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Abstract

We experimentally investigate the viability of a variational quantum gate optimization
protocol informed by the underlying physical Hamiltonian of fixed-frequency transmon
qubits. Through the successful experimental optimization of two and three qubit quan-
tum gates the utility of the scheme for obtaining gates based on static effective Hamilto-
nians is demonstrated. The limits of such a strategy are investigated through the opti-
mization of a time-dependent, Floquet-engineered gate, however parameter drift is iden-
tified as a key limiting factor preventing the implementation of such a scheme which the
variational optimization protocol is unable to overcome.
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1 Introduction

Rapid experimental progress in the development of quantum computers has led to the realiza-
tion of quantum platforms which are approaching the scales necessary for true quantum ad-
vantage [1–5]. However, the inherent noise levels of noisy intermediate-scale quantum (NISQ)
devices remains a fundamental limiting factor precluding the attainment of results that cannot
be obtained classically [6]. As a result, a large body of research has grown around extend-
ing the utility of NISQ devices through error mitigation [7–10] or circuit compilation [11–14]
algorithms.

These techniques are typically rooted in the gate-based approach to quantum computa-
tion [15,16], in which algorithms are decomposed into a finite set of fundamental basis gates,
usually a two-qubit entangling gate (e.g. CNOT) and arbitrary single qubit rotations. This
paradigm is ideal for fault-tolerant quantum computation since it is universal. However, the
deep circuits necessitated by gate-based algorithms means that implementation of gate-based
computations on NISQ devices are severely impeded by gate noise.

One method by which this limitation could potentially be overcome is through the use of
variational quantum gate optimization (VQGO) [17,18]. VQGO seeks to obtain the optimal gate
parameters that maximize the fidelity of a target gate through a classical optimization routine.
While such a routine can be used to increase the fidelity of standard basis gates, it can also
be used to optimize non-standard gates such as two-qubit rotation gates and gates that act on
more than two qubits, which would otherwise necessitate decomposition into noisy CNOT and
single qubit rotation gates. In this way, VQGO can obtain more efficient gate implementations,
increasing the range of computations which can be implemented on NISQ devices.

In order to implement a VQGO routine, a parameterized quantum gate is required. A nat-
ural choice for this is to use the native operations for a given device as the control parameters,
choosing target gates that can be realized using those operations. In this work, fixed-frequency,
fixed-interaction (FF) transmon qubits [19] as implemented by IBM Quantum [20] are used
as the basis for the VQGO routine. FF transmons are highly controllable, with individually
controllable ZX and ZY interactions and arbitrary single qubit rotations natively available.
However, the interaction terms are accompanied by significant noise terms which, alongside
experimental imperfections, can severely reduce the fidelity of implemented gates. Thus, the
platform is ideally suited to optimization via VQGO. We assess the extent to which VQGO
can overcome these limitations and thereby realize high fidelity gates on currently available
hardware.

The native entangling operation in FF transmon qubits is the cross-resonance gate [21–23],
obtained by driving one qubit at the resonant frequency of another to which it is coupled. This
results in an entangling exp(iθ ZX ) operation, with the Rabi angle θ controlled by the pulse
amplitude and duration. In addition to the desired coupling term, unwanted spurious single
qubit terms are also generated which must be controlled for high fidelity gates to be realized.
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In principle, quantum optimal control schemes [24] based on theoretical models of this
interaction can be designed to eliminate these unwanted terms. However, while sophisticated
models of the interaction have been developed [25, 26], they cannot be used to make a pri-
ori predictions about an experimental system given the susceptibility of experimental system
parameters to drift and the limited access to these parameters afforded to end users. As a
black-box optimization routine, VQGO can be used to obtain high-fidelity gates without rigor-
ously characterizing the underlying system, making it well-suited to this application.

The choice of target gates for the VQGO routine explored in this work is motivated by the
form of the cross-resonance interaction, which we briefly review in Sec. 2. The optimization
of a two-qubit ZX gate is presented in Sec. 3, corresponding to the cross-resonance interaction
with the error terms eliminated, before an extension to a three qubit gate consisting of two
simultaneous cross-resonance interactions is made in Sec. 4. In both cases the VQGO routine
is very effective, resulting in the experimental realization of high fidelity gates.

Having demonstrated the utility of VQGO for obtaining high fidelity gates based on time-
independent Hamiltonians, we try to generalize the approach to the more challenging appli-
cation of implementing time-dependent, Floquet-engineered systems [27, 28]. A scheme for
realizing a three-body ZY Z gate [29–31] at stroboscopic times is used as the testbed for such
an application, with the VQGO results presented in Sec. 5. The VQGO protocol was able to
improve the fidelity of the realized gate when compared with unoptimized gate parameters.
However, significant parameter drift over the time frame of the optimization poses a severe
limitation to this method, preventing the protocol from reaching similarly high fidelities to the
other gates.

Our results show that VQGO is effective at obtaining optimal drive routines for novel quan-
tum gates based on static effective Hamiltonians outside the usual set of basis gates. We iden-
tify parameter drift as the primary limiting factor preventing VQGO from obtaining similarly
high fidelity gates based on time-dependent Hamiltonians. In principle, this means that control
schemes that are designed to be robust to parameter drift could be amenable to optimization
through VQGO. The use of VQGO could allow for more efficient compilation of quantum cir-
cuits than is possible using current gate decomposition approaches, thereby increasing the
utility of NISQ devices.

2 Experimental system

While the general techniques discussed in this work are applicable to any quantum system, the
specific choices of optimization targets and figures of merit are motivated by the experimental
system used to perform the optimizations. Here the experimental platform consists of fixed-
frequency, fixed-interaction (FF) transmon qubits capacitively coupled together. This is the
experimental platform used by IBM in their IBM Quantum systems [20].

These systems may be modelled as a series of n anharmonic Duffing oscillators [32]

HDuff =
n
∑

i=1

(ωia
†
i ai +αia

†
i a†

i aiai +
∑

〈i, j〉

Ji j(ai − a†
i )(a j − a†

j ) , (1)

with anharmonicities αi and resonant frequencies ωi . The capacitive coupling strength Ji j
between nearest-neighbour transmons (represented by the angled brackets) is fixed by the
hardware and cannot be externally controlled. As a result, Ji j must be sufficiently weak such
that, in the absence of driving fields, no entanglement between coupled qubits is generated.

