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Abstract

We study the null asymptotic structure of Einstein–Maxwell theory in three-dimensional
(3D) spacetimes. Although devoid of bulk gravitational degrees of freedom, the system
admits a massless photon and can therefore accommodate electromagnetic radiation.
We derive fall-off conditions for the Maxwell field that contain both Coulombic and ra-
diative modes with non-vanishing news. The latter produces non-integrability and fluxes
in the asymptotic surface charges, and gives rise to a non-trivial 3D Bondi mass loss for-
mula. The resulting solution space is thus analogous to a dimensional reduction of 4D
pure gravity, with the role of gravitational radiation played by its electromagnetic cousin.
We use this simplified setup to investigate choices of charge brackets in detail, and com-
pute in particular the recently introduced Koszul bracket. When the latter is applied
to Wald–Zoupas charges, which are conserved in the absence of news, it leads to the
field-dependent central extension found earlier in [1]. We also consider (Anti-)de Sitter
asymptotics to further exhibit the analogy between this model and 4D gravity with leaky
boundary conditions.
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1 Introduction and summary

Despite its key role in physics, the behaviour of quantum gauge field theories at large distances
and low energies remains poorly understood. Indeed, the bulk degrees of freedom of gauge
theories can be quantized with standard Hamiltonian methods [2], but their physical bound-
ary states are exceedingly sensitive to choices of fall-off conditions and thus require a separate
treatment. This subtlety is especially striking in cases that contain propagating modes (as
opposed to topological field theories), where the global symmetries of boundary states—i.e.
asymptotic symmetries—suffer from radiative ambiguities. The present work is therefore de-
voted to a detailed classical investigation of such issues in a simple gauge system: Gravitation
coupled to electrodynamics in three spacetime dimensions (3D). In this introduction, we first
motivate the subject, then present an overview of our main results along with a plan of the
paper.

Motivations. The difficulties in quantizing the infrared sector of gauge theories are best
exemplified by gravitation, whose general covariance requires that conserved quantities (say
energy or momentum) be defined in terms of asymptotic fluxes as opposed to local current den-
sities [3,4]. This is an old, general and standard result whose counterpart for 4D gravitational
radiation involves the infinite-dimensional Bondi–Metzner–Sachs (BMS) group at null infin-
ity, first introduced half a century ago [5–11]. Such constructions are indeed well known by
now, but the full scope of their implications has only recently become apparent thanks to new
insights on holography in Minkowskian spacetimes [12–15] and the discovery of deep links
between asymptotic symmetries and the infrared sector of gauge theories [16–19]. Follow-
ing these ideas, asymptotic symmetries were studied in numerous contexts, notably including
electrodynamics and Yang–Mills theory [20–25]. A common aspect of all these works is that
one’s choice of fall-off conditions for field components determines the phase space of available
field configurations, which in turn influences the soft sector of the theory and the resulting
symmetries.

The present paper is devoted to the asymptotic symmetries of 3D gravity coupled to a
Maxwell field. This setup was first studied in [1], but we shall argue that a crucial sector of
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radiative field configurations was overlooked in that reference. Indeed, our investigation is
precisely motivated by the (much more involved) issue of radiative ambiguities in the asymp-
totic symmetries of 4D general relativity. In that case, the presence of gravitational waves
implies that the radiative phase space at null infinity is an open system [26–28], which has
important technical and conceptual implications. The first is that asymptotic charges are not
conserved in time but obey instead flux-balance relations, such as the Bondi mass loss relating
the decrease of mass to the radiation crossing null infinity. The second is that charges are gen-
erally non-integrable, as the associated symmetries fail to be Hamiltonian due to the presence
of symplectic fluxes. This hinders the study of the corresponding asymptotic charge algebras,
since no canonical bracket can a priori be defined.

In fact, a tentative solution to this puzzle was put forward by Barnich and Troessaert
[12–14], yielding e.g. an asymptotic charge algebra extended by a suggestive field-dependent
cocycle [14]. But the prescription of [14] is ultimately ambiguous, since it relies on an arbitrary
splitting between integrable terms and non-integrable fluxes when defining the very notion of
‘charge’. It is therefore essential to elucidate the origin and the extent of this arbitrariness,
the goal being to eventually isolate unambiguous boundary symmetries. In the specific case of
reference [14], the split ambiguity can actually be fixed by the Wald–Zoupas (WZ) prescrip-
tion [29–31] that singles out the integrable charge by requiring conservation in the absence
of radiation. However, it is unclear if an analogous way out exists in general radiative cases.
Radiative asymptotic symmetries are thus crucial for quantum gravity and gauge theories as a
whole, and for Minkowskian holography in particular [13,32–39]. Note that similar questions
can also be raised in (Anti)-de Sitter [(A)dS] spacetimes, where radiation and holography with
porous boundary conditions were recently studied in [40–57].

Our focus on a 3D toy model is motivated by the desire to simplify matters, while still
retaining the essential features of realistic radiative systems. Indeed, pure 3D gravity is a
topological field theory (no propagating degrees of freedom) that has often served as a fruitful
testbed for asymptotic symmetries, starting with the seminal work [58] on the boundary Vi-
rasoro algebra of AdS3. The analogous symmetry of 3D Minkowskian spacetimes is the BMS3
algebra [59–61]. In both AdS and flat cases, the absence of radiation allows one to delve deep
into holographic territory on a purely group-theoretic basis. For instance, unitary representa-
tions of asymptotic symmetries [62–68] and their relation to bulk metrics through coadjoint
orbits and geometric actions [69–78] are well established in both situations, as is the Cardy-
ology of black holes and cosmological solutions [79–81]. No such control is available in the 4D
realm, where the study of coadjoint orbits [82] and geometric actions [83,84] is in its infancy,
and mostly limited to the sector without radiation.

Hence our interest in the 3D Einstein–Maxwell system: It is radiative (the electromagnetic
field has one local degree of freedom) but sits between 3D and 4D general relativity in terms of
complexity, as it shares the geometrical simplicity of the former while also describing radiative
aspects relevant to the latter. Its symmetries were studied in the aforementioned reference [1]
(see also [85,86]), where the authors identified a non-integrable contribution to the charges,
which they interpreted as being sourced by electromagnetic ‘news’. However, this interpreta-
tion should be done with care, as a slightly more general setup reveals a key subtlety. This is
actually the gist of our work: We generalize the analysis of [1] by considering weaker fall-offs
for the Maxwell field. In particular, while the fall-offs of [1] include logarithmic terms (as
required for the 3D Coulomb solution) and integer powers of the radius r, here we also allow
for terms in half-integer powers of r. This is because radiative fall-offs for the 3D Maxwell
field in (retarded) Bondi coordinates (r, u,φ) and in radial gauge take the form (see fig. 1)

Aφ = C
p

r + . . . , Au = E(ln r) + G + . . . (1)

Here C(u,φ) is an unconstrained function on I + and denotes the radiative electromagnetic
data, E(φ) is the electric charge aspect, G(u,φ) is another unconstrained function, and the
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Figure 1: A Penrose diagram of 3D Minkowski spacetime, showing retarded Bondi
coordinates (r, u,φ) along with light-cones centred at the origin. Future null infinity
is the region denoted I +, where r →∞ at finite (u,φ). The presence of electromag-
netic radiation (wiggly lines) reaching I + is diagnosed by a non-zero news function
(2). Adapted from [88, fig. 1].

dots are subleading terms (which we will analyse in detail). With such relaxed fall-offs, 3D
Einstein–Maxwell theory with electromagnetic radiation becomes analogous to a dimensional
reduction of 4D pure gravity with gravitational radiation [59, 87]. In particular, both the
symplectic structure and the charges at null infinity involve the variational one-form CδN ,
where

N(u,φ) := ∂uC(u,φ) := Ċ(u,φ) , (2)

is the electromagnetic news. For comparison, recall that the news in 4D gravity is a symmetric
tracefree rank-2 tensor Nab, while in 4D Maxwell theory it is a vector Na in terms of coordinates
xa on the celestial 2-sphere:

4D 3D

Einstein Nab /0

Maxwell Na N

This highlights again that 3D Maxwell exhibits the simplest form of news. Coupling it to
Einstein gravity makes it possible to study the interplay between this news and gravitational
asymptotic symmetries. In particular, the Bondi mass aspect M then satisfies a mass loss for-
mula Ṁ = −2N2, analogous to its celebrated 4D version with gravitational news replaced by
its electromagnetic counterpart. No such structure occurs in the analysis of [1], due to stronger
fall-offs setting C = 0.

As stated above, the new boundary conditions presented here provide an ideal arena to
study all the subtleties related to radiation, such as non-integrability, flux-balance laws and
ambiguities in one’s choice of charge brackets. An additional goal is to contribute to the study
of asymptotic symmetries for general relativity coupled to matter fields. For 4D Einstein–
Maxwell theory, asymptotic symmetries were already partly studied in [89,90], where the first
reference focusses on WZ charges. Given our observations below on charge algebras and their
field-dependent cocycles, it would be interesting to also study the charge algebra in the 4D
case. We hope to come back to this in the future.
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Outline and summary of results. The paper is organized as follows. We start in section 2
by analysing pure Maxwell theory in 3D Minkowski spacetime. From the electromagnetic field
produced by a compact source, we deduce the fall-offs to be used later in Einstein–Maxwell
theory in Bondi coordinates. We then compute the 3D electromagnetic memory effect, which
consists of a net change of angular velocity caused by radiation on any charged test mass near
null infinity. In contrast to the 4D case [91], this is not directly related to a change of U(1)
asymptotic charges; the mismatch ultimately stems from the difference between Coulombic
and radiative falls-off in any spacetime dimension other than four.

Section 3 is devoted to the solution space of Einstein–Maxwell theory with vanishing cos-
mological constant. We explain there how the field equations are solved following the Bondi
hierarchy, deferring the details to appendix A. The upshot is that the solution space contains,
among others, two functions M(u,φ) and L(u,φ). These are respectively the mass and angu-
lar momentum aspects in the metric, subject to the evolution equations (33), the first of which
is the Bondi mass loss sourced by the electromagnetic news (2). In addition, the solution
space contains two completely unconstrained functions on I +, namely the electromagnetic
shear C(u,φ) and a function G(u,φ) as in (1). Only G was present in [1], where it gave rise
to non-integrable asymptotic charges and was thus identified as ‘news’. We will show instead
that G(u,φ) should be considered as sourcing a ‘spurious flux’, while the ‘true news’ is the
quantity Ċ sourcing the Bondi mass loss through a flux of energy momentum at I +.

Note that the phase space thus obtained contains two free functions on I +, namely C(u,φ)
and G(u,φ). This may seem perplexing given that the theory admits a single degree of free-
dom. Actually, an analogous situations occurs in 4D pure gravity, where one can relax bound-
ary conditions so that the solution space contains other undetermined functions of u on top of
the two degrees of freedom in the asymptotic shear Cab. This includes for instance the induced
boundary metric on I + [53, 54] or the trace of Cab in Newman–Unti gauge [54, 92], and it
allows one to describe physically relevant solutions with Cab = 0, such as Robinson–Trautman
spacetimes [93–95]. The metric on I + can similarly be relaxed in 3D pure gravity, resulting
in a phase space with three unspecified functions of u even though the bulk theory has no
propagating degrees of freedom at all [96,97]. In the case of 3D Einstein–Maxwell theory, the
known radiative configurations are such that C ̸= 0 and G = 0; in fact, G may be seen as a
gauge redundancy. It is nevertheless possible that the theory admits interesting solutions with
C = 0 but G ̸= 0, so we will initially keep both fields non-zero in our analysis of symmetries
and charges.

In section 4, we turn to the characterization of asymptotic symmetries. These are labelled
by an asymptotic Killing vector field ξ and a U(1) gauge parameter ϵ on I +, spanning a semi-
direct sum bms3 + C∞(I +). A striking aspect of this construction is that the U(1) parameter
at leading order has an arbitrary dependence on retarded time u, whose origin is the free u-
dependent function G in the solution space (1). Indeed, one can see from the transformation
laws (46) that setting G = 0 fixes the arbitrary time dependence, reducing the aforemen-
tioned algebra to a semi-direct sum bms3 + C∞(S1). Irrespective of this feature, we find that
the (integrands of variations of) asymptotic charges are given by (52) and exhibit two non-
integrable terms arising from supertranslations. The first such term is NδC , involving the
radiative data of (1) and the news (2); the second is GδE, where E is the electric charge as-
pect in (1). These non-integrable contributions imply that a splitting prescription is required
for the choice of integrable parts and the bracket of surface charges. This is the (expected)
key subtlety anticipated in the motivations above.

Section 5 is therefore devoted to the study of the choice of bracket. We start with the
Barnich–Troessaert (BT) prescription [14] in the case G ̸= 0, whereupon the charge algebra
reproduces that of asymptotic symmetries with a field-dependent central extension (really a 2-
cocycle) given in (59) below. In the case G = 0, which must be treated with care since it makes
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the U(1) gauge parameter field-dependent, we define WZ charges that are conserved when
the news (2) vanishes. The resulting charge algebra features once again a field-dependent
2-cocycle. Both such extensions were previously found in [1], so they are unaffected by our
weaker choice of fall-offs.

The presence of field-dependent cocycles is expected to affect the unitary representations of
charge algebras, hence quantum theories having these algebras as symmetries. It is therefore
important to ask whether field-dependent cocycles are a generic feature, or if they can be
removed with suitable choices of integrable splits or brackets. To this end, we first discuss the
so-called Noether split and bracket introduced in [98, 99]; the ensuing algebra closes with a
vanishing cocycle (even the central extension of [60] is absent!), but integrable charges fail to
be conserved in the absence of radiation. We therefore turn to the Koszul bracket1 introduced
in [100], whose key advantage is to be independent of the choice of split between integrable
and flux pieces. The Koszul bracket gives a surprising result: When G ̸= 0, the cocycle in the
charge algebra is non-zero but field-independent, as in pure 3D gravity [60]; but setting G = 0
yields the same field-dependent cocycle as with the BT bracket of WZ charges. Moreover, this
last cocycle turns out to be non-zero even in the absence of electromagnetic news, suggesting
that field-dependent extensions are a genuine feature of 3D Einstein–Maxwell theory.

