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Abstract

The interplay between quantum theory and general relativity remains one of the main
challenges of modern physics. A renewed interest in the low-energy limit is driven by the
prospect of new experiments that could probe this interface. Here we develop a covari-
ant framework for expressing post-Newtonian corrections to Schrödinger’s equation on
arbitrary gravitational backgrounds based on a 1/c2 expansion of Lorentzian geometry,
where c is the speed of light. Our framework provides a generic coupling prescription of
quantum systems to gravity that is valid in the intermediate regime between Newtonian
gravity and General Relativity, and that retains the focus on geometry. At each order
in 1/c2 this produces a nonrelativistic geometry to which quantum systems at that or-
der couple. By considering the gauge symmetries of both the nonrelativistic geometries
and the 1/c2 expansion of the complex Klein–Gordon field, we devise a prescription that
allows us to derive the Schrödinger equation and its post-Newtonian corrections on a
gravitational background order-by-order in 1/c2. We also demonstrate that these results
can be obtained from a 1/c2 expansion of the complex Klein–Gordon Lagrangian. We il-
lustrate our methods by performing the 1/c2 expansion of the Kerr metric up to O(c−2),
which leads to a special case of the Hartle–Thorne metric. The associated Schrödinger
equation captures novel and potentially measurable effects.
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1 Introduction

General Relativity (GR) is a well-established theory that has been thoroughly tested in many
experiments [1], but all tests beyond the Newtonian limit so far have been limited to the
classical domain. Usually GR is required to describe physics at very large scales, such as in
astrophysical observations or cosmology, but for tests that interface quantum mechanics, lab-
oratory experiments are becoming increasingly relevant [2–7]. Several experimental routes
have recently been proposed to test how general relativity affects the quantum dynamics and
imprints signatures in genuine quantum observables at low energies and in the weak limit
beyond Newtonian gravity [8–14]. However, such tests in which GR interfaces quantum me-
chanics, and for which both theories are required, have not yet been realised as the relevant
scales are still difficult to reach. An exception is the Newtonian limit: one class of experiments
involves matter-wave superpositions in the gravitational field that experience a quantum phase
shift due to the presence of the Newtonian gravitational potential [2,4,15–17]. Another class
of such experiments are bound states in the Newtonian potential of Earth that results in a
potential well and discrete energy levels for the bouncing neutrons [18,19]. For such experi-
ments Newtonian gravity is entirely sufficient and is typically incorporated by the addition of
the Newtonian potential term in the Schrödinger equation.
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With the rapid advent of ever more precise measurements of gravitational effects in quan-
tum mechanical systems, developing a systematic framework that combines the laws of quan-
tum mechanics with General Relativity beyond the Newtonian limit is of major interest. We
stress that this is not a theory of quantum gravity, but rather a way to capture the gravita-
tional effects of the background spacetime on the quantum systems. Among the myriad of
applications of such a framework, let us highlight the effects of gravitational waves on quan-
tum systems [20], post-Newtonian phase shifts [8], entanglement generated by time dilation
in composite quantum systems [9], single-photon phase-shifts due to the Shapiro delay [10],
decoherence of quantum superpositions due to time dilation [11], as well as quantum formu-
lations of the Einstein equivalence principle [21]. While these effects can be described without
a systematic framework, some of them have only recently been predicted due to a new-found
focus on low energy systems, such as composite quantum systems in the presence of gravity
beyond the Newtonian limit [9,11,12,21,22]. This has sparked renewed interest in how low-
energy systems interface gravity [23–27] and how this may be probed. Such results highlight
the interest in a systematic exploration of this limit, as new and overlooked effects can arise
when complex quantum systems start interfacing this regime in laboratory experiments.

The purpose of this paper is to lay down the foundations of a covariant framework that
utilises recent advances in nonrelativistic geometry to construct a quantum mechanical the-
ory that takes into account gravitational effects that arise from fixed GR backgrounds. The
ultimate goal is to devise a coupling prescription that gives rise to the Schrödinger equa-
tion for the centre of mass degrees of freedom of a quantum system coupled to a fixed post-
Newtonian background geometry at any given order in 1/c. For both Newtonian gravity and
GR, such minimal coupling prescriptions are well-known: in the case of GR, minimal coupling
instructs us to replace the Minkowski metric with the background metric η→ g, and to replace
derivatives with covariant derivatives ∂ → ∇. For Newtonian gravity the minimal coupling
to Newton–Cartan geometry follows from coupling the wave function to the metric data and
mass gauge field of Newton–Cartan geometry in a manner that respects all the local symme-
tries of Newton–Cartan geometry (see, e.g., equation (117)). It is therefore natural to ask:
what is the analogue of minimal coupling for quantum mechanics in the intermediate regime
between Newton and Einstein? While a full answer to this question is likely to involve the
1/c expansion of the Poincaré algebra and its representations, this paper considers the1 1/c2

expansion of Lorentzian geometry and complex Klein–Gordon theory to construct a theory of
quantum mechanics on post-Newtonian backgrounds order-by-order in 1/c2.

The time evolution of the quantum mechanical wave function Ψ on R3 is described by the
Schrödinger equation

i
∂Ψ

∂ t
= HΨ , (1)

where we set ħh= 1. The Hamiltonian operator H encodes the kinetic energy and the potential
energy, and the simplest Hamiltonian that describes a particle of mass m in a gravitational
field generated by another body of mass M located at the origin is

H = −
1

2m
∆−

GmM
r

, (2)

where G is Newton’s constant and ∆ is the Laplacian. Quantum systems described by this
Hamiltonian exhibit gravitationally induced phase-shifts that have been measured with neu-
trons [15, 28] and atoms [2, 4, 16, 17, 29]. Such experiments confirm that the Newtonian
interaction can be included in the usual quantum formalism as above, in the same way as

1For simplicity, we consider an expansion in inverse even powers of c. This is a subsector of the solution space
of the full theory, which would involve a 1/c expansion. Not all gravitational backgrounds admit a 1/c2 expansion:
They may contain odd powers.
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any other potential. But one can also obtain the above Hamiltonian starting from a fully rel-
ativistic picture: Kiefer and Singh showed in [30] how the Klein-Gordon equation on curved
space-time leads to the above Hamiltonian in the weak-field and nonrelativistic limit. Building
on these results, Lämmerzahl studied how post-Newtonian corrections and electromagnetic in-
teractions yield a modified Hamiltonian to first order in c−2 in [31]. Such corrections can, for
example, yield modified phase-shifts [8] which are yet to be observed. More recently, compos-
ite quantum systems have also become of interest, where the internal dynamics is affected by
gravity through time-dilation and offers new prospects for experimental studies with quantum
delocalised systems. The relevant coupling can be derived by simply using the mass-energy
equivalence (or sometimes called the mass-defect) in the above mentioned results [9,11,23],
as also confirmed from first-principles derivations [24,25].

The basic lesson of General Relativity is that gravity is geometry: gravitational effects arise
due to the curvature of the underlying spacetime. This remains fundamentally true for nonrel-
ativistic gravity, where characteristic velocities are small compared to the speed of light. This
geometric perspective is not emphasised in the approaches outlined above, but maintaining a
geometric view helps highlight how fundamental GR concepts manifest themselves at the rel-
evant scale and illuminates how unique aspects of GR affect the quantum theory. This, in turn,
leads to a deeper understanding of how GR and Quantum Mechanics interface conceptually.

What does change in the nonrelativistic regime, however, is the notion of geometry. In
the case of General relativity, the underlying geometry is Lorentzian (or pseudo-Riemannian)
geometry. Nonrelativistic gravity, on the other hand, is described by non-Lorentzian geometry
of Newton–Cartan type. Originally developed by Cartan more than a hundred years ago to
provide a geometric framework for Newton’s law of gravity [32, 33], Newton–Cartan geom-
etry has since been generalised by considering the formal expansion of Lorentzian geometry
in inverse powers of the speed of light c [34–39] (see also [40–43]). These more general ge-
ometries exist at any order in c and share the same underlying Galilean geometric structure
(τµ, hµν) consisting of a one-form τµ and a symmetric tensor hµν with signature (0,1, 1,1)
whose kernel is spanned by τµ, i.e., hµντν = 0, where Greek letters represent spacetime in-
dices, µ,ν, · · · = (t, 1, 2, 3). This Galilean structure is what replaces the more familiar metric
gµν and its inverse gµν in Lorentzian geometry. To set up the nonrelativistic expansion, we
split the metric and its inverse according to

gµν = −c2TµTν +Πµν , gµν = −
1
c2

TµTν +Πµν , (3)

which is reminiscent of the “3+ 1 split” of General Relativity [44]. The components Tµ, Tµ,
Πµν and Πµν are then expanded in inverse powers of c, for example,

Tµ = τµ + c−2mµ +O(c−4) ,

Πµν = hµν +O(c−2) ,
(4)

where we recognise the Galilean structure (τµ, hµν) appearing at leading order (LO): The LO
geometry is Galilean [38].

Here, as in the rest of this work, we expand in even inverse powers of c, i.e., we perform
a 1/c2 expansion, for simplicity. As we consider higher order corrections in 1/c2, more and
more subleading fields such as mµ are included in the geometric description, and their trans-
formation properties are governed by the corresponding 1/c2 expansion of the local Lorentz
transformations and diffeomorphisms (which can be formulated in terms of a 1/c2 expansion
of the Poincaré algebra supplemented with appropriate curvature constraints). These higher
order “gauge” fields encode gravitational effects; for example, the time component of mµ is
Newton’s gravitational potential that features in (2).
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The Schrödinger equation (1) is nonrelativistic in the sense discussed above: it is only
valid when the particle moves slowly compared to the speed of light and the energies are
lower than required for particle production. It is well known that it is possible to turn the
Klein–Gordon equation on a Lorentzian background into an equation with the same structure
as the Schrödinger equation in position space L2(R3) by making a WKB-like ansatz for the
Klein–Gordon field and expanding in inverse powers of c [13,27,30,31,45].

Our framework builds on these works and complements them by showing that nonrela-
tivistic geometry provides an organising principle behind these expansions, which were pre-
viously either highly specific [31] or generic [13]. It is interesting to note that the “wave
functions” generated by this procedure are not wave functions in the sense of Born, since their
inner product is not the standard L2(R3) norm. This is because the would-be wave functions
inherit the inner product defined on (the positive-frequency part of) the Klein–Gordon solution
space, and a field redefinition is required for this to reduce to the L2(R3) inner product.

For simplicity, and due to its physical relevance, we take the Galilean structure to be flat,
which in Cartesian coordinates amounts to τµ = δt

µ and hµν = δµi δ
ν
j δ

i j with i = (1, 2,3) a

spatial index. Now, both the metric and the wave function are assumed to be analytic in 1/c2

and hence have well-defined 1/c2 expansions. Including terms that are one order higher in
1/c2 means including three extra fields: one from the wave function and one from Tµ andΠµν,
respectively (cf., Eq. (4)). While this preponderance of fields obscures the underlying struc-
ture, their transformation properties are all inherited from the relativistic theory and follow
from a 1/c2 expansion of the relativistic gauge symmetries. These gauge symmetries allow us
to iteratively write down the Schrödinger equation coupled to a curved post-Newtonian back-
ground at any order in 1/c2 by making sure that all terms in the equation transform correctly
under these gauge symmetries. This requires us to derive expressions for covariant derivatives
at each order in 1/c2, which take on increasingly complicated forms as we go to higher and
higher orders in 1/c2. This allows us, at least in principle, to write down the Schrödinger
equation coupled to an arbitrary post-Newtonian background at any order in 1/c2.

Rather than deriving the form of the Schrödinger equation by starting from the flat space
result (1) and requiring that it transforms correctly under gauge transformations introduced
by coupling to post-Newtonian gravity order-by-order in 1/c2, we may also start directly from
the Klein–Gordon Lagrangian and expand it in powers of 1/c2. At low orders in 1/c2, this was
also considered in [38]. We show that this produces the same Schrödinger equation as our
algebraic/gauge-theoretic prescription.

To illustrate our techniques in a concrete setting, we work out the nonrelativistic expan-
sion of the Kerr metric in Boyer–Lindquist form, where in the process of the 1/c2 expansion
we perform a coordinate transformation from oblate spherical coordinates to ordinary spheri-
cal coordinates. This leads to the Lense–Thirring metric with an additional term proportional
to J2 where J is the angular momentum. This metric is also the Hartle–Thorne approxima-
tion of the Kerr solution. This defines a nonrelativistic geometry to which we may couple
the Schrödinger equation using the formalism that we develop. This gives rise to a quantum
Hamiltonian that takes into account the gravitational effects from both the mass and the ro-
tation. If we set the rotation equal to zero, we get the 1/c2 expansion of the Schwarzschild
metric in Schwarzschild coordinates. These coordinates are related to isotropic coordinates
via a c-dependent coordinate transformation, and we connect our expansion to the 1/c2 ex-
pansion of the Schwarzschild metric in isotropic coordinates, which are the coordinates used
in [31].