In such a system, dynamics may be induced by driving the system with microwave pulses. If
these pulses have amplitudes which are significantly lower than the transmon anharmonicities,
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then only the lowest two energy levels will be populated and the dynamics can be accurately
described by a simplified qubit model. Restricting Eq. (1) to a qubit model yields

H(t) =
n
∑

i=1

ωi

2
Zi +
∑

〈i, j〉

Ji jYiYj +
∑

i

Di(t)X i , (2)

where the final sum is over the subset of qubits upon which the pulses are applied and where
the driving Di(t)may be conveniently parameterized in terms of dimensionless pulse envelope
parameters dX

i (t), dY
i (t) and dZ

i (t) as

Di(t) = Re

�

Ω

2

�

(dX
i (t)− idY

i (t))exp

�

−2i

∫ t

0

dZ
i (t
′)d t ′
��

ei(ωi+∆i)t

�

, (3)

with ∆i the detuning from the resonant qubit frequency. On resonance driving generates
single qubit dynamics. In the frame rotating with the qubit frequencies defined by a unitary
transformation using the rotation operator exp(i

∑

i
ωi
2 Zi), the effective Hamiltonian for such

a driving (applied to the ith qubit) is

H̃i(t) =
Ω

2
(dX

i (t)X i + dY
i (t)Yi + dZ

i (t)Zi) . (4)

In this way, full single qubit quantum control of individual qubits is possible. Entangling oper-
ations between pairs of coupled qubits are also able to be generated using off-resonant drive
pulses, making transmon qubits highly expressible as a system for quantum computation and
simulation. This interaction is outlined in the following section.

2.1 The cross-resonance gate

An entangling interaction between two coupled qubits can be generated by driving one qubit
at the resonant frequency of the other, resulting in a cross-resonance interaction [21–23]. In
the frame rotating with the qubit frequencies, the effective Hamiltonian resulting from such a
drive is given by

HCR
i j =
∑

A∈{1,X ,Y,Z}

c1A1iA j + cZAZiA j , (5)

where the ith qubit (the control) is driven at the resonant frequency of the jth (the target).
The terms in Eq. (5) have different magnitudes due to the fact that the parameters in the drive
Hamiltonian Eq. (2) are of significantly different magnitudes: in particular, Ji j ≪ Ω≪∆i j with
∆i j =ωi−ω j . The largest term, the single qubit Z1 rotation on the drive qubit, is proportional
to Ω2

i /∆i j and arises due to a strong AC-Stark shift from the off-resonant drive. Next largest
in magnitude are the two qubit ZX and ZY entangling operations and the single qubit 1X and
1Y rotations on the target qubit, all of which are proportional to Ji jΩi/∆i j . These terms arise
from the interplay between the non-commuting drive and static coupling terms in Eq. (2).
Finally, the single qubit 1Z rotation on the target qubit and the Z Z interaction originate from
the weak static coupling and are proportional to J2

i j/∆i j .
For most purposes, an ideal starting point for experiments using the cross-resonance in-

teraction is a pure ZX interaction. In such a scheme, the other terms can be considered error
terms unless stated otherwise. The weakness of the Z Z and 1Z terms arising from the qubit-
qubit coupling means that these terms can be neglected, however the rest of the terms must be
eliminated experimentally. These remaining error terms can be straightforwardly corrected by
adjusting the cross-resonant drive envelope phase and applying additional single qubit control
terms, both of which are able to be accurately controlled experimentally. All that therefore
remains is to determine the magnitude of these corrections.
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As mentioned above, our approach treats the FF transmon system as a black-box and at-
tempts to find optimal parameters through VQGO rather than rigorously characterizing the
experimental system to fit the theoretical models [25, 26]. This approach assumes that the
experimental errors are dominated by the unitary errors arising from miscalibrated drive pa-
rameters. Since only unitary control terms are available, incoherent errors such as decoherence
and dephasing cannot be directly corrected by the VQGO routine and thus will necessarily re-
duce the fidelity of applied gates. The two most significant sources of incoherent errors are
decoherence and measurement error. A key advantage of FF transmon qubits is their long
coherence times which, at approximately 100 µs are much longer than the gate times inves-
tigated here, with the longest gate times being less than 5 µs. Decoherence over these short
times is therefore minimal and can be ignored. Measurement error is known to be a significant
problem for FF transmon qubits [33]. Since all the figures of merit for the optimizations per-
formed here average over a number of different expectation value measurements, the effect of
measurement error is well approximated by unbiased stochastic error. In this case, the optimal
parameters for a given gate should remain unchanged by the presence of measurement error,
and thus VQGO should still be effective. As a consequence of neglecting measurement error,
the obtained fidelities will be lower than expected based on previously published fidelity mea-
surements [34]. For example, the identity gate under this assumption has an experimental
fidelity of approximately 95%.

3 Optimizing the cross-resonance gate

Having access to a high fidelity entangling operation is highly important for quantum com-
puting platforms. As such, the natural starting point for a VQGO protocol implemented on
a FF transmon device is the optimization of a pure exp(iθ ZX ) gate. Such a protocol is both
inherently useful, since applying a pure ZX gate for a rotation angle of π/4 yields a maximally
entangling gate which is equivalent to a CNOT up to single qubit rotations, and highly useful as
the starting point for analogue and hybrid quantum computations [35]. Applying an analogue
ZX pulse for varying durations can result in improved fidelity in quantum simulations when
compared with using CNOT decompositions [36].

Control schemes implemented on FF transmon qubits typically involve implementing an
echoed cross-resonance pulse sequence in order to refocus most of the error terms [22, 37].
However, it is possible to directly control the Hamiltonian terms instead. This cuts down on
the number of pulses which need to be applied and additionally allows for the simultaneous
application of additional control pulses, potentially expanding the utility of the cross-resonance
interaction into the fields of quantum optimal control and analogue quantum simulation [38,
39]. The strategy of controlling individual Hamiltonian terms, rather than using an echoed
pulse sequence, is employed in this work.

Aside from the choice of target gate, two additional choices must be made for the imple-
mentation of VQGO: a figure of merit quantifying the quality of the experimental gate and a
classical optimization routine. Different figures of merit are best suited to different gates, and
so the choices of figure of merit will be discussed with respect to the different target gates in the
subsequent sections. For the classical optimization routine, Bayesian optimization (BO) [40],
a probabilistic machine learning method is utilized. BO is well suited to applications in which
evaluation of the figure of merit incurs a significant overhead due to it requiring, for example,
an experiment to be performed and has been previously implemented successfully in various
quantum optimal control applications [18, 41–46]. A thorough overview of BO can be found
in Refs. [47–49].
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Figure 1: Quantum process matrices extracted from the application of a cross-
resonance interaction implemented on the ibmq_paris quantum device. (a) shows
results from applying a drive in which the phase of the drive envelope in Eq. (3)
requested by the user is 0, and shows significant phase error due to drive line nonlin-
earities. (b) shows the same interaction with an additional phase added to the drive
envelope optimized to eliminate this error.

3.1 Phase calibration

Before working with the cross-resonance gate, it is convenient to first calibrate the phase of
the applied cross-resonant pulses such that the experimental effective Hamiltonian matches
the expected theoretical terms. For a pure ZX gate, the drive envelope in Eq. (3) should be
purely real (i.e. hY = 0). However, systematic experimental errors such as delays in the drive
lines can induce phase shifts on the signal generated by the arbitrary waveguide generator,
resulting in a non-zero value of hY . The drive envelope phase requested by the user therefore
must be adjusted to eliminate the hY term and ensure the effective Hamiltonian consists only
of ZX , Z1 and 1X terms.

