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Abstract

We propose the general idea that ’t Hooft anomalies of generalized global symmetries can
be understood in terms of the properties of solitonic defects, which generically are non-
topological defects. The defining property of such defects is that they act as sources for
background fields of generalized symmetries. ’t Hooft anomalies arise when solitonic de-
fects are charged under these generalized symmetries. We illustrate this idea for several
kinds of anomalies in various spacetime dimensions. A systematic exploration is per-
formed in 3d for 0-form, 1-form, and 2-group symmetries, whose ’t Hooft anomalies are
related to two special types of solitonic defects, namely vortex line defects and monopole
operators. This analysis is supplemented with detailed computations of such anomalies
in a large class of 3d gauge theories. Central to this computation is the determination
of the gauge and 0-form charges of a variety of monopole operators: these involve stan-
dard gauge monopole operators, but also fractional gauge monopole operators, as well
as monopole operators for 0-form symmetries. The charges of these monopole operators
mainly receive contributions from Chern-Simons terms and fermions in the matter con-
tent. Along the way, we interpret the vanishing of the global gauge and ABJ anomalies,
which are anomalies not captured by local anomaly polynomials, as the requirement
that gauge monopole operators and mixed monopole operators for 0-form and gauge
symmetries have non-fractional integer charges.
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1 Introduction

The study of generalized global symmetries and their ’t Hooft anomalies [1–3] has seen a flurry
of activity over the past few years [4–85].

Traditionally, ’t Hooft anomalies of generalized symmetries are characterized in terms of
non-invariance of the partition function on a compact spacetime manifold under gauge trans-
formations of background fields for such symmetries. In this work, we point out a different
but equivalent way of characterizing ’t Hooft anomalies in terms of charges under generalized
symmetries of certain defects, that we call solitonic defects. Their defining property is that they
induce backgrounds for generalized symmetries in their vicinity. This point of view on ’t Hooft
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anomalies has a distinct advantage over the traditional point of view, in that we do not have to
concern ourselves with the subtleties of defining the theory on a compact spacetime manifold.

This is particularly relevant for lattice systems studied in condensed matter physics, which
cannot be naturally defined on a compact spacetime manifold. On the other hand, it is natural
to define defects in such systems. Thus, the solitonic defect point of view should be especially
useful in formulating and understanding ’t Hooft anomalies of generalized symmetries in con-
densed matter systems. The usefulness of defect based approaches in studying generalized
symmetries of condensed matter systems was also stressed in [86].

The relationship between solitonic defects and ’t Hooft anomalies is bi-directional. On
the one hand, if we know ’t Hooft anomalies, then we learn information about the charges of
solitonic defects under generalized symmetries. On the other hand, if we can compute charges
of solitonic defects under generalized symmetries, then we can use that information to deduce
’t Hooft anomalies. The former can be thought of as providing new physical consequences of
’t Hooft anomalies, and the latter can be thought of as providing a novel way for computing ’t
Hooft anomalies.

In this paper, we use the computational approach opened up by solitonic defects to compute
’t Hooft anomalies of 0-form, 1-form and 2-group symmetries in a large class of 3d gauge
theories. The solitonic defects relevant for this analysis are vortex line defects and monopole
local operators, which are named so because they induce vortex and monopole configurations
for background gauge field for 0-form symmetry in their vicinity. Previous work on generalized
symmetries and anomalies of 3d QFTs includes [8,9,11,15,87–98].

Special cases of understanding ’t Hooft anomalies in terms of properties of solitonic defects
already appeared in the seminal work [3]. The solitonic defects considered there were rather
special, being the topological defects generating the generalized symmetries. The ’t Hooft
anomalies of generalized symmetries were then interpreted as the fact that these topological
defects are charged under themselves. In the present paper we generalize their description to
include arbitrary, generically non-topological solitonic defects.

At this point, let us mention that our work is a natural continuation of similar recent
works [31, 39, 44, 47, 59, 85] that describe generalized symmetries in terms of properties of
the spectrum of arbitrary (generically non-topological) defects. As discussed in these works,
this point of view provides novel methods for computing generalized symmetries in strongly-
coupled non-Lagrangian systems. Examples are 4d N = 2 Class S theories, where one does
not have alternative methods for computing these symmetries, as well as strongly-coupled 5d
and 6d SCFTs. In this spirit, we believe that the present work will provide insight in the com-
putation of ’t Hooft anomalies in strongly-coupled theories. In fact, in an upcoming work [99]
we will use the results of this paper to compute generalized symmetries and ’t Hooft anomalies
in strongly-coupled 3d N = 4 SCFTs.

1.1 Relationship between anomalies and solitonic defects

In this subsection, we illustrate the relationship between ’t Hooft anomalies of generalized
symmetries and solitonic defects. The basic idea can be illustrated with a simple example of
a Z(1)2 ×Z

(2)
2 1-form symmetry in 3d. Consider a solitonic line defect L sourcing a background

for Z(1)2 1-form symmetry such that
∫

D2

B(1)2 ̸= 0 ∈ Z2 , (1)

where B(1)2 is the background field for Z(1)2 1-form symmetry and D2 is a small disk intersecting
the locus of L at a single point – see figure 1. Such a solitonic line defect L is generically a
non-topological defect e.g. a defect inducing a vortex configuration for gauge fields, although
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L

Dd−1

Figure 1: Depiction of a solitonic line operator L, which is pierced by a codimension
1 ball Dd−1. Integrating w2, B2, Bw over this disk determines the background for 0-
and 1-form as well as 2-group symmetries by the solitonic line operator.

examples include the topological line defects implementing the Z(1)2 1-form symmetry. Now, a
mixed ’t Hooft anomaly between the two 1-form symmetries given by

A4 = exp

�

2πi

∫

B(1)2 ∪ B(2)2

�

, (2)

is equivalent to the statement that L carries a non-trivial charge under Z(2)2 1-form symmetry.
Similarly, the anomaly is also equivalent to the statement that a solitonic line defect inducing
a non-trivial background for B(2)2 has non-trivial charge under Z(1)2 .

Let us illustrate the broad method in a bit more detail by considering solitonic line defects in
d dimensions that source background fields for generalised symmetries. We assume there is a
group-like symmetry G, which could be at most a (d−1)-group symmetry in d-dimensions. We
denote the background fields background fields collectively by B. A general (non-topological)
line defect may have the property that

∫

Dd−1

qd−1(B) , (3)

is non-trivial for some degree d − 1 characteristic class qd−1(B) constructed from the back-
ground fields valued in some finite Abelian group A. Here Dd−1 denotes a small ball intersect-
ing the line. Some examples of such solitonic lines are:

• In dimension d = 3, vortex lines defects may source backgrounds for 0-form, 1-form and
2-group symmetries

∫

D2

w2 ,

∫

D2

B2 ,

∫

D2

Bw , (4)

where w2 is the obstruction for lifting a continuous flavor symmetry bundle, B2 and Bw
are the background fields for 1-form and 2-group symmetries.

• In dimension d = 4, Wilson-’t Hooft line defects may source a backgrounds for 1-form
symmetries

∫

D3

Bock(B2) , (5)

where B2 is background for a 1-form symmetry and Bock is the Bockstein homomorphism
associated to some short exact sequence.

• In dimension d = 5, fractional instanton lines may source backgrounds for 1-form sym-
metries

∫

D4

P(B2) , (6)

where B2 is background for a 1-form symmetry and P denotes the Pontryagin square
operation.
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The properties of such solitonic line defects in terms of how the local operators that they
end on transform under 0-form symmetries and whether they are themselves charged under
1-form symmetries determine the form of ’t Hooft anomalies. For example:

• Solitonic line defect may end on local operators charged under an extension of a 0-form
symmetry group by a finite group Z. This determines a homomorphism γ : A→ ÒZ with
associated ’t Hooft anomaly

2πi

∫

Md+1

w2 ∪ γ(qd−1(B)) , (7)

where w2 is the obstruction to lifting the flavour group background to the extension. An
example of such ’t Hooft anomaly in three-dimensions is

2πi
N

∫

M4

(c1 mod N)∪ B2 , (8)

between a U(1) 0-form symmetry with obstruction w2 = c1 mod N (c1 being the first
Chern class) and a ZN 1-form symmetry with background B2. This arises, for example,
in a 3d U(1) gauge theory with a scalar field of charge N .

• Solitonic line defects may be charged under a 1-form symmetry Γ (1). This determines a
homomorphism γ : A→dΓ (1) with associated ’t Hooft anomaly

2πi

∫

Md+1

B2 ∪ γ(qd−1(B)) . (9)

An example of such an anomaly in four dimensions is a mixed anomaly of the form
∫

M4

B(1)2 ∪ Bock
�

B(2)2

�

, (10)

for a Z2×Z2 1-form symmetry. This arises, for example, in 4d pure SO(N) gauge theory
with N = 4k+ 2.

The above examples can be extended in a variety of directions to incorporate the mixing of the
0-form and 1-form symmetries into a 2-group, or the properties of solitonic defects of different
codimension, all of which capture different types of ’t Hooft anomalies. The primary focus of
this paper is in dimension d = 3.

1.2 Outline

In more detail, the contents of the paper are as follows:

• In section 2, we begin, in general spacetime dimension d, by reviewing how the prop-
erties of the spectrum of (generically non-topological) line and local operators capture
information about 0-form, 1-form and 2-group symmetries. This lays the groundwork
for the considerations of subsequent sections.

• In section 3, we discuss solitonic defects arising in low-codimension, focusing in particu-
lar on codimension two and three. For (continuous) 0-form symmetry, we consider vor-
tex defects, which are codimension-two, and monopole operators/’t Hooft defects, which
are codimension-three. For 1-form and 2-group symmetries, we discuss codimension-
two and codimension-three defects which induce in their vicinity degree-two background
fields for these symmetries.
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• In section 4, we discuss gaugings of generalized symmetries with a particular focus on
the fate of the solitonic defects discussed in section 3 under the gauging process. We
find that some of the solitonic defects become non-solitonic, while others remain soli-
tonic, but change their type. For example, vortex defects for 0-form symmetry before
gauging become solitonic defects inducing 1-form symmetry background after gaug-
ing, etc. Among the defects that become non-solitonic after gauging, we find standard
gauge monopole operators (also known as ’t Hooft defects) widely studied in the liter-
ature. Among solitonic defects inducing 1-form symmetry background, we encounter
a slight generalization of standard gauge monopole operators, that we refer to as frac-
tional gauge monopole operators.

• In section 5, we specialize to 3d, systematically exploring various kinds of ’t Hooft
anomalies of generalized symmetries and describe how they are beautifully captured
in terms of charges under generalized symmetries of solitonic defects of the types dis-
cussed in section 3.

• In section 6, we describe how the formalism of section 5 can be used to determine
generalized symmetries and their ’t Hooft anomalies in a large class of 3d gauge the-
ories. These are captured in the gauge and 0-form symmetry charges of various kinds of
monopole operators: standard gauge monopole operators, fractional gauge monopole
operators, monopole operators for 0-form symmetry, and mixed gauge/0-form monopole
operators. The relevant charges of these monopole operators can be computed essen-
tially from the information about Chern-Simons terms for the gauge and 0-form symme-
try groups, and the spectrum of fermionic matter fields. A 3d theory cannot have gauge
and ABJ anomalies described by anomaly polynomials, but it can have global versions
of such anomalies which are not described by anomaly polynomials. We encounter such
anomalies and phrase their vanishing as monopole operators (of various types discussed
above) having non-fractional integer charges.

• In section 7, we illustrate the discussion of section 6 in many simple and concrete exam-
ples. We discuss various kinds of gauge theories having various number of supercharges,
including non-supersymmetric theories. The examples have been chosen to illustrate
various computational steps in detail.

• In section 8, we discuss various other kinds of solitonic defects, ’t Hooft anomalies and
the relationship between them. The anomalies that we discuss involve other kinds of
anomalies in 3d not discussed in the bulk of this paper, and some well-known anomalies
in 4d and 5d.

Sections 2-4 are applicable in general dimensions, whereas we specialize to 3d theories in
sections 5-7. Section 8 provides examples in dimensions d = 4,5.

2 Review of generalized symmetries

In this section, we begin by reviewing how the 0-form, 1-form and 2-group symmetries are
physically encoded in the spectrum of extended and local operators in a d-dimensional quan-
tum field theory. The discussion in this section will be dimension independent.

The contents of this section are mostly a review of the discussions appearing in earlier
works [44,47,85]. However, a few points we make are new.
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RO

Figure 2: A genuine local operator O transforming in a representation R of the 0-
form symmetry group F needs to be attached to a background Wilson line in the
representation R of F .

2.1 0-form symmetries

Definition. We begin with a discussion of the continuous 0-form symmetry of a theory, as-
sociated to a Lie algebra f of the form

f=
⊕

i

fi , (11)

where each fi is either a simple Lie algebra or an Abelian u(1) factor. We require that for
each fi , the theory contains at least one genuine local operator1 transforming in a non-trivial
representation of f. This requirement is always satisfied for each fi that is non-Abelian, since
the current operator transforms in the adjoint representation, which is non-trivial if fi is non-
Abelian. For an Abelian fi = u(1), there might not exist such a local operator, and this becomes
an assumption on the class of f that we study.

The 0-form symmetry group is the Lie group satisfying the following properties:

1. F can be expressed as

F =
∏

i Fi

Γ
, (12)

where each Fi is a compact connected Lie group whose Lie algebra is fi and Γ is a
subgroup of the center of

∏

i Fi .

2. If there is a genuine local operator transforming in a representation R of f, then R must
be an allowed representation of F .

3. Conversely, if R is a representation of f that is an allowed representation of F , then there
exists at least one genuine local operator transforming in R.

In other words, F is a group with Lie algebra f, which takes the form (12) and acts faithfully
on the genuine local operators.

Backgrounds and genuine local operators. In the presence of a background gauge field for
0-form symmetry, which is a principal F bundle with a connection, a genuine local operator
O in a representation R of F is not invariant under background gauge transformations, but
can be made gauge invariant by attaching it to a background Wilson line in the representation
R. See figure 2. After attaching the background Wilson line, correlation functions involving
O depend on the precise locus of the background Wilson line. In particular, the background
Wilson line is not topological, but “almost topological”, in the sense that small deformations
of it change the correlation function by fluxes of field strength for background gauge field.

1A genuine p-dimensional defect/operator can be defined independently of any other higher-dimensional de-
fects/operators. On the other hand, a non-genuine p-dimensional defect/operator arises at a (possibly compli-
cated) junction of other higher-dimensional defects/operators. Also note that in this paper, we use the words
‘defect’ and‘operator’ interchangeably, as we are working with QFTs with spacetime Euclidean invariance.
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Backgrounds and non-genuine local operators. One can also consider correlation func-
tions involving non-genuine local operators in the presence of background gauge fields for
F . Such local operators may transform in representations of f that are not representations of
F , but instead representations of a group F with the same Lie algebra f, which is a central
extension of F . That is, we can express F as

F = F/Z , (13)

where Z is a finite subgroup of the center ZF of F . A background for 0-form symmetry F
comes equipped with a Z-valued 2-cocycle w2 describing the obstruction of lifting the associ-
ated F bundle to an F bundle. Note that, even though every local operator needs to form a
representation of F , we do not require that every representation of F needs to be realized by
some local operator. Thus, in some situations, one has several consistent choices for F , each
having a different obstruction class w2.

Examples. If the 0-form symmetry group acting faithfully on genuine local operators is
F = SO(3), it may happen that the non-genuine local operators transform in representations
of F = SU(2) that are not representations of SO(3), and in this case Z = Z2. The obstruction
class w2 is then the second Stiefel-Whitney class of the background SO(3)-bundle.

This scenario is realized in a U(1) gauge theory with two matter fields φ1 and φ2 of charge
1 under the U(1) gauge group, such that φ1 and φ2 form a doublet under a flavor symmetry
algebra f= su(2). The genuine local operators are gauge invariant operators, which form only
integer spin representations of su(2), and hence F = SO(3). On the other hand, φi can be
made gauge invariant by inserting them at the end of a Wilson line of charge 1 under the U(1)
gauge group. Thus, φi provide non-genuine operators which transform in half-integer spin
representations of su(2), and hence F = SU(2).

Another example frequently encountered is that genuine local operators transform with
integer charge under a 0-form symmetry F = U(1), but non-genuine local operators transform
with fractional charge in multiples of 1/N . In such a situation, we can choose F to be a group
isomorphic to U(1), which is a kN -fold cover of F = U(1), where k ≥ 1 is an arbitrary integer

1→ ZkN →
�

F ∼= U(1)
�

→
�

F ∼= U(1)
�

→ 1 . (14)

A minimal choice is k = 1, in which case every representation of F is realized by some genuine
or non-genuine local operator, but for k > 1, there exist representations of F not realized by
local operators. We have Z = ZkN and the obstruction class is w2 = c1 (mod kN). The case
N = 2, k = 1 is recovered from the previous example by restricting to maximal tori.

The case of general N is realized in a 3d U(1) gauge theory with N matter fields of charge
1 under the U(1) gauge group. This theory has a magnetic 0-form symmetry F = U(1) which
acts on monopole operators for the gauge group, which are genuine local operators. But, as
discussed in later sections, one can also consider monopole operators for the electric PSU(N)
0-form symmetry group rotating the matter fields, which induce monopole configurations for
the U(1) gauge group that are fractional but quantized in units of 1/N . Such monopole opera-
tors are non-genuine local operators whose charge under magneticF = U(1) 0-form symmetry
group is also fractional but quantized in units of 1/N .

Correlators with non-genuine operators. The consistency of correlation functions of non-
genuine local operators as a function of w2 provides information about the interaction of ex-
tended defects attached to non-genuine local operators with the F -background. For example,
consider non-genuine local operators arising at the ends of genuine line defects. To each line
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L R
O

(1)

β ∈ Z

L R
O

(2)

φ ×

L R
O

(3)

β ∈ Z

L R
O

(4)

〈αL ,β〉 ×

Figure 3: The figure studies correlation functions involving a non-genuine local oper-
ator O arising at the end of a line defect L and transforming in a representation R of
F . The operator is attached to a background Wilson line in representation R whose
locus is displayed as a dashed line. The representation R carries a charge αL ∈ ÒZ
under Z. In blue is shown a piece in the (d − 2)-cycle Poincaré dual to the back-
ground 2-cocycle w2 defined in the text, which carries an element β ∈ Z. (1) and
(3) are the same correlation functions as we have just moved β without crossing any
objects. This correlation function can be related to the correlation function without
the β insertion in two different ways. Starting from the configuration (1), we can
collapse β onto L to reach the configuration (2), where φ is an a priori unknown
phase obtained by moving β across L. Or starting from (3), we can collapse β onto
the background Wilson line R to reach the configuration (4), where we know that
moving β across the R line changes correlation function by the phase 〈αL ,β〉 using
the natural map 〈·, ·〉 : ÒZ × Z → U(1). Consistency demands that the two phase
factors must be equal leading to the determination of φ, which is φ = 〈αL ,β〉. This
justifies the correlation function jump (15).

defect L that can end, we can associate an element αL ∈ ÒZ where ÒZ denotes the Pontrya-
gin dual of Z. A non-genuine local operator appearing at the end of L must transform in a
representation R of F whose charge under the center subgroup Z is αL .

Now consider a correlation function 〈L · · · 〉C in which the line defect L is placed along
a closed loop C , whose Poincaré dual (d − 1)-cocycle is δC . This lets us define a ÒZ-valued
(d − 1)-cocycle αL ⊗δC . Then, the correlation function transforms as

〈L · · · 〉C(w2 +δλ1) = exp

�

2πi

∫

M
(αL ⊗δC)∪λ1

�

× 〈L · · · 〉C(w2) , (15)

as a function of the background field w2, where the cup product is defined via the natural map
ÒZ ×Z → R/Z. A justification for this result is provided in figure 3.

The above jump (15) in the correlation function looks similar to those encountered when
discussing ’t Hooft anomalies. In fact, as we discuss in section 5, the above correlation function
jumps can be directly connected to ’t Hooft anomalies when the line defect L is related to a
generalized global symmetry.