In section 6, we switch on a cosmological constant (with arbitrary sign). Einstein–Maxwell
theory in AdS3 was previously studied in [86] in Bondi gauge, and in [101, 102] in the
Fefferman–Graham gauge that admits no well-defined flat limit. In Bondi gauge, introduc-
ing Λ ̸= 0 is straightforward and the flat limit is well-defined [61]. Working in (A)dS3 then
deepens the analogy between the present 3D model with electromagnetic radiation and pure
4D gravity with gravitational radiation. For instance, we find that Λ ̸= 0 allows no half-integer
powers of r in the fall-offs, analogously to the absence of logarithmic terms in (A)dS4 [53,54].
Furthermore, whenΛ ̸= 0, initial conditions on a cut ofI + need to be specified for only finitely
many components of the Maxwell field, while Λ= 0 involves an infinite tower of data subject
to evolution equations. This is similar to what happens in 4D pure gravity when studying the
role of subleading tensors in the angular metric. We finally conclude in section 7 with some
perspectives for future work.

2 Pure Maxwell theory in 3D

This section sets the stage by spelling out basic facts on 3D pure electrodynamics. We first solve
Maxwell’s equations for a compact source to motivate fall-off conditions in Lorenz gauge, be-
fore finding the analogous fall-offs in Bondi gauge. We then briefly comment on electromag-
netic memory effects and point out the difference of their behavior with respect to the 4D
case.

2.1 Electromagnetic field from compact sources

Consider 3D Minkowski spacetime, choose some inertial coordinates xµ = (t,x), and let
jµ(x, t) be some current density that is compactly supported in space. The current acts as
a source for an electromagnetic field Aµ such that ∂µFµν = − jν, which yields □Aµ = − jµ in
the Lorenz gauge (∂µA

µ = 0). Our goal is to find the asymptotics of Aµ in Bondi coordinates.

1We thank Adrien Fiorucci for encouraging us to study the Koszul bracket, and for sharing preliminary results
based on joint work with Glenn Barnich and Romain Ruzziconi [100].

6

https://scipost.org
https://scipost.org/SciPostPhys.16.4.092


SciPost Phys. 16, 092 (2024)

The first step is to solve Maxwell’s equation □Aµ = − jµ. Using the (retarded) Green’s
function of the 3D d’Alembert operator, the solution reads

Aµ(x, t) =
1

2π

∫

d2y

∫ t−|x−y|

−∞
ds

jµ(y, s)
p

(t − s)2 − |x− y|2
. (3)

In contrast to the more familiar 4D case, the Green’s function that gives (3) is not localized
on a light-cone emanating from the source. This may be viewed as a violation of the Huygens
principle in 3D [103], and it ultimately results in (logarithmic) infrared divergences that are
absent in 4D. Indeed, consider (3) for a point charge. If the latter is static (say at the origin
r = 0), its current density is j0(y, s) = qδ(2)(y) and j1 = j2 = 0. Plugging this in (3) yields
A1 = A2 = 0, but A0 involves an integral that diverges owing to the infinite lower bound on
s. The key point, though, is that this divergence is a constant that depends on none of the
spacetime coordinates. To see this, fix the radius r = |x| and replace the lower integration
bound in (3) by some cutoff time −T such that T ≫ r and T ≫ |t − r|. Then

A0(r, t) =
q

2π

∫ t−r

−T

ds
p

(t − s)2 − r2
=

q
2π

ln
�

2
T + t

r

�

= −
q

2π
ln(r) +

q
2π

ln(2T ) +O(T−1) ,

(4)

in the limit T → +∞, where the divergent term ln(2T ) is indeed independent of both r and
t. Thus the Coulombic electrostatic potential in 3D is

A0(r) = −
q

2π
ln r , (5)

up to an irrelevant additive constant, as was in fact expected from the Green’s function of the
2D Laplacian. Note that the same behaviour holds near future null infinity (see fig. 1), where
r →∞ and t →∞ with u= t − r finite.

In 4D, Coulombic and radiative fall-offs coincide. This is not so in 3D, where the
Coulombic potential (5) has little to do with its radiative counterpart. One can again ver-
ify this from (3), now letting jµ be the current density of a moving point charge so that
jµ(y, s) = qvµ(s)δ(2)(y − X(s)), where v0 := 1 and vi := ∂ X i/∂ s in terms of some timelike
worldline X(s) = (X1(s), X2(s)). For simplicity, we shall assume that the velocity v= (v1, v2) of
the source is small compared with the speed of light. Then the vector potential behaves as

Ai(x, t)∼
q

2π

∫ t−r

−∞

vi(s)ds
p

(t − s)2 − r2
, (6)

at leading order in |v|, and in the limit where r and t are large but t − r is finite. To make
further progress, Fourier-transform the velocity as

v j(s) =

∫ +∞

−∞
dω ṽ j(ω) e

iωs , (7)

where ṽ j(ω) =O(ω) as ω→ 0 since v(s) is the time derivative of the position X(s). Plugging
(7) in the potential (6) and using the saddle-point approximation at large ωr then yields

Ai(x, t)∼
q

2π

s

π

2r

∫ +∞

−∞
dω

ṽ i(ω)p
ω

eiωu+iπ/4 . (8)

As for the scalar potential given by (3), it still satisfies (5) at leading order. Note the stark
contrast between the Coulombic O(ln r) fall-off of the latter, and the radiative O(r−1/2) fall-
off in (8). The difference may be seen as a remnant of the saddle-point approximation, which
only holds at ω ̸= 0 and was therefore not valid in the Coulombic case.
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Equations (5) and (8) were written in inertial coordinates and in Lorenz gauge, but moving
to Bondi coordinates is a simple matter: Using as usual x + i y = r eiφ and t = u + r, the
Minkowski spacetime metric becomes

ds2 = −du2 − 2du dr + r2dφ2 (pure Minkowski), (9)

and Bondi components of the electromagnetic potential are related to its inertial components
by

Au = A0 =O(ln r) , Aφ = xAy − yAx =O(r1/2) , Ar = A0 +
1
r

Ai x
i =O(ln r) . (10)

This is already close to the fall-offs announced in (1); the only difference is that Lorenz gauge
and radial gauge differ. To move from the former to the latter, perform a gauge transformation
A→ A+dϵ that sets Ar+∂rϵ = 0. This fixes ϵ up to a (u,φ)-dependent integration function that
we set to zero so as to leave the components Au and Aφ unaffected. Note that ϵ is guaranteed
to only depend on r at leading order, since the leading part of Ar is the Coulombic field (3);
as for subleading terms, one can actually check that the radiative scalar potential in Lorenz
gauge satisfies A0 ∼ −

q
2π ln(r)− 1

r Ai x
i +O(r−3/2), so that Ar in (10) is independent of (u,φ)

at least up to order r−3/2. This guarantees that the gauge transformation moving from Lorenz
gauge to radial gauge can indeed be chosen so as to leave Au and Aφ untouched, at least at
leading order.

2.2 Fall-offs in Bondi gauge

Having determined the electromagnetic fall-offs that will be used throughout the paper, we
now investigate them in detail and solve Maxwell’s equations in Bondi coordinates, near null
infinity, and in radial gauge Ar = 0. We stress that essentially identical results will hold even
in the presence of gravitation (see section 3.2), so this is a key prerequisite for all that follows.

Fall-offs. We start with the detailed form of the fall-off conditions (1) for the Maxwell field:

Au = E ln r
︸︷︷︸

Coulombic

+ G +
∑

m∈N/2

⌈m⌉
∑

n=0

Am,n
u
(ln r)n

rm
, (11a)

Aφ = Aℓφ ln r + A0
φ +
∑

m∈N/2

⌈m⌉
∑

n=0

Am,n
φ

(ln r)n

rm
+ C
p

r
︸︷︷︸

radiative

. (11b)

Here the sum over m includes both integer and half-integer powers of r, ⌈·⌉ denotes the ceiling
function,2 and each component of the form A×× is a priori an arbitrary function of (u,φ). Note
the leading Coulombic data (electric charge aspect) E(u,φ) in (11a): This mimics the Coulomb
solution (5) and the fall-off in (10), but now includes an angular dependence to account for the
possibility of Lorentz boosts (and ultimately superrotations, as we shall see). Also note how Aφ
in (11b) has an overleading term C

p
r with respect to Au, containing a field suggestively called

C(u,φ) in analogy with the Bondi shear of 4D gravity. Indeed, C will turn out to incorporate
radiative degrees of freedom as in (10), and its time derivative (2) will be the electromagnetic
news.

2Note that nothing requires for now that the sums over n in (11) stop at n = ⌈m⌉. One could a priori consider
expansions more general than (11). However, Maxwell’s equations turn out to impose Am,n>⌈m⌉

u,φ = 0. We chose to
include this piece of information as a defining property in (11).
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A remark is in order regarding the field G(u,φ) in (11a). Namely, the argument in ln r
must be dimensionless, so an implicit radial constant r0 was set to unity; the first two terms
in (11a) should thus be understood as E ln(r/r0) + G. One could be tempted to absorb G in
the definition of r0 by rescaling the radial coordinate, but we will keep G(u,φ) as a separate,
independent field because it will ultimately appear in asymptotic charges.

Equations of motion. Starting with the fall-offs (11), one can solve the vacuum Maxwell
equations∇µFµν = 0, which are always valid away from sources. The radial Maxwell equation
∇µFµr = 0 then determines the scalar potential Am>0,n

u in terms of the vector potential Aφ .
More precisely, solving recursively in 1/r, one gets the leading-order behaviour

∇µFµr =O(r−3) ⇒

¨

A1/2,1
u = 0 ,

A1/2,0
u = 2C ′ ,

(12)

while subleading components are relegated to appendix A.1. As for the angular Maxwell equa-
tion ∇µFµφ = 0, it determines the time evolution of the coefficients of Aφ . Again solving
recursively in 1/r, one finds

∇µFµφ =O(r−2) ⇒























Ȧℓ
φ
= E′ ,

Ȧ0
φ
= E′ + G′ ,

Ȧ1/2,1
φ

= 0 ,

Ȧ1/2,0
φ

=
3
2

�

1
4

C + C ′′
�

.

(13)

These equations, along with (12), show that the whole dynamics is fixed by C(u,φ) along
with the Coulombic data E(u,φ) and the function G(u,φ). Finally turning to the remaining
Maxwell equation, one obtains

lim
r→∞

(r∇µFµu) = 0 ⇒ Ė = 0 . (14)

Thus the Coulombic data is forced by dynamics to be time-independent: E = E(φ). This is in
fact the only contribution in the temporal Maxwell equation. Indeed, since∇µFµr=0=∇µFµφ
has already been solved, one can deduce from the identity∇µ∇νFµν = 0 that ∂r(r∇µFµu) = 0,
which means there is a single term in the radial expansion. Note that the solutions (12), (13)
and (14) are all linear in the Maxwell fields, while the corresponding solutions in Einstein–
Maxwell theory are non-linear due to gravitational backreaction (see appendix A).

Gauge-invariant fields. With the fall-offs (11), the components of the Faraday tensor are

B := Frφ =
C

2
p

r
+

Aℓ
φ

r
+O(r−3/2) , (15a)

Er := Fur =−
E
r
+

C ′

r3/2
+O(r−2) , (15b)

Eφ := Fuφ= N
p

r + E′ +O(r−1/2) , (15c)

where N is the news (2). We stress again that the radiative and Coulombic data in the radial
electric field (15b) do not appear at the same order, differently from what happens in 4D. The
fact that the boundary conditions (11) include both Coulombic and radiative data can then
also be seen from the Newman–Penrose formalism. Indeed, consider the triad of vectors

ℓ := ∂r , n := −∂u +
1
2
∂r , m :=

1
r
∂φ , (16)
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such that gµν = ℓµnν + ℓνnµ + mµmν be the inverse of the Minkowski metric (9) in Bondi
coordinates. The triad is thus null and normalized, and contracting its elements with the
Faraday tensor (15a) yields the Maxwellian Newman–Penrose scalars

Φ0 := Fµνℓ
µmν =

C
2r3/2

+O(r−2) , (17a)

Φ1 := Fµνn
µℓν =

E
r
+O(r−3/2) , (17b)

Φ2 := Fµνn
µmν= −

N
p

r
+O(r−1) , (17c)

where Φ1 and Φ2 respectively identify Coulombic and radiative data.
For future use in the Einstein equations, let us compute the (symmetrized) electromagnetic

energy-momentum tensor

Tµν = 2FµαFν
α −

1
2

gµνFαβ Fαβ . (18)

Its components Tuu and Tuφ , written in Bondi coordinates, respectively measure energy fluxes
and angular-momentum fluxes. In the case at hand, gµν is the Minkowski metric (9) and one
finds

Tuu =
2N2

r
+O(r−3/2) , Tuφ = −

2N E
p

r
+

2
r

�

NC ′ − EE′
�

+O(r−3/2) . (19)

Note how the energy density Tuu involves the square of the news; this will eventually yield
a Bondi mass loss formula for the dynamical metric. Also note that the angular momentum
density Tuφ depends not only on the radiative field C , but also on the Coulombic data E.
The same property holds in 4D Maxwell theory, and is usually considered as a puzzle since
one naïvely expects no Coulombic data to contribute to the radiation of angular momentum
[89, 104, 105]. Another puzzle, albeit one that is specific to 3D, is that Tuφ integrated on the
asymptotic circle appears to be divergent owing to the measure rdφ. A resolution of both
puzzles will come from the asymptotic charge (65a), which is finite and has a purely radiative
flux sourced by the news.

2.3 Electromagnetic memory

We close this section with a short discussion of the electromagnetic ‘kick’ memory effect [91],
partly to illustrate how 3D and 4D differ. Consider a particle with mass m and charge q whose
path in spacetime traces some worldline with proper 3-velocity v. The particle is subjected
to some external electromagnetic field Fµν, whereupon its proper acceleration is given by the
Lorentz force

v̇µ =
q
m

Fµν vν . (20)

To see how this leads to memory, write the proper velocity as v = α∂u+β∂r + (γ/r)∂ϕ. Using
the Faraday tensor (15a), the equations of motion (20) become

α̇∼ −
E
r
α , β̇ ∼ −

Ċ
p

r
γ , γ̇∼ −

Ċ
p

r
α , (21)

at leading order in 1/r. Thus, the angular acceleration γ̇ is determined by the news, as in
4D [91]; but in contrast to 4D, the effect is suppressed by a factor 1/

p
r. For a non-relativistic

particle with α ∼ 1, a finite burst of radiation thus yields a net change of angular veloc-
ity given by

∆γ∼ −
∆C
p

r
, (22)
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where the right-hand side involves the integral of electromagnetic news:

∆C(φ) := C(u= +∞,φ)− C(u= −∞,φ) =

∫

du N(u,φ) . (23)

The velocity change (22) is non-zero at finite r, but it decays as r →∞. As a consequence,
the memory effect (22) is unrelated to the leading surface charges of Maxwell theory, which
typically involve integrals of the Coulombic (as opposed to radiative) data E(φ) over the celes-
tial circle: See (52) below. We will see nevertheless that subleading electromagnetic charges
involve contributions of the form C ′/

p
r (see (53) below). One may view this as yet another

manifestation of the mismatch between radiative and Coulombic fall-offs in 3D. By contrast,
4D electromagnetic memory involves a net change in angular velocity that is finite at infin-
ity [91] and may be seen as a vacuum transition under leading asymptotic symmetries.