The paper is structured as follows. In Section 2, we review and further develop the for-
malism of 1/c2 expansions. We show how the 1/c2 expansion leads to a universal Galilean
structure at LO, and how the subleading fields that appear in the expansions of (4) encode the
information of the Lorentzian spacetime to the given order in 1/c2. We then discuss the gauge
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symmetries of these fields in Section 2.2, where we also consider flat Galilean structures.
In Section 3, we discuss how a WKB-like ansatz for the Klein–Gordon field leads to a

Schrödinger-like equation, which in the limit c → ∞ becomes the free Schrödinger equa-
tion. Using our results for the gauge structure of nonrelativistic geometry, we then develop a
framework in Section 3.1 that allows us to derive the Schrödinger equation on a gravitational
background order by order in 1/c2. In Section 3.4, we show show how to pass from the inner
product of the Klein–Gordon fields to the L2(R3) inner product by performing a background-
dependent field redefinition. We then expand the Klein–Gordon Lagrangian in Section 3.5
and demonstrate that this leads to the same equations of motion as those we obtained using
bottom-up methods in Section 3.1.

We then turn our attention to an explicit example in Section 4. We begin by performing
the 1/c2 expansion of the Kerr metric in Boyer–Lindquist coordinates in Section 4.1, leading
to a generalised version of the Lense–Thirring metric which takes the form of a nonrelativistic
geometry. Having identified the geometric structures, we then apply the formalism we devel-
oped in the first part of the paper to write down the Schrödinger equation on this background
in Section 4.2.

We conclude with a discussion and outlook in Section 5. We have included Appendix A,
which explicitly recovers previous results in the literature using the formalism we develop
here. In this appendix, we furthermore discuss subtleties that arise when performing co-
ordinate transformations that explicitly depend on c. We illustrate this by considering the
Schrödinger equation on a Schwarzschild background expressed in either Schwarzschild or
isotropic coordinates, which are related by a c-dependent rescaling of the radial direction.

2 Nonrelativistic expansion of spacetime geometry

It is well known that the nonrelativistic limit of a relativistic theory may be obtained by ex-
panding in inverse powers of the speed of light c. Rather than coupling to familiar Lorentzian
spacetimes, i.e., pseudo-Riemannian geometries of signature (−1,1, 1,1) in four spacetime di-
mensions, these expanded theories couple to spacetimes that arise by expanding the Lorentzian
spacetimes in 1/c.

In this section, we expand Lorentzian geometry in powers of 1/c2. Such systematic expan-
sions in inverse powers of the speed of light were considered in [34] (see also [41,42]), and,
more recently, an appropriately truncated expansion of the expanded geometry was used to
write down an action for nonrelativistic gravity [35,37,38] (see also the review [39]). These
geometries do not possess a Lorentzian metric, but rather come equipped with a Galilean struc-
ture consisting of a nowhere vanishing corank one “spatial metric” and a nowhere vanishing
“clock” one-form. These geometries generalise Newton–Cartan geometry, which was originally
conceived by Cartan [32,33] (see, e.g., [46, Ch. 12] and [47] for a pedagogical introduction)
to provide a geometric framework in which to formulate Newton’s equations of motion in
a covariant way, just as Lorentzian geometry provides the geometric framework underlying
Einstein’s equation. To distinguish this original Newton–Cartan geometry from the one em-
ployed in the formulation of off-shell nonrelativistic gravity [35, 37, 38], the latter geometry
was dubbed “type II torsional Newton–Cartan geometry”.
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2.1 1/c2 expansion of Lorentzian geometry

Consider a (d + 1)-dimensional2 manifold M equipped with a Lorentzian metric gµν
(µ,ν= 0, 1, . . . , d). We split the metric into timelike and spacelike components as follows

gµν = −c2TµTν +Πµν , (5)

with a similar relation holding for the inverse metric gµν

gµν = −
1
c2

TµTν +Πµν . (6)

The objects Tµ and Πµν and their inverses satisfy the relations

TµΠ
µν = 0= TµΠµν , TµTµ = −1 , δνµ = −TνTµ +ΠµρΠ

ρν . (7)

We emphasise that this still describes a Lorentzian structure: The above is just a reparameteri-
sation of the metric gµν and its inverse. To turn this into a “nonrelativistic” (NR) geometry, we
formally Taylor expand the fields T and Π in powers of 1/c2.3 Note that concrete applications
of this scheme requires the existence of a suitable characteristic velocity vch≪ c such that the
formal 1/c2 expansion turns into an expansion in the dimensionless parameter ε = v2

ch/c
2.

Hence, the geometric fields Tµ and Πµν are expanded as

Tµ = τµ + c−2mµ + c−4Bµ +O(c−6) ,

Πµν = hµν + c−2Φµν +O(c−4) .
(8)

Here at each order new fields are introduced, which will be discussed further below. The field
τµ is known as the clock 1-form and measures the proper time T along any curve γ in the
resulting nonrelativistic geometry

T =
∫

γ

τµd xµ . (9)

When τ∧dτ= 0, in which case τ gives rise to a foliation in terms of hypersurfaces of absolute
simultaneity, the field hµν measures spatial distances on these hypersurfaces when pulled back
to the leaves of the foliation. The condition τ∧dτ= 0 is implied by the Einstein equations for
suitable matter [38]. The expansions of Tµ and Πµν mean that the metric expands according
to [38]

gµν = −c2τµτν + h̄µν + c−2Φ̄µν +O(c−4) , (10)

where

h̄µν = hµν − 2τ(µmν) , (11a)

Φ̄µν = Φµν −mµmν − 2B(µτν) . (11b)

For the inverse structures, we have similar expansions

Tµ = vµ + c−2Xµ + c−4Y µ +O(c−6) ,

Πµν = hµν + c−2Pµν + c−4Qµν + c−6Wµν +O(c−8) .
(12)

The relations (7) imply that the leading order (LO) fields satisfy

vµτµ = −1 , vµhµν = τµhµν = 0 , δµν = −vµτν + hµρhρν . (13)

2While the analysis in this section is performed in general spacetime dimension, we will later specialise to the
physically relevant four-dimensional spacetimes.

3In principle, we should also include odd powers, but we leave them out for simplicity. See [48] for a treatment
of such terms in the context of gravity.
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vµ

Σ1

Σ2

Figure 1: A cartoon of Newton–Cartan geometry. When dτ = 0, there exists an
absolute time t. Then Σ1 and Σ2 are equal-time hypersurfaces which are equipped
with a Riemannian metric, namely hµν restricted to the spatial surface. The inverse
timelike vielbein vµ is an observer-dependent (since it transforms under Galilean
boosts) vector that points away from equal-time hypersurfaces.

Together, the fields (τµ, hµν) define a Galilean structure. As we will see in Section 2.2, these
fields are inert under local tangent space transformations. Subleading fields, such as mµ and
Φµν can be considered as “gauge fields” that are defined on a nonrelativistic spacetime. These
subleading fields are part of the 1/c2 corrected geometry and are dynamical fields in a theory of
nonrelativistic gravity [38]. The causal structure of a Galilean geometry is entirely determined
by the properties of the clock form [49–52]; we will be interested in the case when τ is (locally)
exact in which case there exists a notion of absolute time: That is, the proper time T in (9)
between any two points in the nonrelativistic spacetime is the same regardless of the curve γ
that connects them (see Figure 1). An exact clock form is required to obtain the Newtonian
limit of GR [38]. In fact, we will see in Section 3.5 that, at least in the absence of an external
electromagnetic field, the clock form is determined by the WKB phase that defines the relation
between the Klein–Gordon field and the nonrelativistic wave function. This observation was
also made in [38], where it was shown that various (bosonic) matter field theories, including
electromagnetism, have actions that expand in such a way that no torsion is generated.

The relations (7) furthermore imply that the subleading fields that appear in Tµ and Πµν

are entirely determined by the subleading fields that appear in Tµ and Πµν. Explicitly, we have

Xµ = −vµΦ− hµρvνΦνρ ,

Y µ = vµΦ2 − vµmνh
νρvσΦσρ + vµvνBν + hµρXρ ,

Pµν = 2v(µhν)ρmρ − hµρhνσΦρσ ,

Qµν = vµvνhρσmρmσ + 2v(µhν)ρBρ − 2Φv(µhν)ρmρ

− 2v(µhν)σhρλmρΦλσ + hµρhνσXρσ ,

Wµν = vµvν
�

2hρσBρmσ − 2Φhρσmρmσ − hρλhσκmρmσΦλκ
�

+ vµhνρ X̃ρ + vνhµρ X̃ρ + hµρhνσX̃ρσ ,

(14)
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where we will not need the explicit forms of Xρ, X̃µ, Xρσ, X̃ρσ and where we defined

Φ= −vµmµ . (15)

In deriving these expressions, we have used the fact that the LO relations (13) imply that any
symmetric contravariant 2-tensor Xµν may be decomposed as

Xµν = τρτλvµvνXρλ + hµσhσρhνκhκλXρλ − 2v(µhν)σhσρτλXρλ . (16)

In Section 3.5, we will consider the 1/c2 expansion of actions defined on Lorentzian back-
grounds, which involve the integration measure

p
−gdd+1 x , where g = det(gµν) is the deter-

minant of the metric. For the square root of the determinant of the metric, we write
Æ

−det(g) = cE , (17)

where E expands in powers of 1/c2 as

E = e
�

1+ c−2
�

Φ+ 1
2hµνΦµν
��

+O(c−4) , (18)

where e =
Æ

det(τµτν + hµν) defines the integration measure edd+1 x of the Galilean structure.

2.2 Gauge structure & flat LO geometry

The subleading fields that appear in the expansion of Tµ and Πµν up to (and including) next-
to-leading order (NLO) are τµ, hµν, mµ,Φµν. These data define a type II torsional Newton–
Cartan geometry [35, 38]. In order to determine the metric at order c−2 we need to include
the NNLO field Bµ from the expansion of Tµ. In this section, we work out the transformation
properties of these fields, which will allow us to uniquely fix the structure order-by-order of
the Schrödinger equation coupled to a nonrelativistic geometry up to a given order in 1/c2.
In particular, the local tangent space symmetries of (d + 1)-dimensional Lorentzian geometry
form the Lorentz group SO(d, 1). By expanding the corresponding Lie algebra so(d, 1) in
powers of 1/c2, one obtains, after suitable quotienting, the local tangent space algebra of the
nonrelativistic geometry at that order (see [35,38,53] for more details).

To elucidate the local tangent space structure, it is useful to decompose Πµν that appears
in the decomposition (5) in terms of spatial vielbeine Ea

µ as

Πµν = δabEa
µE

b
ν , (19)

where a, b = 1, . . . , d are spatial tangent space indices. The vielbeine have a 1/c2 expansion
of the form

Ea
µ = ea

µ + c−2πa
µ +O(c−4) , (20)

which means that

hµν = δabea
µeb
ν , Φµν = 2δabea

(µπ
b
ν) , (21)

which implies
vµvνΦµν = 0 . (22)

The metric transforms under diffeomorphisms infinitesimally generated by a vector Ξµ as
δΞgµν = LΞgµν, where L denotes the Lie derivative. The vector Ξµ has a 1/c2 expansion
of the form [38]

Ξµ = ξµ + c−2ζµ + c−4κµ +O(c−6) . (23)
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We are demanding that the diffeomorphisms preserve the 1/c2 expansion properties of the
metric.

The LO diffeomorphism ξµ will behave as diffeomorphisms in the nonrelativistic geometry,
while the subleading diffeomorphisms will not: instead, they admit an interpretation as extra
gauge symmetries in the theory. In addition to diffeomorphisms, the vielbeine Tµ and Ea

µ

transform under local Lorentz transformations (Λa
b,Λa), where Λa

b is a local rotation and Λa

is a local boost, as [38]

δΛTµ = c−2ΛaEa
µ ,

δΛEa
µ = Λ

aTµ +Λ
a

bE b
µ .

(24)

The local rotations and boosts have 1/c2 expansions of the form

Λa = λa + c−2ηa +O(c−4) ,

Λa
b = λ

a
b + c−2σa

b +O(c−4) ,
(25)

where λa
b is a local rotation in the nonrelativistic geometry, while λa is a Galilean boost.

Again, we are assuming that the local Lorentz transformations preserve the 1/c2 expansion
of the vielbeine. The subleading boosts ηa and rotations σa

b act as gauge symmetries on the
NLO fields. Combining all these transformations, we get

δτµ = Lξτµ ,

δhµν = Lξhµν + 2λaea
(µτν) ,

δmµ = Lξmµ +Lζτµ +λaea
µ ,

δΦµν = LξΦµν +Lζhµν + 2λaea
(µmν) + 2λaπ

a
(µτν) + 2ηaea

(µτν) ,

δBµ = LξBµ +Lζmµ +Lκτµ +ηaea
µ +λaπ

a
µ .

(26)

At this stage, it is useful to introduce an inverse vielbein eµa to ea
µ, which satisfies eµaτµ = 0 and

ea
µeµb = δ

a
b. We then have hµν = δabeµa eνb . In terms of the vielbeine ea

µ and eµa , the completeness

relation reads eνa ea
µ − vντµ = δνµ, which we can use to write λaπ

a
µ = λaπ

a
νeνbeb

µ − λaπ
a
νvντµ.

Hence, we find that

ηaea
µ +λaπ

a
µ = ηaea

µ +λaπ
a
νeνbeb

µ −λaπ
a
νvντµ = η̃aea

µ −λρhρσvκΦσκτµ , (27)

where η̃a = ηa +λbπ
b
νeνa and where we used

λρhρσvκΦσκ = λaπ
a
ρvρ , (28)

which follows from (21) and the definition λµ = λaea
µ. We can use this to eliminate πa

µ from
the gauge transformations of Φµν and Bµ in favour of Φµν since it allows us to write

δΦµν = LξΦµν +Lζhµν + 2λaea
(µmν) + 2η̃aea

(µτν) − 2λρhρσvκΦσκτµτν ,

δBµ = LξBµ +Lζmµ +Lκτµ + η̃aea
µ −λρhρσvκΦσκτµ .