This phase can be optimized by applying the cross-resonance drive to the |++〉 initial state
and measuring in the X eigenbasis on both qubits. The optimal phase is then found by mini-
mizing the sum of projections into the |+−〉 and |−−〉 states, which can be straightforwardly
achieved using the individual projective measurements for each qubit.

In order to verify that the phase optimization routine successfully eliminates the unwanted
terms, an unbiased validation method is required. A natural choice for this is provided by
quantum process tomography. Quantum process tomography characterizes a quantum process
Λ, which may be written in terms of its action on an arbitrary input state ρ as

Λ(ρ) =
d2
∑

i, j=1

χi jσiρσ j , (6)

where {σi} is the operator basis formed form the n−fold tensor products of Pauli matrices.
Quantum process tomography is used to experimentally extract the process matrix χi j which
fully characterizes Λ [50].

Fig. 1 shows the experimental process matrices for a two qubit cross resonance interaction
before and after phase optimization. Prior to phase optimization (Fig. 1a), the dynamics are
dominated by terms generated by unwanted ZY and 1Y terms due to the phase misalignment,
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however by adjusting the phase of the pulse, these can be virtually eliminated, with the final
process matrix almost entirely consisting of terms generated by ZX , Z1 and 1X (Fig. 1b).

The remainder of this work will exclusively use drive pulses which the drive envelope in
Eq. (3) is either purely real (hY = 0) or purely imaginary (hX = 0) once this phase mis-
alignment is accounted for. In principle, however, once the calibration phase is known, any
two-body interaction consisting of a coherent mixture of ZX and ZY terms can be generated,
allowing for a wide array of interaction terms to be implemented, which is another advantage
of applying VQGO to FF transmon qubits.

3.2 Reduced process tomography

With the phase error from the applied drive eliminated, the effective Hamiltonian arising from
the unoptimized cross-resonance interaction consists only of terms ZX , Z1 and 1X terms.
Since the dynamics generated by such a limited set of Hamiltonian terms is only a small subset
of the full Hilbert space, it is possible to describe the action of the gate to a high degree of
accuracy using a significantly reduced set of measurements, in a protocol known as reduced
process tomography [51–53].

Quantum process tomography provides an effective verification that an optimization has
succeeded, since it is unbiased and captures the full action of a particular gate. However, per-
forming full process tomography is extremely experimentally expensive, making it impractical
for the iterative evaluation of gate fidelity required for VQGO. For certain gates, however, most
of the elements of χi j are known to be vanishing a priori, meaning that only a reduced subset
of measurements is required to evaluate it. This is the underlying idea behind reduced process
tomography.

Explicitly, for a general two qubit cross resonance interaction of the form

UZX (t) = exp(−i(JZX ZX + JZ1Z1+ J1X1X )t) , (7)

the dynamics can be entirely captured by performing only a single two-qubit state tomography
experiment. The quantum gate defined through the application of Eq. (7) consists only of a
weighted sum of operators {11, Z1,1X , ZX }. Each of these operators maps the initial state
|+0〉 to one of a set of mutually orthogonal final states as

11 |+0〉= |+0〉 , (8)

Z1 |+0〉= |−0〉 , (9)

1X |+0〉= |+1〉 , (10)

ZX |+0〉= |−1〉 . (11)

Thus an approximation to the full process matrix can be obtained by performing quantum
state tomography on the resulting output state and obtaining the process matrix as the matrix
elements of the output density matrix. Having extracted the reduced process matrix χred, an
approximation to the quantum process fidelity can be made through the overlap between χred

and the ideal process matrix χZX

F ≈ Tr
�

χred(χZX )†
�

. (12)

This approximation will be referred to as the reduced χ overlap. The quality of the reduced χ
overlap as an approximation to the process fidelity depends on how closely Eq. (7) captures
the experimental dynamics. In order to verify this, the reduced χ overlap and full quantum
process fidelity can be evaluated using the same experimental data, extracting the reduced
process matrix as a subset of the full tomographic expectation values. Fig. 2 shows the exper-
imental results of such a procedure for 100 gates generated by varying the cross-resonance
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Figure 2: Plot of reduced χ overlap against process fidelity for 100 experimental
gates implemented with varying cross-resonance and single qubit correction pulse
amplitudes. Both figures of merit were extracted from the same set of experimental
data, with the process fidelity calculated using the full set of 240 expectation values
required for full quantum process tomography and the reduced χ overlap using a
subset of the data. The reduced χ overlap approximates the full process fidelity
very well, and should therefore be an efficient alternative to it, requiring only 12
expectation value measurements rather than 240.

amplitude and the amplitudes of compensating Z1 and 1X pulses. Since the range of fideli-
ties are obtained by varying the same parameters as are used in an optimization protocol, the
extent to which the reduced χ overlap approximates the process fidelity is a strong indication
of its viability as a figure of merit for VQGO.

In the ideal case, the data should lie entirely along the diagonal of Fig. 2. All of the data
are indeed very close to this diagonal, which is shown as a black line. Moreover, the deviations
are consistent with the level of measurement error in the IBM Quantum devices. Given the
significant reduction in overhead from using the reduced χ overlap over evaluations of the full
process fidelity, a reduction from 240 expectation value measurements per evaluation to just
12, the quality of the reduced χ overlap as an approximation makes it an appropriate choice
as the figure of merit for an optimization.

3.3 Obtaining an optimal cross-resonance interaction

Having obtained a figure of merit which can efficiently evaluate the quality of an experimental
cross-resonance gate, a VQGO routine can be implemented using BO as the classical optimizer
and using the amplitudes of the cross-resonance single qubit correction pulses as control pa-
rameters. The target gate for this optimization is a pure ZX interaction at the maximally
entangling Rabi angle of θ = π/4. The control pulses over which the optimization was per-
formed were based on Eq. (3) and were parametrized as follows:

D12(d
ZX
1 , dX

2 , dZ
1 ; t) = Re

�

Ω

2

�

dZX
1 eiφZX eiω2 t + dX

2 eiω2 t
�

+ exp

�

−2i

∫ t

0

dZ
i (t
′)d t ′
�

︸ ︷︷ ︸

Virtual Z rotation

�

, (13)

with the control parameters being the amplitudes of the cross-resonance and single qubit 1X
pulses (dZX

1 and dX
2 respectively) and the magnitude of the single qubit Z rotation on the tar-

get qubit, which was indirectly implemented as a virtual Z gate [54] by updating the qubit’s
resonant frequency in software. The pulses were also multiplied by a Gaussian ramp up/ramp
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Figure 3: Convergence plot for the optimization of the cross-resonance gate, showing
the overlap between the ideal process matrix and the reduced process matrix as a
function of the Bayesian optimization iteration. The optimization explores a range
of parameter values, finding some high fidelity points before converging to a peak
value of 0.93, demonstrating the success of the optimization.

