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Abstract

g-charges describe the possible actions of a generalized symmetry on g-dimensional op-
erators. In Part I of this series of papers, we describe q-charges for invertible symmetries;
while the discussion of g-charges for non-invertible symmetries is the topic of Part II. We
argue that q-charges of a standard global symmetry, also known as a 0-form symmetry,
correspond to the so-called (q + 1)-representations of the 0-form symmetry group, which
are natural higher-categorical generalizations of the standard notion of representations
of a group. This generalizes already our understanding of possible charges under a O-
form symmetry! Just like local operators form representations of the 0-form symmetry
group, higher-dimensional extended operators form higher-representations. This state-
ment has a straightforward generalization to other invertible symmetries: g-charges
of higher-form and higher-group symmetries are (q + 1)-representations of the corre-
sponding higher-groups. There is a natural extension to higher-charges of non-genuine
operators (i.e. operators that are attached to higher-dimensional operators), which
will be shown to be intertwiners of higher-representations. This brings into play the
higher-categorical structure of higher-representations. We also discuss higher-charges
of twisted sector operators (i.e. operators that appear at the boundary of topological
operators of one dimension higher), including operators that appear at the boundary of
condensation defects.
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1 Introduction and summary of results

1.1 Introduction

The recent developments on non-invertible symmetries hold promising potential to open an
exciting chapter in the study of non-perturbative phenomena in quantum field theory (QFT).
To study systems with conventional group-like symmetries, representation theory is of course
indispensable, as it describes the action of these symmetries on physical states and local op-
erators. Likewise, we will argue that the key to unlocking the full utility of generalized, in
particular non-invertible, symmetries is to understand their action on local and extended oper-
ators of various dimensions. Said differently, the key is to determine the generalized charges
carried by operators in a QFT with generalized global symmetries. This will be laid out in
this series of papers, where the present one is the first, with subsequent followups in Parts
II [1] and III [2]. The role that representation theory plays for groups, is replaced here by
higher-representations, which intimately tie into the categorical nature of the symmetries.
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Although at this point in time firmly established as a central tool in theoretical physics,
historically, group theory and representation theory of groups has faced an upwards battle.
Eugene Wigner, who was one of the first to use group theory in the description of quantum
mechanics [3], recalls that the advent of group theory in quantum mechanics was referred
to by some as the “Gruppenpest” (German for “group plague”), a term allegedly coined by
Schrodinger [4]. This sentiment was born out of the conviction that formal mathematics —
in this case group theory — had no place in physics. Clearly history has proven Wigner and
friends right, with group theory now a firmly established part of theoretical physics. Category
theory has faced a similar battle in the past, justified or not. The case we would like to make
here is that much like group theory is indispensable in describing physics, so is higher-category
theory. In short we will make the case that what was group representation theory for physics
in the 1920s, is higher-categories and the higher charges (as will be defined in this series of
papers) for generalized symmetries 100 years later.

Higher-form symmetries [5] play an important role in these developments, and in this first
paper we will show that already for these invertible (group-like) symmetries (including 0-form
symmetries) there exist new, generalized charges. In particular, the standard paradigm of “p-
dimensional operators are charged under p-form symmetries” turns out to only scratch the
surface. We find that a p-form symmetry generically acts on defects of g > p dimensions.

Naturally this leads then to the question, how the generalized categorical symmetries,
including the non-invertible symmetries [6-61] act on operators. This will be the topic of part
II [1] of this series.

In the following subsections, we begin with a summary and description of the results, in
order to immediately share our excitement of these insights with the readers.

1.2 Generalized charges

The central topic of this series of papers is the development of generalized chages. In this paper,
Part I, we discuss generalized charges for invertible generalized symmetries. This includes not
only the standard group-like 0-form global symmetries, but also higher-form and higher-group
symmetries. The extension to generalized charges of non-invertible generalized symmetries is
the topic of discussion of the Part II in this series [1].

Before we begin, we will characterize generalized charges using the following terminology:

Definition
Generalized charges of g-dimensional operators are referred to as q-charges.

This definition is applicable to both invertible and non-invertible symmetries, and hence will
be used throughout this series of papers. From this point onward, in this paper, we focus our
attention to invertible symmetries.

Let us recall that some types of gq-charges are well-understood [5]:

Statement 1.1: p-charges for p-form symmetries

p-charges of a GP) p-form symmetry are representations of the group G.
The most well-known case arises for p = 0, which states that 0-charges for G(*) 0-form

symmetry are representations of the group G(®,

We argue in this paper that there is a natural extension of this fact to higher-charges: g-
dimensional operators charged under G®), i.e. g-charges, with ¢ > p. The first extension
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to consider is for p = 0, where higher-charges describe the action of 0-form symmetry on
extended operators. Indeed, this case will be familiar, in that O-form symmetries can act on
extended operators by permuting them, as in the following example.

Example 1.1: Higher-charges of charge conjugation 0-form symmetry

Consider 4d pure Maxwell theory, which has a charge conjugation O-form symmetry
GO = Z(ZO). The theory also has a ¢ = U(l)gl) X U(1)g) 1-form symmetry, with U(1),
being the electric 1-form symmetry whose 1-charges are furnished by Wilson lines and
U(1),, being the magnetic 1-form symmetry whose 1-charges are furnished by ’t Hooft
lines.

This (tl)leory furnishes 0-charges, 1-charges and 2-charges of the O-form symmetry
GO = Z20 :

1. 0-charges: The charge conjugation acts on gauge field A by changing its sign
A— A, €]

which implies that the field strength F(x), which is a local operator since it is gauge
invariant, is acted upon by G(®) = Zgo)

F(x) — —F(x), 2
thus furnishing a non-trivial 0-charge.

2. 1-charges: A Wilson line of electric charge e is exchanged with a Wilson line of
charge —e by the action of charge conjugation. Thus Wilson lines furnish non-trivial
1-charges of G© = Z(zo).

Similarly, a ’t Hooft line of magnetic charge m is exchanged with a ’t Hooft line of
charge —m by the action of charge conjugation. Thus ’t Hooft lines also furnish
non-trivial 1-charges of G(® = Z(ZO).

3. 2-charges: Dually to the above actions of charge conjugation on 1-charges of 1-
form symmetries, we have actions of charge conjugation on the topological surface

operators
(e,0) _ Jia [+F
D(?n a) ~ e' §F ’ )
> — ,la
D, =e 5
generating the electric and magnetic 1-form symmetries
(e,a) (e,2m—a)
D,"* «— Dy )
4

(m,a) (m,2n—a)
D, « D, .
Thus 1-form symmetry generators furnish non-trivial 2-charges of the 0-form sym-
metry GO = Zgo).

In the above example, the only non-trivial structure about the higher-charges is encoded in the
Z, exchange action. However, for a general O-form symmetry the structure of higher-charges
is pretty rich, and will be elucidated in depth in this paper. For now, we note that the general
structure of q-form charges of O-form symmetries is encapsulated in the following statement.
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Statement 1.2: Generalized charges for 0-form symmetries

g-charges of a G(¥) 0-form symmetry are (q + 1)-representations of the group G(*.

For ¢ = 0, we obtain the well-known statement that 0-charges of a 0-form symmetry group
GO are representations (also referred to as 1-representations) of G, However, for q>0,
this statement takes us into the subject of higher-representations, which are extremely natural
higher-categorical generalizations of the usual (1-)representations. We will denote (q + 1)-
representations by

p(q+1) ) (5)

We describe the mathematical definition of higher-representations in appendix B. In the main
text, instead of employing a mathematical approach, we will take a physical approach ex-
ploring the possible ways a 0-form symmetry group G® can act on g-dimensional operators.
This naturally leads us to discover, that the physical concepts describing the action of G(®
on g-dimensional operators, correspond precisely to the mathematical structure of (g + 1)-
representations of G(?). It is worthwhile emphasizing that this applies equally to finite but
also continuous G@: the definition of higher-representations and statement 1.2 is equally
applicable for finite and for continuous O-form symmetries.

Naturally we should ask whether this extends to higher-form symmetries. Indeed, we find
the following statement analogous to the statement 1.2:

Statement 1.3: Generalized charges for higher-form symmetries

g-charges of a GP) p-form symmetry are (q+ 1)-representations of the associated (p+1)-

(p+1)
group G o -

In order to explain this statement, we need to recall that a (p+1)-group GP*1 is a mathemati-
cal structure describing r-form symmetry groups for 0 < r < p along with possible interactions
between the different r-form symmetry groups. Now, a p-form symmetry group G naturally
forms a (p + 1)-group (G(Cf(j)l) whose component r-form symmetry groups are all trivial except
for r = p. We will discuss the above statement 1.3 at length for p = 1-form symmetries in this
paper. For the moment, let us note that the statement 1.1 is obtained as the special case ¢ = p

of the above statement 1.3 because we have the identity

G(P'H)

oo = Representations of the group el 2N

(6)
As a final generalization in this direction, while remaining in the realm of invertible sym-
metries, we have the following general statement whose special cases are the previous two
statements 1.2 and 1.3.

(p + 1)-representations of the (p + 1)-group

Statement 1.4: Generalized charges for higher-group symmetries
g-charges of a G®) p-group symmetry are (q + 1)-representations of the p-group G®.

For higher-groups (q + 1)-representations will be denoted by

p(q+1) ) 7)
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This covers all possible invertible generalized symmetries, taking into account interactions
between different component r-form symmetry groups. We will discuss the above statement
1.4 at length for p = 2-group symmetries in this paper. As in the O-form symmetry case,
these statements apply equally to finite or to continuous higher-groups (and higher-form)
symmetries.

1.3 Non-genuine generalized charges

The considerations of the above subsection are valid only for g-charges furnished by genuine
g-dimensional operators. These are g-dimensional operators that exist on their own and do
not need to be attached to any higher-dimensional operators in order to be well-defined. In
this subsection, we discuss the g-charges that can be furnished by non-genuine g-dimensional
operators which need to be attached to higher-dimensional operators in order to be well-
defined.

Example 1.2: Operators carrying gauge charges are non-genuine

Examples of non-genuine operators are provided by operators which are not gauge in-
variant. Take the example of a U(1) gauge theory with a scalar field ¢ of gauge charge q.
An insertion ¢ (x) of the corresponding local operator is not gauge invariant and hence
not a well-defined genuine local operator. However, one can obtain a gauge-invariant

configuration
¢ (x)exp (iq J A) , (8

by letting ¢ (x) lie at the end of a Wilson line operator of charge g. This configuration
can be displayed diagrammatically as

¢ (x)

9
W, = elaf4

Thus we have obtained a well-defined non-genuine local operator lying at the end of a
line operator.

Most importantly, non-genuine operators form a layered structure:

1. We begin with genuine g-dimensional operators, which we denote by (’)((IX) with the
superscript x distinguishing different such operators.

2. Given an ordered pair (Oga), Ogb)) of two g-dimensional operators, we can have (q —1)-

dimensional non-genuine operators changing O((Ia) to Oflb), which we denote as OL(;E? )
with the superscript x distinguishing different such operators.

3. Given an ordered pair ((’)g‘ﬁf A O;‘fi’ B)) of two (q — 1)-dimensional operators changing

(’)((Ia) to (’)(gb), we can have (g — 2)-dimensional non-genuine operators changing (’)t(;fim)
to Ogcﬁ’f ;B), which we denote as (9((;23;’4 -Bix)
such operators.

with the superscript x distinguishing different

4. We can continue in this fashion until we reach non-genuine local (i.e. 0-dimensional)
operators.
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o
(a,b;A,B;x)
O
(a,b;4) Y (a,b;B)
Ol Ol

(a)
Oz

Figure 1: The layer structure of genuine (2d O,) and non-genuine (O; and O)
operators as naturally occurring in theories with d > 3.

For q = 2, this layered structure of genuine and non-genuine operators can be depicted as in
figure 1.

A similar layered structure is formed by morphisms and higher-morphisms in a higher-
category:

Definition: Higher-categories

A (q + 1)-category comprises of the following data:

1. A set of objects or 0-morphisms, which we denote by Méx) with the superscript x

distinguishing different objects.

2. Given an ordered pair (M, (a),M(()b)) of two objects, a set Hom(M (a),Méb)) of 1-
morphisms from the object M(ga) to the object Méb). We denote such 1-morphisms

by Ml(a’b;x) with the superscript x distinguishing different such 1-morphisms. For
a usual category the story ends here, but for higher-categories it continues further
as follows.

3. Given an ordered pair (Ml(a’b;A), Ml(a’b;B)) of two 1-morphisms in Hom(M(a), Méb)),
a set Hom(Ml(a’b;A ), Ml(a’b;B)) of 2-morphisms from the 1-morphism Ml(a’b) to the 1-

morphism M%a’b)/. We denote such 2-morphisms by Méa’b;A B:X) with the superscript
x distinguishing different such 2-morphisms.

4. Continuing iteratively in the above fashion, given an ordered pair (M,_;,M,_,)
of two (r — 1)-morphisms in Hom(M,_,,M._,), a set Hom(M,_;,M’_,) of r-
morphisms from the (r — 1)-morphism M,_; to the (r — 1)-morphism M’ ;. In
this way, in a (g + 1)-category we have r-morphisms for 0 <r < q+1.

For g = 1, i.e. 2-categories, this layered structure can be depicted as in figure 2.

Given that layering structure of genuine and non-genuine operators is so similar to the
layering structure inherent in the mathematics of higher-categories, one might then wonder
whether genuine and non-genuine higher-charges can be combined into the structure of a
higher-category. This indeed turns out to be the case. In order to motivate what this higher-
category should be, let us first note that (q + 1)-representations, which as discussed above de-
scribe genuine g-charges, form objects of a (g +1)-category. We denote these (q+ 1)-categories
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(5)
MO

(a,b;A,B;x)
M
. 2 .
M MPB

(a)
M,

Figure 2: The layered structure for 2-category, which parallels the layer structure of
operators in figure 1.

depending on the type of invertible symmetry as:

G© 0-form symmetry : (g +1)-Rep(G©),

. (r+1)
G p-form symmetry : (q+ 1)-Rep(GG(p) ), (10)

G p-group symmetry : (g+ 1)-Rep(G(P)),

Indeed, for the simplest case p = q = 0, it is well known that representations of a group are
objects of a category (also referred to as 1-category).

Thus, we are led to propose the following statement, whose various special sub-cases are
justified in the bulk of this paper. The following statement is for a general p-group G, but the
reader can easily recover statements for a G(®) 0-form symmetry by simply substituting p = 1
and G?P=V = G and for a G~V (p—1)-form symmetry by simply substituting G = G(Gp(l);—n
to be the p-group associated to the (p — 1)-form group G?®~1.

Table 1: Correspondence between the layering structure of higher-categories and
layering structure of non-genuine higher-charges. Note that the layer formed by
(g + 1)-morphisms does not participate in this correspondence.