(29)

We will assume throughout that the clock one-form τ is closed, i.e.

(dτ)µν = ∂µτν − ∂ντµ = 0 . (30)

Since we will not allow for non-contractible closed timelike loops, this is equivalent to saying
that τ is exact, i.e., that time is absolute. Using that dτ = 0 the transformations in (26) can
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be written as

δτµ = ∂µ (τνξ
ν) , (31a)

δhµν = Lξhµν + 2λ(µτν) , (31b)

δmµ = Lξmµ + ∂µΛ+λµ , (31c)

δΦµν = LξΦµν +Lζhµν + 2λ(µmν) − 2λρhρσvκΦσκτµτν + 2η̃(µτν) , (31d)

δBµ = LξBµ +Lζmµ + ∂µχ + η̃µ −λρhρσvκΦσκτµ , (31e)

where we defined

Λ= τνζ
ν ,

χ = τνκ
ν ,

η̃µ = η̃aea
µ .

(32)

This is the form of the gauge transformations that we will work with in what follows.
We will furthermore assume that the LO geometry described by τµ and hµν is a flat. This

means that we can go to a Cartesian coordinate system in which

hµν = δµi δ
ν
j δ

i j , hµν = δ
i
µδ

j
νδi j , τµ = δ

t
µ , vµ = −δµt , (33)

where we split the spacetime index according to µ= (t, i), where now i, j, k, · · ·= 1, . . . , d are
spatial indices.

The residual gauge transformations of this gauge choice are all the transformations for
which δτµ = 0 and δhµν = 0 where the transformation is given in (31). This means that
ξt = cst, λt = 0, λi = −∂tξ

i and ∂iξ
j + ∂ jξ

i = 0. The latter equation can be solved by hit-
ting it with ∂k, leading to ∂k

�

∂iξ j + ∂ jξi

�

= 0, where ξi = ξi . For the flat spatial geometry,
where indices are raised and lowered by a Kronecker delta, we do not distinguish between
raised and lowered indices. Next, we write down all three cyclic permutations of this equa-
tion by permuting the indices i, j, k. Adding two of these and subtracting the third leads to
∂k

�

∂ jξi − ∂iξ j

�

= 0. Adding this to ∂k

�

∂iξ j + ∂ jξi

�

= 0 leads to ∂k∂ jξi = 0. This equation can
be solved to give

ξi = ai(t) +λi
j(t)x

j . (34)

This solves ∂iξ
j + ∂ jξ

i = 0 provided λi
j = −λ j

i . The residual gauge transformations
are thus time-dependent translations ai(t) and time-dependent rotations λi

j(t). The vec-
tors ξ = ξt∂t + ξi∂i with (ξt ,ξi) as above are Killing vectors in the sense that they obey
Lξτµ = 0= Lξhµν = 0. These Killing vectors form the Coriolis algebra [54].

Omitting the time-dependent rotations, it follows from (31) that the subleading fields for
a flat LO geometry transform as

δmt = ai∂imt +mi∂t a
i + ∂tΛ , (35a)

δmi = a j∂ jmi − ∂t a
i + ∂iΛ , (35b)

δΦi t = a j∂ jΦi t +Φi j∂t a
j + η̃i −mt∂t a

i + ∂tζi , (35c)

δΦi j = ak∂kΦi j −mi∂t a
j −m j∂t a

i + 2∂(iζ j) , (35d)

δBt = ai∂iBt + Bi∂t a
i −Φi t∂t a

i +Λ∂t mt +mt∂tΛ+ ζ
i∂imt +mi∂tζ

i + ∂tχ , (35e)

δBi = a j∂ jBi + η̃i +Λ∂t mi +mt∂iΛ+ ζ
j∂ jmi +m j∂iζ

j , (35f)

where ai only depends on t and where Λ, η̃i , ζi and χ are arbitrary. We note that we can
always set Φi t = 0 by fixing the η̃i gauge transformation which describes a subleading local
boost. The residual gauge transformations have an η̃i that can be solved by setting δΦi t = 0.
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This however makes the transformation of Bi a bit more complicated, and hence we will refrain
from doing this.

These transformations will play a key rôle in the next section. The next ingredient we need
is the notion of a complex scalar field, i.e., the wave function, that is defined on the flat space-
time as described above. This requires that we understand the 1/c2 corrections to the wave
function as well as the transformation properties under diffeomorphisms and subleading dif-
feomorphisms. This allows us to define covariant derivatives acting on the wave function from
which we can build equations of motion that couple the wave function to the 1/c2 expanded
geometry. This will be the subject of the next section.

3 Gravitational corrections in quantum mechanics

It is well known that a complex scalarφKG that obeys the Klein–Gordon equation in Minkowski
space gives rise to a wave function Ψ that satisfies the Schrödinger equation upon making the
decomposition [13,25,27,30,31,45]

φKG = e−imc2 tΨ , (36)

where m is the mass of the complex scalar, which also becomes the mass of the Schrödinger
field in the nonrelativistic quantum mechanics picture. The Galilean absolute time t that
appears in the exponential factor defines the clock form via

τ= d t . (37)

In Minkowski space, the Klein–Gordon equation for a free scalar field reads

ηµν∂µ∂νφKG −m2c2φKG = 0 , (38)

where ηµν = (−c−2,δi j) is the (inverse) Minkowski metric. Using the decomposition (36), the
equation above becomes

i∂tΨ = −
1

2m
∂i∂iΨ +

1
2mc2

∂ 2
t Ψ . (39)

If we expand the field Ψ = ψ(0) + c−2ψ(2) +O(c−4) we obtain the LO and NLO Schrödinger
equations

i∂tψ(0) = −
1

2m
∂i∂iψ(0) , (40)

i∂tψ(2) = −
1

2m
∂i∂iψ(2) +

1
2m
∂ 2

t ψ(0) . (41)

In the rest of this section we will design a coupling prescription that allows us to couple these
equations to a NC geometry plus its 1/c2 correction.

3.1 LO Schrödinger equation

In order to describe modifications to Schrödinger’s equation (40) due to relativistic effects
and gravity, we must include 1/c2 corrections in its formulation. In this section, we develop
a framework that allows us to obtain Schrödinger’s equation using the geometric framework
developed in Section 2. We make the simplifying assumption that the Galilean structure is flat,
cf., (33). As discussed above, to derive the 1/c2 corrections, we assume that

Ψ =ψ(0) + c−2ψ(2) +O(c−4) . (42)
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The Klein–Gordon field φKG transforms under infinitesimal diffeomorphisms generated by Ξµ

(cf., (23)) as a scalar, i.e.,

δφKG = Ξ
µ∂µφKG , (43)

where Ξµ expands as in (23). As we saw in Section 2.2, the residual temporal LO diffeomor-
phisms ξt that preserve the LO Cartesian structure (33) (see also (37) above) are just constant
shifts. In what follows, we take ξt = 0 since this particular transformation will not be useful
when fixing the form of the Schrödinger equation. This means that the decomposition of the
Klein–Gordon field in (36), and its expansion in (42), combined with the transformation (43)
and the expansion (23), lead to

δψ(0) = ai∂iψ(0) − imΛψ(0) ,

δψ(2) = ai∂iψ(2) − imΛψ(2) +Λ∂tψ(0) − imχψ(0) + ζ
i∂iψ(0) ,

(44)

where Λ and χ are defined in (32) and where we used (34). We also used that the global time
t is inert (since we took ξt = 0), and where we omitted the time-dependent rotations λi

j(t)
since they will not be needed in what follows. The transformations of ψ(0) and ψ(2) are of
course such that

φKG = e−imc2 t
�

ψ(0) + c−2ψ(2) +O(c−4)
�

, (45)

transforms like a scalar field under general c-dependent coordinate transformations.
These transformations can also be understood as follows. Under a global time translation

t ′ = t + t0, x ′i = x i we have (cf. (42))

Ψ′(t, x) = eimc2 t0Ψ(t − t0, x) . (46)

If we assume that t0 is small, then to first order in t0 we obtain

δΨ(t, x) = Ψ′(t, x)−Ψ(t, x) = imc2 t0Ψ(t, x)− t0Ψ
′(t, x) . (47)

If we gauge this symmetry by replacing t0 with −Ξt and expand the latter in 1/c2 as follows

Ξt = c−2Λ+ c−4χ +O(c−6) , (48)

we obtain (44) (with ai = 0 = ζi) where we also expanded Ψ in c−2. In the expansion of Ξt

we omitted the LO term ξt since this was also not considered in (44) as this is just a constant
since we are not changing coordinates at LO. What this shows is that the appearance of the
Λ and χ terms in (44) is due to time reparametrisations in GR. Similarly, the presence of ζi

(and ai) is dictated by spatial coordinate transformations in GR. The field ψ(0) transforms
as a complex scalar field with respect to the LO diffeomorphisms and it has a (linear) local
U(1) transformation acting on it whose parameter Λ comes from NLO time reparametrisations
(see [55] for related observations). The U(1)-like transformations with parameters {Λ,χ}will
play an important rôle in the construction of suitable gauge covariant derivatives, which allow
for a natural formulation of Schrödinger’s equation coupled to the 1/c2 expanded geometries
described in Section 2.

The Schrödinger equation forψ(0) can be formulated as Oψ(0) = 0 where O is an operator
that does not depend on ψ(0). The object Oψ(0) (without setting it to zero) should transform
like ψ(0). We will denote Oψ(0) by “LO Eq.”, i.e., the leading order equation, and since this
should transform like ψ(0) we demand that

δ(LO Eq.) = ai∂i(LO Eq.)− imΛ(LO Eq.) . (49)
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The LO Schrödinger equation should contain (40). In other words, we must construct an
object X that enters the LO equation as

LO Eq.= i∂tψ(0) +
1

2m
∂i∂iψ(0) + X , (50)

in such a way that (49) holds.
In order to construct this X , it is useful to introduce a gauge covariant derivative Dµ that

acts on the LO wave function ψ(0) as

Dµψ(0) := ∂µψ(0) + immµψ(0) . (51)

The combination Dµψ(0) transforms as

δΛDµψ(0) = −imΛDµψ(0) , (52a)

δaDtψ(0) = ai∂i(Dtψ(0)) + (∂t a
i)Diψ(0) , (52b)

δaDiψ(0) = a j∂ j(Diψ(0))− imψ(0)∂t a
i , (52c)

where we used equations (35a), (35b) and (44). By the δa transformation we mean all the
ai-dependent terms in the transformations of (35a), (35b) and (44). We note that the ai-
dependent terms have two origins: one is from Lie derivatives with respect to residual LO
diffeomorphisms acting on the gauge field mµ and the other is from the residual Galilean
boosts with parameter λt = 0, λi = −∂t a

i . When we say the derivative Dµ is covariant we
mean here with respect to the Λ gauge transformation.

We also need the double spatial covariant derivative

DiD jψ(0) = ∂iD jψ(0) + immiD jψ(0) , (53)

which transforms as

δΛDiD jψ(0) = −imΛDiD jψ(0) , (54a)

δaDiD jψ(0) = ak∂k(DiD jψ(0))− 2im∂t a( jDi)ψ(0) . (54b)

The usefulness of the covariant derivative (51) stems from the property that it is constructed
precisely such that if we replace all ordinary derivatives in (40) with covariant derivatives, we
automatically make sure that the LO equation transforms covariantly underΛ transformations.
Thus, the equation

LO Eq.= iDtψ(0) +
k

2m
DiDiψ(0) , (55)

where k is a real constant that will be fixed shortly, transforms correctly under Λ-
transformations. We must also check that the LO equation transforms correctly under time-
dependent translations ai (that preserve the frame choice hi t = 0 which is affected by a com-
pensating local Galilean boost transformation with λi = −∂t a

i), and using (52b) and (54b),
we find that the LO equation (55) transforms as

δa(LO Eq.) = a j∂ j(LO Eq.) , (56)

provided we take k = 1, in accordance with (49). This means that X in (50) is given by

X = −mmtψ(0) +
i
2

miDiψ(0) +
i
2
∂i(miψ(0)) . (57)

The LO equation (55) is defined up to the addition of any terms that by themselves transform
as in (49). The minimal choice is to set these terms to zero.
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3.2 NLO Schrödinger equation

The NLO equation is an equation for the NLO wave function ψ(2) of the form Oψ(2) + Õψ(0)
where O and Õ are operators independent of ψ(0) and ψ(2). By (44) we would like this to
transform as

δ(NLO Eq.) = ai∂i(NLO Eq.)− imΛ(NLO Eq.)