down to avoid discontinuous pulses, however the parameters for these ramps were kept con-
sistent throughout the optimization. Fig. 4 shows a plot of the amplitudes dZX

1 and dX
2 as a

function of the pulse envelope for the optimal set of pulse parameters obtained using VQGO,
with the top (yellow) plot showing the dZX

1 amplitude multiplied by the phase to compensate
for phase error (with the lighter shade the real part and the darker shade the imaginary part
and the bottom (blue) plot showing the dX

2 amplitude.
Fig. 3 shows the reduced process matrix overlap as a function of the BO iterations for such

an optimization. In the first 150 iterations of the optimization, the optimizer explores the
parameter space, thus there are many evaluations which are of poor fidelity. In the latter stage
of the optimization, however, the optimizer has enough information to converge to a point at
which the reduced process matrix overlap is maximized, with all evaluated points being above
overlaps of 90%.

While the quality of the channels realized by the pulse scheme can vary significantly as
shown by Fig. 3, the actual pulses used to implement them look very similar, differing only
by the magnitude of the applied pulse amplitudes. Due to the non-trivial transformations of
the signal that occur in the physical experiments, meaning that the qubits do not experience
the ideal pulse as requested by the user, it would be extremely difficult to tell a priori what
the optimal pulse parameters should be to realize a high fidelity gate. By using VQGO, this
difficulty can be side-stepped, allowing for high fidelity pulse schemes to be obtained without
necessitating a rigorous characterization of this transformation.

The quality of the final parameters found by the optimization routine is shown through the
full process matrix evaluated using process tomography in Fig. 5(a), with Fig. 5(b) showing the
same process matrix with the largest elements set to 0 and with the color bar rescaled to show
the magnitude of the small residual error terms. The target Rabi angle for this optimization
was π/4, corresponding to a maximally entangling gate with four equal-magnitude process
matrix elements, χ11,11 = χZX ,ZX and χ11,ZX = −χZX ,11, which is realized to very high fidelity
(93%) in the final process matrix. As mentioned above, while this is significantly lower than
the reported CNOT error rates [20], much of this reduction can be attributed to measurement
error. In order to fairly compare this result to the state-of-the art method in the presence of
this measurement error, the process matrix for the IBM-calibrated ZX gate was experimentally
extracted. This was obtained by taking the CNOT gate pulse sequence and stripping out the
single qubit rotation gates used to convert the native ZX gate to a CNOT. The resulting pulse
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Figure 4: Plot showing the requested drive pulse amplitudes used in the optimization
of the single application of the cross-resonance drive outlined in Sec. 3.3, with the
yellow plots corresponding to cross-resonance pulses and the blue plots correspond-
ing to the single qubit resonant pulses needed to counteract the spurious single qubit
1X term from the cross-resonance interaction and where the light and dark portions
of the plots correspond to the real and imaginary components of the pulses respec-
tively. This set of pulses corresponds to the highest fidelity observed in the optimiza-
tion. The phase of the cross-resonance drives is non-zero due to the phase calibration
outlined in Sec. 3.1. The Z1 term may be corrected using a virtual Z rotation [54]
and so is not represented in this plot of physical pulses.

sequence yields a process fidelity of 93%, matching the one obtained in this work, but achieves
so at the price of using multiple pulses and longer total pulsing time.

The fact that the final ZX gate optimized through VQGO matches the fidelity achieved by
IBM indicates that the optimization routine performed as well as it could have done – i.e. the
obtained fidelity is as high as can be achieved using the control scheme presented in this work.
Additionally, the fidelity of the IBM-calibrated CNOT gate was also evaluated, which yielded
a fidelity of 92.8%. This implies that the optimized ZX gate could also be used to generate
a CNOT gate with a comparable fidelity. However, such an application is not the most useful
application of the optimization procedure. The key advantage of using VQGO over the IBM
definition lies in its flexibility – it can be used to implement gates which cannot be natively
implemented using the standard IBM pulse definitions and ‘hardware’ interactions. This is
illustrated in the following section by application of the protocol to a more complicated three-
qubit gate.

4 Optimizing non-commuting interactions

Having demonstrated the utility of pulse-level VQGO on the cross-resonance gate, a natural
extension is made to a three qubit quantum gate. For the ZX optimization, all of the terms
which generate Eq. (7) mutually commute, meaning the control landscape can be factorized
into a product of individual control terms for the ZX and single qubit Z1 and 1X pulse ampli-
tudes, greatly simplifying the optimization. Additionally, the favorable structure of the process
matrix that permits the definition of the reduced χ figure of merit is not generic for all gates
that can be implemented based on the cross-resonance gate. As such, it is pertinent to evaluate
the viability of pulse-level VQGO when the target gate lacks the convenient features of the ZX
gate.
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largest elements dropped and rescaled to
show small elements

Figure 5: (a) Quantum process matrix extracted from the application of a cross-
resonance interaction optimized for the gate exp(iπ/4ZX ) using Bayesian optimiza-
tion and implemented on the ibmq_paris quantum device. The ideal process matrix
consists of the four terms which dominate the optimized process matrix, each with
magnitude 1/2. (b) The same optimized process matrix as (a), but with the four
largest elements (corresponding to χ elements indexed by products of 11 and ZX )
set to 0 and the color bar rescaled to show the magnitude of the less significant terms.
The optimized process matrix has some small residual unwanted terms and the mag-
nitudes are slightly suppressed, but nevertheless yields a fidelity of approximately
0.93 even without any measurement error mitigation.

A natural choice for a three qubit target gate in such a setting is the unitary evolution
operator generated by a Hamiltonian of the form

H = J (ZX1+1Y Z) , (14)

which may be implemented using only constant pulses based on the native cross-resonance
operations, with a purely real (hY = 0 in Eq. (3)) cross-resonance pulse on the first qubit and
a purely imaginary (hX = 0 in Eq. (3)) pulse on the third qubit. Although the implementation
of gates based on Eq. (14) appears similar to the ZX gate optimized in the previous section,
the error terms generated by the two unoptimized cross-resonance drives do not mutually
commute, significantly complicating the optimization landscape. Additionally, since this is a
three qubit gate, the number of parameters over which an optimization may be performed is
doubled, providing an additional complication.