3 Setup for Einstein–Maxwell theory

In this section, we gather the ingredients needed to study asymptotic symmetries in Einstein–
Maxwell theory. Starting from the Lagrangian, we compute the Noether current and the equa-
tions of motion, which we then solve with the fall-offs (11) in order to characterize the solution
space. We conclude with a digression on simple zero-mode configurations.

3.1 Lagrangian and Noether currents

Consider the Lagrangian density for 3D Einstein–Maxwell theory:

L= 1
2

p

−g
�

R− FµνFµν
�

. (24)

The equations of motion obtained by varying the corresponding action with respect to Aν and
gµν are the standard Maxwell and Einstein equations3

∇µFµν = 0 , Eµν := Gµν − Tµν = 0 , (25)

with Gµν the Einstein tensor and Tµν the energy-momentum tensor (18).
The pre-symplectic potential θ is identified as usual from the variation of the Lagrangian.

More precisely, one has δL= (EOM)δ(Aµ, gµν) + ∂µθµ with

θµ =
1
2

p

−g
�

gαβδΓµ
αβ
− gµαδΓ β

αβ
− 4FµνδAν
�

. (26)

This is the starting point of the covariant phase space derivation of Noether charges associated
with gauge and diffeomorphism symmetries [106]. Indeed, any infinitesimal diffeomorphism
ξ accompanied by a gauge transformation ϵ transforms the metric and the electromagnetic
potential according to δξ,ϵ gµν = Lξgµν and δξ,ϵAµ = LξAµ + ∂µϵ. The corresponding trans-
formation of the Lagrangian is δξ,ϵL = LξL = ∂µ(ξµL), and the ensuing off-shell Noether
current is Jµ = θµ[δξ,ϵ]− ξµL, where θ is given by (26). In the case at hand, one finds

Jµ =
p

−g ξν
�

Eµν + 2Aν∇αFµα
�

+
1
2

p

−g∇ν
�

∇νξµ −∇µξν − 4Fµν(ξαAα + ϵ)
�

. (27)

On-shell, the first term vanishes by virtue of the equations of motion (25). The remaining
surface term involves the integrand of the Noether charge, namely the ‘Komar–Maxwell aspect’

Kµν
ξ,ϵ =

1
2

p

−g
�

∇νξµ −∇µξν − 4Fµν(ξαAα + ϵ)
�

. (28)

The latter will be used below to compute asymptotic charges.
3The tensor Eµν of the Einstein equation in (25) has nothing to do with the electric charge aspect E in (11a).
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3.2 Fall-offs and radiative solution space

This section is the Einstein–Maxwell analogue of section 2.2. We specify gauge and fall-off
conditions, then explain the construction of the corresponding solution space.

Fall-offs and gauge conditions. In order to solve the field equations, one first has to pick
gauge and fall-off conditions for the metric and the Maxwell field. For the latter, we choose as
before radial gauge Ar = 0 and the fall-offs (11). For the metric, we work in Bondi coordinates
and consider the standard line element [107] that generalizes the pure Minkowski form (9):

ds2 = Ve2βdu2 − 2e2βdu dr + r2(dφ − Udu)2 , (29)

where (β , U , V ) a priori depend on all three coordinates (u, r,φ). The metric is thus written
in Bondi gauge, with the three gauge conditions gr r = 0= grφ and gφφ = r2.

Bondi hierarchy of field equations. Our goal is now to determine the perturbative large-r
behaviour of the functions (β , U , V ) thanks to the equations of motion (25). This is detailed
in appendix A. The construction follows the so-called Bondi hierarchy [6], where one first
solves hypersurface constraint equations (which are differential equations in r), before listing
the true evolution equations in retarded time u. This resolution of the field equations can be
summarized as follows.

First, the Einstein field equation Er r = 0 determines the radial expansion of β in terms
of the components of Aφ . The constraint Erφ = 0 then fixes the radial expansion of U in
terms of Aφ and Au, up to a radial integration constant that is ultimately identified with the
angular momentum aspect L(u,φ). The radial Maxwell equation ∇µFµr = 0 then yields the
coefficients Am>0,n

u in terms of (E, Aφ). Finally, the remaining hypersurface constraint Eru = 0
determines the radial expansion of V up to a radial integration constant, namely the mass
aspect M(u,φ). The angular component ∇µFµφ = 0 of the Maxwell equation is then a true
evolution equation that determines the time evolution of Aφ , aside from that of the leading
term C , while the equation ∇µFµu = 0 sets Ė = 0 as in the earlier Minkowski-space result
(14). Finally, Euφ = 0 and Euu = 0 determine the evolution of angular momentum and mass
[see (33) below], whereupon Eφφ = 0 is trivially satisfied.

A remark: In the solution for β and U , we have set to zero the two radial integration con-
stants β0(u,φ) and U0(u,φ) appearing at order r0. These functions parametrize the induced
boundary metric onI + and can be included in the solution space of 3D vacuum gravity [97]. It
would be interesting to investigate the effects of these boundary fields in the case of Einstein–
Maxwell theory, but this goes beyond our scope here.

Solution space. At the end of the day, with the gauge and fall-off conditions (11)–(29), the
non-vanishing components of the metric in Bondi gauge are

guu = 2E2(ln r) + 2M +O(r−1/2) , (30a)

gur = −1+
C2

2r
+O(r−3/2) , (30b)

guφ =
8
3

p
r C E + 2(ln r)EAℓφ + L +O(r−1/2) , (30c)

gφφ = r2 . (30d)

The components of the Faraday tensor are still given by (15a), as in Minkowski space. The fact
that electromagnetic aspects of the problem are so weakly affected by gravity may be viewed as
a consequence of the absence of local gravitational degrees of freedom. Note, for comparison
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with reference [1], that the dictionary between our notations and those of [1] is obtained with
the replacements

E→−λ , Aℓφ → α , C → 0 , M →
θ

2
, L→

1
2

N [1] −λα . (31)

We stress again that the electromagnetic radiative data C vanishes identically in [1].
As in section 2.2, gauge-invariant fields can readily be deduced from the results (15a)

and (30). Thus the (uu) and (uφ) components of the stress-energy tensor are given again
by (19), and manifestly affect the metric at leading order in 1/r since the components (30)
only reduce to the standard ones of pure gravity [13] when E = C = 0. As for the Newman–
Penrose formalism, the triad (16) should now be replaced by the one appropriate for the metric
in Bondi gauge (29):

ℓ= ∂r , n= −e−2β
�

∂u +
V
2
∂r + U∂φ

�

, m=
1
r
∂φ . (32)

The corresponding Newman–Penrose Maxwell scalars have once again the expansion (17), as
in Minkowski space at leading order.

An important feature of the solution space concerns the nature of the free data on I +.
Indeed, the functions C(u,φ) and G(u,φ) in (11) do not satisfy any evolution equation in u:
Their time evolution on I + is unconstrained. As mentioned in the introduction, the presence
of two free functions where one expects a single one (since 3D Maxwell theory has a single
local degree of freedom) may seem puzzling. From the energy flux (19) however, it is clear
that C(u,φ) is the electromagnetic shear; by contrast, G is a residual gauge degree of freedom
akin to those that can be unfrozen in 4D pure gravity [53, 54] or in vacuum 3D gravity with
a free boundary metric [96,97]. Aside from this free data on I +, the solution space contains
an infinite amount of data satisfying evolution equations in u: The mass M(u,φ), the angular
momentum L(u,φ), the charge aspect E(φ), and the components of Aφ other than C . In
particular, the mass and angular momentum aspects, i.e. the terms of order r0 in (30a) and
(30c), satisfy the evolution equations

Ṁ = −2N2 , L̇ = M ′ + EE′ +
1
2

�

CN ′ − 3C ′N
�

. (33)

The time derivative (2), naturally identified as the news, is indeed the quantity appearing in
the flux of energy-momentum tensor rTuu = 2N2 +O(r−1/2) given by (19). It is illuminating
that the evolution of the mass aspect in (33) takes a form similar to the 4D Bondi mass loss of
pure gravity:4 It is sourced by the electromagnetic news and exhibits that 3D Einstein–Maxwell
theory with radiative fall-offs is analogous to a dimensional reduction of 4D pure gravity. At
the difference with the 4D case however, one should note that the fluxes on the right-hand
side of the evolution equations (33) do not involve any soft term linear in the news.

The analogy with 4D pure gravity is further strengthened by the computation of the on-
shell symplectic potential (26). Its radial and temporal components are indeed given by

θ r =
1
4
δ
�

4(ln r)E2 + 2E2 + 2M − CN
�

+ NδC + EδG
︸ ︷︷ ︸

non-exact

+O(r−1/2) , (34a)

θu =
CδC

r
+O(r−3/2) , (34b)

where θ r contains a non-exact symplectic flux with two contributions: The first, NδC , is the
3D analogue of the term NabδCab in 4D pure gravity; the second, EδG, is sourced by the extra
free field G(u,φ) in the solution space. This is the origin of the spurious flux identified in [1],
which will appear in the asymptotic charges. For the time being, we keep both sources of flux
non-vanishing; we will set G to zero only later, when studying surface charges.

4The evolution of angular momentum does as well, with the addition of a Coulombic term, but the comparison
with the 4D equations is perhaps less striking.
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3.3 Zero-mode solutions and angular momentum

Having characterized the solution space, it is illustrative to study ‘zero-mode solutions’, i.e.
configurations in which all fields on I + are constant parameters. In pure AdS3 gravity with
Brown–Henneaux boundary conditions [58], such zero-modes span a 2D parameter space in-
dexed by mass and angular momentum, containing in particular black holes [108], conical
deficits and excesses, and certain spacetimes with closed time-like curves (see e.g. the phase
diagram in [65, fig. 8.5]). The flat limit of these vacuum solutions respectively results in flat-
space cosmologies, conical deficits and conical excesses, while solutions with closed time-like
curves are washed out [61].

The solution space built above contains purely gravitational data (i.e. data that is also
present in the vacuum case), namely the mass M and the angular momentum L. In addition, it
includes an infinite amount of Maxwell data: The shear C , the spurious field G, the Coulombic
electric charge aspect E, and all the components in the radial expansion of Aφ . When search-
ing for zero-mode solutions, it is natural to switch this all off except for the electric charge
E. One thus seeks exact solutions labelled by three constant parameters: The mass M , the
angular momentum L, and the electric charge E. We will indeed see in section 4.2 that these
are the parameters conjugate to time translations, rotations, and global U(1) transformations
respectively.

One property of such zero-mode configurations deserves special attention.5 Namely, when
all the Maxwell data is switched off except the charge E, the (appended) equation of motion
(A.15) imposes EL = 0, implying that the solution cannot have both non-zero angular mo-
mentum L and non-zero electric charge E. One might be tempted to conclude that a spinning
charged solution is necessarily radiative, but this is not so, since a consistent solution space
can be obtained even when C = 0 [1]. Instead, all (A.15) requires is that solutions having
both L ̸= 0 and E ̸= 0 include other modes of Aφ; to the best of our knowledge, there is no
closed-form expression for such solutions.

The same conclusion can be reached using a flat limit of charged Bañados–Teitelboim–
Zanelli (BTZ) solutions in AdS3. Momentarily letting Λ= −1/ℓ2, an exact solution to the field
equations ∇µFµν = 0= Gµν +Λgµν − Tµν is indeed given in coordinates (t, r,φ) by [109]

Aµdxµ =
Q
p

2(1− L2/ℓ2)
(ln r)
�

dt − L dφ
�

, (35a)

ds2 =

�

Nr
r2

ρ2
+ρ2N2

φ

�

dt2 − N−1
r dr2 + 2ρ2Nφ dt dφ +ρ2dφ2 , (35b)

where the radial coordinates r and ρ are related by

ρ2 = r2 +
L2

1− L2/ℓ2

�

M +Q2(ln r)
�

, (36)

and the shift components are

Nr = −
r2

ℓ2
+M +Q2(ln r) , Nφ = −

L
ρ2(1− L2/ℓ2)

�

M +Q2(ln r)
�

. (37)

The free parameters in (35) are (M , L,Q), respectively fixing the mass, the angular momentum
and the charge of the black hole. In the neutral limit Q = 0, the metric (35b) reduces to that
of a BTZ black hole [108,110], whose ‘standard’ metric is obtained when using ρ as the radial

5What follows is a digression on angular momentum that has few implications for the rest of the paper. The
hasty reader may thus go straight to section 4.
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coordinate. Taking instead the flat limit ℓ→∞ yields a solution of (25) with

Aµdxµ =
Q
p

2
(ln r)
�

dt − L dφ
�

, (38a)

ds2 = Nr dt2 − N−1
r dr2 − 2LNr dt dφ + (r2 + L2Nr)dφ

2 , (38b)

and Nr = M +Q2(ln r). In order to put this line element in Bondi gauge (29), we introduce
the new coordinate u= t + f (r)− Lφ with ∂r f (r) = N−1

r , whereupon

Aµdxµ =
Q
p

2
(ln r)
�

du− N−1
r dr
�

, ds2 = Nr du2 − 2du dr + r2dφ2 . (39)

Here the component Ar can be trivially gauged away since it only depends on r. As a result,
in Bondi gauge, the flat limit of a charged BTZ black hole has no angular momentum, and is
parametrized only by the mass M and the electric charge Q. The angular momentum L has
indeed been reabsorbed from (38) in the change of coordinates that puts the metric in Bondi
gauge.

This result may seem surprising at first: Had we set Q = 0 from the outset, the angular
momentum would have been reabsorbed just as well, seemingly contradicting the existence
of flat-space cosmologies with non-zero angular momentum. But in fact, the simplification
agrees with the fact that all solutions of 3D gravity are locally isometric to a maximally sym-
metric spacetime, implying the existence of a diffeomorphism that indeed changes angular
momentum. To see this, start from the flat-space zero-mode metric with mass M ,

ds2 = Mdu2 − 2du dr + r2dφ2 , (40)

and change coordinates according to6

u 7→ u+
1
M

�

Lφ − r +

√

√

r2 −
L2

M

�

, r 7→

√

√

r2 −
L2

M
, φ 7→ φ −

1
p

M
arctanh

�

r
p

M
L

�

.