‘ Higher (q + 1)-Category H Higher-Charges
Objects Genuine g-dimensional operators
1-Morphisms Non-genuine (q — 1)-dimensional operators
r-Morphisms; r <q Non-genuine (g — r)-dimensional operators
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Statement 1.5: Non-genuine generalized charges

(q — r)-charges of (q — r)-dimensional operators that can be embedded within genuine
g-dimensional operators are r-morphisms in the (q + 1)-category (q + 1)-Rep(G®). In
more detail, we have the following correspondence:

1. Consider two genuine g-dimensional operators (’)g‘”,(’)gb) with g-charges associ-
ated to objects Méa),Méb) of (¢ + 1)-Rep(G®). The (q — 1)-charges of (g — 1)-
dimensional operators changing (’)‘(1‘1) into Oéb) are elements of the set of 1-
morphisms Hom(M(a),Méb)) c(g+ 1)-Rep(G(p)).

2. Consider two (¢—1)-dimensional operators Oé‘flf A, Oé‘ff ) with (q—1)-charges as-
sociated to 1-morphisms M{a’b;A), M{a’b;B) € Hom(Méa), Méb)) c (g +1)-Rep(G?)).
The (q—2)-charges of (¢ —2)-dimensional operators changing Oécflf A into Og‘flf;B)
are elements of the set of 2-morphisms Hom(Mfa’b;A), Mia’b;B)) c (q+1)-Rep(G?)).

3. Continuing iteratively in the above fashion, consider two (q — r + 1)-dimensional
operators Oy, 1, Oé_r 4+ with (q —r +1)-charges associated to (r —1)-morphisms
M,_;,M/_, € Hom(M,_»,M!_,) C (g+1)-Rep(GP). The (q—r)-charges of (q—r)-
dimensional operators changing O,_,,; into Ot/z—r 41 are elements of the set of r-

morphisms Hom(M,_1,M;_,) C (¢ + 1)-Rep(G®).

Note that the last level of morphisms, i.e. (¢ + 1)-morphisms of (g + 1)-Rep(G®)), does
not make an appearance at the level of generalized charges. Instead the last level of
generalized charges, which is that of non-genuine 0-charges, is described by g-morphisms
of (q + 1)-Rep(G®)). We summarize the correspondence between higher-charges and
higher-morphisms in table 1.

1.4 Twisted generalized charges

Finally, let us note that the statements of the previous subsection are valid only if the non-
genuine operators furnishing higher-charges are not in twisted sectors for the symmetry, which
are defined as follows:

Definition: Twisted Sectors

We say that an operator lies in a twisted sector of the symmetry G if it lies at the end
of one of the following types of topological operators related to the symmetry G®):

1. Symmetry generators: These are topological operators generating the r-form

symmetry groups inside the p-group G® for 0 < r < p —1.

2. Condensation defects: These are topological operators obtained by gauging the
above symmetry generators on positive codimensional sub-manifolds in spacetime
[16,62].

The reason for the inclusion of condensation defects is because we want to discuss opera-
tors living at the ends of topological operators in the symmetry fusion (d — 1)-category

(d —1)-Vec(GP), (11)

9
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that arises whenever we have G symmetry in a d-dimensional QFT. See [ 17] for more details
on higher-categories associated to symmetries, and [46] or the end of appendix B for more
details on the higher-categories (11) associated to invertible symmetries. The elements of this
(d — 1)-category include both symmetry generators and condensation defects.

In this paper, we will study in detail twisted g-charges for a G® 0-form symmetry lying
in twisted sectors associated to symmetry generators of G(*). Here we will encounter the
following statement:

Statement 1.6: Twisted generalized charges for 0-form symmetries

Let Dc(ig_)1 be a codimension-1 topological operator generating g € G(°). Then the higher-

charges of codimension-n operators, n > 2, that can be placed at the boundary of Dc(ig_)1
are valued in the (d — 1)-category

(d —1)-ReplsI(H,). (12)
This category has

Objects = {[wg] — twisted (d — 1)-representations of the centralizer Hy C GO of g} ,
(13)
where
[wg]€HY(H,,C), (14

is obtained from the information of the ’t Hooft anomaly [w] € H*1(G©,C*) for the
G 0-form symmetry and the symmetry element g € G© by performing what is known
as a slant product. See section 5.2 for more details.

Expanding out this statement in more detail, we have

1. (d — 2)-charges of operators lying at the boundary of Dég_)l are [w, ]-twisted (d — 1)-

representations of H,, or in other words O0-morphisms in (d — 1)-Rep[‘°g](H )

2. For 1 <r <d—2, we have that the (d —r —2)-charges going from a (d —r — 1)-charge
described by an (r — 1)-morphism M,_; € (d — 1)-Rep[‘°g](Hg) to a (d —r — 1)-charge
described by an (r — 1)-morphism M, _; € (d — 1)-Rep[°’g](Hg), are described by the
r-morphisms from M,_; to M/_, in (d — 1)-Rep[°"8](Hg).

The above statement only incorporates the action of the centralizer H,. Consider a (d —r—2)-
dimensional g-twisted sector operator O4_,_, carrying a (d — r — 2)-charge described by an
r-morphism M, € (d — 1)-Rep[‘°g 762) ¢)- Acting on Oy_,_, by an element h ¢ H,, we obtain
a (d — r — 2)-dimensional operator Oé—r—z in hgh™!-twisted sector carrying an isomorphic
(d —r — 2)-charge described by an r-morphism M, € (d — 1)-Rep[‘”hgh‘1](thh_1).

We will also study twisted generalized charges in a couple of other contexts:

» Twisted 1-charges in 4d when there is mixed 't Hooft between 1-form and 0-form sym-
metries. This reproduces a hallmark action of non-invertible O-form symmetries on line
operators in 4d theories.

* Generalized charges for operators lying in twisted sectors associated to condensation de-
fects of non-anomalous higher-group symmetries. An interesting physical phenomena
that arises in this context is the conversion of a non-genuine operator in a twisted sector
associated to a condensation defect to a genuine operator and vice versa, which induces

10
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maps between twisted and untwisted generalized charges. In the language of [63], this
can be phrased as the relationship between relative and absolute defects in an absolute
theory. In Part II of this series of papers [1], we will upgrade this relationship to incor-
porate relative defects in relative theories.

Part IT [1] will also extend the discussion to non-invertible, or more generally, categorical
symmetries. The central tool to achieve this is the Drinfeld center of a given higher fusion
category. We will formulate the current paper in the context of the Drinfeld center and see
how this allows a generalization to non-invertible symmetries and their action on charged
objects.

1.5 Organization of the paper

This paper is organized as follows.

Section 2 discusses generalized charges for standard global symmetries, also known as
0-form symmetries. The aim of this section is to justify the statement 1.2. After reviewing
in section 2.1 why 0-charges are described by representations of the 0-form symmetry group,
we encounter the first non-trivial statement of this paper in section 2.2, where it is argued
that 1-charges are described by 2-representations of the 0-form symmetry group. The argu-
ments are further generalized in section 2.3 to show that g-charges are described by (q + 1)-
representations of the O-form symmetry group. An important physical phenomenon exhibited
by g-charges for ¢ > 2 is that of symmetry fractionalization, which we discuss in detail with
various examples.

Section 3 discusses generalized charges for 1-form symmetries. The aim of this section is
to justify the statement 1.3, at least for p = 1. In section 3.1, we review why 1-charges are de-
scribed by 2-representations of the 2-group associated to the 1-form symmetry group, which
coincide with representations of the 1-form symmetry group. In section 3.2, we discuss 2-
charges under 1-form symmetries. These exhibit many interesting physical phenomena involv-
ing localized symmetries (which are possibly non-invertible), induced 1-form symmetries, and
interactions between localized and induced symmetries. Ultimately, we argue that all these
physical phenomena are neatly encapsulated as information describing a 3-representation of
the 2-group associated to the 1-form symmetry group. In section 3.3, we briefly discuss g-
charges of 1-form symmetries for ¢ > 3, which in addition to the physical phenomena exhibited
by 2-charges, also exhibit symmetry fractionalization.

Section 4 discusses non-genuine generalized charges. The aim of this section is to jus-
tify the statement 1.5. In section 4.1, we study non-genuine O-charges of 0-form symmetries
and argue that they are described by intertwiners between 2-representations of the O-form
symmetry group. In section 4.2, we discuss non-genuine 0-charges under 1-form symmetries,
which recovers the well-known statement that two line operators with different charges under
a 1-form symmetry cannot be related by screening. This is consistent with the correspond-
ing mathematical statement that there are no intertwiners between two different irreducible
2-representations of the 2-group associated to a 1-form symmetry group.

Section 5 discusses twisted generalized charges. The aim of this section is to justify the
statement 1.6 and it explores a few more situations. In section 5.1, we study generalized
charges formed by operators living in twisted sectors correspond to symmetry generators of a
non-anomalous O-form symmetry. We argue that g-twisted generalized charges are described
by higher-representations of the stabilizer H, of g. In section 5.2, we allow the 0-form symme-
try to have anomaly. The g-twisted generalized charges are now described by twisted higher-
representations of Hg. In section 5.3, we study 1-charges formed by line operators lying in
twisted sector of a 1-form symmetry in 4d, where there is additionally a O-form symmetry with
a mixed ’t Hooft anomaly with the 1-form symmetry. This situation arises in 4d N’ = 1 and
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N = 4 pure Yang-Mills theories. We find that in such a situation the 0-form symmetry neces-
sarily must permute the charge of the line operator under the 1-form symmetry, a fact that is
tied to the action of non-invertible duality defects on lines. Finally, in section 5.4, we study
operators lying in twisted sectors of condensation defects. These operators can be mapped to
untwisted sector operators, and untwisted sector operators having certain induced symmetries
can be converted into twisted sector operators for condensation defects. These maps relate
untwisted and twisted generalized charges of these operators.

Section 6 discusses 1-charges for general 2-group symmetries, where we include both the
action of 0-form on 1-form symmetries along with the possibility of a non-trivial Postnikov
class. The aim of this section is to justify the statement 1.4, at least for p =2,q = 1.

The conclusions, along with an outlook, are presented in section 7. Lastly, we have a
couple of appendices. We collect some important notation and terminology in appendix A. In
appendix B, we discuss the mathematical definition of higher-representations of groups and
higher-groups.

Before we begin the main text of the paper, let us make a technical disclaimer aimed mostly
at experts.

Disclaimer: Restrictions on dimensions of operators and ’t Hooft anomalies

Throughout this paper,
1. We consider action of G only on operators of co-dimension at least 2.

2. We allow G® to have a ’t Hooft anomaly associated to an element of
H¥*(BG®P), C*), where BG) denotes the classifying space of G,

Both these assumptions go hand in hand. The above type of 't Hooft anomaly is localized
only on points, and so does not affect the action of G’ on untwisted sector operators
of co-dimension at least 2. Thus, while discussing the action of G®) on operators of
these co-dimensions, we can effectively forget about the anomaly. It should be noted
though that the anomaly does affect the action of G®) on twisted sector operators of
co-dimension 2. We discuss in detail the modification caused by an anomaly for a 0-form
symmetry.

2 Generalized charges for 0-form symmetries

In this section we study physically the action of a 0-form symmetry group G® on operators of
various dimensions, and argue that g-charges of these operators are (q + 1)-representations of
G, justifying the statement 1.2.

2.1 O-charges
Here we reproduce the well-known argument for the following piece of statement 1.2.

Statement 2.1: 0-charges for 0-form symmetries

0-charges of a G© 0-form symmetry are representations of the group GO,

The action on local operators is obtained by moving the codimension-1 topological oper-
ators generating the 0-form symmetry across the location where local operators are inserted.
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(&) 0 (&) 0
Dd_l,geG() Dd_l,gEG()

Figure 3: Action of a O-form symmetry realized by a codimension-1 topological defect

D(g)

i1 &€ G on a local operator O.

e

e

D, €6

Figure 4: A O-form symmetry g € G may act by changing a line operator L to
another line operator g - L.

See figure 3. Moving a topological operator labeled by g € G across, transforms a local

operator O as
g: 0O—g:-0. (15)

One can now move two topological operators across sequentially, or first fuse them and then
move them across, leading to the consistency condition

g2 (81-0)=1(g281)- 0. (16)

Moreover, the topological operator corresponding to 1 € G is the identity operator, which

clearly has the action
1: 00— 0. (17)

Consequently, O-charges furnished by local operators are representations of G(*).

2.2 1-charges

In this subsection we study 1-charges of 0-form symmetries, i.e. the possible actions of 0-form
symmetries on line operators. Similar analyses have appeared recently in [64, 65].
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Q)
D,”,,h€H;
(h)
(i
Dy

D(()h) for all h € H; generate an induced O-form symmetry on L.

Figure 5: A topological local operator D’ arising at the junction of a line operator L

and the O-form symmetry generator h € H;. Such topological local operators

Consider now a simple line operator' L, where simplicity of an operator is defined as
follows.

Definition

A g-dimensional operator O, is called simple if the vector space formed by topological
operators living on the world-volume of O, is one-dimensional. That is, the only non-zero
topological local operators living on O, are C* multiples of the identity local operator
on O,.

q

As L passes through a codimension-1 topological operator labeled by g € G, it may get
transformed into a different line operator g - L. See figure 4. This means that L lives in a
multiplet (or orbit)

M, ={g-L; g GO}, (18)

of line operators that are related to each other by the action of G(?.
Let H;, € G© be the subgroup that leaves the line operator L invariant (i.e. the stabilizer

group)
H={heG; h-L=1}. (19)

Then we can label different line operators in the multiplet M; by right cosets of H; in G, i.e.
M, ={lg]=H.,g; g<GO}. (20)

Consequently, we denote a line operator in M; obtained by acting g € G® on L by Lig), and

the action of g is

gl

g: L— gL =Ly, [¢]=H,g. 21

Let us now look more closely at the action of H; on L, which leaves the line operator
invariant. H; can be understood as an induced O-form symmetry on the line operator L,
Do . (h) e
which is a O-form symmetry generated by the topological local operators D, arising at the
junction of L with codimension-1 topological operators associated to H; extending into the
bulk d-dimensional spacetime. See figure 5.

In this paper, the term ‘q-dimensional operator’ almost always refers to a simple g-dimensional operator.
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() (hy) (h1hy)
D Da4 Day’

D(()hl) D(()hz) D(()hlhz)
L = 0(hy,hy) X L

Figure 6: Fusion of induced 0-form symmetry generators Déhi) on a line operator L.

This induced H; O-form symmetry may have a ’t Hooft anomaly, which is described by an
element of the group cohomology

[c]€H?*(H,,C"). (22)

This means that the fusion of the induced 0-form symmetry generators D(()hl) and D(()hZ) differs

(h1hy)
DOIZ

from as follows

Dy D¢ = o(hy,h)DS"™,  hi€Hy, (23)

where o is a representative of the class [0], and so o(hy,h,) is a C* factor in the above
equation. See figure 6. We do have the freedom of rescaling? D(()h) independently for allh € Hy,
but this only modifies the C* factors in (23) by replacing o by a different representative o’ of
[o].

