T[SU(n)] associated to a co-character of the group
SU(n)H . But then O must transform in a PSU(n)C representation as already discussed
above.

Thus, we conclude that there is no non-trivial 2-group symmetry in the gauged theory (105).

Mixed 1-form 0-form ’t Hooft anomaly. Flavor monopole operators of T[SU(n)] become
(possibly fractional) gauge monopole operators in the gauged theory (105). This includes the
operator O discussed around equation (104), which becomes a fractional gauge monopole
operator after gauging and can be converted into a local operator living at the end of the
topological line defect generating the Zn 1-form symmetry. The fact that O transforms in a
representation of SU(n)C having charge −1 (mod n) under its Zn center is equivalent to the
mixed ’t Hooft anomaly between the Zn 1-form symmetry and PSU(n)C 0-form symmetry of
the gauged theory (68)

A4 = exp

�

−
2πi
n

∫

B2 ∪wC
2

�

, (109)

where B2 is the background field for the Zn 1-form symmetry. This anomaly can also be derived
as a consequence of the anomaly (104) using the identification B2 = wH

2 .
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Adding flavors. We are interested in understanding the global form of the Coulomb symme-
try group of the IR SCFT obtained (for large enough N) from the UV 3d N = 4 Lagrangian
theory

U(n− 1) SU(n)H· · ·U(2)U(1) N F . (110)

Note that the corresponding IR SCFT can also be obtained by starting from the good version

T[SU(n)] SU(n)H N F , (111)

of the theory (105), obtained from (105) by adding N fundamental hypers for SU(n)H . The
relationship between theories (110) and (111) is that the theory (110) flows very close to the
theory (111) at intermediate energy scales if the gauge coupling for SU(n)H is extremely small
compared to the U(i) gauge couplings.

We can thus use the symmetry properties of the theory (105) to deduce symmetry proper-
ties for the IR SCFT associated to (110) as follows. The additional flavors in the theory (111)
screen the fundamental Wilson line of SU(n)H and thus the Zn 1-form symmetry of the theory
(105) is lost in the theory (111). On the other hand, the only new genuine local operators
we obtain are gauge invariant combinations of these hypers. These carry trivial charge under
PSU(n)C , and hence the Coulomb 0-form symmetry group of the theory (111) is PSU(n)C .
For generic N , there is no enhancement of PSU(n)C and the IR SCFT originating from (110)
(which is the same as the IR SCFT originating from (111)) has Coulomb 0-form symmetry
group

F IR
C = PSU(n)C . (112)

3.2.3 Other su(n)H gaugings

We can also consider gauging SU(n)H/Zm (where Zm < Zn is a subgroup, i.e. m|n) to obtain
the 3d N = 4 theory

T[SU(n)] SU(n)H/Zm . (113)

One can reach very close to this theory by flowing from a 3d N = 4 Lagrangian theory

u(n− 1) su(n)H· · ·u(2)u(1) (114)

(where we have only displayed gauge algebras), with the gauge group

G =
U(1)× U(2)× · · · × U(n− 1)× SU(n)H

Zm
, (115)

where the Zm being quotiented out is the Zm subgroup of the Zn group appearing in the
denominator of (99). Note that (113) is again a bad theory just like (105). Later, we also
consider its good versions obtained by adding adjoint flavors for the SU(n)H/Zm gauge group.

1-form symmetry group. In fact, this theory (113) can be obtained by gauging the Zm 1-
form symmetry of the theory (105). Consequently, there is a residual

Γ (1) = Zp , (116)

1-form symmetry in the theory (113) where p = n/m.

0-form symmetry group. There is also thus a dual Zm 0-form symmetry in (113) alongside
the residual PSU(n)C 0-form symmetry descending from (105). By similar arguments as in
the previous subsection on T[SU(2)], the two 0-form symmetries combine non-trivially and
the full 0-form symmetry group of (113) is

FC = SU(n)C/Zp . (117)
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Mixed 1-form 0-form ’t Hooft anomaly. There is a mixed ’t Hooft anomaly between Zp
1-form and SU(n)C/Zp 0-form symmetries arising as a residue of the anomaly (109)

A4 = exp

�

−
2πi

p

∫

B2 ∪wC
2

�

, (118)

where wC
2 is the Zp valued obstruction class for lifting SU(n)C/Zp bundles to SU(n)C bundles,

and B2 is the Zp valued background field for 1-form symmetry.

Particular case: m = n. In this particular case, we are studying a PSU(n)H gauging of
T[SU(n)]. There is no 1-form symmetry and the 0-form symmetry group is SU(n)C .

Adding adjoint flavors. We can add N adjoint flavors for SU(n)C/Zm. For large enough N ,
this flows to a 3d N = 4 SCFT in the IR. The global form of the Coulomb symmetry group and
mixed anomaly between Coulomb 0-form symmetry and 1-form symmetry in the IR SCFT for
generic N are the same as those described above.

3.2.4 U(n) gauging

We are interested in understanding the global form of Coulomb and Higgs symmetry groups
of the IR SCFT obtained (for large enough N) from the UV 3d N = 4 Lagrangian theory

U(n) [su(n)H] ,· · ·U(2)U(1) (119)

where we have N hypers transforming in fundamental representation of U(n) along with bi-
fundamental hypers between adjacent U(i) gauge nodes.

0-form symmetry algebras. As shown in (119), there is a

fH = su(N)H , (120)

Higgs branch symmetry rotating the N fundamental hypers.
We will focus on the case N > n+ 1 for which the IR Coulomb symmetry algebra is

fIRC = u(n)C = su(n)C ⊕ u(1)C . (121)

The N = n+1 case has a further enhancement of IR Coulomb symmetry algebra to su(n+1)C .
The su(n)C subalgebra of fIRC is usually associated to the balanced nodes provided by the

U(i) gauge groups for 1 ≤ i ≤ n− 1, and the u(1)C subalgebra of fIRC is usually associated to
the unbalanced node provided by the U(n) gauge group. However, as before we will need a
more precise identification of these subalgebras.

0-form symmetry groups. The Higgs 0-form symmetry group of the IR SCFT is the same as
that of the UV Lagrangian theory

FH = PSU(N)H = SU(N)H/ZN . (122)

To deduce the Coulomb 0-form symmetry group of the IR SCFT, we need a precise identi-
fication of the Dynkin coefficients di for su(n)C weights in terms U(1)C ,i charges. This is the
same as discussed around equation (102), except now dn−1 is modified to

dn−1 = −qn−2 + 2qn−1 − qn . (123)
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Moreover, the u(1)C factor has a global form U(1)C such that the charge qC under U(1)C is

qC = qn . (124)

Now we see that the fundamental monopole operators coming from the U(n) gauge node
transform in anti-fundamental representation of su(n)C and simultaneously have charge +1
under u(1)C . Thus the Coulomb 0-form symmetry group of the IR SCFT is

F IR
C = U(n)C =

SU(n)C × U(1)C
Zn

. (125)

4 General symmetry and anomaly analysis for 3d N = 4 SCFTs

Now we are ready to describe the most general result of the considerations of this paper.
Consider a 3d N = 4 good quiver gauge theory composed of unitary and special unitary gauge
algebras and no Higgs flavor algebras. Let us write the gauge algebra as

g=
⊕

i

gi , (126)

where each gi is either su(ni) or u(ni). We assume there is at least one special unitary node
and all special unitary nodes are unbalanced. Also let Gi be SU(ni) or U(ni) for the two cases.
The matter content is comprised entirely of bifundamental hypers. Say we have mi j ≥ 0
bifundamental hypers between gi and g j . We assume that the quiver is connected, which
means that we can go from any node i to any other node j by choosing a sequence of nodes
ia for 0≤ a ≤ b such that i0 = i, ib = j and mia ia+1

> 0. Moreover, the balanced unitary nodes
are taken to form the Dynkin diagram of a finite semi-simple Lie algebra

f=
⊕

a
fa , (127)

where each fa is a finite simple Lie algebra. Let Fa be the simply connected group associated
to fa with center Za and define F =

∏

a Fa with center Z =
∏

a Za. Let U be the set of
unbalanced unitary nodes. Let u(1)i for a node i ∈ U be the associated Coulomb 0-form
symmetry algebra and U(1)i be a group with Lie algebra u(1)i such that the fundamental BPS
monopoles associated to node i have charge gδi j under U(1) j , where g is defined around
equation (130) below and δi j is the Kronecker delta. We have scaled the U(1)i charges of
fundamental monopoles by g for later convenience in computing ’t Hooft anomalies. The
Coulomb 0-form symmetry algebra of the corresponding 3d N = 4 IR SCFT is

fIRC =
⊕

i∈U
u(1)i ⊕ f . (128)

Let us define F IR
C =
∏

i∈U U(1)i × F with center Z IR
C =
∏

i∈U U(1)i × Z .

4.1 Symmetries

1-form symmetry group. Consider choosing first the gauge group

G =
∏

i

Gi . (129)

Then the theory with the above-described matter content has a 1-form symmetry group given
by

Γ (1) = Zg , (130)

where g is the GCD (greatest common divisor) of all ni for which gi = su(ni).
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(Coulomb) 0-form symmetry group. Let us determine the Coulomb 0-form symmetry group
F IR

C of the IR SCFT. Each node i ∈ U provides a genuine local operator Oi in the IR SCFT whose
charge under Z IR

C is what we want to determine. This local operator can be chosen to be IR
image of any fundamental BPS monopole associated to the node i.

First of all, Oi has charge qi, j = gδi j under U(1) j factor of Z IR
C , where j ∈ U . The charge

qi,a of Oi under Za is given by

qi,a = −
∑

j∈Na

mi, jna, j ∈ bZa , (131)

where Na is the set of nodes forming the Dynkin diagram of fa and na, j ∈ bZa is the charge of
the representation of fa with highest weight having Dynkin coefficients di = δi j for i ∈ Na.
Combining the charges qi, j for all j ∈ U and charges qi,a for all a, we obtain a charge

qi ∈ bZ IR
C , (132)

of Oi under Z IR
C . The charges qi for all i ∈ U span a subgroup Y IR

C of the abelian group bZ IR
C . We

thus obtain the information of a surjective map

bZ IR
C → ÒZ

IR
C :=
bZ IR

C

Y IR
C

, (133)

which can be Pontryagin dualized to an injective map

Z IR
C → Z IR

C , (134)

providing a subgroup Z IR
C of Z IR

C . The Coulomb 0-form symmetry group of the IR SCFT is

F IR
C =

F IR
C

Z IR
C

. (135)

Visual representation. The charges qi,a of operators Oi under the centers Za of Coulomb
flavor algebras fa can be deduced visually from the UV quiver. First of all, note that qi,a is the
same as the charge under Za of the representation

⊗

j∈Na

F
mi, j

j , (136)

of fa, where F j is the so-called ‘fundamental representation associated to node j’ of the Dynkin
diagram of fa, which is the representation with highest weight having Dynkin coefficients
di = δi j for i ∈ Na. This representation is deduced visually from the UV quiver: we just see
how many times the node i ∈ U hits a node j in Na and include that many copies of the
representation F j of fa.