Rather than optimizing the full gate starting from a completely unoptimized set of pulse
parameters, the constituent ZX1 and 1Y Z interactions can first be optimized to find the opti-
mal cross-resonance drive amplitudes and correction rotations for counteracting the AC Stark
shift effects. In principle, this method should also yield the optimal single qubit 1X1 and 1Y1
pulse amplitudes, however the values obtained for the two-body interaction are not necessarily
optimal for the three qubit ZX1 + 1Y Z gate. The control parameters used in the optimiza-
tion of this gate were the amplitudes of the two cross-resonance pulses and of the single qubit
resonance pulse, the magnitudes of the virtual Z rotations [54] on the drive qubits for the
cross-resonance pulses and the phase of the single qubit resonance pulse.
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For each two-body interaction, all of the error terms mutually commute. Thus, the differ-
ent terms that generate Eq. (7) can be factorized. Similarly, for the 1Y Z term an analogous
factorization of the terms which generate the unitary

UY Z(t) = exp(−i (JY Z Y Z + J1Z1Z + JY1Y1) t) , (15)

may be made. For each two-body interaction, there are therefore an infinite number of solu-
tions for each of the parameters of the form θopt + m2π, where θopt is the parameter which
exactly realizes the desired operation with no over or underrotation. As the cross-resonance
interaction is weak, a significant change in the drive amplitude is required to enact a moder-
ate change in the effective ZX strength. It is therefore possible to constrain the optimization
domain such that the applied drive amplitudes only span a single Rabi oscillation.

For the single qubit correction terms, this is not straightforward to achieve. This is due
to the fact that the smallest possible amplitude may still yield a non-zero effective 1X term.
Additionally, since the resonant fields are much stronger than the cross-resonance interaction,
the required compensating drives need to be applied at very low amplitude. At such low
amplitudes, nonlinearities in the resonance drive lines can result in unwanted phase errors,
meaning that the exact cancellation amplitude may not be optimal.

A solution to this is to optimize the correction pulse on the central qubit separately once
the two-body interactions have been optimized – that is, the magnitudes of the pulses which
realize the ZX1 and 1Y Z interactions, as well as the compensating Z11 and 11Z correction
rotations are individually optimized before the optimal single qubit 1X1 + 1Y1 pulse am-
plitude is optimized. Only the amplitude which exactly cancels the single qubit terms will
yield maximum fidelity, thus there will only be one optimal solution. By optimizing both the
amplitude and the phase of the applied drive pulse, the phase errors can be simultaneously
corrected.

While this requires an increase in overhead, the protocol can be scaled to large system
size by optimizing blocks comprising a small number of qubits separately and making use of
parallelization to simultaneously optimize interactions which are physically distant enough
that cross-talk is unlikely. This would necessitate an increase in quantum resources by only a
constant factor dependent on the target problem and the geometry of the experimental system
and a linear increase in classical computational resources. The latter could also, in principle,
be reduced through information-sharing protocols [44].

4.1 Zero-fidelity estimation

Unlike the two-qubit ZX gate, the chosen three-qubit gate does not permit a reduced process
matrix which can be efficiently evaluated. A more general strategy for obtaining estimates of
the fidelity of a quantum gate is to use fidelity estimation through importance sampling [55].
In this work, zero-fidelity estimation [18] is used as a faithful approximation to the full process
fidelity as it is well suited to implementations on NISQ hardware.

The zero-fidelity between a unitary target gate U and a noisy experimental gate Γ may be
written

F0(U , Γ ) =
1
d2

d2
∑

i, j=1

Tr[UρiU
†Wj]Tr[Γ (ρi)Wj] , (16)

where the input states {ρi} are formed as the tensor product of single qubit symmetric infor-
mationally complete (SIC) states [56] and the operators {Wj} form an orthonormal basis.

The zero-fidelity can be efficiently approximated by sampling l input state/measurement
basis pairs from the joint probability distribution

Pr(i, j) =
1
d

Tr[UρiU
†Wj] , (17)
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Figure 6: Experimental results for the optimization of an exp(iπ/4(ZX1 + 1Y Z))
gate: (a) shows the ideal process matrix for the gate (showing only elements that can
be generated by Eq. (5)) and (b) shows the experimental process matrix for the opti-
mal drive parameters obtained through BO, implemented on the ibm_oslo quantum
device. (c) shows the same experimental results as (b) but with the 9 largest terms
(corresponding to χ elements indexed by products of 111,1Y Z and ZX1) set to 0
(indicated by green crosses) and the color bar rescaled to show the magnitude of the
less significant terms. Only terms that can be generated by the noisy cross-resonance
and single qubit drive pulses are shown for clarity; the full process matrices including
the dropped terms are shown in Appendix B. The qualitative features of the process
matrix are accurately obtained, with the amplitude of the observed terms slightly
reduced from the ideal matrix. Additionally, the Rabi angle is slightly misaligned,
leading to a final process fidelity of 82%.

and for each experimental setting evaluating the estimator

X (i, j) =
Tr[Γ (ρi)Wj]

Tr[UρiU†Wj]
, (18)

for which the expected value is the zero-fidelity. The variance of this estimator is indepen-
dent of the system size (although the individual expectation values still need an exponentially
increasing number of projective measurements to be resolved) and converges to 0 as the zero-
fidelity approaches unity; additionally, as the zero-fidelity increases, the difference between
it and the process fidelity decreases. This makes the zero-fidelity well suited to optimization
problems.

4.2 Optimization results

The final results for the optimization of the exp(iπ/4(ZX1+1Y Z)) gate are shown in Fig. 6,
with 6(a) showing the ideal target process matrix and 6(b) the experimental gate following
the two part optimization protocol described in the previous section. While the optimization
protocol was performed using zero-fidelity optimization with 200 expectation value measure-
ments per estimation, the final result shown was obtained through full process tomography
implemented on the ibm_oslo quantum device. Fig. 6(c) shows the same data with the 9
largest process matrix terms (corresponding to χ elements indexed by products of 111,1Y Z
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and ZX1) set to 0 (indicated by green crosses), with the rest of the matrix elements rescaled
to allow the magnitude of the other process matrix terms to be seen. These elements have
magnitudes of at most 0.04, showing that the dynamics are dominated by the 9 terms seen
clearly in Fig. 6(b). Moreover, the magnitude of these terms is consistent with the level of
measurement error in the device.

Only terms which are able to be generated from the application of the two unoptimized
cross-resonance Hamiltonians Eq.(5) are shown. Appendix B shows the full process matrices
for this experiment, in full form and with the 9 largest elements dropped. The full process
matrix shows that all process matrix elements which are dropped from Fig. 6 have magnitudes
smaller than the elements shown.

The final achieved process fidelity for the process matrix in Fig. 6 was 0.82, which is con-
sistent with the achieved fidelities of the constituent ZX1 and 1Y Z gates, both of which were
approximately 90%. As above, these process fidelity values were obtained without state prepa-
ration and measurement error mitigation, and thus are underestimates of the quality of a gate
as used in a quantum algorithm. With this in mind, the obtained fidelity is close to the op-
timal fidelity that can be achieved in the presence of measurement error – the fidelity of the
three-qubit identity gate obtained using the same experimental protocol is 88%.

