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Abstract

We develop a pairing-field formalism for ab initio studies of non-relativistic two-
component fermions on a (d+1)-dimensional spacetime lattice. More specifically, we
focus on theories where the interaction between the two components can be described
by the exchange of a corresponding pairing field. The introduction of a pairing field may
indeed be convenient for studies of, e.g., the finite-temperature phase structure and crit-
ical behavior of, e.g., ultracold atomic Fermi gases. Moreover, such a formalism allows to
directly compute the momentum and frequency dependence of the pair propagator, from
which the pair-correlation function can be extracted. For a first illustration of the ap-
plication of our formalism, we compute the density equation of state and the superfluid
order parameter for a gas of unpolarized fermions in (0+1) dimensions by employing
the complex Langevin approach to surmount the sign problem.
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1 Introduction

Pair formation of fermions governs the dynamics in a tremendous variety of systems at vastly
different length scales, ranging from electrons in solids and ultracold quantum gases to strong-
interaction matter and the physics of neutron stars. In gases of interacting spin-1/2 fermions,
for example, pairing of spin-up and spin-down particles at diametrically opposite points of the
Fermi surface plays a very prominent role, as it leads to the opening of a gap in the quasipar-
ticle spectrum accompanied by the formation of a superfluid state at sufficiently low temper-
atures [1,2]. Interestingly, such a formation of pairs alongside the emergence of superfluidity
even appears to hold for strongly correlated systems, as has been found in detailed theoret-
ical and experimental studies of ultracold Fermi gases (see Refs. [3–24] and Refs. [25–36],
respectively). Naturally, an understanding of the microscopic properties of fermion pairs is
fundamentally relevant to gain an insight into the macroscopic properties of such fermion
gases.

In the present work, for concreteness, we restrict ourselves to systems which can be de-
scribed by a Hamilton operator of the form

Ĥ =

∫

dd r

�

−ψ̂†
σ(r)
∇2

2mσ
ψ̂σ(r)− gψ̂†

↑(r)ψ̂↑(r)ψ̂
†
↓(r)ψ̂↓(r)

�

, (1)

where we have setħh= 1 and d determines the number of spatial dimensions. Unless stated oth-
erwise, we always assume summation over repeated indices associated with the speciesσ=↑,↓.
The field operators ψ̂σ and ψ̂†

σ associated with fermions of spin σ are assumed to obey the
usual anti-commutation relations. We moreover assume that the interaction, parametrized by
the coupling g > 0, is attractive. From a phenomenological standpoint, we mainly have the
development of an alternative lattice formalism for the description of ultracold atomic Fermi
gases in mind (which should be extendable to nuclear matter). Still, we would like to add
that suitably discretized versions of the model described by Eq. (1) can be directly related to
condensed-matter systems, most prominently to the Hubbard model, see, e.g., Refs. [37, 38]
for recent discussions.

The macroscopic properties of the many-body system described by the Hamilton opera-
tor (1) can be extracted from the grand-canonical partition function:

Z(β ,µ↑,µ↓) = Trexp
�

−β
�

Ĥ −µ↑N̂↑ −µ↓N̂↓
��

, (2)

where kB = 1 and β = 1/T is the inverse temperature. The particle number operators
Nσ =

∫

dd r ψ̂†
σ(r)ψ̂σ(r) couple to the chemical potentials µσ associated with the two spin

projections.
The partition function can in principle be computed in various ways. In the present work,

we restrict ourselves to a path-integral formulation of the partition function. Unfortunately,
for an operator of the form (1), exact results are not available for general spatial dimension d,
temperature T , and chemical potentials µσ, which makes the use of numerical approaches
necessary. Instead of computing the path integral directly, however, stochastic path-integral
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approaches generally require to remove the Grassmann-valued fermion fields by introduc-
ing a suitably chosen auxiliary field. This basically corresponds to performing a Hubbard-
Stratonovich transformation [39, 40]. This step is by no means unique. On the contrary, a
variety of auxiliary fields have already been used in the literature, see, e.g., Refs. [41–43] for
reviews.

Often, the physics of interest suggests the use a specific type of auxiliary field. For exam-
ple, auxiliary fields closely related to the density are frequently used for computations of the
density equation of state and related quantities, see Ref. [43] for a review. However, studies of
the propagation of fermion pairs requires the construction of suitable (and in general nontriv-
ial) operators. In such a situation, it may therefore be advantageous to employ an auxiliary
field which can be identified with the field associated with such fermion pairs. In particular,
for studies of spontaneous symmetry breaking associated with a superfluid state and critical
behavior close to the finite-temperature phase boundary, such a pairing-field formulation may
be appealing. In the continuum limit, such a formulation indeed exists for studies of, e.g.,
ultracold Fermi gases, which we shall briefly summarize in Sec. 2, see, e.g., Refs. [44–49] for
reviews. This formalism turns out to be particularly convenient for studies of the phase dia-
gram of ultracold Fermi gases, see, e.g., Refs. [6, 17–20, 50]. In Sec. 3, we develop a lattice
formulation of this pairing-field formalism. The application of this formulation is then demon-
strated in Sec. 4 with the aid of an exactly solvable zero-dimensional fermion model, i.e., the
zero-dimensional version of the model described by the Hamilton operator of Eq. (1). We
add that our lattice formulation of the well-known continuum formulation of the pairing-field
formalism has a sign problem, even for spin-balanced systems, see also Refs. [51,52] for a dis-
cussion. This is not unexpected, as the introduction of the pairing field transforms the original
purely fermionic model [6, 17–20, 50] into a complex scalar field theory, see our discussion
in Secs. 2 and 3. Such theories are known to have a sign problem on a spacetime lattice. In
order to deal with this sign problem, we employ the complex Langevin (CL) approach, which
has been employed before to study relativistic as well as non-relativistic complex scalar field
theories [53–55]. Moreover, the CL approach has been successfully applied to compute prop-
erties of ultracold Fermi gases described by the Hamilton operator (1), see Refs. [56–62]. For
reviews on the CL approach [63], we refer the reader to, e.g., Refs. [43,64–68]. In Sec. 4, we
discuss this in more detail and also present results for the density equation of state as well as
the expectation value of the pairing field. Our conclusions are presented in Sec. 5.