2.2 1-form symmetries

We say that a theory has a 1-form symmetry group Γ (1), which is an Abelian group, if we are
provided a (not necessarily injective) map S from Γ (1) to genuine invertible codimension-two
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L

γ ∈ Γ (1)

= LbγL(γ) ×

Figure 4: The charges of a line defect L under various elements γ ∈ Γ (1) can be
described in terms of a particular element bγL ∈ bΓ (1). Here bγL(γ) ∈ U(1) describes the
image of γ under the homomorphism bγL : Γ (1)→ U(1).

topological defects in the theory

S : Γ (1) −→ {Genuine invertible codimension-two topological defects} , (16)

satisfying the following properties. Let Uγ be the topological defect associated to an element
γ ∈ Γ (1) under the above map S. Then, the fusion rule of these topological defects must be
such that

Uγ ⊗ Uγ′ = Uγγ′ , (17)

where γγ′ is the element of Γ (1) obtained as group multiplication of γ and γ′. To provide full
coupling of the theory to Γ (1) backgrounds, we also need to provide invertible non-genuine
topological defects lying at various types of junctions of Uγ. The details of the choices of these
higher-codimension topological defects will not be relevant for us, so we do not delve into
these details here.2 Instead, what will be relevant for us is that the map S is injective, and this
will assumed throughout the paper.

Charged objects. At the level of charged objects, there is a map bS from the set of all genuine
line defects of the theory to the Pontryagin dual bΓ (1) of Γ (1),

bS : {Genuine line defects} −→ bΓ (1) . (18)

This maps a line defect L to its charge bγL ∈ bΓ (1) under the 1-form symmetry Γ (1), as illustrated
in figure 4.

In general, the map bS is not surjective. A non-trivial example of such a situation is provided
by the non-trivial 4d SPT phase protected by Z2 1-form symmetry,3 where the only genuine
line defect is the identity line, which has a trivial charge under the Z2 1-form symmetry.

However, when S is injective then bS is expected to be surjective. This will be the case
in situations considered throughout this paper. In such situations, Γ (1) can be constructed by
studying equivalence classes of genuine line defects modulo screenings in the theory. Let us
describe this construction below.

Equivalence classes of genuine line defects. Define an equivalence relation ∼ on the set
of genuine line defects, under which L1 ∼ L2 if there exists a non-zero local operator O living

2For the interested reader, let us remark that this corresponds to lifting the map S to a functor from a (d − 2)-
category CΓ (1) with objects, morphisms and higher-morphisms labeled by collections of elements in the group Γ (1) to
the (d−2)-category describing invertible codimension-two topological defects and invertible topological junctions
between them.

3The partition function of this SPT phase on a compact 4-manifold M4 with 1-form symmetry background B2 is
exp
�

πi
2

∫

M4
P(B2)
�

where P(B2) is the Pontryagin square of B2.
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at the junction of L1 and L2:

L1 L2 ,
O ̸= 0

L1 ∼ L2 ⇐⇒ there exists

or L2 L1 .
O ̸= 0

(19)

There is a commutative (in d ≥ 3) product operation on the set of equivalence classes descend-
ing from the OPE/fusion of line defects. In many Lagrangian and non-Lagrangian theories of
interest the set of equivalence classes forms an Abelian group under this product operation.4

We study only such theories in this paper. Let us denote the Abelian group formed by the
equivalence classes bydΓ (1).

Now we define invertible topological codimension-2 defects by providing the charges of
genuine line defects under them. As explained in figure 5, two genuine line defects L1 and
L2 lying in the same equivalence class need to have the same charge under each invertible
topological codimension-2 defect. Thus, in this fashion, we can define invertible topological
codimension-2 defects in one-to-one correspondence with elements of the Pontryagin dual of
dΓ (1)

Γ (1) = Hom
�

dΓ (1), U(1)
�

. (20)

We say that the theory has a 1-form symmetry group Γ (1), even though it might be possible to
couple the theory to a 1-form symmetry group O larger than5 Γ (1) by having a non-injective
map S from O to Γ (1). The 1-form symmetry group acts on the line defects belonging to
equivalence classes indΓ (1) by the standard pairing Γ (1) ×dΓ (1)→ U(1).

Examples. Examples encountered in this paper will largely involve 1-form symmetries in-
volving (products of) cyclic groups. This arises when equivalences classes of genuine line
defects are labelled by an integer modulo q and fusion corresponds to addition modulo q, for
some integer q > 1. This is the additive Abelian groupdΓ (1) = Z/qZ = Zq and the correspond-
ing 1-form symmetry is also Γ (1) = Zq. A concrete example is provided by a U(1) gauge theory
with a matter field of charge q. As discussed before, the matter field leads to a gauge invariant
non-genuine local operator sitting at the end of a Wilson line of charge q. Thus the Wilson
lines form bΓ (1) = Zq.

2.3 2-group symmetries

Type of 2-group symmetries studied here. Intuitively, 2-group symmetries involve a mixing
between 0-form and 1-form symmetries. Here we focus on 2-group symmetries where the 0-
form symmetry part F is continuous, the 1-form symmetry Γ (1) is discrete and there is no
action of 0-form symmetry on 1-form symmetry. Such a 2-group is a specified by a triple

�

F , Γ (1),Θ
�

, (21)

where
Θ ∈ H3(BF , Γ (1)) , (22)

4Examples where this is not the case are provided by gauge theories with disconnected gauge groups, like pure
O(2) gauge theory.

5For example, we can regard a trivial theory to have any 1-form symmetry O by mapping all elements of O to
the trivial codimension-two defect in the trivial theory.
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L1 L2

O

(1)

γ

L1 L2

O

(2)

φ(γ, L1) ×

L1 L2

O

(3)

γ

L1 L2

O

(4)

φ(γ, L2) ×

Figure 5: The figure studies correlation functions involving a non-genuine local op-
erator O arising at a junction between two line defects L1 and L2. In blue is shown
a topological codimension-two defect corresponding to a 1-form symmetry element
γ. (1) and (3) are the same correlation functions as we have just moved γ without
crossing any objects. This correlation function can be related to the correlation func-
tion without the γ insertion in two different ways. Starting from the configuration
(1), we can collapse γ onto L1 to reach the configuration (2). In the process, we
generate an additional phase φ(γ, L1) which is the charge of L1 under γ. Or starting
from (3), we can collapse γ onto L2 to reach the configuration (4), which generates
a phase φ(γ, L2) which is the charge of L2 under γ. Consistency demands that the
two phase factors must be equal. Thus two line defects lying in the same equiva-
lence class have same charge under all 1-form symmetries, and hence the possible
1-form symmetries form a group isomorphic to the Pontryagin dual of the group bΓ (1)

of equivalence classes of line defects.

is known as the Postnikov class associated to the 2-group symmetry. If Θ is trivial, then there
is no 2-group symmetry.

The triple specifies the following relationship between the background fields

δB2 + B∗1Θ = 0 , (23)

where the background field B2 for 1-form symmetry is a Γ (1)-valued 2-cochain, B1 : M → BF
captures the 0-form symmetry background, and B∗1Θ is the pullback of the Postnikov class Θ.
In particular, in the presence of a background field for the 0-form symmetry, the background
field for the 1-form symmetry need not be closed.

Bockstein homomorphism. For the 2-group symmetries studied in this paper, the Postnikov
class admits a construction of the following form

Θ = Bock(w2) , (24)

where
Bock : H2(BF ,Z)→ H3(BF , Γ (1)) , (25)

is the Bockstein homomorphism associated to a short exact sequence

0→ Γ (1)→ E → Z → 0 , (26)

where w2 ∈ H2(BF ,Z) is the characteristic class capturing the obstruction of lifting F bundles
to F = F/Z bundles.
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Equivalence classes of lines. The physical meaning of such 2-group symmetries becomes
more transparent once the 2-groups are encoded in the properties of the spectrum of (ex-
tended) operators in the theory, which we now turn to.

The 2-group symmetries under discussion are related to the physical phenomenon that
non-genuine local operators living at the junctions of genuine line defects may not form al-
lowed representations of the 0-form symmetry group F . Let F be a central extension of F
under which all non-genuine local operators form allowed representations. Then we can ex-
press F as

F = F/Z , (27)

where Z is a finite subgroup of the center ZF of F . This defines the auxiliary groups F and Z
appearing in the construction (24) of the Postnikov class.

The computation of the 2-group symmetry is similar to that of 1-form symmetry discussed
in section 2.2, but we now define equivalence classes of lines while taking into account the
representations under F of the non-genuine local operators lying at the junctions between
genuine line defects. To keep track of the representations of junction local operators, we
introduce background Wilson lines valued in representations of F . A (genuine or non-genuine)
local operator transforming in representation R of F is attached to a background Wilson line
in representation R.

We can now specify the equivalence relation. Consider the set of objects (L, R), where L is
a genuine line defect and R is a background Wilson line for F . Then impose the equivalence
relation6

L1 L2 ,
O ∈ R2 ⊗ R∗1

(L1, R1)∼ (L2, R2) ⇐⇒ there exists

or L2 L1 .
O ∈ R1 ⊗ R∗2

(28)

In other words, (L1, R1) ∼ (L2, R2) if there is a non-genuine local operator O living at the
junction of L1 and L2, which transforms in the representation R2 ⊗ R∗1 or R1 ⊗ R∗2 (depending
on the orientation of L1 and L2), where R∗ denotes the complex conjugate representation of R.
The set bE of equivalence classes admits a commutative (in d ≥ 3) product structure obtained
by combining OPE of line defects with the tensor product on representations. In this paper,
we study theories for which bE forms an Abelian group under this product operation.

Computation of short exact sequence (26). Note that elements of the form (id, R) where
id denotes the identity line defect lead to equivalence classes forming the subgroup ÒZ ⊂ bE ,
leading to a short exact sequence

0→ ÒZ → bE →dΓ (1)→ 0 . (29)

Indeed, as claimed above, the group bE/ÒZ isdΓ (1) because modding out by elements of ÒZ corre-
sponds to forgetting the data of the background Wilson lines, thus reducing the computation
to equivalence classes of line defects without regard for 0-form charges of junction local oper-
ators, as considered in section 2.2.

The short exact sequence (26) associated to the 2-group symmetry (24) is the Pontryagin
dual of the short exact sequence (29). The argument relating the above construction in terms
of equivalence classes of lines to the relationship

δB2 + Bock(w2) = 0 , (30)
6We use the same notation∼ as in (19), however it should always be clear, which equivalence relation is meant,

from the context of the types of objects it relates.
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between the background fields can be found in section 2.3 of [44].

Example. An example of such a 2-group symmetry has 0-form symmetry F = SO(3), 1-form
symmetry Γ (1) = Z2, and Postnikov class Θ = Bock(w2) = w3 given by the image of the second
Stiefel-Whitney class under the Bockstein homomorphism for the short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (31)

This coincides with the third Stiefel-Whitney class of the SO(3)-bundle.
This scenario is realized in a U(1) gauge theory with two matter fields φ1 and φ2 of charge

2, which transform as a doublet under an su(2) flavor symmetry algebra. This combines
the U(1) gauge theory examples discussed in the previous two subsections. Here we have
F = SO(3) as gauge invariant operators composed out of φi all have integer spin under su(2),
and we have Γ (1) = Z2 as matter fields φi lead to gauge invariant non-genuine local oper-
ators sitting at the ends of a Wilson line defect of gauge charge 2. As φi form a doublet of
F = SU(2), we learn that the Wilson line of charge 2 is equivalent to a background Wilson line
in fundamental representation of F = SU(2), which corresponds to the non-trivial element
inside ÒZ = Z2. Thus, we find that the equivalence classes of lines form bE = Z4, leading to the
short exact sequence (31) and the non-trivial Postnikov class Θ = w3.

Solitonic Postnikov defects and 1-form twisted sector. An alternative way of characteriz-
ing a 2-group symmetry is via identifications between the following two classes of defects:

• On the one hand, we have twisted sector operators for 1-form symmetry, which are non-
genuine (generically non-topological) codimension-3 defects that lie at the ends of the
genuine codimension-2 topological defects implementing the 1-form symmetry.

• On the other hand, we have codimension-3 solitonic defects P inducing 0-form symmetry
backgrounds such that

∫

D3

Θ ̸= 0 , (32)

where D3 is a small 3-dimensional ball intersecting the locus of P at a single point, and
Θ is the Postnikov class discussed above.

The 2-group symmetry then states the following. Consider a solitonic defect P inducing a
0-form symmetry background such that

∫

D3

Θ = γ ∈ Γ (1) . (33)

Then, P is a non-genuine defect lying in the twisted sector for 1-form symmetry element
γ ∈ Γ (1). Moreover, any defect lying in the twisted sector for γ has to be a solitonic defect
for 0-form symmetry inducing (33).

In particular, in every such γ-twisted sector, we have a topological codimension-3 defect.
These codimension-3 defects are placed along the (d −3)-cycle Poincare dual to the 3-cocycle
B∗1Θ on spacetime Md , providing the topological defect realization for the relationship (23)
describing 2-group backgrounds.
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Background field for 2-group symmetry. In this paper, we will use extensively an E-valued
background field associated to a 2-group symmetry. This is an E-valued 2-cocycle Bw defined
as the following combination [44,50]

Bw = i(B2) + ew2 . (34)

Here i(B2) denotes the E-valued 2-cochain obtained from the Γ (1)-valued 2-cochain B2 using
the injection map

i : Γ (1)→ E , (35)

and ew2 is an E-valued 2-cochain obtained by lifting the Z-valued 2-cocycle w2 under the
projection map

π : E → Z , (36)

appearing in the short exact sequence (26). Both of the E-valued co-chains i(B2) and ew2
are not closed if there is a non-trivial 2-group symmetry, but the combination Bw is always
closed [44,50].

In the aforementioned example with F = SO(3), Γ (1) = Z2 and Θ = Bock(w2) = w3, the
2-group background can be written Bw = 2B2+ ew2 where ew2 is a Z4-valued co-chain lift of the
second Stiefel-Whitney class w2 and 2B2 is a Z4 valued cochain obtained from the Z2 valued
cochain B2 by multiplying it by 2.

3 Solitonic defects of codimension two and three

In this section, we discuss some types of codimension-2 and codimension-3 solitonic defects
that induce backgrounds for 0-form, 1-form and 2-group symmetries in their vicinity. These in-
clude vortex and monopole defects, which are solitonic defects inducing vortex and monopole
configurations for the 0-form symmetry group. In section 5, we will explain the utility of the
solitonic defects introduced here in determining ’t Hooft anomalies between 0-form, 1-form
and 2-group symmetries in d = 3.

3.1 Codimension-two solitonic defects

Vortex defects. A vortex defect V is a solitonic defect which induces a vortex configuration for
the 0-form symmetry group F . Such a vortex configuration for F is specified by a co-character
of F , which is a homomorphism

φ : U(1)→ F . (37)

On a small circle S1 linking the (d − 2)-dimensional locus Ld−2 ⊂ Md occupied by V in space-
time Md , the co-character φ defining the vortex configuration is such that the background
connection for U(1)φ := Imφ ⊂ F has a winding number 1. In other words,

∫

D2

c1 = 1 , (38)

where D2 is a small disk intersecting Ld−2 at one point, whose boundary is the above small
circle S1, and c1 is the first Chern class of the background U(1)φ bundle. If a codimension-two
defect V induces a vortex configuration with co-character φ, we say it lies in the vortex sector
φ.

To any codimension-two defect V in the vortex sector φ, we can associate an element

αφ ∈ Z , (39)
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which is the obstruction to lifting the co-character φ of F to a co-character of F . The physical
interpretation of αφ is that the Z-valued background field w2 capturing the obstruction of
lifting the background F bundle to an F bundle is forced to satisfy

∫

D2

w2 = αφ . (40)

Examples. An example is a flavor symmetry F = SO(3) where non-genuine local operators
transform in representations of F = SU(2). As we discussed earlier, a concrete example of such
a scenario is provided by a U(1) gauge theory with two matter fields of gauge charge 1. In this
scenario, vortex sectors are labelled by an integer flux φ ∈ Z and the element αφ = φ mod 2
captures the obstruction to lifting this to an SU(2) vortex configuration.

As another example, we can suppose that there is a flavor symmetry F = U(1), but
non-genuine local operators transform with fractional charge in multiples of 1/N , such that
F = U(1) is an N -fold cover. As we discussed earlier, a concrete example of such a scenario
is provided by magnetic U(1) 0-form symmetry in 3d U(1) gauge theory with N matter fields
of gauge charge 1. In this scenario, vortex sectors are labelled by an integer φ ∈ Z and the
obstruction class is αφ = φ mod N .

Codimension-2 defects inducing 1-form backgrounds. Similarly, we can consider
codimension-2 solitonic defects inducing 1-form symmetry backgrounds in their vicinity. Such
a defect forces the background field B2 for 1-form symmetry Γ (1) to satisfy

∫

D2

B2 = α ∈ Γ (1) , (41)

where D2 is again a small disk intersecting the codimension-2 locus of the defect at a single
point.

Examples are provided by topological codimension-two defects implementing the 1-form
symmetry Γ (1). In section 4, we will see that examples of such solitonic defects are also pro-
vided by codimension-2 defects inducing gauge vortex configurations in their vicinity.

Codimension-2 defects inducing 2-group backgrounds. Combining the two constructions
above, we can consider codimension-two solitonic defects inducing both 0-form and 1-form
backgrounds, or in other words 2-group backgrounds, in their vicinity. Such a defect V forces
the background field Bw for the 2-group symmetry to satisfy

∫

D2

Bw = αV ∈ E . (42)

We can therefore associate the element αV ∈ E to the codimension-two defect V .
In particular, let αV ∈ E be associated to a vortex defect V lying in vortex sector φ for the

0-form symmetry. Then, for consistency, we must have

αV ∈ π−1(αφ) ⊂ E , (43)

where π is the projection map (36) from E to Z.
In section 4, we will see that examples of such solitonic defects are provided by

codimension-2 defects inducing mixed vortex configurations for gauge and 0-form symme-
tries in their vicinity.
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3.2 Codimension-three solitonic defects

Monopole operators. Now consider a codimension-three defect M arising at the end of a
codimension-two defect V in vortex sector φ. Let Ld−3 be the codimension-three locus along
with M is placed. Then, along a small sphere S2 linking Ld−3, we find an induced

∫

S2

c1 = 1 , (44)

where c1 is the first Chern class for the subgroup of U(1)φ of F . If φ is non-trivial, then such
a codimension-three solitonic defect is called a monopole operator or a ’t Hooft defect for the
0-form symmetry F .

To any such monopole operator M we can associate an element αφ ∈ Z, which is the
obstruction of lifting φ to a co-character for F . The monopole operator then requires the
Z-valued 0-form symmetry background field w2 to satisfy

∫

S2

w2 = αφ ∈ Z . (45)

Codimension-3 defects inducing 1-form backgrounds. In the presence of a 1-form sym-
metry we may also consider codimension-three defects M lying at the end of codimension-two
defects that induce a 1-form background as in equation (41). Such a codimension-3 defect
requires that the background field for the 1-form symmetry satisfies

∫

S2

B2 = α ∈ Γ (1) . (46)

This applies in particular to the topological codimension-two defects generating the 1-form
symmetry, in which case such codimension-three defects are known as twisted sector operators
for the 1-form symmetry Γ (1). In section 4, we will see that examples of such solitonic defects
are also provided by codimension-3 defects inducing gauge monopole configurations in their
vicinity.

Codimension-3 defects inducing 2-group backgrounds. In the presence of a 2-group sym-
metry, a combination of the above leads us to consider codimension-three defects lying at the
end of a codimension-two defect V that induces a 2-group background as in equation (42).
Correspondingly, such a codimension-three defect M also induces a 2-group background in its
vicinity, such that

∫

S2

Bw = αV ∈ E . (47)

In other words, M is associated to the element αV ∈ E .
For consistency, αV ∈ E associated to a monopole operator M associated to a co-character

φ of F must satisfy
αV ∈ π−1(αφ) ⊂ E , (48)

where αφ is the obstruction of lifting φ to a co-character for F and π is the map (36).
In section 4, we will see that examples of such solitonic defects are provided by

codimension-3 defects inducing mixed monopole configurations for gauge and 0-form sym-
metries in their vicinity.
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4 Gauging symmetries and the fate of solitonic defects

In this section we consider gauging parts of the 0-form and 1-form symmetries in a theory
T admitting a 2-group symmetry

�

F , Γ (1), Bock(w2)
�

of the type discussed above. We first
consider gauging a part of the 0-form symmetry F , assuming that there is no 2-group structure
in section 4.1, which is then generalised to a 0-form part of a 2-group in section 4.2. Moreover,
initially we discuss gauging such a symmetry in a generic dimension d ̸= 3, before outlining
the additional features arising in dimension d = 3. Finally, we will discuss gauging the 1-form
symmetry Γ (1). We also discuss the fate of solitonic defects introduced in the previous section
under these gauging procedures.