The obtained fidelity of 0.82% for this gate could represent a significant improvement
in utility for NISQ devices, since the gate-based implementation requires substantially more
pulses per two-body interaction and since the overall three qubit gate must be composed from
the two-body interactions through Trotterization [57], further increasing the gate overhead.

5 Towards an engineered three-body gate

The previous sections demonstrate that VQGO can be used to obtain high fidelity two and three
qubit gates. This could allow for the realization of more efficient hybrid quantum computations
implemented on FF transmon devices, with computations composed into a wider set of basis
gates, each of which may be obtained through VQGO. A natural question arises as to how far
the protocol can be pushed: can the optimization be used to obtain a high-fidelity Floquet-
engineered interaction for example [58,59]?

Floquet engineering uses periodic driving fields to realize a time-dependent, periodic
Hamiltonian H(t + T ) = H(t). Using Floquet theory [27, 60, 61], the propagator for this
system can be expressed as U(t) = UF (t)exp(−iHF t) in terms of a time-independent effective
Hamiltonian HF and a periodic micromotion operator UF (t + T ) = UF (t). This is achieved by
expressing H(t) in the rotating frame defined by the micromotion operator,

HF = U†
F (t)H(t)UF (t)− iU̇†

F (t)UF (t) . (19)

At integer multiples of the driving period t = nT , the micromotion operator reduces to the
identity and the dynamics of the system are entirely captured by the time-independent effective
Hamiltonian as U(nT ) = exp(−iHF nT ). By making use of Floquet engineering and using
U(nT ) as a target gate, the range of gates which may be implemented on a given device can
be expanded.

In this section, the results of the implementation of a Floquet-engineered three-body
exp(iθ ZY Z) gate based on an existing theoretical drive scheme [28–31] are presented. The
extension to full time-dependent quantum control implies a significant increase in difficulty
due to the increase in parameters and due to the precision in control parameters required to
realize Floquet-engineered dynamics. As a result, the experimental implementation of this
protocol represents an evaluation of the limitations of the VQGO routine as implemented on
the IBM Quantum devices.
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Figure 7: Evolution of the population of states |+++〉 (blue) and |− −−〉 (red) evalu-
ated numerically using a full transmon model, demonstrating the Floquet-engineered
ZY Z interaction. Symbols (empty crosses) indicate the stroboscopic evolution in
steps of T = 1µs, while solid shaded lines show the micromotion. At the third Flo-
quet period (t = 3T = 3µs, indicated by the dashed black line), the three-qubit
interaction realizes a beamsplitter operation between the two states, producing a
three-qubit entangled state.

5.1 Theoretical protocol

In the theoretical driving protocol, a three-body interaction is predicted to appear in the pres-
ence of stable pairwise interactions as a second-order process arising from driving the central
qubit in a chain of three coupled qubits. Concretely, the protocol assumes a static drift Hamil-
tonian

H0 = JZX (ZX1+1X Z) , (20)

which may be modulated by a single qubit drive pulse of the form Ω(t)
2 1Y1. Optimal parame-

ters Ωk can be numerically found such that a modulation

Ω(t) =
2
∑

k=0

Ωk cos(kωt) , (21)

produces the desired interaction at multiples of the fundamental Floquet driving period
T = 2π/ω.

Optimal parameters for this scheme were obtained in Ref. [31] based on an idealized
Hamiltonian and are presented in Table 1 in Appendix A. To verify that these parameters
remain optimal when moving from always-on, static interactions to a transmon system in
which the interactions are dynamically switched on, numerical simulation of the protocol is
performed. For most of the experimental parameters, realistic values based on experimental
devices are chosen as outlined in Appendix A. For the two-body coupling term JZX , a compro-
mise had to be made between obtaining a gate as quickly as possible and avoiding transitions to
unwanted energy levels. The choice of JZX/2π= 0.2 MHz was found to be the optimal choice,
which in turn fixes ω/2π= 1 MHz, taking the ω= 5JZX case in Ref. [31], and T = 1 µs. This
results in a three-body strength of JZY Z/2π = 0.04 MHz, which yields an almost maximally
entangling ZY Z gate after three Floquet periods (6π/25≈ π/4).

The resulting characteristic dynamics for an initial state |+++〉 is shown, as an exam-
ple, in Fig. 7. The three-qubit interaction ZY Z successfully induces Rabi oscillations between
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Figure 8: Convergence plot for the Bayesian optimization of a three-body
exp(−6π/25ZY Z) interaction showing the estimated zero-fidelity as a function of
Bayesian optimization iteration. Although the optimization is able to make modest
improvements to the zero-fidelity, converging to an estimated zero-fidelity of approx-
imately 0.4 (here the fluctuations are largely due to the non-zero variance of the
zero-fidelity estimation), the achieved fidelities are significantly lower than can be
achieved for the gates based on static interactions.

states |+++〉 and |− −−〉 at stroboscopic times, realizing to a good approximation a max-
imally entangling gate at time t = 3T , indicated by the black dashed line in Fig. 7. These
simulations provide strong evidence that the three-qubit interaction should be observable in
the experiment.

5.2 Optimization results

In order to minimize the overhead of the optimization protocol, it is useful once again to preop-
timize the individual two-body ZX1 and 1X Z interactions such that they are high-fidelity and
have interaction strengths as close to one another as possible. Once these terms are optimized,
the weights of the single qubit driving parameters {Ωk} and the amplitude of the compensating
1X1 pulse may then be used as the optimization parameters. As with the previous two qubit
gate, no convenient reduced process matrix can be generated from the drive protocol, and so
zero-fidelity estimation was used as the figure of merit. As motivated in the previous section,
the chosen Rabi angle for this interaction was 6π/25, which is close to a maximally entangling
gate whilst conforming to the requirement that the simulation time be an integer multiple of
the Floquet period.

As shown in Fig. 8, as the optimization progresses the observed estimated zero-fidelities
increase and fewer low fidelity results are observed, indicating that the optimizer is adapting to
the parameter landscape. The spread of the data points even after approximately 80 iterations
can largely be ascribed to the non-zero variance of the zero-fidelity estimation. Despite these
modest improvements, the achieved fidelity is significantly lower than is observed for the pre-
vious gates, with the optimizer converging to an estimated zero-fidelity of approximately 0.4.
In order to perform the optimizations, experimental jobs must be submitted to a queueing sys-
tem to be implemented on the physical hardware. This can increase the necessary time for an
optimization significantly. For the three-body gate, the optimization time was approximately
12 hours. Over this duration, the parameters characterizing the device can drift. For the static
gates optimized in the previous section, this is unproblematic, since small drifts induce only
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Figure 9: (a) ideal process matrix for the exp(−iθ ZY Z) target unitary gate. (b)
process matrix associated with the pulse parameters that yielded the highest esti-
mated zero-fidelity, evaluated using full process tomography implemented on the
ibmq_jakarta quantum device. (c) process matrix submitted to the experimental
queue immediately following (b), finishing after approximately 8 hours, with the
same pulse parameters. Only process matrix elements generated by (5) are shown,
with the full process matrices given in Appendix B. Not only are both optimized pro-
cess matrices extremely different from the ideal case, the last two are significantly
different from each other, showing that drift in the machine is a substantial problem.
It is likely that this is the reason for the VQGO is not able to reach similarly high
fidelities to the previous gates.

small changes to the effective Hamiltonian, resulting in, for example, an over-rotation error.
These errors can be effectively handled by the optimizer and so high fidelity results are still
achievable. However, for the Floquet-engineered system a modest drift can induce signifi-
cant changes in the effective Hamiltonian since the scheme requires precise cancellation of
the nested commutators of the drive Hamiltonian terms. This can be intuitively observed in
Fig. 7: very small shifts away from the stroboscopic drive time induce large deviations from
the desired ZY Z dynamics.