2 Pairing field formalism in the continuum limit

For reference, we briefly summarize the derivation of the pairing-field formalism in the con-
tinuum limit in this section. It is based on a specific Hubbard-Stratonovich transformation and
is well-known in the literature. More detailed discussions can be found in, e.g., Refs. [44–49].

The starting point of our discussion is the path-integral representation of the partition
function (2):

Z =

∫

D(ψ∗σ,ψσ) e−SF . (3)

The (fermionic) action SF reads

SF =

∫ β

0

dτ

∫

dd r

�

ψ∗σ

�

∂τ −
∇2

2mσ
−µσ

�

ψσ − gψ∗↑ψ↑ψ
∗
↓ψ↓

�

, (4)

where the fields ψ↑ and ψ↓ are associated with spin-up and spin-down fermions, respectively.
We can now bosonize the theory by performing a Hubbard-Stratonovich transformation

[39, 40]. To be more specific, we insert a suitably chosen constant into the path integral.
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Here, we choose

1=

∫

D(φ,φ∗)e−g
∫ β

0 dτ
∫

dd rφ∗φ , (5)

with a complex-valued auxiliary bosonic fieldφ = φ(τ, r). We refer to the fieldφ as the pairing
field and assume that it carries the same quantum numbers as the fermion composite ψ↑ψ↓.
Shifting this field and its complex conjugate according to

φ∗→ φ∗ +ψ∗↓ψ
∗
↑ , and φ→ φ +ψ↑ψ↓ , (6)

we arrive at the paritially bosonized action:

SPB =

∫ β

0

dτ

∫

dd r

�

ψ∗σ

�

∂τ −
∇2

2mσ
−µσ

�

ψσ + gφ∗φ + g
�

φ∗ψ↑ψ↓ −φψ∗↑ψ
∗
↓

�

�

. (7)

From this action we deduce that the complex scalar fields mediate the interaction between
the fermions. A resonance in this channel indicates the formation of pairs of spin-up and
spin-down fermions which may condense at sufficiently low temperatures. Note also that

〈φ〉=



ψ↓ψ↑
�

, (8)

i.e., the expectation value of the auxiliary field φ is identical to the expectation value ofψ↓ψ↑
associated with a pair of fermions, justifying the name pairing field. This expectation value
is of particular interest as it represents an order parameter for U(1) symmetry breaking as
associated with the formation of a superfluid state. Indeed, from Eq. (7), we deduce that
a finite expectation value 〈φ〉 introduces a gap in the fermion spectrum, as it is the case in
standard Bardeen-Cooper-Schrieffer (BCS) theory [1,2].

Since the action (7) is only bilinear in the fermion fields, we can integrate them out to
obtain the following path integral:

Z =

∫

D(φ,φ∗) e−SB , (9)

where we assume that irrelevant normalization factors have been absorbed into the path inte-
gral measure. Hence, the bosonic action SB associated with this path integral reads

SB = − lnDet M[φ,φ∗] +

∫ β

0

dτ

∫

dd r gφ∗φ . (10)

The fermion matrix M[φ,φ∗] appearing in the functional determinant is given by

M[φ,φ∗] =

 

∂τ −
∇2

2m↑
−µ↑ −gφ

−gφ∗ ∂τ +
∇2

2m↓
+µ↓

!

δ(τ−τ′)δ(d)(r− r′) . (11)

Since the pairing field also appears within this matrix, we are left with a nonlocal bosonic
theory. Properties of the pairs of spin-up and spin-down fermions can be studied by computing
correlation functions of the pairing field, such the two-point function 〈φ(τ, r)φ∗(τ′, r′)〉.

We close this section by noting that, at first glance, this fully bosonized theory appears
well suited as a starting point for a stochastic evaluation of the path integral. Evaluated on a
constant auxiliary field, the action SB yields nothing but the effective potential in the mean-
field approximation, which is indeed real-valued and bounded from below. As we show below,
however, the action becomes complex on a spacetime lattice when evaluated on general field
configurations, i.e., with a nontrivial dependence on τ and r.
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3 Pairing-field formalism on the lattice

3.1 Preliminaries

To obtain a lattice formulation of the pairing-field formalism, we begin by replacing the
fermionic field operators ψ̂σ(r) in Eq. (1) by corresponding lattice field operators ψ̂σ,ri

which
are restricted to a d-dimensional (hyper-)cubic lattice of side length L and spacing ax with
periodic boundary conditions. The number of lattice sites in each spatial dimension is given
by Nx = L/ax . The Hamilton operator (1) then reads

Ĥ = −
∑

ri

ad
x

∑

r j

ad
x

�

ψ̂†
σ,ri

1
2mσ

D′∆,i jψ̂σ,r j

�

−
∑

ri

ad
x g ψ̂†

↑,ri
ψ̂↑,ri

ψ̂†
↓,ri
ψ̂↓,ri

. (12)

Here, ri determines the position on the spatial lattice and the matrix D′∆ represents a finite
difference approximation of the continuum Laplace operator. One possible realization of D′∆
in one spatial dimension with rj = jax êx is given by the central second-order difference:

D′∆ =
1

ad
x a2

x













−2 1 1
1 −2 1

...
1 −2 1

1 1 −2













. (13)

Here and in the following, we only present non-zero entries of matrices. Note that the entries
in the top-right corner and the bottom-left corner result from the implementation of periodic
boundary conditions. With our concrete choice for the discretization of the Laplace operator
specified on the right-hand side of Eq. (13), the sums over spatial lattice sites in Eq. (12)
effectively reduce to a sum over all points and their nearest neighbors. However, because said
choice for the discretization of the Laplace operator is not unique and may even be optimized
such that the convergence towards the continuum limit is improved, we opt to keep the sums
in Eq. (12) in their general form.

At this point, we would also like to mention that, for the specific discretization (13) of the
Laplace operator, the lattice Hamiltonian is identical to that of a Hubbard model, see, e.g.,
Refs. [37,38]. However, exploring this aspect is beyond the scope of the present work.