Throughout this section, we will assume for simplicity that these symmetries are not af-
flicted with any ’t Hooft anomalies. Later in section 5, we will consider gauging in the presence
of ’t Hooft anomalies in dimension d = 3.

4.1 Gauging 0-form symmetry in the absence of 2-groups

Here we consider a theory T with a compact connected 0-form symmetry group F = F/Z
that does not participate in a 2-group. We will further assume there is no 1-form symmetry.
These assumptions will be relaxed to allow the symmetry group F to participate in a 2-group
symmetry in section 4.2.

Gauge group. Now consider gauging a sub-algebra g = fg ⊂ f with gauge group G = Fg
which is a compact connected Lie group.7 This gauge group must be such that all the genuine
and non-genuine local operators of the original theory T transform in allowed representations
of G. We denote the theory obtained by gauging this symmetry by T/G. Note that this encom-
passes standard gauge theories constructed from matter transforming in linear representations
of the gauge group, but could apply equally well if T is an interacting theory without a La-
grangian description.

The residual 0-form symmetry algebra fr ⊆ f is the commutant of fg in f. Let Fr be a
compact connected Lie group with Lie algebra fr such that all genuine and non-genuine local
operators in T transform in allowed representations of Fr . The 0-form symmetry group Fgr
associated to the 0-form symmetry subalgebra fg⊕ fr ⊆ f, which is the maximal group that acts
faithfully on genuine local operators before gauging, can then be written as

Fgr =
Fg × Fr

Zgr
, (49)

where Zgr is the subgroup of the center of Fg×Fr acting trivially on all genuine local operators
in the original theory T.

The construction of the 0-form symmetries (and therefore 2-group global symmetries) of
the gauged theory T/G will have additional features in three-dimensions due to the existence
of gauge monopole local operators charged under additional 0-form topological symmetries.
We first present the standard construction for d ̸= 3, before presenting the additional features
in d = 3.

4.1.1 General dimension

Structure group. In dimension d ̸= 3, the 0-form symmetry group Fgr of T can be identified
with the structure group of the gauged theory T/G, which is the group whose bundles describe

7The gauging is performed by promoting the background gauge fields for fg to dynamical gauge fields. We do
not add additional matter fields charged under fg . The choice of the gauge group G is a choice of the allowed
probe particles, or in other words, a choice of the possible Wilson line defects associated to fg .
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the most general combinations of gauge bundles and 0-form symmetry bundles that the theory
can be coupled to. We write the structure group as

S =
G × Fr

Er
, (50)

with the identifications S = Fgr and Er = Zgr ⊂ ZG×Fr
. Here and below we denote by ZG×Fr

the center of G × Fr . Let us review some of the general discussion in [35].

Symmetries. Let us first discuss the global symmetries of the gauged theory T/G. Define the
projection maps

ZG
pg
←− ZG×Fr

pr−→ ZFr
, (51)

and define
Zr = pr(Er) , Zg = pg(Er) . (52)

Then the residual 0-form symmetry group is

Fr = Fr/Zr , Zr = pr(Er) . (53)

Note that Zr is the subgroup of Fr acting by gauge transformations on genuine local operators
in the original theory T. In addition, there is a new electric 1-form symmetry

Γ (1)r = ZG ∩ Er , (54)

which is the subgroup of the center ZG of the group G leaving invariant all genuine local
operators in the original theory T. These groups form a natural short exact sequence

0 −→ Γ (1)r −→ Er −→ Zr −→ 0 . (55)

If this sequence does not split, there is a non-trivial extension class, which determines the
2-group global symmetry of T/G.

Backgrounds. Let us now consider coupling T/G to background fields for this 2-group sym-
metry. They may be summarised as follows:

• A background Fr -bundle with associated Zr -valued 2-cocyle wr
2 obstructing the lift to

an Fr bundle.

• A background field for the 1-form symmetry is a Γ (1)r -valued 2-cochain Br
2 satisfying

δBr
2 = Bock(wr

2) . (56)

• The above background fields wr
2, Br

2 combine to form a background field for the 2-group,
which is an Er valued 2-cocycle Br

w.

Gauge bundles. Let us now describe which gauge bundles are summed over in T/G in the
presence of background fields. We first introduce the notation

G = G/Zg , Zg = pg(Er) . (57)

Note that G = Fg is the 0-form symmetry group associated to g = fg acting faithfully on
genuine local operators in the original theory T. In the presence of background fields for the
2-group symmetry, the gauged theory T/G sums over G-bundles constrained such that

wg
2 = pg

�

Br
w

�

, (58)
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VφMφ Mφ

gauging G

Figure 6: Consider a vortex defect Vφ labelled by a cocharacter φ : U(1) → G in
the original theory T that descends to the identity defect in the gauged theory T/G.
In the process, a monopole operator Mφ living at the end of Vφ becomes a genuine
non-fractional gauge monopole operator for the gauge group G.

where wg
2 is the Zg -valued 2-cocyle obstructing the lift of a G-bundle to a G-bundle. As a

consistency check, in the absence of background fields for global symmetries this reproduces
the expectation that the gauged theory sums over G-bundles.

Note that the combination of an Fr -bundle and a G-bundle with obstruction class
wg

2 = pg(Br
w) gives rise to a bundle for the structure group S with the Er -valued co-cycle

Br
w obstructing the lift to a G × Fr -bundle.

Fate of vortices and monopoles under gauging. With the description of the structure
group, background fields and summation over gauge bundles in hand, we can now describe
the fate of the vortex and monopole defects introduced in section 3 in the theory T when
gauging the symmetry G.

Consider a vortex defect V of the original theory T inducing a vortex configuration for
the 0-form symmetry group Fgr . It is convenient to specify such a vortex configuration by a
pair of co-characters (φg ,φr) for G ×Fr together with obstruction classes (αg ,αr) valued in
Zg ×Zr such that αg = pgα and αr = prα, where α is obstruction of lifting the Fgr vortex
configuration to a G × Fr vortex configuration.

Consider first the situation where co-character φ has non-zero components only along the
G direction, namely φ = (φg , 0). This is equivalent to a co-character φg : U(1)→ G/Γ (1)r and
in such a case αg ∈ Γ (1)r . Let us begin with the case αg = 0, which corresponds to a situation
in which φg can be lifted to a co-character for the gauge group

φg : U(1)→ G . (59)

Then the vortex defect V descends to a codimension-two defect in the gauged theory T/G
which induces a vortex configuration for the gauge group G. Since, such a configuration may
be removed by a gauge transformation, V descends to a codimension-two defect in the trivial
vortex sector (for 0-form symmetryFr) in the gauged theoryT/G. For example, it may descend
to the identity codimension-two defect.

A monopole operator M in the original theory T living at the end of the vortex defect V
descends to a codimension-three defect in the gauged theory T/G which induces a monopole
configuration for the gauge group G associated to the co-character φg : U(1)→ G. We call an
operator inducing a monopole configuration for the gauge group G as a non-fractional gauge
monopole operator. If such an operator lives at the end of a codimension-two defect, then
it is called a non-genuine non-fractional gauge monopole operator. Thus, if V descends to
a non-trivial codimension-2 defect, then M descends to a non-genuine non-fractional gauge
monopole operator in the theory T/G. On the other hand, a non-fractional gauge monopole
operator that does not live at the end of any codimension-2 defect is called a genuine non-
fractional gauge monopole operator. These are the familiar monopole operators usually stud-
ied in the literature. Thus, if V descends to the identity codimension-two defect, then M
descends to a genuine codimension-three non-fractional gauge monopole operator. See fig-
ure 6.

Now suppose that the obstruction class αg ∈ Γ (1)r is non-vanishing and consequently
φg : U(1) → G/Γ (1)r cannot be lifted to a co-character for the group G. Then V descends
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VφMφ

gauging G
γ ∈ Γ (1)Mφ

Figure 7: In the original theory T, Vφ is a vortex defect associated to a co-character
φ : U(1)→ G with non-trivial obstruction α for lifting to a co-character for G, which
descends to the Gukov-Witten operator implementing the 1-form symmetry γ ∈ Γ (1)r
in the gauged theory T/G. In the process, a monopole operator Mφ living at the end
of Vφ becomes a twisted sector operator for the 1-form symmetry element γ ∈ Γ (1)r .

to what we call a fractional gauge vortex defect, which is a codimension-two defect in T/G that
induces a vortex configuration of G/Γ (1)r that cannot be lifted to a vortex configuration of the
gauge group G. Examples of fractional gauge vortex defects are provided by Gukov-Witten
operators, which are topological codimension-two defects implementing the 1-form symmetry
Γ (1)r in the gauged theory T/G. Moreover, the codimension-two defect in the gauged theory
T/G, that V descends to, induces a background for the 1-form symmetry Γ (1)r such that

∫

D2

Br
2 = αg ∈ Γ (1)r . (60)

Thus V remains a solitonic defect after gauging, but now it induces a 1-form background in
its vicinity instead of a 0-form background.

A monopole operator M living at the end of the vortex defect V in the original theory T

descends to what we call a fractional gauge monopole operator, which is a codimension-three
operator in the gauged theory T/G living at the end of a fractional gauge vortex defect. More-
over, after gauging M becomes a codimension-3 solitonic defect inducing 1-form background
on a sphere S2 linking it, rather than a 0-form background. Examples of fractional gauge
monopole operators are provided by operators lying in the twisted sector for the 1-form sym-
metry Γ (1)r , which are operators lying at the ends of the topological codimension-two defects
implementing the 1-form symmetry Γ (1)r . In particular, if V descends to a Gukov-Witten oper-
ator implementing a 1-form symmetry in the gauge theory T/G, then M descends to a twisted
sector operator for the 1-form symmetry element αg ∈ Γ (1)r . See figure 7.

Now consider the situation in which φr ̸= 0. If φg = 0, then V descends to a vortex
defect for the Fr 0-form symmetry of the gauged theory T/G inducing the vortex configuration
described by the co-character φr : U(1) → Fr . The descending vortex defect induces a wr

2
background given by

∫

D2

wr
2 = αr , (61)

in its vicinity. A monopole operator M living at the end of V descends to a monopole operator
for Fr in the gauged theory T/G.

Finally consider the most general situation in which both φg and φr are non-trivial. In
such a situation, V descends to what we call a mixed gauge/0-form vortex defect in the gauged
theory T/G, which is a codimension-two defect inducing both a vortex configuration for G and
a vortex configuration for Fr . The descendant mixed gauge/0-form vortex defect induces a
2-group symmetry background with

∫

D2

Br
w = α , (62)

in its vicinity, and hence is a codimension-2 solitonic defect inducing a 2-group background.
Correspondingly, a monopole operator M living at the end of V descends to what we call
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a mixed gauge/0-form monopole operator in the gauged theory T/G, which is a codimension-
three solitonic defect living at the end of mixed gauge/0-form vortex defect inducing a 2-group
background.

Example. Let us now provide a worked example of these constructions. Suppose that we
gauge a symmetry G = U(1) of the original theory T in such a way that the structure group of
the gauged theory T/G is

S = U(1)× SU(2)
Z2q

, (63)

where the denominator Er is generated by the central element (eiπ/q, eiπ12) for some positive
integer q ∈ Z and therefore Zg = Z2q and Zr = Z2. The 0-form symmetry is Fr = SO(3) and
the 1-form symmetry is Γ (1)r = Zq, which participate in a non-trivial 2-group if q is even. A
concrete example of this scenario for q = 2 is provided if we take T/G to a U(1) gauge theory
with two matter fields of gauge charge 2.

The vortex configurations may be labelled by a pair of integers φ = (φg ,φr) ∈ Z × Z≥0
specifying cocharacters of G = U(1)/Z2q and Fr = SO(3), with obstruction classes

αφ = φg mod 2q , αr = φr mod 2 , (64)

of lifting them to cocharacters of G = U(1) and Fr = SU(2) respectively. This data is con-
strained such that the cocharacters agree modulo 2, or equivalently that the obstruction classes
are constrained to satisfy

αφ mod 2= αr . (65)

We have the following classification:

• The vortex configurations labelled by cocharacters φ = (φg , 0) with only gauge compo-
nents must have φg even. If φg is a multiple of 2q, this descends to a dynamical U(1)
gauge vortex and is therefore trivial.

• Therefore, up to fusion with dynamical U(1) gauge vortices, vortex configurations of
the form φ = (φg , 0) are labelled by φg = 2m with m = 0, . . . , q − 1. For m ̸= 0, these
are fractional gauge vortices. In each class m, we have a special vortex defect which is
topological and is recognized as a Gukov-Witten operator generating the element m in
the 1-form symmetry group Zq.

• The mixed gauge/0-form vortices descend from vortex configurationsφ = (φg ,φr)with
both φg and φr non-trivial.

4.1.2 Three dimensions

In dimension d = 3, this construction requires modification due to the existence of Chern-
Simons interactions and the fact that gauge monopole local operators transform under an
additional 0-form topological symmetry.

First, we note that in three dimensions the specification of a 0-form symmetry F of a
theory T requires specification of Chern-Simons contact terms. They become gauge Chern-
Simon terms upon gauging a subgroup of the global symmetry and have an impact upon the
construction of the structure group S.

Second, in addition to the 0-form symmetries described above, there is an additional topo-
logical 0-form symmetry group under which gauge monopole operators are charged, which
must appear in the structure group. The topological symmetry group is nominally

Øπ1(G) , (66)
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which is Pontrjagin dual to the Abelian group π1(G) which measures the topological type
of a G-bundle induced on a small S2 surrounding a monopole operator. However, this may
somewhat overlap with the residual 0-form symmetry discussed above. The gauge monopole
operators charged under the topological symmetry pick up gauge and 0-form charges due to
Chern-Simons interactions, further impacting the construction of the structure group.

Extension of topological symmetry. Before discussing the modification to the structure
group in three dimensions, we first introduce an extension of the topological symmetry group
in order incorporate the topological charges of fractional gauge monopoles residing at the end
of line operators.

Specifically, in the gauged theory T/G, we have seen that there exist fractional mixed
gauge/0-form vortices that end on monopole operators charged under Zg . Such monopole
operators carry fractional topological charge under (or more generally form projective repre-
sentations of)Øπ1(G) but integral charges under (or more generally form genuine representa-

tions of) the extensionØπ1(G). We will therefore work with the extensionØπ1(G) in constructing

the structure group. Since we are interested in continuous parts ofØπ1(G) andØπ1(G), we will
work with free non-torsional parts of π1(G) and π1(G).

In more detail, our starting point is the quotient G = G/Zg , which is associated to the short
exact sequence

0 −→ Zg −→ G −→ G −→ 0 . (67)

The associated long exact sequence in homotopy truncates to a short exact sequence

0 −→ π1(G) −→ π1(G) −→ Zg −→ 0 , (68)

where we have used that π1(Zg) = 0, π0(Zg) = Zg for a discrete group and π0(G) = 0
since we have assumed that the gauge group is connected. Restricting the above short exact
sequence to the free parts, we obtain the short exact sequence

0 −→ Free (π1(G)) −→ Free (π1(G)) −→ Zg −→ 0 . (69)

The Pontryagin dual short exact sequence now supplies the required central extension of the
topological symmetry

0 −→ ÒZg −→ Ft −→ Conn
�

Øπ1(G)
�

−→ 0 , (70)

where
Ft := Conn
�

Øπ1(G)
�

, (71)

where the connected part Conn(H) of a group H denotes the subgroup of H obtained by
restricting to elements of H path connected to the identity element. The extension Ft of the

topological symmetry Conn
�

Øπ1(G)
�

now acts faithfully on all genuine and non-genuine local

operators. This central extension may be necessary even if the 1-form symmetry Γ (1)r of the
gauged theory T/G is trivial, as even in such a situation Zg may not be trivial.

Structure group. The structure group of the gauged theory T/G must now be extended to
incorporate the 0-form topological symmetry. The structure group takes the form

S =
G × Fr t

Er t
, (72)

where
Fr t = Fr × Ft , (73)
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and the central subgroup Er t in three-dimensions incorporates the topological charges of gen-
uine and non-genuine local operators along with their charges under gauge and residual 0-
form symmetries.

The discussion of symmetries, background fields, summing over gauge bundles and vor-
tex configurations now follows as before with the appropriate replacements Fr → Fr t and
Er → Er t .

4.2 Gauging 0-form symmetry in the presence of a 2-group

Let us now assume that the 0-form symmetry Fgr of the original theory T combines with the
1-form symmetry Γ (1) of T to form a 2-group symmetry based on a short exact sequence

0→ Γ (1)→ Egr → Zgr → 0 . (74)

Symmetries after gauging. As before, after gauging G = Fg , we obtain a new electric 1-form
symmetry Γ (1)g from the gauge group G which is described as

Γ (1)g = ZG ∩Zgr , (75)

where ZG is the center of the gauge group G. Combining it with the 1-form symmetry Γ (1)

descending from the theory before gauging, we obtain a 1-form symmetry Γ (1)r of the gauged
theory T/G given by

Γ (1)r = π−1
gr

�

Γ (1)g

�

, (76)

where πgr is the projection map Egr → Zgr in the short exact sequence (74).
The 2-group symmetry of T descends to a 2-group symmetry of the gauged theory T/G

given by the short exact sequence

0→ Γ (1)r → Er → Zr → 0 , (77)

where Er = Egr and Zr is given by

Zr =
Zgr

Γ
(1)
g

= pr

�

Zgr

�

, (78)

which is a subgroup of the center of Fr , where pr is the natural projection map from the center
of G × Fr to the center of Fr .

The 0-form symmetry group Fr associated to the 0-form symmetry fr of the theory after
gauging is

Fr =
Fr

Zr
. (79)

Example. A concrete example in any spacetime dimension d is provided by T being a U(1)
gauge theory with two matter fields of charge 2, in which case F = SO(3), F = SU(2) and
Γ (1) = Z2 form a non-trivial 2-group based on short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (80)

Let us now construct T/G by gauging G = F = SU(2). We now have

Γ (1)g = ZG ∩Zgr = Z2 ∩Z2 = Z2 , (81)

and hence
Γ (1)r = Z4 . (82)

Indeed, the electric 1-form symmetry of a theory, with gauge group U(1)×SU(2), and a matter
field of charge 2 under U(1) and transforming in fundamental of SU(2), is Z4. The remaining
0-form symmetry group Fr is trivial.
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Allowed bundles for the gauged theory. Let us describe the coupling of the theory obtained
after gauging to background and gauge fields. Suppose we have turned on a bundle for the
0-form symmetry group Fr which is accompanied with a Zr valued 2-cocycle wr

2 capturing the
obstruction of lifting the Fr bundle to an Fr bundle. Let the background field for the 1-form
symmetry be the Γ (1)r valued 2-cochain Br

2. The background fields Br
2 and wr

2 combine to form
a background field for the 2-group symmetry, which is given by an Er valued 2-cocycle Br

w.
The gauge theory now sums over bundles for the group G/Γ ′(1) with

Γ ′(1) := pg

�

Zgr

�

, (83)

where pg is the natural projection map from the center of G×Fr to the center of G. The bundles
being summed over are constrained to have the obstruction class

w′2 = pg ◦πgr

�

Br
w

�

, (84)

of lifting G/Γ ′(1) bundles to G bundles. A G/Γ ′(1) bundle having obstruction class w′2 combined
with the 0-form background bundle for Fr gives rise to a bundle for the structure group S with
Zgr valued obstruction class

wS
2 = πgr

�

Br
w

�

, (85)

for lifting the S bundle to a G × Fr bundle. The gauge theory sums over such bundles for the
structure group S.