+Λ∂t(LO Eq.)− imχ(LO Eq.) + ζi∂i(LO Eq.) .
(58)

The first line corresponds to homogeneous terms and the second line to inhomogeneous terms.
Adopting the same approach as for the LO equation, we can guarantee the correct transfor-
mation properties under the gauge transformations {Λ,χ} if we express the NLO equation
in terms of a covariant derivative that transforms in the same way as ψ(2) with respect to the
{Λ,χ} transformations. By combining the transformations (35a)–(35f) with (44), we find that

Dtψ(2) = ∂tψ(2) + immtψ(2) + imBtψ(0) −mtDtψ(0) ,

Diψ(2) = ∂iψ(2) + immiψ(2) + im (Bi −Φi t)ψ(0) −miDtψ(0) ,
(59)

transform correctly, i.e.,

δgaugeDtψ(2) = −imΛDtψ(2) +Λ∂t(Dtψ(0))− imχDtψ(0) ,

δgaugeDiψ(2) = −imΛDiψ(2) +Λ∂t(Diψ(0))− imχDiψ(0) ,
(60)

where δgauge = δΛ + δχ denotes the combined gauge transformation. The reason we take
Bi −Φi t in Diψ(2) is because we need the Bi to ensure that we have the right transformations
underΛ andχ, but Bi shifts under the transformation with parameter η̃i . However, so doesΦi t ,
and therefore the difference is invariant under η̃i . Since no other fields transform under η̃i this
is the only way to ensure that the expressions built from these covariant derivatives will be inert
under this transformation. Furthermore, since Φi t is inert under both Λ and χ we do not spoil
these transformation properties of the covariant derivative. The η̃i transformations admit an
interpretation as subleading local Lorentz boosts; more generally, the LO local Lorentz boosts
are Galilean transformations with parameter λi and the subleading corrections are described
by η̃i . We need all equations of motion to be invariant with respect to these LO and subleading
boosts. The double spatial covariant derivative is

DiD jψ(2) = ∂i

�

D jψ(2)
�

+ immiD jψ(2) + im (Bi −Φi t)D jψ(0) −miDt(D jψ(0)) , (61)

which transforms as

δgauge

�

DiD jψ(2)
�

= −imΛDiD jψ(2) +Λ∂t

�

DiD jψ(0)
�

− imχDiD jψ(0) . (62)

This means that we can tentatively write the NLO equation as

NLO Eq.= iDtψ(2) +
k̃

2m
DiDiψ(2) + Y , (63)

where k̃ is a real constant and where Y represents any additional terms that ensure that (58)
will hold. In order to produce the correct inhomogeneous terms in the second line of (58) that
involve Λ and χ, we need to set k̃ = 1. However, we will find it instructive to delay setting k̃
equal to unity. The Y term should be inert under the χ transformation and transform under
the Λ transformation as δΛY = −imΛY . Furthermore, the Y term must be such that the whole
equation transforms correctly under the ζi and ai transformations as well.

How do we find such an expression for Y in (63)? If we look at (35a)–(35f), we see that
the Bt , Bi and Φi t gauge fields also transform under the ζi gauge transformation. These are
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subleading diffeomorphisms. With respect to these transformations equation (63) transforms
as

δζ

�

iDtψ(2) +
k̃

2m
DiDiψ(2) + Y

�

= ζ j∂ j

�

iDtψ(0) +
k̃

2m
DiDiψ(0)

�

+ i(1− k̃)∂tζ
iDiψ(0)

+
k̃

2m

��

∂iζ j + ∂ jζi

�

DiD jψ(0) + ∂i∂iζ jD jψ(0) − im∂t∂iζiψ(0)
�

+δζY .

(64)

If we choose k̃ = 1 then the first term on the right hand side is equal to the LO equation
(which is the last term in (58)) and furthermore we can get rid of the second term on the right
hand side. There is thus a cancellation between terms coming from the Dtψ(2) term and terms
coming from the DiDiψ(2) term that involve ∂tζ

i . This cancellation is important because there
seems to be no terms that can be added to Y that would be able to cancel a term proportional
to ∂tζ

iDiψ(0). We wanted to highlight this, but from now on we will set k̃ = 1. The remaining
terms can be cancelled by choosing Y to be

Y =
1

2m

�

−Φi jDiD jψ(0) −
�

∂iΦi j −
1
2
∂ jΦii

�

D jψ(0) + im
1
2
∂tΦiiψ(0)

�

+ Ỹ , (65)

where Ỹ is inert under the ζi and χ gauge transformations and transforms as follows under
the Λ gauge transformations

δΛỸ = −imΛỸ . (66)

Since Φi j is inert under Λ and χ gauge transformations we have

δgaugeY = −imΛY . (67)

It then follows that for this choice of Y and with k̃ = 1 the combination (63) transforms like
in (58) for all gauge transformations. It is left to check that this combination also transforms
correctly under the ai transformation and to fix Ỹ .

Before we fix Ỹ we mention that we could have added to equation (61) the term−χk
i jDkψ(2)

where χk
i j is given by

χk
i j =

1
2

�

∂iΦ jk + ∂ jΦik − ∂kΦi j

�

. (68)

Such a term is reminiscent of a Levi–Civita connection but for the NLO diffeomorphisms gen-
erated by ζi . The second term in parentheses in the expression for Y is in fact just χ i

i j .

Since the Ỹ term is inert under χ and ζi and transforms covariantly under Λ it can only
be built out of covariant derivatives of ψ(0). Demanding that the NLO equation transforms
correctly under the ai transformations we find

Ỹ =
1

2m
Mi tDiψ(0) −

1
2m

DtDtψ(0) + Ŷ , (69)

where we defined

Mµν = 2∂[µmν] , (70)

as the field strength of mµ. This field strength also arises as the commutator of two covariant
derivatives (51) acting on the LO wave function

[Dµ,Dν]ψ(0) = imMµνψ(0) . (71)
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The term Ŷ in equation (69) is any term that is inert under χ and ζi transformations and that
transforms as

δŶ = ai∂i Ŷ − imΛŶ , (72)

under the Λ and ai transformations. The Ŷ is not needed to make the NLO equation transform
correctly and so the minimal choice is to set Ŷ = 0, which we will do in what follows. The
final NLO equation is thus

NLO Eq.= iDtψ(2) +
1

2m
DiDiψ(2) −

1
2m

�

Φi jDiD jψ(0) +
�

∂iΦi j −
1
2
∂ jΦii

�

D jψ(0)

�

+ i
1
4
∂tΦiiψ(0) +

1
2m

Mi tDiψ(0) −
1

2m
DtDtψ(0) .

(73)

The first two terms and the last term in this equation follow directly from (41) by replacing
ordinary derivatives by covariant ones. The remaining terms then follow from covariance with
respect to the ζi and residual ξi transformations.

3.3 From Cartesian to spherical coordinates

We have chosen to work in Cartesian coordinates to keep things simple. On the other extreme
one could work in an arbitrary coordinate system and study how the LO and NLO Schrödinger
equations transforms under LO diffeomorphisms. This will be done in Section 3.5, but only at
the level of the Lagrangian. It is often convenient to work with different LO coordinate systems,
in particular spherical coordinates. The latter would arise naturally when looking at 1/c2

expansions of the Schwarzschild geometry in Schwarzschild coordinates. In this section we
discuss how we can transform the previous Cartesian results for the LO and NLO Schrödinger
equations to an arbitrary new set of spatial coordinates. At the end of the section, we provide
an explicit example by introducing spherical coordinates which we will use in Section 4.

Our derivation of the Schrödinger equation above involved Cartesian coordinates for the
flat LO geometry. In this section, we change coordinates from spatial Cartesian coordinates
(x , y, z) to an arbitrary set of spatial coordinates; note that the absolute time t is unaffected by
this change of coordinates. Denoting the Cartesian coordinates by x1 = x , x2 = y and x3 = z
and the new coordinates by x ′i = (x ′1, x ′2, x ′3), the relation between the components of the
flat space metric in Cartesian coordinates hi j(x) = δi j and the components of the metric in the
primed coordinates h′i j(x

′) is

δi jd x id x j = h′i jd x ′id x ′ j . (74)

Unlike in Cartesian coordinates, the indices i, j, . . . in the primed coordinates are raised and
lowered with h′i j (the inverse of h′i j) and h′i j . We write the square root of the determinant of
the metric in the primed coordinates as

p

h′ :=
Ç

det(h′i j(x
′)) . (75)

Changing coordinates, the Laplacian becomes

∂i∂iψ(0) =
1
p

h′
∂ ′i (
p

h′h′i j∂ ′jψ
′
(0)) = h′i j∇′i∇

′
jψ
′
(0) =:∆ψ′(0) , (76)

where ψ(0)(t, x) =ψ′(0)(t, x ′), and where ∇′i is the Levi-Civita connection in the primed coor-

dinates with ∂ ′i =
∂
∂ x ′i . We also have that

∂imi =
1
p

h′
∂ ′i

�p

h′m′i
�

=∇′im
′i = h′i j∇′im

′
j , (77)
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where m′i obeys mid x i = m′id x ′i and where m′i = h′i jm′j . This means that the LO equation
with flat LO geometry in the primed coordinates becomes

LO Eq.= iD′tψ
′
(0) +

1
2m

h′i jD′iD
′
jψ
′
(0) , (78)

where

D′tψ
′
(0) = ∂tψ

′
(0) + imm′tψ

′
(0) ,

D′iψ
′
(0) = ∂

′
i ψ
′
(0) + imm′iψ

′
(0) ,

h′i jD′iD
′
jψ
′
(0) =∆ψ

′
(0) + imψ′(0)h

′i j∇′im
′
j + 2ih′i jm′i∂

′
jψ
′
(0) −m2h′i jm′im

′
jψ
′
(0)

= h′i j
�

∇′iD
′
jψ
′
(0) + imm′iD

′
jψ
′
(0)

�

,

(79)

and where m′t(t, x ′) = mt(t, x). Following the same line of reasoning, we can write the NLO
equation in primed coordinates as follows

NLO Eq.= iD′tψ
′
(2) +

1
2m

h′i jD′iD
′
jψ
′
(2)

−
1

2m
h′i jh′kl
�

Φ′ikD
′
jD
′
lψ
′
(0) +
�

∇′iΦ
′
jk −

1
2
∇′kΦ

′
i j

�

D′lψ
′
(0)

�

+
i
4

h′i j∂tΦ
′
i jψ
′
(0) +

1
2m

h′i j M ′i tD
′
jψ
′
(0) −

1
2m

D′tD
′
tψ
′
(0) ,

(80)

where

D′tψ
′
(2) = ∂tψ

′
(2) + imm′tψ

′
(2) + imB′tψ

′
(0) −m′tD

′
tψ
′
(0) ,

D′iψ
′
(2) = ∂

′
i ψ
′
(2) + imm′iψ

′
(2) + im
�

B′i −Φ
′
i t

�

ψ′(0) −m′iD
′
tψ
′
(0) ,

D′iD
′
jψ
′
(2) =∇

′
i

�

D′jψ
′
(2)

�

+ imm′iD
′
jψ
′
(2) + im
�

B′i −Φ
′
i t

�

D′jψ
′
(0) −m′iD

′
t(D
′
jψ
′
(0)) ,

(81)

and whereψ′(2)(t, x ′)=ψ(2)(t, x), B′t(t, x ′)=Bt(t, x) and Φ′i j(t, x ′)d x ′id x ′ j=Φi j(t, x)d x id x j .
Equations (78) and (81) are valid in any coordinate system that we choose to represent a
flat 3-dimensional Euclidean space. In the remainder of this section, we choose the primed
coordinate to be spherical coordinates (r,θ ,φ) and give explicit formulae that will be useful
in Section 4. In that case, the relation between the coordinate systems is

x = r sinθ cosφ ,

y = r sinθ sinφ ,

z = r cosθ .

(82)

We again emphasise that the absolute time t is unaffected by this change of coordinates. The
components of the metric in spherical coordinates are h′i j(x

′) = diag(1, r2, r2 sin2 θ ), which

means that the measure becomes
p

h′ = r2 sinθ .

3.4 The inner product & field redefinitions

The wave function Ψ defined in (36) comes with a non-standard inner product up to a given
order in 1/c2, and we must perform a field redefinition to bring it to the standard L2 form
which allows for the usual probabilistic interpretation of the norm of the wave function. More
precisely, the inner product 〈Ψ|Ψ〉 descends from the Klein–Gordon inner product, as we will
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now show. Assuming that the Lorentzian spacetime (M , g), in which the Klein–Gordon the-
ory is defined, is globally hyperbolic and stationary, the Klein–Gordon inner product of two
different positive frequency solutions ϕKG and ψKG is given by (see, e.g., [56])

〈ϕKG|ψKG〉= ic−1

∫

Σ

dd x
p
γnµ
�

ψKG∂µϕ
⋆
KG −ϕ

⋆
KG∂µψKG

�

= ic−1

∫

t=cst

dd x
p

−g gµν∂ν t
�

ψKG∂µϕ
⋆
KG −ϕ

⋆
KG∂µψKG

�

,

(83)

where Σ is a Cauchy hypersurface defined by t = cst with outward pointing timelike unit

normal vector nµ =
�

−g t t
�−1/2

gµν∂ν t, while γµν is the induced metric on the hypersurface
Σ whose determinant satisfies

p
γnµ =

p
−g gµν∂ν t. As in Eq. (36), we make the following

decomposition of the Klein–Gordon fields4

ϕKG = e−imc2 tΦ , ψKG = e−imc2 tΨ , (84)

which means that the inner product becomes

〈ϕKG|ψKG〉= −2mc

∫

t=cst

dd x
p

−g gµντµτνΨΦ
⋆

+ ic−1

∫

t=cst

dd x
p

−g gµντν
�

Ψ∂µΦ
⋆ −Φ⋆∂µΨ
�

.