Following the standard procedure for the derivation of a path-integral expression for the
partition function by introducing coherent basis states and a discretization of the imaginary
time interval [0,β) into Nτ slices of length aτ = β/Nτ (see, e.g., Ref. [69]), we arrive at the
following lattice action:

SF =
Nτ
∑

i=1

∑

r j

�

−
∑

rk

ψ∗σ,τi+1,r j

D̄′
∆, jk

2mσ
ψσ,τi ,rk

+ψ∗σ,τi+1,r j

�

ψσ,τi+1,r j
− (1+ µ̄σ)ψσ,τi ,r j

�

+ ḡ ψ∗↑,τi+1,r j
ψ∗↓,τi+1,r j

ψ↑,τi ,r j
ψ↓,τi ,r j

�

, (14)

with the calligraphic S distinguishing the lattice action from actions in the continuum. Note
that the action SF does not depend explicitly on the lattice scales L, ax , and aτ. These quanti-
ties as well as the physical parameters g, β , and µσ have been absorbed in suitably chosen di-
mensionless quantities, which also causes the Grassmann-valued field variablesψσ,τi ,r j

(fields
evaluated at time τi and position r j) to be dimensionless. To be specific, we have rescaled the
chemical potential with the temporal lattice spacing:

µ̄σ = aτµσ =
βµσ
Nτ

. (15)
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The coupling g has been rescaled and rendered dimensionless as follows:

ḡ = rd/2N d/2−1
τ λ , (16)

where r = aτ/a
2
x is the dimensionless lattice spacing ratio and λ= β1−d/2 g is the dimension-

less coupling. Finally, the dimensionless Laplace operator is given by

D̄′∆ = ra2
x ad

x D′∆ . (17)

Note that, in our derivation, we are in principle free to choose the specific form of the dis-
cretization of the spatial derivatives. However, the discretization of the temporal derivative,
specifically the appearance of a backward derivative, follows from the construction of the path
integral. In case of relativistic theories, the situation is different as the form of spatial and
temporal derivatives is constrained by Lorentz invariance.

We add that the chemical potentials enter our lattice action effectively in the form of con-
stant temporal gauge fields. Indeed, in the continuum limit, a simultaneous transformation of
the fermion fields and the chemical potentials exists which leaves the action invariant. This is
known as the Silver-Blaze symmetry, see, e.g., Refs. [70–75] for detailed discussions. In our
lattice theory, this symmetry is broken by the presence of the temporal lattice and would only
be recovered in the continuum limit. In order to preserve this symmetry on the lattice and
improve the convergence to the continuum limit, we replace (1+ µ̄σ) in the discrete temporal
derivatives by eµ̄σ , as advocated in Ref. [76]. In practice, this is relevant to obtain accurate
results in a regime of small chemical potentials.

3.2 Matrix notation

For our development of a lattice pairing-field formalism below, it is convenient to introduce
a specific notation for the fields and operators. In this notation, field configurations are rep-
resented by column vectors that contain the field values at all lattice sites in an arbitrary but
defined order, i.e.,

ψσ =
�

ψ
σ,(τ,r)1

,ψ
σ,(τ,r)2

, ...,ψ
σ,(τ,r)

NτNd
x

�⊺
, (18)

where
�

(τ, r)i | i ∈ {1, ..., NτN d
x }
�

is used to enumerate all spacetime lattice sites within the
box. A scalar product of two such configuration vectors is associated with a spacetime integral
over the product of the two fields in the continuum:

ψ†
σψσ =

�

ψ∗σ
�⊺
ψσ =

Nτ
∑

i=1

∑

r j

ψ∗σ,τi ,r j
ψσ,τi ,r j

. (19)

With the aid of suitably defined matrix multiplications, we can now construct the various terms
in the lattice action. For the spatial derivative, we define the matrix D∆, which extends the
purely spatial matrix D̄′∆:

ψ†
σ

D∆
2mσ

ψσ =
Nτ
∑

i=1

∑

r j

∑

r j

ψ∗σ,τi ,r j

D̄′
∆, jk

2mσ
ψσ,τi ,rk

. (20)

Note that this is not yet the term associated with the spatial derivative which appears in the
action (14). In fact, the fermion fields are evaluated at two different points in time in the
spatial-derivative term in Eq. (14), which is not the case in Eq. (20). To take into account the
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difference in the lattice sites in time direction, we define a (time) retarder operator R− and a
(time) advancer operator A−, such that

�

A−ψ
∗
σ

�⊺
ψσ =

Nτ
∑

i=1

∑

r j

ψ∗σ,τi+aτ,r j
ψσ,τi ,r j

, (21)

and
�

R−ψ
∗
σ

�⊺
ψσ =

Nτ
∑

i=1

∑

r j

ψ∗σ,τi−aτ,r j
ψσ,τi ,r j

. (22)

This definition implies that
A⊺− = A−1

− = R− , (23)

and that the matrices inherit the temporal boundary conditions of the field. The subscript of
these operators refer to boundary conditions: antiperiodic (-) or periodic (+) boundary condi-
tions in time direction. In the present work, we only need those associated with antiperiodic
boundary conditions. In the special case of a 0+1-dimensional theory (i.e., d = 0), the retarder
operator R± has the following matrix representation:1

R± =









0 ±1
1 0

... . . .
1 0









. (24)

The retarder and advancer operators allow us to define discrete temporal derivatives as

D(bw)
τ (µ̄σ) = 1− eµ̄σR− , (25)

and
D(fw)τ (µ̄σ) = eµ̄σA− −1 , (26)

It follows that
D(fw)τ (µ̄σ) = −

�

D(bw)
τ (µ̄σ)

�⊺
, (27)

where we have used Eq. (23).
For the interaction term, we introduce the vectors (ψ↑ ◦ψ↓) and (ψ∗↑ ◦ψ

∗
↓) with ◦ being

the element-wise Hadamard product. With this notation at hand, we can rewrite our discrete
action (14) as follows

SF =ψ
†
σD(bw)

τ (µ̄σ)ψσ +ψ
†
σ

R−D∆
2mσ

ψσ − ḡ(ψ∗↑ ◦ψ
∗
↓)
⊺R−(ψ↑ ◦ψ↓) . (28)

This form of the fermionic action represents the starting point for our development of a lattice
pairing-field formalism in the next subsection.