(41)

Using this in (40) yields the new metric

ds2 = Mdu2 − 2du dr + 2Ldu dφ + r2dφ2 , (42)

which is now a flat-space zero-mode with both mass M and angular momentum L. Crucially
though, the transformation (41) is a ‘large’ diffeomorphism that affects asymptotic charges.
The steps leading from (35) to (39) similarly involved a large diffeomorphism to bring the flat
limit of the charged BTZ black hole in Bondi gauge, thereby explaining why angular momen-
tum is ultimately absent from (39).

4 Asymptotic symmetries and charges

The solution space of a theory is a covariant version of its phase space [111]. In the case at
hand, we have just obtained the covariant phase space of 3D Einstein–Maxwell theory contain-
ing both radiative and Coulombic data. We now investigate its (asymptotic) symmetries and
derive the associated charges. As we shall see, the presence of radiation entails non-integrable
terms whose influence on the charge algebra will be studied at length in section 5.

6We do not discuss the range of the coordinates since we are only interested in producing a new solution.
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4.1 Symmetry generators and transformation laws

We start with the derivation of the asymptotic Killing vectors ξµ = (ξu,ξr ,ξφ), seen as gen-
erators of diffeomorphisms that preserve the gauge and fall-off conditions used in writing the
metric (29). In particular, any such diffeomorphism must preserve the Bondi gauge choices
gr r = 0= grφ and gφφ = r2. Computing the relevant Lie derivatives thus imposes the follow-
ing conditions:

Lξgr r = 0 ⇒ ξu = f , (43a)

Lξgrφ = 0 ⇒ ξφ = g − f ′
∫ ∞

r

e2β

r̃2
dr̃ = g +

f ′

r
+O(r−2) , (43b)

Lξgφφ = 0 ⇒ ξr = r
�

U f ′ − (ξφ)′
�

= −r g ′ + f ′′ +O(r−1/2) , (43c)

where f = f (u,φ) and g = g(u,φ) are free functions at this stage. An additional constraint is
that ξµ needs to preserve the fall-offs (29). Namely, the condition gur = −1+O(r−1) requires
ḟ = g ′, and preserving guφ =O(

p
r) imposes ġ = 0. In short,

f = T + ug ′ , Ṫ = 0= ġ , (44)

where T (φ) and g(φ) are arbitrary functions on the celestial circle, respectively generating su-
pertranslations and superrotations [13]. The remaining fall-off guu =O(ln r) is automatically
preserved.

Note that asymptotic Killing vector fields need not preserve the gauge and fall-off condi-
tions used in the Maxwell field (11), since any change due to a diffeomorphism can be reab-
sorbed by a suitable gauge transformation. In particular, one needs to ensure that the radial
gauge Ar = 0 is preserved when acting on A with the allowed symmetries δξ,ϵAµ = LξAµ+∂µϵ.
Requiring LξAr + ∂rϵ = 0 with ξ given by (43)–(44) thus leads to the gauge parameter

ϵ = α(u,φ) + f ′
∫ ∞

r

e2βAφ
r̃2

dr̃ = α(u,φ) +
2
p

r
f ′C +O(r−1) . (45)

Here α(u,φ) is a free function on I +, generating ‘large gauge transformations’ of the Maxwell
field.7 We stress that its time dependence is unconstrained (which will come back to haunt us
when defining charges). The remaining fall-off conditions in (11) are automatically satisfied.
Asymptotic symmetry generators are thus labelled by a bms3 vector field (T, g) and a function
α on I +. We shall return to this structure shortly.

Transformation laws. The asymptotic symmetries obtained here were found off-shell, i.e.
regardless of the equations of motion. In practice, their action on covariant phase space is
obtained by computing Lie derivatives and gauge transformations of the solution space of
section 3.2. The resulting transformation laws of the various fields of interest can then be
organized as follows. First, the transformations of the mass and angular momentum aspects
read

δξM = f Ṁ + gM ′ + 2g ′M − g ′′′
︸ ︷︷ ︸

coadjoint bms3

− g ′E2

︸ ︷︷ ︸

Maxwell

, (46a)

δξL = f L̇ + g L′ + 2g ′L + 2 f ′M − f ′′′
︸ ︷︷ ︸

⊃ coadjoint bms3

−2g ′EAℓφ −
1
4

g ′′C2 +
1
2

f ′CN
︸ ︷︷ ︸

Maxwell

, (46b)

7This function α(u,φ) has nothing to do with the u component of the proper velocity in section 2.3.
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where one recognizes the coadjoint representation of the bms3 algebra with central charges
c1 = 0, c2 ̸= 0 [60], supplemented by corrections due to the time dependence of M , L and the
presence of electromagnetic boundary data. Second, the transformations of the electromag-
netic shear and news read

δξ,ϵC =
�

f ∂u + g∂φ +
1
2

g ′
�

C , δξ,ϵN =
�

f ∂u + g∂φ +
3
2

g ′
�

N , (47)

exhibiting the fact that C and N are bms3 primary fields with respective weights 1/2 and 3/2
under superrotations. Note the half-integer labels due to half-integer powers in the fall-offs
(11), reminiscent of the half-integer superrotation weights that are ubiquitous in 4D grav-
ity [82, 112]. Finally, the transformation laws of the remaining leading components of the
Maxwell field are most instructive when imposing the equations of motion. The logarithmic
terms then transform as

δξ,ϵA
ℓ
φ =
�

f ∂u + g∂φ + g ′
�

Aℓφ + f ′E ≈
�

f E + gAℓφ
�′

, (48a)

δξ,ϵE =
�

f ∂u + g∂φ + g ′
�

E ≈
�

gE
�′

, (48b)

so they are both bms3 primary fields with unit weight under superrotations, and they involve
no U(1) gauge parameter. By contrast, the O(1) terms transform as

δξ,ϵA
0
φ =
�

f ∂u + g∂φ + g ′
�

A0
φ − g ′Aℓφ + f ′G +α′ ≈

�

f G + gA0
φ

�′
+ f E′ − g ′Aℓφ +α

′ , (49a)

δξ,ϵG =
�

f ∂u + g∂φ + g ′
�

G − g ′E + α̇ , (49b)

so they also have unit weight under superrotations, but they now involve the large gauge
transformation α, including its time derivative in δG. We will see in section 5 that this time
derivative plays an important role in the reduced phase space where G is set to zero.

Asymptotic symmetry algebra. It is straightforward to compute the Lie bracket of asymp-
totic symmetries, seen as vector fields on phase space. (The Poisson brackets of the cor-
responding canonical charges are a whole other problem, treated separately in section 5.)
Indeed, in terms of the ‘modified bracket’ of [13], designed to take into account field-
dependent parameters, the asymptotic symmetry generators satisfy the commutation relations
�

δξ1,ϵ1 ,δξ2,ϵ2

�

= −δξ12,ϵ12
where

ξ12 :=
�

ξ1,ξ2

�

∗ :=
�

ξ1,ξ2

�

−δξ1
ξ2 +δξ2

ξ1 , ϵ12 := Lξ1
ϵ2 −δξ1,ϵ1ϵ2 − (1↔ 2) . (50)

In the case at hand, all symmetry generators are field-independent, so the δ pieces of (50) all
vanish. The Lie bracket of asymptotic symmetry generators thus reads

f12 = f1 g ′2 + g1 f ′2 −δξ1
f2 − (1↔ 2) , (51a)

g12 = g1 g ′2 −δξ1
g2 − (1↔ 2) , (51b)

α12 = f1α̇2 + g1α
′
2 −δξ1,ϵ1α2 − (1↔ 2) , (51c)

showing that the asymptotic symmetry algebra is a semi-direct sum bms3 + C∞(I +), where
bms3 acts by Carrollian conformal transformations on functions on I +. This is the same result
as in [1], which is thus unaffected by our choice of relaxed boundary conditions including C .
However, the presence of C does affect asymptotic charges, as we now show.
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4.2 Asymptotic charges introduced

Let ξ be an asymptotic Killing vector field and let ϵ be an asymptotic U(1) gauge parameter,
both as described above. They generate symmetries of the radiative phase space and should
therefore define ‘canonical generators’, meaning functions on phase space—or charges—that
produce the corresponding transformations in terms of the Poisson bracket. The functional
differential of these charges can be computed thanks to the Iyer–Wald formula [113], starting
from the symplectic potential (26) and the Komar–Maxwell aspect (28). The upshot is the
following variational one-form in field space:8

/δQξ = δKur
ξ − Kur

δξ + ξ
uθ r − ξrθu (52)

◦
= f
�

δM + 2NδC
︸ ︷︷ ︸

non-integrable

�

+ gδ
�

L +
1
4
(C2)′ − E
�

Aℓφ + 2A0
φ

�

�

− 2
�

α+ f G
�

δE
︸ ︷︷ ︸

non-integrable

+O(r−1/2) .

The same charge is found with the Barnich–Brandt formalism [114], so there is no ambiguity
for now. An aside on notation: For compactness, we will always work with charge ‘aspects’
such as (52), as opposed to actual charges. The latter are celestial integrals of the former, so
this convention allows us to omit the integral sign

∮

S1 throughout. Since integrations by parts

in ∂φ will nevertheless be needed, the symbol
◦
= stands for equalities where all boundary terms

in ∂φ have been discarded. The notation thus allows us to integrate by parts without having
to carry the integral sign.

Several comments are in order regarding the charge variation (52). First, the asymptotic
charge limr→∞ /δQξ is finite. This is already a non-trivial result since (i) the fall-offs (11)
are weaker than those of [1] due to the radiative field C , and (ii) the integrated angular
momentum defined from the energy-momentum tensor (19) is itself divergent (recall that
a measure factor r is required when computing the integral). Second, assuming for now
that δ f = δg = δα = 0 (i.e. all asymptotic symmetry generators are field-independent), the
charge (52) contains two non-integrable contributions, one of which ( f GδE) is unrelated to
electromagnetic radiation. The charge thus requires a more careful study, deferred to the next
section, in order to understand (i) how to extract its integrable part, (ii) whether the integrable
part is conserved or not, and (iii) how to compute the charge algebra.

Finally, a comment on the 3D electromagnetic memory effect. We saw in (22) that the
change in angular velocity is sourced by the radiative field C , but it is clear from the charge
(52) that this memory term is unrelated to charges of large U(1) gauge transformations, since
the latter only involve the Coulombic data E. There is thus no relation between memory and
leading charges. However, one can push the radial expansion of the charge variation one order
further to find

/δQϵ = −2ϵδ
�p

−gFur
�

= −2αδE +
2
p

r

�

αδC ′ − 2 f ′CδE
�

+O(r−1) , (53)

where the r−1/2 term now involves a pairing αδC ′ that is reminiscent of the change of velocity
(22). One can then invert the operator ∂φ (say in the space of functions with vanishing mean)
and interpret the memory effect (22) as a transition between vacua whose subleading U(1)
charges differ. A similar link between memory and vacuum transitions exists in 4D, except that
it crucially involves leading surface charges [91]. Thus, 3D electromagnetic memory is related
to surface charges, but the link between them is less tight than in the 4D infrared triangle [17].
To the best of our knowledge, this is the first explicit (yet very simple) example of such a
mismatch. It begs the question of the possible matching between asymptotic symmetries,

8For compactness, we denote the charge simply by Qξ although it depends on both ξ and the U(1) parameter ϵ.
The notation /δQξ represents a one-form in field space that may or may not be (and generally is not) exact.
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memories and soft theorems in 3D (as opposed to 4D). We hope to come back to this issue in
future work.

5 Brackets and charge algebras

We now turn to a detailed analysis of the charges (52) and their brackets, i.e. the correspond-
ing charge algebras. This involves several deep problems. The first is that charges are not
integrable in the presence of the free data C and G, so a prescription is required to choose
their integrable part and compute the bracket. The second is that (52) contains two sources of
non-integrability, and it is unclear if both should be called ‘fluxes’ since only the contribution
of shear and news (NδC) is identified as radiation. The study of the charge therefore requires
a proper treatment of the remaining ‘spurious flux’ (GδE).

To explore these issues, we will start by reviewing the commonly used Barnich–Troessaert
(BT) bracket [14] and pointing out its (known) split ambiguities. We will then fix these, at least
partly, by the Wald–Zoupas (WZ) prescription, before briefly discussing the so-called Noether
bracket [98] and finally turning to the Koszul bracket [100].

Several possibilities and ambiguities will thus be covered, but the main conclusion is as
follows: The most reasonable approach seems to be to set G = 0 and use the Koszul bracket
[100]. A virtue of this prescription is to yield a charge algebra that does not depend on the
split between integrable part and flux, while the condition G = 0 ensures one can define
charges that are conserved in the absence of news. With these properties, both physically and
mathematically well-motivated, the resulting algebra exhibits a field-dependent cocycle (and
is therefore strictly speaking a Lie algebroid). In summary:

Setting G = 0, consider the integrable charges Qξ in (65a).
These are Wald–Zoupas charges satisfying Q̇ξ = 0 in the absence of news.
Then using the Koszul bracket (80), which is crucially split-independent,

charges represent the symmetry algebra with the field-dependent cocycle (68).

Let us now explore the various possibilities in detail.

5.1 Barnich–Troessaert bracket

The first proposal for charge brackets in the presence of fluxes was given by Barnich and
Troessaert in [14]. The computation of the eponymous bracket requires a split of the charge
between an integrable part δQξ and a flux piece Ξξ[δ], both of which are variational one-
forms on field space (with the integrable piece being the one that is exact). Such splits will
play a key role throughout this section. In the case at hand, the most obvious split of the
charge variation (52) is

/δQξ
◦
= δQξ +Ξξ[δ] +O(r−1/2) , (54)

with an integrable piece and a flux respectively given by9

Qξ = f M + g
�

L +
1
4
(C2)′ − E
�

Aℓφ + 2A0
φ

�

�

− 2αE (integrable charge), (55a)

Ξξ[δ] = 2 f
�

NδC − GδE
�

(flux). (55b)

9Technically, the charge (55a) is the integrated version of an exact (i.e. integrable) one-form in field space, but
the ‘integrable’ terminology is more standard so we stick to it.
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Several comments are in order about this split. First, it reproduces the choice made in [1]
when C = 0. Its integrable part (55a) exhibits the familiar supertranslation charge aspect
f M , the U(1) charge aspect −2αE, and the superrotation charge aspect g L supplemented by
contributions due to electromagnetic boundary data. Second, note that we are being agnostic
at this stage about the difference between the two non-integrable contributions NδC and GδE,
treating them as fluxes on equal footing. Finally, note for future reference that the very validity
of the split relies on the assumption that the asymptotic symmetry parameters ( f , g,α) are all
field-independent; we will come back to this subtle point when setting G = 0 to define WZ
charges in section 5.2.