4.2 Anomaly

There is a mixed ’t Hooft anomaly between Γ (1) and F IR
C which is computed using the charge

of a fractional gauge monopole operator O associated to co-character of the group

G =
G
Zg

, (137)

where Zg being quotiented out is the diagonal combination of the Zg subgroup of the U(1)
center of each unitary gauge group and the Zg subgroup of the Zni

center of the gauge group
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SU(ni) for each special unitary gauge group. The co-character associated to O has winding
number 1/g around the U(1) center of each unitary gauge group and winding number 1/g
around a U(1) subgroup of the maximal torus of SU(ni) for each special unitary gauge group.

The charge of O under U(1)i for i ∈ U is qi . The charge qa of O under Za is the same as
the charge of the representation of fa having highest weight with Dynkin coefficients

di =
∑

j∈Na

Ma,i j
n j

g
−
∑

j∈U
mi, j

n j

g
, (138)

for i ∈Na, where Ma,i j is the Cartan matrix of fa and n j is the rank of the gauge algebra u(n j)
associated to the node j. Combining the qi and qa charges, we obtain a charge qO ∈ bZ IR

C of O
under Z IR

C . Projecting it using the map (133), we obtain an element q ∈ ÒZ IR
C , letting us define

a homomorphism
γ : Γ (1)→ ÒZ IR

C , (139)

via
Γ (1) = Zg ∋ 1 7→ q ∈ ÒZ IR

C . (140)

The ’t Hooft anomaly between the 1-form and 0-form symmetries of the IR SCFT is then

AIR
4 = exp

�

2πi

∫

γ(B2)∪wC
2

�

, (141)

where B2 is the Γ (1) valued background field for the 1-form symmetry, wC
2 is the Z IR

C valued
class capturing the obstruction of lifting F IR

C bundles to F IR
C bundles, and the cup product uses

the natural pairing ÒZ IR
C ×Z

IR
C → R/Z.

Visual representation. The charges qa of the operator O under the centers Za of Coulomb
flavor algebras fa can be deduced visually from the UV quiver. First of all, note that qa is the
same as the charge under Za of the representation

⊗

i∈S

⊗

j∈Na

F
ni mi, j

g

j , (142)

of fa, where S is the set of special unitary gauge nodes. To see this, one needs to use the
balancing condition.

This representation is deduced visually from the UV quiver: for each special unitary node
i ∈ S, we just see how many times i hits a node j in Na and include that many copies of the
representation F j of fa weighted by a factor of ni/g.

4.3 Other gauge groups

We can change the gauge group by gauging a subgroup Zh ⊆ Zg of the 1-form symmetry. The
resulting gauge group is

Gh = G/Zh . (143)

The 1-form symmetry group of the resulting IR SCFT is now

Γ
(1)
h = Zg/Zh = Zk , (144)

where k = g/h.
Because of the extra Zh quotient in the new gauge group Gh, some of the gauge monopole

operators which were fractional (i.e. were non-genuine local operators) now become non-
fractional gauge monopole operators (i.e. become genuine local operators). We need to ac-
count for center charges of these new genuine local operators to compute the Coulomb 0-form
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symmetry group F IR
C ,h of the new IR SCFT. To account for these new charges, it is sufficient to

consider the contribution of a single monopole operator Oh for Gh with co-characters having
winding number k times the winding numbers associated to the fractional gauge monopole
operator O considered above. The charge qi,h of Oh under U(1)i for i ∈ U is k, and the charge
qa,h of Oh under Za is the same as the charge of the representation of fa having highest weight
with Dynkin coefficients di,h = kdi , where di are defined in (138). Combining the qi,h and qa,h

charges for various values of i and a, we obtain a charge qh ∈ bZ IR
C . Appending qh to Y IR

C and
spanning, we obtain a larger subgroup Y IR

C ,h of bZ IR
C . This provides a surjective map

bZ IR
C → ÒZ

IR
C ,h :=
bZ IR

C

Y IR
C ,h

, (145)

whose Pontryagin dual is an injective map

Z IR
C ,h→ Z IR

C , (146)

providing a subgroup Z IR
C ,h of Z IR

C . The Coulomb 0-form symmetry group of the new IR SCFT
is

F IR
C ,h =

F IR
C

Z IR
C ,h

. (147)

There is a residual mixed ’t Hooft anomaly between Γ (1)h and F IR
C ,h descending from (141).

This is still a consequence of the operator O which remains a fractional gauge monopole op-
erator for h < g. Its charge is still qO ∈ bZ IR

C which projects to an element qh ∈ ÒZ IR
C ,h, letting us

define a homomorphism
γh : Γ (1)h → ÒZ

IR
C ,h , (148)

via
Γ (1) = Zk ∋ 1 7→ qh ∈ ÒZ IR

C ,h . (149)

The ’t Hooft anomaly between the 1-form and 0-form symmetries of the new IR SCFT is then

AIR
4,h = exp

�

2πi

∫

γh(B2,h)∪wC
2,h

�

, (150)

where B2,h is the Γ (1)h valued background field for the new 1-form symmetry, wC
2,h is the Z IR

C ,h

valued class capturing the obstruction of lifting F IR
C ,h bundles to F IR

C bundles, and the cup

product uses the natural pairing ÒZ IR
C ,h ×Z

IR
C ,h→ R/Z.

4.4 Including flavors

Let us now ungauge a few special unitary gauge algebras in the above UV theory, converting
those gauge nodes into flavor nodes. The resulting theory is still a good theory and flows to a
3d N = 4 SCFT in the IR. Let the set R parametrize the nodes which remain as gauge nodes.
We choose the gauge group to be

GR =
∏

i∈R
Gi . (151)

Because of the presence of flavors, the theory has no 1-form symmetry

Γ (1) = 0 . (152)
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The Higgs flavor symmetry algebra is taken to be (there might be some extra abelian factors
that we ignore)

fH =
⊕

i ̸∈R
su(ni) . (153)

The structure group of the UV theory including Higgs flavor symmetries is

SR = G/Zg . (154)

In particular, the Higgs 0-form symmetry group of the UV theory and the corresponding IR
SCFT is

FH =

∏

i ̸∈R SU(ni)

Zg
. (155)

The Coulomb 0-form symmetry group is the same as before F IR
C .

The fractional gauge monopole O discussed above is now instead a mixed flavor-gauge
monopole operator providing a mixed ’t Hooft anomaly between the Higgs and Coulomb 0-
form symmetries

AIR
4,R = exp

�

2πi

∫

γ(wH
2 )∪wC

2

�

, (156)

where wH
2 is theZg valued class capturing the obstruction of liftingFH bundles to

∏

i ̸∈R SU(ni)
bundles and γ is the homomorphism appearing in (139).

4.5 Special case 1: Single special unitary node

In this and the following subsections, we discuss two special cases for which the symmetry
groups and anomalies of the IR SCFT take a simple form. These two special cases will be used
frequently in the rest of this paper.

In this subsection, we consider the first special case, which occurs when we have a single
(unbalanced) special unitary gauge node carrying su(n)H gauge algebra.

First choose the gauge group

G =
∏

i

U(ni)× SU(n)H . (157)

The 1-form symmetry is
Γ (1) = Zn . (158)

As explained around (136), the 0-form symmetry group F IR
C is read simply from the positions

where the unbalanced unitary nodes hit the balanced unitary nodes.
The IR SCFT has a mixed ’t Hooft anomaly between the 1-form and 0-form symmetry

groups. The charge qa under Za of the fractional gauge monopole operator O is read simply
visually from the UV quiver, and coincides with the charge of the representation

⊗

i∈Na

F
mi
i , (159)

of fa, where mi is the number of bifundamental hypers between the SU(n)H gauge node and
the balanced unitary gauge node i ∈Na. That is, we simply observe the number of times the
SU(n)H gauge node hits the balanced node i and include that many copies of the represen-
tation Fi . Combining the charges qa ∈ bZa with the charge ni under each Coulomb symmetry
U(1)i associated to unbalanced unitary node i ∈ U , we obtain the charge q ∈ bZ of O, which
provides the homomorphism (139) appearing in the mixed anomaly (141).
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Let us gauge the 1-form symmetry group Γ (1) = Zn. The new gauge group is

Gn =

∏

i U(ni)× SU(n)H
Zn

. (160)

There is no residual 1-form symmetry and the Coulomb 0-form group is modified by the pres-
ence of the operator O which is now a genuine local operator. Its charges qa described above
need to be accounted to compute the new Coulomb 0-form symmetry group.

We can instead ungauge SU(n)H . The gauge group is now

GR =
∏

i

U(ni) . (161)

There is a Higgs 0-form symmetry algebra

fH = su(n)H . (162)

Both the UV gauge theory and the IR SCFT have Higgs 0-form symmetry group as

FH = PSU(n)H . (163)

The Coulomb 0-form symmetry group is still as before the ungauging. There is a mixed ’t
Hooft anomaly between the Higgs and Coulomb 0-form symmetry groups. The anomaly is
described completely by the charges qa of the operator O discussed above, which is now a
mixed flavor-gauge monopole operator.

Example. Many of the results of the previous section 3 can be arrived at by a simple appli-
cation of the above general analysis. The anomaly (104) of T[SU(n)] is a consequence of the
fact that the flavor node su(n)H intersects the su(n)C balanced quiver at the location of the
anti-fundamental node.

Similarly, the anomaly (109) is a consequence of the fact that the unbalanced SU(n)H
gauge node intersects the su(n)C balanced quiver at the location of the anti-fundamental node.
Upon gauging Zn 1-form symmetry, it modifies the PSU(n)C 0-form symmetry to SU(n)C 0-
form symmetry as discussed in the paragraph on special case m= n of section 3.2.3.

4.6 Special case 2: Single unbalanced unitary node

In this subsection, we consider the second special case, which occurs when we have a single
unbalanced unitary gauge node U(n), and no special unitary gauge nodes. We require the
presence of at least one flavor node. The gauge group is taken to be

G =
∏

i

U(ni)× U(n) . (164)

There is no 1-form symmetry, and the Coulomb 0-form symmetry algebra of the IR SCFT is

fIRC = f⊕ u(1)C . (165)

The only non-trivial charge under its center Z × U(1)C is provided by fundamental gauge
monopole operators associated to the U(1)C gauge node. The charge qC of such an operator
O under U(1)C is +1 and the charge qa under Za is the same as that of the representation

⊗

i∈Na

F
mi
i , (166)

of fa, where mi is the number of bifundamental hypers between the U(n) gauge node and the
balanced unitary gauge node i ∈ Na. That is, to compute qa we simply observe the number
of times the U(n) node hits the node i and include that many copies of the representation Fi .
This allows us to compute the Coulomb 0-form symmetry group F IR

C of the IR SCFT.
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Example. Some of the results of the previous section 3 can be arrived at by a simple appli-
cation of the above general analysis. The U(n)C 0-form symmetry group of U(n) gauging of
T[SU(n)] appearing in equation (125) is a straightforward consequence of the fact that the
unbalanced U(n) gauge node intersects the balanced su(n)C quiver at the location of anti-
fundamental node.