Fate of vortices and monopoles under gauging. Consider a codimension-two defect V
inducing a vortex configuration Vφ(Fgr). Recall that there is associated an element αV ∈ Egr
to the defect. Before gauging, αV describes the 2-group background field Bgr

w induced by the
defect. Moreover, the 0-form background field wgr

2 induced by V is πgr(αV ) = αφ ∈ Zgr ,
which can also be identified with the obstruction of lifting the vortex configuration Vφ(Fgr)
to a vortex configuration for the group Fg × Fr . After gauging, since Egr = Er , αV describes
also the 2-group background field Br

w induced by V in the gauged theory T/G. The 0-form
background field wr

2 induced by V in T/G is πr(αV ) ∈ Zr . In fact, the vortex configuration for
Fr induced by V is Vφr

(Fr), with

φr = πS ◦φ : U(1)→ Fr , (86)

where
πS : Fgr → Fr , (87)

is the projection map from Fgr to Fr obtained by forgetting Fg . Monopoles are transformed
in a similar fashion as they live at the ends of vortices.

4.3 Gauging 1-form symmetry

Mixed anomaly from 2-group. Let us now consider gauging the 1-form symmetry Γ (1) of
a theory T with 2-group symmetry

�

F , Γ (1),Θ
�

. We denote the resulting gauged theory by
T/Γ (1). The gauged theory has a dual (d − 3)-form symmetry given by the Pontryagin dual
group

Γ (d−3) =dΓ (1) = Hom
�

Γ (1), U(1)
�

, (88)

which has a mixed ’t Hooft anomaly with the 0-form symmetry F whose associated anomaly
theory takes the form

Ad+1 = exp

�

2πi

∫

M
Θ ∪ Bd−2

�

, (89)
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where Bd−2 is the background for the (d − 3)-form symmetry and the cup product is taken
using the natural pairing Γ (1)×dΓ (1)→ R/Z. We can understand this ’t Hooft anomaly in terms
of operators, or in terms of backgrounds.

In terms of backgrounds [3], gauging the 1-form symmetry is implemented by adding to
the action a term of the form

∫

M
B2 ∪ Bd−2 , (90)

and then summing over B2 backgrounds. A gauge transformation Bd−2 → Bd−2 + δλd−3
changes correlation functions by a phase

exp

�

2πi

∫

M
Θ ∪λd−3

�

, (91)

implying the mixed ’t Hooft anomaly (89).

Derivation of anomaly from solitonic defects. In terms of operators, we use the interpre-
tation of the 2-group symmetry in terms of solitonic Postnikov defects. Recall from section
2.3 that the presence of 2-group symmetry is equivalent to the statement that a codimension-
3 solitonic Postnikov defect lies in twisted sector for 1-form symmetry. On the other hand,
it is well-known that the twisted sector operators are charged under the dual (d − 3)-form
symmetry in the gauge theory.

Combining the two statements, we learn that in the gauged theory T/Γ (1), the
codimension-3 solitonic Postnikov defects are charged under the (d−3)-form symmetry, which
implies the anomaly (89).

Fractional to non-fractional gauge monopoles. Let us now consider an application of this
construction to the gauged theory T/G considered in section 4.1. Recall that this theory inher-
ited an electric 1-form symmetry Γ (1)r potentially forming part of a 2-group with the residual
0-form symmetry Fr , or after including the additional topological symmetry in three dimen-
sions, the 0-form symmetry Fr t .

If we further gauge the 1-form symmetry Γ (1)r in theory T/G, we obtain a theory that we
call T/G′ whose gauge group is

G′ = G/Γ (1)r . (92)

Consider a fractional gauge vortex defect V in theoryT/G. Recall that V induces a gauge vortex
configuration associated to a co-character φ for the group G′. In the theory T/G′, the defect V
descends to a non-vortex defect. In particular, the Gukov-Witten operators implementing Γ (1)r
1-form symmetry are examples of fractional gauge vortex defects in the theory T/G, and upon
gauging, they descend to the identity codimension-two defect in the theory T/G′, which is of
course a non-vortex defect.

Correspondingly, a fractional gauge monopole operator M living at the end of fractional
gauge vortex defect V in theory T/G descends to a non-fractional gauge monopole operator
for the gauge group G′ in the theory T/G′. In particular, a twisted sector operator living at
the end of a Gukov-Witten operator for Γ (1)r 1-form symmetry in the theory T/G becomes a
standard genuine monopole operator for the gauge group G′ in the theory T/G′. See figure 8.

5 ’t Hooft anomalies in 3d from solitonic defects

In this section we discuss the structure and physical implications of some ’t Hooft anomalies
between 0-form, 1-form and 2-group symmetries in dimension d = 3 and how they can be
cleanly formulated in terms of solitonic defects introduced in section 3.
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αφ ∈ Γ (1)rMφ(G′) Mφ(G′)
gauging Γ (1)r

Figure 8: In the theory T/G, Mφ(G′) is a fractional gauge monopole operator induc-
ing a monopole configuration associated to a co-character φ for the group G′ which
has obstruction αφ ∈ Γ (1)r of being lifted to a co-character of the gauge group G. Also
assume Mφ(G′) to be twisted sector operator lying at the end of the Gukov-Witten op-
erator implementing the 1-form symmetry αφ . Gauging the 1-form symmetry makes
the Gukov-Witten operator invisible. Correspondingly, the gauging procedure con-
verts Mφ(G′) into a standard genuine gauge monopole operator in the theory T/G′
inducing a monopole configuration for the new gauge group G′ associated to the co-
character φ.

5.1 Anomaly for 1-form symmetry

In this subsection, we discuss anomalies for 1-form symmetries. If the 1-form symmetry partic-
ipates in a 2-group symmetry, then the expressions for anomalies discussed here are only valid
if the background for 0-form symmetry participating in the 2-group symmetry is not turned on.
If the 0-form symmetry background is turned on, then the 1-form anomaly lifts to a 2-group
anomaly. 2-group anomalies are discussed later in this section.

Definition. In such a situation, the 1-form symmetry Γ (1) has backgrounds specified by the
choice of a 2-cocycle B2 on the spacetime manifold M3. For each such choice of background
B2, the theory assigns a well-defined partition function Z(B2). This is the correlation function
of the theory on M3 with a network of topological codimension-two defects generating the
1-form symmetry inserted on M3, with the 1-cycle described by the network being Poincaré
dual to B2.

An anomaly for the 1-form symmetry arises if the correlation function Z(B2) is not a well-
defined function of the cohomology class [B2] of B2. In other words, we have

Z(B2 +δλ1) = φ(λ1, B2)× Z(B2) , (93)

where φ(λ1, B2) ∈ U(1) is a phase factor depending on λ1 and B2.
To the anomaly, we can associate an anomaly theory, which is a 4d SPT phase protected

by 1-form symmetry Γ (1). The partition function A4(B2) of the SPT phase on a compact 4-
manifold M4 with a background B2 is well-defined as a function of [B2]. However, on a 4-
manifold M4 with boundary ∂M4 = M3, we have

A4(B2 +δλ1) = φ
−1(λ1, B2)×A4(B2) . (94)

Consequently, regarding the 3d theory as a boundary condition of the 4d SPT phase restores
invariance under background gauge transformation. That is, the combined correlation func-
tion

eZ(B2) = Z(B2)A4(B2) , (95)

satisfies
eZ(B2 +δλ1) = eZ(B2) . (96)

Type of anomaly being studied. In this paper, we study anomalies in 3d of the form

A4 = exp

�

2πi

∫

Pσ(B2)

�

, (97)
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L

β ∈ Γ (1)

= L

β ∈ Γ (1)

e2πiη(αL ,β) ×

Figure 9: Moving a topological line defect implementing 1-form symmetry β ∈ Γ (1)

across a (not necessarily topological) line defect L inducing a 1-form symmetry back-
ground αL ∈ Γ (1) generates a phase exp

�

2πiη (αL ,β)
�

.

where
Pσ(B2) : H2
�

M3, Γ (1)
�

→ H4(M3,R/Z) , (98)

is the Pontryagin square operation associated to a quadratic function

σ : Γ (1)→ R/Z , (99)

with the associated bilinear form being

η : Γ (1) × Γ (1)→ R/Z . (100)

In this paper we will only determine η but not σ, which is sufficient to specify the anomaly
on spin manifolds, for which the expression (97) does not depend on the different choices of
σ associated to a fixed η.

Anomaly from solitonic line defects inducing 1-form backgrounds. The above anomaly
can be understood as stating that line defects that induce 1-form symmetry backgrounds
around them are themselves charged under 1-form symmetry. Consider a line defect L that in-
duces a 1-form symmetry background forcing the background field B2 for the 1-form symmetry
to satisfy

∫

D2

B2 = αL ∈ Γ (1) , (101)

where D2 is a small disk intersecting the locus of L at a single point. As a topological line
defect generating a 1-form symmetry β ∈ Γ (1) is moved across the locus of L, the correlation
function jumps by the phase factor

exp
�

2πiη(αL ,β)
�

, (102)

as shown in figure 9.
Particular choices for line defects that induce (101) around them are provided by the topo-

logical line defects generating the 1-form symmetry Γ (1). Thus, according to the above dis-
cussion, picking two such topological line defects corresponding to elements α,β ∈ Γ (1) and
moving them across each other makes the correlation function jump by the phase

exp
�

2πiη(α,β)
�

, (103)

as shown in figure 10. This recovers a standard description of the ’t Hooft anomaly of a 1-
form symmetry in three dimensions as the braiding phase between the topological line defects
generating the symmetry.
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α ∈ Γ (1)

β ∈ Γ (1)

= α ∈ Γ (1)

β ∈ Γ (1)

e2πiη(α,β) ×

Figure 10: Moving two topological line defects implementing 1-form symmetries
α,β ∈ Γ (1) across each other generates a phase exp

�

2πiη(α,β)
�

.

The information of the bilinear form η is equivalent to a homomorphism

γ : Γ (1)→dΓ (1) . (104)

This homomorphism encodes the following physical information. Consider a line defect L
inducing a 1-form symmetry background associated to α ∈ Γ (1). Then this line defect lies in
the equivalence class

γ(α) ∈ bΓ (1) , (105)

of genuine line defects and hence carries the charge γ(α) under the 1-form symmetry group
Γ (1).

Gauging 1-form symmetry. Consider now gauging a subgroup Γ (1)
′
of 1-form symmetry Γ (1)

in a theory with anomaly (97). This corresponds to making the topological line defects corre-
sponding to elements α ∈ Γ (1)′ equivalent to the trivial line defect. To avoid gauge anomalies,
we must make sure that these topological line defects are uncharged under themselves. To de-
scribe this requirement mathematically, let us introduce two short exact sequences associated
to this gauging:

0→ Γ (1)
′
→ Γ (1)→ Γ (1)/Γ (1)

′
→ 0 , (106)

and

0→ÛΓ (1)/Γ (1)′→dΓ (1)→dΓ (1)
′
→ 0 . (107)

Gauge anomalies vanish if Γ (1)
′

is such that

bπ ◦ γ
�

Γ (1)
′�
= 0 ⊂dΓ (1)

′
, (108)

where
bπ : dΓ (1)→dΓ (1)

′
, (109)

is the projection map in (107).
Part of the rest of the Γ (1)/Γ (1)

′
1-form symmetry can suffer from an ABJ anomaly after

gauging. Consider an element α ∈ Γ (1)/Γ (1)′ and choose a lift eα ∈ Γ (1). The element α suffers
from an ABJ anomaly if eα is charged non-trivially under Γ (1)

′
. In other words, the 1-form

symmetry of the theory obtained after gauging, which does not suffer from ABJ anomaly, is

Γ (1)r := ker
�

bπ ◦ γ : Γ (1)/Γ (1)
′
→dΓ (1)

′�
⊆ Γ (1)/Γ (1)

′
, (110)

where bπ ◦λ is a well-defined map from Γ (1)/Γ (1)
′

todΓ (1)
′

because of the condition (108).
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We can provide an explicit expression for the ABJ anomaly as

AABJ = exp

�

2πi

∫

b′2 ∪ (bπ ◦ γ)
�

Bm
2

�

�

, (111)

where b′2 is the dynamical gauge field for gauged 1-form symmetry Γ (1)
′
and Bm

2 is background

field for Γ (1)/Γ (1)
′
. The above expression for the ABJ anomaly vanishes if Bm

2 is a background

field for Γ (1)/Γ (1)
′
which is valued entirely in the subgroup Γ (1)r of Γ (1)/Γ (1)

′
, or in more concrete

words, if B2 ∈ H2
�

M3, Γ (1)/Γ (1)
′�

lies in the image of the homomorphism

H2
�

M3, Γ (1)r

�

→ H2
�

M3, Γ (1)/Γ (1)
′�

, (112)

descending from the injective map Γ (1)r → Γ (1)/Γ (1)′ associated to the fact that Γ (1)r ⊆ Γ (1)/Γ (1)′.
In other words, Γ (1)r does not suffer from ABJ anomaly.

The anomaly (97) also descends to a ’t Hooft anomaly

A4 = exp

�

2πi

∫

Pσr
(Br

2)

�

, (113)

for the Γ (1)r 1-form symmetry. Here Br
2 is the background for the Γ (1)r 1-form symmetry, and

σr is obtained as a quadratic refinement of the bilinear form ηr : Γ (1)r × Γ (1)r → R/Z obtained
from the homomorphism

γr : Γ (1)r → bΓ (1)r , (114)

which takes the form
γr(α) = p ◦ γ(eα) , (115)

where eα ∈ Γ (1) is a lift of α ∈ Γ (1)r , the image γ(eα) ∈ÛΓ (1)/Γ (1)′, and p is the projection map in
the short exact sequence

0→ γ(Γ (1)
′
)→ÛΓ (1)/Γ (1)′→dΓ (1)r → 0 . (116)

Semi-simple Γ (1). An important special case of the discussion presented above in this sub-
section is as follows. Suppose that the 1-form symmetry group can be decomposed as

Γ (1) = Γ (1)1 × Γ (1)2 , (117)

with the non-trivial part of the homomorphism γ : Γ (1) →dΓ (1) decomposing into two homo-
morphisms

γ12 : Γ (1)1→dΓ (1)2 , (118)

and
γ21 : Γ (1)2→dΓ (1)1 , (119)

such that γ21 and γ12 are Pontryagin duals of each other. Then, we can write the (97) as

A4 = exp

�

2πi

∫

γ12(B2,1)∪ B2,2

�

, (120)

where B2,i denotes the background field for Γ (1) i 1-form symmetry. The anomaly in this special
case is a mixed ’t Hooft anomaly between the 1-form symmetries Γ (1)1 and Γ (1)2.
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5.2 Mixed anomaly between 1-form and 0-form symmetries

In this subsection, we consider anomalies between a 1-form symmetry Γ (1) and a continuous 0-
form symmetry groupF , such that Γ (1) andF do not mix together to form a 2-group. Moreover,
we assume that F does not participate in any 2-group symmetry, but Γ (1) can. If Γ (1) does
participate in a 2-group symmetry, then the backgrounds for the 0-form symmetry participating
in the 2-group are kept off. We focus on anomalies whose dependence on the 0-form symmetry
background is only through the degree two characteristic class w2 ∈ H2(BF ,Z) capturing the
obstruction of lifting the background 0-form symmetry F bundle to an F bundle, where F is a
central extension of F under which all genuine and non-genuine local operators form allowed
representations, and Z relates F and F via F = F/Z.

Type of anomaly being studied We study anomalies of the form

A4 = exp

�

2πi

∫

γ(B2)∪w2

�

, (121)

where
γ : Γ (1)→ ÒZ , (122)

is a homomorphism, and the cup product
∫

γ(B2)∪ c ∈ R/Z is evaluated by using the pairing
ÒZ ×Z → R/Z.

The presence of this anomaly means that a partition function of the 3d theory jumps as

Z(B2 +δλ1, w2) = exp

�

−2πi

∫

γ(λ1)∪w2

�

× Z(B2, w2) , (123)

and

Z(B2, w2 +δλ
′
1) = exp

�

−2πi

∫

γ(B2)∪λ′1

�

× Z(B2, w2) . (124)

Pictorial representation of the anomaly. This anomaly admits a nice pictorial represen-
tation. For this pictorial representation, we use the 1-cycle Poincaré dual to the Z valued
2-cocycle w2 on the spacetime manifold M3. This 1-cycle can be represented as a network of
lines, with each line segment in the network carrying an element of Z. Consider one such line
segment carrying the element α ∈ Z, and move it across a topological line operator associated
to an element β ∈ Γ (1). Then the correlation function jumps by the phase

exp
�

2πi〈γ(β),α〉
�

, (125)

where
〈·, ·〉 : ÒZ ×Z → R/Z , (126)

is the canonical pairing. See figure 11.

Anomaly from solitonic local operators inducing 1-form backgrounds. The above mixed
anomaly can be understood in terms of 0-form charges of solitonic local operators inducing
1-form backgrounds. Consider such a local operator O such that on a small sphere S2 sur-
rounding it, we have an induce 1-form background

∮

S2

B2 = α ∈ Γ (1) , (127)
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α ∈ Z

β ∈ Γ (1)

= α ∈ Z

β ∈ Γ (1)

e
�

2πi〈γ(β),α〉
�

×

Figure 11: Moving a piece (shown dashed because it does not correspond to a line
defect) carrying α ∈ Z in the 1-cycle Poincaré dual to w2 across a topological line
defect associated to 1-form symmetry β ∈ Γ (1) generates a phase exp

�

2πi〈γ(β),α〉
�

.

α ∈ Γ (1) γ(α) ∈ ÒZ
O

Figure 12: A twisted sector local operator O (shown in red) associated to a topological
line operator implementing the 1-form symmetry α ∈ Γ (1) (shown in blue) must carry
a representation R of F whose charge under Z is given by the element γ(α) ∈ ÒZ.

Such a local operator lives at the end of a solitonic line defect L which induces the same 1-form
background on a small disk D2 intersecting its locus at a single point.

The above mixed anomaly is the statement that the solitonic local operator O transforms
in a representation R of F whose charge under Z is given by the element

γ(α) ∈ ÒZ . (128)

If the anomaly, or in other words the homomorphism γ, is non-trivial, then such solitonic local
operators transform in projective representations, rather than genuine representations, of the
0-form symmetry group F .

Equivalently, the solitonic line defect L lies in the equivalence class

γ(α) ∈ ÒZ ⊆ bE , (129)

in the group bE of equivalence classes of line defects plus background Wilson lines defined in
section 2.3.

Special examples of such solitonic local operators are provided by twisted sector operators
for the 1-form symmetry Γ (1), for which the effect of anomaly is described in figure 12.

Anomaly from vortex line defects for 0-form symmetry. Consider a vortex defect (which is
a line defect in 3d) V inducing a vortex configuration for the 0-form symmetry group specified
by a co-character

φ : U(1)→ F , (130)

with obstruction αφ ∈ Z of lifting the vortex configuration to a vortex configuration for the
group F . The above anomaly can be reinterpreted as stating that V lies in the equivalence
class

bγ(αφ) ∈dΓ (1) , (131)

of line defects, where
bγ : Z →dΓ (1) , (132)

is the homomorphism Pontryagin dual to the homomorphism γ. In other words, V carries the
charge bγ(αφ) ∈dΓ (1) under the 1-form symmetry Γ (1).
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α ∈ Γ (1)′ γ(α) ∈ ÒZ
O

γ(α) ∈ ÒZ
O

gauging Γ (1)
′

Figure 13: Gauging Γ (1)
′

makes the topological operators associated to elements of
Γ (1)

′
invisible. As a consequence the twisted sector operators for Γ (1)

′
become genuine

local operators of the theory obtained after gauging. These new genuine operators
might carry representations of f that are not allowed representations of F . As a
consequence, the 0-form symmetry group of the theory obtained after gauging Γ (1)

′

is generally larger that F .

Gauging 1-form symmetry. Consider gauging a subgroup Γ (1)
′
of the Γ (1) 1-form symmetry.

We assume that there is no anomaly for the 1-form symmetry other than (121). Gauging
means that we regard topological line defects carrying elements of Γ (1)

′
as trivial line defects.

This implies that the background Wilson lines valued in

γ
�

Γ (1)
′�
⊆ ÒZ , (133)

become equivalent to trivial lines. That is, the theory obtained after gauging admits genuine
local operators transforming in representations of F whose charges under Z are valued in
γ
�

Γ (1)
′�

. In fact, these local operators are furnished by the twisted sector operators for Γ (1)
′
.