Splits of charges between integrable pieces and fluxes form the starting point of the charge
algebra. Indeed, the BT bracket of charges is defined as [14]

�

Qξ1
,Qξ2

	

BT
:= δξ2

Qξ1
+Ξξ2

[δξ1
] , (56)

and satisfies the key property that the charge algebra reproduces the algebra of asymptotic
symmetry generators, possibly up to a 2-cocycle K:

�

Qξ1
,Qξ2

	

BT =Q[ξ1,ξ2]∗ + Kξ1,ξ2
. (57)

In the case at hand, one can use (55) along with the transformation laws (46)–(49) to sepa-
rately evaluate the two contributions on the right-hand side of (56). Using again equalities up
to integration by parts on the celestial angle, one finds

δξ2
Qξ1

◦
=Q[ξ1,ξ2]∗ − ( f1 g ′′′2 − f2 g ′′′1 )− ( f1 g ′2 − f2 g ′1)E

2 + 2( f1α̇2 − f2α̇1)E

− 2g1E
�

f2G
�′ − 2 f1 f2N2 − 2g1 f2C ′N − g ′1 f2CN , (58a)

Ξξ2
[δξ1
]
◦
= 2 f2
�

Nδξ1
C − Gδξ1

E
�

◦
= 2g1E
�

f2G
�′
+ 2 f1 f2N2 + 2g1 f2C ′N + g ′1 f2CN , (58b)

where the bracket of asymptotic symmetry generators in (58a) is given by (51). This confirms
that the charge algebra satisfies the expected relation (57), with the centreless bracket (51)
and a cocycle that turns out to be

Kξ1,ξ2

◦
= − (T1 g ′′′2 − T2 g ′′′1 )
︸ ︷︷ ︸

standard bms3

− ( f1 g ′2 − f2 g ′1)E
2 + 2( f1α̇2 − f2α̇1)E

︸ ︷︷ ︸

field-dependent piece

. (59)

Here one may recognize the standard central extension pairing superrotations and super-
translations in bms3 [60], and the E-dependent cocycle is identical to that of [1]. This field-
dependence is reminiscent of that of the BMS4 charge algebra [14]. A key difference, however,
is that the cocycle of 4D gravity involves the gravitational shear, while here it is due to the
Coulombic data E.

The presence of field-dependent central extensions is typically expected to affect physics—
e.g. through representations (say coadjoint and their unitary quantization) and the ensuing
holographic dual. Accordingly, it is essential to understand one’s leeway in writing down
a cocycle such as (59). How is it affected by the choice of split (54)? Are there choices that
cancel the field dependence? The remainder of this entire section is devoted to such questions.

Split ambiguities of charge algebras. To probe how the BT cocycle is affected by the split
(54), one can redefine the latter by shifting the integrable piece as

δQξ +Ξξ[δ] = δ(Qξ + Sξ)
︸ ︷︷ ︸

δeQξ

+Ξξ[δ]−δSξ
︸ ︷︷ ︸

eΞξ[δ]

. (60)
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Here Sξ is any ‘shift’ functional on solution space that is linear in the asymptotic symmetry
parameters ( f , g,α). Changing the split in this way furnishes a new BT bracket (56):

�

eQξ1
, eQξ2

	

BT = δξ2
eQξ1
+ eΞξ2

[δξ1
] = eQ[ξ1,ξ2]∗ + Kξ1,ξ2

− Sξ1,ξ2
︸ ︷︷ ︸

shifted cocycle eKξ1,ξ2

, (61)

where the shift of the cocycle is given by Sξ1,ξ2
:= δξ1

Sξ2
−δξ2

Sξ1
+S[ξ1,ξ2]∗ . The latter can be

deduced from the transformation laws (46) once the shift Sξ is given. For example, consider
the following list of shifts:

Sξ = f EG ⇒ Sξ1,ξ2

◦
= −( f1α̇2 − f2α̇1)E + ( f1 g ′2 − f2 g ′1)E

2 , (62a)

Sξ = f M ⇒ Sξ1,ξ2

◦
= ( f1 g ′′′2 − f2 g ′′′1 ) + ( f1 g ′2 − f2 g ′1)E

2 , (62b)

Sξ = T M ⇒ Sξ1,ξ2

◦
= (T1 g ′′′2 − T2 g ′′′1 ) + (T1 g ′2 − T2 g ′1)

�

E2 + 2uN2
�

. (62c)

Note that the last expression involves the pure supertranslation T (φ) defined by (44). Each
of these changes the value of the cocycle (59).

The effect of cocycle shifts such as (62) can be dramatic, possibly even cancelling any
field-dependence. To see this, take the initial split (55) and the cocycle (59) as starting points.
Then shift the integrable charge (55a) by Sξ = f

�

M − 2EG
�

as in (60). Using (62a)–(62b),
the resulting charge algebra takes the form (57) with a cocycle that differs from (59) and
reduces, instead, to eKξ1,ξ2

◦
= −2(T1 g ′′′2 − T2 g ′′′1 ). This is no longer field-dependent, and even

coincides with the standard bms3 central extension [60]. All the field-dependence of (59) has
been compensated by a mere redefinition of the charges! However, one should keep in mind
that the resulting integrable charge in (60) is no longer conserved in the absence of news,
even in the case G = 0. In this sense, asking for field-independent cocycles may be overly
restrictive. Let us therefore study more closely the conservation criteria that can be imposed
on integrable charges, regardless of whether the ensuing cocycles are field-dependent or not.

5.2 Wald–Zoupas splits

Following the WZ prescription [29–31], it is natural to single out the integrable part of the
charge in (54) by the requirement that it be conserved on suitable vacuum configurations.
This was investigated in 4D Einstein–Maxwell theory in [89], where the radiative vacuum can
be defined unambiguously in terms of gravitational and electromagnetic news. In the present
case, however, one has to face the issue of the presence of the two fields C and G. Only the
former has a clear physical interpretation in terms of electromagnetic radiation and gives rise
to news N = Ċ . The vacuum condition that should be used to construct WZ charges is thus
unclear: Should one leave G arbitrary, or instead set G = 0? Here we explore both options in
turn.

Wald–Zoupas split with G ̸= 0. If one insists on keeping G arbitrary (and generally non-
zero), an immediate issue arises: The U(1) symmetry generator (45) and the charge (52)
contain a function α(u,φ) whose dependence on u is arbitrary, so that it cannot appear in
WZ charges (which would prevent any possibility of conservation). A way out is to exclude
the contribution of α from the definition of integrable charges, and define ‘vacua’ as being
solutions with vanishing news. This is indeed a consistent choice of vacuum, since the news’
transformation (47) is homogeneous. Thus, starting from (55a), one may consider the shifted
charge eQξ =Qξ + 2E(gA0

φ
+α) such that the α-dependent piece in (52) is, by definition, part

of the flux Ξξ in (54). Then the derivative ∂ueQξ is proportional to the news, so ∂ueQξ = 0
when N = 0. This is a consistent choice and it can be used in the BT bracket (56), leading in
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particular to a complicated field-dependent cocycle (which we do not display but can be easily
computed). The price to pay is that all electromagnetic charges vanish, by construction. This
is arguably unnatural in a theory that purports to include electrically charged configurations.
Let us therefore explore an alternative route that constrains the time evolution of α by setting
G = 0.

Wald–Zoupas split with G = 0. Setting G = 0 is physically acceptable since it does not
prevent the solution space from describing radiation or electric charge. As can be seen in
(49b), a consistency requirement with G = 0 is to fix the time dependence of the U(1) gauge
parameter to

α(u,φ) = ug ′E +α0(φ) . (63)

Such a constrained time dependence only leaves out one arbitrary function α0(φ), reduc-
ing the algebra bms3 + C∞(I +) mentioned below (51) to its time-independent subalgebra,
bms3 + C∞(S1). The relevant brackets, however, are subtle: They become field-dependent
even without dealing with surface charges. Indeed, the modified bracket (50) now yields

α0,12 = g1α
′
0,2 + f1 g ′2E − (1↔ 2) , (64)

which agrees with [1, eq. (5.1)] and replaces (51c). The algebra bms3 + C∞(S1) is thus
endowed with an ‘exotic’ field-dependent bracket.

This complication extends to surface charges: Since the relation (63) is field-dependent,
it cannot be blindly inserted in (55a). Instead, one must go back to the variational expression
(54) and properly integrate the term αδE. Doing so leads to a new split (54) with

Qξ = f M + g
�

L +
1
4
(C2)′ − E
�

Aℓφ + 2A0
φ

�

�

−
�

ug ′E + 2α0

�

E (integrable charge), (65a)

Ξξ[δ] = 2 f NδC (flux), (65b)

where the integrable part satisfies a WZ conservation property.10 This is because its time
derivative

Q̇ξ
◦
= −2NδξC

◦
= −2 f N2 + g(CN ′ − C ′N) =: Fξ , (66)

vanishes in the absence of news. Note that defining a bracket of fluxes11 as
�

Fξ1
, Fξ2

	

:= δξ2
Fξ1

yields
δξ2

Fξ1

◦
= F[ξ1,ξ2]∗ − ∂u

�

2 f1 f2N2 + 2g1 f2NC ′ + g ′1 f2NC
�

, (67)

which implies that integrated fluxes on I + represent the symmetry algebra, provided both
field configurations at I ++ and I +− (the endpoints of future null infinity) are vacua with N = 0.
Such flux brackets are useful for celestial holography and soft theorems [37, 115], but they
will also provide a useful extra criterion to be satisfied (or violated) by choices of splits (54).
We will therefore return to flux brackets shortly.

With the condition G = 0 and the WZ split (65), the BT bracket represents the asymptotic
symmetry algebra in the sense of (57), now with the aforementioned field-dependent bracket
(64) and a new field-dependent cocycle

Kξ1,ξ2
= − (T1 g ′′′2 − T2 g ′′′1 )
︸ ︷︷ ︸

standard bms3

+(T1 g ′2 − T2 g ′1)E
2

︸ ︷︷ ︸

field-dependent piece

. (68)

10One can also view the integrable part as arising from the WZ formula δQξ + Ξξ[δ] + ξ⌟ϑ, where ϑ is a WZ
potential [29–31]. Choosing ϑ = (NδC)∂r yields ξ⌟ϑ

�

�

S1
∞
= 2(ξrϑu−ξuϑr) = −2ξuϑr = −2 f NδC on the celestial

circle, so the WZ potential cancels the flux piece (65b) and leaves out the WZ charge (65a).
11The same word ‘flux’ refers to two different objects: Non-integrable pieces in charge variations as in (54), and

time derivatives of integrable charges as in (66). In practice, there should be no confusion since the meaning of
the word is always clear from context.
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This coincides with the earlier result (59) upon imposing α̇= g ′E. The same cocycle will occur
with the Koszul bracket in section 5.4, so we highlight it here to stress that it is a genuine split-
independent feature of 3D Einstein–Maxwell theory.

Again, the actual form of the cocycle is not robust under changes of the split (54). For WZ
charges, any shift (60) by a quantity which is conserved in the absence of news is allowed,
since it leaves conservation unaffected. Consider for example the shift (62c) by T M , which is
time-independent when N = 0. Then the WZ split (65) changes into

Qξ = ( f + T )M + g
�

L + 1
4(C

2)′ − E
�

Aℓφ + 2A0
φ

�

�

−
�

ug ′E + 2α0

�

E (integrable), (69a)

Ξξ[δ] = 2 f NδC − TδM (flux). (69b)

With this new split, the time derivative of integrable charges is

Q̇ξ
◦
= −2( f + T )N2 + g(CN ′ − C ′N) =: Fξ , (70)

and vanishes as expected if N = 0. The corresponding cocycle in (57) is now

Kξ1,ξ2
= −2 (T1 g ′′′2 − T2 g ′′′1 )
︸ ︷︷ ︸

standard bms3

−2uN2(T1 g ′2 − T2 g ′1)
︸ ︷︷ ︸

field-dependent piece

, (71)

which is remarkable: The cocycle is still field-dependent, but it becomes field-independent in
the absence of news. This is nearly all one could hope for, but there is a catch: In contrast to
the earlier fluxes (66), the new fluxes (70) fail to represent the symmetry algebra in the sense
of (67). We conclude, at least in the present case, that the following three requirements cannot
be met simultaneously:

(i) Having integrable charges that are conserved in the absence of news;

(ii) having cocycles that are field-independent in the absence of news;

(iii) having fluxes that represent the symmetry algebra in the absence of news, as in (67).

Changing slicings. In the derivation of asymptotic symmetries in section 4, the parameters
( f , g,α) are functions of (u,φ) and appear as radial integration constants. They can therefore
be redefined in an arbitrary manner, possibly even a field-dependent one. This freedom is
known as a ‘change of slicing’, and was studied at length in [96,97,116–118]. It can be used
e.g. to reabsorb ‘spurious fluxes’ or ‘fake news’ appearing because of overly loose boundary
conditions. For example, in [97] the authors studied vacuum 3D gravity with a free boundary
metric on I +, where Iyer–Wald charges generally involve many non-integrable contributions
despite the absence of local degrees of freedom; field-dependent redefinitions of the symmetry
generators (i.e. changes of slicing) can then be used to cancel the spurious non-integrability.

How does this freedom affect the present discussion? In the charge variation (52), the
two non-integrable contributions f NδC and f GδE stand on different footings: The former
cannot be reabsorbed by a change of slicing, but the latter can, namely by redefining the U(1)
parameter as

α= α̃− f G . (72)

One may view this as an indication that the news represents physical flux, while G is a spuri-
ous flux that can be removed. Assuming then that the new parameter α̃ is field-independent
(δα̃= 0), the charge (52) splits into

Qξ = f M + g
�

L +
1
4
(C2)′ − E
�

Aℓφ + 2A0
φ

�

�

− 2α̃E (integrable charge), (73a)

Ξξ[δ] = 2 f NδC (flux). (73b)
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Note that α̃ here is generally time-dependent. Despite this, it satisfies the field-dependent
commutation relations (64) of the time-independent case (with α0 replaced by α̃). As for the
BT bracket (56), it satisfies again the algebra (57) with the same cocycle (68) as in the case
G = 0.