5 Consistency checks

In this section we will provide various consistency checks of our results detailed in the previous
section. One central application is to magnetic quivers of 4d and 5d SCFTs with 8 supercharges.

5.1 Class S

In this subsection, we apply the methods of previous section to deduce the Coulomb 0-form
symmetry groups of magnetic quivers (MQs) associated to Class S theories of An−1 type [74].
These MQs, derived in [75], are 3d quiver gauge theories that are mirror to the circle compact-
ification of 4d N = 2 Class S theories. Thus the Coulomb 0-form symmetry groups of these
MQs should capture the usual Higgs flavor symmetry groups of 4d N = 2 Class S theories.
The computation of flavor symmetry groups of Class S theories was described recently in [66].
We demonstrate a match of results obtained using our methods against the results obtained
using their methods, and illustrate it with three examples.

Alternatively, one can view this subsection as providing the correct global form of the MQs
of Class S theories of An−1 type. That is, we provide the global form of the gauge group that
should be associated to the gauge algebra of the MQ described in [75]. This global form of
MQ is deduced by matching symmetries of MQ with the symmetries of the Class S theory.

5.1.1 General matching

Symmetries of class S theory. Consider a Class S theory arising from the sphere compactifi-
cation of a 6d N = (2,0) SCFT of An−1 type with k regular untwisted punctures. Each puncture
Pi is characterized by a partition ρi of n. Let ρi, j be the elements of the partition where j takes
values in 1 ≤ j ≤ |ρi|, and |ρi| is the number of elements in the partition. We order ρi, j such
that ρi, j ≥ ρi, j+1.

The flavor symmetry algebra fi associated to the puncture Pi is encoded in the partition ρi
according to the following standard rule. Define j1 such that ρi, j = ρi,1 for all j ≤ j1. Define
j2 such that ρi, j = ρi, j1+1 for all j1 < j ≤ j2. We continue defining ja in this fashion until we
reach j = |ρi|. Let b be the total number of ja. Then,

fi =
b
⊕

a=1

su( ja − ja−1)⊕ u(1)b−1 , (167)

with j0 := 0, and su(1) being the trivial Lie algebra.
Let us define Fi to be the following Lie group associated to the algebra fi

Fi =
b
∏

a=1

SU( ja − ja−1)× U(1)b−1 , (168)

where SU(1) denotes the trivial group. The flavor symmetry group F of the Class S theory is
obtained as a quotient

F =
∏

i Fi

Z
. (169)
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Let ZF be the center of F :=
∏

i Fi . The group Z ⊆ ZF is obtained by taking Pontryagin dual
of a surjective map

bZF → ÒZ = bZF/YF , (170)

where YF is a subgroup of bZF whose computation was described in [66]. First of all, there
is a contribution YF,Pi

⊆ YF coming from each puncture Pi , and then there is a contribution
eYF ⊆ YF coming from all punctures put together. The group YF is recovered as the combined
span of all YF,Pi

and eYF inside bZF . Finally, as discussed in [76] the 1-form symmetry group of
the Class S theory is trivial.

Review of the magnetic quiver. Let us now review the magnetic quiver of the Class S theory
discussed in [75]. We first associate a sub-quiver to each puncture Pi which can be described
as the following 3d N = 4 Lagrangian theory

· · · u(ni,|ρi |−1) ,u(ni,2)u(ni,1)[su(n)H] (171)

where

ni,J = n−
J
∑

j=1

ρi, j . (172)

We see that the gauge nodes for ja−1 < J < ja are balanced for 1 ≤ a ≤ b, and give rise to an
emergent
⊕b

a=1 su( ja− ja−1)C Coulomb symmetry in the IR. Moreover, the gauge nodes J = ja
for 1≤ a ≤ jb−1 are unbalanced and give rise to u(1)⊕(b−1)

C Coulomb symmetry in the IR. Thus,
the contribution of this sub-quiver to the IR Coulomb 0-form symmetry algebra matches the
flavor symmetry algebra fi associated to the puncture Pi shown in (167).

The full magnetic quiver of the Class S theory is then obtained by gauging the diagonal
su(n)H symmetry of all the sub-quivers, resulting in the theory

u(n1,1) su(n)H

u(n2,1)

u(nk,1)

· · ·u(n1,|ρ1|−1)

· · · u(n2,|ρ2|−1) ,

· · · u(nk,|ρk|−1)

(173)

where the su(n)H node is unbalanced, and thus the IR Coulomb 0-form symmetry algebra is
f=
⊕

i fi , matching with the flavor symmetry algebra of the Class S theory.

Global form of the magnetic quiver. What is the gauge group that we should choose? Apri-
ori there are many choices

∏k
i=1

∏|ρi |−1
J=1 U(ni,J )× SU(n)H
Zm

, (174)

parametrized by divisors m of n. The 1-form symmetry of the theory for such a choice is

Γ (1) = Zn/m . (175)

To match it with the trivial 1-form symmetry of the Class S theory, we are forced to pick the
gauge group

G =
∏k

i=1

∏|ρi |−1
J=1 U(ni,J )× SU(n)H
Zn

, (176)
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for the choice m= n.
This global form is actually manifest in the following usual presentation of the MQ

U(n1,1) U(n)H

U(n2,1)

U(nk,1)

· · ·U(n1,|ρ1|−1)

· · · U(n2,|ρ2|−1) ,

· · · U(nk,|ρk|−1)

(177)

with an additional instruction of ungauging a U(1). If we perform this U(1) ungauging on the
central U(n)H node, we are forced to remove also the Zn center of the SU(n)H component of
U(n)H as this Zn sits inside the U(1) center of U(n)H being removed. Due to the presence of
bifundamental matter, this Zn also sits inside the U(1) center of all the other unitary gauge
groups. Thus, performing the U(1) ungauging at U(n)H node indeed leaves behind the G
gauge group appearing in (176). Similar discussions also appeared in [77], where a discussion
regarding other U(1) ungaugings can also be found (see also [78]).

Computing flavor symmetry group using the magnetic quiver. Since, by this simple ar-
gument based on 1-form symmetry, we have no other possible choice for the gauge group,
it better be true that the IR Coulomb 0-form symmetry group for this choice of gauge group
matches the flavor symmetry group of the Class S theory.

This is a straightforward application of the special case of our general prescription de-
scribed in section 4.5. Recall there we also encountered two types of contributions. The first
type of contributions came from unbalanced unitary gauge nodes. Collecting all such contri-
butions from the unbalanced unitary gauge nodes situated along the sub-quiver leg associated
to the puncture Pi provide the contribution YF,Pi

of [66]. The second type of contribution
comes from the sole special unitary unbalanced gauge node, which provides the contribution
eYF of [66]. In this way, we find that the IR Coulomb 0-form symmetry group of the magnetic
quiver (with the correct global form) described above matches the flavor symmetry group F
of the Class S theory.

5.1.2 Examples

Let us see this matching explicitly for the following three examples.

Example 1: Trinion Tn. The first example we consider is the 4d trinion Tn theory, obtained
as a Class S theory by compactifying 6d N = (2,0) SCFT of An−1 type on a sphere with 3
maximal regular punctures. Each puncture provides an su(n) flavor symmetry algebra. Thus,
the total flavor symmetry algebra is

f= su(n)1 ⊕ su(n)2 ⊕ su(n)3 , (178)

with associated F = SU(n)1 × SU(n)2 × SU(n)3 with center

ZF = (Zn)1 × (Zn)2 × (Zn)3 . (179)

We assume n > 3, because as is well known there is an enhancement of the above flavor
symmetry algebra to f= e6 for n= 3, in which case the T3 trinion theory coincides with the E6
Minahan-Nemeschansky theory. This was discussed as the first example in section 4.3 of [66].
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The associated magnetic quiver is

u(n− 1) su(n)H

u(n− 1)

u(n− 1)

u(n− 2)· · ·

u(n− 2) · · ·

u(n− 2) · · ·

u(1)

u(1) ,

u(1)

(180)
with gauge group

G =
∏n−1

i=1 U(i)3 × SU(n)H
Zn

. (181)

Let us now compute the IR Coulomb 0-form symmetry group using the arguments of section
4.5. Since every unitary gauge node is balanced, we do not have any puncture dependent
contribution i.e. YF,Pi

= 0. On the other hand, the contribution eYF is obtained from the
monopole operator O, whose charge under ZF is the same as that of the representation

F1 ⊗ F2 ⊗ F3 , (182)

of F , where Fi is the fundamental representation of SU(n)i ⊂ F . This is because the su(n)H
node hits each balanced sub-quiver i at the node of Dynkin diagram of su(n)i corresponding
to the fundamental representation of su(n)i .

These contributions match those appearing in [66], and as described there the flavor sym-
metry group can written as

F =
SU(n)1 × SU(n)2 × SU(n)3

Zn ×Zn
. (183)

We refer the reader to [66] for more details regarding the identity of the two Zn subgroups
appearing in the denominator.

We can also discuss the case of n = 3, for which it was argued in [66] that the full flavor
symmetry group must be E6/Z3 as that is the only possible enhancement of (183) for the
n = 3 case. We can see this flavor group directly from the MQ, which is obtained by a U(1)
ungauging of

U(2) U(3)H U(2)

U(2)

U(1) U(1) .

U(1)

(184)

Instead of performing the U(1) ungauging on the U(3)H gauge node, let us perform it on one
of the U(1) gauge nodes. The magnetic quiver can then be expressed as

U(2) U(3)H U(2)

U(2)

U(1) U(1) ,

F

(185)

where we have a fundamental hyper charged under the top U(2) gauge node. Every unitary
gauge node is balanced and hence the IR Coulomb 0-form symmetry algebra is

f= e6 . (186)
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Since there are no unbalanced unitary or special unitary gauge nodes, the IR Coulomb 0-form
symmetry group is the centerless global form

F = E6/Z3 , (187)

of f= e6.

Example 2: Free bifundamental hyper. As a second example, consider the Class S theory
obtained by compactifying 6d N = (2, 0) SCFT of An−1 type on a sphere with 2 maximal
regular punctures P1,P2 and 1 minimal regular puncture P3. Each maximal puncture provides
an su(n) flavor symmetry algebra, while the minimal puncture provides u(1) flavor symmetry
algebra. Thus, the total flavor symmetry algebra is

f= su(n)1 ⊕ su(n)2 ⊕ u(1) , (188)

with associated F = SU(n)1 × SU(n)2 × U(1) with center

ZF = (Zn)1 × (Zn)2 × U(1) . (189)

The resulting 4d N = 2 theory can be recognized as a free hypermultiplet transforming in
bifundamental representation of two su(n) factors of f, with the u(1) factor of f rotating the
bifundamental hyper. This was discussed as the second example in section 4.1 of [66].