(85)

Using the relations

p

−g = ce
�

1+ c−2
�

Φ+
1
2

hµνΦµν

�

+O(c−4)
�

, (86a)

gµντµτν = −c−2 + 2c−4
�

Φ+
1
2

hµνmµmν

�

+O(c−6) , (86b)

gµντν = c−2 (vµ − hµνmν) +O(c−4) , (86c)

Φ= ϕ(0) + c−2ϕ(2) +O(c−4) , (86d)

Ψ =ψ(0) + c−2ψ(2) +O(c−4) , (86e)

we obtain

〈ϕKG|ψKG〉= 2m

∫

t=cst

dd x e
�

ψ(0)ϕ
⋆
(0) + c−2
�

ψ(0)ϕ
⋆
(2) +ψ(2)ϕ

⋆
(0) +

1
2

hµνΦµνϕ
⋆
(0)ψ(0)

+
i

2m

�

ψ(0) (v
µ − hµνmν)Dµϕ⋆(0) −ϕ

⋆
(0) (v

µ − hµνmν)Dµψ(0)
��

+O(c−4)
�

,

(87)

where Dµψ(0) is defined in equation (51). For a flat LO geometry in Cartesian coordinates (33)
the inner product (87) becomes

〈ϕKG|ψKG〉= 2m

∫

t=cst

dd x
�

ψ(0)ϕ
⋆
(0) + c−2ψ(0)

�

ϕ⋆(2) −
i

2m
Dtϕ

⋆
(0) −

i
2m

miDiϕ
⋆
(0) +

1
4
Φiiϕ

⋆
(0)

�

+ c−2ϕ⋆(0)

�

ψ(2) +
i

2m
Dtψ(0) +

i
2m

miDiψ(0) +
1
4
Φiiψ(0)

�

+O(c−4)
�

. (88)

4Note that we use the same symbol for the field Φ involved in the redefinition (84) as we do for the subleading
geometric field Φµν that features in (8), which always appears with indices. We hope this will not cause confusion.
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We note that this inner product (87) is Galilean boost invariant. It is straightforward to see
that the inner product is invariant under the χ transformations. To see that the inner product
is invariant under the ζi transformations we observe that the terms at order c−2 transform into
a total derivative. We assume that the boundary terms arising from applying Stokes’ theorem
vanish. To see the invariance under the Λ transformation we have to integrate by parts the
transformation of the mi terms (which couple to the spatial part of the U(1) Noether current)
and use the LO equation of motion.

We would like the inner product to take the standard L2(Rd) form

〈ϕKG|ψKG〉= 2m

∫

t=cst

dd x
�

ψ(0)ϕ
⋆
(0) + c−2
�

ψ(0)ϕ̂
⋆
(2) +ϕ

⋆
(0)ψ̂(2)

�

+O(c−4)
�

= 2m

∫

t=cst

dd x
�

ψ(0) + c−2ψ̂(2) +O(c−4)
��

ϕ⋆(0) + c−2ϕ̂⋆(2) +O(c−4)
�

.

(89)

This can be achieved if we define

ψ̂(2) =ψ(2)+
i

2m
Dtψ(0)+

i
2m

miDiψ(0)+
1
4
Φiiψ(0)+iXψ(0)+X i∂iϕ(0)+

1
2
ϕ(0)∂iX

i+. . . , (90)

where X and X i are arbitrary real objects (that drop out of the inner product when integrating
by parts) and where the dots denote terms proportional to the LO equation of motion. There
are no obvious choices for the X and X i terms that would make the redefinition simpler.

With X i = X = 0, the redefinition of the NLO wave function takes the form

ψ̂(2) =ψ(2) +
i

2m
Dtψ(0) +

i
2m

miDiψ(0) +
1
4
Φiiψ(0) =:ψ(2) + Ôψ(0) , (91)

where we defined the operator

Ô =
i

2m
Dt +

i
2m

miDi +
1
4
Φii . (92)

We find that ψ̂(2) transforms as follows under the gauge transformations {Λ,χ,ζi}

δχψ̂(2) = −imχψ(0) , (93a)

δΛψ̂(2) = −imΛψ̂(2) +Λ∂tψ(0) +
i

2m
∂iΛDiψ(0) , (93b)

δζψ̂(2) = ζ
i∂iψ(0) +

1
2
ψ(0)∂iζ

i . (93c)

We will next define a gauge covariant derivative D̂µ that acts on ψ̂(2) so that D̂µψ̂(2) has the
same transformation properties under Λ and χ as ψ̂(2). A convenient choice is to define the
covariant derivative in the same way as we defined ψ̂(2) in (91), i.e.,5

D̂µψ̂(2) :=Dµψ(2) + ÔDµψ(0) . (94)

More explicitly we have

D̂tψ̂(2) = ∂tψ̂(2) + immtψ̂(2) + imBtψ(0) −mtDtψ(0) −
i

2m
∂t miDiψ(0)

+
1
2

mi Mt iψ(0) −
1
4
∂tΦiiψ(0) , (95)

D̂iψ̂(2) = ∂iψ̂(2) + immiψ̂(2) + im (Bi −Φi t)ψ(0) −miDtψ(0) −
i

2m
∂im jD jψ(0)

+
1
2

m j Mi jψ(0) +
1
2

Mi tψ(0) −
1
4
∂iΦ j jψ(0) , (96)

5We emphasise that this choice is not unique. There are other combinations that transform correctly
under {Λ,χ}; for example, a more “minimal” covariant derivative, which doesn’t involve Φµν, is given by
D̃µψ̂(2) = D̂µψ̂(2) +

1
4∂µΦiiψ(0) +

i
2m [Dµ,Dt]ψ(0).
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where it is useful to note that
�

Dµ ,Dν
�

on any number of covariant derivatives acting on
ψ(0) is equal to imMµν times that same set of covariant derivatives acting on ψ(0). It can be
explicitly verified that

δχD̂µψ̂(2) = δχDµψ(2) = −imχDµψ(0) , (97a)

δΛD̂µψ̂(2) = −imΛD̂µψ̂(2) +Λ∂tDµψ(0) +
i

2m
∂iΛDiDµψ(0) . (97b)

We also need an expression for the double contracted spatial covariant derivative, and we can
use the same trick for this, namely we define

D̂iD̂iψ̂(2) =DiDiψ(2) + Ô(DiDiψ(0)) . (98)

Explicitly, this is given by

D̂iD̂iψ̂(2) = ∂i

�

D̂iψ̂(2)
�

+ immiD̂iψ̂(2) + im (Bi −Φi t)Diψ(0) −miDtDiψ(0)

−
i

2m
∂im jD jDiψ(0) +

1
2

m j Mi jDiψ(0) +
1
2

Mi tDiψ(0)

−
1
4
∂iΦ j jDiψ(0) . (99)

This quantity transforms as

δχ
�

D̂iD̂iψ̂(2)
�

= δχ
�

DiDiψ(2)
�

= −imχDiDiψ(0) , (100a)

δΛ
�

D̂iD̂iψ̂(2)
�

= −imΛD̂iD̂iψ̂(2) +Λ∂tDiDiψ(0) +
i

2m
∂iΛDiD jD jψ(0) . (100b)

We can thus recast the NLO equation (73) in terms of ψ̂(2) entering the standard inner prod-
uct (89) as

NLO Eq.= iD̂tψ̂(2) +
1

2m
D̂iD̂iψ̂(2) −

1
2m

�

Φi jDiD jψ(0) +
�

∂iΦi j −
1
2
∂ jΦii

�

D jψ(0)

�

+
i
4
∂tΦiiψ(0) +

1
2m

Mi tDiψ(0) −
1

2m
DtDtψ(0) − Ô(LO Eq.) ,

(101)

where we have used that the terms on which the Ô operator acts precisely combine to give the
LO equation of motion. Thus, when imposing the LO equation of motion, the NLO equation
written in terms of the redefined fields (91) assumes the same functional form as the NLO
equation written in terms of the original fields (73).

As a last remark, we note that the NLO equation involving the wave function with the
standard inner product of nonrelativistic Quantum Mechanics (101) in spherical coordinates
takes the form

NLO Eq.= iD̂′tψ̂
′
(2) +

1
2m

h′i jD̂′iD̂
′
jψ̂
′
(2)

−
1

2m
h′i jh′kl
�

Φ′ikD
′
jD
′
lψ
′
(0) +
�

∇′iΦ
′
jk −

1
2
∇′kΦ

′
i j

�

D′lψ
′
(0)

�

+
i
4

h′i j∂tΦ
′
i jψ
′
(0) +

1
2m

h′i j M ′i tD
′
jψ
′
(0) −

1
2m

D′tD
′
tψ
′
(0) − Ô

′
(LO Eq.) ,

(102)
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where

D̂′tψ̂
′
(2) = ∂tψ̂

′
(2) + imm′tψ̂

′
(2) + imB′tψ

′
(0) −m′tD

′
tψ
′
(0) −

i
2m

h′i j∂t m
′
iD
′
jψ
′
(0)

+
1
2

h′i jm′i M
′
t jψ
′
(0) −

1
4

h′i j∂tΦ
′
i jψ
′
(0) , (103)

h′i jD̂′iD̂
′
jψ̂
′
(2) = h′i j∇′i
�

D̂′jψ̂
′
(2)

�

+ imh′i jm′iD̂
′
jψ̂
′
(2) + imh′i j
�

B′i −Φ
′
i t

�

D′jψ
′
(0)

− h′i jm′iD
′
tD
′
jψ
′
(0) −

i
2m

h′ilh′ jk∇′im
′
jD
′
kD
′
lψ
′
(0) +

1
2

h′i jh′kl m′i M
′
k jD
′
lψ
′
(0)

+
1
2

h′i j M ′i tD
′
jψ
′
(0) −

1
4

h′i jh′kl∇′iΦ
′
klD
′
jψ
′
(0) , (104)

and where

Ô
′
=

i
2m

D′t +
i

2m
h′i jm′iD

′
j +

1
4

h′i jΦ′i j . (105)

In writing the above, we used the notation introduced in Section 3.3 where a prime indicates
that we are using spherical coordinates.

3.5 The 1/c2 expansion of the Klein–Gordon Lagrangian

In this section, we expand the Lagrangian for a complex scalar field in powers of 1/c2. This
leads to an off-shell formulation of the theory we developed above. Furthermore, we will no
longer restrict to a flat LO geometry, and we will see that the theory can only couple on-shell
to LO geometries that admit a notion of absolute time, i.e., ∂[µτν] = 0 (this was also observed
in [38]). For other examples of theories obtained by 1/c2 expansions as well as more details
about the general framework of 1/c2 expansions, we refer to [35,36,38,39,53,57].

The Klein–Gordon Lagrangian for a complex scalar field is

L= −c−1p−g
�

gµν∂µφKG∂νφ
⋆
KG +m2c2φKGφ

⋆
KG

�

. (106)

Just like in (36), we expand the Klein–Gordon field according to

φKG = eic2θ(0)Ψ , (107)

and we will see that θ(0) is related to absolute time. The wave function Ψ admits an expansion
of the form

Ψ =ψ(0) + c−2ψ(2) +O(c−4) . (108)

Using equations (6) and (17) for the inverse metric and the metric determinant, we can write
the Lagrangian as

L= −c4EΨΨ⋆Πµν∂µθ(0)∂νθ(0)
+ c2E
�

ΨΨ⋆(Tµ∂µθ(0))
2 −m2ΨΨ⋆ + iΠµν∂µθ(0)(Ψ

⋆∂νΨ −Ψ∂νΨ⋆)
�

+ c0E
�

−Πµν∂µΨ∂νΨ⋆ + iTµ∂µθ(0)T
ν(Ψ∂νΨ

⋆ −Ψ⋆∂νΨ)
�

+ c−2ETµTν∂µΨ∂νΨ
⋆ .

(109)

Using furthermore the expansions (12) and (18), the Klein–Gordon Lagrangian expands as

L= c4LO(c4) + c2LO(c2) +LLO + c−2LNLO +O(c−4) , (110)
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where the Lagrangians at orders c4 and c2 are given by

LO(c4) = −eψ(0)ψ
⋆
(0)h

µν∂µθ(0)∂νθ(0) , (111)

LO(c2) = −e(ψ(0)ψ
⋆
(2) +ψ(2)ψ

⋆
(0))h

µν∂µθ(0)∂νθ(0) − eψ(0)ψ
⋆
(0)h

µν∂µθ(0)∂νθ(0)

− eψ(0)ψ
⋆
(0)(2v(µhν)ρmρ − hµρhνσΦρσ)∂µθ(0)∂νθ(0) + eψ(0)ψ

⋆
(0)(v

µ∂µθ(0))
2

+ ehµν∂µθ(0)(ψ
⋆
(0)∂νψ(0) −ψ(0)∂νψ

⋆
(0))− em2ψ(0)ψ

⋆
(0) . (112)

The Lagrangian at order c4 gives the equation

hµν∂νθ(0) = 0 , (113)

when varying6 ψ(0). Upon imposing this equation, the Lagrangian LO(c4) vanishes identically.
This same equation is imposed by ψ(2) in LO(c2), and combined with the equation from ψ(0),
we find

vµ∂µθ(0) = m , (114)

and the LagrangianLO(c2) again vanishes identically when imposing these equations. Together,
Eqs. (113) and (114) imply that

τµ = −
1
m
∂µθ(0) . (115)

This equation tells us that this theory can only be defined on backgrounds with a notion of
absolute time, which in an appropriate gauge is given by t = −θ(0)/m.7

Going forward, we will impose this condition at the level of the Lagrangian. Had we not
done so, they would have been reproduced as equations of motion for subleading components
of Ψ. This means that the LO Lagrangian, which appears at order c0, can be written as

LLO = iem(vµ − hµνmν)(ψ(0)∂µψ
⋆
(0) −ψ

⋆
(0)∂µψ(0))− ehµν∂µψ(0)∂νψ

⋆
(0)

− 2em2ψ(0)ψ
⋆
(0)

�

Φ+
1
2

hµνmµmν

�

, (116)

which is the Schrödinger model of [58] (see also [59]). We can rewrite this in terms of covari-
ant derivatives as follows

LLO = iemvµ
�

ψ(0)(Dµψ(0))⋆ −ψ⋆(0)Dµψ(0)
�

− ehµνDµψ(0)(Dνψ(0))⋆ . (117)

The equation of motion obtained by varying with respect to ψ⋆(0) is

−ivµDµψ(0) +
iK
2
ψ(0) = −

1
2m

e−1Dµ(ehµνDνψ(0)) , (118)

where

K = −e−1∂µ(evµ) = −
1
2

hµν$vhµν , (119)

with the “extrinsic curvature”8 given by Kµν = −
1
2$vhµν, where $ denotes the Lie derivative.