3.3 The discretized pairing field

Analogously to the continuum theory, we now perform a Hubbard-Stratonovich transformation
to eventually remove the fermionic degrees of freedom. To this end, we again insert a constant
factor into the path integral expression of the partition function. We choose

1=

∫

D(φ∗,φ)e−gφ†φ , (29)

1Here, we tacitly assume that the field values in the field-configuration vector are ordered according to their
time coordinate.
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where

φ†φ =
Nτ
∑

i=1

∑

r j

φ∗τi ,r j
φτi ,r j

. (30)

However, in contrast to the continuum, we cannot perform a shift like

φ∗→ φ∗ − (ψ∗↑ ◦ψ
∗
↓) , and φ→ φ + (ψ↑ ◦ψ↓) , (31)

since due to the time shifting matrix R− in the interaction term in the action in Eq. (28) this
shift will not create a term that cancels the four-fermion interaction. To mitigate this, one
might be tempted to begin the Hubbard-Stratonovich transformation by inserting a different
factor of one already containing the time shift, i.e.,

1=

∫

D(φ∗,φ)e−gφ†R−φ , (32)

however, since the time shifting matrices are not positive-definite, such a Hubbard-
Stratonovich transformation would not be well defined.

Instead, we shift the starred and unstarred bosonic fields independently, i.e.,

φ∗→ φ∗ − A−(ψ
∗
↑ ◦ψ

∗
↓) , and φ→ φ + (ψ↑ ◦ψ↓) , (33)

and then obtain the partially bosonized lattice action:

SPB =ψ
†
σD(bw)

τ (µ̄σ)ψσ −ψ
†
σ

R−D∆
2mσ

ψσ + gφ†φ + g
�

φ†(ψ↑ ◦ψ↓)− (ψ∗↑ ◦ψ
∗
↓)
⊺R−φ

�

. (34)

As in the continuum limit, the fermions can now be integrated out to obtain the bosonized
lattice action:2

SB = − ln detM+ ḡφ†φ , (35)

where the fermion matrix M is given by

M=

�

D(bw)
τ (µ̄↑)−

R−D∆
2m↑

− ḡ Diag(R−φ)

− ḡ Diag(φ∗) D(fw)τ (µ̄↓) +
A−D∆
2m↓

�

. (36)

Note that this matrix is in general not positive-definite and therefore the bosonized action is
in general complex, which leads to a sign problem in conventional stochastic computations of
the path integral, even in the limit of vanishing spin and mass imbalances.3

2This can be done by reordering terms of the form ψ†
↓Oψ↓ such that they appear as terms of the form ψ⊺↓O

′ψ∗↓
in the partially bosonized action which allows to rewrite the path integral as a Gaussian integral in the fermionic
degrees of freedom. In the continuum limit, the determination of the new operator O′ requires an integration by
parts. In our lattice formalism, this is done by transposition. For example, we have

ψ†
↓D
(bw)
τ
(µ̄↓)ψ↓ =

�

ψ†
↓D
(bw)
τ
(µ̄↓)ψ↓

�⊺

= −ψ⊺↓D
(fw)
τ
(µ̄↓)ψ

∗
↓ .

The fermions can then be conveniently integrated out by eventually introducing Nambu-Gorkov spinors
ψ† = (ψ†

↑, ψ
⊺
↓) and ψ= (ψ↑, ψ

∗
↓)
⊺.

3There also exist Hubbard-Stratonovich transformations which do not suffer from a sign problem, as long as
masses and chemical potentials of the two fermion species are identical. An example of such a formulation would
be the density formulation discussed in, e.g., Ref. [42]. This approach comes with a computationally less costly
update process in numerical applications, at the cost of a more elaborate calculation of pairing observables, such as
the superfluid order parameter and the spacetime-dependent pair propagator, see also Sec. 2. The latter quantities
are directly accessible with our pairing-type Hubbard-Stratonovich transformation. As a side effect, it also creates
a closer connection to continuum calculations where the use of a pairing field as auxiliary field is more common.
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Let us finally add that our partially bosonized lattice action SPB and its continuum analogue
in Eq. (7) look similar at first glance. However, we would like to emphasize that a naive
discretization of the continuum theory does not lead us to our lattice theory. For example, a
naive discretization of the continuum theory in Eq. (7) would lead to a Yukawa interaction
term which differs from the partially bosonized lattice action SPB by

(ψ∗↑ ◦ψ
∗
↓)
⊺φ − (ψ∗↑ ◦ψ

∗
↓)
⊺R−φ ∼O(aτ) . (37)

This indicates that the difference in the interaction term vanishes in the limit aτ → 0, which
also holds for the kinetic terms. In fact, in the continuum limit Nτ → ∞ and Nx → ∞
(such that Nτaτ = β and Nx ax = L remain constant), the finite difference operators become
derivatives and, loosely speaking, the effect of the retarder and advancer matrices vanishes.
The discrete theory then indeed becomes the continuum theory given in Eq. (7).

Finally, we would like to state again that the specific type of Hubbard-Stratonovich transfor-
mation underlying our formalism is not new but has been frequently employed in continuum
studies, see, e.g., Refs. [44–49]. Here, we have derived a lattice formulation of this approach.
Let us also add that a large variety of Hubbard-Stratonovich transformations has been dis-
cussed in the literature to study models as described by the Hamilton operator (1). In this
respect, we emphasize that our present lattice formalism should not be confused with the one
considered in Ref. [77], where a density-type field is used as an auxiliary field and homoge-
neous pairing fields are only introduced via source terms. Moreover, it should be mentioned
that, in contrast to the spacetime representation of the auxiliary field used in our present
work, lattice formulations built on a purely spatial representation of the problem are also very
popular. The latter also include a formulation, where the auxiliary field is introduced by cou-
pling it to the pairing operators [51]. In this context, it is worth mentioning that the sign
problem has also been studied on more general grounds based on a symmetry classification
of theories [78–81]. However, an analysis of whether and how the classifications presented
in these works can be applied to our spacetime formulation of theories with an even num-
ber of fermion species is beyond the scope of our present study. In any case, our analysis of
the fermion matrix (36) indicates that our pairing-field approach comes with a sign problem,
in accordance with, e.g., Ref. [52]. For recent reviews on the sign problem and the role of
Hubbard-Stratonovich transformations in the context of stochastic calculations, we refer the
reader to Refs. [42,68,82].