The associated magnetic quiver is

u(n− 1) su(n)H u(n− 1)

u(1)

u(n− 2)· · · u(n− 2) · · ·u(1) u(1) ,
(190)

with gauge group

G =
U(1)3 ×
∏n−1

i=2 U(i)2 × SU(n)H
Zn

. (191)

Let us now compute the IR Coulomb 0-form symmetry group using the arguments of section
4.5. Since every unitary gauge node is balanced in the sub-quivers associated to punctures P1
and P2, we have YF,P1

= YF,P2
= 0. On the other hand, the U(1) gauge node comprising the

sub-quiver associated to P3 contributes a genuine local operator of charge n under U(1) factor
of ZF (and charge 0 under each (Zn)i factor). This is precisely the contribution YF,P3

of [66].
The contribution eYF is obtained from the monopole operator O, whose charge under

(Zn)1 × (Zn)2 factor of ZF is the same as that of the representation

F1 ⊗ F2 , (192)

of SU(n)1 × SU(n)2 factor of F , where Fi is the fundamental representation of SU(n)i ⊂ F .
This is because the su(n)H node hits each balanced sub-quiver i ∈ {1,2} at the node of Dynkin
diagram of su(n)i corresponding to the fundamental representation of su(n)i . Moreover, O
also has charge +1 under U(1) factor of ZF .

These contributions match those appearing in [66], and as described there the flavor sym-
metry group can written as

F =
SU(n)1 × SU(n)2 × U(1)

Zn ×Zn
. (193)

We refer the reader to [66] for more details regarding the identity of the two Zn subgroups
appearing in the denominator.
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Example 3. As a final example, let us consider a Class S theory involving more general reg-
ular punctures that are neither maximal nor minimal. We are compactifying A3 N = (2, 0)
theory on a sphere with three punctures. The puncture P1 has partition ρ1 = {2,1, 1}, the
puncture P2 has partition ρ2 = {2,2}, and the puncture P3 is a maximal puncture with parti-
tion ρ3 = {1, 1,1, 1}. This was discussed as the third example in section 4.1 of [66].

The flavor symmetry algebras associated to the punctures are f1 = su(2)1⊕u(1), f2 = su(2)2
and f3 = su(4), with the total flavor symmetry algebra being

f= su(2)1 ⊕ u(1)⊕ su(2)2 ⊕ su(4) , (194)

with associated F = SU(2)1 × U(1)× SU(2)2 × SU(4) with center

ZF = (Z2)1 × U(1)× (Z2)2 ×Z4 . (195)

The associated magnetic quiver is

u(2) su(4)H u(3)

u(2)

u(1) u(2) u(1) ,

(196)

with gauge group

G =
U(1)2 × U(2)3 × U(3)× SU(4)H

Z4
. (197)

Let us now compute the IR Coulomb 0-form symmetry group using the arguments of section
4.5. Since every unitary gauge node is balanced in the sub-quivers associated to punctures P2
and P3, we have YF,P2

= YF,P3
= 0. On the other hand, the unbalanced u(2) gauge node

in the sub-quiver associated to P1 contributes a genuine local operator whose charge under
(Z2)1 factor of ZF is the same as that of the fundamental representation F1 of SU(2)1. This is
because this unbalanced u(2) gauge node hits once the Dynkin diagram of su(2)1 formed by
the u(1) gauge node in the sub-quiver associated to P1. Moreover, this genuine local operator
also has charge 4 under the U(1) factor of ZF which arises from this unbalanced u(2) gauge
node.

The contribution eYF is obtained from the monopole operator O, whose charge under
(Z2)1 × (Z2)2 ×Z4 factor of ZF is the same as that of the representation

F2 ⊗ F , (198)

of SU(2)1×SU(2)2×SU(4) factor of F , where F2 is the fundamental representation of SU(2)2
and F is the fundamental representation of SU(4). This is because the su(4)H node does not
hit the Dynkin diagram of su(2)1, while hitting the su(2)2 and su(4) Dynkin diagrams at the
nodes corresponding to the fundamental representations of su(2)2 and su(4). Moreover, O
also has charge 2 under U(1) factor of ZF .

Since all charges under U(1) factor of ZF are even, we can scale them half. The scaled
contributions match those appearing in [66], and as described there the flavor symmetry group
can written as

F =
SU(2)1 × U(1)× SU(2)2 × SU(4)

Z4 ×Z2
. (199)

We refer the reader to [66] for more details regarding the identity of the Z4 and Z2 subgroups
appearing in the denominator.
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Table 1: Rank 2 5d SCFTs. We list the IR gauge theory description as well as the
flavor symmetry algebra. We determine the group structure from both 5d and the
corresponding 3d magnetic quivers.

Model Gauge Theory Flavor algebra

2 SU(3)1/2 + 9F so(20)
5 SU(3)1 + 8F so(16)⊕ su(2)

12 SU(3)0 + 6F su(6)⊕ su(2)2

9 SU(3)3/2 + 7F so(14)⊕ u(1)
26 SU(3)2 + 4F su(5)⊕ u(1)

5.2 5d SCFTs

5d superconformal field theories (SCFTs) with 8 supercharges are closely related to 3d N = 4
theories. The proposed correspondence is that the Higgs branch of the 5d SCFT is given by
the Coulomb branch of the 3d N = 4 IR SCFT arising from the associated magnetic quiver
(MQ) [22, 23], which is again a 3d N = 4 quiver gauge theory. This conjecture has passed
numerous non-trivial tests. It can be motivated from the 5d brane-web realization of 5d SCFTs
[20, 23, 26, 27, 31, 32], but also via a geometric construction of the 5d theory in M-theory on
a canonical singularity: in the case of isolated hypersurface singularities, the MQs for the 5d
theories can be derived from the geometry [28,35,42].

One salient feature of 5d SCFTs is the flavor symmetry, which often is enhanced compared
to the flavor symmetry of an IR gauge theory description obtained in the IR after performing
a mass deformation (i.e. moving onto the extended Coulomb branch) of the UV 5d SCFT. The
simplest class of such models are the Seiberg En+1 theories having UV flavor symmetry en+1,
which after a mass deformation give rise to SU(2)+ nF gauge theories in the IR with IR flavor
symmetry so(2n)⊕ u(1) [79].

The flavor symmetry is encoded in terms of the magnetic quiver as well: for simplicity
let us consider MQs which are built from

∏

i U(ni) gauge nodes (along with the additional
instruction of a ungauging a U(1) for each connected component of the MQ), connected by
bifundamentals such that there is a single bifundamental between any two nodes and the
resulting quiver has no loops. Then the balanced unitary nodes give rise to the non-abelian
part of the flavor symmetry algebra and the unbalanced nodes give rise to the abelian part of
the flavor symmetry algebra. The global form can be obtained using the methods in this paper,
specifically section 4. Note that the analysis of that section is applied after making a suitable
choices of U(1) ungaugings.

In this section we will compare the global form of the flavor symmetries of the 5d SCFTs
and their associated 3d MQ theories. The examples we will focus on are rank 2 theories. A
complete list of all MQs for rank 2 theories can be found in [32], using the method of [31].
The flavor symmetry can be determined alternatively from geometry as in [68, 80–87]. The
models we consider are shown in table 1 and their magnetic quivers are in table 2. The 5d
theories have gauge theory descriptions with SU(3) gauge groups and fundamental flavor and
thus no 1-form symmetry (which in principle upon dimensional reduction can contribute to
the 0-form symmetry of the MQ theory).

5.2.1 Flavor symmetry groups from MQs

To derive the flavor symmetry from the MQs we simply apply the special cases of our general
analysis discussed in sections 4.5 and 4.6. The MQs are all listed in table 2. All nodes are uni-
tary: balanced nodes are white, unbalanced ones are black. The magnetic quiver is obtained
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Table 2: The Magnetic Quivers for the 5d SCFTs listed in table 1. Each node labeled
by n corresponds to a U(n) gauge node, and connection lines to bi-fundamentals. The
subgraph given by the white nodes is the Dynkin diagram of the non-abelian part of
the flavor symmetry algebra (i.e. the balanced nodes). The black are unbalanced
nodes. The MQ is obtained by the ungauging of one of the nodes.

Model Magnetic Quiver Flavor Group

2
1 2 3 4 5 6 7 8 5 2

4

Ss(20)

5
1 2 3 4 5 6 4 2 1

3

Ss(16)×SU(2)
Z2

12

1 2 3 2 1

1 2 1

SU(6)/Z3×SO(4)
Z2

9
1 2 3 4

5

3 1

3 1

Spin(14)×U(1)
Z4

26

1 2 2 1

1

1 1 1 1

1 1 U(5)

by ungauging a U(1) in each connected component of the listed quiver. There is a choice in
this, and we will pick the ungaugings that allow us to apply the analysis of sections 4.5 and
4.6.

To determine the flavor symmetry group from the magnetic quiver for the cases listed in
the table 2, we have to simply follow the following rules:

1. Pick a connected component α of the listed magnetic quiver. Determine the set of bal-
anced nodes, which form a non-abelian Lie algebra fα. The number of unbalanced nodes
Uα determines an abelian Lie algebra u(1)|Uα−1|. The Coulomb flavor symmetry algebra
f of the 3d IR SCFT associated to the full magnetic quiver is obtained by picking the
component β with the maximal associated algebra, i.e. f= fβ ⊕ u(1)|Uβ−1|.

2. Ungauge a u(1) in the each connected component α. This is done at the location of
an unbalanced node. If the unbalanced node is u(n) for n > 1, then we are left with
a special unitary gauge node su(n), and the gauge group associated to the connected
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component α is

Gα =
∏

i U(ni)× SU(n)
Zn

. (200)

That is the center Zn of the numerator is automatically removed in the U(1) ungauging
process, as discussed in [77] and after equation (177).

On the other hand, if the unbalanced node is u(1), then we are left with a fundamental
flavor there and the gauge group associated to the connected component α is

Gα =
∏

i

U(ni) . (201)

After the ungauging, for the cases appearing in table 2, we are left with either no unbal-
anced nodes or another unbalanced unitary gauge node.

3. The position of the unbalanced unitary or special unitary node determines the represen-
tation under f of the gauge monopole operators as described in sections 4.5 and 4.6. We
account for monopole operators coming from all connected components. From this the
global form of the flavor symmetry group is determined, by quotienting out the part of
the flavor center (of the simply connected group associated to f) that acts trivially on the
monopole operators.

We will now determine the global form of the flavor symmetry groups in the examples of
table 2.

Model 2. The balanced (white) nodes in the magnetic quiver form the Dynkin diagram of

f= so(20) . (202)

There is no abelian factor in the flavor algebra because there is a single unbalanced node
(shown in black). We ungauge the U(1) at the location of this unbalanced node and land in
the special case of our general analysis discussed in section 4.5. The gauge group is

G =
∏8

i=1 U(i)× U(4)× U(5)× SU(2)

Z2
. (203)

The unbalanced special unitary node is attached to the spinor node of so(20), and thus we
have a monopole operator transforming in the spinor representation8 of so(20). Since we
do not have a cospinor representation, we can remove the Z2 subgroup of the Z2 × Z2 cen-
ter of Spin(20), which acts on cospinor representation, but leaves the spinor representation
invariant. Thus the flavor symmetry group is

F = Spin(20)/Z2 = Ss(20) , (204)

where the group Ss(20) is a global form of so(20)which admits spinor representation but does
not admit cospinor or vector representations of so(20).