We can also study similar properties for some other line operator L, in the multiplet
M;,. It is easy to see that the induced O-form symmetry on L,; is H Ly = &HL ¢~ ! which is
isomorphic to H; and the 't Hooft anomaly of the H Lig) induced 0-form symmetry is obtained
by simply transporting [o ] by the isomorphism between H; and H Ligy* Thus, there is no new
information contained in the action of G(® on L{41 beyond the pair (H,[c]).

The pair (Hy,[o]) precisely defines an irreducible 2-representation of G(® [26,27, 66]!
See appendix B for mathematical definition of 2-representations. Hence, we have justified the
following piece of statement 1.2.

Statement 2.2: 1-charges for 0-form symmetries
1-charges of a G© 0-form symmetry are 2-representations of the group GO,

In more detail, there are three fundamental properties of a 1-charge associated to a 2-
representation (which we denote with an appropriate superscript)

p(Z) :(HLJ[O-])r (24)

which capture the action of G on line operators furnishing the 1-charge p®:

2Said differently, the junction of L with Déh_)l contains a one-dimensional vector space of junction operators, and
the D(()h) junction operators used above are some random choice of vectors in these vector spaces. The rescalings
correspond to making another choice for junction operators D(()h).
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1. Size of the multiplet: Line operators furnishing the 1-charge p@ lie in a multiplet M s
with total number of lines in M; being

n := Size of the multiplet M; = Number of right cosets of H; in G, (25)

The multiplet is irreducible in the sense that we can obtain any line L’ € M; from any
other line L € M; by acting by some element g € G(©.
The size n of M; is known as the dimension of the 2-representation p®.

2. Induced 0-form symmetry: The subgroup H; € G© forming part of the data of the

1-charge p® specifies the global 0-form symmetry induced on a particular line operator
L in the multiplet M; .

3. ’t Hooft anomaly of induced symmetry: The element [oc] € H2(H;,C*) forming part

of the data of the 1-charge p® specifies the ’t Hooft anomaly of the H; induced 0-form
symmetry of L.

We can also express the fact that a multiplet M; of line operators furnishes a 1-charge p® of
G 0-form symmetry by saying that the non-simple line operator

P r, (26)

L’'eM;

transforms in the 2-representation p® of G(®.
Let us now consider concrete field theory examples of line operators forming 2-
representations of a O-form symmetry.

Example 2.1: Simplest example of non-trivial 1-charge

The simplest non-trivial irreducible 2-representation arises for
G0 = Z,, @27

which is
p¥=H=1,[0]1=0). (28)

To realize it physically, we need a multiplet of two simple line operators L and L’, or in
other words a non-simple line operator

Lol . (29)

The action of (27) then exchanges L and L’. In fact, Z, has only two irreducible 2-
representations, with the other 2-representation being the trivial one

p® =(H=12,[0]=0), (30)
which is physically realized on a single simple line operator
L, 31

which is left invariant by the action of (27).
Both of these 2-representations arise in the following example Quantum Field Theory.
Take
¥ = d-dimensional pure Spin(2N) gauge theory. (32)
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This theory has (27) O-form symmetry arising from the outer-automorphism of the gauge
algebra so(2N). The non-trivial 2-representation is furnished by

Ws & W, (33)

where W; is Wilson line in irreducible spinor representation S of s0(2N) and W is Wilson
line in irreducible cospinor representation C of s0(2N). Indeed, the outer-automorphism
exchanges the spinor and cospinor representations, and hence the two Wilson lines are
exchanged

W «— W, (34)

under the action of (27).

On the other hand, there are representations of s0(2N) left invariant by the outer-
automorphism, e.g. the vector representation V. The corresponding Wilson lines are left

invariant by (27), e.g. we have
“ )

and hence Wy, transforms in the trivial 2-representation of (27).

In the above example, neither of the 1-charges involved a ’t Hooft anomaly for the 0-form
symmetry induced on the line operators furnishing the 1-charge. Below we discuss an example
where there is a non-trivial 't Hooft anomaly.

Example 2.2: 1-charges having anomalous induced symmetry

The simplest group G® having non-trivial H2(G(®,C*) is
GO =27,x%x2,, (36)

for which we have
H?(Zy X 7.y, C*) = Z,. (37)

Here we present an example of a QFT ¥ which contains a line operator L on which all of
the bulk (36) 0-form symmetry descends to an induced 0-form symmetry H; = Zy X Z
along with the ’t Hooft anomaly [ o] for the induced O-form symmetry being given by the
non-trivial element of (37). In other words, L transforms in the 2-representation

PP =(Zy x Zy,[0]#0), (38)

of (36).
For this purpose, we take

% = 3d pure gauge theory with gauge group SO(4N). (39
This theory has a 1-form symmetry

W=z, (40)
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which arises from the center of the gauge group SO(4N). The theory also has a 0-form
symmetry

0) _
GO =71 x73. (41)

The Z3' O-form symmetry, also known as the magnetic symmetry, acts non-trivially on
monopole operators inducing monopole configurations (on a small sphere $? around
the operator) of SO(4N) that cannot be lifted to monopole configurations of Spin(4N ).
On the other hand, the Z; 0-form symmetry arises from the outer-automorphism of the
50(4N) gauge algebra.

The 1-charge associated to the 2-representation (38) is furnished by any solitonic line
defect for the 1-form symmetry [67,68], i.e. any line defect which induces a non-trivial
background for 1-form symmetry on a small disk intersecting the line at a point:

L . (42)

This is a consequence of anomaly inflow: in the bulk we have the following mixed
anomaly between G(® and GV

A, =exp (in f B, UA(lm) UA(lo)) , (43)

where B; is the background field for Z(zl) 1-form symmetry and A(li) are background fields
for the Z: 0-form symmetries. This anomaly flows to an anomaly

A, = exp (irc J A(lmL) UA(loz) , (44)

on such a solitonic line defect L, where A(ll)L
fields A(li).
The simplest example of such a solitonic line defect is

are restrictions along L of the background

L= Dg_) := Topological line operator generating Zgl) 1-form symmetry. (45)

In this case an independent check that this topological line operator Dg_) carries an in-
duced anomaly was performed in [47], by showing that Z! and Z3 actions anti-commute

along Dg_), which implies the 't Hooft anomaly (44).
Examples of non-topological solitonic line defects are obtained as fusion products

pNew, (46)

where W can be taken to be any Wilson line operator. A line Dg_) ® W is non-topological
because a Wilson line W is non-topological.

2.3 Higher-charges

We now consider the extension to higher-dimensional operators, i.e. g-charges for g > 2, for 0-
form symmetries. There is a natural extension of the discussion in the last section on 1-charges,
to higher-dimensions, which will be referred to as higher-charges of group cohomology
type. However, we will see that higher-representation theory forces us to consider also a
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generalization thereof, namely non-group cohomology type, which in fact have a natural
physical interpretation as symmetry fractionalization.®

2.3.1 Higher-charges: Group cohomology type

There is an extremely natural generalization of the actions of G(°) on line operators to actions
of G©) on higher-dimensional operators.

These give rise to a special type of g-charges that we refer to as of group cohomology
type, which are described by special types of (g + 1)-representations of the form

Pl =(H(0,),[0]), (47)
which is comprised of a subgroup
H(O,) €GO, (48)
and a cocycle
[0]e€ HI" ' (H(O,),C). (49)

The action of G(?) is captured in this data quite similar to as in previous subsection.

1. Size of the multiplet: g-dimensional operators furnishing the g-charge p@*™ lie in a
multiplet M(O,), with total number of g-dimensional operators in M(O,) being

n := Size of the multiplet M(O,) = Number of right cosets of H(O,) in G9. (50
The multiplet is irreducible in the sense that we can obtain any q-dimensional operator
Oé € M(QO,) from any other g-dimensional operator O, € M(O,) by acting by some
element g € G©.

Mathematically, the size n of M(O,) is known as the dimension of the (q + 1)-
representation p{*+D.

2. Induced 0-form symmetry: The subgroup H(O,) < G forming part of the data of

the g-charge p@™) specifies the global 0-form symmetry induced on a particular g-
dimensional operator O, in the multiplet M(O,).

3. ’t Hooft anomaly of the induced symmetry: The element [oc] € HI™! (H ((Dq),CX)

forming part of the data of the g-charge pd*! specifies the ’t Hooft anomaly of the
H(O,) induced 0-form symmetry of O,.

As we discussed in the previous subsection, for ¢ = 1, the group cohomology type 1-charges
are the most general 1-charges. However, for ¢ > 2, the group cohomology type q-charges only
form a small subset of all possible g-charges. We describe the most general 2-charges in the
next subsection.

Example 2.3: Simplest example of a non-trivial g-charge

The simplest (q + 1)-representation of group cohomology type is

P =(H=1,[c]=0), (51)

3We caution the reader that the symmetry fractionalization discussed here is different from the notion of sym-
metry fractionalization used in earlier works in the literature. The symmetry fractionalization appearing in this
work is a genuine fractionalization of a symmetry to a bigger symmetry. On the other hand, the symmetry frac-
tionalization appearing in other works relates to choices of possible couplings of the theory to backgrounds of a
symmetry of the theory. For example, a theory with G 0-form symmetry and A 1-form symmetry has H?(G,A) worth
of possible couplings to G background fields, which are traditionally referred to as symmetry fractionalizations.
We thank an anonymous referee for suggesting to stress this important distinction to us.
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for G = Z,. This is physically realized by an exchange of two simple g-dimensional
operators O, and O;.
This g-charge arises for the outer-automorphism 0-form symmetry in

¥ =(q + 2)-dimensional pure Spin(4N) gauge theory, (52)

and is carried by the topological codimension-2 operators Dés) and D(gc)’ generating Z,
1-form symmetries that do not act on spinor and cospinor representations respectively.

Example 2.4: q-charges with anomalous induced symmetry: Anomaly inflow

Examples of group cohomology type q-charges carrying non-trivial [o] can be obtained
via anomaly inflow from the bulk d-dimensional QFT, as in an example discussed in the
previous subsection. For example, the g-charge

p W) = (69 [0]), (53)

can be furnished by a g-dimensional solitonic defect inducing a background (on a small
(d — g)-dimensional disk intersection its locus) for a (d —q — 1)-form symmetry having a
mixed 't Hooft anomaly with O-form symmetry in the bulk roughly® of the form

Bd—q Juo, (54)

where By_, is the background field for the (d —q — 1)-form symmetry.

?For brevity, we are suppressing many details that need to be specified for the following expression for
the anomaly to make sense.

2.3.2 Higher-charges: (Non-invertible) symmetry fractionalization type

At first sight, one might think that group cohomology type g-charges provide all possible g-
charges. There are at least two reasons for believing so:

1. First of all, the mathematical structure of group cohomology type g-charges is a nice,
uniform generalization of the mathematical structure of general 1-charges.

2. Secondly, the mathematical data of group cohomology type g-charges described in the
previous subsection seems to incorporate all of the relevant physical information asso-
ciated to the action of G(*) 0-form symmetry on g-dimensional operators.

However, if one believes statement 1.2, then one should check whether (g+ 1)-representations
are all of group cohomology type. It turns out that this is not the case for ¢ > 2, for
which generic g-charges are in fact not of this type. In this way, the mathematics of higher-
representations forces us to seek new physical phenomena that only start becoming visible
when considering the action of G(® 0-form symmetry on a q > 2-dimensional operator Oy
In turn, physically we will see that these non-group cohomology type higher represen-
tations have concrete realizations in terms of symmetry fractionalization. Perhaps the most
intriguing implication is that invertible symmetries can fractionalize into non-invertible sym-
metries, as we will see in the example of a Z(ZO) fractionalizing into the Ising category.

Localized and induced symmetries. This new physical phenomenon is the existence of lo-
calized symmetries, namely symmetries of the operator O, generated by topological operators
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NNAEN

Oq
Figure 7: Localized (green) and induced localized (purple) symmetries on the oper-

ator O,. The latter arise in the world-volume occupied by the intersection of a bulk

(&)

topological defect of codimension 1, D;*,

and the operator O,.

living inside the worldvolume of O;. See figure 7. For g = 1, such localized symmetries cor-
respond to the existence of topological local operators living on the line O,_;, but since O,—;
is taken to be simple, such localized symmetries are ruled out. For g > 2, even if O is taken
to be simple, we can have topological operators of dimension 1 < r < g —1 living inside the
worldvolume of O,.

Additionally, we also have induced localized symmetries. These are generated by (g —1)-
dimensional and lower-dimensional topological defects arising in the (q¢ — 1)-dimensional
world-volume of a junction between O, and a bulk codimension-1 topological defect Dc(zg—)1
generating g € G(0). See figure 7.

Definition

We refer to localized symmetries induced by a bulk 0-form symmetry g € G(*) as induced
localized symmetries in the g-sector.

Then, induced localized symmetries in the identity sector are just the localized symmetries
discussed in the previous paragraph.

Note that we can compose an induced localized symmetry in the g-sector with an induced
localized symmetry in the g’-sector to obtain an induced localized symmetry in the gg’-sector.

Mathematical structure. As discussed in the introduction, the mathematical structure to
encapsulate defects of various dimensions layered and embedded in each other is that of
higher-categories. Thus, we can describe the induced localized symmetries in the g-sector
by a (non-fusion) (g — 1)-category

céq‘”(oq) ) (55)
In total, all induced localized symmetries are described by a (g — 1)-category
cl(0,) = P V(). (56)
geG

The composition of induced localized symmetries lying in different sectors discussed in the
previous paragraph becomes a fusion structure on the (q — 1)-category C(q_l)((’)q), converting
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it into a fusion (q — 1)-category. Moreover, since the fusion respects the group multiplication
of the underlying sectors C(q_l)((’)q) is in fact a G(®)-graded fusion (q — 1)-category.

Now, G®-graded fusion (q — 1)-categories describe only 1-dimensional (q + 1)-
representations. This is because we have only been studying a special class of g-charges:
a g-charge in this class describes a multiplet of size 1 of q-dimensional operators, i.e. there is
only a single g-dimensional operator O, in the multiplet. Indeed, while discussing above the
structure of induced localized symmetries, we assumed that all the elements g € G(© leave o
invariant. Allowing more g-dimensional operators to participate in the multiplet, we obtain
g-charges described by more general (q+ 1)-representations that are described by G()-graded
multi-fusion (q — 1)-categories. Thus, we have justified the statement 1.2 for general g.

Symmetry fractionalization to a bigger O-form group. Non-group cohomology g-charges
are associated to the physical phenomena of symmetry fractionalization, or more precisely
the fractionalization of the bulk G(® 0-form symmetry when induced on the operator Oy. In
general, the fractionalized induced symmetries are non-invertible, but for special classes of g-
charges the fractionalized induced symmetry is again invertible. The invertible fractionalized
induced symmetry can in general be a g-group symmetry. For the moment, let us focus on
q-charges for which this g-group symmetry is just a O-form symmetry G(®.
Such a g-charge is specified by two pieces of data

1. A surjective homomorphism
n: GO GO, 57)

2. A choice of element
[w] € HI*Y(GO), CX). (58)

and is realized by a multiplet comprising of a single g-dimensional operator O,. The physical
information of the g-charge is obtained from these two pieces of data as follows

1. Localized symmetries: There is a O-form symmetry localized on the world-volume of
O, given by the kernel of 7, ker(7) C GO,

2. Induced localized symmetries: Additionally, we have induced localized symmetries.
In the g-sector, these are in one-to-one correspondence with the elements of the subset

n(g) < GO, (59)

3. Composition of induced localized symmetries: The composition of induced localized

symmetries is described by the group multiplication of G©.