3.4 Lattice parameters

Based on the required range and accuracy of the results, we can define criteria that deter-
mine the lattice parameters. In the following, we present criteria for the determination of the
numbers of lattice sites Nτ and Nx based on the largest chemical potential βµmax of interest
and three empirical constants δSB, CI and Cλ. The latter two control the numerical accuracy
of the results. For a given βµmax, the numerically exact solution is approached in the limit
CI →∞ and Cλ →∞, wherein the vanishing deviation caused by the replacement term to
restore the Silver-Blaze symmetry is ensured by the increasing temporal lattice size following
the limit for CI .

3.4.1 Number of temporal lattice sites

By considering the energy scale set by the interaction and the Silver-Blaze symmetry, we first
explore criteria which have to be satisfied by the temporal lattice (in terms of extent and
spacing). For our numerical studies presented in Sec. 4, we have in general used the smallest
even value of Nτ which fulfills all the criteria. However, we have also checked the correctness
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of our criteria by studying the convergence of the density as a function of Nτ for selected
parameter sets.

On a spacetime lattice, the reciprocal temporal spacing defines a cutoff for the energies that
can be resolved on the lattice. We therefore must ensure that the energy scale EI set by the
interaction is sufficiently small compared to this cutoff, i.e., 1/aτ > CIEI with an empirically
determined factor CI. Taking into account the dimension of the coupling parameter g, we
define the interaction energy scale EI = λa−d

x β
d/2−1. For d < 2 this leads us to the criterion

Nτ >
�

λrd/2CI

�
1

1−d/2 . (38)

In the special case of d = 2, the coupling is dimensionless and does not provide an energy scale.
For d > 2, the scale set by the interaction energy imposes an upper bound for the number of
temporal lattice sites.

In the derivation of our formalism, we replaced factors of (1+ µ̄) by factors of eµ̄ to pre-
serve the Silver-Blaze symmetry. Such an improved lattice theory leads to faster convergence
towards the continuum theory relative to the unimproved counterpart. Specifically, the dif-
ference between improved and unimproved increases quadratically at leading order with in-
creasing values of |µ̄|. Since we have

µ̄=
βµ

Nτ
, (39)

we can reduce the deviation by simply increasing the temporal lattice extent Nτ. In practice,
we define a range absolutes of values of interest for the quantity βµ . The upper bound of this
range, βµmax, is then used to determine an appropriate value of Nτ by solving the equation:

eβµmax/Nτ −
�

1+
βµmax

Nτ

�

< δSB . (40)

This relation sets an empirical upper bound δSB for the difference. The results in this work
are obtained with δSB = 0.005. However, for the coupling strengths considered in Sec. 4, the
temporal lattice spacing is determined by the scale set by the interaction energy rather than
the Silver-Blaze correction.

3.4.2 Number of spatial lattice sites

In addition to the temporal lattice size, we have to determine a number of spatial lattice sites.
In this case, we have to ensure that the length of our box L = ax Nx is sufficiently large com-
pared to the thermal wavelength λth,σ = (2πβ/mσ)1/2. To this end, we introduce an empirical
constant Cλ and require

Cλλth,σ ≤ ax Nx , (41)

Note that the (inverse) temperature is a phenomenological control parameter rather than an
artificial parameter of our lattice theory, but, contrary to that, the spatial extent L of our
(hypercubic) lattice is in general an artificial parameter which has been introduced to evaluate
the path integral numerically. That being stated, the above inequality leads us to the criterion

Nx ≥ Cλ

�

2πr
mσ

Nτ

�1/2

, (42)

which determines the value of Nx based on the number of temporal lattice sites Nτ. In other
words, this inequality relates the temporal lattice spacing to the spatial lattice spacing for given
values of β and L. We also note, that the required number of spatial lattice sites per dimension
scales with the square root of the number of temporal lattice sites, as Nx ∝ N1/2

τ .
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4 Application: Fermions in zero dimensions

To illustrate and discuss the application of our lattice pairing-field formalism, we consider our
model in the limit of zero spatial dimensions (d=0). This is motivated by the fact that exact
analytic results in closed form can be obtained for at least some physical observables in this
case, providing a clean benchmark for our numerical calculations.

4.1 Exact analytic results

The partition function (2) of our model can be computed analytically for d = 0. We find

Z = (1+ eβµ↑)(1+ eβµ↓) + eβ(µ↑+µ↓)(eβ g − 1) . (43)

From this formula, we can extract exact results for the spin-up and spin-down densities by
taking a derivative with respect to µ↑ and µ↓, such that

nσ =
eβµσ + eβ(µ↑+µ↓+g)

(1+ eβµ↑)(1+ eβµ↓) + eβ(µ↑+µ↓)(eβ g − 1)
. (44)

The total density is defined to be the sum of the spin-up and spin-down density: n = n↑ + n↓.
Below, we often use the densities of the noninteracting system to normalize the densities of
the interacting system. We have

n0,σ := nσ
�

�

g=0 =
1

1+ e−βµσ
, (45)

and n0 := n0,↑+n0,↓. We add that the densities of the two fermion species become independent
of the chemical potentials in the limit of an infinitely strong attractive interaction:

nσ
�

�

β g→∞→ 1 . (46)

Moreover, for µ↑=µ↓=0 and g > 0, the normalized densities nσ/n0 are found to be bounded
from below and above: 1 ≤ nσ/n0,σ ≤ 2. Therefore, this ratio may be considered a macro-
scopic measure of the effective strength of the interactions in the system. Note that, for infinite
repulsion, the densities still depend on the chemical potentials.

The main focus of our illustrative numerical studies will be on the computation of densities.
Of course, the actual strength of our formalism lies in the computation of observables which
can be constructed directly from the pairing field, such as the pair-correlation function, the
quasiparticle gap as well as other order parameters for superfluidity, which can in principle
also be computed analytically in d = 0. We will report on such computations elsewhere and
only show results for the expectation value of the pairing field in this work. From an analytic
calculation of the latter quantity, we obtain 〈φ〉= 0 since

〈ψ↓ψ↑〉= 0 , (47)

and 〈φ〉 = 〈ψ↓ψ↑〉. Note that 〈φ〉 can be used as an order parameter for U(1) symmetry
breaking in our model. This allows to relate this quantity to the formation of a superfluid
ground state in d ≥ 2 in the long-range limit.