See figure 13.
In other words, one of the consequences of the existence of the anomaly (121) is that the

0-form symmetry group of the theory obtained after gauging is enhanced from F to Fr which
in general is a central extension of F such that

F = Fr

À

bγ
�

Γ (1)
′�

, (134)

and
Fr = F/Zr , (135)

where Zr ⊆ Z sits in a short exact sequence

0→ Zr → Z → bγ
�

Γ (1)
′�
→ 0 , (136)

Pontryagin dual to the short exact sequence

0→ γ
�

Γ (1)
′�
→ ÒZ → ÒZr → 0 , (137)

descending from (133).
The theory after gauging has a

Γ (1)r := Γ (1)/Γ (1)
′
, (138)

1-form symmetry. The mixed anomaly (121) descends to a mixed anomaly of the form

A4 = exp

�

2πi

∫

γr

�

Br
2

�

∪wr
2

�

, (139)

between the Γ (1)r 1-form symmetry and theFr 0-form symmetry, where Br
2 is the background for

the Γ (1)r 1-form symmetry and wr
2 is the Zr valued characteristic class capturing the obstruction

to lifting Fr bundles to F bundles.

γr : Γ (1)r → ÒZr , (140)
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is a homomorphism which can be specified as

γr(α) = bπ ◦ γ(eα) , (141)

where eα ∈ Γ (1) is a lift of the element α ∈ Γ (1)r and

bπ : ÒZ → ÒZr , (142)

is the projection map appearing in the short exact sequence (137).

Gauging 0-form symmetry. Consider gauging the 0-form symmetry f via an F gauge group.
According to the discussion of section 4, the resulting theory then has a 1-form symmetry

Γ (1)r = Γ (1) ×Z . (143)

The anomaly (121) becomes a mixed ’t Hooft anomaly

A4 = exp

�

2πi

∫

γ
�

BΓ
(1)

2

�

∪ BZ
2

�

, (144)

between the Γ (1) and Z subfactors of the Γ (1)r 1-form symmetry, where BΓ
(1)

2 and BZ
2 are back-

ground fields for the Γ (1) and Z valued 1-form symmetries respectively. This 1-form symmetry
anomaly takes the form of the special case (120) of the 1-form symmetry anomalies discussed
in section 5.1.

Anomaly (144) in terms of solitonic defects inducing 1-form symmetry. The anomaly
(144) can also be obtained using the properties of the 1-form solitonic defects of the theory
before gauging. Consider a solitonic local operator O inducing a 1-form symmetry background
α ∈ Γ (1). O comes attached to a background Wilson line transforming in a representation R
of F having charge γ(α) under Z, and it is also attached to a solitonic line defect L inducing
1-form background α.

After gauging F , the background Wilson line becomes a gauge Wilson line having charge
γ(α) under the 1-form symmetry Z, and O becomes a local operator interpolating between
this gauge Wilson line and the solitonic line L. This implies that the solitonic line defect L for
1-form symmetry Γ (1) has charge γ(α) ∈ ÒZ under the other 1-form symmetry Z, leading to
the mixed ’t Hooft anomaly (144) between the two 1-form symmetries Γ (1) and Z.

A special case is provided by L being the topological line defect implementing the 1-form
symmetry α ∈ Γ (1) and O being a twisted sector operator for this 1-form symmetry. See fig-
ure 14.

Anomaly (144) in terms of fractional gauge vortex defects. Before the F gauging, the
anomaly (121) means that a vortex line defect V carrying α ∈ Z carries a charge bγ(α) ∈dΓ (1)
under the 1-form symmetry. After the F gauging, V descends to a gauge vortex defect which
is fractional if α ̸= 0. In particular, it is a solitonic line defect inducing 1-form background
α ∈ Z. Since this solitonic line defect for Z 1-form symmetry is charged under Γ (1) 1-form
symmetry, we obtain the mixed anomaly (144) between the two 1-form symmetries.

5.3 Anomaly for 0-form symmetry

In this subsection, we consider anomalies for a continuous 0-form symmetry group F , which
are specified purely in terms of the obstruction class w2 for lifting F bundles to F bundles. We
again assume that F does not participate in any 2-group symmetry.
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α ∈ Γ (1) γ(α) ∈ ÒZ
O

α ∈ Γ (1) γ(α) ∈ ÒZ
O

gauging F

Figure 14: As we discussed above, the anomaly (121) implies that a twisted sector
local operator O for α ∈ Γ (1) comes attached to a background Wilson line trans-
forming in a representation of F having charge γ(α) under Z. After gauging F , the
background Wilson line becomes a gauge Wilson line having charge γ(α) under the
1-form symmetry Z. This implies that the topological line operator implementing
the 1-form symmetry α ∈ Γ (1) carries charge γ(α) ∈ ÒZ under the 1-form symmetry
Z, leading to the mixed anomaly (144) between the two 1-form symmetries.

α ∈ Z

β ∈ Z

= α ∈ Z

β ∈ Z

e
�

2πiη(α,β)
�

×

Figure 15: Moving a piece carrying α ∈ Z in the 1-cycle Poincaré dual to w2 across
another piece carrying α ∈ Z generates a phase exp

�

2πiη(α,β)
�

.

Type of anomaly being studied. We study anomalies of the form

A4 = exp

�

2πi

∫

Pσ(w2)

�

, (145)

associated to a quadratic function
σ : Z → R/Z , (146)

with the associated bilinear form being

η : Z ×Z → R/Z . (147)

Pictorial representation of the anomaly. Pictorially, the anomaly is seen by passing a line
segment carrying α ∈ Z in the 1-cycle Poincaré dual to the background 2-cocycle w2 across a
line segment carrying β ∈ Z in the same 1-cycle. This move results in the correlation function
jumping by the phase

exp
�

2πiη(α,β)
�

. (148)

See figure 15.

Anomaly from monopole operators for 0-form symmetry. Consider a monopole operator
M living at the end of a vortex line defect V inducing a 0-form symmetry background associated
to a co-character

φ : U(1)→ F , (149)
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V γ(αφ) ∈ ÒZ
M

Figure 16: A monopole operator M (shown in red) for the 0-form symmetry group
F arising at the end of a vortex line defect V must carry a representation R of F
whose charge under the 0-form center Z is given by the element γ(αφ) ∈ ÒZ, where
αφ ∈ Z is the obstruction to regarding the co-character φ for F as a co-character for
the central extension F .

with obstruction αφ ∈ Z of lifting the co-character φ to a co-character of F . The above
anomaly is the statement that M must transform in a representation of F whose charge under
Z is

γ(α) ∈ ÒZ , (150)

where
γ : Z → ÒZ , (151)

is the homomorphism descending from η. See figure 16.
Equivalently, the vortex line defect V carrying αφ ∈ Z lies in the equivalence class

γ(αφ) ∈ ÒZ ⊆ bE .

Gauging 0-form symmetry. Consider gauging the 0-form symmetry f via an F gauge group.
The resulting theory then has a 1-form symmetry

Γ (1)r = Z , (152)

coming from the center of the gauge group F and the anomaly (145) descends to the anomaly

A4 = exp

�

2πi

∫

Pσ(B2)

�

, (153)

where B2 is the Z valued background field for the Γ (1)r 1-form symmetry of the resulting
theory. Notice that this is a 1-form anomaly of the type discussed in section 5.1.

Anomaly (153) from solitonic defects As we have discussed above, the anomaly (153)
makes solitonic line defects inducing 1-form symmetry backgrounds charged non-trivially un-
der the 1-form symmetry. We can see this happening explicitly by applying the gauging pro-
cedure to the vortex-monopole configuration of figure 16. After gauging, the vortex defect
V becomes a line defect inducing the 1-form symmetry background αφ ∈ Z, M becomes a
fractional gauge monopole operator, and the background Wilson line becomes a gauge Wilson
line defect having charge γ(αφ) under the Z 1-form symmetry. Thus, V lies in the equivalence
class γ(αφ) under the equivalence relation (19), and hence carries the charge γ(αφ) under
the Z 1-form symmetry.

5.4 Anomaly for 2-group symmetry

In this subsection, we consider anomalies for a 2-group symmetry comprising of a 1-form sym-
metry Γ (1) and a 0-form symmetry group F . We consider anomalies that can be represented
purely in terms of the E-valued background field Bw for the 2-group symmetry.

We study anomalies of the form

A4 = exp

�

2πi

∫

Pσ(Bw)

�

, (154)
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associated to a quadratic function
σ : E → R/Z , (155)

with the associated bilinear form being

η : E × E → R/Z . (156)

The E valued 1-cycle Poincaré dual to the background 2-cocycle Bw for the 2-group sym-
metry can be represented in terms of a network of lines, such that each line segment carries
an element of E . Consider passing a line segment carrying α ∈ E in the bBw background across
a line segment carrying β ∈ E in the same background. This move results in the correlation
function jumping by the phase

exp
�

2πiη(α,β)
�

. (157)

Anomaly from solitonic defects inducing 2-group backgrounds. Consider a vortex line
defect V inducing a vortex configuration associated to a co-character φ of F with obstruction
αφ ∈ Z. Then, V induces a 2-group background with background field Bw taking a value
eαφ ∈ π−1(αφ) ⊂ E in the vicinity of V . The above anomaly can be reinterpreted as stating
that V lies in the equivalence class

γ(eαφ) ∈ bE , (158)

under the equivalence relation (28), where

γ : E → bE , (159)

is the homomorphism descending from η. In particular, V is charged under the 1-form sym-
metry Γ (1) with the charge

bπ ◦ γ(eαφ) ∈dΓ (1) , (160)

where
bπ : bE →dΓ (1) , (161)

is the projection map in the short exact sequence (29).

Gauging 0-form symmetry. Consider gauging the 0-form symmetry f via an F gauge group.
The resulting theory then has a 1-form symmetry

Γ (1)r = E , (162)

and the anomaly (154) descends to the anomaly

A4 = exp

�

2πi

∫

Pσ(Br
2)

�

, (163)

where Br
2 is the E valued background field for the Γ (1)r 1-form symmetry of the resulting theory.

This is now a 1-form anomaly of the type discussed in section 5.1.
The above anomaly (163) can also be deduced from an operator point of view as follows.

After gauging, a vortex line defect inducing eαφ ∈ E descends to a line defect inducing a back-
ground eαφ for the resulting 1-form symmetry E . The fact that it lies in the equivalence class
γ(eαφ) ∈ bE means that it has charge γ(eαφ) under the E 1-form symmetry obtained after gauging
F , leading to the anomaly (163).

37

https://scipost.org
https://scipost.org/SciPostPhys.16.3.087


SciPost Phys. 16, 087 (2024)

6 Applications to 3d gauge theories

In this section, we provide a recipe for computing generalized symmetries and anomalies (of
the types being studied in this paper) for a general class of 3d gauge theories. During the course
of this discussion, we require charges of various kinds of monopole operators, the expressions
for which are obtained by generalizing the expressions presented in [100–102] (see also [103–
108]).

6.1 1-form symmetry

Gauge group. We consider gauge theories whose gauge groups do not contain discrete fac-
tors. The gauge group G is associated to a gauge algebra g which takes the form

g=
⊕

i

gi ⊕
⊕

a
u(1)a , (164)

where gi is a simple compact non-Abelian Lie algebra and u(1)a is a copy of the Abelian Lie
algebra u(1). The gauge group can then be expressed as

G =
∏

i Gi ×
∏

a U(1)a
Z

, (165)

where Gi is the simply connected, compact Lie group with Lie algebra gi and U(1)a is a copy
of U(1) whose Lie algebra is u(1)a. The normalization of U(1)a must be such that each matter
field carries a non-fractional integer charge under it. In other words, every matter field trans-
forms in an allowed representation under U(1)a. On the other hand, Z is a subgroup of the
center
∏

i ZGi
×
∏

a U(1)a of the group
∏

i Gi ×
∏

a U(1)a, where ZGi
is the center of Gi . The

fact that Z does not participate in the gauge group G requires for consistency that no matter
field is charged under Z .

Chern-Simons terms. We can include tree-level Chern-Simons terms which are described
in terms of a vector ki describing CS level for gi and a matrix kab describing mixed CS term
between u(1)a and u(1)b. There are restrictions on the possible values of these CS terms
depending on the spectrum of fermions in the matter content, and on the choice G of the
gauge group uplifting the gauge algebra g. These restrictions take the form of quantization
conditions which can be understood as the requirement that gauge monopole operators have
well-defined charges under the center

ZG =

∏

i ZGi
×
∏

a U(1)a
Z

, (166)

of the gauge group G.
We discuss these quantization conditions in what follows. If these quantization conditions

are not satisfied, then the gauge group G suffers from a global gauge anomaly,8 which renders
the gauge theory inconsistent.

Determination of 1-form symmetry. For a 3d gauge theory with a connected gauge group,
the 1-form symmetry group is purely ‘electric’, i.e. it is obtained from the center ZG of the
gauge group G. The 1-form symmetry group is obtained as the maximal subgroup of ZG which
leaves matter content and non-fractional gauge monopole operators invariant.

8Not to be confused with a mixed anomaly between a global symmetry and the gauge symmetry.
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Let us begin by considering matter content first. Consider a matter field χ transforming in
an irrep Rχ of G. It carries a charge [Rχ] ∈ bZG under ZG . Define a subgroup Ymat of the group
bZG

Ymat := Span
�

[Rχ]
�

, (167)

obtained by taking the Z-span9 of elements [Rχ] for all possible matter fields χ. Let us also
define

ÒOmat := bZG/Ymat . (168)

Now, let us consider a non-fractional gauge monopole operator Mφ inducing a monopole
configuration described by a co-character

φ : U(1)→ G , (169)

of the gauge group. Let Rφ be the representation of G formed by Mφ which carries a charge
[Rφ] ∈ bZG under ZG . Applying the projection map bZG → ÒOmat to the element [Rφ], we obtain
an element qφ ∈ ÒOmat.

We claim that any other monopole operator M ′
φ

inducing the same monopole configuration

described by φ leads to the same element qφ ∈ ÒOmat even though its representation R′
φ

under
G is in general different from the representation Rφ of Mφ . This claim relies on expected OPE
properties of monopole operators:
Consider a monopole operator Mφ−1 for the inverse co-character φ−1 of G. Let qφ−1 be the
element of ÒOmat capture its charge. Now consider the OPE of Mφ and Mφ−1 . The operators
resulting from this OPE should all be non-monopole operators, so should arise as combinations
of matter fields. Moreover, the gauge representations of these operators should have the charge

qφ + qφ−1 ∈ ÒOmat . (170)

But, we know that matter fields have the charge 0 ∈ ÒOmat. This leads to the conclusion

qφ = −qφ−1 . (171)

Similarly, considering the OPE of M ′
φ

and Mφ−1 , we are lead to the conclusion

q′φ = −qφ−1 , (172)

where q′
φ
∈ ÒOmat captures the charge of M ′

φ
. Combining the two results, we find

q′φ = qφ , (173)

which is what we wanted to show.
As a result of this argument, we obtain a unique element qφ ∈ ÒOmat for each co-character

φ of G. Let us define
Ymono := SpanZ({qφ}) , (174)

obtained by taking the Z-span of elements qφ for all possible co-characters φ. This is a sub-
group of ÒOmat. This lets us describe the Pontryagin dual of the 1-form symmetry group Γ (1)

as
bΓ (1) = ÒOmat/Ymono . (175)

9We are here regarding the Abelian group bZG as a Z-module.
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Charges of non-fractional gauge monopole operators. To complete the computation of
Γ (1), we now only need to describe the computation of the charge qφ ∈ ÒOmat for each co-
character φ. We compute qφ using the charges of a special monopole operator that we call
Mφ(G). For theories with N ≥ 2 supersymmetry, this can be recognized as the ‘bare’ BPS
monopole operator associated to the co-character φ of G. For N = 1 and N = 0 theories,
we propose that there exists, for each φ, at least one monopole operator carrying the charges
described below.

The charges of Mφ(G) receive two contributions: one from the CS terms, and the other
from the fermions in the matter content. From the Chern-Simons level ki , the operator Mφ(G)
obtains a charge (see references at the beginning of this section for more details)

q(k)
φ,i,α = −

ki

h∨i

∑

ρi

qi,α(ρi)qφ(ρi) , (176)

under the U(1)i,α component of the
∏

α U(1)i,α maximal torus of Gi , where the sum is over
positive roots ρi of gi , h∨i is the dual Coxeter number for gi , qi,α(ρi) is the charge under
U(1)i,α of ρi , and qφ(ρi) is the charge of ρi under the subgroup U(1)φ ⊆ G defined by the
co-character φ. Note that qφ(ρi) can be fractional if the projection of Z onto ZGi

is non-trivial
and the intersection U(1)φ∩Gi is not a complete circle, but only a segment inside Gi . Similarly,
from the Chern-Simons levels kab, the monopole operator Mφ(G) obtains a charge

q(k)
φ,a = −
∑

b

kabφb , (177)

under U(1)a, where φb is the winding number of φ along U(1)b. The winding φb is fractional
if the projection of Z onto U(1)b is non-trivial and U(1)φ ∩ U(1)b is a segment rather than a
circle.

Now let us describe the contributions of fermions. Decompose the fermions into irreducible
1-dimensional representations under the group

∏

i

∏

α U(1)i,α×
∏

a U(1)a. Letψ parametrize
these representations. Then, from the fermion ψ, the monopole operator Mφ(G) obtains a
charge

q(ψ)
φ,i,α = −

1
2

qi,α(ψ)|qφ(ψ)| , (178)

under U(1)i,α, where qi,α(ψ) is the charge of ψ under U(1)i,α and qφ(ψ) is the charge of ψ
under U(1)φ . Similarly, from the fermion ψ, the monopole operator Mφ(G) obtains a charge

q(ψ)
φ,a = −

1
2

qa(ψ)|qφ(ψ)| , (179)

under U(1)a, where qa(ψ) is the charge of ψ under U(1)a.
In total, the charge of monopole operator Mφ(G) under U(1)i,α is

qφ,i,α = q(k)
φ,i,α +
∑

ψ

q(ψ)
φ,i,α , (180)

and its charge under U(1)a is
qφ,a = q(k)

φ,a +
∑

ψ

q(ψ)
φ,a . (181)

The full quantization conditions on the Chern-Simons terms are discussed later, but a part of
the condition can already be described. The quantization of Chern-Simons terms ki , kab must
be such that qφ,i,α and qφ,a are integers for all possible values of i,α, a,φ.
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· · ·
1 2 3 n− 1

SU(n): · · ·
0 0 0 1

Spin(2n+ 1):

· · ·
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· · ·
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· · ·
2 0 2 0 02 2 1

3
Spin(4n+ 2):

· · ·
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0
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· · ·
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1
Spin(4n); nc:
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0
E6:
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1
E7:

Figure 17: The figure displays the integers ni,α for each simply connected simple
compact Lie group, which are in one-to-one correspondence with the nodes in the
corresponding Dynkin diagram. For Spin(4n), there are two sets of such integers
ns,i,α and nc,i,α, which we label by ns and nc respectively in the figure. For E8, F4, G2,
the integers ni,α are all zero, and hence are not displayed in the above figure.

Now, using the charges qφ,i,α, we can deduce the charge qφ,i ∈ bZGi
of Mφ(G) under the

center ZGi
as

qφ,i = ni,αqφ,i,α (mod ni) , (182)

for Gi = SU(n), Spin(2n+1), Sp(n), Spin(4n+2), En, F4, G2, where bZGi
≃ Zni

(note that ni = 1
for Gi = E8, F4, G2) and ni,α are certain integers collected in figure 17, and as

qφ,i =
�

ns,i,αqφ,i,α (mod 2) , nc,i,αqφ,i,α (mod 2)
�

, (183)

for Gi = Spin(4n), where bZGi
≃ Z2 × Z2 and ns,i,α, nc,i,α are certain integers collected in

figure 17.
The charge (qφ,i , qφ,a) is valued in

∏

i
bZGi
×
∏

a
ÕU(1)a. Applying the projection map

∏

i

bZGi
×
∏

a

ÕU(1)a→ bZ , (184)
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Pontryagin dual to the injection map

Z →
∏

i

ZGi
×
∏

a

U(1)a , (185)

onto (qφ,i , qφ,a), we obtain an element qφ,Z ∈ bZ describing the charge of the monopole oper-
ator Mφ(G) under the subgroup Z of

∏

i ZGi
×
∏

a U(1)a. Since Z is not a part of the gauge
group, the quantization condition on the CS terms (which is discussed in full generality later)
must be such that we have

qφ,Z = 0 , (186)

for all possible φ.
The last condition qφ,Z = 0 implies that [Rφ] := (qφ,i , qφ,a) is an element of the subgroup
bZG ⊆
∏

i
bZGi
×
∏

a
ÕU(1)a, where bZG is the Pontryagin dual of the center ZG of the gauge group.