In other words, the bulk G 0-form symmetry has fractionalized to a G© induced
O-form symmetry on ;.

4. ’t Hooft anomaly of induced localized symmetries: Finally, the element [w] de-

scribes the ’t Hooft anomaly of the G(® 0-form symmetry of Oq-

Mathematically, these g-charges correspond to 1-dimensional (q + 1)-representations
whose associated G(®)-graded fusion (g — 1)-category C"D(0,) is

(g-1) —(_ [w]
C a (Oq) - (q 1)-VEC6(O) > (60)

of 5(0)-graded (g — 1)-vector spaces with a non-trivial coherence relation (also known as as-
sociator) described by the class [w].
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Example 2.5: GO = Z, to G(®) = Z, symmetry fractionalization

A simple example of such a g-charge is provided by
¢V=z, 9=z, (61)

where there is a unique possible surjective map n: it maps the two generators of Z, to
the generator of Z,. A g-dimensional operator O, realizing this g-charge has a localized
symmetry

ker(n) =2Z,. (62)

That is, there is a (g—1)-dimensional topological operator ngz) living in the worldvolume
of O,. Now let us look at induced localized symmetries lying in the non-trivial sector in
GO = 7. These are in one-to-one correspondence with the two generators of GO = Zy.
That is, there are two (q—1)-dimensional topological operators that can arise at the junc-
tion of O, with the bulk codimension-1 topological defect Dy_; that generates GO =17,.
Let us denote these (q — 1)-dimensional topological operators by
0] (-0

DY D, y. (63)

The statement of symmetry fractionalization is now as follows. We try to induce the

GO = Z, symmetry on (J;. In order to implement this symmetry on O,, we need to
make a choice of a topological defect lying at the intersection of O, and the symmetry

é:il). Let us
make the choice D{gl_)l without loss of generality. Now we check whether the symmetry
is still Z, valued by performing the fusion of these topological defects. As we fuse D;_;
with itself, it becomes a trivial defect, which means the symmetry is Z,-valued in the
bulk. However along the worldvolume of O, we have to fuse D¢591 with itself, resulting
in the generator of the Z, symmetry localized along O,

generator D;_;. We can either choose this topological defect to be Dégl or D

() opW — p©)
D, ®D,~ =D . (64)

See figure 8. Thus we see explicitly that the bulk G¥) = Z, symmetry fractionalizes to
GO = Z4 symmetry when we try to induce it on O,. The same result is obtained if we
instead try to induce the G(® = Z, symmetry on O, using Dé:il).

An example of such a symmetry fractionalization is obtained in any QFT ¥ having a
Z(zd_z) (d —2)-form symmetry and a G = Zgo) 0-form symmetry, along with a mixed ’t
Hooft anomaly of the form

Ad+1 = €exp (lﬂf Bd—l UAl UAl) 5 (65)

and no pure 't Hooft anomaly for Z(Zd_z). QFTs having such a symmetry and anomaly
structure are ubiquitous: simply take a d-dimensional QFT T’ which has a non-anomalous
Z4 0-form symmetry, and gauge the Z, subgroup of this O-form symmetry. The resulting
QFT after gauging can be identified with €. The Z;d_z) (d — 2)-form symmetry of ¥ is
obtained as the dual of the Z, O-form symmetry of T’ being gauged, and G©© = Z(zo)
0-form symmetry of ¥ is the residual Z,/Z, 0-form symmetry.
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Figure 8: The figure depicts G(® = Zs to GO = Z4 symmetry fractionalization. Dy_;
is a topological codimension-1 defect implementing G(*) = Z, 0-form symmetry in
the bulk and D,§21 is a topological defect arising at the intersection of D;_; with a q-

dimensional operator O,. The topological defect D(gl induces a G = Z4 symmetry
on O, because as shown in the figure its fusion with itself leaves behind a topological

operator D‘g:)l living on the worldvolume of O, which in turn generates a Z, localized

O-form symmetry of Og: Dé:)l ® D(g:)l = D(gifi.

One can construct in ¥ a topological condensation surface operator DéZZ) by gauging
the ng—z) symmetry on a surface in spacetime. Then the G(®) = Zgo) 0-form symmetry

fractionalizes to a G = Zgo) on this surface operator DEZZ), and thus DéZZ) furnishes
such a non-group cohomology 2-charge.

This was shown in section 2.5 of [47] for d = 3, but the same argument extends to
general d.

2.3.3 Example: Non-invertible symmetry fractionalization

Generalizing the above story, the physical structure of a general g-charge can be understood as
the phenomenon of the bulk G© 0-form symmetry fractionalizing to a non-invertible induced
symmetry on the world-volume of an irreducible multiplet of g-dimensional operators furnish-
ing the g-charge. When the irreducible multiplet contains a single g-dimensional operator O,
the non-invertible induced symmetry on O, is described by the symmetry (q—1) category [17]
C(q_l)(Oq) discussed around (56).

Below we provide a simple example exhibiting non-invertible symmetry fractionalization,
where a Z(zo) 0-form symmetry fractionalizes on a surface defect O, to a non-invertible induced
symmetry described by the Ising fusion category.

Example 2.6: Symmetry fractionalization to Ising category

Let us conclude this section by providing an illustrative example of non-invertible sym-
metry fractionalization. This is in fact the simplest example of non-invertible symmetry
fractionalization. It is furnished by a surface operator O, in a d-dimensional QFT ¥
carrying a

GO =17,, (66)
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Figure 9: The figure depicts G© = Z- to C = Ising non-invertible symmetry frac-
tionalization. D,_; is a topological codimension-1 defect implementing G©© = 7,

O,

0-form symmetry in the bulk and Dgs) is a topological defect arising at the intersec-
tion of D;_; with a surface operator O,. The topological defect Dgs) induces Ising
symmetry on O, because as shown in the figure its fusion with itself leaves behind a
topological line operator Dgid) @ Dg_) living on the world-volume of O,, where Dgid)
is the identity line on O, and Dg_) generates a Z, localized 0-form symmetry of O,:
p{? @ D7) = pliv).

0-form symmetry generated by a topological operator D;_;. The surface operator O, has
additionally a localized Z, 0-form symmetry, generated by a topological line operator
D§_) living in the worldvolume of O,. On the other hand, there is an induced localized
symmetry
p® (67)
1 >

arising at the junction of O, and D;_;. The fusion of D%S) with itself is
() (8) _ plid) (=)
D @ D) = D @ D{7, (68)

where D?d) is the identity line operator on O,. See figure 9. Since this is a non-invertible
fusion rule, this means that the bulk G(*) = Z, 0-form symmetry fractionalizes to a non-
invertible symmetry on O,. In fact, the non-invertible symmetry can be recognized as the
well-known Ising symmetry generated by the Ising fusion category, which is discussed
in more detail below.

Mathematically, the 2-charge carried by O, is described by a 1d 3-representation cor-
responding to a Z,-graded fusion category whose underlying non-graded fusion category
is the Ising fusion category. This fusion category has three simple objects

i) =) )
{p{, pO, D}, (69)
along with fusion rules

) g p) = pid
p{?eD{? =p{?Y,

p{?®D¥ =p® gD~ = p©, (70)
(5) g pS) — plid) g p)
D © D! = pi¥ ¢ p{7).
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Figure 10: Topological local operators D(()L living on a line L obtained after moving

(g)

i across L.

the 1-form symmetry generator D

It is converted into a Z,-graded fusion category by assigning {D%id),D§_)} to the trivial
grade and Dgs) to the non-trivial grade.

It would be interesting to find a Z(ZO) symmetric QFT ¥ carrying this 2-charge, which
is a problem that is left for future work. The authors think that such 2-charges could
be produced by coupling 2d Ising CFT to ¥ judiciously, probably in a similar way to the
construction of theta topological defects discussed in [26,46,47], but now extending the
construction to include non-topological defects.

3 Generalized charges for 1-form symmetries

In this section, we discuss generalized charges of a 1-form symmetry group G™. As for 0-
form symmetries the simplest instance is the case of 1-charges, upon which the symmetry acts
simply as representations. However, we will see again that higher g-charges, i.e. g-dimensional
operators upon which the 1-form symmetry acts, are associated to higher-representations. Let
us emphasize that these are not higher-representations of the group G(), but rather higher-
representations of the 2-group G(GZ()U associated to the 1-form group G™. We will denote the
generators of the 1-form symmetry group by topological codimension-2 operators

D(g)

&, gecW. (71)

3.1 1-charges

The action of a 1-form symmetry on line operators is similar to the action of a O-form symmetry
on local operators [5]. We can move a codimension-2 topological operator labeled by g € GV
across a line operator L. In the process, we may generate a topological local operator D(gL’g)
living on L. See figure 10. The consistency condition analogous to (16) is

(L.g) (L.g) _ nL.gg"
Dy ¥ @Dy ¢’ =Dy % (72)

Since L is assumed to be simple, the operators D(()L’g) can be identified with elements of C*,

and then the above condition means that L corresponds to an irreducible representation (or

character) of the abelian group G1). This is simply the special case p = 1 of statement 1.1.
In fact, mathematically, representations of the 1-form symmetry group G() are the same

as 2-representations of the 2-group (G(Gz()l) based on the 1-form group G). What we mean by
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2
GG(I)

symmetry GO,
Thus, we recover the p = q = 1 version of the statement 1.3:

is simply the 2-group which is comprised of a trivial 0-form symmetry and said 1-form

Statement 3.1: 1-charges for 1-form symmetries

1-charges of a G 1-form symmetry are 2-representations of the associated 2-group

3.2 2-charges

In this subsection, we want to understand how a simple surface operator O, interacts with a
G 1-form symmetry.

Localized and induced symmetries. Again, there are two types of symmetries: localized
symmetries which only exist on the surface operator, and those that arise from intersections
with bulk topological operators, the induced symmetries.

First of all, recall from the discussion of section 2.3.2 that a simple surface operator O, can
carry localized symmetries generated by topological line operators living on its worldvolume,
and the localized symmetry may in general be non-invertible.

Mathematically, the localized symmetries of O, are captured by a fusion category C. The
different localized symmetries correspond to different simple objects X € C, and we label the
corresponding topological line operators by

p®, xec. (73)

The invertible part of localized symmetries described by C will play a special role in the discus-
sion that follows. This is described by a group H- which we refer to as the 0-form symmetry
localized on O,. We label the corresponding topological line operators as Dgh) for h € He.
Additionally we have 1-form symmetries induced on O, by the bulk 1-form symmetry
which are generated by topological local operators D(()g) arising at the junctions of O, with

(&)
D7,

Induced symmetries sourcing localized symmetries. Just as for the case of 0-form sym-
metries discussed in section 2.3.2, the induced symmetries may interact non-trivially with the
localized symmetries. There are two possible interactions at play here, which we discuss in
turn.

The first interaction is that the junction topological local operator D(()g) may be attached
to a topological line operator Dng ) generating a localized symmetry of O,. In other words,
the induced symmetry generated by D(()g) sources (a background of) the localized symmetry
generated by Dixg ). See figure 11.

The composition rule

(8) (&) _ nlgegh
Dy ®Dy” 5 =Dy (74)
of 1-form symmetries needs to be obeyed by the sourced localized symmetries

X)) (X

D _ o Kee)
D, ¥ ®D, ¢ =D,*",

(75)
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(Xg)
D, ¢
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Figure 11: D(()g) are topological local operators inducing G 1-form symmetry on

the surface operator O,. These operators arise at the junction of O, with the bulk

(&)
d—2°

operator Dng ) € C generating a localized symmetry of O,.

topological operators D Additionally, D(()g) may be attached to a topological line

As a consequence of this, only the invertible localized 0-form symmetries described by group
H_ can be sourced by the induced 1-form symmetries. We thus have a homomorphism

v: G s H,, (76)

describing the localized 0-form symmetry sourced by each induced 1-form symmetry element
and we can write
Dixg) _ Dl(f(g)) . 77)

This results in the following non-trivial constraint on the possible background fields
0A1 =7 (Bz|(92) ) (78)

where A is the background field for localized H; 0-form symmetry living on the world-volume
of O, and By, is the restriction onto the world-volume of O, of the background field B, for
the GV 1-form symmetry living in the d-dimensional bulk.

Later, in example 3.2, we will describe a surface operator (called O there) in the pure
4d O(4N) gauge theory exhibiting Z, 0-form localized symmetry which is sourced by the Z,
1-form symmetry induced from the 4d bulk.

Action of localized symmetries on induced symmetries: Mixed ’t hooft anomaly. The
second interaction between localized and induced symmetries is that the former can act on
the latter. In other words, induced symmetries correspond to 0-charges for (possibly
non-invertible) localized symmetries. A detailed discussion of the structure of generalized
charges for non-invertible symmetries is the subject of Part II in this series [1].

The action is implemented by moving a topological line operator D%X) past a junction topo-

(&)

logical local operator D(()g ) as shown in figure 12. After this move, the junction of O, and D>,

sources localized symmetry
p®) @ pl*®) @ p. (79)

But we have already established that the junction can only source Dr(g )

the line (79) must equal D%T(g ), Restricting to the invertible part D%X) = Dgh) for h € H;, we

, which implies that
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(+(e) (=(2)
D1 D]
DE.\’) ® DET(:;)) ® Dg/\' )
i f
(g) ] (&)
Dd*Z — Ddiz
() (g)
DO Do
x) /
D1 / /
0, 0,

Figure 12: Moving an arbitrary topological line operator D%X) living on the world-

volume of O, past a junction topological local operator D(()g).

learn that the image of the homomorphism (76) is contained in the center Z(H.) of H,. That
is, induced 1-form symmetries can only source localized symmetries lying in Z(H).
The action of the H, localized 0-form symmetry is

heH,: D¥ — ¢, (DY, (80)
where ¢,(h) € C* such that
b (NP (h) = P (hh),  ¢,(1)=1. (81)

This means that the junction topological local operator D(()g ) furnishes a 1-dimensional repre-
sentation of H.. Thus we have an homomorphism

¢: G- y(He), (82)

where y(H.) is the character group, namely the group formed by 1-dimensional representa-
tions, of He.

The action of H; on induced 1-form symmetries can be viewed as a mixed 't Hooft anomaly
between the localized 0-form and the induced 1-form symmetries of the form

As = by, (A1), (83)

where the notation for background fields has been discussed above. More concretely, A5 is a
C* valued 3-cocycle whose explicit simplicial form is

A3(V0, V1,2, V3) = @, (v.0,)(A1(V2,V3)) € c*, (84)

where v; are vertices in a simplicial decomposition, By| o, (vo, V1, V2) € G and A;(v,,v3) € He.
Note that, for consistency we must demand that

5A3 =0, (85)

which is a non-trivial condition to satisfy due to the non-closure condition (78).