We close this subsection with a comment on mean-field theory. It is also possible to study
our zero-dimensional model in the mean-field approximation in the continuum limit. The
effective potential U then reads

U = gφ̄∗φ̄ −
1
β

ln
�

cosh(βh) + cosh
�

β
Æ

µ2 + |φ|2
��

, (48)
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where µ is the average chemical potential of the two species,

µ≡
µ↑ +µ↓

2
, (49)

and the chemical potential asymmetry is measured in terms of the so-called Zeeman field h,

h≡
µ↑ −µ↓

2
. (50)

The fields φ̄ and φ̄∗ represent constant pairing fields. Note that, in U , we dropped terms
independent of the field φ and its complex conjugate.

A minimization of the effective potential U yields the ground state φ̄0. The pressure equa-
tion of state can be extracted from an evaluation of U at the ground state φ̄0 = 〈ψ↓ψ↑〉. From
the first derivative of the pressure with respect to the chemical potential µσ, we then obtain
the densities. Notably, for the coupling strengths considered in the present work, the mean-
field approximation yields that the density in the interacting system is identical to the one
in the noninteracting system, even if our numerical studies (in accordance with the exact re-
sults) predict that this is not the case. Even more, for sufficiently attractive couplings (beyond
those considered in our numerical studies below), the mean-field approximation indicates that
the ground state is nontrivial, i.e., φ̄0 = 〈ψ↓ψ↑〉 ≠ 0, again in disagreement with the exact
solution. Thus, the results from the mean-field approximation are not even correct on a qual-
itative level. However, this is not unexpected as fluctuation effects (which are missing in the
mean-field approximation) are very relevant in low-dimensional systems.

4.2 Numerical framework

4.2.1 Complex Langevin approach

Since we have integrated out the fermion fields in our formalism, we are left with a purely
bosonic field theory. As such, the dynamics of the system is fully encoded in the pairing field φ
and its complex conjugate φ∗. In order to compute observables with the path integral, numer-
ically it is convenient to generate a finite number suitable pairing-field configurations which
allow us to evaluate the path integral in an efficient way by approximating its value with
the average of the integrand at the chosen field configurations. Often this is done by using
Monte-Carlo (MC) techniques. Unfortunately, standard MC techniques are not applicable in
our case since the bosonized lattice action SB is complex, as already indicated above. There-
fore, we employ the CL approach [63] to generate field configurations suitable for an efficient
computation of observables, see Refs. [43,64–68] for reviews.

The application of the CL approach requires a complexification of the fields in our
bosonized theory. To this end, we first rewrite the pairing fieldφ and its complex conjugateφ∗

in terms of their real and imaginary parts which leaves us with two real-valued fields, φ1
and φ2:

φ = φ1 + iφ2 , (51)

where φ1 := Re(φ) and φ2 := Im(φ). On the lattice, these fields are parametrized by a finite
set of complex numbers as described above in our derivation of the lattice action SB:

φk(τ, r)→
¦

φ(k)τi ,r j

©

, (52)

where k = 1,2. Within our CL approach, these real-valued fields are then complexified, i.e.,
the field φ1 and φ2 are considered to be complex fields. Formally, this is achieved by replacing
these fields by a sum of their real and imaginary parts. For the field variables, this replacement
reads

φ(k)τi ,r j
→ φ̃(k)τi ,r j

= φ̃(k,1)
τi ,r j
+ iφ̃(k,2)

τi ,r j
. (53)
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Note that this complexification of the fields implies that we have to deal with four real-valued
fields when we compute physical quantities.

In addition to the complexification of the original field variables, the CL approach also
introduces a fictitious time tCL. The complexified fields are then evolved along this so-called
CL time according to the following set of discretized differential equations for our complexified
fields:

φ̃(k)τi ,r j
(n+1) = φ̃(k)τi ,r j

(n) +δtCL K(k)τi ,r j
(n) +

Æ

δtCLη
(k)
τi ,r j
(n) , (54)

where n is the CL time index of the fields and δtCL is the CL time step, tCL = nδtCL. The
noise η is real and Gaussian with

〈η(k)τi ,r j
(n)〉= 0 , (55)

and
〈η(k1)
τi1 ,r j1

(n1)η
(k2)
τi2 ,r j2

(n2)〉= 2δn1,n2
δk1,k2

δi1,i2δ j1, j2 . (56)

The so-called drift term is defined as

K(k)τi ,r j
(n) = −

∂ SB

∂ φ
(k)
τi ,r j

�

�

�

�

�

{φ→φ̃(n)}

. (57)

This set of coupled differential equations can now be used to generate field configurations for
the evaluation of physical observables in the spirit of the original path-integral formulation.
For more details on the CL approach in the context of nonrelativistic many-body physics, we
refer the reader to Ref. [43].

4.2.2 Computation of observables

The computation of a physical observable requires the definition of a corresponding operator in
our formalism. For example, we can derive an operator OCL

Nσ
for the calculation of the particle

number Nσ of species σ from the definition of the partition function:

Nσ =
1
Z

Tr N̂σe−β(Ĥ−µ↑N̂↑−µ↓N̂↓)

=
1
Z

1
β
∂µσ

∫

D(φ∗,φ) e−SB

=
1

Nτ




tr
��

∂µ̄σM
�

M−1
��

,

(58)

where M is the fermion matrix introduced in Eq. (36). From this, we deduce the following
“CL representation” of the density operator:

OCL
Nσ
({φ̃(k)τi ,r j

(n)}) =
1

Nτ
tr
��

∂µ̄σM
�

M−1
�

�

�

�

{φ→φ̃(n)}
. (59)

Computing the average of this operator with the field configuration samples obtained from the
solution of the CL equations, we obtain the particle number of the species σ. To be specific,
we have

Nσ =
1

NCL

NCL
∑

n=1

OCL
Nσ
({φ̃(k)τi ,r j

(n)}) , (60)

where NCL is the number of CL time steps.
Since our conventions for all quantities appearing in the action SB are such that our for-

malism is completely free of any dimensionful scale, we can strictly speaking only extract di-
mensionless observables from our CL calculations. Since the density n= N/V depends on the
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Figure 1: Dimensionless density for a non-interacting system, i.e. λ = 0. The nu-
merical results are in perfect alignment with the analytical solution.

volume of the box, V = (Nx ax)d , it can therefore not be computed directly. Instead, we define
a dimensionless density by multiplying the density n with the thermal wavelength volume λd

th:

nλd
th = N

λd
th

V
= N

�

2πrNτ
N2

x

�d/2

. (61)

Here, the thermal wavelength λth = (2πβ)1/2 is made species-independent by using a mass of
one. Note that in 0+1 dimensions the physical density n and the dimensionless density nλd

th
are identical as the theory has no spatial extent.