This extrinsic curvature is symmetric and spatial, i.e.,

vµKµν = 0 . (120)

6The equation of motion for θ(0) is 0 = e−1∂µ(eψ(0)ψ⋆(0)h
µν∂νθ(0)), and is identically satisfied when using the

on-shell condition (113) for θ(0).
7In the presence of an electromagnetic field, it is possible to relax the requirement of having an absolute time;

see [38] for more details.
8Note that calling this an extrinsic curvature is a slight (although standard) abuse of terminology. In particular,

Kµν is not invariant under Galilean boosts.
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When the LO geometry is flat, the LO equation of motion (118) reduces to (55) if we choose
Cartesian coordinates.

Using equations (12), (14), and (18) for the expansions of the inverse metric and the metric
determinant, we can obtain the NLO Lagrangian from (109) in which we set ∂µθ(0) = −mτµ.
The result can be written as

LNLO = L̃NLO +
�

Φ+ 1
2hρσΦρσ
�

LLO , (121)

where

L̃NLO = iem
�

ψ(0)v
µ
�

Dµψ(2)
�⋆ −ψ⋆(0)v

µDµψ(2) +ψ(2)vµ(Dµψ(0))⋆ −ψ⋆(2)v
µDµψ(0)
�

− ehµν
�

(Dµψ(0))⋆Dνψ(2) +
�

Dµψ(2)
�⋆Dνψ(0)
�

+ ehµρhνσΦρσ(Dµψ(0))⋆Dνψ(0) + evµvνDµψ(0)(Dνψ(0))⋆ .

(122)

In writing these expressions, we used the covariant derivative with a spacetime index acting
on ψ(2) as

Dµψ(2) = ∂µψ(2) + immµψ(2) + im
�

Bµ + vνΦµν
�

ψ(0) +mµvρDρψ(0) , (123)

which in flat space reproduces (59), and where we remind the reader that Φt t = 0 as follows
from equation (22). We emphasise that we cannot just use L̃NLO to compute the NLO equation
of motion since that would miss terms arising from integrating by parts the second term in
(121) when varying ψ(0) and ψ⋆(0).

When the LO geometry is flat, the NLO Lagrangian takes the form

LNLO =− im
�

ψ(0)
�

Dtψ(2)
�⋆ −ψ⋆(0)Dtψ(2) +ψ(2)(Dtψ(0))

⋆ −ψ⋆(2)Dtψ(0)

�

− (Diψ(0))
⋆Diψ(2) −
�

Diψ(2)
�⋆Diψ(0) +Dtψ(0)(Dtψ(0))

⋆

+Φi j

�

Diψ(0)
�⋆D jψ(0)

+
�

Φ+
1
2
Φ j j

�

�

−im(ψ(0)(Dtψ(0))
⋆ −ψ⋆(0)Dtψ(0))−Diψ(0)(Diψ(0))

⋆
�

,

(124)

and the variation with respect to ψ⋆(0) produces the NLO equation plus a contribution propor-

tional to the LO equation of motion9

0=
�

Φ+
1
2
Φ j j

��

iDtψ(0) +
1

2m
DiDiψ(0)

�

+NLO Eq. , (125)

where NLO Eq. is given in (73).
The final step in our derivation of the NLO Schrödinger equation involves identifying the

wave function with the standard inner product of nonrelativistic Quantum Mechanics as ex-
plained in Section 3.4. Generalising the result (91) to curved space is straightforward and
produces the relation

ψ̂(2) =ψ(2) −
i

2m
v̂µDµψ(0) +

1
4

hµνΦµνψ(0) =:ψ(2) + Ôψ(0) , (126)

with

Ô = −
i

2m
v̂µDµ +

1
4

hµνΦµν . (127)

This step can be implemented at the level of the NLO Lagrangian, which we discuss further in
Appendix A.

9The LO equation arises as the equation of motion for ψ⋆(2) in the NLO Lagrangian.
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4 Quantum mechanics in a Kerr background

In this section, we study the Schrödinger equation on a nonrelativistic approximation of the
Kerr background. By expanding the Kerr metric in powers of 1/c2, we obtain a “generalised”
Lense–Thirring metric that is valid beyond the regime of slow rotations. By identifying the
appropriate nonrelativistic geometry, we can apply the formalism developed in Section 3 to
write down the LO and NLO Schrödinger equation on this background.

4.1 From Kerr to Lense–Thirring

The Kerr metric in Boyer–Lindquist coordinates can be thought of as a deformation of
Minkowski spacetime written in terms of oblate spherical coordinates

x =
p

R2 + a2 sinΘ cosφ , (128a)

y =
p

R2 + a2 sinΘ sinφ , (128b)

z = R cosΘ , (128c)

where a is a fixed length. The flat metric in oblate spherical coordinates is

ds2
flat = −c2d t2 +

Σ

R2 + a2
dR2 +ΣdΘ2 + (R2 + a2) sin2Θ dφ2 , (129)

where
Σ= R2 + a2 cos2Θ . (130)

We can write the Kerr metric as

ds2
Kerr = ds2

flat +
ΣrsR

∆(R2 + a2)
dR2 +

rsR
Σ

�

−cd t + a sin2Θ dφ
�2

, (131)

where

rs =
2GM

c2
, (132a)

a =
J

cM
, (132b)

∆= R2 + a2 − rsR , (132c)

where J and M are the angular momentum and mass, respectively, of the Kerr background.
We assume J and M to be independent of c (see [48] for alternative choices). This implies
that the metric can be expanded in c−2, i.e., without using odd powers of c−1. The definition
of the oblate spherical coordinates (128) implies the following relation10

x2 + y2

R2 + a2
+

z2

R2
= 1 . (134)

Hence, surfaces in R3 of constant R form oblate spheroids. The solution to this equation has a
1/c2 expansion of the form

R2 = r2 −
J2

M2

x2 + y2

r2c2
+O(c−4) = r2 −

J2

M2

sin2 θ

c2
+O(c−4) , (135)

10It also implies that
x2 + y2

sin2Θ
−

z2

cos2Θ
= a2 , (133)

which shows that surfaces of constant Θ are hyperboloids of revolution. For a = 0 this becomes the equation of a
cone.
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where r2 = x2+ y2+z2 is the radial coordinate of a spherical coordinate system, and where we
used that Θ = θ +O(c2). The relation between the Cartesian coordinate z and the spherical
oblate angular coordinate Θ in (128c) combined with the expansion of R in (135) tells us that

Θ = cos−1
� z

R

�

= cos−1

�

z
r
+

z sin2 θ

2M2r3c2
+O(c−4)

�

= θ −
J2 cosθ sinθ

2M2r2c2
+O(c−4) , (136)

where θ = cos−1(z/r) is the polar angle coordinate of a spherical coordinate system. Making
factors of c explicit in (131) and expanding to order c−2, using our results above, we get

ds2
Kerr = −
�

1−
2GM
rc2

+
2GJ2

M r3c4
P2(cosθ )

�

c2d t2 +
�

1+
2GM
rc2

�

dr2

+ r2dθ2 + r2 sin2 θ dφ2 −
4GJ
rc2

sin2 θ d tdφ +O(c−4) ,
(137)

where

P2(x) =
1
2
(3x2 − 1) , (138)

is the second order Legendre polynomial. We remark that this metric is the 1/c expansion
of the Hartle–Thorne metric [60] specified to the case of the Kerr black hole. It would be
interesting to consider 1/c expansions of the general Hartle–Thorne metric which is an ap-
proximate solution outside a rotating object. In addition to mass and angular momentum, the
Hartle–Thorne metric contains a quadrupole moment as a free parameter.

If we assume that the black hole rotates slowly, J ≪ 1, so that we can ignore the J2 term,
the above reduces to the Lense–Thirring metric. Setting J = 0 lands us on the 1/c2 expansion
of the Schwarzschild metric, which we consider in Section A.2. The geometric data of the
nonrelativistic geometry is given by

τµd xµ = d t ,

hµνd xµd xν = dr2 + r2dθ2 + r2 sin2 θdφ2 ,

mµd xµ = −
GM

r
d t ,

Φµνd xµd xν =
2GM

r
dr2 ,

Bµd xµ =
GJ2

M r3
P2(cosθ ) d t +

2GJ
r

sin2 θ dφ −
G2M2

2r2
d t .

(139)

Thus, the LO geometry is flat in spherical coordinates (cf., Section 3.3). All the rotational
aspects (terms proportional to J) are captured by the Bµ gauge field. This means that the LO
Schrödinger equation does not notice the rotation.

4.2 The LO and NLO Schrödinger equation on a Kerr background

On a Kerr background, where the geometric structure up to NLO is given by (139), the LO
equation of motion (78) becomes

i∂tψ(0) = −
1

2m
∆ψ(0) − G

mM
r
ψ(0) . (140)

The NLO equation (102) becomes

i∂tψ̂(2) = −
1

2m
∆ψ̂(2) −

GmM
r
ψ̂(2) +

GM
mr
∂ 2

r ψ(0)

+
mGJ2

M r3
P2(cosθ )ψ(0) −

mG2M2

2r2
ψ(0) − 2iGJ r−3∂φψ(0)

−
GM

r
iDtψ(0) +

1
2m

DtDtψ(0) +
GM
2m

ψ(0)∆
�

r−1
�

,

(141)
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where we dropped the prime we used earlier for fields in spherical coordinates. Using the LO
equation of motion (140), we can write the double covariant time derivative as

1
2m

DtDtψ(0) = −
1

8m3
∆2ψ(0) −

GM
4m

ψ(0)∆(r
−1) +

GM
2mr2

∂rψ(0) . (142)

Hence, by using the LO equation (140), we can write the NLO equation as

i∂tψ̂(2) = −
1

2m
∆ψ̂(2) −

GmM
r
ψ̂(2) +

mGJ2P2(cosθ )
M r3

ψ(0)

−
mG2M2

2r2
ψ(0) −

2GJ
r3

i∂φψ(0) −
1

8m3
∆2ψ(0)

+
GM
4m
∆(r−1)ψ(0) +

GM
rm
∂ 2

r ψ(0) +
GM

2mr2
∂rψ(0) +

GM
2mr

∆ψ(0) .

(143)

This allows us to read off the effective Hamiltonian governing the evolution of the wave func-
tion in a “generalised Lense–Thirring” background. We define the total NLO wave function to
be

Ψ̂ =ψ(0) + c−2ψ̂(2) , (144)

and adding the LO and NLO equations as

LO Eq.+ c−2NLO Eq. , (145)

we find that

i∂t Ψ̂ = HΨ̂ +O(c−4) , (146)

with

H = −
1

2m
∆−

GmM
r
+

GM
4mc2

∆(r−1) +
mGJ2P2(cosθ )

Mc2r3

−
mG2M2

2c2r2
−

2GJ
c2r3

i∂φ −
1

8c2m3
∆2

+
GM
c2m

�

1
r
∂ 2

r +
1

2r2
∂r +

1
2r
∆

�

,

(147)

the Hamiltonian.
The inner product is

〈φ|ψ〉=
∫

drdθdφr2 sinθφ⋆ψ . (148)

An operator O is Hermitian if 〈φ|Oψ〉= 〈Oφ|ψ〉 for all φ,ψ. Any O of the form

O = f (r)∂ 2
r +
�

∂r f +
2
r

f
�

∂r , (149)

where f is any radial function is Hermitian (ignoring issues with boundary terms or fall off
conditions for the fields φ,ψ). The Laplacian in spherical coordinates is

∆= ∂ 2
r +

2
r
∂r +

1
r2
∆S2 , (150)

where ∆S2 is the Laplacian on the unit 2-sphere.
Using the above we can see that the radial part of the last three terms in (147) conspire,

as indeed they must since the KG theory is Hermitian, to form the Hermitian combination

3
2r

�

∂ 2
r +

1
r
∂r

�

. (151)
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We thus have

H = −
1

2m
∆−

GmM
r
+

GM
4mc2

∆(r−1) +
mGJ2P2(cosθ )

Mc2r3

−
mG2M2

2c2r2
−

2GJ
c2r3

i∂φ −
1

8c2m3
∆2

+
GM
c2m

�

3
2r

�

∂ 2
r +

1
r
∂r

�

+
1

2r3
∆S2

�

.