Later, in example 3.2, we will describe a surface operator (called O, there) in the pure
4d O(4N) gauge theory exhibiting Z, 0-form localized symmetry under which the topologi-
cal local operator generating Z, 1-form symmetry induced from the 4d bulk is non-trivially
charged.
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’t Hooft anomaly for induced 1-form symmetry. Finally, we have a constraint that the
composition of induced 1-form symmetries is consistent with the composition (74) of bulk
1-form symmetries, implying that we must have

D’ @ D) = alg, ¢, (86)

where a is a C* valued 2-cochain on GOV,
Moreover, the associativity of (74) imposes the condition that a is a 2-cocycle. In fact,
using the freedom to rescale topological local operators D¢ ), only the cohomology class

[a] € HY(GW,C), (87)

distinguishes different 2-charges.
Physically, the class [a] describes a pure ’t Hooft anomaly for the G induced symmetry
taking the form

As =exp (Zm' f Bock(BZ|02)) , (88)

where the Bockstein is taken with respect to the short exact sequence
0-C*-GM -6 o, (89)

specified by the extension class [a].

Mathematical structure. All of the above information describing a 2-charge of 1-form sym-
metry can be neatly encapsulated using category theory. First of all, as we have already been
using in the above physical description, the localized symmetries are described by a fusion cat-
egory C. The interactions of localized and induced symmetries, along with the pure ’t Hooft
anomaly of induced symmetries is mathematically encapsulated in the information of a braided
monoidal functor

Vec(GM) - 2(0), (90)

where Vec(GM) is the braided fusion category obtained by giving a trivial braiding to the
fusion category formed by G(V-graded vector spaces and Z(C) is the modular (in particular
braided) fusion category formed by the Drinfeld center of C.

Let us expand on how this mathematical structure encodes all of the physical information
discussed above. As we will argue in Part II [1], we have the following general statement.

Statement 3.2: 0-charges of a non-invertible categorical symmetry

The 0-charges of a possibly non-invertible symmetry described by a fusion category C are
objects of its Drinfeld center Z(C).

Then, the functor (90) assigns to every 1-form symmetry element g € G a 0-charge for
the localized symmetry C on O,. More concretely, an object of Drinfeld center Z(C) can be
expressed as

(X, ), (91)

where X is an object in C and f is a collection of morphisms in C involving X. The functor
(90) thus assigns to g € G a simple object (X, = 7(8), By) € Z(C) where the simple object
Xy = 1(g) € Z(H¢) describes the localized symmetry sourced by the corresponding induced
1-form symmetry and the morphisms 3, encode the action of localized symmetries on induced
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symmetries. This encoding will be described in Part II [1]. Finally, the fact that the functor is
monoidal encodes the condition (86) along with the characterization (87).
Such functors capture precisely 1-dimensional 3-representations of the 2-group G(Gz

)
() based

on the 1-form group G, and general 3-representations are direct sums of these 1-dimensional
ones. Thus, we recover the p = 1,q = 2 piece of statement 1.3:

Statement 3.3: 2-charges for 1-form symmetries

2-charges of a G 1-form symmetry are 3-representations of the associated 2-group

Let us describe some simple examples of non-trivial 2-charges:

Example 3.1: 2-charges for G(V) = Z,

As an illustration, let us enumerate all the possible 2-charges for
W =1z,, (92)

1-form symmetry that exhibit
C =Vecy,, (93)

localized symmetry, which corresponds to a
0=z (94)
02 2>

non-anomalous O-form symmetry localized on the corresponding surface operator O,.
First of all, the induced 1-form symmetry cannot carry a pure 't Hooft anomaly be-
cause

H*(Z,,C*)=0. (95)
Thus, we have the following possible 2-charges:

1. There is no interaction between the localized and induced symmetries.

2. The generator of the induced Z, 1-form symmetry is charged under the localized
symmetry (94).

This corresponds to a 't Hooft anomaly

./43 = exp (f Al UB2|OZ) . (96)

3. The generator of the induced Z, 1-form symmetry is in the twisted sector for the
generator of the localized symmetry (94). In other words, the induced symmetry
sources the localized symmetry.

In terms of background fields, we have the relationship

5A1 = B2|Oz . (97)
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Note that the generator of the induced Z, 1-form symmetry cannot be both charged and
be in the twisted sector at the same time, because in such a situation the relationship
(97) would force the mixed ’t Hooft anomaly (96) to be non-closed

5,/43 :exp(f BZlOZUB2|OZ) 750, (98)
which is a contradiction.

Categorical formulation. We can also recover the above three possibilities using the
more mathematical approach outlined above. Mathematically, we want to enumerate
braided monoidal functors from the braided fusion category VecGu):Z2 (with trivial braid-
ing) to the modular tensor category Z(C = Vecy, ). The latter can be recognized as the
category describing topological line defects of the 3d Z, Dijkgraaf-Witten gauge theory, or
in other words the 2+1d toric code. In other words, we are enumerating different ways
of choosing a non-anomalous Z, 1-form symmetry of the above 3d TQFT. The simple
topological line operators of the 3d TQFT are

{1,e,m,y}, (99)

with fusionse®e=m®m =1 ®1 =1 and ¢ = e ® m, and spins 0(e) = 6(m) =1 and
0(y) = —1. There are precisely three choices for a non-anomalous Z, 1-form symmetry:

1. Choose the identity line 1 as the generator of the Z, 1-form symmetry. This corre-
sponds to the 2-charge in which there is no interaction between the induced and
localized symmetries.

2. Choose the “electric” line e as the generator of the Z, 1-form symmetry. This corre-
sponds to the 2-charge in which the induced symmetry is charged under localized

symmetry.

3. Choose the “magnetic” line m as the generator of the Z, 1-form symmetry. This
corresponds to the 2-charge in which the induced symmetry sources the localized

symmetry.

Note that we cannot choose the “dyonic”/“fermionic” line 1 as the generator of Z, 1-
form symmetry, because the ) line is a fermion (recall 6(v) = —1) and hence generates
a Z, 1-form symmetry with a non-trivial 't Hooft anomaly. This corresponds to the fact
that one cannot have a 2-charge in which induced symmetry is both charged under the
localized symmetry and also sources the localized symmetry.

Pairing of 2-charges. Note that one can obtain a surface operator O, carrying a 2-
charge having property (97) from a surface operator O, carrying 2-charge having prop-
erty (96) by gauging the localized Z, 0-form symmetry of O,. After the gauging proce-
dure we obtain a dual Z, 0-form localized symmetry on O,. The local operator generating
the induced Z, 1-form symmetry is charged under the original localized Z,, and so be-
comes a twisted sector local operator for the dual Z,. Similarly, one can obtain O, from
O, by gauging the localized Z, 0-form symmetry of .

Thus, if a theory admits a surface operator carrying 2-charge corresponding to the
electric line e, then it also must admit a surface operator carrying 2-charge correspond-
ing to the magnetic line m.
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Figure 13: The topological line D%V;S ©
pB)
2

arising at the end of the topological surface

Dév) along the topological surface in the 4d pure O(4N) gauge theory.

Below we describe a concrete field theory which realizes the above discussed 2-charges.

Example 3.2: 4d O(4N) gauge theory

The two non-trivial 2-charges exhibiting properties (97) and (96) are realized in 4d pure
O(4N) gauge theory. This can be easily seen if we begin with the 4d pure Pin"(4N)
gauge theory, which as discussed in [26] has topological surface operators described by
2-representations of a split 2-group. We will only use two surface operators Désc) and
Dév) having fusions

p{" @ {") = DY, 100)
ng) ®D§SC) _ DéSC)’

with Désc) having non-invertible fusion with itself. The first fusion implies that DEV)
generates a Z, 1-form symmetry, which can be identified as the center 1-form symmetry
of the Pin*(4N) theory. On the other hand, the second fusion implies that there is a line
operator D%V;SC) living at an end of Dév) along Désc). See figure 13. This line operator
is Z, valued: due to the first fusion rule, its square must be a line operator living on the
world-volume of Désc), but the only such line operator is the identity one.

Gauging the Z, 1-form symmetry generated by Dév) leads to the O(4N) theory. The
surface operator furnishing the desired 2-charge is

0, =D, (101)

or more precisely the image in the O(4N) theory of the operator Désc) of the Pin*(4N)
theory. The relevant 1-form symmetry

M=z, (102)

is the dual 1-form symmetry arising after the above gauging, which can be identified as
the magnetic 1-form symmetry of the O(4N) theory.

The line operator ng;sc) becomes a line operator living on the world-volume of
thus generating a

(50)
Dy,

0
Go) =1, (103)
localized symmetry of it. Additionally, the generator DiV;Sc) of this localized symmetry

has to be charged under the Z, 1-form symmetry induced on O, by the bulk magnetic
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1-form symmetry, because before the gauging the line operator D%V;Sc) lied at the end of

the topological operator Dév) being gauged. This means that we have a 't Hooft anomaly
(96) and hence the proposed surface operator O, indeed furnishes the desired non-trivial
2-charge.

A surface operator O, furnishing the other non-trivial 2-charge is simply obtained
from O, by gauging its Z, localized symmetry along its whole world-volume. As ex-
plained above, O, then exhibits (97).

3.3 Higher-charges

Continuing in the above fashion, one may study g-charges for ¢ > 3. The interesting physical
phenomenon that opens up here is the possibility of fractionalization of 1-form symmetry, i.e.
the induced 1-form symmetry on a g-dimensional operator O, may be a larger group G,
or may be a larger higher-group, or the induced symmetry may actually be non-invertible.
Mathematically, such g-charges are expected to form (g + 1)-representations p4*1 of the 2-
group G(Gz()l) associated to the 1-form symmetry group GV

1-form symmetry fractionalization in special types of 3-charges. Let us discuss a special
class of 3-charges which exhibit both invertible and non-invertible 1-form symmetry fraction-
alization. An irreducible 3-charge in this class exhibits the following physical properties:

1. The localized symmetries on a 3-dimensional operator O3 furnishing the 3-charge are
captured essentially by topological line operators living on 5. These line operators can
not only have non-invertible fusion rules, but also can braid non-trivially with each other.
These line operators and their properties are encoded mathematically in the structure
of a braided fusion category B.

2. The world-volume of O3 also contains topological surface operators, but in this special
class of 3-charges, all such surface operators can be constructed by gauging/condensing
the topological line operators in BB along two-dimension sub-world-volumes of O;. Math-
ematically, the topological surfaces and lines combine together to form a fusion 2-
category denoted by

Mod(B), (104)

whose objects are module categories of 5.

3. The induced symmetries arise at codimension-2 (i.e. line-like) junctions of the bulk G(
1-form symmetry generators and O;. There can be various types of topological line
operators arising at such junctions, which generate the induced symmetries. Combining
them with line operators in B, we obtain the mathematical structure of a G()-graded
braided fusion category Bsq).

4. Physically, in such a 3-charge, the induced symmetries do not source localized symme-
tries, but the generators of induced symmetries can be charged under localized symme-
tries. This information about the charge is encoded mathematically in the braiding of an
arbitrary object of the graded category B;u with an object of the trivially graded part
B - BG(l)-

A generic choice of Bsq) corresponds to a non-invertible fractionalization of GV 1-form sym-
metry, quite similar to the non-invertible fractionalization of 0-form symmetry discussed in
section 2.3.2.
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Example 3.3: Invertible and non-invertible 1-form symmetry fractionalization

Let us provide examples of B corresponding to both invertible and non-invertible sym-
metry fractionalization for
¢V =1z,. (105)

For invertible symmetry fractionalization, take
BG(l) = VeCZ4 ) (106)
with trivial braiding, and grading specified by surjective homomorphism Z, — Z,. A 3-

dimensional operator O furnishing such a 3-charge carries a

Ggg =7, (107)

1-form localized symmetry, which is extended to a total of Gi(;j_l oc

by 1-form symmetries induced on O from the bulk GV = Z, 1-form symmetry:

= Z4 1-form symmetry

0— Gy =2, — G, =2, — GV =7, —0. (108)

ind-loc

In other words, the bulk G = Z, 1-form symmetry is fractionalized to Gi(r}c)l—loc
1-form symmetry on the worldvolume of O;.

For non-invertible symmetry fractionalization, take B;u) to be Ising modular fusion

:Z4

category, and grading that assigns trivial grade to {Dgid),Dg_)} and non-trivial grade to
D§S). See example 2.6 for details on notation. The bulk GV = Z, 1-form symmetry
is now fractionalized to non-invertible (1-form) symmetry on the world-volume of Og
because of the last fusion rule in (70). The localized symmetry is still

Ggg =7, (109)

generated by Dg_), so we can regard Ising category as a categorical extension of G\ = Z,
by GSB) = Z,, writing an analog of (108)

“0— GG =2, — Gly ), =Tsing— GV =2, — 07 (110)

ind-loc

4 Non-genuine generalized charges

So far we considered only genuine g-charges. As we will discuss now, non-genuine charges
arise naturally in field theories and require an extension, to include a higher-categorical struc-
ture. The summary of this structure can be found in statement 1.5. In this section, we physi-
cally study and verify that the statement is correct for 0-charges of 0-form and 1-form symme-
tries.

4.1 Non-genuine 0-charges of 0-form symmetries

We have discussed above that genuine 0-charges for G(® 0-form symmetry are representa-
tions of G(). Similarly, genuine 1-charges are 2-representations of G(*). In this subsec-
tion, we discuss non-genuine O-charges going from a genuine 1-charge corresponding to a
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/‘ /‘ O L/ _ B /‘ L/
Dy Dy Dy Dy
Il Il
O ) h ) h 0 m )
o(hy,hy) x D‘ L 2 (hy-0) L
(hohy)
D5
Il Il
hyhi)-O L ho-(hy - O /‘ I/
o (hy, hy) x (ol 0'(hy, hy) % 2 (1~ O)
(hyhy) M
D 2101 de]l

d—1

Figure 14: The action of hy, h, € H;;, on a non-genuine local operator O. Depending
on whether we fuse first and then act, or first act and then fuse, we generate two
different situations, shown at the bottom-left and bottom-right of the figure. A chain
of equalities equates the two, leading to the equation (114).

2-representation p® to another genuine 1-charge corresponding to a 2-representation p’(®.
These non-genuine 0-charges are furnished by non-genuine local operators changing a line
operator L having 1-charge p® to a line operator L’ having 1-charge p"?):

L Q L (111)
Let p® and p’® be the following irreducible 2-representations
@) — (g oD,
5“2) = EHE/,[[G]’)])- 1
Consider a local operator O changing L to L’. The subgroup
H;; :=H;NH;, €GO, (113)

maps O to other local operators changing L to L’. However, this action of H;;/ is not linear,
and instead satisfies
o(hy,hy)

hy-(hy-0)= —=—%
2 o”(hy, hy)

(hyhy)- O, V hy,hy €Hpp, (114)
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as explained in figure 14.