We obtain qφ ∈ ÒOmat by applying the projection map bZG → ÒOmat to the element [Rφ] ∈ bZG .

6.2 1-form anomaly and quantization of gauge Chern-Simons terms

General gauge monopole operators. To describe the most general quantization condition
on the gauge Chern-Simons terms, and anomaly for 1-form symmetry, we need to study the
charges of general fractional and non-fractional gauge monopole operators inducing monopole
configurations associated to co-characters

φ′ : U(1)→ G , (187)

where
G := G/Γ (1) . (188)

Recall that we call such a gauge monopole operator fractional if φ′ cannot be lifted to a co-
character φ for the gauge group G.

1-form anomaly. Using information about charges of fractional gauge monopole operators,
we can compute 1-form anomaly of the 3d gauge theory under study. Recall that such an
anomaly is valid only if the backgrounds for 0-form symmetries forming a non-trivial 2-group
with the 1-form symmetry Γ (1) are turned off. Otherwise, the 1-form anomaly is lifted to a
2-group anomaly, which we discuss in later subsections.

We argued above that any non-fractional gauge monopole operator associated to a co-
character φ of G has a unique charge qφ ∈ ÒOmat. By a similar argument, a general gauge
monopole operator associated to a co-character φ′ of G also has a unique charge qφ′ ∈ ÒOmat.
Let q′

φ′
∈ bΓ (1) be the element obtained by applying the projection map ÒOmat → bΓ (1) to the

element qφ′ ∈ ÒOmat. We know that q′
φ′
= 0 if φ′ can be lifted to a co-character φ of G. This

implies, using again an OPE argument, that

q′
φ′1
= q′

φ′2
, (189)

if
αφ′1 = αφ′2 , (190)

where αφ′i ∈ Γ
(1) is the obstruction of lifting φ′i to a co-character for G.

Thus, we obtain a function
γ : Γ (1)→ bΓ (1) , (191)

obtained by mapping the obstruction αφ′ to the charge q′
φ′

. This function is actually a group
homomorphism as can be argued by a similar OPE based argument as above. This homomor-
phism γ captures the 1-form anomaly as discussed in section 5.1.
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Charges of general gauge monopole operators. To complete the discussion of 1-form
anomaly, we need to describe the computation of the charge Qφ′ ∈ bΓ (1). We compute q′

φ′

using the charges of a special monopole operator that we call Mφ′(G) inducing the monopole
configuration associated to the co-character φ′ of G. For theories with N ≥ 2 supersymmetry,
this special monopole operator can be recognized as the ‘bare’ BPS monopole operator associ-
ated to the co-character φ′ of G. For N = 1,0 theories, we propose that there exists, for each
φ′, at least one monopole operator carrying the charges described below.

The charges of Mφ′(G) are obtained in the same way as the charges for non-fractional
gauge monopole operators Mφ(G) were obtained above, with the only difference being that
φ is now replaced by φ′ which is a co-character into G and so has more fractional windings
around various U(1)s as compared to windings of co-characters φ into G. Similar to (176)
and (177), the Chern-Simons terms contribute charges

q(k)
φ′,i,α = −

ki

h∨i

∑

ρi

qi,α(ρi)qφ′(ρi) , (192)

under U(1)i,α, where qφ′(ρi) is the (possibly fractional) charge of the positive root ρi under
U(1)φ′ ⊆ G defined by the co-character φ′, and

q(k)
φ′,a = −
∑

b

kabφ
′
b , (193)

under U(1)a where φ′b is the (possibly fractional) winding number of φ′ along U(1)b. Similar
to (178) and (179), the fermion ψ contributes charges

q(ψ)
φ′,i,α = −

1
2

qi,α(ψ)|qφ′(ψ)| , (194)

under U(1)i,α and

q(ψ)
φ′,a = −

1
2

qa(ψ)|qφ′(ψ)| , (195)

under U(1)a, where qφ′(ψ) is the charge of ψ under U(1)φ′ .

First quantization condition. Similar to (180) and (181),

qφ′,i,α = q(k)
φ′,i,α +
∑

ψ

q(ψ)
φ′,i,α , (196)

and
qφ′,a = q(k)

φ′,a +
∑

ψ

q(ψ)
φ′,a , (197)

are the total charges of the fractional gauge monopole operator Mφ′(G) under U(1)i,α and
U(1)a respectively.

The first quantization condition10 on Chern-Simons levels is that qφ′,i,α and qφ′,a have to
be integers for all possible values of i,α, a,φ′.

10There are two types of charge quantization conditions: the first ensures that the charges of monopoles are
correctly quantized for each individual gauge group factor. The second ensures that the charges are compatible
with the quotient by Z .
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Second quantization condition. Similar to (182) and (183), the charge of Mφ′(G) under
ZGi

is obtained as
qφ′,i = ni,αqφ′,i,α (mod ni) , (198)

for Gi = SU(n), Spin(2n+ 1), Sp(n), Spin(4n+ 2), E6, E7, and as

qφ′,i =
�

ns,i,αqφ′,i,α (mod 2) , nc,i,αqφ′,i,α (mod 2)
�

, (199)

for Gi = Spin(4n).
The second quantization condition on CS terms is obtained by requiring that

qφ′,Z = 0 , (200)

for all possible φ′, where qφ′,Z ∈ bZ is obtained from (qφ′,i , qφ′,a) ∈
∏

i
bZGi
×
∏

a
ÕU(1)a by

applying the projection map (184). Then, qφ′ := (qφ′,i , qφ′,a) ∈ bZG .
The last condition qφ′,Z = 0 implies that [Rφ′] := (qφ′,i , qφ′,a) is an element of the subgroup
bZG ⊆
∏

i
bZGi
×
∏

a
ÕU(1)a, where bZG is the Pontryagin dual of the center ZG of the gauge group.

We obtain qφ′ ∈ ÒOmat by applying the projection map bZG → ÒOmat to the element [Rφ′] ∈ bZG .
Similarly, we obtain q′

φ′
∈ bΓ (1) by applying the projection map ÒOmat → bΓ (1) to the element

qφ′ ∈ ÒOmat.

6.3 2-group and 0-form symmetries

Moving forward, we specialize the form of the gauge group to be

G =
∏

i

G′i ×
∏

a

U(1)a , (201)

where G′i is a compact but not necessarily simply connected Lie group with Lie algebra gi .
This constrains the form of the group Z appearing in the denominator of (165). The reason
for imposing this constraint is that it allows an easy identification for the covering group Ft
associated to topological 0-form symmetry discussed below.

We only study the continuous part of the 0-form symmetry, which is associated to a 0-form
symmetry algebra

f= ft ⊕ fnt , (202)

where
ft =
⊕

a
u(1)′a , (203)

is the topological/magnetic 0-form symmetry such that u(1)′a is identified with the factor u(1)a
in the gauge algebra g, and

fnt =
⊕

I
fI ⊕
⊕

A
u(1)A , (204)

collects other 0-form symmetries, where fI is a simple compact non-Abelian Lie algebra and
u(1)A is a copy of the Abelian Lie algebra u(1). We begin by considering a group

F = Ft × Fnt , (205)

which in general is a central extension of the 0-form symmetry group F . The group Ft with
Lie algebra ft is taken to have the form

Ft =
∏

a

U(1)′a , (206)
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where U(1)′a ⊆ Ft is identified with the factor U(1)a in the gauge group G, while the group
Fnt with Lie algebra fnt takes the form

Fnt =
∏

I

FI ×
∏

A

U(1)A , (207)

where FI is the simply connected, compact Lie group with Lie algebra fI and U(1)A is a copy
of U(1) whose Lie algebra is u(1)A. The normalization of U(1)A must be such that each mat-
ter field carries a non-fractional integer charge under it. In other words, every matter field
transforms in an allowed representation under U(1)A.

Note for later purposes that the center of F is

ZF =
∏

a

U(1)′a ×
∏

I

ZFI
×
∏

A

U(1)A , (208)

where ZFI
is the center of FI .

Background and mixed background-gauge Chern-Simons terms. We can include tree-
level background Chern-Simons terms, which are described in terms of a vector kI describing
CS level for fI , and a matrix kAB describing mixed CS terms between u(1)A and u(1)B

We can also include tree-level mixed background-gauge Chern-Simons terms, which are
described in terms of a matrix kAa describing mixed CS terms between u(1)A and gauge algebra
u(1)a. There are quantization conditions on the possible values of these CS terms that we
discuss later.

0-form and 2-group symmetry. As usual for gauge theories, the global form of the 0-form
symmetry group and 2-group symmetry can be determined in tandem. The relevant group E is
the subgroup of ZG× ZF that leaves all the matter content and the monopole operators Mφ(G)
for all φ invariant.11 We have already discussed the ZG charges of Mφ(G) in the previous sub-
sections. In a similar way, we can compute their ZF charges, which receive contributions from
the mixed background-gauge Chern-Simons terms and fermionic matter fields. The detailed
computation of these contributions is described later in this subsection. After incorporating
these contributions, the monopole operator Mφ(G) obtains a charge Qφ ∈ bZG × bZF . On the
other hand, to obtain the ZG × ZF charges of matter fields, let us decompose them into irreps
R of G × F and let QR ∈ bZG × bZF be the charge under ZG × ZF of R. Then, the subgroup

Span(QR,Qφ) ⊆ bZG × bZF , (209)

generated by the charges QR,Qφ for all R,φ is the set of ZG × ZF charges occupied by all
combinations of matter and monopole operators. Thus, E is the subgroup of ZG × ZF which
takes the elements of the subgroup Span(QR,Qφ) ⊆ bZG × bZF to the identity element of U(1)
under the natural homomorphism

�

ZG × ZF

�

×
�

bZG × bZF

�

→ U(1) . (210)

We can now summarize the rest of the computation: the 0-form symmetry group F can be
written as

F = F/Z , (211)

where
Z = πF (E) , (212)

11E also leaves invariant other non-fractional gauge monopole operators, as one can argue using OPE arguments
discussed in previous subsections, that the ZG × ZF charges of non-fractional gauge monopole operators can be
obtained as combinations of charges of monopole operators Mφ(G) and matter fields.
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is the subgroup of ZF obtained by applying the projection map

πF : ZG × ZF → ZF . (213)

The 1-form symmetry group can also be identified from E via

Γ (1) = E ∩ ZG . (214)

The above groups naturally sit in a short exact sequence

0→ Γ (1)→ E → Z → 0 , (215)

specifying the 2-group symmetry.

Charges of non-fractional gauge monopole operators. In the above computation, the
charges Qφ of non-fractional gauge monopole operators Mφ(G) played a key role. Earlier
we have discussed the ZG charges of Mφ(G). Below, we discuss the computation of ZF charges
of Mφ(G).

There are now three contributions: one coming from the fact that monopole operators
are classically charged under Ft , and the other two coming from Chern-Simons terms and
fermions. The classical Ft charge of Mφ(G) is

q(t)
φ,a = φa , (216)

under the topological symmetry U(1)′a, where we recall that φa is the winding number of φ
along the gauge group U(1)a.

From the mixed background-gauge Chern-Simons terms kAa, the monopole operator
Mφ(G) obtains a charge

q(k)
φ,A = −
∑

a

kAaφa , (217)

under U(1)A.
To describe the contribution of fermions, let us decompose them into irreducible 1-

dimensional representations under the group
∏

i

∏

α

U(1)i,α ×
∏

a

U(1)a ×
∏

a

U(1)′a ×
∏

I

∏

α

U(1)I ,α ×
∏

A

U(1)A , (218)

where
∏

α U(1)i,α is the maximal torus of Gi (not G′i) and
∏

α U(1)I ,α is the maximal torus
of FI . Let ψ parametrize these representations. Then, from the fermion ψ, the monopole
operator Mφ(G) obtains a charge

q(ψ)
φ,I ,α = −

1
2

qI ,α(ψ)|qφ(ψ)| , (219)

under U(1)I ,α, where qI ,α(ψ) is the charge ofψ under U(1)I ,α. Similarly, from the fermionψ,
the monopole operator Mφ(G) obtains a charge

q(ψ)
φ,A = −

1
2

qA(ψ)|qφ(ψ)| , (220)

under U(1)A, where qA(ψ) is the charge of ψ under U(1)A. The fermions do not contribute to
modify the charge of Mφ(G) under Ft =

∏

a U(1)′a.
In total, monopole operator Mφ(G) has the charge

qφ,I ,α =
∑

ψ

q(ψ)
φ,I ,α , (221)
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under U(1)I ,α, the charge

qφ,A = q(k)
φ,A+
∑

ψ

q(ψ)
φ,A , (222)

under U(1)a, and the charge q(t)
φ,a under the topological symmetry U(1)′a. The integrality

of these charges imposes quantization conditions on the Chern-Simons terms kAa. The most
general quantization condition is discussed later.

Now, using the charges qφ,I ,α, we can deduce the charge qφ,I ∈ bZFI
of Mφ(G) under the

center ZFI
of FI as

qφ,I = nI ,αqφ,I ,α (mod nI) , (223)

for FI = SU(n), Spin(2n+ 1), Sp(n), Spin(4n), E6, E7, and as

qφ,I =
�

ns,I ,αqφ,I ,α (mod 2) , nc,I ,αqφ,I ,α (mod 2)
�

, (224)

for FI = Spin(4n). Due to the condition (186), the charge Qφ := (qφ,i , qφ,a, q′
φ,a, qφ,I , qφ,A) of

Mφ(G) is valued in bZG × bZF , where bZF is the Pontryagin dual of the center ZF of F .

6.4 Quantization of Chern-Simons terms involving background fields

Suppose we have chosen a set of gauge Chern-Simons terms ki , kab satisfying the quantization
conditions of section 6.2. Then, the background and mixed background-gauge Chern-Simons
terms are quantized in terms of the gauge Chern-Simons terms, as we discuss in this subsection.

Mixed monopole operators for 0-form and gauge symmetries To describe the most gen-
eral quantization condition on the background and mixed background-gauge Chern-Simons
terms, and to describe the anomalies involving 0-form and 2-group symmetries discussed in
the next subsection, we need to study the charges of mixed monopole operators for 0-form
and gauge symmetries, which induce monopole configurations associated to co-characters

eφ : U(1)→ S , (225)

where

S = G × F
E

, (226)

is the structure group associated to the gauge theory.
We again propose that the charges of a general monopole operator inducing such a

monopole configuration eφ can be obtained by combining the charges of matter fields with
the charges of a special monopole operator, that we call M

eφ(S), inducing the monopole con-

figuration eφ. Let us discuss the computation of charges of monopole operators M
eφ(S) below.

Charges of mixed monopole operators. The computation is an extension of similar com-
putations discussed above, along with a new ingredient to the U(1)a gauge charge

q′
eφ,a
= eφ′a , (227)

where eφ′a is the (possibly fractional) winding number of the subgroup U(1)
eφ ⊆ S defined by

the co-character eφ along the topological symmetry U(1)′a.12

12This follows from the fact that such a vortex induces F ′a = eφ
′
aδL , where F ′a is the field strength for the back-

ground U(1)′a, and δL is the 2-form dual to the locus L of the vortex line. This background is represented in the
Lagrangian by a coupling eφ′aAa ∧ δL , where Aa is the gauge field for U(1)a. Consequently, the vortex carries a
gauge charge eφ′a under U(1)a.
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The classical Ft charge of M
eφ(S) is

q(t)
eφ,a
= eφa , (228)

under topological symmetry U(1)′a, where eφa is the (possibly fractional) winding number of
the subgroup U(1)

eφ . If eφa is fractional, we replace the topological symmetry group U(1)′a by

its n-fold coverßU(1)
′
a inside F , where the coverßU(1)

′
a has the property that n eφa is an integer

for all possible eφ. Then the charge underßU(1)
′
a is

eq(t)
eφ,a
= n eφa . (229)

Since we have redefined F , we need to redefine Z by adding a new Zn subgroup which acts

solely onßU(1)
′
a, so that only U(1)′a enters the 0-form symmetry group F .

From the Chern-Simons terms, we obtain the charge

q(k)
eφ,i,α
= −

ki

h∨i

∑

ρi

qi,α(ρi)q eφ(ρi) , (230)

under U(1)i,α, where q
eφ(ρi) is the (possibly fractional) charge of the positive root ρi under

U(1)
eφ; the charge

q(k)
eφ,a
= −
∑

b

kab
eφb +
∑

A

kAa
eφA , (231)

under the gauge group U(1)a, where eφA is the winding number of U(1)
eφ along U(1)A; the

charge

q(k)
eφ,I ,α
= −

kI

h∨I

∑

ρI

qI ,α(ρI)q eφ(ρI) , (232)

under U(1)I ,α, where the sum is over positive roots ρI of fI , h∨I is the dual Coxeter number
for fI , qI ,α(ρI) is the charge under U(1)I ,α of ρI , and q

eφ(ρI) is the charge of ρI under U(1)
eφ;

and the charge
q(k)
eφ,A
= −
∑

a

kAa
eφa −
∑

B

kAB
eφB , (233)

under U(1)A.
On the other hand, from the fermion ψ, we obtain the charge

q(ψ)
eφ,i,α
= −

1
2

qi,α(ψ)|q eφ(ψ)| , (234)

under U(1)i,α, where q
eφ(ψ) is the charge of ψ under U(1)

eφ; the charge

q(ψ)
eφ,a
= −

1
2

qa(ψ)|q eφ(ψ)| , (235)

under U(1)a; zero charge underßU(1)
′
a; the charge

q(ψ)
eφ,I ,α
= −

1
2

qI ,α(ψ)|q eφ(ψ)| , (236)

under U(1)I ,α; and the charge

q(ψ)
eφ,A
= −

1
2

qA(ψ)|q eφ(ψ)| , (237)

under U(1)A.
In total, the monopole operator M

eφ(S) has the charges as summarized in table 1.
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Table 1: Charges of the monopole operator M
eφ(S) under various U(1) symmetries.

U(1)i,α are Cartans of non-Abelian gauge group factors, U(1)a are Abelian gauge
group factors, U(1)I ,α are Cartans of non-Abelian 0-form factors, U(1)A are Abelian

0-form factors, andßU(1)
′
a are suitably rescaled topological symmetries associated to

U(1)a gauge groups.

G Charge Label Charge

U(1)i,α q
eφ,i,α q(k)

eφ,i,α
+
∑

ψ q(ψ)
eφ,i,α

U(1)a q
eφ,a q′

eφ,a
+ q(k)
eφ,a
+
∑

ψ q(ψ)
eφ,a

ßU(1)
′
a eq

(t)
eφ,a

eq(t)
eφ,a

U(1)I ,α q
eφ,I ,α q(k)

eφ,I ,α
+
∑

ψ q(ψ)
eφ,I ,α

U(1)A q
eφ,A q(k)

eφ,A
+
∑

ψ q(ψ)
eφ,A

Necessary quantization conditions. The gauge charges q
eφ,i,α, q
eφ,a of the monopole oper-

ators M
eφ(S) must be integers to avoid global gauge anomalies that render the gauge theory

inconsistent. This provides the first quantization condition for the mixed background-gauge
Chern-Simons terms kAa, quantizing them in terms of the chosen values for the gauge Chern-
Simons terms ki and kab.

From the charge q
eφ,i,α, we can deduce the charge q

eφ,i ∈ bZGi
as explained in equations

(182) and (183). Then, the charge (q
eφ,i , q
eφ,a) is an element of

∏

i
bZGi
×
∏

a
ÕU(1)a. Since Z is

not a part of the gauge group, we must have

q
eφ,Z = 0 , (238)

where q
eφ,Z ∈ bZ is the element obtained by applying the projection map

∏

i

bZGi
×
∏

a

ÕU(1)a→ bZ , (239)

on the charge (q
eφ,i , q
eφ,a). This provides the second quantization condition for the mixed

background-gauge Chern-Simons terms kAa in terms of the chosen values for the gauge Chern-
Simons terms ki and kab.

Moving forward, let us choose a set of mixed background-gauge Chern-Simons terms kAa
satisfying the above two quantization conditions.