8More precisely, we are only claiming that we have a monopole operator transforming in a representation of
so(20) having the same charges under the center of the simply connected group Spin(20) as the spinor represen-
tation of so(20). However, for brevity here and in what follows, we will blur this distinction, but the reader should
keep this in mind.
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Model 5. Here the balanced nodes form f= so(16)⊕ su(2). There is no abelian factor in the
flavor algebra. After ungauging U(1) at the location of the unbalanced U(2) gauge node, we
obtain the MQ whose gauge group is

G =
∏6

i=1 U(i)× U(3)× U(4)× SU(2)× U(1)

Z2
. (205)

The unbalanced special unitary node is attached to the spinor node of so(16) and the funda-
mental node of su(2), implying that we have a monopole operator transforming in representa-
tion (S,F) of so(16)⊕ su(2), where S is spinor representation of so(16) and F is fundamental
representation of su(2). There is again no monopole operator transforming in the cospinor,
so we can reduce Spin(16) to Ss(16). The center of Ss(16) is Z2 which acts non-trivially on
the spinor representation, and the Z2 center of SU(2) acts non-trivially on the fundamental
representation. Thus the (S,F) monopole operator is left invariant by the diagonal Z2 and we
can express the flavor symmetry group as

F = Ss(16)× SU(2)
Z2

. (206)

Model 12. Similarly for model 12, we have

f= su(6)⊕ su(2)⊕ su(2) . (207)

The unbalanced special unitary node (obtained after U(1) ungauging) intersects the Dynkin
diagrams of simple components of f such that we have a monopole operator in representation
(Λ3,F,F) of f, where Λ3 is the 3-index antisymmetric irreducible representation of dimension
20 of su(6). Since only Λ3 of su(6) appears, we can begin with the smallest global form
SU(6)/Z3 of su(6) allowing this representation. The center of SU(6)/Z3 is Z2 which acts non-
trivially on Λ3. Similarly, since we only have the bifundamental (F,F) of su(2)⊕su(2) = so(4),
we can begin with its smallest global form SO(4) allowing this representation. The center of
SO(4) is Z2 which acts non-trivially on (F,F). Thus, the diagonal Z2 of the Z2 centers of
SU(6)/Z3 and SO(4) acts trivially on (Λ3,F,F) the monopole, leading to the flavor symmetry
group

F =
SU(6)/Z3 × SO(4)

Z2
. (208)

Model 9. The balanced nodes provide an so(14) flavor algebra and the unbalanced nodes
provide a u(1) flavor algebra, since we have 2 unbalanced nodes. The total flavor algebra is
thus

f= so(14)⊕ u(1)C . (209)

We choose to ungauge one of the unbalanced U(1) nodes. The gauge group is thus

G =
5
∏

i=1

U(i)× U(3)2 × U(1) . (210)

We have to now apply the analysis of section 4.6. Since the unbalanced U(1) gauge node
is attached to the Dynkin diagram of so(14) at the location of co-spinor node, the monopole
operator associated to the unbalanced U(1) node transforms in the cospinor irreducible repre-
sentation C of so(14). Simultaneously, the monopole operator also carries a charge +1 under
a global form U(1)C of the u(1)C factor of f arising from this unbalanced node. Since, the
representation C has charge −1 under the Z4 center of the simply connected group Spin(14)
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associated to so(14), the monopole operator discussed above is uncharged under the diagonal
combination of the Z4 center of Spin(14) and the Z4 subgroup of the group U(1)C . The flavor
symmetry group is thus

F =
Spin(14)× U(1)

Z4
. (211)

Model 26. There are two connected components in the MQ corresponding to two branches
of the moduli space. The first component gives rise to algebra f1 = su(5), while the second
component gives rise to a larger algebra f2 = su(5)⊕ u(1)C . The flavor symmetry algebra is
thus

f= su(5)⊕ u(1)C , (212)

provided by the second component. Ungauging the unbalanced U(1) gauge node in the first
component results in an MQ with balanced unitary gauge nodes only, and thus we do not obtain
any monopole operator relevant for the analysis of flavor group. Ungauging an unbalanced
U(1) gauge node in the second component leaves behind another unbalanced U(1) gauge
node which provides a monopole operator transforming in anti-fundamental representation
of su(5) along with charge +1 under U(1)C , leading to the flavor group

F =
SU(5)× U(1)C

Z5
= U(5) . (213)

5.2.2 Flavor symmetry groups from string theory constructions

Reference [68] described a computation of flavor symmetry groups of 5d SCFTs using their
string theory constructions. The key physical idea involved is as follows. Study the 5d con-
formal theory on a flat spacetime with a non-conformal vacuum at infinity. More precisely,
one chooses a supersymmetric non-conformal vacuum lying in the Coulomb branch of vacua9

of the 5d SCFT. The theory now flows and in the IR we obtain a 5d supersymmetric gauge
theory with an abelian gauge group U(1)r , where r is referred to as the rank of the 5d SCFT.
In addition, we have massive BPS particles10 charged under U(1)r and the flavor symmetry.
The flavor group is then obtained easily by computing flavor charges of gauge invariant combi-
nations of the above charges, namely those linear combinations which have zero U(1)r gauge
charge.

The charges under U(1)r can be read off from any string theory construction, but the
charges under flavor symmetry require us to use “good” string theory constructions, namely
those that manifest the full enhanced flavor symmetry algebra of the 5d SCFT. As is well-
known, there are two main kinds of string theory constructions of 5d SCFTs: the first kind
involves compactifications of M-theory on Calabi-Yau threefolds while the second kind involves
intersecting brane configurations in Type IIB superstring theory. There is always a good M-
theory construction, which we will now focus on to compute explicitly the flavor symmetry
group of the 5d SCFTs appearing in table 1.

In an M-theory construction, the charges of all BPS particles can be captured by charges of
a special set of BPS particles arising from M2 branes wrapping irreducible holomorphic curves
in the Calabi-Yau threefold. The gauge/flavor charges are described by intersection numbers

9It is important not to confuse this with the extended Coulomb branch, which is simply referred to as the
Coulomb branch in many studies on 5d SCFTs. The extended Coulomb branch is a space obtained by fibering
Coulomb branch of vacua on the base space comprising of a family of theories obtained from the 5d SCFT by
performing supersymmetric mass deformations. The Coulomb branch of vacua being referred here is the fiber at
the origin (namely the point with zero mass deformations) of the base space of extended Coulomb branch.

10One might worry about non-BPS excitations and whether they provide any additional charges that can modify
the computation. From the string theory constructions, it is possible to argue that they do not provide any new
charges.
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of these curves with compact/non-compact divisors. Thus the set of data required for com-
putation of flavor groups is a set C of holomorphic curves (whose charges span charges of all
other curves) along with their intersection numbers with compact and non-compact divisors.
Recently, a lot of work has been performed on the computation of such a set C of curves along
with their intersection numbers, and crucially the intersection numbers with non-compact
divisors capturing enhanced flavor symmetries. These works have used various geometric
techniques involving blow-downs of flat [88,89] (which built upon the work of [90,91]) and
non-flat [80,82–84,92] resolutions of non-minimal elliptic fibrations, along with more general
local surface geometry structures [86, 87, 93–99] and a comprehensive description of the as-
sociated Calabi-Yau Kähler cone structure [80,82–84,100] that interpolates between different
resolutions via flop transitions.

We now describe the spanning set C of curves and the relevant charges of BPS particles
associated to these curves, using this information to compute the flavor group for all the models
appearing in table 1. Detailed computation of the set C and its intersection numbers can be
found in appendix A.

Model 2. One can use any of the above described methods to compute a sufficient spanning
set C of curves and its intersection numbers. One finds that C contains four curves whose
charges are

q(C1) =
�

0,1|0 (mod 2), 1 (mod 2)
�

,

q(C2) =
�

− 2, 2|0 (mod 2), 0 (mod 2)
�

,

q(C3) =
�

2,−1|1 (mod 2), 1 (mod 2)
�

,

q(C4) =
�

1,−1|1 (mod 2), 1 (mod 2)
�

,

(214)

where the first two charges are under the U(1)2 gauge group, and the last two charges are
under theZS2×Z

C
2 center of Spin(20) simply connected group associated to the flavor symmetry

algebra f= so(20), where ZS2 is the subgroup of the center under which spinor and vector are
charged and ZC2 is the subgroup of the center under which co-spinor and vector are charged.
From this the reader easily sees that all gauge-invariant linear combinations of these curves
are either trivially charged under ZS2 × Z

C
2 or have charge

�

1 (mod 2), 0 (mod 2)
�

. Thus we
are again led to the flavor group F = Ss(20).

The above curves Ci have a nice physical interpretation as follows. Perform a mass defor-
mation of the 5d SCFT such that it flows in the IR to 5d N = 1 gauge theory with gauge group
Sp(2) and 9 fundamental hypers. Then, the curve C1 gives rise to a BPS instanton of the gauge
theory. The curves C2 and C3 give rise to W-bosons of Sp(2) upon moving onto the Coulomb
branch of this gauge theory. Finally, the curve C4 gives rise to one of the 9 hypers.

Model 5. The analysis is similar to the above case. We again have four curves Ci which have
the same physical interpretation after mass deforming to 5d N = 1 gauge theory with gauge
group Sp(2) and 8 fundamental hypers. One can use any of the above described methods to
compute that these curves have charges

q(C1) =
�

0,1|1 (mod 2), 0 (mod 2), 0 (mod 2)
�

,

q(C2) =
�

− 2, 2|0 (mod 2), 0 (mod 2), 0 (mod 2)
�

,

q(C3) =
�

2,−1|0 (mod 2), 0 (mod 2), 1 (mod 2)
�

,

q(C4) =
�

1,−1|1 (mod 2), 1 (mod 2), 0 (mod 2)
�

,

(215)

where the first two charges are under the U(1)2 gauge group, the next two charges are under
the ZS2 ×Z

C
2 center of Spin(16) simply connected group associated to so(16) ⊂ f, and the last

48

https://scipost.org
https://scipost.org/SciPostPhys.16.3.080


SciPost Phys. 16, 080 (2024)

charge is under the Z2 center of SU(2) simply connected group associated to su(2) ⊂ f. From
this the reader easily sees that all gauge-invariant linear combinations of these curves are
either trivially charged under ZS2 ×Z

C
2 ×Z2 or have charge

�

1 (mod 2), 0 (mod 2), 1 (mod 2)
�

.
Thus we are again led to the flavor group described in (206).