Because of the factor 0o’ !(h,,h;) € C*, non-genuine 0-charges from genuine 1-charge
p@ to genuine 1-charge p’® are not linear representations of H 11/ in general. Such non-
genuine 0-charges are linear representations only if

[o0' ] = [on,, oy, 17 =1 € H(Hy,,C), (115)

where [0y, ] and [Ul’qw] are the restrictions of [c] and [o’] to H;;/, and 1 € H*(H;;,,C*)
is the identity element. On the other hand, the non-genuine 0-charges are not linear repre-
sentations if

[co"'1#1€H?*H;,CY). (116)

In this situation, we say the non-genuine 0-charges are twisted representations of H;;, lying
in the class [co’~!] € H?(H;;/,C*).

Aside: Difference between twisted and projective representations

Two solutions of (114) give rise to isomorphic twisted representations if they are related
by a basis change on the space of local operators. Note that twisted representations with
trivial twist are equivalent to linear representations of H;;,. Also note that two non-
isomorphic [« ]-twisted representations may be isomorphic as projective representations
in the class [x]. The condition for being isomorphic as projective representations is often
called as projective equivalence which in addition to basis changes allows the modifica-
tion of the action of H, ;, by a function (not necessarily a homomorphism) 6 : H;;, — C*.
For example, non-isomorphic one-dimensional linear representations of H;;, are all iso-
morphic to the trivial linear representation, when viewed as projective representations.

Similarly, we can also consider some other lines in the two multiplets M; and M;,. Non-
genuine local operators changing Li,) € M; to L1 € M, form twisted representations of
Higuy,, = Hyy NHY S G-

In fact, mathematically, all these twisted representations combine together to form a 1-
morphism in the 2-category 2-Rep(G®) formed by 2-representations of the group G(®. Such
1-morphisms are also referred to as intertwiners between the two 2-representations. Indeed,
in our physical setup the non-genuine local operators lying between lines L, L’ explicitly inter-
twine the action of 0-form symmetry G(©) on the two line operators. Thus, we have justified
the p = g = 1 version of statement 1.5.

Statement 4.1: Non-genuine 0-charges of 0-form symmetries

The possible O-charges going from a 1-charge described by an object (i.e. a
2-representation) p® € 2-Rep(G®) to a 1-charge described by an object
p' @ e2-Rep(G®), are described by 1-morphisms from the object p® to the object p’?
in 2-Rep(G©®).

When p® and p’® are both trivial 2-representations, then the intertwiners are the same
as representations of G(*). Since the identity line operator necessarily transforms in trivial
2-representation, we hence recover the statement 2.1 regarding genuine 0-charges.
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Example 4.1: Fractional monopole operators

Consider the example 2.2 of 3d pure SO(4N) gauge theory. As we discussed earlier, the
topological line operator Dg_) generating the Z(zl) center 1-form symmetry transforms
in a non-trivial 2-representation (38) of G = Z3' x Z3. Following the analysis above,
the non-genuine local operators living at the end of Dg_) should form twisted instead of
linear representations of G(©) = Zy' x Z3. This means that the actions of Z7' and ZJ on
such non-genuine local operators should anti-commute.

We can see this explicitly for special examples of such non-genuine local operators
known as fractional gauge monopole operators [67]. In our case, these are local operators
that induce monopole configurations for PSO(4N) = SO(4N)/Z, on a small sphere S2

surrounding them
=)
Dy 4{ )2 (117)

S

that cannot be lifted to monopole configurations for SO(4N). Such fractional monopole
operators can be further divided into two types:

1. The associated monopole configuration for PSO(4N) can be lifted to a monopole
configuration for Ss(4N) = Spin(4N)/ Zg but not to a monopole configuration for
Sc(4N) = Spin(4N)/ZS or SO(4N) = Spin(4N)/Zy .

2. The associated monopole configuration for PSO(4N) can be lifted to a monopole
configuration for Sc(4N) but not to a monopole configuration for Ss(4N) or
SO(4N).

On the other hand, the monopole operators associated to monopole configurations for
PSO(4N) that can be lifted to monopole configurations for SO(4N) but not to monopole
configurations for Ss(4N) or Sc(4N) are non-fractional monopole operators, which are
genuine local operators charged under ZJ' O-form symmetry. Here Z‘g X Zg is the cen-
ter of Spin(4N). The generator of Zg leaves the spinor representation invariant, but
acts non-trivially on the cospinor and vector representations. Similarly, the generator of
Zg leaves the cospinor representation invariant, but acts non-trivially on the spinor and
vector representations. Finally, the diagonal Z, subgroup is denoted as Zg whose gener-
ator leaves the vector representation invariant, but acts non-trivially on the cospinor and
spinor representations.

Now, these two types of fractional monopole operators are exchanged by the outer-
automorphism 0-form symmetry Z3. On the other hand, only one of the two types of oper-
ators are non-trivially charged under Z3' 0-form symmetry. This is because the two types
of fractional monopole operators are interchanged upon taking OPE with non-fractional
monopole operators charged under ZJ'. Thus, fractional monopole operators indeed fur-
nish representations twisted by the non-trivial element of (37) because the actions of ZZ'
and Z; anti-commute on these operators.

4.2 Non-genuine 0-charges of 1-form symmetries: Absence of screening

In the previous subsection, we saw that there exist O-charges between two different irreducible
1-charges for a O-form symmetry. However, the same is not true for the 1-form symmetry. There
are no possible 0-charges between two different irreducible 1-charges. This means that there
cannot exist non-genuine local operators between two line operators carrying two different
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(g) (&)
D;~ D;~

L,

xi,(8) x Ly Ly x,(8) x Ly
O O

Figure 15: Charge conservation of 1-form symmetry (proof of the absence of screen-
ing). Time in the above figures is flowing from left to right as indicated. Since all four
diagrams are equal for all g € GV, the 1-charges X1, and x, of Ly and L, respec-
tively under GV 1-form symmetry must be equal. This equality can be interpreted
as conservation of the 1-charge under time evolutions.

characters of the 1-form symmetry group GV,

Mathematically, this is because there do not exist 1-morphisms between two simple objects
metry group G, Physically, this is the statement of charge conservation for 1-form symmetry
as explained in figure 15. This explains the p = g = r = 1 piece of statement 1.5.

This fact is usually presented by saying that L; cannot be screened to another line operator
L,, if L, and L, have different charges under the 1-form symmetry. In particular, a line operator
L carrying a non-trivial charge under 1-form symmetry cannot be completely screened, i.e.
cannot be screened to the identity line operator.

in the 2-category formed by 2-representations of the 2-group G, associated to a 1-form sym-

5 Twisted generalized charges

In this section we study higher-charges formed by operators living in twisted sectors of invert-
ible symmetries. These, as defined in section 1.4, arise at the end of symmetry generators or
condensation defects. We will see that the structure of twisted charges is sensitive to the ’t
Hooft anomalies of the symmetry, even for operators of codimension-2 and higher, which is
unlike the case of untwisted charges.

5.1 Non-anomalous O-form symmetries

In this subsection, we begin by studying twisted higher-charges that can arise at the ends of
symmetry generators of a G(® 0-form symmetry group. O-form symmetries are generated by
topological codimension-1 operators, and twisted sector operators are (not necessarily topo-
logical) codimension-2 operators living at the ends of these topological codimension-1 opera-
tors.

Two dimensions. In two spacetime dimensions, the twisted sector operators are local op-
erators. Consider a g-twisted sector local operator O living at the end of a topological line
operator Dig ) with g € GO:

(g)
D O
1 . , (118)
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€3] ) (hgh™)
Dy @) Dy Dy o’

(h) (h)
Dl Dl

Figure 16: Action of h € G not in the stabilizer group of g, maps a g-twisted
operator to an hgh™!-twisted operator.

where D%g ) is topological, but O is generically not. Let
H,={heGOngh' =g}, (119)
be the stabilizer subgroup of g. We can act on O by an element
heG®, héH,. (120)
As explained in figure 16, this maps O to a local operator O’ living in twisted sector for
hgh™'e[g]c GO, (121)

where [g] is the conjugacy class that g lies in. Consequently, the g-twisted sector operator O
lives in a whole (irreducible) multiplet M of operators living in twisted sectors for all elements
in the conjugacy class [g]. On the other hand, an element

heH, €GO, (122)

maps O to a local operator in the g-twisted sector, which may be equal to O or may be some
other operator in the g-twisted sector.

Putting it all together, we can describe the irreducible multiplet M as a vector space of
local operators graded by elements of [ g]

M= M, (123)
gele]

where M, is the vector space formed by local operators participating in the multiplet M and
lying in the g-twisted sector. Moreover, the stabilizer H, acts as linear maps from M, to itself,
implying

M, = {Irreducible representation of H,} . (124)

Similarly, M, for any g’ € [g] forms an irreducible representation of the corresponding stabi-

lizer group Hy/ € G©. This representation is obtained simply by transporting the representa-
tion of H, formed by M, using an isomorphism

H, - Hg =hH,h™', (125)

induced by
¢ =hgh™. (126)

This recovers the d = 2,[w,] = 0 piece of the statement 1.6.
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Three dimensions. In three spacetime dimensions, the twisted sector operators for a 0-form
symmetry are line operators:

p{®) L . (127)

Line operators L in the g-twisted sector for a 0-form symmetry G(*) are part of a multiplet
M comprised of line operators, which lie in twisted sectors for elements in the conjugacy class
[g]1<S GO,

The stabilizer H, transforms a g-twisted sector line in M back into a g-twisted sector line
in M, but the identity of the g-twisted sector line may get transformed as we already discussed
for untwisted sector line operators. In total, repeating the arguments of section 2.2 we learn
that the line operators in M lying in the g-twisted sector form a 2-representation péz) of Hy,
recovering the d = 3,[w, ] = 0 piece of the statement 1.6.

The line operators in M lying in g’-twisted sector for g’ = g”gg

p?) of the isomorphic group

=1 form a 2-representation

Hy =g"H.g" ™, (128)

where p
equation.

S) is obtained by transporting péz) using the isomorphism provided by the above

Higher dimensions. It is now straightforward to see the generalization to an arbitrary
spacetime dimension d. The twisted sector operators for G(*) symmetry generators have
codimension-2 and furnish twisted (d — 2)-charges. Such an operator O _, in g-twisted sec-
tor forms an irreducible multiplet M with codimension-2 operators lying in twisted sectors
for elements in the conjugacy class [g] € G(). The stabilizer H ¢ transforms g-twisted sector
operators in M back to themselves. In total, the operators in M form a (d — 1)-representation
péd_l) of Hy, justifying the [w,] = 0 piece of the statement 1.6 at the level of the top-most
layer of objects. Operators in M lying in another sector in the same conjugacy class [g] are in
equivalent (d — 1)-representations of isomorphic stabilizer subgroups of G(©.

It is also clear that this characterization extends to (d — 3)-charges going between twisted
(d — 2)-charges, which should form 1-morphisms in the (d — 1)-category (d — 1)-Rep(H,).
Similarly, considering lower-dimensional operators, one recovers the full categorical statement
made for [w, ] = 0 in statement 1.6.

5.2 Anomalous 0-form symmetry

Let us now turn on a 't Hooft anomaly of the form
[w]eHIT (GO, ), (129)

for the bulk G(®) 0-form symmetry and revisit the analysis of the previous subsection.

Two dimensions. Just as for the non-anomalous case, the twisted sector operators form
multiplets parametrized by conjugacy classes [g] € G©, and g-twisted sector operators in a
[g]-multiplet are acted upon by the stabilizer H,. However, instead of forming linear repre-
sentations of H,, the g-twisted operators now form [w, ]-twisted representations of H,, where

Q)(g, hl) hZ)w(hlﬁ h2) g)
w(hl) g7h2) ’

C()g(hl,hz) = (130)
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Figure 17: The above chain of equalities provides a formula for the twist
w, = co(h;l,ghl,hz)w(g,hl,h2)w(g_1,h;1,hfl) which the reader can verify
matches the expression shown in (130). The various w factors arise by perform-
ing associativity/F-moves on the topological line operators generating an anomalous
0-form symmetry in 2d.
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for all hy,h, € H,. See figure 17 for explanation and section 4.1 for more details on twisted
representations. The map

H3(G,C*) - H*(H,,C"), (131)

induced by
[w] = [eg], (132)

is often referred to as slant product in the literature (see e.g. [69]).
This justifies d = 2 piece of the statement 1.6.

Three dimensions. Again, as in the non-anomalous case, the line operators in g-twisted
sector form multiplets M. The stabilizer H, still sends g-twisted sector lines into each other.
The associativity of the action of H, is governed by

[w,] € H>(H,,C"), (133)

which is obtained from [w] via

w(g,hy, hy, hs)w(hy, hy, g, h3)
w(hy, g, hy, hs)w(hy, hy, hs, g)
The class [w, ] is again referred to as the slant product of [w] and g.

Now, consider a line operator L in the g-twisted sector and let H; € H, be the group that
sends L to itself. Physically, H; must descend to an induced 0-form symmetry group of line L,
which imposes constraints on the allowed possibilities for H; as a subgroup of H,. To see these
constraints, pick an arbitrary topological local operator D(()h) in the junction of L with Dfih_)l for
all h € H;. As we fuse these operators, we will in general generate factors o(h;,h,) € C*

wg(h1>h2>h3) = (134)

h h hih
" & DU = 5(hy, hy)D{M"™?. (135)

The action of the induced H; 0-form symmetry must be associative, which means that the

non-associativity factor arising from w, must be cancelled by the o factors as follows

o(hy, h3)o(hy, hyhs)
0 (hyhy, h3)o(hy, hy)
where hy, hy, hy € H; . See figure 18. In particular H; must be such that

[y, =0€H(H,,C), (137)

wg(hlﬁhZ)hS) = = 50(h1>h25 h3)) (136)

where [w, ]y, is the restriction of [w,] to H;. That is, o is a trivialization of w,.
There is additional information in the factors o. Note that by redefining topological local
operators D(h), we can redefine o as
oc—-0o' =0c+6a, (138)

for a C* valued 1-cochain @ on H;. This means that two 1-charges differentiated only by
having 2-cochains o and ¢’ such that

o' #0+6a, (139)

for all 1-cochains a describe different 1-charges. Physically, the equivalence class [o'] of C*-
valued 2-cochains on H; under the equivalence relation (138) and satisfying (136) should be
viewed as capturing a 't Hooft anomaly for the H; 1-form symmetry.

In fact, the information of:

1. H, € H, satisfying (137), and
2. a choice of equivalence class [o] with any representative ¢ satisfying (136),

specifies a [a)g]-twisted 2-representation of H g Thus, we have justified d = 3 piece of state-
ment 1.6 at the level of objects.
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Figure 18: Depiction of equation (136), which results from following the chain of
equalities equating bottom-left and bottom-right parts of the above figure. Even
though the line operator L is in the twisted sector, for brevity we have dropped the
topological surface operator that it is attached to.
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Higher dimensions. To justify statement 1.6 in full generality (i.e. for higher d and also
higher categorical levels), we can adopt the following approach. The topological operator

Dég_)l must form a (d —1)-charge of H,. Then the twisted higher-charges that can arise at the

end of Dc(ig_)1 must form the (d—1)-category formed by morphisms from this (d—1)-charge to the
trivial (d —1)-charge inside the d-category formed by possible higher-charges of codimension-1
and higher-codimensional operators under H, O-form symmetry.