The prescription (73) thus leads to integrable charges in the absence of news, with the
same algebra as WZ charges in the time-independent phase space with G = 0. However, this
does not solve the issue of the arbitrary time dependence in α̃. Indeed, the time evolution of
the integrable part (73a) now reads

Q̇ξ
◦
= Fξ
�

�

(66) + 2E
�

g
�

E + G
�′
+ g ′E − ˙̃α
�

, (74)

whose right-hand side is non-zero even without news. One may imagine cancelling the prob-
lematic second term by imposing the time evolution constraint ˙̃α = g

�

E + G
�′
+ g ′E, but this

reintroduces a field-dependence in α̃, hence new sources of non-integrability and spurious
fluxes... In this sense, changes of slicing do not cure the ambiguities present in the initial bare
charge variation (52). In particular, while they allow for the removal of the spurious flux, they
do not provide an unambiguous prescription for the time evolution of charges.

5.3 Noether split and bracket

For completeness, and in order to illustrate the proposal of [98] on a concrete example, let
us study the so-called Noether split and the associated bracket. For this, we consider again
the general case where G ̸= 0 and the time dependence of the gauge parameter α in (45) is
completely arbitrary. The Noether split consists in fixing the ambiguity in (54) by choosing the
integrable part to be the Noether charge. The latter actually coincides with the Komar–Maxwell
charge (28) for Einstein–Maxwell theory. Thus, the split is chosen using the r-independent
parts of the Noether charge and flux,

Kur
ξ

◦
= −2 f E2(ln r) +Qξ +O(r−1/2) , (75a)

−Kur
δξ + ξ

uθ r − ξrθu ◦= +2 f E2(ln r) +Ξξ[δ] +O(r−1/2) , (75b)

which explicitly yields

Qξ = f
�

1
2

CN − E
�

E + 2G
�

�

+ g
�

L +
5
4
(C2)′ − E
�

Aℓφ + 2A0
φ

�

�

− 2αE (integrable), (76a)

Ξξ[δ] = f
�

δM +
3
2

NδC −
1
2

CδN + 2Eδ
�

E + G
�

�

− gδ(C2)′ (flux). (76b)

With this split, the BT bracket (56) satisfies the charge algebra (57), with a homogeneous part
given by (51) and a field-dependent cocycle12

Kξ1,ξ2
= 2( f1 g ′2 − f2 g ′1)

�

E2 + CN
�

. (77)

This is remarkably simple, given the complicated shift that maps the initial split (55) on the
Noether split (76). Note in particular that all Virasoro-type central extensions [involving third
derivatives as in (59), (68) or (71)] have now disappeared.

The simplification of cocycles is in fact a built-in property of brackets of charges with the
split (76), and it can be pushed further. Indeed, one can check that the cocycle (77) involves
the on-shell Lagrangian density, in the sense that Kξ1,ξ2

= limr→∞(ξr
1ξ

u
2 − ξ

u
1ξ

r
2)L. This is in

fact a special case of a general result shown in [98]. Namely, when using the Noether charge

12A clarification: What we call Kξ is the Noether charge (Komar) aspect (28), while Kξ1 ,ξ2
is a cocycle in the

charge algebra (57). The two objects are completely different, despite their similar notations.

24

https://scipost.org
https://scipost.org/SciPostPhys.16.4.092


SciPost Phys. 16, 092 (2024)

Kξ and the ‘Noetherian flux’ defined as Ξξ[δ] = −Kδξ − ξ⌟θ , the algebra (57) given by the
BT bracket (56) produces a cocycle

Kξ1,ξ2
=
�

ξ1⌟ξ2⌟L
��

�

S1
∞
+ aξ1,ξ2

= lim
r→∞

�

ξr
1ξ

u
2 − ξ

u
1ξ

r
2

�

L+ aξ1,ξ2
, (78)

where L is the Lagrangian density and aξ1,ξ2
accounts for possible anomalies [30], which

happen to be absent in the present setup. This leads to the so-called Noether bracket, defined
in terms of the BT bracket (56) as

�

Qξ1
,Qξ2

	

N
:=
�

Qξ1
,Qξ2

	

BT −
�

ξ1⌟ξ2⌟L
��

�

S1
∞
− aξ1,ξ2

. (79)

Using the charge algebra (57) with the cocycle (78), it is then immediate to show that the
Noether bracket satisfies

�

Qξ1
,Qξ2

	

N = Q[ξ1,ξ2]∗ . This represents the symmetry algebra with
a vanishing cocycle! Of course, the simplification was bound to work, since (79) is just a BT
bracket whose cocycle has been included in the very definition of the bracket. What crucially
makes this possible is the explicit expression (78) of the cocycle, valid only for the Noether
split.

Although the Noether split has the advantage of being unambiguously defined since it
relies on the Noether charge, its drawback is to single out an integrable charge (76a) that
is not conserved in the absence of news. An immediate way to see this is to note that no
condition was imposed on the gauge parameter α(u,φ). Alternatively, fixing G = 0 and the
time dependence of α through (63) gives integrable Noether charges that slightly differ from
(76a), but still satisfy Q̇ξ ̸= 0 in the absence of news. The details are omitted here. Accordingly,
we will not consider the Noether split any further, and now turn instead to one last choice of
bracket.

5.4 Koszul bracket

Let us consider a proposal put forward and investigated by Barnich, Fiorucci, and Ruzziconi
[100], to which we shall refer as the Koszul bracket. Given a split (54) between integrable part
and flux, this bracket is defined as

�

Qξ1
,Qξ2

	

K
:=
�

Qξ1
,Qξ2

	

BT −
∫

γ

�

δξ1
Ξξ2
[δ]−δξ2

Ξξ1
[δ] +Ξ[ξ1,ξ2]∗[δ]

�

. (80)

Here the first term is the BT bracket (56), while the second term involves the integral, along
a path γ, of a one-form in field space defined from the flux Ξξ[δ]. The path is such that
its endpoint is the point in field space where the bracket (80) is meant to be evaluated. The
starting point is arbitrary, and the specific choice of path is irrelevant thanks to the δ-exactness
of the integrand in (80). We will assume henceforth that some starting point has been chosen
once and for all, independently of ξ1,ξ2.

We will neither derive nor investigate the properties of the Koszul bracket; suffice it to say
that it is crucially independent of the choice of split (54). This is because the quantity Sξ1,ξ2

,
produced by the BT bracket under split changes (60), is exactly compensated by changes of
the integral along γ in (80) when shifting Ξξ[δ]→ Ξξ[δ]−δSξ. However, split-independence
of (80) does not mean that the Koszul bracket only captures information about the genuine
physical flux. Indeed, we will see that it is still sensitive to reductions of the solution space
(e.g. by setting G = 0) and to changes of slicing.

We have already computed the BT bracket for the charges (55) and (65), respectively valid
in the solution spaces with G ̸= 0 and G = 0. The former leads to the cocycle (59), while the
latter leads to (68), both of which are field-dependent. One can therefore ask how the second
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term in (80) affects the cocycle in these two cases. The answer turns out to be

�

δξ1
Ξξ2
[δ]−δξ2

Ξξ1
[δ] +Ξ[ξ1,ξ2]∗[δ]

�

�

�

�

(55b)
= −δ
�

( f1 g ′2 − f2 g ′1)E
2 − 2( f1α̇2 − f2α̇1)E

�

,

(81a)
�

δξ1
Ξξ2
[δ]−δξ2

Ξξ1
[δ] +Ξ[ξ1,ξ2]∗[δ]

�

�

�

�

(65b)
= 0 , (81b)

showing that the change of cocycle due to (80) is entirely produced by the contribution of
the spurious flux −2 f GδE: It is non-zero in (81a) where G ̸= 0, but vanishes in (81b) where
G = 0. In particular, the correction (81a) exactly compensates the field-dependent part of
the earlier cocycle (59), which thus reduces to the standard bms3 central extension [60]. The
Koszul bracket (80) entirely cancels the field-dependence of the cocycle when G ̸= 0.13 By
contrast, the cocycle change (81b) vanishes for WZ charges in the solution space where G = 0,
so the earlier field-dependent cocycle (68) is unaffected.14 A third, mixed alternative is to
consider the solution space G ̸= 0 with the change of slicing (72) and flux (73b), whereupon
(81b) holds again and yields again the earlier cocycle (68). In short, the cocycle in the Koszul
bracket (80) only cares about whether G is present or not in the flux Ξξ[δ], and not about
whether it was removed by a change of slicing or by the restriction G = 0.

This result exhibits the sensitivity of the Koszul bracket to the choice of slicing and to
the ‘size’ of the solution space, despite its independence from the split (54). In particular,
when G ̸= 0, the Koszul bracket with fluxes (55b) yields a field-independent cocycle, while the
change of slicing (72) reintroduces the field-dependent cocycle (68). The latter also appears
for WZ charges with G = 0, whose algebra is unchanged by the Koszul bracket. This seems
to indicate that the field-dependent cocycle (68) is a genuine feature of 3D Einstein–Maxwell
theory, as was indeed suggested in [1]. It also begs, even more pressingly, the question of
the interpretation of the field G(u,φ), which is ultimately responsible for most ambiguities of
Einstein–Maxwell charge algebras.

6 Turning on Λ ̸= 0

In order to deepen the analogy between our analysis and 4D pure gravity [53,54], let us extend
the setup to include a non-zero cosmological constant Λ ̸= 0. The Bondi gauge is then well-
adapted (at least in the vacuum case) for the flat limit Λ→ 0 [61,97]. We therefore begin by
solving the Einstein equations with cosmological constant Eµν := Gµν+Λgµν− Tµν = 0, again
with the fall-offs (11), then discuss asymptotic symmetries and their charges. Differences and
similarities with the flat-space case Λ = 0 are pointed out throughout. We refer again to
appendix A for some computational details.

6.1 Solution space and analogy with the 4D vacuum case

Here we solve the Einstein–Maxwell equations of motion with Λ ̸= 0, then highlight the simi-
larity between the resulting solution space and that of 4D Einstein gravity.

Solution space. Thanks to the Bondi gauge conditions gr r = 0 = grφ , the hypersurface
equations Er r = 0, Erφ = 0 and ∇µFµr = 0 do not depend on Λ. As a result, they lead to the
same solutions (A.3), (A.6) and (A.8) for β , U and Am>0,n

u as in the flat case (recall that we

13This holds up to a trivial central extension due to the field space integral in (80) [100].
14Note that setting G = 0 after having computed (81a) does not return the result (81b), since one cannot change

the phase space after having computed the bracket.
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have set β0 = 0= U0). The first striking feature due to Λ ̸= 0 comes from the angular Maxwell
equation, which now reads

∇µFµφ = −
1
4

p
r ΛC −

Λ

4
p

r

�

(ln r)A1/2,1
φ

+
3
2

C3 + A1/2,0
φ
− 4A1/2,1

φ

�

+O(r−1) = 0 . (82)

Note the leading term of this equation: It sets C = 0 on shell. The first subleading term
then fixes A1/2,1

φ
= 0, hence A1/2,0

φ
= 0. Continuing with the expansion at subleading or-

ders, one also finds A3/2,0
φ

= A3/2,1
φ

= A3/2,2
φ

= 0, etc., which in turn implies [from (A.8)] that

A1/2,0
u = A3/2,0

u = A3/2,1
u = 0, etc. At the end of the day, the solution space with Λ ̸= 0 contains

no half-integer powers of r, and the fall-offs (11) simply require m ∈ N and C = 0.
The second interesting feature of Λ ̸= 0 appears in the dynamical angular Maxwell equa-

tion. Indeed, expanding (82) further yields the equations15

Ȧℓφ = E′ +ΛA1,1
φ

, (83a)

Ȧ0
φ = E′ + G′ +ΛA1,0

φ
, (83b)

3Ȧ1,1
φ
= 4Λ
�

�

Aℓφ
�3
+ A2,1

φ

�

, (83c)

3Ȧ1,0
φ
=

2Λ
3

�

6A2,0
φ
− 2A2,1

φ
+
�

Aℓφ
�3�− 4MAℓφ + C2E′ + 2LE − 7E(C2)′ + 2

�

Aℓφ
�′′

. (83d)

When Λ = 0, these are evolution equations for the components of Aφ (apart from C , which
is unconstrained), whose initial data is free and must be specified at some time u0. There is
an infinite tower of such equations, one for each Am,n

φ
in (11). But when Λ ̸= 0, the meaning

of these equations changes radically due to the terms involving Λ on the right-hand side of
(83). These imply that, starting from A1,0

φ
and A1,1

φ
, all the coefficients Am,n

φ
are algebraically

determined by A0
φ

and Aℓ
φ

, which now become completely free data to be specified for all u.

The temporal Maxwell equation then modifies the flat-space equation (A.16) to Ė = −Λ
�

Aℓ
φ

�′
,

while G remains completely free data as in the case Λ= 0. Finally, the evolution equations for
mass and angular momentum take the form

Ṁ = −2N2 −Λ2Aℓφ
�

2A1,0
φ
+ A1,1

φ

�

−Λ
�

L′ + 2AℓφE′ − E
�

Aℓφ
�′�

, (84a)

L̇ = M ′ + EE′ +
1
2

�

CN ′ − 3NC ′
�

+ΛE
�

2A1,0
φ
+ A1,1

φ

�

− 2ΛAℓφ
�

Aℓφ
�′

, (84b)

where again we have kept C ̸= 0 for convenience in order to recover (33) in the flat limit.
Note here that one can replace A1,0

φ
and A1,1

φ
by their value given by (83) in order to obtain the

evolution of mass and angular momentum in terms of free data (Aℓ
φ

, A0
φ

, G).
Let us summarize. Starting with the fall-offs (11) where C = 0 and m ∈ N, the solu-

tion space for Λ ̸= 0 is completely determined by (i) three arbitrary functions of (u,φ) in
(Aℓ
φ

, A0
φ

, G), along with (ii) the initial value at u0 for the data (M , L, E), subject to evolution
equations (84) in u. There are thus two key differences with respect to Λ = 0. First, the free
data on I + is different: Instead of (C , G)|Λ=0, it is now given by (Aℓ

φ
, A0
φ

, G)|Λ ̸=0. Second,
while Λ = 0 involves infinitely many evolution equations for the data in Aφ , the case Λ ̸= 0
only involves the three evolution equations for (M , L, E).