Model 12. It is again sufficient to consider four curves Ci which have similar physical inter-
pretation as above after mass deforming to 5d N = 1 gauge theory with gauge group SU(3),
Chern-Simons level 0, and 6 fundamental hypers. One can use any of the above described
methods to compute that these curves have charges

q(C1) =
�

0, 0|0 (mod 6), 0 (mod 2), 0 (mod 2)
�

,

q(C2) =
�

− 1,2|0 (mod 6), 0 (mod 2), 1 (mod 2)
�

,

q(C3) =
�

2,−1|0 (mod 6), 1 (mod 2), 0 (mod 2)
�

,

q(C4) =
�

1,−1|1 (mod 6), 0 (mod 2), 0 (mod 2)
�

,

(216)

where the first two charges are under the U(1)2 gauge group, the next charge is under the
Z6 center of SU(6) simply connected group associated to su(6) ⊂ f, and the last two charges
are under the ZS2 ×Z

C
2 center of Spin(4) = SU(2)× SU(2) simply connected group associated

to so(4) = su(2) ⊕ su(2) ⊂ f. From this the reader can see that all gauge-invariant linear
combinations of these curves are either trivially charged under Z6 × ZS2 × Z

C
2 or have charge

�

3 (mod 6), 1 (mod 2), 1 (mod 2)
�

. Thus we are again led to the flavor group described in
(208).

Model 9. It is again sufficient to consider four curves Ci which have similar physical inter-
pretation as above after mass deforming to 5d N = 1 gauge theory with gauge group Sp(2)
and 7 fundamental hypers. One can use any of the above described methods to compute that
these curves have charges

q(C1) =
�

0, 1|3 (mod 4), 0
�

,

q(C2) =
�

− 2,2|0 (mod 4), 0
�

,

q(C3) =
�

2,−1|0 (mod 4),−1
�

,

q(C4) =
�

1,−1|2 (mod 4), 0
�

,

(217)

where the first two charges are under the U(1)2 gauge group, the next charge is under the
Z4 center of Spin(14) simply connected group associated to so(14) ⊂ f, and the last charge
is under the U(1) group associated to u(1) ⊂ f. From this the reader can see that all gauge-
invariant linear combinations of these curves are either trivially charged under Z4 × U(1) or
have charge a multiple of

�

1 (mod 4),−1
�

. Thus we are again led to the flavor group described
in (211).

Model 26. It is again sufficient to consider four curves Ci which have similar physical inter-
pretation as above after mass deforming to 5d N = 1 gauge theory with gauge group SU(3),
Chern-Simons level 2 and 7 fundamental hypers. One can use any of the above described
methods to compute that these curves have charges

q(C1) =
�

− 1,1|4 (mod 5), 0
�

,

q(C2) =
�

− 1,2|1 (mod 5), 0
�

,

q(C3) =
�

2,−1|0 (mod 5),−1
�

,

q(C4) =
�

1,−1|1 (mod 5), 0
�

,

(218)
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where the first two charges are under the U(1)2 gauge group, the next charge is under the Z5
center of SU(5) simply connected group associated to su(5) ⊂ f, and the last charge is under
the U(1) group associated to u(1) ⊂ f. From this the reader can see that all gauge-invariant
linear combinations of these curves are either trivially charged under Z5×U(1) or have charge
a multiple of
�

1 (mod 5),−1
�

. Thus we are again led to the flavor group described in (213).

5.3 3d mirror symmetry

As a final consistency check, we can apply our methods to compute and match symmetries
and anomalies of two 3d N = 4 gauge theories that are related by 3d mirror symmetry. Let
us illustrate this with the general example of 3d N = 4 gauge theory

U(m) [su(2m)H] , (219)

namely U(m) gauge theory with 2m fundamental hypers. The Higgs flavor symmetry algebra
is

fH = su(2m)H , (220)

rotating the fundamental hypers, and the IR Coulomb flavor symmetry algebra is

fIRC = su(2)C , (221)

because the U(m) gauge node is balanced. The Higgs 0-form symmetry group is

FH = PSU(2m)H , (222)

because the full center Z2m of SU(2m)H is a subgroup of the U(1) center of the U(m) gauge
group. From the analysis of section 4.5, the IR Coulomb 0-form symmetry group is

F IR
C = SO(3)H , (223)

as there are no unbalanced unitary or special unitary gauge nodes. From the analysis of section
4.5 we also see that there is mixed flavor-gauge monopole operator having winding number
1 around a U(1) subgroup of the maximal torus of PSU(2m)H and a charge under the Z2
center of SU(2)C which is the same as that of the fundamental representation of SU(2)C .
This is because the flavor node [su(2m)H] hits the Dynkin diagram of su(2)C at the node
corresponding to fundamental representation of su(2)C . This translates to a mixed ’t Hooft
anomaly of the IR SCFT between the Higgs and Coulomb 0-form symmetry groups of the form

AIR
4 = exp

�

πi

∫

wH
2 ∪wC

2

�

, (224)

where wC
2 is the Z2 valued second Stiefel-Whitney class of the background SO(3)C bundle and

wH
2 is the Z2m valued obstruction class for lifting background PSU(2m)H bundles to SU(2m)H

bundles.
Now consider its 3d N = 4 mirror gauge theory [4]

U(m− 1) U(m)· · ·U(2)U(1) U(m− 1) · · · U(2) U(1) .

[su(2)H]

(225)
The Higgs flavor symmetry algebra is

fH = su(2)H , (226)
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rotating the two fundamental hypers of U(m) gauge group, and the IR Coulomb flavor sym-
metry algebra is

fIRC = su(2m)C , (227)

because all the unitary gauge nodes are balanced. The Higgs 0-form symmetry group is

FH = SO(3)H , (228)

because the center Z2 of SU(2)H is a subgroup of the U(1) center of each unitary gauge group.
From the analysis of section 4.5, the IR Coulomb 0-form symmetry group is

F IR
C = PSU(2m)H , (229)

as there are no unbalanced unitary or special unitary gauge nodes. From the analysis of section
4.5 we also see that there is mixed flavor-gauge monopole operator having winding number
1 around the maximal torus of SO(3)H and a charge under the Z2m center of SU(2m)C which
is the same as that of the irreducible representation of su(2m)C whose highest weight has a
single non-zero Dynkin coefficient, namely the m-th one with dm = 1. This is because the
flavor node [su(2)H] hits the Dynkin diagram of su(2m)C at the node corresponding to this
representation of su(2m)C . This translates to a mixed ’t Hooft anomaly of the IR SCFT between
the Higgs and Coulomb 0-form symmetry groups of the form

AIR
4 = exp

�

πi

∫

wC
2 ∪wH

2

�

, (230)

where wH
2 is the Z2 valued second Stiefel-Whitney class of the background SO(3)H bundle and

wC
2 is the Z2m valued obstruction class for lifting background PSU(2m)C bundles to SU(2m)C

bundles.
Thus, we have seen explicitly that the symmetry and anomaly properties of the two mirror

theory are the same up to the exchange of labels C↔ H.

6 Some generalizations

In this section, we discuss a few generalizations of the general considerations of this paper.
We will discuss two different types of generalizations:

1. In the first generalization, we will allow ourselves to perform an N = 2 gauging of flavor
symmetries of 3d N = 4 theories along with the addition of a Chern-Simons level. We
will see that the Chern-Simons level induces a ’t Hooft anomaly purely for the 1-form
symmetry, which is novel feature that we have not encountered in the N = 4 theories
that we studied in this paper. Related models have appeared in [72], motived from the
study of T[M3] compactifications of 6d theories.

2. In the second generalization, we will allow ourselves to perform gaugings of discrete
subgroups of flavor symmetries of 3d N = 4 theories. We will see that this opens up
the possibility of having non-trivial 2-group symmetries within the context of the study
of 3d N = 4 theories involving unitary and special unitary gauge groups. We will also
encounter the presence of mixed ’t Hooft anomalies between these 2-group symmetries
and 0-form symmetries of the 3d N = 4 theory.

6.1 N = 2 gauging of T[SU(n)]

In this subsection we study N = 2 gaugings (possibly with Chern-Simons levels) of su(n)H
Higgs flavor symmetry of T[SU(n)]. We begin with n = 2 and later generalize to arbitrary n.
We find that none of these have a non-trivial 2-group symmetry.
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Symmetries. Consider the 3d N = 2 theory obtained by an N = 2 gauging of the su(2)H
flavor symmetry of the 3d N = 4 theory T[SU(2)] by an SU(2)H gauge group. In addition,
we turn on a Chern-Simons level k for the SU(2)H gauge group while preserving the N = 2
supersymmetry. Due to this Chern-Simons level, non-fractional gauge monopole operators
(which are genuine local operators) start transforming in representations of SO(3)H . For such
monopole operators to be gauge invariant, they must arise at the ends of Wilson line defects
associated to representations of SO(3)H . However, this clearly does not impact the 1-form
symmetry, and we have

Γ (1) = Z2 , (231)

just as for the case of N = 4 SU(2)H gauging. The 0-form symmetry is also the same as for
the N = 4 gauging

F = SO(3)C . (232)

One can argue just as for the case of N = 4 SU(2)H gauging that Z2 and SO(3)C do not
combine to form a 2-group symmetry with a non-trivial Postnikov class.

Purely 1-form anomaly. Consider instead a fractional gauge monopole operator O labeled
by a co-character of SU(2)H having winding number half around its maximal torus. Due to
Chern-Simons level k, the operator O transforms in a representation R of SU(2)H with charge

k (mod 2) , (233)

under the Z2 center of SU(2)H . For O to be gauge invariant, it must arise at the end of of
a Wilson line defect associated to representation R. Using the analysis of [12], this fact is
equivalent to a ’t Hooft anomaly for the 1-form symmetry of the form

A(1)4 = exp

�

πik

∫

P(B2)
2

�

, (234)

where P(B2) is the Pontryagin square of B2 and is a Z4 valued class. This class is even on spin
manifolds, and one can hence define a Z2 valued class 1

2P(B2). The anomaly is this Z2 valued.
It vanishes for k even, but is non-trivial for k odd.

Mixed 1-form 0-form anomaly. The fractional gauge monopole operator O also transforms
in a representation of SU(2)C that is not a representation of SO(3)C , just as for the case of
N = 4 gauging of T[SU(2)]. This is equivalent to a mixed ’t Hooft anomaly between the Z2
1-form and SO(3)C 0-form symmetries, and the full ’t Hooft anomaly can be expressed as

A4 = exp

�

πi

∫

k
P(B2)

2
+ B2 ∪wC

2

�

. (235)

Generalization to T[SU(n)]. It is straightforward to generalize to arbitrary n. We are study-
ing 3d N = 2 theory obtained by an N = 2 gauging of the su(n)H Higgs flavor symmetry of
the 3d N = 4 theory T[SU(n)] by an SU(n)H gauge group. In addition, we turn on a Chern-
Simons level k for the SU(n)H gauge group while preserving the N = 2 supersymmetry. The
non-fractional monopole operators transform in representations of PSU(n)H and so the 1-form
symmetry is

Γ (1) = Zn , (236)

just as for the case of N = 4 SU(n)H gauging. The 0-form symmetry is also the same as for
the N = 4 gauging

F = PSU(n)C . (237)
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One can argue just as for the case of N = 4 SU(n)H gauging that Zn and PSU(n)C do not
combine to form a 2-group symmetry with a non-trivial Postnikov class.