Other quantization conditions. We can also demand the 0-form charges q
eφ,I ,α, q
eφ,A to be

integral. This acts as a quantization condition for the background Chern-Simons terms kI , kAB
in terms of the chosen values for the gauge and mixed background-gauge Chern-Simons terms
ki , kab, kAa.

However, this is not a necessary condition. Suppose a charge q
eφ,I ,α is fractional. Then, this

means that the non-Abelian 0-form symmetry fI suffers from a global ABJ anomaly. That is,
even though it is a 0-form symmetry at the classical level, it does not lift to a consistent 0-form
symmetry of the quantum theory. In such a situation, we can simply remove fI from the full
0-form symmetry algebra f and redo the analysis for the 2-group and 0-form symmetries.

If, on the other hand, a charge q
eφ,A is fractional, then the corresponding 0-form symmetry

U(1)A suffers from ABJ anomaly. In this case, however, there is a simpler cure of the anomaly.
One can simply change the normalization of U(1)A, as we did for U(1)′a earlier, to get rid of
such ABJ anomalies.
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Moving forward, we assume that we have chosen a set of background Chern-Simons terms
kI , kAB consistent with the above quantization condition.

6.5 Anomalies

2-group anomaly. Our above computation of the charges of mixed monopole operators al-
lows us to extract the anomaly of the 2-group symmetry of the 3d gauge theory.

To determine this anomaly, consider a monopole operator M
eφ(S) with associated co-

character eφ having obstruction αφ ∈ E of being regarded as a G × F co-character. Its charge

q
eφ := (q
eφ,i , q
eφ,a,eq(t)
eφ,a

, q
eφ,I , q
eφ,A) becomes an element of bZG × bZF after imposing the quantiza-

tion condition q
eφ,Z = 0. From q

eφ , we can extract an element β
eφ ∈ bE by applying the projection

map
bZG × bZF → bE , (240)

to q
eφ . Define a map

γ : E → bE , (241)

by sending the element α
eφ ∈ E to the element β

eφ ∈ bE . This map is a well-defined function
because another monopole operator M

eφ′(S) associated to co-character having the same ob-
struction α

eφ′ = α eφ leads to the same charge β
eφ′ = β eφ . This can be argued using an OPE

argument as the one employed around equation (191). Moreover, γ is a group homomor-
phism, which can also be argued using an OPE argument. The homomorphism γ determines
the 2-group anomaly as in section 5.4.

1-form anomaly. If we do not turn on 0-form background and only turn on 1-form back-
ground, then we observe an anomaly for the 1-form symmetry of the form (97) that can be
obtained from the information of the above 2-group anomaly. This 1-form anomaly is associ-
ated to a homomorphism

γ′ : Γ (1)→ bΓ (1) , (242)

which can obtained from the homomorphism γ associated to the 2-group anomaly by compos-
ing γ with the maps Γ (1) → E and bE → bΓ (1). This 1-form anomaly is the same as obtained in
section 6.2 above.

Anomalies when 2-group symmetry is trivial. Consider the situation where the short exact
sequence (26) splits, leading to a trivial 2-group symmetry. In such a situation, as we describe
below, the 2-group anomaly splits into a 1-form anomaly, a 0-form anomaly and a mixed 1-
form 0-form anomaly.

Splitting of the short exact sequence means that we have an isomorphism

Γ (1) ×Z → E , (243)

which induces a Pontryagin dual isomorphism

bE → bΓ (1) × ÒZ . (244)

Combining these isomorphisms with the data of γ, we obtain a map

γ2 : Γ (1) ×Z → bΓ (1) × ÒZ . (245)

Restricting the domain of γ2 to Γ (1) and using projections bΓ (1) × ÒZ → bΓ (1) and bΓ (1) × ÒZ → ÒZ,
we obtain homomorphisms

γ1 : Γ (1)→ bΓ (1) , (246)
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and
γ10 : Γ (1)→ ÒZ , (247)

capturing the pure 1-form anomaly (97) and the mixed 1-form/0-form anomaly (121) respec-
tively. On the other hand, restricting the domain of γ2 to Z and using projection bΓ (1)× ÒZ → ÒZ,
we obtain the homomorphism

γ0 : Z → ÒZ , (248)

capturing the pure 0-form anomaly (145).

7 Examples

Let us discuss some examples to illustrate the general discussions of the previous section.

7.1 QED with charge 1 fermions

Symmetries. Consider a 3d gauge theory

G = U(1)g , k , N f × fermions of qg = 1 , (249)

with gauge group G = U(1)g , Chern-Simons level k and N f fermions, all of gauge charge
qg = 1. The 1-form symmetry group Γ (1) is clearly trivial as the fermions screen all the gauge
Wilson line defects.

There is a non-topological 0-form symmetry

fnt = su(N f ) , (250)

rotating the N f fermions, and a topological 0-form symmetry

ft = u(1)t . (251)

We choose a central extension

F = Ft × Fnt = U(1)t × SU(N f ) , (252)

of the 0-form symmetry group F .
Consider the non-fractional gauge monopole operator Mφ(G) defined by the co-character

φ of winding number 1 along G = U(1)g . The contribution of gauge CS level k to its gauge
charge is

q(k)g,φ = −k . (253)

The contribution of a fermion ψ to its gauge charge is

q(ψ)g,φ = −
1
2

, (254)

as the gauge charge qg(ψ) of the fermion is 1 and its charge qφ(ψ) is also 1. Thus, the total
gauge charge of the monopole operator Mφ(G) is

qg,φ = −k−
N f

2
. (255)

The quantization condition for the gauge CS level k is that it is half-integral if N f is odd, and
it is integral if N f is even.
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The topological charge of the monopole operator Mφ(G) is

qt,φ = 1 , (256)

under Ft = U(1)t . There is no Chern-Simons contribution to its charge under the Cartan
∏N f −1
α=1 U(1)α of the non-topological 0-form symmetry Fnt = SU(N f ). Thus, the charge qα,φ

under U(1)α of Mφ(G) is given purely by the fermion contribution, which is

qα,φ = −
1
2

N f
∑

ρ=1

qα(ρ) = 0 , (257)

where ρ are the weights for the fundamental representation of su(N f ) and qα(ρ) is the charge
of ρ under U(1)α. The sum of qα(ρ) over ρ is zero. Thus, the charge of Mφ(G) under the
center Z f = ZN f

of SU(N f ) is
q f ,φ = 0 . (258)

From this we can now compute the 0-form symmetry group and the structure group of the
gauge theory. Let us reparametrize CS level as

k = −
N f

2
−mN f − n , (259)

where m can be an arbitrary integer and n is an integer such that 0≤ n< N f . Then the 0-form
symmetry group can be written as

F =
SU(N f )× U(1)t

ZN f

, (260)

where
Z = ZN f

, (261)

in the denominator is generated by the element
�

e
2πi
Nf , e

−2πin
Nf

�

∈ Z f × U(1)t . (262)

A special case is n= 0, for which we can write F as

F = PSU(N f )× U(1)t . (263)

The structure group, on the other hand, turns out to be

S =
U(1)g × SU(N f )× U(1)t

ZN f

, (264)

where
E = ZN f

, (265)

in the denominator is generated by the element
�

e
−2πi
Nf , e

2πi
Nf , e

−2πin
Nf

�

∈ U(1)g × Z f × U(1)t . (266)

For the special case n= 0, we can write S as

S =
U(1)g × SU(N f )

ZN f

× U(1)t . (267)

To determine (266) it is useful to recall the computation approach outlined in [50], where from
the charges one can determine the generators using a Smith normal form decomposition. Note
that in the following this computation might have to be repeated, by replacing some of the
groups with their covers (e.g. U(1)t will be lifted to a coverßU(1)t as otherwise there are
fractionally charged states).
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Anomalies for n = 0. Let us discuss the computation of anomalies for two special cases
n= 0 and n= 1, beginning with the case n= 0. Let k f be the CS level for SU(N f ).

Consider the mixed monopole operator M
eφ(S) with eφ having winding

eφg = −
1

N f
, (268)

along U(1)g and windings
eφα =

α

N f
, (269)

along the component U(1)α in the maximal torus
∏N f −1
α=1 U(1)α of SU(N f ). This monopole has

the obstruction 1 ∈ ZN f
= E to being regarded as a monopole for U(1)g × SU(N f ).

The topological charge of this monopole operator M
eφ(S) is

qt, eφ = −
1

N f
, (270)

under U(1)t . Thus we choose an N f -fold coverßU(1)t of U(1)t to be the new Ft . This modifies
F to

F = SU(N f )×ßU(1)t , (271)

thus modifying Z to
Z = Z(nt)

N f
×Z(t)N f

, (272)

such that the 0-form symmetry group is expressed as

F = PSU(N f )× U(1)t =
SU(N f )

Z(nt)
N f

×
ßU(1)t
Z(t)N f

. (273)

Correspondingly, S is re-expressed as

S =
U(1)g × SU(N f )

Z(nt,E)
N f

×
ßU(1)t
Z(t)N f

, (274)

with the modified E being
E = Z(nt,E)

N f
×Z(t)N f

, (275)

where
�

e
−2πi
Nf , e

2πi
Nf

�

∈ U(1)g × Z f , (276)

is the generator of Z(nt,E)
N f

. The obstruction associated to M
eφ(S) is now 1 ∈ Z(nt,E)

N f
⊂ E and

eqt, eφ = −1 , (277)

is its topological charge underßU(1)t .
The gauge charge of M

eφ(S) receives a contribution

q(k)
g, eφ
=

k
N f
= −

1
2
−m , (278)

53

https://scipost.org
https://scipost.org/SciPostPhys.16.3.087


SciPost Phys. 16, 087 (2024)

from CS level k and a contribution
∑

ψ

q(ψ)
g, eφ
= −

1
2

, (279)

from the fermions. To see the fermionic contribution, note that a fermion of charge 1 under
U(1)g and transforming in a weight having Dynkin coefficients (ρ1, · · · ,ρN f −1) of SU(N f ) has
charge

−
1

N f
+

N f −1
∑

α=1

ρα
α

N f
, (280)

under U(1)
eφ . Thus, the only weight that contributes from the fundamental representation of

SU(N f ) is (0, · · · , 0,−1), and its contribution is −1
2 as claimed above. Consequently,

qg, eφ = −m− 1 , (281)

is the total gauge charge of M
eφ(S).

Now let us compute
∏N f −1
α=1 U(1)α charges of M

eφ(S). A root having Dynkin coefficients
(ρ1, · · · ,ρN f −1) has charge

N f −1
∑

α=1

ρα
α

N f
, (282)

under U(1)
eφ . Thus, the CS level k f contributes charge

(0, · · · , 0,−k f ) , (283)

under
∏N f −1
α=1 U(1)α. From our above discussion, we can easily compute

�

0, · · · , 0,−
1
2

�

, (284)

to be the fermion contribution. Thus, the Chern-Simons level k f should be quantized as

k f =
2l + 1

2
, (285)

with l ∈ Z, in order to avoid global13 ABJ anomaly for SU(N f ). This implies that

q f , eφ = k f +
1
2
(mod N f ) , (286)

is the Z f charge of M
eφ(S).

The charge
�

qg, eφ ,eqt, eφ , q f , eφ

�

=
�

−m− 1,−1, k f +
1
2
(mod N f )
�

, (287)

of M
eφ(S) under U(1)g ×ßU(1)t × Z f is equivalent to the charge

�

qg, eφ ,eqt, eφ , q f , eφ

�

=
�

0,−1, m+ 1+ k f +
1
2
(mod N f )
�

, (288)

13Here the word ‘global’ refers to the traditional usage of the term: A global anomaly is one that cannot be
captured in terms of an anomaly polynomial.
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as charges in bE . Let us reparametrize k f as

k f = −m−
3
2
+m′N f + n′ , (289)

where m′ ∈ Z and 0≤ n′ < N f . Then, the above charge is
�

qg, eφ ,eqt, eφ , q f , eφ

�

=
�

0,−1, n′ (mod N f )
�

, (290)

This fixes the homomorphisms determining the anomalies. The first homomorphism is

γnt,t : Z(nt)
N f
→ bZ(t)N f

, (291)

mapping 1 ∈ Z(nt)
N f

to −1 ∈ bZ(t)N f
. Concretely, the corresponding anomaly is

exp

�

−
2πi
N f

∫

w f
2 ∪ c t

1 (mod N f )

�

, (292)

where w f
2 is the characteristic class capturing the obstruction of lifting Fnt = PSU(N f ) bundles

to Fnt = SU(N f ) bundles, and c t
1 is the first Chern class for U(1)t bundles. Consequently,

c t
1 (mod N f ) is the obstruction class for lifting Ft = U(1)t bundles to Ft =ßU(1)t bundles.

The second homomorphism is

γnt,nt : Z(nt)
N f
→ bZ(nt)

N f
, (293)

mapping 1 ∈ Z(nt)
N f

to n′ ∈ bZ(t)N f
. Concretely, for odd N f , the corresponding anomaly is

exp

�

2πin′

N f

∫

w f
2 ∪w f

2

�

. (294)

For even N f , the corresponding anomaly is

exp

�

πin′

N f

∫

P
�

w f
2

�

�

, (295)

where P
�

w f
2

�

is obtained by applying the standard Pontryagin square operation

P : H2
�

M3,ZN f

�

→ H4
�

M3,Z2N f

�

. (296)

We can verify the anomaly (292) by considering the monopole operator M
eφ(S)with U(1)

eφ

having winding 1 along U(1)t . Such a monopole has only a gauge charge given by

qg, eφ = 1 . (297)

Thus, this monopole has charge
�

qg, eφ ,eqt, eφ , q f , eφ

�

= (1, 0,0) , (298)

under U(1)g × U(1)t × Z f . This charge is equivalent to the charge
�

qg, eφ ,eqt, eφ , q f , eφ

�

= (0,−1, 0) , (299)

as a charge in bE . From this, we can read the homomorphism

γt,nt : Z(t)N f
→ bZ(nt)

N f
, (300)

mapping 1 ∈ Z(t)N f
to −1 ∈ bZ(nt)

N f
. This homomorphism leads to the same anomaly (292).
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Anomalies for n = 1. Let us now discuss the case n = 1. Consider the mixed monopole
operator M

eφ(S) with eφ having winding under the following U(1)s

U(1)g : eφg = −
1

N f
,

U(1)α : eφα =
α

N f
,

U(1)t : φt =
1

N f
.

(301)

This monopole has the obstruction 1 ∈ ZN f
= E to being regarded as a monopole for

U(1)g × SU(N f )× U(1)t .
The topological charge of this monopole operator M

eφ(S) is

qt, eφ = −
1

N f
, (302)

under U(1)t . Thus we choose an N f -fold coverßU(1)t of U(1)t to be the new Ft . This modifies
F to

F = SU(N f )×ßU(1)t , (303)

thus modifying Z to
Z = ZN2

f
, (304)

such that the 0-form symmetry group is expressed as

F =
SU(N f )× U(1)t

ZN f

=
SU(N f )×ßU(1)t
ZN2

f

. (305)

Correspondingly, S is re-expressed as

S =
U(1)g × SU(N f )×ßU(1)t

ZN2
f

, (306)

with the modified E being
E = ZN2

f
, (307)

where
�

e
−2πi
Nf , e

2πi
Nf , e

−2πi
N2

f

�

∈ U(1)g × Z f ×ßU(1)t , (308)

is the generator of E . The obstruction associated to M
eφ(S) is now 1 ∈ ZN2

f
for regarding it as

a monopole for U(1)g × SU(N f )×ßU(1)t , and

eqt, eφ = −1 , (309)

is its topological charge underßU(1)t .
The gauge charge of M

eφ(S) receives a contribution

q(k)
g, eφ
=

k
N f
= −

1
2
−m−

1
N f

, (310)
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from CS level k, a contribution
∑

ψ

q(ψ)
g, eφ
= −

1
2

, (311)

from the fermions, and a contribution

q′
g, eφ
=

1
N f

, (312)

from the fact that U(1)
eφ has a winding number 1

N f
along the topological symmetry U(1)t

associated to the gauge group U(1)g . Consequently,

qg, eφ = −m− 1 , (313)

is the total gauge charge of M
eφ(S).

The CS level k f contributes charge

(0, · · · , 0,−k f ) , (314)

under
∏N f −1
α=1 U(1)α and

�

0, · · · , 0,−
1
2

�

, (315)

is the fermion contribution. Thus, the Chern-Simons level k f should again be quantized as

k f =
2l + 1

2
, (316)

with l ∈ Z, in order to avoid global ABJ anomaly for SU(N f ). This implies that

q f , eφ = k f +
1
2
(mod N f ) , (317)

is the Z f charge of M
eφ(S).

Thus the total charge of M
eφ(S) under U(1)g ×ßU(1)t × Z f is

�

qg, eφ ,eqt, eφ , q f , eφ

�

=
�

−m− 1,−1, k f +
1
2
(mod N f )
�

, (318)

which is equivalent to the charge
�

qg, eφ ,eqt, eφ , q f , eφ

�

=
�

0,−1, n′ (mod N f )
�

, (319)

as charges in bE , where n′ is defined in terms of k f via

k f = −m−
3
2
+m′N f + n′ , (320)

where m′ ∈ Z and 0≤ n′ < N f .
This leads to the anomaly

exp

�

πi
n′N f − n

N2
f

∫

P(w2)

�

, (321)
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for even N f , where w2 is the ZN2
f

valued characteristic class capturing the obstruction of lifting

F =
SU(N f )×ßU(1)t
ZN2

f

, (322)

bundles to
F = Fnt × Ft = SU(N f )×ßU(1)t , (323)

bundles. For odd N f , the anomaly is

exp

�

2πi
n′N f − n

N2
f

∫

w2 ∪w2

�

. (324)

7.2 N = 4 SQED with charge 1 hypers

Consider 3d N = 4 gauge theory with gauge group

G = U(1)g , (325)

and N f hypermultiplets of charge 1 under U(1)g . The gauge and flavor Chern-Simons levels
must be zero

k = k f = 0 , (326)

for compatibility with N = 4 supersymmetry. We again consider 0-form symmetry

f= ft ⊕ fnt = u(1)t ⊕ su(N f ) . (327)

We have a total of 2N f fermions, N f of which have gauge charge 1 and transform in funda-
mental representation of SU(N f ), and the other N f have gauge charge −1 and transform in
anti-fundamental representation of SU(N f ). The fermion contributions cancel while comput-
ing U(1)g and Z f charges of fermions.

A non-fractional gauge monopole Mφ(G) with U(1)φ = U(1)g has charges

�

qg,φ , qt,φ , q f ,φ

�

=
�

0,1, 0 (mod N f )
�

, (328)

under U(1)g × U(1)t × Z f . This implies the structure group is

S =
U(1)g × SU(N f )

ZN f

× U(1)t , (329)

and 0-form symmetry group is

F = PSU(N f )× U(1)t . (330)

Consider now a mixed gauge/0-form monopole operator M
eφ(S) with U(1)

eφ winding

eφg = −
1

N f
, (331)

along U(1)g and windings
eφα =

α

N f
, (332)

58

https://scipost.org
https://scipost.org/SciPostPhys.16.3.087


SciPost Phys. 16, 087 (2024)

along the component U(1)α in the maximal torus
∏N f −1
α=1 U(1)α of SU(N f ). This monopole has

the obstruction 1 ∈ ZN f
to being regarded as a monopole for U(1)g ×SU(N f ). This monopole

has charges
�

qg, eφ , qt, eφ , q f , eφ

�

=

�

0,−
1

N f
, 0 (mod N f )

�

, (333)

under U(1)g × U(1)t × ZN f
. This implies that there is no pure anomaly for PSU(N f ) part of

0-form symmetry group F , but there is a mixed anomaly between PSU(N f ) and U(1)t 0-form
symmetries given by

exp

�

−
2πi
N f

∫

w f
2 ∪ c t

1 (mod N f )

�

, (334)

where w f
2 is the characteristic class capturing the obstruction of lifting PSU(N f ) bundles to

SU(N f ) bundles, and c t
1 is the first Chern class for U(1)t bundles.

7.3 QED with 2 fermions of charge 2

Consider a 3d gauge theory with gauge group

G = U(1)g , (335)

with Chern-Simons level k and 2 fermions, both having gauge charge 2.