Analogy with 4D gravity. The behaviour of 3D Einstein–Maxwell solution spaces at Λ = 0
and Λ ̸= 0 is deeply reminiscent of the 4D vacuum case. A precise analogy can indeed be
established thanks to the following three observations:

15Note that we keep writing C even though C = 0 when Λ ̸= 0. This ensures we can still take the limit Λ = 0
and recover expressions that are valid in the flat case with C ̸= 0. One should merely keep in mind that ΛC = 0.
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• First, the condition ΛC = 0 enforced by (82) is analogous to the condition obtained in
4D from the leading-order angular Einstein equations (see [53] or [54, eq. (2.17a)]).
There, the constraint on the shear takes the form

Λe2β0 Cab∝ (∂u − ∂u ln
p

q)qab + D0
〈aU0

b〉 , (85)

where the leading transverse metric qab enters through its time dependence, while β0
and Ua

0 are 4D versions of the integration constants that were discarded here.16 The
shear Cab thus depends on the induced metric on I + when Λ ̸= 0, and it must actually
vanish if U0 = 0 and if the time dependence of qab is frozen, since then ΛCab = 0. The
analogy with 3D Einstein–Maxwell is manifest and reinforces the interpretation of C as
the 3D electromagnetic analogue of the gravitational shear Cab. Furthermore, it would
be interesting to study the generalization of the condition ΛC = 0 with more relaxed
3D boundary conditions [96,97], where one precisely has U0 ̸= 0 and a time-dependent
metric on the celestial circle.

• Next, note the analogy between square-root terms in the 3D Einstein–Maxwell system
and logarithmic terms in 4D gravity. We saw here that Λ ̸= 0 forces such square root
terms to vanish. Similarly, subleading components of the angular Einstein equations in
4D imply that all logarithmic terms vanish [54], including both logarithmic terms in the
angular metric, which can be introduced by hand through fall-offs [54, 119–121], and
logarithmic terms that appear when solving for Ua [107,122].17

• The last part of the analogy involves the radial expansion of Aφ in 3D and that of the
angular metric in 4D. Indeed, the latter reads

gab = r2qab + rCab +
1
4

qabCcd C cd +
∞
∑

n=1

g(n)ab

rn
, (86)

where we chose a regular, logarithm-free expansion. Then the leading angular Einstein
equation constrains Cab as in (85), while the subleading terms in the angular equations
are exactly analogous to the angular Maxwell equations (83) since they take the form
[53]

ġ(n)ab = Λg(n+1)
ab + (. . . ) . (87)

When Λ= 0, these are evolution equations for the coefficients g(n)ab , whose value at some
u0 is required; there is an infinite tower of such equations. By contrast, when Λ ̸= 0,
the constraints (87) determine algebraically, and recursively, all the components g(n>1)

ab

in terms of g(1)ab and its time derivative. Then g(1)ab , rather than Cab, is the free data that
needs to be specified for all u, exactly like Aℓ

φ
and A0

φ
become free data instead of C in

the 3D Einstein–Maxwell case.

To go beyond this simple analogy, one may attempt to use it to gain insights in 4D vacuum
gravity. We saw in section 5 how the present 3D model allows one to study charges in the pres-
ence of radiation, as a first step towards holography with radiating sources. Another direction
is to seek a w1+∞ symmetry of 3D Einstein–Maxwell theory. In 4D gravity, recent work has
indeed shown the existence of such a structure [125–127]; it can be related to the tower of
metric fields (86) and their evolution equations [128,129]. Since 3D Einstein–Maxwell theory

16The notation D0
〈aU0

b〉 refers to the symmetric, trace-free part of the tensor DaU0
b .

17This absence of logarithmic terms when Λ ̸= 0 in 4D is a manifestation of the Starobinsky–Fefferman–Graham
theorem [123,124].
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also admits such a hierarchy, with the components of Aφ playing the role of the subleading
tensors in (86), it is natural to ask whether one can also exhibit an underlying higher-spin
structure in that setup. We leave this investigation for future work.

6.2 Asymptotic symmetries and charges

We close this section with a brief discussion of asymptotic symmetries and charges in the
case Λ ̸= 0. Previous work along these lines can be found in [86] in Bondi gauge, and in
[101, 102] in Fefferman–Graham coordinates with Hamiltonian methods. We will work in
Bondi coordinates and implement once and for all the condition of vanishing square root terms
in the fall-offs, in particular setting C = 0. After going through the construction of the solution
space, the metric is given by

guu = Λr2 + 2(ln r)
�

E2 −Λ
�

Aℓφ
�2�
+ 2M −Λ
�

Aℓφ
�2
+O(r−1) , (88a)

gur = −1+

�

Aℓ
φ

�2

r2
+O(r−3) , (88b)

guφ = 2(ln r)EAℓφ + L +O(r−1) , (88c)

gφφ = r2 , (88d)

where the mass and angular momentum satisfy the evolution equations (84) with C = 0. It is
manifest that these components reduce to those in (30) when Λ= 0.

The components of asymptotic Killing vectors are once again given by (43). Now, how-
ever, the functions f and g satisfy ḟ = g ′ and ġ = −Λ f ′ instead of the flat-space relations
(44). Their sum and difference

p
−Λ f ± g generate left- and right-moving conformal trans-

formations. The ensuing transformations of metric and electromagnetic field components are
as follows. First, mass and angular momentum transform as

δξM =
�

f ∂u + g∂φ + 2g ′
�

M − g ′′′ − 2Λ f ′L − g ′E2 +ΛAℓφ
�

f ′E + g ′Aℓφ
�

, (89a)

δξL =
�

f ∂u + g∂φ + 2g ′
�

L − f ′′′ + 2 f ′M − 2g ′EAℓφ −Λ f ′
�

Aℓφ
�2

, (89b)

where one may recognize the coadjoint representation of the Virasoro algebra, written in terms
of M∝ T + T̄ and L∝ T − T̄ instead of left and right stress tensor components (T, T̄ ). This is
accompanied by new contributions due to the Maxwell field. The latter has leading logarithmic
components that transform as

δξ,ϵA
ℓ
φ =
�

f ∂u + g∂φ + g ′
�

Aℓφ + f ′E , (90a)

δξ,ϵE =
�

f ∂u + g∂φ + g ′
�

E −Λ f ′Aℓφ , (90b)

while its O(1) components transform in a way that involves the U(1) gauge parameter:

δξ,ϵA
0
φ =
�

f ∂u + g∂φ + g ′
�

A0
φ − g ′Aℓφ + f ′G +α′ , (91a)

δξ,ϵG =
�

f ∂u + g∂φ + g ′
�

G − g ′E −Λ f ′A0
φ + α̇ . (91b)

All these equations reduce to the flat-space transformations (46)–(49) when Λ= 0.
One can also study the algebra of asymptotic symmetry transformations. Under the mod-

ified bracket (50), the algebra of the asymptotic Killing vectors is ξ12 =
�

ξ1,ξ2

�

∗, where one
now has

f12 = f1 g ′2 + g1 f ′2 −δξ1
f2 − (1↔ 2) , (92a)

g12 = g1 g ′2 −Λ f1 f ′2 −δξ1
g2 − (1↔ 2) , (92b)

α12 = f1α̇2 + g1α
′
2 −δξ1,ϵ1α2 − (1↔ 2) , (92c)
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instead of the flat-space algebra (51). This is a semi-direct sum between two commuting
copies of the Witt algebra and an algebra of functions on the cylinder or the plane. The flat
limit (Λ→ 0) then behaves as an İnönü–Wigner contraction that maps the algebra (92) to the
structure bms3 + C∞(I +) mentioned in section 4.1.

The charge aspect corresponding to asymptotic symmetry generators satisfies once again
(54), albeit with a subleading correction O(r−1) instead of O(r−1/2). A simple choice of split
is e.g.

Qξ = f
�

M +
Λ

2

�

Aℓφ
�2�
+ g
�

L − E
�

Aℓφ + 2A0
φ

�

�

− 2αE (integrable charge), (93a)

Ξξ[δ] = 2 f
�

ΛAℓφδA0
φ − GδE
�

(flux), (93b)

which reduces to the flat-space split (55) with C = 0 when Λ = 0. Using this split, the BT
bracket (56) satisfies (57) with the homogeneous algebra (92) and the new field-dependent
cocycle

Kξ1,ξ2
= − ( f1 g ′′′2 − f2 g ′′′1 )− ( f1 g ′2 − f2 g ′1)E

2 + 2( f1α̇2 − f2α̇1)E

+Λ
�

Aℓφ
�2
( f1 g ′2 − f2 g ′1)− 2Λ

�

EA0
φ + AℓφG
�

( f1 f ′2 − f2 f ′1) . (94)

The latter exhibits the standard Brown–Henneaux Virasoro extension [58], along with nu-
merous new electromagnetic contributions. It reduces again to its flat-space counterpart (59)
when Λ= 0.

In short, the entire structure reproduces the results of [1] in the flat limit Λ = 0. More
detailed studies of the charges (93) and the WZ prescription are left for future work. This
requires an understanding of radiation in the case Λ ̸= 0, which we expect to share features
and subtleties of the 4D vacuum case [52–57].

Let us conclude by returning to the Koszul bracket (80), now applied to surface charges
(93) with Λ ̸= 0. As in section 5.4, the Koszul bracket changes the cocycle (94) by a term of
the form

�

δξ1
Ξξ2
[δ]−δξ2

Ξξ1
[δ] +Ξ[ξ1,ξ2]∗[δ]

�

�

�

�

(93b)
= −δKξ1,ξ2

, (95)

where the variation δ only acts on the field-dependent terms in the cocycle (94). This is
highly non-trivial: The Koszul bracket apparently cancels the entire field-dependence of the
earlier extension (94), only leaving out its field-independent Brown–Henneaux piece! The
same behaviour was observed in (81a) in the flat-space solution space with G ̸= 0. In short,
the presence of extra unconstrained boundary degrees of freedom leaves no trace in the Koszul
bracket. The reason for this is unclear to us; we hope to return to it in future work, along with
a more detailed analysis of the (A)dS3 Einstein–Maxwell solution space.

7 Perspectives

This work was devoted to a detailed analysis of the asymptotic structure of 3D Einstein–
Maxwell theory with radiative boundary conditions. It contributes in two specific ways to
the already vast literature on asymptotic symmetries. First, it provides a model where gravi-
tational asymptotic symmetries interplay in a non-trivial manner with radiative matter fields.
Second, and most important, it does so in the simplest possible setup where all the subtleties
related to radiative asymptotic symmetries are present, thereby providing the most complete
toy model one can hope for. We investigated this model along the following lines:

In section 2, we studied pure Maxwell theory in order to obtain the fall-offs (11) for Bondi-
gauge radiative and Coulombic data, then solve the vacuum Maxwell equations. This revealed
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a key difference with previous work on 3D Einstein–Maxwell theory [1], namely that radia-
tive data behaves as

p
r. Equipped with these fall-offs and with the line element (29) in

Bondi gauge, we then solved the coupled equations of motion for Einstein–Maxwell theory
in section 3. This enabled us to characterize the solution space and identify, in particular,
the mass and angular momentum aspects with evolution equations (33). The latter confirm
that 3D Einstein–Maxwell has radiative features akin to those of 4D pure gravity, albeit in a
dimensionally-reduced setup. This was in fact expected, based on the prescient analysis of [59]
where the first description of BMS3 symmetries was done precisely through a dimensional re-
duction from the 4D theory. Here we supplemented this analysis with a complete control over
the matter sector (either seen as arising from dimensional reduction, or put in by hand in 3D
as we did).

Building on this setup, the core of our work in sections 4–5 consisted of an analysis of
asymptotic symmetries and their representations by surface charges. For this, we first charac-
terized the residual gauge transformations, spanning an algebra bms3+C∞(I +) that consists
of diffeomorphisms and U(1) transformations. We then computed the charge variation (52)
using the Iyer–Wald prescription. This revealed, as expected, that electromagnetic radiation
described by the shear C(u,φ) gives rise to a non-integrable contribution, or flux. In addition,
we found in agreement with [1] that the field G(u,φ) also sources non-integrability. The latter
is somewhat spurious, so we treated G as a gauge mode to be set to zero. Doing so reduced
the asymptotic symmetry algebra because the U(1) gauge parameter acquires a fixed time de-
pendence (63). It was then possible to construct WZ charges (65) which are conserved in the
absence of news N = Ċ . As regards the algebra of such charges, we explored three alterna-
tives for the bracket: The BT bracket, the Noether bracket, and the recently introduced Koszul
bracket. The latter essentially extends the BT bracket in such a way that it does not depend on
the split (54) between an integrable charge and a flux. Using this bracket, we showed that WZ
charges with G = 0 represent the symmetry algebra with a field-dependent cocycle (70). This
confirms the result of [1] while exhibiting both some of its robustness and some of its delicate
dependence on the various apparently arbitrary choices involved in radiative surface charges.

In summary, our study has shown that 3D Einstein–Maxwell theory captures most of the
subtleties related to radiative asymptotic symmetries. In addition to serving as a toy model of
4D gravity, it also reveals its own subtleties, the most striking of which is a field-dependent
cocycle in the charge algebra. Whether such a field-dependent cocycle also occurs in 4D
Einstein–Maxwell theory, say when using the Koszul bracket, is an open question which we
keep for future work.

Having a complete control over the 3D setup, several interesting prospects are now in sight:

• 3D flat holography with radiation. A natural follow-up of our construction of the
Einstein–Maxwell solution space and its symmetries is to seek a candidate holographic
description. The field-dependent cocycle (68) is expected to play a key role in that con-
text, since it affects the structure of the symmetry group, which in turn affects coadjoint
orbits and unitary representations. In particular, it will be interesting to investigate how
geometric actions for BMS3 [69, 70, 73, 76–78] (or dual theories such as the one built
in [130]) are modified by the coupling to electrodynamics. An alternative approach
would be a 3D version of celestial holography, built by recasting the scattering ampli-
tudes of 3D Maxwell theory in terms of conformal correlators on the celestial circle.
Finally, it is natural to wonder how results on flat-space entanglement [131–133] gen-
eralize in the presence of matter fields.