To investigate whether parameter drift is consistent with the experiment as an explanation
for the difference between the static and Floquet VQGO schemes, quantum process tomog-
raphy can be used. By repeating the process tomography twice with the exact same pulse
setup, the effects of parameter drift can be observed. Fig. 9 shows the results of such a pair
of experiments, with Fig. 9a showing the ideal process matrix and where the experiments
that generated Fig. 9c were completed approximately 8 hours following the completion of the
experiment presented in Fig. 9b. The drive parameters that were chosen correspond to the op-
timal parameters obtained from the VQGO routine. In all cases, only matrix elements which
are generated by the Hamiltonian Eq.(5) are shown, with the other terms being significantly
lower in magnitude. The full experimental process matrices are given in Appendix B.

Neither experimental process matrix reproduces the desired dynamics, even qualitatively,
which is to be expected from the low achieved fidelity during the optimization. The deviation
from Fig. 9b to Fig. 9c is much more significant: The quantum gates generated by the two pulse
schemes are completely different, despite the fact that they were implemented with identical
pulse parameters with less than a day between the experiments. This indicates that parameter
drift is indeed a significant problem for obtaining high fidelity Floquet-engineered gates using
VQGO.

Even with the limitations imposed by the noise levels of current NISQ devices, VQGO
works well for optimizing gates based on static Hamiltonians. However, for time dependent
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Hamiltonians the requirements for obtaining high fidelity gates are much higher, being beyond
the reach of current devices. It may be possible to design control routines that are more robust
to parameter drift such that these requirements are relaxed enough that VQGO can effectively
realize high fidelity gates.

6 Conclusions

Given the high noise rates characteristic of NISQ devices, finding more efficient methods of
implementing quantum algorithms could be a potentially valuable route towards obtaining
useful experimental results in the near term. Variational quantum gate optimization (VQGO)
is a protocol that can be used to obtain high fidelity gates in the presence of experimental noise
and could therefore be used to expand the utility of NISQ devices.

In this work, we propose a VQGO protocol which uses the native operations of a given
quantum device to obtain high fidelity gates efficiently. We experimentally evaluate the pro-
tocol through an implementation on fixed-frequency, fixed-interaction transmon qubits.

VQGO is shown to be highly effective at obtaining high-fidelity quantum gates based on
static effective Hamiltonians. For a two-qubit maximally entangling ZX target gate, VQGO is
able to obtain pulse parameters which yield a process fidelity of 93% and for a three qubit gate
a fidelity of 83% is achieved. These are very promising results, since the two qubit gate fidelity
matches the IBM-optimized gates used for implementing CNOT gates, using fewer pulses and
shorter total pulsing time, and since both sets of fidelities are very close to that of the identity
gate (95% and 88% for the two and three qubit experimental identity gates respectively),
which indicates the upper bound on achievable fidelity without measurement error mitigation.
As part of the optimization protocol, we derive a reduced process matrix for the two-qubit gate
which may be experimentally evaluated using only 12 measurements and apply zero-fidelity
estimation as the figure of merit for the three qubit gate.

We assess the limitations of the scheme through an extension to the optimization of a
Floquet-engineered, time-dependent gate. While the VQGO protocol is able to increase the
fidelity of the implemented gate, the increased requirements of the time-dependent scheme
combined with significant parameter drift over the duration of the experiment prevent the
protocol from reaching similarly high fidelities to the gates based on static Hamiltonians. It is
possible that driving schemes which are robust to this drift could be engineered. However, cur-
rently VQGO on FF tranmon qubits is only effective for target gates based on time-independent
Hamiltonians.

7 Outlook

In this work, VQGO is shown to be capable of obtaining high fidelity gates based on static
effective Hamiltonians. A direct application of VQGO is in quantum simulation. For many
systems of interest, it is possible to obtain mappings to the native operations of a given device
that are more efficient in terms of hardware resources than a decomposition into CNOT and
single qubit rotation gates. An example of this is the transverse field Ising model, which can be
mapped exactly to the native operations of FF transmon devices. By using VQGO to optimize
blocks of Ising-like gates, the number of Trotter steps required to reach a given evolution time
could be considerably reduced, expanding the reach of current devices for quantum simulation.
Optimal decompositions into optimizable gates for a given system is therefore a valuable route
for future work.
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The target gates and figures of merit investigated in this work are specific to FF transmon
qubits, but the general framework of VQGO is applicable to any system. It would thus be
instructive to investigate the viability of VQGO on other NISQ systems. Zero-fidelity estimation
can be applied to any quantum platform (and may be more efficient for certain platforms such
as NMR quantum computers [18]) but the existence of reduced process matrices for systems
other than FF transmon qubits warrants further investigation.

One of the advantages of using black-box optimization protocols to obtain optimal experi-
mental parameters is that unknown errors in the device can be accounted for without a rigorous
characterization of the physical device. Nevertheless, it could be valuable to complement the
techniques outlined in this work with numerical and experimental characterization techniques
in order to investigate the robustness of different pulse schemes. This could be used to inform
which classes of parametrized pulses have the most potential for use in a VQGO scheme, ex-
panding the utility of the protocol. The VQGO procedure proposed here may then also be
adapted to optimize for the protocol robustness in response to variations of the optimal pulse
parameters, besides the gate fidelity, by minimizing a suitably modified cost function.

An additional route for future work lies in addressing the difficulties associated with apply-
ing VQGO to the optimization of gates based on time-dependent Hamiltonians on FF transmon
devices. It would be interesting to investigate whether more robust driving schemes that are
stable with respect to moderate drifts in control parameters may be derived. It is possible that
with an appropriate choice of driving routine, the utility of VQGO could be expanded to this
regime. Having this limitation in mind when designing control schemes could lead to creative
solutions which have not yet been considered – for instance, a control scheme could be devel-
oped that approximately realizes a given target gate over a range of parameters, as opposed
to schemes which exactly realize a target gate but only for a precise configuration of control
parameters.