(152)

If we denote by L⃗ the Hermitian angular momentum operator with components Lx , L y , Lz then
we have

Lz = −i∂φ , ∆S2 = L2 = L⃗ · L⃗ . (153)

Finally, if we define, as usual, the momentum pi = −i∂i in Cartesian coordinates then we get

H =
p2

2m
−

GmM
r
+

GM
4mc2

∆(r−1)−
p4

8c2m3
+

GM
2mc2r3

�

−3x i pi x
j p j + L2
�

−
mG2M2

2c2r2
+

2GJ
c2r3

Lz +
mGJ2P2(cosθ )

Mc2r3
,

(154)

where we wrote r−1
�

∂ 2
r +

1
r ∂r

�

= r−3r∂r(r∂r) as −r−3 x i pi x
j p j . This is our final result for the

Hamiltonian of a spinless particle in a Kerr background up to order c−2. The J Lz coupling in
the Hamiltonian has also appeared in, e.g., Refs. [61–63] which consider the Lense–Thirring
effect in quantum mechanics. The result above includes further novel effects of order J2 which
may potentially be measurable.

5 Discussion & outlook

We conclude with a discussion of our results and an overview of future directions. We have
presented a general framework based on symmetries for deriving the Schrödinger equation on
a given gravitational background that can in principle be applied at any order in 1/c2 and for
a wide range of metrics. This relied on recent advances in the description of nonrelativistic
geometry using covariant 1/c2 expansions, which allowed us to use symmetry to uniquely fix
the form of the equations (up to non-minimal terms). Complementary to this “bottom-up”
perspective, we showed that it is also possible to get these equations by 1/c2 expanding the
Klein–Gordon Lagrangian. We then used this formalism to write down the Schrödinger equa-
tion on a Kerr background up to O(c−2), which led to a generalised Lense–Thirring geometry
and to a novel Hamiltonian on this geometry.

With the ultimate goal of deriving a general minimal coupling prescription that allows us to
write down the Schrödinger equation on a post-Newtonian geometry at arbitrary order in 1/c,
this work paves the way for many interesting avenues of research. A general minimal coupling
prescription should, in particular, make it immediately clear what the covariant derivatives at
any given order are, and so likely requires us to understand better the representation theory
of the 1/c2 expansion of the Poincaré algebra. An immediate generalisation of the methods
we develop would be to include odd powers; i.e., to consider a 1/c expansion rather than a
1/c2 expansion. This will lead to a different geometric structure compared to Section 2, and
would allow for the expansion of a much more general class of metrics, including metrics in
Kerr–Schild form and metrics that include retardation effects such as pp waves. Moreover,
the inclusion of electromagnetism and spin would allow us to apply our formalism to a much
broader class of physical systems.

In this work, we have only discussed single particles. It would be very interesting to extend
the formalism to describe composite systems. It was recently shown that when going beyond
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particles that are fully described by a single parameter m, new effects can arise. For example,
systems that keep track of time, and are in quantum superpositions that are delocalised over a
region in the gravitational field, will experience time-dilation induced entanglement between
the internal and external degrees of freedom [9,22]. This can result in new effects that can be
probed in experiments, such as decoherence of superpositions or dephasing of clocks [9, 11,
26]. Importantly, such effects only arise within the quantum framework when post-Newtonian
corrections are included, and thus their observation amounts to a test of GR in an entirely new
domain. A general geometric formalism that includes such effects will be able to highlight what
aspects of the theory are probed and how to design novel tests that go beyond the current
paradigms. The methods presented in this paper are ideally suited to isolate fundamental
principles that can become accessible in such experiments, and to pave the way for novel
experimental designs to probe the elusive interplay between quantum systems and general
relativity.
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A Schrödinger’s equation on Schwarzschild backgrounds

In this appendix, we perform the 1/c2 expansion of the Schwarzschild metric in isotropic
coordinates and use the methods of Section 3 to write down the Schrödinger equation, which
we then match with the results of [31].

A.1 Schwarzschild metric in isotropic coordiantes

In four dimensions, the Schwarzschild metric in isotropic coordinates was first written down
by Eddington [64] and reads

ds2 = −

�

1− GM
2rc2

�2

�

1+ GM
2rc2

�2 c2d t2 +
�

1+
GM
2rc2

�4

δi jd x id x j , (A.1)

where r2 = x2 + y2 + z2. Expanding this to O(c−2), we get

ds2 = −
�

1−
2GM
rc2

+
2G2M2

r2c4

�

c2d t2 +
�

1+
2GM
rc2

�

δi jd x id x j +O(c−4) . (A.2)
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This allows us to read off the fields that describe the geometric data

τµd xµ = d t , (A.3a)

mµd xµ = Φd t , (A.3b)

hµνd xµd xν = δi jd x id x j , (A.3c)

Φµνd xµd xν = −2Φδi jd x id x j , (A.3d)

Bµd xµ =
1
2
Φ2d t , (A.3e)

where, for simplicity, we defined

Φ := −
GM

r
. (A.4)

The LO equation (55) is

iDtψ(0) = −
1

2m
∂ 2ψ(0) , (A.5)

which we can also explicitly write as

i∂tψ(0) = −
1

2m
∂ 2ψ(0) +mΦψ(0) = −

1
2m
∂ 2ψ(0) −

GmM
r
ψ(0) . (A.6)

The NLO equation (73) on this background becomes

iDtψ(2) = −
1

2m
∂ 2ψ(2) +

1
2m

DtDtψ(0) −
Φ

m
∂ 2ψ(0) , (A.7)

where

Dtψ(2) = ∂tψ(0) + imΦψ(2) +
i
2

mΦ2ψ(0) −ΦDtψ(0) . (A.8)

Rewriting the NLO equation (A.7) using the LO equation (A.5), we obtain

i∂tψ(2) = −
1

2m
∂ 2ψ(2) +mΦψ(2) −

3Φ
2m
∂ 2ψ(0) −

1
8m3

∂ 4ψ(0)

+
m
2
Φ2ψ(0) +

∂ 2Φ

4m
ψ(0) +

1
2m
∂iΦ∂iψ(0) ,

(A.9)

where we used that

1
2m

DtDtψ(0) = −
1

8m3
∂ 4ψ(0) +

1
4m
(∂ 2Φ)ψ(0) +

1
2m
∂iΦ∂iψ(0) . (A.10)

We can also write this in terms of the wave function ψ̂(2). For Schwarzschild in isotropic
coordinates, the operator Ô given in (127) becomes

Ô =
i

2m
Dt −

3
2
Φ=

i
2m
∂tψ(0) − 2Φψ(0) . (A.11)

Hence, the NLO equation written in terms of the wavefunction ψ̂(2) in (101) takes the form

i∂tψ̂(2) = −
1

2m
∂ 2ψ̂(2) +mΦψ̂(2) +

1
2m

DtDtψ(0) + iΦDtψ(0)

+
mΦ2

2
ψ(0) −

∂ 2Φ

m
ψ(0) −

Φ

m
∂ 2ψ(0) −

2
m
∂iΦ∂iψ(0) + Ô (LO Eq.) ,

(A.12)
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and imposing the LO equation produces the equation

i∂tψ̂(2) = −
1

2m
∂ 2ψ̂(2) +mΦψ̂(2) −

1
8m3

∂ 4ψ(0)

+
mΦ2

2
ψ(0) −

3∂ 2Φ

4m
ψ(0) −

3Φ
2m
∂ 2ψ(0) −

3
2m
∂iΦ∂iψ(0) .

(A.13)

Defining Ψ =ψ(0) + c−2ψ(2) and adding the LO and NLO equations as

LO Eq.+ c−2NLO Eq. , (A.14)

we find that the equations of motion above can be combined to give

i∂tΨ = −
1

2m
∂ 2Ψ +mΦΨ −

3Φ
2mc2

∂ 2Ψ −
1

8m3c2
∂ 4Ψ

+
m

2c2
Φ2Ψ +

∂ 2Φ

4mc2
Ψ +

1
2mc2

∂iΦ∂iΨ .
(A.15)

In [31], Lämmerzahl writes down the 1/c2 expansion of the Klein–Gordon equation on a back-
ground given by the parameterised post–Newtonian (PPN) metric. The dictionary between
Schwarzschild in isotropic coordinates and the PPN metric is

β = γ= 1 , U = −Φ , (A.16)

in which case (A.15) matches Eq. (8) of [31].
Doing the same for (A.13) and defining Ψ̂ =ψ(0) + c−2ψ̂(2) gives

i∂t Ψ̂ = −
1

2m
∂ 2Ψ̂ +mΦΨ̂ −

1
8c2m3

∂ 4Ψ̂

+
mΦ2

2c2
Ψ̂ −

3∂ 2Φ

4mc2
Ψ̂ −

3Φ
2mc2

∂ 2Ψ̂ −
3

2mc2
∂iΦ∂iΨ̂ +O(c−4) ,

(A.17)

which agrees with Eq. (16) in [31].

A.2 From Kerr to Schwarzschild

At this stage, one may wonder how to obtain (A.17) from the results of Section 4, where we
expanded the Kerr metric in Boyer–Lindquist coordinates. Setting a = 0 in the expression
for the Kerr metric (131) gives the Schwarzschild metric in Schwarzschild coordinates, which
are related to the isotropic coordinates employed in Section A.1 by a c-dependent coordinate
transformations. In general, c-dependent coordinate transformations mix LO terms with NLO
terms. Moreover, although the wave function Ψ that descends directly from the Klein–Gordon
field, cf., (36), transforms as a scalar under c-dependent spatial coordinate transformations,
the same is not true for the wave function with the standard inner product of nonrelativistic
Quantum Mechanics Ψ̂. This is because the operator Ô defined in (127) receives 1/c2 correc-
tions. The fact that Ψ̂ transforms differently under c-dependent coordinate transformations is
already evident from the different transformations of ψ(2) and ψ̂(2) under infinitesimal sub-
leading diffeomorphisms ζ in (44) and (93c), respectively. In this appendix, we illustrate this
using two well-known coordinate systems for the Schwarzschild metric: Schwarzschild coor-
dinates and isotropic coordinates, and ultimately show how this allows us to match with our
results for Kerr.
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A.2.1 Schwarzschild coordinates

The Schwarzschild metric in Schwarzschild coordinates (t, r,θ ,φ) is

ds2
Schw = −
�

1−
2GM
c2r

�

c2d t2 +
�

1−
2GM
c2r

�−1

dr2 + r2ds2
S2 , (A.18)

where ds2
S2 = dθ2+ sin2(θ )dφ2 is the metric on the unit two-sphere and M is the mass of the

black hole. Setting J = 0 in (139) gives gives the following geometric data up to 1/c2

τµd xµ = d t ,

hµνd xµd xν = dr2 + r2dθ2 + r2 sin2 θdφ2 ,

mµd xµ = −
GM

r
d t ,

Φµνd xµd xν =
2GM

r
dr2 ,

Bµd xµ = −
G2M2

2r2
d t .

(A.19)

The Schwarzschild coordinates are related to the isotropic coordinates used in Appendix A,
which we here denote by (t, r ′,θ ,φ) or, in Cartesian form, (t, x , y, z) by the c-dependent
coordinate transformation [64]

r =
�

1+
GM

2c2r ′

�2

r ′ , (A.20)

where
r ′2 = x2 + y2 + z2 , (A.21)

with

x = r ′ sinθ cosφ ,

y = r ′ sinθ sinφ ,

z = r ′ cosθ .

(A.22)

Note in particular that time t and the angles (θ ,φ) in Schwarzschild coordinates are the same
as the time and angles in isotropic coordinates when expressed in spherical form.

A.2.2 Schrödinger Lagrangian on Schwarzschild backgrounds

The comparison between the NLO theory in Schwarzschild (which are unprimed) and isotropic
(which carry a prime) coordinates is perhaps most transparent at the level of the Lagrangians
that we worked out in Section 3.5. When going from Schwarzschild coordinates to isotropic
coordinates, the c-dependent rescaling of the radial direction (A.20) implies that the NLO La-
grangian in isotropic coordinates L′Iso picks up a contribution from the LO Lagrangian (cf., the
expansion (110)). While the wave functionΨ defined in (36) is a scalar under spatial reparam-
eterisations, and as such transforms as Ψ′(r ′) = Ψ(r) (omitting the remaining coordinates),
i.e.,

ψ(0)(r) =ψ
′
(0)(r

′) , and ψ(2)(r) =ψ
′
(2)(r

′) , (A.23)

the same is not true for the wave functions with the standard inner product of nonrelativistic
Quantum Mechanics that we discussed in Section 3.4. Defining

ψ̂Schw(2) :=ψ(2) + ÔSchwψ(0) , and ψ̂′Iso(2) :=ψ′(2) + Ô′Isoψ
′
(0) , (A.24)
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the expansion of the inner product in (87) that led to the definition of Ô implies that when
changing coordinates from Schwarzschild to isotropic, O′Iso will pick up 1/c2 corrections. In
other words, Ô, and by extension Ψ̂, do not transform as scalars usually do, i.e., as in (A.23).
Taking this into account results in a commutative diagram of NLO theories

LSchw,NLO LIso,NLO

L̂Schw,NLO L̂Iso,NLO .

′

ÔSchw Ô′Iso

′

Lagrangians decorated with a hat are expressed in terms of the wave functions with
the standard inner product of nonrelativistic Quantum Mechanics in (A.24) which are im-
plemented by the operator Ô in (127), while the prime denotes changing coordinates from
Schwarzschild to isotropic. In what follows, we will explicitly demonstrate that this diagram
commutes.