• 3D Maxwell/scalar duality. Since the 3D Maxwell field is dual to a scalar, a natural
question is how this duality is implemented at the level of asymptotic charges. Indeed,
such a puzzle also appears for 4D scalars whose soft theorem [134, 135] a priori has
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no asymptotic symmetry counterpart (scalars have no gauge symmetries). The puzzle
is resolved by noting that a 4D scalar is dual to a 2-form gauge theory with non-trivial
asymptotic symmetries [136–138]. In 3D Einstein–Maxwell theory, one faces the op-
posite situation, where the asymptotic structure of the Maxwell field is known but that
of its dual is not. An approach that settles the issue in one stroke would be to study
the Einstein–Maxwell-dilaton system. Relatedly, 3D Maxwell theory admits a gauge-
invariant Chern–Simons mass term, presumably leading to rich asymptotic symmetries.
This could also be a setup to analyse the peculiar properties of 3D quantum electrody-
namics (QED3), including the effects of its one-loop Chern–Simons mass term [139–142]
on soft photons and asymptotic symmetries.

• 3D soft photons and memories. Since 3D (Einstein–)Maxwell theory possesses a
propagating massless photon, it admits a soft photon theorem [143] and, in princi-
ple, (sub)n-leading soft photon theorems as well. Although such 3D soft photons have
been mentioned in the literature [144], their detailed investigation has been superfi-
cial so far. What makes the issue especially attractive is that 3D Maxwell theory, being
super-renormalizable, is badly infrared divergent as a result [145]. In that sense, the
infrared problem in QED3 is more violent than in 4D. This has partly been addressed
using Faddeev–Kulish dressing [146], but a full picture of the infrared triangle [17] is
still missing. We briefly mentioned this in sections 2.3 and 4.2 when pointing out that
3D electromagnetic memory fails to match with the leading U(1) charge. A natural con-
tinuation of our work is thus to ask how the soft photon theorem relates to memory and
asymptotic symmetries.

• 4D Einstein–Maxwell. Perhaps the most natural follow-up of the present work is to
study the asymptotic structure of 4D Einstein–Maxwell theory. This has partly been
explored in [89, 90], although the emphasis was on WZ charges in the first reference,
and on dimensional reduction from 5D in the second one. The analysis can be vastly
extended by studying the detailed structure of the solution space, including flux-balance
laws encoding the soft graviton and soft photon theorems (or alternatively their memory
counterpart). In fact, such a setup is ideal to investigate the interplay between soft
photons and soft gravitons, which to our knowledge is an open question. In addition,
one should compute the charge algebra using the Koszul bracket in order to see whether
it gives rise to a field-dependent cocycle as in the present 3D model.

• 4D Einstein–Rosen waves. As stressed throughout this work, the analogy between 3D
Einstein–Maxwell and 4D pure gravity can be understood through the prism of dimen-
sional reduction [59]. Interestingly, this dimensional reduction also reveals that the
3D theory actually describes a highly symmetric 4D system, namely cylindrical gravita-
tional waves, or so-called Einstein–Rosen waves [87]. Since we have worked out the
detailed asymptotic structure of 3D Einstein–Maxwell theory, it would now be interest-
ing to reinterpret these results from the 4D vacuum point of view, where they could
serve to investigate the radiative properties of Einstein–Rosen waves. This is potentially
a setup where 4D holography in the presence of radiation is more approachable than in
the case of arbitrary asymptotically flat spacetimes.

• Hamiltonian approach. A general question that stems from our work is whether am-
biguities of surface charges can be fixed by avoiding the covariant formalism and using
instead a Hamiltonian approach. The latter has indeed been recently successful at either
re-deriving known 4D asymptotic symmetries [147–152] or unveiling new asymptotic
structures altogether [153–156]. In the present case, one might attempt to recover the
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field-dependent central extension (68) from a canonical analysis, where integrability
issues would be absent by design.

• Supersymmetric extensions. In view of adding matter fields to the setup of this work,
a natural follow-up is to investigate 3D supergravity with a Maxwell field, or even with
a fully supersymmetric U(1) gauge theory. The interplay between asymptotic symme-
tries and (local) supersymmetry has indeed been studied in a number of references
[157–160], including the discovery of remarkable links between supercharges and su-
pertranslations. It would be illuminating to consider similar links in the present context
and ask how the cancellations typical of supersymmetry affect field-dependent central
charges.
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A Constructing the solution space

This appendix provides details on the construction of the Einstein–Maxwell solution space in
sections 3.2 and 6.1. The construction follows the Bondi hierarchy [6], so that equations of
motion are split into (i) hypersurfacce constraints, (ii) genuine evolution equations, and (iii)
trivial equations that are automatically satisfied.

A.1 Hypersurface equations

Within the Einstein–Maxwell equations of motion (25), consider those that are purely spatial
and contain at least one radial index. We solve each of them in turn, using as initial inputs the
Maxwell fall-offs (11), the stress tensor (18) and the Bondi metric ansatz (29).

Einstein equation (r r ). Begin by considering the field equation

Er r =
2
r2

�

r∂rβ − F2
rφ

�

= 0 . (A.1)

In radial gauge with Ar = 0, this determines β in terms Aφ (and no other Maxwell component),
with Aφ given by (11b). The equation is thus solved to order Er r =O(r−5) by the expansion

β = β0 +
β1,0

r
+
β3/2,0

r3/2
+

1
r2

�

β2,0 + (ln r)β2,1

�

+
1

r5/2

�

β5/2,0 + (ln r)β5/2,1

�

+O(r−3) , (A.2)

33

https://scipost.org
https://scipost.org/SciPostPhys.16.4.092


SciPost Phys. 16, 092 (2024)

where β0(u,φ) is an integration constant that we henceforth set to zero, while the subleading
terms are

β1,0 = −
1
4

C2 , (A.3a)

β3/2,0 = −
2
3

CAℓφ , (A.3b)

β2,1 =
1
4

CA1/2,1
φ

, (A.3c)

β2,0 = −
1
2

�

Aℓφ
�2
+

1
8

C
�

2A1/2,0
φ
− 3A1/2,1

φ

�

, (A.3d)

β5/2,1 =
2
5

�

AℓφA1/2,1
φ

+ CA1,1
φ

�

, (A.3e)

β5/2,0 =
2
25

�

Aℓφ
�

5A1/2,0
φ
− 8A1/2,1

φ

�

+ C
�

5A1,0
φ
− 3A1,1

φ

�

�

. (A.3f)

Note that (A.3a) is reminiscent of the analogous link between shear and the function β in 4D
gravity in Bondi gauge.

Einstein equation (rφ). Still using the stress tensor (18) and the Bondi metric (29), con-
sider the Einstein equation

Erφ =
β ′

r
− ∂rβ

′ +
r
2

e−2β
�

(3− 2r∂rβ)∂r U + r∂ 2
r U
�

− 2e−2β Frφ(U Frφ + Fru) = 0 . (A.4)

This is solved to order Erφ =O(r−3) by

U = U0 +
U3/2,0

r3/2
+

1
r2

�

U2,0 + (ln r)U2,1 + (ln r)2U2,2

�

+
1

r5/2

�

U5/2,0 + (ln r)U5/2,1

�

+O(r−3) ,

(A.5)

where U0(u,φ) is undetermined while the subleading terms are

U3/2,0 = −
8
3

C E , (A.6a)

U2,2 =
1
4

CA1/2,1
u , (A.6b)

U2,1 = −2AℓφE +
1
2

C
�

A1/2,0
u −

3
2

A1/2,1
u − 2C ′
�

, (A.6c)

U2,0 = −L , (A.6d)

U5/2,1 = −
8
5

�

EA1/2,1
φ

+ AℓφA1/2,1
u + CA1,1

u

�

, (A.6e)

U5/2,0 = (lengthy). (A.6f)

Note that (A.4) is second-order in radial derivatives of U , so one gets two integration constants
here. The first is L(u,φ) in (A.6d), eventually identified with the bare angular momentum as-
pect. The second is the aforementioned U0(u,φ) in (A.5), which is analogous to β0 in (A.2)
since it specifies the induced boundary metric on I +; we always set U0 = 0 from now on. Also
note that we omit writing the component (A.6f) because its form is long without being partic-
ularly illuminating; it is included here merely for consistency, because the Einstein equation
at order Erφ =O(r−3) does fix the component U5/2,0.
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Maxwell equation (r ). Now turn to the radial Maxwell equation ∇µFµr = 0, which only
depends on the metric through β and U . Owing to the Bondi metric (29), its explicit form is

r2∇µFµr = F ′φr + re−2β
�

∂r

�

r(U Frφ + Fru)
�

− 2r∂rβ(U Frφ + Fru)
�

= 0 . (A.7)

This equation determines the subleading terms Am>0,n
u of the electrostatic potential in terms

of Aφ and the Coulombic data E. More precisely, solving recursively in 1/r, one gets the
leading-order behaviour

∇µFµr =O(r−3) ⇒

¨

A1/2,1
u = 0 ,

A1/2,0
u = 2C ′ ,

(A.8)

which coincides with the Minkowskian Maxwell equations (12). As for the subleading com-
ponents, they satisfy non-linear relations

∇µFµr =O(r−4) ⇒



































A1,1
u = 0 ,

A1,0
u =
�

Aℓφ
�′ −

5
6

C2E ,

A3/2,2
u = 0 ,

A3/2,1
u = −

2
9

�

3C EAℓφ +
�

A1/2,1
φ

�′�
,

A3/2,0
u = (lengthy).

(A.9)

Note, as in (A.6f), that we omit to write the long and obscure expression of A3/2,0
u ; it is merely

mentioned here for consistency when solving Maxwell’s equation ∇µFµr = 0 at order r−4.
The identifications (A.9) should be contrasted with their pure electromagnetic analogue:

With the fall-offs (11), Maxwell’s equations without sources would yield the linear relations

∇µFµr =O(r−4) ⇒







































A1,1
u = 0 ,

A1,0
u =
�

Aℓφ
�′

,

A3/2,2
u = 0 ,

A3/2,1
u = −

2
9

�

A1/2,1
φ

�′
,

A3/2,0
u = −

2
9

�

A1/2,0
φ

�′
+

4
27

�

A1/2,1
φ

�′
.

(A.10)

The non-linear contributions in (A.9) are due to gravitational backreaction on the Maxwell
field.

Einstein equation (r u). Let us finally turn to the last hypersurface equation:

Eru =
1
r2

�

V F2
rφ − rV∂rβ +

r
2
∂r V + rU(r∂rβ − β)′ +

1
2
∂r(r

2U ′)− e2β
�

β ′2 + β ′′
�

�

+ e−2β
�

U2F2
rφ − F2

ur

�

+
r
4

e−2β
�

(2r∂rβ − 3)∂r U2 − 2rU∂ 2
r U − r(∂r U)2
�

= 0 . (A.11)

The solution is given to order Eru =O(r−3) by

V = (ln r)V0,1 + V0,0 +
V1/2,0

r1/2
+O(r−1) , (A.12)
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with

V0,1 = 2E2 , (A.13a)

V0,0 = 2M , (A.13b)

V1/2,0 =
8
3

�

2EC ′ − C E′
�

. (A.13c)

The equation of motion (A.11) is first-order in radial derivatives of V , so it contains a single
integration constant M(u,φ) in (A.13b), which is eventually identified with the bare mass
aspect.

A.2 Evolution equations

Now consider the dynamical part of the equations of motion (25), containing angular or time
components, but no radial component. Again, we treat each such equation in turn.

Maxwell equation (φ). Start with the Maxwell equation ∇µFµφ = 0, which determines the
time evolution of the coefficients of Aφ . Solving recursively in 1/r, one finds the leading-order
evolution equations

∇µFµφ =O(r−2) ⇒



























Ȧℓ
φ
= E′ ,

Ȧ0
φ
= E′ + G′ ,

Ȧ1/2,1
φ

= −
3
4

C E2,

Ȧ1/2,0
φ

=
1
4

�

7C E2 − 3C M + 6C ′′
�

,

(A.14)

while at subleading order one has

∇µFµφ =O(r−5/2) ⇒







Ȧ1,1
φ
= 0 ,

Ȧ1,0
φ
=

1
3

�

C2E′ − 4MAℓφ + 2E
�

L − 7CC ′
�

+ 2
�

Aℓφ
�′′�

.
(A.15)

Maxwell equation (u). Turning to the remaining Maxwell equation, one gets

lim
r→∞

(r∇µFµu) = 0 ⇒ Ȧℓu = 0 . (A.16)

This is in fact the only contribution in the temporal Maxwell equation. Indeed, using the fact
that ∇µFµr = 0 = ∇µFµφ have already been solved, along with the form of the metric in
Bondi gauge, one deduces from ∇µ∇νFµν = 0 that ∂r(r∇µFµu) = 0, which means that there
is a single term in the radial expansion.

Einstein equations (uφ) and (uu). Finally, consider the Einstein evolution equations Euφ
and Euu. For the former, one finds

lim
r→∞

(rEuφ) = 0 ⇒ L̇ = M ′ + EE′ +
1
2

�

CN ′ − 3NC ′
�

, (A.17)

which yields the evolution equation of angular momentum in (33). Similarly, one has

lim
r→∞

(rEuu) = 0 ⇒ Ṁ = −2N2 , (A.18)

which is the Bondi mass loss equation in (33).
The point of the Bondi hierarchy is the following: It turns out that all subleading equations

in Euφ and Euu are automatically satisfied on-shell by virtue of the previous equations. We now
show this using Bianchi identities.
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A.3 Trivial equations

Using the Bianchi identity for the Einstein tensor, one can write

0= 2
p

−g∇µGµν = 2
p

−g∇µ(Eµν + Tµν ) = 2∂µ(
p

−g Eµν ) +
p

−g Eρσ∂νgρσ + 2
p

−g∇µTµν .
(A.19)

Since all three Maxwell equations have been solved at this stage, the stress tensor is conserved,
and the last term above drops. Since Erµ = 0 has already been solved as well, putting ν= r in
(A.19) and using guu = 0= guφ yields Eφφ∂r gφφ = 0. Thus the Bianchi identity automatically
implies Eφφ = 0 when Erµ = 0 and when Maxwell’s equations are satisfied.

Finally, for ν = (φ, u), the Bianchi identity (A.19) gives ∂µ(
p
−g Eµ

φ
) = 0 = ∂µ(

p
−g Eµu ).

Since by now Erφ = 0= Eφφ , the first of these identities reduces to ∂r(rEuφ) = 0. This means
that there is a single non-trivial term at order r−1 in the Einstein equation Euφ; it turns out to
be the evolution equation (A.17) for angular momentum. Since in addition Eru = 0 = Euφ ,
the second Bianchi identity above reduces to ∂r(rEuu) = 0. There is thus a single non-trivial
term in Euu, namely the evolution equation (A.18) for the mass aspect.
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