Finally, we would like to add that the computation of expectation values of the pairing
fields, such as the superfluid order parameter and the pair propagator, can be implemented
straightforwardly since the pairing field is the fundamental field in our formalism. For exam-
ple, we have

〈φτi ,r j
〉=

1
Z

∫

D(φ∗,φ)φ(τi , r j) e
−SB

≈
1

NCL

NCL
∑

n=1

�

φ̃(1)τi ,r j
(n) + iφ̃(2)τi ,r j

(n)
�

.

(62)

Expectation values of more than one pairing field can be computed correspondingly. Note that
the computation of fermionic correlation functions (e.g., the propagator of one of the fermion
species) is more involved as it requires to introduce a source into the path integral.

4.3 Results for the density equation of state

For λ = 0, we simply expect to obtain the density distribution of a non-interacting Fermi gas
for each of the species. Indeed, as Fig. 1 shows, the simulation reproduces our expectation
precisely. No error bars are shown in this figure because, without interaction, the density is
independent of the pairing field. Therefore, no sampling is needed, and the calculation of the
observable is numerically exact.

For the interacting case we study the density in units of the non-interacting density n0,
i.e., n/n0 in the balanced case of µ↑ = µ↓ ≡ µ. In Fig. 2, we show densities for a range
of interaction strengths, together with the corresponding analytical results. The error bars
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Figure 2: Ratio of interacting and non-interacting density for interacting systems
with λ ∈ {0.25,0.5, 0.75,1.0}. The errorbars represent the statistical uncertainty of
the data points. For the data points marked with an “x” lattice effects are extrapo-
lated out, while those marked with an “o” are obtained using a maximum likelihood
estimator.

represent an estimate of the standard deviation of the MC samples obtained through Jackknife
resampling [83] to reduce effects of autocorrelation in the samples. For chemical potentials
βµ≳ −1, the calculated densities start to exhibit a significant dependence on the parameter CI
which determines the size of the lattice. To remove these lattice artefacts, we have performed
an extrapolation of the data in this regime. These lattice artefacts are extrapolated out in this
βµ-regime. For βµ ≲ −1, the dependence of the calculated densities on the lattice size is
negligible and a maximum likelihood estimator was used to determine the density instead.
We refer the reader to App. A for a more detailed discussion.

We observe that that the calculated densities are in excellent agreement with the analytic
solution. We emphasize that this is non-trivial. For example, in the mean-field approximation,
the density equation of state agrees identically with the one of the non-interacting gas in this
coupling regime, i.e., n/n0 = 1 for all values of βµ.4 Interestingly, we find that the observed
dependence of the density on βµ is qualitatively very similar to the one found in one- and
two-dimensional fermion models of this type, see, e.g., Refs. [58, 84–86]. Note that, in the
unitary limit (in three dimensions), the density equation of state increases monotonically as a
function of βµ and does not develop a maximum around βµ= 0, see, e.g., Refs. [87,88].

4.4 Pairing

In principle, we can also search for non-trivial ground state configurations in terms of the
pairing field. For example, in Subsec. 4.1, we have computed the effective potential U in the
mean-field approximation which develops a non-trivial ground state associated with 〈φ〉 ≠ 0
for β g > 4. Such a non-trivial ground state would be associated with spontaneous symme-
try breaking and the formation of superfluid gap. Of course, in the present zero-dimensional
model, the appearance of a superfluid ground state is simply a failure of the mean-field ap-
proximation. In the following we are not interested in a demonstration of the breakdown of
the mean-field approximation in this strong-coupling regime. We rather aim at a demonstra-
tion that expectation values of the pairing field (or even products of multiple pairing fields as

4This eventually follows from a minimization of the effective potential U in the mean-field approximation, see
Eq. (48).
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associated with correlation functions) are indeed directly accessible in our approach. To be
specific, we can study the behavior of the pairing field throughout the MC sampling process
by evaluating the observable φ̃,

φ̃ = λd/2
th 〈φ〉τ,r =

λ
d/2
th

βN d
x ad

x

∫ β

0

dτ

∫

r

dd r φ(τ, r) , (63)

which can be calculated from the dimensionless discrete field configuration vector φ̄ as

φ̃sample =
(2πrNτ)d/4

NτN d
x

∑

i

φ̄i . (64)

Since we have 〈φ〉 =



ψ↓ψ↑
�

, i.e., the expectation value of two annihilation operators, we
expect to find a sample mean of zero for the observable φ̃.

In Fig. 3, we show the sampling process for the observable φ̃ for one simulation run. As
it should be, we find that the mean of φ̃ = 0 lies within the deviation of the result, already
without correcting systematic sources of uncertainty (which originate from the CL time spacing
and the lattice size).

Beyond the expected expectation value of φ̃, we can also see that the sampling process
is well behaved and does neither “get stuck” nor exhibit “large jumps” that can occur when
singularities are present in the drift term of the CL equation. Such singularities in the drift
indeed form a potentially serious impediment for the CL method. A review of this aspect can
be found in Ref. [43], including an illustration of some of the problems emerging from the
presence of singularities in the drift term with the aid of a 0 + 0-dimensional theory (i.e., a
theory where the fields depend neither on time nor space). In our present work, however, we
consider a spacetime formulation of the problem, such that even the 0+ 1-dimensional case
considered in our numerical studies already features high-dimensional integrals, rendering an
exact analysis of singularities in the drift (as done for the 0+0-dimensional case in Ref. [43] and
also in various ways in Refs. [89–94]) impractical. We therefore only analyze the sampling
process, which we find to be localized to a region around the origin in the field space, and
use the indicator observable defined in Eq. (63) to spot potential singularities. We find that
the drift indeed seems to be free of singularities in our present study, as already indicated
above. However, for studies with a finite number of space dimensions, the issues associated
with singularities in the drift may have to be carefully analyzed on a case-by-case basis. Note
that the localization of the sampling process in our formulation also aides us performing the
sampling process more efficiently, indicating that the theory is a good candidate for treatment
with the CL method.