1-form symmetry. Let us determine the 1-form symmetry. Operators constructed out of the
charge 2 fermions screen Wilson lines of even charges. So we need to determine whether non-
fractional gauge monopole operators can screen the odd charge Wilson lines, following (175).
Consider the non-fractional gauge monopole Mφ(G) with U(1)φ having winding number 1
along U(1)g . The gauge charge of this monopole operator is

qg,φ = −k− 4 . (336)

Thus if k is even, then no new screenings are introduced and we have a non-trivial 1-form
symmetry

k even : Γ (1) = Z2 . (337)

On the other hand, if k is odd, then odd charge Wilson lines are also screened, and we have a
trivial 1-form symmetry

k odd : Γ (1) = 0 . (338)

2-group and 0-form symmetries. 0-form symmetry algebra is

f= ft ⊕ fnt = u(1)t ⊕ su(2) f , (339)

where su(2) f rotates the two fermions. The monopole operator Mφ(G) has charge

qt = 1 , (340)

under the topological symmetry U(1)t and a charge 0 under the Cartan of SU(2) f .
This information allows us to compute the structure group to be

S =
U(1)g × SU(2) f × U(1)t

Z4
, (341)
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where Z4 is generated by the element
�

e
πi
2 , eπi , e

πik
2

�

∈ U(1)g × Z f × U(1)t , (342)

where Z f = Z2 is the center of SU(2) f . Thus, we have

E = Z4 . (343)

Computing the 0-form symmetry group from the above structure group, we find it to be

F = SO(3) f × U(1)t , (344)

for k = 0 (mod 4);

F =
SU(2) f × U(1)t

Z4
, (345)

for k = 1,3 (mod 4), where the element
�

eπi , e
πi
2

�

∈ Z f × U(1)t , (346)

is the generator of Z4; and

F =
SU(2) f × U(1)t

Z2
≃ U(2) , (347)

for k = 2 (mod 4), where the element
�

eπi , eπi
�

∈ Z f × U(1)t , (348)

is the generator of Z2.
For even k, the non-trivial Z2 1-form symmetry combines with the above 0-form symmetry

group to form a 2-group symmetry associated to the short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (349)

For odd k, there is no 2-group symmetry as there is no 1-form symmetry.

Anomalies. Let us compute anomalies for cases in which the CS level is a multiple of 4

k = 4m . (350)

Let k f be background CS level for SU(2) f .

Consider the mixed monopole operator M
eφ(S) with eφ having winding

eφg =
1
4

, (351)

along U(1)g and winding

eφ f =
1
2

, (352)

along the maximal torus U(1) f of SU(2) f . This monopole has the obstruction 1 ∈ Z4 = E to
being regarded as a monopole for U(1)g × SU(2) f × U(1)t .

The topological charge of this monopole operator M
eφ(S) is

qt, eφ =
1
4

, (353)
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under U(1)t . Thus we choose a 4-fold coverßU(1)t of U(1)t . This modifies F to

F = SU(2) f ×ßU(1)t , (354)

thus modifying Z to
Z = Z(nt)

4 ×Z(t)4 , (355)

such that the 0-form symmetry group is expressed as

F = SO(3) f × U(1)t =
SU(2) f

Z(nt)
4

×
ßU(1)t
Z(t)4

. (356)

Correspondingly, S is re-expressed as

S =
U(1)g × SU(2) f

Z(nt,E)
4

×
ßU(1)t
Z(t)4

, (357)

with the modified E being
E = Z(nt,E)

4 ×Z(t)4 , (358)

where
�

e
πi
2 , eπi
�

∈ U(1)g × Z f , (359)

is the generator of Z(nt,E)
4 . The obstruction associated to M

eφ(S) is now 1 ∈ Z(nt,E)
4 ⊂ E and

eqt, eφ = 1 , (360)

is its topological charge underßU(1)t .
The charges of M

eφ(S) can be computed to be

�

qg, eφ ,eqt, eφ , q f , eφ

�

=
�

−m− 1, 1, k f +
1
2
(mod 2)
�

, (361)

under U(1)g ×ßU(1)t × Z f . The CS level k f is taken to be a half-integer that is not an integer,
in order to avoid global ABJ anomaly for fnt = su(2) f . This monopole operator has charges

�

−m− 2− 2k f (mod 4), 1 (mod 4)
�

, (362)

under Z(nt,E)
4 ×Z(t)4 .

From the above charges, we observe that the theory has an anomaly

exp

�

πi
2

∫

Bw ∪ c t
1 (mod 4)− (m+ 2+ 2k f )

P(Bw)
2

�

, (363)

where c t
1 is the first Chern class for U(1)t and Bw is the Z4 valued 2-cocycle acting as the

background field for the 2-group symmetry involving the Z2 1-form symmetry and the SO(3) f
0-form symmetry. Bw can be expressed as

Bw = 2B2 + ew
f
2 , (364)

where B2 is the background for the Z2 1-form symmetry background and w̃ f
2 is a Z4 valued

2-cochain which is a lift of the Z2 valued 2-cocycle w f
2 capturing the obstruction of lifting

SO(3) f bundles to SU(2) f bundles.

61

https://scipost.org
https://scipost.org/SciPostPhys.16.3.087


SciPost Phys. 16, 087 (2024)

7.4 N = 4 SQED with 2 hypers of charge 2

Consider 3d N = 4 gauge theory with gauge group

G = U(1)g , (365)

and 2 hypermultiplets of charge 2 under U(1)g . The gauge and flavor Chern-Simons levels
must be zero

k = k f = 0 , (366)

for compatibility with N = 4 supersymmetry. We again consider 0-form symmetry

f= ft ⊕ fnt = u(1)t ⊕ su(2) f . (367)

We have a total of 4 fermions: a doublet of SU(2) f with gauge charge 2 and a doublet of
SU(2) f with gauge charge -2. The fermion contributions cancel while computing U(1)g and
Z f charges of fermions.

A non-fractional gauge monopole Mφ(G) with U(1)φ = U(1)g has charges
�

qg,φ , qt,φ , q f ,φ

�

= (0,1, 0 (mod 2)) , (368)

under U(1)g × U(1)t × Z f . This implies the structure group is

S =
U(1)g × SU(2) f

Z4
× U(1)t , (369)

with
�

e
πi
2 , eπi
�

∈ U(1)g × Z f , (370)

is the generator of Z4. The 0-form symmetry group is

F = SO(3) f × U(1)t , (371)

and 1-form symmetry group is
Γ (1) = Z2 . (372)

The SO(3) f 0-form symmetry and Z2 1-form symmetry combine to form a 2-group symmetry
based on the short exact sequence

0→ Z2→ Z4→ Z2→ 0 . (373)

Consider now a mixed gauge/0-form monopole operator M
eφ(S) with U(1)

eφ winding

eφg =
1
4

, (374)

along U(1)g and winding

eφ f =
1
2

, (375)

along the maximal torus U(1) f of SU(2) f . This monopole has the obstruction 1 ∈ Z4 to being
regarded as a monopole for U(1)g × SU(2) f . This monopole has charges

�

qg, eφ , qt, eφ , q f , eφ

�

=
�

0,
1
4

, 0 (mod 2)
�

, (376)

under U(1)g × U(1)t × Z f . This implies that there is a mixed anomaly between the U(1)t
0-form symmetry and the 2-group symmetry given by

exp

�

πi
2

∫

Bw ∪ c t
1 (mod 4)

�

, (377)

where Bw is the Z4 valued 2-cocycle associated to the 2-group background and c t
1 is the first

Chern class for U(1)t backgrounds.
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7.5 N = 2 dual of N = 4 T[SU(2)] theory

T[SU(2)] [106] is a 3d N = 4 SCFT which has a 0-form flavor symmetry

f= su(2)C ⊕ su(2)H , (378)

where su(2)C acts on its Coulomb branch of vacua and su(2)H acts on its Higgs branch of
vacua. It is well-known that the 0-form flavor symmetry group of T[SU(2)] is

F = SO(3)C × SO(3)H , (379)

and there is a mixed 0-form anomaly given by

A4 = exp

�

πi

∫

wC
2 ∪wH

2

�

, (380)

where wC ,H
2 are characteristic classes capturing the obstruction of lifting SO(3)C ,H bundles to

SU(2)C ,H bundles.
It is also known that there is a 3d N = 2 gauge theory that flows to the T[SU(2)] theory,

and notably manifests the full 0-form symmetry f in the UV. In this subsection, we use our
method to recover the 0-form symmetry group F and the anomaly A4 from this 3d N = 2
gauge theory. A similar check was also performed in [11].

The 3d N = 2 gauge theory under discussion has gauge group

G = SU(2)g , (381)

with CS level −1, with 2 chiral multiplets that transform in tri-fundamental representation of

SU(2)g × SU(2)C × SU(2)H , (382)

where su(2)C ⊕ su(2)H is flavor symmetry algebra, and with background CS levels 1 for both
SU(2)C and SU(2)H . It is clear that there is no 1-form symmetry as the operators composed
out of these chiral multiplets screen all the gauge Wilson line defects for SU(2)g .

To compute the 0-form symmetry group, we need to consider also non-fractional gauge
monopoles alongside the matter content contributions. Consider the non-fractional gauge
monopole Mφ(G) with the co-character φ having winding number 1 along the maximal torus
U(1)g ⊂ SU(2)g . The gauge charge under U(1)g of the monopole operator receives a contri-
bution

q(k)g,φ = 2 , (383)

from the gauge CS level, and a contribution
∑

ψ

q(ψ)g,φ = −2 , (384)

from the fermions. Thus, the total gauge charge qg,φ of Mφ(G) is 0. Moreover, the charges qC ,φ
and qH,φ of Mφ(G) under Cartan U(1)C ,H ⊂ SU(2)C ,H are also 0. Thus monopole operators
do not make any non-trivial contribution to the computation of 0-form symmetry group.

The structure group is easily computed to be

S =
SU(2)g × SU(2)C × SU(2)H

ZC ,E
2 ×ZH,E

2

, (385)

where ZC ,E
2 is generated by the element

�

eπi , eπi , 1
�

∈ Zg
2 ×Z

C
2 ×Z

H
2 , (386)
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where Zx
2 is the center of the group SU(2)x , and ZH,E

2 is generated by the element

�

eπi , 1, eπi
�

∈ Zg
2 ×Z

C
2 ×Z

H
2 . (387)

Thus we have
E = ZC ,E

2 ×ZH,E
2 , (388)

and we can compute 0-form symmetry group to be

F =
SU(2)C × SU(2)H
ZC

2 ×Z
H
2

= SO(3)C × SO(3)H , (389)

thus matching the 0-form symmetry group for T[SU(2)].
To compute the anomaly, we need to consider mixed gauge/0-form monopole operators.

So, consider the monopole M
eφ(S) with the co-character eφ having winding 1

2 along U(1)g and

winding 1
2 along U(1)C . The charge under U(1)g of this monopole is

qg, eφ = 1 , (390)

which is entirely from the gauge CS level. Similarly, the charge of M
eφ(S) under U(1)C is

qC , eφ = −1 , (391)

which is entirely from the background CS level for SU(2)C . On the other hand, the charge of
M
eφ(S) under U(1)H is

qH, eφ = 0 , (392)

as both the background CS level for SU(2)H and the fermions make zero contributions.
Thus, the monopole operator M

eφ(S), which has obstruction 1 ∈ ZC
2 for being regarded as

a monopole for SU(2)g × SU(2)C × SU(2)H , carries charges

�

0 (mod 2) , 1 (mod 2)
�

∈ bZC
2 × bZ

H
2 , (393)

implying that we have the mixed 0-form anomaly

exp

�

πi

∫

wC
2 ∪wH

2

�

, (394)

between SO(3)C and SO(3)H 0-form symmetries, which matches the anomaly for T[SU(2)].

8 Generalisations: Solitonic defects and anomalies in various di-
mensions

The methods outlined in this paper have numerous generalisations to invertible generalized
symmetries in higher dimensions. We will not attempt a systematic exploration here but con-
fine ourselves to provide some examples in three, four and five dimensions, which illustrate
the vast possibilities for extension of this work.
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8.1 More solitonic defects

In previous sections, we have explored the utility of defects inducing solitonic background field
configurations in describing generalised symmetries and their ’t Hooft anomalies. Our focus
was on codimension-two solitonic defects inducing non-trivial backgrounds for continuous
0-forms, discrete 1-form and 2-groups, with the property that at least one of the following
backgrounds is non-trivial on a small disk D2 intersecting the locus of the defect

∫

D2

w2 ,

∫

D2

B2 ,

∫

D2

Bw , (395)

However, there are further possibilities for solitonic backgrounds induced by higher codimen-
sion defects.

We may consider codimension-three solitonic defects with the property that they induce
non-trivial symmetry backgrounds (on a small ball D3 intersecting the locus of the defect) such
that one of the following is non-trivial

∫

D3

Bock(w2) , or

∫

D3

Bock(B2) , (396)

where we have used the Bockstein homomorphism for some short exact sequence. For exam-
ple, if the short exact sequence involved is

0→ Z2→ Z4→ Z2→ 0 , (397)

then

Bock(B2) =
δeB2

2
mod 2 , (398)

where eB2 is a Z4-valued 2-cochain which is a lift of the Z2-valued 2-cocycle B2.
In codimension-four we may consider solitonic defects with nontrivial

∫

D4

P(w2) ,

∫

D4

P(B2) , (399)

where P denotes the Pontryagin square operation, where D4 is a small ball intersecting the
locus of the defect.

The properties of such defects capture various other types of anomalies not considered in
this paper. Some examples, in various spacetime dimensions, are explored in the remainder
of this section.

8.2 Discrete symmetries in 3d

Suppose we consider a theory with a discrete 0-form symmetry Γ (0) in 3d in addition to a
continuous symmetry F = F/Z of the form described in the earlier sections of the paper.

Consider a solitonic local operator having the property that
∫

D3

Bock(w2) , (400)

is a non-trivial element of Z. As local operators may be charged under the discrete 0-form
symmetry, this determines a homomorphism γ : Z → dΓ (0) and captures a mixed ’t Hooft
anomaly of the form

A4 = exp

�

2πi

∫

B1 ∪ γ
�

Bock(w2)
�

�

, (401)

where B1 is a Γ (0)-valued 1-cocycle background for the discrete symmetry.
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8.3 Solitonic defects in 4d

Let us now consider ’t Hooft anomalies for 0-form and 1-form symmetries in four dimensions.
For simplicity, we assume these symmetries do not form part of a non-trivial 2-group. We use
the same notation as in earlier sections.

A line operator in 4d may have the property that
∫

D3

Bock(B2) , (402)

is a non-trivial element of a discrete group O extending the 1-form symmetry group Γ (1). Such
line operators may themselves be charged under the 1-form symmetry Γ (1), which determines
a homomorphism γ : O→ bΓ (1) and therefore a ’t Hooft anomaly of the form

A5 = exp

�

2πi

∫

B2 ∪ γ
�

Bock(B2)
�

�

. (403)

Such anomalies arise when gauging a discrete subgroup of 1-form symmetry forming an ex-
tension.

Example. The pure SO(N) gauge theory with N = 4k+2 is obtained from the Spin(N) gauge
theory by gauging a Z2 ⊂ Z4 subgroup of the 1-form center symmetry forming a short exact
sequence of 1-form symmetries

0→ Z2→ Z4→ Z2→ 0 . (404)

See e.g. [2, 15] for a discussion of these symmetries and anomalies of these theories. The
resulting 1-form symmetry of SO(N) is Γ (1) = Z2 × Z2 with backgrounds B2 = (Be

2, Bm
2 ) and

mixed ’t Hooft anomaly
2πi
4

∫

Bm
2 ∪ Bock(Be

2) , (405)

involving the Bockstein homomorphism for the short exact sequence.
Let us see this anomaly directly from the perspective of solitonic defects. First, in the

absence of a background for the electric 1-form symmetry the theory sums uniformly over
SO(N) bundles, which have obstruction to lifting to Spin(N) bundles given by the second
Stiefel-Whitney class wg

2. However, turning on an electric 1-form background, the obstruction
is no longer closed and the theory sums over PSO(N) bundles with

δwg
2 = Bock(Be

2) . (406)

Equivalently, the SO(N) theory now sums over PSO(N) bundles with obstruction 2Be
2+ ew

g
2 to

lifting to Spin(N) bundles, where ewg
2 is a Z4-valued co-chain lift of the second Stiefel-Whitney

class.
Now consider ’t Hooft lines in the SO(N) theory in the equivalence class that carries non-

trivial charge under the Z2 magnetic 1-form symmetry with background Bm
2 . Such a line op-

erator induces a magnetic gauge flux such that
∫

S2

wg
2 = 1 mod 2 , (407)

where S2 is a small 2-sphere linking the line. In the presence of a background field for the
electric 1-form symmetry, the relation (406) implies that such a line operator induces a back-
ground

∫

D3

Bock(Be
2) = 1 mod 2 , (408)
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where D3 with ∂ D3 = S2 is a small three-ball intersecting the ’t Hooft line. This property of
’t Hooft operators charged under the magnetic 1-form symmetry is equivalent to the ’t Hooft
anomaly. It is also possible to proceed in the other direction by showing that Wilson lines
charged under the electric 1-form symmetry induce Bockstein flux for the magnetic 1-form
background.

8.4 Solitonic defects in 5d

In 5d, we may consider codimension four line operators with the property that
∫

D4

P(B2) , (409)

is a non-trivial element of the universal quadratic group Q(Γ (1)) of the 1-form symmetry. We
may then consider two types of anomaly (see e.g. [21,25,57] for field theoretic and geometric
derivations):

• If such line operators can end on local operators charged under an extension of the 0-
form symmetry by Z then we obtain a homomorphism γ : Q(Γ (1))→ ÒZ and a mixed ’t
Hooft anomaly

2πi

∫

w2 ∪ γ(P(B2)) . (410)

• If such line operators are themselves charged under the 1-form symmetry, this deter-
mines a homomorphism γ : Q(Γ (1))→dΓ (1) and cubic ’t Hooft anomaly

2πi

∫

B2 ∪ γ(P(B2)) . (411)

Prominent examples of such anomalies arise in pure gauge theories in 5d, where the 0-
form symmetry is an instanton symmetry and the 1-form symmetry is a center symmetry. An
example is pure SU(N) with CS-level 0, which has a U(1)I instanton symmetry with obstruc-
tion background w2 = c1 mod N and 1-form center symmetry Γ (1) = ZN . The ’t Hooft anomaly
is

2πi
N − 1
2N

∫

(c1 mod N)∪P(B2) . (412)

To see this anomaly directly, we consider codimension-four instanton-particle lines defined by
a non-trivial integral instanton flux on a small ball D4. Such configurations arise dynamically
and are not line defects. In the presence of a background field B2 for the 1-form symmetry the
instanton number has fractional part

N − 1
2N

∫

P(B2) mod 1 , (413)

which cannot be screened by dynamical objects and therefore defines a non-trivial line defect
that induces a background flux for the 1-form symmetry. These line defects may end on local
instanton operators with fractional charge under the U(1)I instanton symmetry and we must
pass to an extension by Z = ZN with obstruction class w2 = c1 mod N and there is a mixed
anomaly as above.

Now introduce a non-trivial even Chern-Simons level k ∈ 2Z, which breaks the 1-form
symmetry to Zℓ with ℓ= gcd(k, N). The fractional part of the instanton flux is now

p
q

∫

P(B2) mod 1 , (414)
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where

p =
N(N − 1)

gcd(2ℓ2, N(N − 1))
, q =

2ℓ2

gcd(2ℓ2, N(N − 1))
, (415)

are co-prime integers. This means we must pass to an extension of the instanton symmetry by
Z = Zq and there is a mixed ’t Hooft anomaly

2πi
p
q

∫

(c1 mod q)∪P(B2) . (416)

In addition there can be a cubic B3 ’t Hooft anomaly for the electric 1-form symmetry. For
example, for SU(N)k in 5d the 1-form symmetry Γ (1) = Zℓ has a cubic anomaly

kN(N − 1)(N − 2)
6ℓ3

∫

B3
2 . (417)

This arises because the instanton-particle line defects may now be charged under the Zℓ 1-form
symmetry. One way to see this is that, due to the Chern-Simons interaction, the local instanton
operators on which instanton-particle lines end now transform under the gauge symmetry and
therefore must form junctions with Wilson lines. The latter are charged under the electric 1-
form symmetry.

Clearly the implications for solitonic defects and their charges are numerous once known
’t Hooft anomalies are viewed in this context.
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