Starting with Schwarzschild coordinates, the relevant derivatives that appear in the NLO
Lagrangian (121) are

Dtψ(2) = ∂tψ(2) + imΦψ(2) −
3imΦ2

2
ψ(0) −Φ∂tψ(0) ,

Diψ(2) = ∂iψ(2) ,
(A.25)

where, for convenience, we defined

Φ= −
GM

r
. (A.26)

This means that the NLO Lagrangian (121) becomes

LNLO = −
p

g g i j
�

∂iψ
⋆
(0)∂ jψ(2) + ∂iψ

⋆
(2)∂ jψ(0)

�

− 2
p

gΦ∂rψ
⋆
(0)∂rψ(0)

+
p

g∂tψ(0)∂tψ
⋆
(0) + 2im

p
gΦ
�

ψ(0)∂tψ
⋆
(0) −ψ

⋆
(0)∂tψ(0)

�

+ im
p

g
�

ψ⋆(0)∂tψ(2) −ψ(0)∂tψ
⋆
(2) +ψ

⋆
(2)∂tψ(0) −ψ(2)∂tψ

⋆
(0)

�

− 2
p

gm2Φ
�

ψ(2)ψ
⋆
(0) +ψ

⋆
(2)ψ(0)

�

+ 4
p

gm2Φ2ψ(0)ψ
⋆
(0) ,

(A.27)

where gi j is the flat metric in spherical coordinates (cf., Section 3.3) satisfying
p

g = r2 sinθ .
Note that in Schwarzschild coordinates, we have that

Φ+
1
2

hρσΦρσ = 0 , (A.28)

which means that the term involving the LO Lagrangian in (121) is zero. In other words, we
have that

L̃NLO = LNLO , (A.29)

in Schwarzschild coordinates.
On the other hand, in isotropic (spherical) coordinates, which we denote with a prime, the

relevant derivatives are

Dtψ
′
(2) = ∂tψ

′
(2) + imΦ′ψ′(2) −

im
2
Φ′2ψ′(0) −Φ

′∂tψ
′
(0) ,

Di′ψ
′
(2) = ∂i′ψ

′
(2) ,

(A.30)

where
Φ′ = −

GM
r ′

. (A.31)
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In contradistinction to what happens in Schwarzschild coordinates, the term involving the LO
Lagrangian is no longer zero and instead depends on the number of spatial dimensions. In
three spatial dimensions, we get

Φ′ +
1
2

h′ρσΦ′ρσ = −2Φ′ . (A.32)

This means that the NLO Lagrangian now becomes

L′Iso,NLO = −
p

g ′g ′i j
�

∂ ′i ψ
′⋆
(0)∂
′
jψ
′
(2) + ∂

′
i ψ
′⋆
(2)∂
′
jψ
′
(0)

�

− 2
p

g ′Φ′g ′i j∂ ′i ψ
′⋆
(0)∂
′
jψ
′
(0)

+
p

g ′∂ ′tψ
′
(0)∂
′
tψ
′⋆
(0) + 2im
p

g ′Φ′
�

ψ′(0)∂
′
tψ
′⋆
(0) −ψ

′⋆
(0)∂
′
tψ
′
(0)

�

+ 2
p

g ′m2Φ′2ψ′(0)ψ
′⋆
(0)

− 2
p

g ′m2Φ′
�

ψ′(2)ψ
′⋆
(0) +ψ

′⋆
(2)ψ

′
(0)

�

+ im
p

g ′
�

ψ′⋆(0)∂
′
tψ
′
(2) −ψ

′
(0)∂
′
tψ
′⋆
(2)

�

+ i
p

g ′m
�

ψ′⋆(2)∂
′
tψ
′
(0) −ψ

′
(2)∂
′
tψ
′⋆
(0)

�

− 2Φ′L′LO

= −
p

g ′g ′i j
�

∂ ′i ψ
′⋆
(0)∂
′
jψ
′
(2) + ∂

′
i ψ
′⋆
(2)∂
′
jψ
′
(0)

�

+
p

g ′∂ ′tψ
′
(0)∂
′
tψ
′⋆
(0) + 4im
p

g ′Φ′
�

ψ′(0)∂tψ
′⋆
(0) −ψ

′⋆
(0)∂
′
tψ
′
(0)

�

+ 6
p

g ′m2Φ′2ψ′(0)ψ
′⋆
(0)

− 2
p

g ′m2Φ′
�

ψ′(2)ψ
′⋆
(0) +ψ

′⋆
(2)ψ

′
(0)

�

+ im
p

g ′
�

ψ′⋆(0)∂
′
tψ
′
(2) −ψ

′
(0)∂
′
tψ
′⋆
(2)

�

+ i
p

g ′m
�

ψ′⋆(2)∂
′
tψ
′
(0) −ψ

′
(2)∂
′
tψ
′⋆
(0)

�

,

(A.33)

where we used that

L′Iso,LO = im
p

g ′
�

ψ′⋆(0)∂
′
tψ
′
(0) −ψ

′
(0)∂
′
tψ
′⋆
(0)

�

− 2
p

g ′m2Φ′ψ(0)ψ
′⋆
(0) −
p

g ′g ′i j∂ ′i ψ
′
(0)∂
′
jψ
′⋆
(0) .

(A.34)
We now want to explicitly change coordinates from Schwarzschild to isotropic. Using the
relation between the radial directions in Schwarzschild and Isotropic coordinates (A.20), we
find that

Φ(r) = Φ′(r ′) +
Φ′2(r ′)

c2
+O(c−4) ,

p
g =
p

g ′
�

1−
2Φ′(r ′)

c2

�

+O(c−4) ,

∂r = ∂
′
r ′ +O(c−4) .

(A.35)

The fact that both ψ(0) and ψ(2) transform as scalars under c-dependent coordinate trans-
formations (A.23) implies that the only contributions to the NLO Lagrangian when changing
coordinates from Schwarzschild to isotropic come from the LO Lagrangian (A.34). Explicitly,
changing coordinates leads to

L′Schw,LO = L′Iso,LO + c−2
�

− 2im
p

g ′Φ′
�

ψ′⋆(0)∂
′
tψ
′
(0) −ψ

′
(0)∂
′
tψ
′⋆
(0)

�

+ 2
p

g ′m2Φ′2ψ′(0)ψ
′⋆
(0) + 2
p

g ′Φ′∂ ′r ′ψ
′
(0)∂
′
r ′ψ
′⋆
(0)

�

,
(A.36)

where the terms at order c−2 will contribute to the NLO Lagrangian: adding these terms to
L′Schw,NLO precisely leads to L′Iso,NLO in (A.33).

Now we turn our attention to L̂Schw,NLO and L̂′Iso,NLO, which are expressed in terms of the
wave functions with the standard inner product of nonrelativistic Quantum Mechanics (A.24).
In Schwarzschild coordinates, the operator ÔSchw is given by

ÔSchw =
i

2m
∂t −Φ , (A.37)
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and hence the NLO Lagrangian (A.27) can be expressed in terms of ψ̂Schw(2) as

L̂Schw,NLO = −
p

g g i j
�

∂iψ
⋆
(0)∂ jψ̂Schw(2) + ∂iψ̂

⋆
Schw(2)∂ jψ(0)

�

− 2
p

gΦ∂rψ
⋆
(0)∂rψ(0)

−pg∂tψ(0)∂tψ
⋆
(0) −
p

g g i j
�

2Φ∂iψ(0)∂ jψ
⋆
(0) −

i
m
∂iψ

⋆
(0)∂ j∂tψ(0)

�

−pg∂rΦ(ψ(0)∂rψ
⋆
(0) +ψ

⋆
(0)∂rψ(0))− 2

p
gm2Φ
�

ψ̂Schw(2)ψ
⋆
(0) + ψ̂

⋆
Schw(2)ψ(0)

�

+ im
p

g
�

ψ⋆(0)∂tψ̂Schw(2) −ψ(0)∂tψ̂
⋆
Schw(2) + ψ̂

⋆
Schw(2)∂tψ(0) − ψ̂Schw(2)∂tψ

⋆
(0)

�

.

(A.38)

In isotropic coordinates, the expression for the operator Ô′Iso is different:

Ô′Iso =
i

2m
∂ ′t − 2Φ′ . (A.39)

The origin of this is, as we alluded to above, the fact that the wave functions with the standard
inner product of nonrelativistic Quantum Mechanics transform in a non-standard way under
c-dependent coordinate transformations. To see why, consider the inner product (87) that
allowed us to read off the operator Ô. In Schwarzschild coordinates, we can write this inner
product as

〈ϕKG|ψKG〉= 2m

∫

Σ

d3 x
p

g
�

ψ(0)ϕ
⋆
(0)+c−2ψ(0)(ÔSchwϕ(2))

⋆+c−2ϕ⋆(0)ÔSchwψ(2)+· · ·
�

, (A.40)

where ÔSchw is defined in (A.37), andΣ is a constant-time hypersurface. Changing coordinates
from Schwarzschild to isotropic, we get an extra contribution at order c−2




ϕ′KG|ψ
′
KG

�

= 2m

∫

t=cst

d3 x ′
p

g ′
�

ψ′(0)ϕ
′⋆
(0) + c−2ψ′(0)(Ô

′
Schwϕ

′
(2) −Φ

′ϕ′(0))
⋆

+c−2ϕ′⋆(0)

�

Ô′Schwψ
′
(2) −Φ

′ψ′(0)

�

+ · · ·
�

,

(A.41)

which correctly reproduces the following relation between (A.37) and (A.39)

Ô′Isoψ
′
(2) = Ô′Schwψ

′
(2) −Φ

′ψ′(0) . (A.42)

Using that the wave functionΨ with a nonstandard inner product transforms as a scalar (A.23),
we get the relation

Ψ̂′Schw = Ψ̂
′
Iso +

1
c2
Φ′Ψ̂′Iso +O(c−4) , (A.43)

where
Ψ̂′Schw =ψ

′
(0) +ψ

′
Schw(2) , and Ψ̂′Iso =ψ

′
(0) +ψ

′
Iso(2) , (A.44)

respectively. To get the NLO Lagrangian in istropic coordinates, we must add to (A.38)
the terms that arise from the LO Lagrangian, given again by (A.36), and also express the
Schwarzschild wave function in terms of the isotropic wave function as per (A.43).

Note that one might also derive the relation (A.43) in the following way:11 the inner
product in (89) of the rescaled wave functions can be written as 〈Ψ̂|Φ̂〉 =

∫

Σ
d3 x Ψ̂∗Φ̂. For

this expression to be well-defined in any coordinate system, Ψ̂ and Φ̂ must transform as scalar
densities of weight +1/2 on Σ, i.e.,

Ψ̂x(x)→ Ψ̂′x ′(x
′) =
�

det(∂ x i/∂ x ′ j)
�1/2
Ψ̂′x(x

′) , (A.45)

11We thank Philip Schwartz for pointing this out to us.
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where the subscript indicates in which coordinates the wave function originated, i.e., for our
purposes below, we have (schematically) x ′ = Iso and x = Schw. Hence, for the transforma-
tion from Schwarzschild coordinates to isotropic coordinates, we get

Ψ̂′Schw(r
′) =

�

r2

r ′2
∂ r
∂ r ′

�−1/2

Ψ̂′iso(r
′) = Ψ̂′Iso(r

′) +
1
c2
Φ′Ψ̂′Iso(r

′) +O(c−4) , (A.46)

thus reproducing (A.43).

A.2.3 Schrödinger’s equation

Setting J = 0 in the equation for Kerr (146) gives rise to the following Schrödinger equation
in Schwarzschild coordinates up to order c−2

i∂t Ψ̂Schw = −
1

2m
∆Ψ̂Schw −

GmM
r
Ψ̂Schw +

GM
c2rm

∂ 2
r Ψ̂Schw −

mG2M2

2c2r2
Ψ̂Schw

+
GM

2mc2r
∆Ψ̂Schw −

1
8c2m3

∆2Ψ̂Schw +
GM

4mc2
∆(r−1)Ψ̂Schw

+
GM

2mc2r2
∂rΨ̂Schw .

(A.47)

We have the following useful relations between various quantities in Schwarzschild and
isotropic coordinates

1
r
=

1
r ′
−

GM
c2r ′2

+O(c−4) ,

1
r2
=

1
r ′2
−

2GM
c2r ′3

+O(c−4) ,

∂r =
�

dr
dr ′

�−1

∂ ′r ′ =
r ′2

r ′2 − G2M2

4c4

∂ ′r ′ = ∂
′
r ′ +O(c−4) ,

∆ f =∆′ f ′ −
2GM
r ′c2

∆′ f ′ +
2GM
c2r ′2

∂ ′r ′ f
′ +

2GM
c2r ′

∂ ′r ′
2 f ′ ,

(A.48)

where f (t, r,θ ,φ) = f ′(t, r ′,θ ,φ). Combining these with the relation (A.43) we get

i∂t Ψ̂
′
Iso = −

1
2m
∆′Ψ̂′Iso +mΦ′Ψ̂′Iso −

1
8c2m3

∆′2Ψ̂′Iso +
mΦ′2

2c2
Ψ̂′Iso −

3∆′Φ′

4mc2
Ψ̂′Iso

−
3Φ′

2mc2
∆′Ψ̂′Iso −

3
2mc2

∂ ′r ′Φ
′∂ ′r ′Ψ̂

′
Iso ,

(A.49)

and thus turns the Schrödinger equation in Schwarzschild coordinates (A.47) into the
Schrödinger equation in isotropic coordinates we obtained in (A.17).
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