4.5 Sign problem

Our system of interest exhibits a sign problem, even in the absence of a spin or mass imbalance,
which follows directly from the properties of the matrix M in Eq. (36) when evaluated on non-
uniform field configurations. To surmount this sign problem, we have chose the CL approach
to MC sampling. As a consequence of that, however, both the real and imaginary part of the
pairing field are themselves complex quantities. This results in a complex integrand of the
path integral for all interacting systems. In this subsection, we would like to briefly study this
aspect by analyzing the MC samples of the weight of the path integral e−SB .

In Fig. 4, we present distribution histograms of the complex argument of the path integral
weight e−SB for different values for the chemical potential βµ and the interaction λ. We gener-
ally observe narrow distributions around an argument of zero. Thus, the weights are close to
the real axis but exhibit a weak phase problem. The width of the phase distribution increases

16

https://scipost.org
https://scipost.org/SciPostPhys.16.4.091


SciPost Phys. 16, 091 (2024)

Figure 3: MC samples points of φ̃ in the complex plane. The color indicates at
which CL time the sample point is calculated; the simulation ends at tCL,max. The
sample mean of the cloud, indicated by the lines, lies at −0.22(03) − i 0.20(04)
with the standard deviation of the mean obtained through Jackknife resampling and
indicated by the shaded areas. The ellipse shows the principal standard deviations of
the point cloud, i.e. the square roots of the eigenvalues of the covariance matrix of
the cloud, with the semiaxes being the standard deviation values in length oriented
along the eigenvectors of the covariance matrix. The simulation was carried out with
λ= βµ= 1.0 with CI = 150.0 resulting in a lattice with Nτ = 150.

= 0.25

=
2.0

0
= 0.50 = 0.75 = 1.00

=0.0
0

4 0 4

=2.0
0
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Figure 4: Distribution of the complex argument of the path integral weight e−SB

in the CL sampling process. Samples have been taken with a CL-time spacing of
δtCL = 0.05, up to a maximum CL time of 15 000, where the first 5 % of the sam-
ples have been omitted as “warm up”. Here, the size of the lattice is determined by
CI = 100, resulting in lattice sizes of up to Nτ = 100 for λ= 1.0.
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Figure 5: Sample standard deviation of the samples shown in Fig. 4. The dashed
lines show fits of the data to the model in Eq. (65) and the fitted parameters are
shown in the legend. The width of the argument distribution increases with increas-
ing interaction with an exponent that depends on the chemical potential βµ.

with increasing interaction strength, which may not come unexpected. This is illustrated in
Fig. 5, where the standard deviations of the phase distributions from Fig. 4 are shown as a
function of the interaction parameter λ together with a fit of the data to the following model:

f (λ) = c1 ·λc2 . (65)

We have chosen this model because the system is known to be free of a sign problem in the non-
interacting case associated with λ = 0 and f (λ) = 0 coincides with the expected distribution
width of zero.

5 Conclusions

In this work we successfully developed a lattice formulation of the pairing field formulation of
two-component Fermi gases interacting via a two-body interaction. We have shown that our
formalism leads to the well-established continuum theory in the limit of large lattices. With
our lattice formulation at hand, we employed the CL approach for the computation of densities
for a 0+ 1-dimensional systems. We chose such a low-dimensional model since exact results
are available to benchmark our approach. Moreover, studies of low-dimensional models may
be viewed to be computationally less intense, at least at first glance. In any case, the use of
the CL approach is convenient to deal with the sign problem which is present in our approach
even in the absence of, e.g., spin and mass imbalances. In the non-interacting limit, our sim-
ulation reproduces the analytic solution exactly. Very importantly, in the phenomenologically
relevant interacting case, the results from our stochastic approach are found to be in excellent
agreement with the analytic solution, providing a proof of concept for this formalism. Note
that we have also analyzed the sign problem in our studies which we found to be mild, at least
for all coupling strengths considered in our present work.

For a study of the phase structure and critical behavior of, e.g., ultracold Fermi gases, the
computation of correlation functions is indispensable. As we have already demonstrated in
terms of the expectation value of the pairing field, there is no conceptional issue within our
present approach which would hinder the computation of such functions. Of course, a study
of the formation of long-range order or at least quasi long-range order is only meaningful
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Figure 6: Illustration of the extrapolation of finite-lattice effects in the density observ-
able at the point λ= βµ= 1. The fit takes the uncertainties of the single simulation
runs into account. This results in the shown uncertainty band around the extrapo-
lated value and represents the standard deviation of the estimate.

in higher-dimensional models, d > 0. We have already presented the formalism, even for
d > 0. However, explicit calculations of equations of state and correlation functions for these
phenomenologically more models are deferred to future work.
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A Lattice artefacts

In our calculations of densities, especially in the regime βµ ≳ −1, the density exhibits a sig-
nificant dependence on the size of the lattice that was chosen for the calculations. This depen-
dence is not physical. In order to remove artefacts in the data resulting from the presence of a
finite lattice, we calculate observables for multiple lattice sizes and perform an extrapolation
to an infinite lattice. For this, we employ a fit to the following empirical model:

nmodel(Nτ) = c1 − c2N−c3
τ . (A.1)

Here, the parameter c1 represents the extrapolated density since

lim
Nτ→∞

nmodel(Nτ) = c1 . (A.2)
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An example for such an extrapolation can be found in Fig. 6.
In the regime βµ≤ −1, the densities are largely independent of the lattice size and rather

than performing an extrapolation, we calculate the density for a number of reasonably large
lattices and use a maximum likelihood estimator to create and estimate for the actual density.
Suppose the single lattice calculations result in the densities {ni} for i ∈ {1, ..., N} with stan-
dard deviations {σni

}, the the maximum likelihood estimator for the density is given by the
weighted average

n̄=

� N
∑

i=1

1
σ2

ni

�−1 N
∑

i=1

ni

σ2
ni

, (A.3)

with the uncertainty

σn̄ =

� N
∑

i=1

1
σ2

ni

�−1/2

. (A.4)

This estimator differs from a common average by weighting the densities, such that densities
with larger uncertainties contribute less to the estimate.
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