We claim that the (d—1)-charge under H, formed by p&

d—1
pfi) ] of H, that does not exhibit symmetry fractionalization. Recall from section 2.3.1 that
14

is specified by a d-representation

such d-representations are characterized by the choice of a subgroup H € H, and a class
[o0]e€ HY(H,C>). The d-representation pfi) ] is specified by
g

H=H,, [o]=[w,], (140)

and is actually a 1-dimensional d-representation of group cohomology type. Here
d X
[w,]€HI(H,,C), (141)

is obtained by performing a slant product of g with [w]

d
Cl)g(hlth)"' ’hd) = I_[ws(i)(hl,"' ,hi,g,hi+1,"‘ ,hd), (142)
i=0

where h; € Hg, s(i) = 1 for even i and s(i) = —1 for odd i.

Thus twisted g-sector generalized charges are specified by the (d — 1)-category of mor-
phisms from pfi)] to identity d-representation in the d-category d-Rep(H,) formed by d-
representations o% H,. We denoted this (d — 1)-category as

(d —1)-Repl®¢l(H,), (143)

in statement 1.6 and called its objects as ‘[w, ]-twisted (d — 1)-representations of H,’. This is
because for low d, this matches the more well-known notion of twisted representations and
twisted 2-representations, which has been discussed in detail above.

5.3 Mixed ’t Hooft anomaly between 1-form and 0-form symmetries

We have seen above that in the presence of 't Hooft anomaly, the structure of twisted gener-
alized charges is quite different from the structure of untwisted generalized charges. In this
subsection, we will see another example of this phenomenon, while studying the structure of
1-charges in the presence of 1-form and O-form symmetries with a mixed 't Hooft anomaly in
4d QFTs.

In particular, we consider in 4d, O-form and 1-form symmetries

0) _ »(0) 1) _ -
¢O=z, W=z", (144)
with mixed ’t Hooft anomaly
P(B
As = exp (mfAl U (2 2)) . (145)

Let D, and D; be the topological operators generating Z(zl) and Z(ZO) respectively. Let us
encode the anomaly (145) in terms of properties of these operators. This will help us later in
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D D

e e

Figure 19: The mixed 0-form/1-form symmetry anomaly (145) as seen from the
topological defects. The junction D, between the two topological surface defects D,
that generate the 1-form symmetry is charged under the 0-form symmetry generated
by the codimension-1 topological defect D;.

D D, D,
2 . = XX
Dy
L L

Figure 20: Character assigned to the twisted sector line operator L depends on a
choice of topological local operator D, satisfying the property (Dy)? = 1.

exploring the impact of the anomaly on the structure of twisted 1-charges for Z(Zl). A transver-
sal intersection of two D, operators leads to a point-like junction housing a 1-dimensional
space of topological local operators. The anomaly (145) states that these junction local oper-
ators are non-trivially charged under Zgo). That is, as we move D5 across such a topological
junction local operator D,, we implement the action

DO i _Do . (146)

See figure 19.
Now consider a line operator L that can arise at the end of D,. Pick a topological junction
local operator D, satisfying
(D) =1, (147)

so that D, can be viewed as implementing a Z, induced 1-form symmetry on D,. Note that
there are two possible choices of D, differing by a sign, and we have made one of the two

choices. Once such a choice of D, has been made, we can assign a character of Z(Zl) to the
twisted sector line operator L as shown in figure 20, which may be interpreted as the charge of

L under the Zgl) 1-form symmetry. Note though that being charged or not is not a fundamental
property of L, but rather dependent on the choice of Dj:
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Figure 21: In the above figure, we study the possible action of a Z(ZO) 0-form symmetry
generated by D5 on line operators living at the end of the topological surface operator
D, generating Zgl) 1-form symmetry. Let D5 act on line operator L and transform into
a line operator L', which may or may not be the same as L. Now we pick a choice of
topological junction local operator Dy and compare the characters carried by L and
L’. The chain equalities shown above forces us to conclude that y; = —y;/, thatis L
and L’ must have opposite charges under 1-form symmetry, and in particular L # L’.

1. If L is charged when the choice D is made, then L is uncharged when the choice —D,
is made.

2. If L is uncharged when the choice D, is made, then L is charged when the choice —D,
is made.

In any case, according to (146) the choice of D, is modified when passing it through D5, and
so the type of line operator L cannot be left invariant when it passes through D;. See figure
21 for more details. If L is charged (uncharged) under a fixed choice of D, then it must be
modified to a line operator L’ uncharged (charged) under the same choice of D,,.

Thus a there is a single possibility for an irreducible 1-charge lying in twisted sector of
Zg). This 1-charge comprises of a multiplet of two simple line operators L and L’, such that
the action of Zgl) on L and L’ differs by a sign. Below we study two examples of 4d QFTs
having this symmetry and anomaly structure, where only such twisted 1-charges appear. This
not only is consistent with the above general result but also explains why the same physical
phenomenon is observed in both theories.
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Example 5.1: 4d N = 1 super-Yang-Mills

These symmetries and anomalies are realized in 4d V' =1 SU(2) SYM, where Zgl) is the

electric/center 1-form symmetry and Z(ZO) quotient of the Zgo) chiral/R-symmetry (only

the Z(zo) has a mixed anomaly).

We have three unscreened line operators to consider: denoted typically as W, H and
W +H. The line operator W can be realized as Wilson line transforming in fundamental
representation of SU(2) gauge group. The line operator H can be realized as 't Hooft line
that induces an SO(3) monopole configuration on a sphere S linking it, which cannot be
lifted to an SU(2) monopole configuration. The line operator W + H can be realized as a
dyonic line that carries both fundamental representation and induces an SO(3) monopole
configuration, and can be understood as being obtained by combining the W and H lines.

The line W lies in the untwisted sector and is charged non-trivially under Z(zl). On
the other hand, the lines H and W + H both lie in the twisted sector, arising at the end
of topological operator D,. The charges of H and W + H under Z(Zl) must be opposite

because they are related by the line W which is charged under Zgl).
Finally, note that H and W + H are indeed permuted into each other by the generator
of the Zgo) chiral symmetry, as it is well-known that it implements the Witten effect.

Example 5.2: 4d N = 4 super-Yang-Mills

These symmetries and anomalies are also realized in 4d N =4 SO(3)_ SYM at the self-
dual point (t = —1/7), where Z(zl) is the dyonic 1-form symmetry and Z;O) is the S-duality
that acts as a symmetry at the self-dual point.

We again have the same three unscreened line operators to consider: W, H and W+H.
The line W + H lies in the untwisted sector and is charged non-trivially under Z(zl). On
the other hand, the lines H and W both lie in the twisted sector, arising at the end of
topological operator D,. The charges of H and W under Z(Zl) must be opposite because

they are related by the line W + H which is charged under Z(zl).

Finally, note that H and W are indeed permuted into each other by the Zgo) S-duality.

It is straightforward to generalize to general G®© and G(V), but the expression for the
anomaly (145) takes a more complicated form involving a cohomological operation combining
the cup product and Pontryagin square operations appearing in (145) into a single operation,
which takes in A; and B, to output the anomaly .45 directly.

We will see in Part II [ 1] that this fact leads to a well-known action [15,16,29] of a non-
invertible symmetry on line operators, permuting untwisted sector and twisted sector lines for
a 1-form symmetry into each other.

5.4 Condensation twisted charges

In this subsection, we study generalized charges appearing in twisted sectors associated to
condensation defects. As described in the definition in section 1.4, condensation defects are
topological defects obtained by gauging invertible symmetry generating topological defects on
submanifolds in spacetime.
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Dq+1 Dq == O/

Figure 22: Dy, is a (q + 1)-dimensional condensation defect, which means that it
admits at least one topological non-genuine g-dimensional defect living at its bound-
ary. In the figure, D, is one such topological boundary of D,,;. On the other hand
O, is a possibly non-topological operator living on the boundary of D, ;. In other
words, O is in the twisted sector for the condensation defect D, ;. We can perform
an interval compactification involving O,, Dy, and D, as shown in the figure to ob-
tain an untwisted sector possibly non-topological g-dimensional operator (9:1.

Twisted to untwisted. The first interesting physical observation here is that a g-dimensional
operator in twisted sector for a (q + 1)-dimensional condensation defect can always be con-
verted into a g-dimensional untwisted sector operator. This is because a condensation defect
always admits a topological end, which allows us to perform the above transition as explained
in figure 22. There might be multiple such topological ends and hence multiple ways of per-
forming the above transition. However, one should note that there is a canonical topological
end as well corresponding to Dirichlet boundary conditions for the gauge fields localized on
the (g + 1)-dimensional locus occupied by the condensation defect. Below we assume that we
have performed this transition using this canonical boundary condition.

Untwisted to twisted. One may now ask if all untwisted sector operators can be obtained this
way. This is not true, as we illustrate through the case of a non-anomalous p-form symmetry
G®) with p > 1 in the bulk. In this situation, only g-dimensional untwisted sector operators,
on which the bulk p-form symmetry descends to an induced r-form symmetry for some r < p,
can be obtained from g-dimensional twisted sector operators for condensation defects.

More precisely consider an untwisted sector g-dimensional operator O, for

g=d+r—p—1, (148)

on which a subgroup
63 cG®, (149)
q

descends to an induced r-form symmetry. In particular, the g-dimensional operator O, is
invariant under the subgroup Ggq)

The induced r-form symmetry may have a 't Hooft anomaly which we can express as fol-
lows. First of all, pick a background field Br+1|0q for the induced Ggq) symmetry living on
the world-volume of 0. Since topological operators generating induced symmetries extend

into the bulk, we need to also specify a background for the G®) bulk p-form symmetry. There
is a canonical way of specifying such a background by restricting the bulk topological opera-
tors generating G to only lie in a (q + 1)-dimensional submanifold 2441 of d-dimensional
spacetime, whose boundary is the world-volume of O,. This gives rise to an r-form symmetry
background Brﬂlzq+1 on %, whose restriction to the world-volume of O, gives rise to the
background B, IOq.
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Now, performing gauge transformations of the background Br+1|2q+1’ we might find a’t

Hooft anomaly for the induced Gg) symmetry taking the form
q

Agi1 =exp (27TiJ Og+1 (Br+1|2q+l)) ) (150)
g+l

where ©g 4 (Br+1 |@q) is an R/Z-valued cochain on X, ;, which is a function of the background

field B, |2q+ .- This can be canceled by adding along %, ; a Gg) protected SPT phase whose
q

effective action is Ag, .
Once the anomaly has been cancelled in this fashion, we can promote B, |y, = to a dy-
q+1

namical gauge field that we denote as b, Izqﬂ, thus gauging the Gg) symmetry on X, and
q

the world-volume of O;. The additional SPT phase (150) becomes a Dijkgraaf-Witten twist or
discrete torsion for the gauging. After gauging, we obtain a condensation defect

(Gé) Ogs1)

41 , (151)

placed along %¢; and the untwisted sector operator O, has been promoted to an operator (9;
lying in the twisted sector for the condensation defect (151).

Finally, we can transition from twisted sector O/ back to untwisted sector O, by placing a
Dirichlet boundary condition at another end of (151) as already explained in figure 22.

Simplest case: p =1 The above general analysis can be neatly illustrated for a G 1-form
symmetry in the bulk generated by topological codimension-2 operators D(gg_)Z for g € G, The
only possibility is r = 0 corresponding to ¢ = d—2. Consider an untwisted sector codimension-

2 operator O4_,. It has an induced symmetry

(0) 1)
Go, , SGW, (152)
if we have
D¥ @0, ,=04,, Vge Gy <GW, (153)

i.e. if O4_, is left invariant by topological codimension-2 operators generating Gg)j,z subgroup

of 1-form symmetry group G.

The G(O)

Oy induced symmetry may have a 't Hooft anomaly described by

d—1¢~(0) X
[@]leH (GOd_z’C ). (154)

’ _, which is a codimension-2 operator living in the

d—2’
twisted sector for the condensation defect obtained by gauging the Gg);_z subgroup of GV

bulk 1-form symmetry along a codimension-1 manifold with Dijkgraaf-Witten twist [©].

In this case O4_, can be promoted to O

Example 5.3: Pure Pin*(4N) gauge theory

Begin with pure Spin(4N) gauge theory in any spacetime dimension d, which has
1) _ (8 o »(O)
W=z x5, (155)

center 1-form symmetry. Let us denote the topological operators generating Z(ZS) and ch)

as D((is_)2 and D((ic_)2 respectively and the topological operator generating the diagonal Z,
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in G as Dé‘i)z. There is additionally a O-form outer automorphism symmetry

GO =7, (156)

that exchanges Z;S) and ch).
Let us gauge Z;O), which takes us to the d-dimensional pure Pin™(4N) gauge the-

ory theory, which has a simple non-invertible codimension-2 topological operator DC(IS_CZ)
arising as the image of the non-simple codimension-2 topological operator
) ©
D, 2,®D, 5, (157)

of the Spin(4N) theory. Note that D((is'_)2 and D((ic_)2 do not descend to topological oper-

(0.
2
(50)
d—2

of the Pin* (4N) theory. Additionally, Dé‘i)z also descends to a topological operator of the

Pin"(4N) theory because it is not acted upon by Zgo). In the Pin*(4N) theory, we have
the fusion rule

ators of the Pin"(4N) theory, because they are not left invariant by the action of Z
however, (157) is left invariant by Zgo) and descends to the topological operator D

(V) g pSC) — p(SO)
py") @D =D, (158)

satisfying the condition (153) with O4_, = D((is_cz)
Dy | - |
This means we can convert the untwisted sector codimension-2 topological operator

and Gg)d)_z =g = Z(ZV) generated by

D((iS_CZ) to a codimension-2 topological operator D((Iicz;zz) living at the end of the condensa-
tion defect
pi=), (159)

obtained by gauging the Z(ZV) 1-form symmetry of the Pin" (4N) theory on a codimension-
1 manifold in spacetime.

6 1-charges for 2-group symmetries

In this section, we study possible 1-charges that can be furnished by line operators under an
arbitrary 2-group symmetry. A 2-group symmetry combines O-form and 1-form symmetries,
encapsulating possible interactions between the two types of symmetries.

We will proceed by studying 2-groups of increasing complexity. Let us begin by addressing
“trivial” 2-groups, in which there are no interactions between the 0-form and 1-form symme-
tries. Then a 1-charge of the 2-group is a tuple formed by an arbitrary 1-charge of the G(©
0-form symmetry and an arbitrary 1-charge of the G(!) 1-form symmetry without any correla-
tion between these two pieces of data.