A fractional gauge monopole operator O labeled by a co-character of SU(n)H having wind-
ing number 1/n around its maximal torus transforms, due to Chern-Simons level k, in a rep-
resentation R of SU(n)H with charge

k (mod n) , (238)

under the Zn center of SU(n)H , implying a ’t Hooft anomaly for the 1-form symmetry of the
form

A(1)4 = exp

�

2πik
n

∫

Pσ(n)(B2)

2

�

, (239)

where σ(n) = 0,1 depending on whether n is even, odd respectively, and

P0(B2)
2

:=
P(B2)

2
,

P1(B2)
2

:= B2 ∪ B2 .
(240)

The Pontryagin square P(B2) is Z2n valued and is even for spin manifolds. As a consequence,
its half P(B2)/2 is Zn valued. On the other hand, B2 ∪ B2 is naturally Zn valued.

The fractional gauge monopole operator O also transforms in a representation of SU(n)C
with charge −1 (mod n) under its Zn center, just as for the case of N = 4 gauging of T[SU(n)].
This is equivalent to a mixed ’t Hooft anomaly between the Zn 1-form and PSU(n)C 0-form
symmetries, and the full ’t Hooft anomaly can be expressed as

A4 = exp

�

2πi
n

∫

k
Pσ(n)(B2)

2
− B2 ∪wC

2

�

. (241)

6.2 T[SU(2)]/ZC
2 and its gaugings

In this subsection, we study the gauging of a Z2 subgroup of the SO(3)C 0-form symmetry of
T[SU(2)], which leads to a theory with a non-trivial 2-group symmetry. We also find a mixed
anomaly between this 2-group symmetry and the residual Coulomb 0-form symmetry. Finally,
we study the N = 4 gauging of su(2)H Higgs flavor symmetry of the theory T[SU(2)]/ZC

2
obtained after the Z2 gauging of T[SU(2)].

Let us consider the 3d N = 4 Lagrangian theory

U(1) [su(2)H] ,2 (242)

which denotes a theory having a U(1) gauge group along with 2 hypermultiplets of charge 2
that are rotated by an su(2)H Higgs flavor symmetry algebra. This theory can be obtained by
gauging the Z2 subgroup, denoted ZC

2 , of U(1)C Coulomb 0-form symmetry of the Lagrangian
theory (56) discussed earlier.

We are also interested in the 3d N = 4 SCFT that the above Lagrangian theory flows to. We
call this SCFT T[SU(2)]/ZC

2 because it can be obtained by gauging a Z2 subgroup, denoted ZC
2 ,

of the SO(3)C 0-form symmetry of the 3d N = 4 SCFT T[SU(2)]. This is a consequence of the
fact that the UV theory (242) is obtained by gauging Z2 subgroup of U(1)C 0-form symmetry
of the theory (56), and this U(1)C symmetry embeds as the maximal torus of SO(3)C 0-form
symmetry of the corresponding IR SCFT T[SU(2)].
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1-form symmetry. The symmetries and anomalies of the UV theory were discussed in detail
in section 7.4 of [12], which we review and use to deduce symmetry and anomalies of the IR
SCFT T[SU(2)]/ZC

2 . First of all, there is a

Γ (1) = Z2 , (243)

1-form symmetry coming from the fact that Wilson lines of odd U(1) charges cannot be
screened in the UV theory. This becomes the 1-form symmetry of the IR SCFT. This 1-form
symmetry can also be understood as the dual symmetry arising from the perspective of ZC

2
0-form gauging.

Higgs 0-form symmetry. The Higgs 0-form symmetry algebra of (242) is

fH = su(2)H , (244)

and the Higgs 0-form symmetry group is

FH = SO(3)H , (245)

because the genuine local operators charged under su(2)H are gauge-invariant combinations
of hypermultiplets which all have trivial charge under Z2 center of SU(2)H . The IR SCFT
admits the same Higgs 0-form symmetry group.

Coulomb 0-form symmetry. We label the Coulomb 0-form symmetry group of (242) arising
from the U(1) gauge node as

FC = U(1)′C = U(1)C/Z2 , (246)

to distinguish it from the U(1)C 0-form symmetry of the theory (56).
The IR SCFT admits the same Coulomb 0-form symmetry group. It can be checked easily

using the analysis of [5] that there is no enhancement due to monopole operators. Alterna-
tively, one can understand it from the point of view of gauging ZC

2 subgroup of SO(3)C 0-form
symmetry group of T[SU(2)]. To compute the residual 0-form symmetry after this gauging, we
first compute the commutant of ZC

2 in SO(3)C , which is the maximal torus U(1)C of SO(3)C ,
and then we mod out the commutant by ZC

2 to find that the residual 0-form symmetry is U(1)′C .

2-group symmetry. There is a non-trivial 2-group symmetry formed by Z2 1-form symmetry
and SO(3)H 0-form symmetry, with Postnikov class

δB2 = wH
3 = Bock(wH

2 ) , (247)

where wH
3 is the third Stiefel-Whitney class of background SO(3)H bundles, which can be ob-

tained by applying Bockstein homomorphism associated to the non-split short exact sequence

0→ Z2→ Z4→ Z2→ 0 , (248)

on the second Stiefel-Whitney class wH
2 .

This 2-group symmetry is a consequence of the fact that even though Wilson line opera-
tors of even charge can be screened, the local operators responsible for screening them have
different su(2)H representations depending on whether the charge of Wilson line is a multi-
ple of 4 or not. The non-genuine local operators living at the ends of Wilson line operators
of charge 4m form SO(3)H representations, while the non-genuine local operators living at
the ends of Wilson line operators of charge 4m+ 2 form su(2)H representations that are not
allowed representations of SO(3)H .

The IR SCFT T[SU(2)]/ZC
2 also carries this 2-group symmetry.
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Mixed 2-group 0-form ’t Hooft anomaly. The structure group of the gauge theory (242)
involving the Higgs 0-form symmetry is

S =
U(1)× SU(2)H

Z4
, (249)

where the Z4 in the denominator is obtained by combining the Z4 subgroup of U(1) with
the Z2 center of SU(2)H . The Z4 in the denominator can actually be identified with the Z4
group appearing in the short exact sequence (248) appearing in the description of the 2-group
symmetry of the theory.

We can thus consider a mixed flavor-gauge monopole operator O associated to a co-
character of S with winding number 1/4 around U(1) and winding number 1/2 around the
maximal torus of SU(2)H . This monopole operator O is a solitonic defect associated to the
2-group symmetry described above because its obstruction to being lifted to a combination of
purely (and non-fractional) gauge and purely flavor monopole operator is captured by the Z4
group in the denominator of the structure group S which as remarked above is associated to
the 2-group symmetry. See [12] for a more details regarding such solitonic defects.

The monopole operator O has charge q = 1/4 under U(1)′C . From the analysis of [12], this
fact is equivalent to a mixed ’t Hooft anomaly between the 2-group and the Coulomb 0-form
symmetry of the form

A4 = exp

�

πi
2

∫

BH
w ∪
�

c1

�

U(1)′C
�

(mod 4)
�

�

, (250)

where Bw is a Z4 valued background field associated to the 2-group symmetry comprised out
of the Z2 valued background field B2 for 1-form symmetry and the second Stiefel-Whitney class
wH

2 for background SO(3)H 0-form symmetry bundles, and c1

�

U(1)′C
�

is the first Chern class
for background U(1)′C 0-form symmetry bundles.

The above anomaly for (242) descends to an anomaly in the IR SCFT T[SU(2)]/ZC
2 .

Gauging SU(2)H . Consider performing N = 4 gauging of su(2)H symmetry of T[SU(2)]/ZC
2

by an SU(2)H gauge group

T[SU(2)]/ZC
2 SU(2)H . (251)

In the T[SU(2)]/ZC
2 theory we have a line operator L that cannot be screened, but its square

2L can be screened such that a non-genuine local operator living at the end of 2L transforms
in a representation of SU(2)H that is not a representation of SO(3)H . After gauging SU(2)H ,
this non-genuine local operator needs to be attached to a SU(2)H Wilson line in the same
representation. Thus, after gauging SU(2)H , even 2L is not screened. As a consequence, the
1-form symmetry group is

Γ (1) = Z4 . (252)

The 2-group background Bw in T[SU(2)]/ZC
2 can be identified with the 1-form symmetry back-

ground B′2 in (251).
The 0-form symmetry group remains U(1)′C , and the mixed ’t Hooft anomaly between 2-

group and Coulomb 0-form symmetries of T[SU(2)]/ZC
2 becomes a mixed ’t Hooft anomaly

between 1-form and 0-form symmetries of (251) of the form

A4 = exp

�

πi
2

∫

B′2 ∪
�

c1

�

U(1)′C
�

(mod 4)
�

�

. (253)
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A Geometric computations for 5d SCFTs

In this appendix, we provide more details on the geometric computations leading to the
charges q(Ci) of BPS particles arising from curves Ci in Calabi-Yau threefolds involved in the
construction of 5d SCFTs appearing in table 1.

All the models we consider can be obtained by decoupling from the following 6d geometry,
which is a collision between a D10 Kodaira singularity and an I1 smooth fiber, tuned so that
the collision results in a non-minimal singularity. The fibration is best described in terms of a
so-called Tate model

y2 + b1U x y + b3U5δ2
1 = x3 + b2UV x2 + b4U5δ1 x + b6U10δ4

1 . (A.1)

Here U = 0 is the D10 Kodaira fiber, and V = 0 the locus above which the I1 singular fiber
is located. We furthermore blowup the locus U = V = 0 by inserting a rational curve, and
denote the exceptional section of that by δ1. Non-flat resolution of this model was performed
in [82] and the geometry is given in figure 1, which we reproduced from said paper.

The compact surfaces are denoted by Si and are glued along U = 0, which is a degree
(−2,0) curve. The numbers in the bracket indicate the self-intersection of the curve in the
divisor. The geometry shown is that of the marginal theory, i.e. the 6d parent SCFT (on the
tensor branch, which is modeled by the curve δ1) on a circle. Only once we start decoupling
matter (which geometrically corresponds to performing blowdowns), do we get a theory that
is a genuinely 5d SCFT fixed point.

The flavor symmetry is obtained from the geometry as follows: The non-abelian flavor
symmetry algebra is obtained from the intersection of compact Sa and non-compact Ni divisors.
The complete intersection curves Sa ·Ni will have a normal bundle degree, which if it is (−2, 0)
will indicate that the non-compact divisors are ruled by these curves and correspond to the
Cartans of the flavor symmetry algebra (for a more refined discussion see [82]). On the other
hand, curves that have normal bundle (−1,−1) are inside the compact divisors, and correspond
to hypermultiplets in any associated 5d N = 1 gauge theory description, e.g. with gauge group
Sp(2) and 10 fundamental hypers.