Acknowledgments

We are grateful to Adam Smith and Daniel Malz for providing stimulating discussions and to
Marin Bukov for helpful comments on the manuscript.

Funding information This work is supported by Samsung GRP grant, the UK Hub in Quan-
tum Computing and Simulation, part of the UK National Quantum Technologies Programme
with funding from UKRI EPSRC grant EP/T001062/1 and the QuantERA ERA-NET Co-fund in
Quantum Technologies implemented within the European Union’s Horizon 2020 Programme.
S.G. is supported by a studentship in the Quantum Systems Engineering Skills and Training
Hub at Imperial College London funded by EPSRC (EP/P510257/1). F.P. acknowledges sup-
port from the Deutsche Forschungsgemeinschaft (DFG) via the Research Unit FOR 2414 under
Project No. 277974659. We acknowledge the use of IBM Quantum services for this work. The
views expressed are those of the authors, and do not reflect the official policy or position of
IBM or the IBM Quantum team.

A Simulations of the device dynamics

In this appendix, we discuss how numerical simulations of the device have been performed,
and the related parameters used.
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The three qubits are described by the Hamiltonian

H(t) =
3
∑

j=1

HQ j
+Hint +

3
∑

j=1

Hdrive, j(t) . (A.1)

The transmon Hamiltonians HQ j
read [25,62]

HQ j
=
ωh, j

4

�

ŷ2
j −

2
ε j

cos(
p

ε j x̂ j)

�

, (A.2)

where ŷ j = −i(b̂ j − b̂†
j ) and x̂ j = b̂ j + b̂†

j . The bosonic operators b̂ j describe (in unitless form)
zero-point-fluctuations of transmon flux and charge. The harmonic frequencies ωh, j and the
anharmonicities parameters ε j used are chosen to give transmon level splittings in the range of
typical IBM qubits. In particular, they are fine tuned to give first-excitation frequencies 5.236
GHz, 5.014 GHz and 5.178 GHz and anharmonicities −0.340 GHz, −0.342 GHz and −0.341
GHz for qubits Q1, Q2, and Q3, respectively. The transmon-transmon interaction Hamiltonian
and the drive Hamiltonians read

Hint =
∑

j=1,3

J j ŷ j ŷ2 , (A.3)

Hdrive, j(t) = Ω j(t) sin(ω j t −φ j) ŷ j . (A.4)

The couplings J j are chosen as J1/2π = 1.955 MHz and J3/2π = 2.052 MHz. State prop-
agation in simulations is done by including 64 lowest-energy states in the composite Hilbert
space, which gives converged results for the eight-dimensional three-qubit subspace. Choos-
ing phases φ j = (π,π/2,π), the Hamiltonian (A.1) is predicted to yield the following effective
Hamiltonian in the qubit subspace, in a frame rotating at the qubit frequencies,

Hqub = cZ11Z11+ c11Z11Z + cZ Z1Z Z1+ c1Z Z1Z Z

+ c1X11X1+ cZX1ZX1+ c1X Z1X Z +Ω2(t)1Y1/2 . (A.5)

The drive Ω2(t) is chosen of the form (21) and is used to produce the target three-body in-
teraction, as discussed in Section 5, in such a rotating frame. The Hamiltonian (A.5) contains
additional terms as compared to the ideal two-body Hamiltonian H0 (Eq. (20) of Sec. 5),
which could potentially hinder the desired three-qubit effect. The terms Z Z1 and 1Z Z are
weaker than other terms by an order of magnitude. They thus contribute little to the dy-
namics and can be neglected. The term c1X11X1 needs active compensation instead, while
aiming at attaining the same magnitude of ZX1 and 1X Z . This is done by introducing an
additional drive −Ωc sin(ω2 t − π) ŷ2. The compensating amplitude Ωc is calibrated empiri-
cally by inspecting simulated Rabi oscillations between states |0〉 and |1〉 of the central qubit,
when driving either only Q1 or Q3. Indeed, when driving Q1, these oscillations should occur
at rate r0 = c1X1 + cZX1 − Ωc/2 if Q1 is in state |0〉, and at rate r1 = c1X1 − cZX1 − Ωc/2 if
Q1 is in state |1〉. We iteratively search for a value of Ωc yielding |r0|= |r1| for both ZX1 and
1X Z , and then adapt Ω1 and Ω3 until cZX1 = c1X Z is also obtained. The terms Z11 and 11Z
commute with the drive on the central qubit and the target ZY Z interaction, and thus they do
not interfere with the Floquet engineering scheme. Once their magnitude is determined, they
can be included in the rotating frame or corrected with an initial pre-rotation of the qubits.
To determine their magnitude, we proceed similarly to the case of 1X1, namely we study the
imbalance in the Rabi oscillations of |++ 0〉 and |+− 0〉 for Z11, and |0++〉 and |0+−〉 for
11Z . All (rounded) parameter values used as an example for the transmon Hamiltonian are
summarized in Table 1.
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Table 1: Simulation parameters for Fig. 7. All dimensionfull quantities are expressed
in MHz.

ωh, j/2π ε j J j/2π

[5544,5323, 5486] [209, 218, 212] [1955, 2052]

Ω1/2π Ω3/2π Ωc/2π

18.24 19.76 0.466

Ω2k/2π ω/2π

[0.080,2.170, 2.491] 1.000

While the parameter search for the compensating pulses is already successfully attained ‘by
hand’ in simulations, in the experiment it is done via Bayesian optimization based on the noisy
experimental data, as discussed in the main text, according to the VQGO algorithm proposed
in this work.

B Full three qubit process matrices

For the results presented in Secs. 4 and 5, the process matrices are more conveniently ex-
pressed in a reduced form in which elements that cannot be generated from error terms in the
cross-resonance and resonant drives are dropped. As evidence that this is indeed a good ap-
proximation, in this appendix the full three qubit process matrices for these results are given.
Only the experimental gates are shown here: The ideal gates are numerically generated and
so dropped elements are 0 up to floating point error.
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Figure 10: Full three qubit process matrix for the experimental data presented in
Fig. 6. On this scale, no significant matrix elements other than those presented in
Fig. 6(b) are observed.
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Figure 11: Full three qubit process matrix for the experimental data presented in
Fig. 6 with the 9 largest elements set to 0 so that the magnitude of the smaller ele-
ments can be observed. Similarly to Fig. 6(c), the magnitude of the other elements
is ≲ 0.04, significantly lower than the principle terms in the full process matrix. Ad-
ditionally, the terms included in Fig. 6(c) are much larger than the dropped terms.
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Figure 12: Full three qubit process matrix for the experimental data presented in
Fig. 9a(b). Terms included in Fig. 9a(b) are much larger than the dropped terms.
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Figure 13: Full three qubit process matrix for the experimental data presented in
Fig. 9a(c). Terms included in Fig. 9a(c) are much larger than the dropped terms.
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