6.1 Split 2-group symmetry

The simplest possible interaction between 0-form symmetry and 1-form symmetry arises when
0-form symmetry acts on 1-form symmetry generators by changing their type. See figure 23.
That is we have a collection of automorphisms

a,: G -Gl (160)
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N

(€2) (g) (g) (ag(r))
Dd—z Dd—l Dd—l Dd—gz

Figure 23: Action of the 0-form symmetry Dég_)l on the 1-form symmetry generated
by D((iy_)z.

(€2)
Dy~
L — = n(r)x L
Dy Dy
[l
(ap(r))
Dy,
L = yrlap(y)) x L
(h)
® Dy
Dy

Figure 24: The chain of equalities displayed above imposes the condition (162) re-
stricting the possible characters that can be carried by a line operator L under 1-form

symmetry GV if H € G bulk 0-form symmetry descends to an induced O-form
on L.
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of G labeled by elements g € G© such that

Aggr = Oggr. (161)

If this is the only interaction between 0-form and 1-form symmetries, then such a 2-group is
known as a split 2-group.

Now let us study the action of such a split 2-group on line operators. Acting just by the
0-form symmetry, the line operators must form 2-representations of G(*). Let us pick a line
operator L participating in a 2-representation G© such that H; € G(¥) descends to an induced
0-form symmetry of L with a ’t Hooft anomaly [c] € H?(H;,C*): p® = (H,,[c]).

Now, we ask what are the possible characters y; € G of GO that L can carry. Since H I
leaves L invariant, we must have

20(r) = xp(ax(y)), (162)

forallh € H; and y € GO, See figure 24. Such characters form a subgroup @SL) c G,

An equivalent mathematical characterization of GSL) is as follows. First, note that the action
a of G© on G induces a dual action @ of G on GV satisfying

x(r) =g (x)(ag(r)), (163)

forall g € G©, y € GV and y € GO, Then @I(}L) is the subgroup of GV formed by elements
left invariant by aj, for all h € Hj.

Using the dual action, it is straightforward to describe the character of G carried by
another line operator L. in the multiplet M;. If L carries character y; € (A}SL), then L,
carries character

G (y1) € GSL)[g] : (164)

Thus the action of the split 2-group on a multiplet M; of line operators is described by
p(z):(HL7 [O], XL)’ HL gG(O)’ [O-]EHZ(HL:(CX)s XL EGSL): (165)

which precisely specifies an irreducible 2-representation of the split 2-group, thus justifying a
a part of the p = 2,q = 1 piece of statement 1.4.

6.2 2-group symmetry with untwisted Postnikov class

A different kind of 2-group symmetry arises when there is no action of 0-form symmetry on
1-form symmetry, but the associativity of 0-form symmetry is modified by 1-form symmetry.
This modification is captured by an element

[©]e H3(G®,cW), (166)

which is known as the Postnikov class associated to the 2-group symmetry. Since there is no
action of G on G(), the Postnikov class is an element of the untwisted cohomology group.
In understanding the action of such a 2-group on line operators, we follow the same pro-
cedure as above. Let M; be a multiplet/orbit of line operators formed under the permutation
action of G© starting from a line operator L, and let H;, € G© be the 0-form symmetry induced
on L. Furthermore, let y; € G be the charge of L under the 1-form symmetry G, As we try
to check the associativity the H; action on L, we generate a 1-form symmetry transformation
on L, as discussed in figure 25, leading to an additional factor y;(©(h;,hy,h3)) € C*. For
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(h1) (h2)  y(h3) (h1)  y(h) (h3)
Da Ds%i Da Dai Day Day
(hy) (hy) | 1y(h3) (h1) | y(h) (h3)
L DOl Doz Dos L D01 DOZ D03

= x1(8(hy,hy,h3)) x

(hy) (hahs) (hihy) (hs)
Dy Dy%? Dyy? Dy
h (ho)hs hih h
L D( 1) DO L D( 1hs) D( 3)
o o o
o(hy, hg) x x1(©(hy1, hy, hg))o(hy, hy) x
Il Il
(h1hshs) (hyhoh
Dy Dy
L D(()hlhzhg) L D(()hlhzh3)
o (hy, hg)o(hy, hohs) x 21(©(hy, hy, hg))o(hs, hihy)o(hy, hy) x

Figure 25: The chain of equalities leading to the condition (167). The equality of
top-left and top-right parts of the figure can be taken as the definition of the 2-group
symmetry being studied here.

maintaining associativity, we need to cancel these factors by allowing the topological junc-
tion local operators to produce extra factors o(hy,h,) € C* that cancel the above factor
11.(©(hy, hy, h3)). As explained in figure 25, the cancellation condition takes the form

x1.(©(hy,hy,h3)) = 60(hy, hy, hs). (167)
This imposes a correlation between the choices of (H;, y;) which states that
2.((81y,) =0€ H(H,, U(1)), (168)

where [@]y, is the restriction of [@] from G to H;.
Thus, an irreducible 1-charge of a 2-group symmetry carrying Postnikov class [©] is spec-
ified by

1. A subgroup H; € G and a character y; € G satisfying the condition (168).
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2. A class [o] of C* valued 2-cochains on H;, such that any 2-cochain o in the class [o]
satisfies the equation (167), and two 2-cochains o, ¢’ € [o] are related by

oc'=0c+68p8, (169)
where f3 is a C* valued 1-cochain on H;.

This data
p(Z):(HL: [O-]: XL)) (170)
characterizes precisely the irreducible 2-representations of the 2-group with Postnikov class

[©] under discussion [26,66], justifying a part of the p = 2,q = 1 piece of statement 1.4.

6.3 General 2-group symmetry

A general 2-group G® has the following information
¢? =(69,6W,a,[0]), (171)

where G is a 0-form symmetry group, G is a 1-form symmetry group, « is an action of
G on G, and
[0]€ HY(G,6M), (172)

in the cohomology twisted by the action a.
An irreducible 1-charge under G®, furnished by an irreducible multiplet M, carrying a
line L, can be described by the following pieces of information:

1. The induced O-form symmetry H;, € G(¥) on L and the 1-form charge y; € G of L,
which are constrained such that

2L €Gy GV, (173)
and
x.([0]y,) =0€ H3(H,, U(1)). (174)

2. The fusion of topological junction local operators generating the induced H; O-form
symmetry on L produces extra C* factors captured by a 2-cochain o on H; satisfying

x1(@y,) =60 (175)
Rescalings of these local operators induces an equivalence relation
o~0+6f, (176)

where 8 is a C* valued 1-cochain on H;. Thus only the class [ ] of 2-cochains upto the
above equivalence relation differentiates different 1-charges.

This is precisely the information describing irreducible 2-representations of the 2-group G
[26,66], thus fully justifying the p = 2,q = 1 piece of statement 1.4.

Statement 6.1: 1-charges for 2-group symmetries

1-charges of a G® 2-group symmetry are 2-representations p® of the 2-group G®.
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7 Conclusions and outlook

In this paper we answered the question, what the structure of charges for invertible generalized
global symmetries is. The main insight that we gained is that these higher charges, or g-
charges, fall into higher-representations of the symmetries.

This applies to standard O-form symmetries (continuous and finite), but also higher-form
symmetries and more generally higher-group symmetries. Thus, even when restricting one’s
attention to invertible symmetries, a higher-categorical structure emerges naturally. We have
argued for the central relevance of higher-representations from a physical perspective — thus
making their natural occurrence (and inevitability) apparent. The standard paradigms of ex-
tended p-dimensional operators being charged under p-form symmetries G, i.e. forming
representations of these groups, are naturally obtained as specializations of the general struc-
ture presented here. The important insight is however, that this is by far only a small subset
of generalized charges!

We discussed charged operators that are genuine and those that are non-genuine (e.g.
operators appearing at the ends of higher-dimensional operators), including twisted sector
operators. There is a natural higher-categorical structure that organizes these non-genuine
charges.

We provided several examples in various spacetime dimensions (d = 2,3,4). However
the full extent of higher-representations of invertible symmetries deserves continued in depth
study. For instance, our examples of higher-charges of higher-form/group symmetries were
focused on finite symmetries, but as we pointed out, the results should equally apply to con-
tinuous symmetries.

In view of the existence of non-invertible symmetries in d > 3, a natural question is to
determine the higher-charges in such instances as well. This is the topic of Part II of this
series [1]. Already here we can state the main tool to study these, which is the Symmetry TFT
(SymTFT) [70-74] or more categorically, the Drinfeld center of the symmetry category.
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A Notation and terminology

Let us collect some key notations and terminologies used in this paper.

* T: A QFT in d spacetime dimension. Throughout the paper we assume that ¥ contains
only a single topological local operator (up to multiplication by a C* element), namely
the identity local operator.

* d: Spacetime dimension of the bulk QFT in discussion.
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* Operator: A term used to refer to an arbitrary operator, which may or may not be topo-
logical. The term is used to refer to both genuine and non-genuine operators. Almost
always we assume that the operator is simple: see section 2.2 for the definition.

* Genuine operator: A term used to refer to operators that are not attached to any higher-
dimensional operators.

* Non-genuine operator: A term that is used when a typical operator in the class of oper-
ators being referred to is a non-genuine operator, i.e. is attached to higher-dimensional
operators. However, special cases in that class of operators may include genuine opera-
tors.

* Defect: A term used interchangeably with the term ‘operator’.

« G?P): A p-form symmetry group of <.

« G®): A p-group acting as symmetries of <.

* D,: A p-dimensional topological operator.

* O,: A p-dimensional operator, which may or may not be topological.

* Untwisted sector operator: Another term used to refer to a genuine operator.

» Twisted sector operator: A term used to refer to a non-genuine operator arising at the
boundary of a topological operator of one higher dimension.

* Local operator: An operator of dimension O.

* Extended operator: An operator of dimension bigger than 0.

B Higher-representations

In this appendix, we introduce the mathematics of higher-representation theory for groups
and higher-groups.

B.1 Representations of groups

Let us begin with usual representations of a group G(%). Recall that a representation p on a
finite dimensional vector space V is a map

o: G - End(V), (B.1)

where End(V) is the set of endomorphisms of V, i.e. the set of linear maps from V to itself.
In order for it to be a representation, the map p needs to satisfy the following additional
conditions

PgPg = Pgg’>

(B.2)
P1= 1 >

forall g, g’ € G,
Let us phrase the above in an alternative way, which opens up the generalization to higher-
representations. Finite dimensional vector spaces form a linear category

Vec, (B.3)
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whose objects are vector spaces and morphisms are linear maps between vector spaces. On
the other hand a group G© can be defined as a category C¢(, which has a single object and
invertible morphisms. As there is a single object, all morphisms are endomorphisms of this
object, which are identified with group elements g € G(*). The composition of endomorphisms
follows the group multiplication law.

A representation p of G(® can be specified equivalently as a functor

p: Cso — Vec. (B.4)

To see that this definition matches the usual one, note that the functor p maps the single
object of Cs© to an object V of Vec, which is the underlying vector space for the represen-
tation p. Moreover, the functor p maps the endomorphisms of the single object of Cg;0) to
endomorphisms of V.

B.2 Higher-representations of groups

q+1)

A (q + 1)-representation p of a group G is defined similarly in terms of a functor

p @ Y s (g +1)-Vec, (B.5)

between (q+1)-categories. Let us describe various ingredients appearing in the above equation
below.

(q+1)

) This is constructed as follows:

Source (q + 1)-category C

1. Start with the classifying space BG(® of G(® along with a marked point. The (g + 1)-

category C (gt

G(O)l) has a single simple object corresponding to the marked point.

2. The simple 1-morphisms of Céq(:)l)

respond to loops based at the marked point in BG©.

are all endomorphisms of this single object and cor-

C(q+1)

3. The simple 2-morphisms of )

are 2-dimensional homotopies between loops.

4. The simple 3-morphisms of Céq(:)l) are 3-dimensional homotopies between 2-dimensional

homotopies, and so on until we encounter (q + 1)-morphisms.

Note that we could just replace BG'®) by any topological space X construct in this way a (q+1)-
category associated to it. In fact, in discussing (q + 1)-representations of a p-group G®) we

will need the category
C(q+l)

o, (8.6)

constructed in this fashion from the classifying space BG®) of the p-group G®).
Since the essential information of the classifying space BG(? is in its first homotopy group,

the essential information of the (g + 1)-category claty)

ooy 1sinits 1-morphisms.

Target (q + 1)-category (q + 1)-Vec. This is essentially the “simplest” linear fusion (g + 1)-
category which is Karoubi/condensation complete* [62, 75]. More concretely,

1. Vec is the category of finite dimensional vector spaces.
2. 2-Vec is the 2-category of finite semi-simple categories.

3. (q + 1)-Vec for g = 2 is the (q + 1)-category of fusion (q — 1)-categories.

“According to the definition of [75], Karoubi completeness is part of definition of a fusion higher-category, so
mentioning it again is redundant. But it is important to emphasize this point as one can obtain simpler linear
(q + 1)-categories with monoidal and other structures for q > 2 except that they are not Karoubi complete.
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(g + 1)-Category that is simpler than (q + 1)-Vec. It should be noted that, for ¢ > 2, there
is a sub-(q + 1)-category of (q + 1)-Vec which we denote as

(q+1)-Vec?, (B.7)

which would be termed as the simplest “fusion” (q + 1)-category if we drop the condition of
Karoubi completeness. This higher-category (q + 1)-Vec? has the following data:

1. The only simple object (q + 1)-Vec? is the identity object 1 of (q + 1)-Vec.

2. For a (r + 1)-category C, we define Q(C) to be the r-category formed by the endomor-
phisms of the identity object of C. Then, the only simple object of Q° ((q + 1)-Vec0) is

the identity object of Qs((q + 1)-Vec), forall1<s<q+1.

If one only works with (q+1)-Vec? then one never sees the important physical phenomenon of
symmetry fractionalization discussed in the main text. In particular, one only observes group
cohomology type g-charges/(q + 1)-representations for a 0-form symmetry group G'?. In or-
der to see non-group cohomology type g-charges/(q+ 1)-representations displaying symmetry
fractionalization of O-form symmetry group G©, one has to pass to the full fusion (q + 1)-
category (g + 1)-Vec.

Some papers in recent literature only work with (g + 1)-Vec® while discussing (g + 1)-
representations. We emphasize that this only captures a small subset of (q+1)-representations
if ¢ = 2, and in fact a generic (q + 1)-representation is not of this type.

B.3 Higher-representations of higher-groups

As was already briefly remarked above, a (q + 1)-representation p*Y of a p-group G is
defined as a functor
plath . Cg(;l) — (q+1)-Vec, (B.8)

where the target (¢ + 1)-category is the same as for (q + 1)-representation of a group G©
but the source (g + 1)-category is now built from the classifying space BG®) of the p-group
G as discussed above. In particular, a general p-group has r-form symmetry groups G for
0<r <p—1, and we have

{Simple objects of Q! (Cg(:f)) upto isomorphism} = {Elements of GI" )} . (B.9)

@,

Let us note that the (d —1)-category (11) can be obtained as the linearization of Q(C,
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