The intersection pattern of the (−2, 0) curves gives the Dynkin diagram of the flavor sym-
metry algebra, however in order to determine the flavor symmetry group, we need to also
determine the charges of the hypers under the flavor and gauge symmetry. Additionally, we
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S1 :

U u10 u14 u11 u15 u12 u16 u13 u9

u6 u5

δ1(0)
V (0)

e11

S2 :

U(0) e1

δ2(4) V (0)

Figure 1: The surface geometry for the marginal theory of type D10− I1, which gives
rise to the rank 2 5d SCFTs discussed in this section (the labels for the curves is chosen
in accord with the derivation of the geometry in [82]). The two compact surfaces are
denoted by Si and the collection of rational curves and their intersections are shown
in the figure. The self-intersection of the curves in each surface is either shown next
to the sections ui , U , V δi , or is −2 for green and −1 for blue curves.

need to determine the charges of W-bosons and instantons under the flavor and gauge sym-
metry. A convenient way of doing so is to convert the resolution information present in figure
1 into a local surface geometry describing explicitly the various compact and non-compact
divisors present in the Calabi-Yau along with the intersections of these divisors.

The surface geometry associated to figure 1, i.e. the KK-theory, is

19
1

2

2l

h+ f -
∑

x i

N0 N1
1

N2

··
·

N8

N3
10 N9 ,

f -x-y f

e-x2 f
x2 -x3

f
x8 -x9

f
2

x9,
x10

f -x , y

l x-y-e1

f -x2 f -e11

x9-x10

f

e

e
e

e

e

e

e

e
e

e

(A.2)

where we used the notation e1 and e11 for the (−1) curves that can be flopped to decouple
hyper-multiplets – in accordance with the notation in figure 1. The figure shows the compact
surfaces Si having been represented as Hirzebruch surfaces ib

d where the subscript d is the
degree of the Hirzebruch surface and the superscript b is the number of additional blowups
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performed on it. An edge between two surfaces denotes an intersection between the two
surfaces and the labels on the edges describe the curves in the two surfaces that are glued at
the locus of the intersection. Multiple edges are denoted by a number between the edge. A
curve e inside a surface denotes the base of the corresponding P1 fibration. This is a compact
curve for the Hirzebruch surfaces and a non-compact curve for the non-compact surfaces Ni . A
curve f inside a surface denotes the fiber of the corresponding P1 fibration. This is a compact
curve for both compact and non-compact surfaces. The curves x i , x , y denote various blowups,
and we finally we have defined the curve h := e + d f . Moving forward we denote e curve of
surface Si as ei and f curve of surface Si as fi .

After a single flop (of the curve e11) the surface geometry can be expressed as

110
0

21

2h

e+2 f -
∑

x i

N0 N1

N2

··
·

N8

N2
10 N9 .

f -x-y f

e-x1-x2 f
x2 -x3

f
x8 -x9

f
2

x9,
x10

f -x , y

f x-y

x1-x2
f

x9-x10

f

e

e
e

e

e

e

e

e
e

e

(A.3)

The non-compact surfaces Ni form the Dynkin diagram of the affine Lie algebra so(20)(1)

which is associated to the fact that this is actually a 6d SCFT with so(20) flavor symmetry
compactified on a circle.

Model 2. This model is obtained by blowing down the curve f1 − x1. This means that we
first flop f1 − x1 and then taking the volume of the flopped curve infinity. This effectively
decouples a hypermultiplet. The effect of this blowdown is that a P1 fibered non-compact
surface intersecting f1− x1 does not remain P1 fibered anymore. In (A.3), N1 is the only such
non-compact surface since

( f1 − x1) ·N1 = ( f1 − x1) ·S1
(x1 − x2) = 1 , (A.4)

where the intersection number ( f1− x1) ·N1 is in the Calabi-Yau threefold and the intersection
number ( f1 − x1) ·S1

(x1 − x2) is in the surface S1. The above intersection number is a con-
sequence of the facts that f1 ·S1

x i = x j ·S1
x i = 0 and x i ·S1

x i = −1. Later we will also use
ei ·Si

ei = −di , where di is the degree of the Hirzebruch surface Si .
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After the blowdown we obtain the surface geometry

19
1

21

2h

h+ f -
∑

x i

N0

N2

··
·

N8

N2
10 N9 ,

f -x-y f

e-x2 f
x2 -x3

f
x8 -x9

f
2

x9,
x10

f -x , y

f x-y

x9-x10

f

e

e

e

e

e

e
e

e

(A.5)

where we have only kept the P1 fibered non-compact surfaces. Taking the gluings into account,
we see that all compact curves are (possibly non-positive) linear combinations of the curves
ei , fi and the blowups x i . Additionally due to the gluing between S1 and S2, we can express
e1 as a linear combination of11 the e2, fi and x i .

We have the identifications

C1 = e2 , C2 = f2 , C3 = f1 , C4 = x i , (A.6)

where we can choose any x i because the charges under gauge and flavor centers are the same
for all x i .

Let us now compute the charges. The charge qi(C) of a compact curve C under U(1) gauge
group associated to Si is computed as

qi(C) = −C · Si , (A.7)

which for a genus zero curve is 2+ C ·Si
C if C lives in Si . This implies

q2(C1) = 1 , q2(C2) = 2 , q1(C3) = 2 , q1(C4) = 1 . (A.8)

On the other hand, if C is in surface S j then C · Si is computed as C ·S j
C j,i where C j,i is the

gluing curve in S j to Si . This implies

q1(C1) = 0 , q1(C2) = −2 , q2(C3) = −1 , q2(C4) = −1 . (A.9)

Additionally, we have
−C1 ·Ni = δi,10 . (A.10)

That is, C1 intersects the non-compact surfaces along the cospinor node N10 and hence it has
the same charges under the center of Spin(20) as the cospinor representation of Spin(20).
Similarly, since C2 has no non-trivial intersections with any Ni , it does not contribute any
non-trivial charge under the center of Spin(20). On the other hand, we have

−C3 ·Ni = δi,0 , (A.11)

11Note that the labels 1 and 2 are not interchangeable here. We cannot write e2 in terms of e1, fi and x i .
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implying that it has the same charges under the center of Spin(20) as the vector representation
of Spin(20). Finally, for any x i the reader can compute that it has the same charges under the
center of Spin(20) as the vector representation of Spin(20). For example choosing C4 = x9,
we have

−C4 ·Ni = δi,9 +δi,10 , (A.12)

which means it transforms both under ZS2 and ZC2 subgroups of the center of Spin(20). This
reproduces the charges claimed in (214).

Model 5. Its surface geometry can be obtained from the surface geometry for model 2 by
blowing down the curve f − x2, resulting in the surface geometry

18
2

21

2h

h-
∑

x i

N0

N3

··
·

N8

N2
10 N9 .

f -x-y f

e f
x3 -x4

f
x8 -x9

f
2

x9,
x10

f -x , y

f x-y

x9-x10

f

e

e

e

e
e

e

(A.13)

Now N0 generates the su(2) ⊂ f and the other Ni generate the so(16) ⊂ f.
We have the same identifications as in (A.6). The gauge charges are the same as for model

2. The flavor center charge of C1 is the same as spinor of Spin(16) as it intersects the spinor
node N10. The flavor center charge of C2 is trivial as it does not intersect any Ni . The flavor
center charge of C3 is the same as fundamental of SU(2) as it intersects N0. Finally, the flavor
center charge of C4 is the same for all x i and can be easily seen to be that for vector of Spin(16)
by choosing C4 = x3.
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Model 9. Its surface geometry can be obtained from the surface geometry for model 5 by
blowing down the curve f − x3, resulting in the surface geometry

17
1

21

2h

h-
∑

x i
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0
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··
·

N8

N2
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f -x-y f

e f -x
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x8 -x9

f
2

x9,
x10

f -x , y

f x-y

x9-x10

f

e

e

e

e
e

e

(A.14)

The blowdown process causes N3 and N0 to become non-P1 fibered non-compact surfaces. N3
intersects the P1 fibers of remaining P1 fibered non-compact surfaces, and hence cannot give
rise to an independent u(1) flavor. However, N0 does not intersect the P1 fibers of remaining
P1 fibered non-compact surfaces and generates a u(1) factor in the flavor symmetry algebra f.
It should be noted that the curves f and x of N0 both have infinite volume, but their difference
f − x has finite volume. The other Ni shown above generate the so(14) ⊂ f.

We have the same identifications as in (A.6). The gauge charges are the same as for the
previous models. The flavor center charge of C1 is the same as cospinor of Spin(14) as it
intersects the cospinor node N10. The flavor center charge of C2 is trivial as it does not intersect
any Ni . The curve C3 carries charge −1 under U(1) flavor as it intersects N0. Finally, the flavor
center charge of C4 is the same for all x i and can be easily seen to be that for vector of Spin(14)
by choosing C4 = x4.

Model 12. Its surface geometry can be obtained from the surface geometry for model 5 by
blowing down curves x9, x10, resulting in the surface geometry
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f
x7 -x8

f

e f
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(A.15)
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We have the same identifications as in (A.6). The gauge charges are modified for curves living
in S2. The flavor center charge of C1 is trivial as its intersection number N9 is even. The
flavor center charge of C2 is the same as fundamental of SU(2) corresponding to N9 as the
intersection number of C2 with N9 is odd. Similarly, The flavor center charge of C3 is the same
as fundamental of SU(2) corresponding to N0. Finally, the flavor center charge of C4 is the
same for all x i and can be easily seen to be that of fundamental of SU(6) by choosing C4 = x3.

Model 26. Its surface geometry can be obtained from the surface geometry for model 9 by
performing some blowdowns of both types of curves f − x i and x i , resulting in the surface
geometry

14
1

21

h+ f

e-
∑

x i

N3
0

N6

··
·

N8

N1
9

h f −
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x i

x6 -x7

f
x8 -x9

f

e x

e

e

x9

f -x
e

e

(A.16)

N0 generates a u(1) factor in the flavor symmetry algebra f. Its curves f and x i are non-
compact, but f −

∑

x i is compact. The other Ni shown above generate the su(5) ⊂ f.
We have the same identifications as in (A.6). The gauge charges are computed as above.

The flavor center charge of C1 is the same as anti-fundamental of SU(5) as it has intersection
−1 with the anti-fundamental node N9. The flavor center charge of C2 is the same as funda-
mental of SU(5) as it has intersection +1 with the anti-fundamental node N9. The curve C3
carries charge −1 under U(1) flavor as it intersects N0. Finally, the flavor center charge of C4
is the same for all x i and can be easily seen to be that for fundamental of SU(5) by choosing
C4 = x6.

More generally for all descendants of the marginal geometry figure 1, we can determine
the flavor symmetry group following similar reasoning. See tables in appendix A of [82] for
the flavor algebras.
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