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Abstract

We study ’t Hooft anomalies of global symmetries in 1+1d lattice Hamiltonian sys-
tems. We consider anomalies in internal and lattice translation symmetries. We derive
a microscopic formula for the “anomaly cocycle” using topological defects implement-
ing twisted boundary conditions. The anomaly takes value in the cohomology group
H3(G,U(1))xH?(G,U(1)). The first factor captures the anomaly in the internal symmetry
group G, and the second factor corresponds to a generalized Lieb-Schultz-Mattis anomaly
involving G and lattice translation. We present a systematic procedure to gauge internal
symmetries (that may not act on-site) on the lattice. We show that the anomaly cocycle is
the obstruction to gauging the internal symmetry while preserving the lattice translation
symmetry. As an application, we construct anomaly-free chiral lattice gauge theories.
We demonstrate a one-to-one correspondence between (locality-preserving) symmetry
operators and topological defects, which is essential for the results we prove. We also
discuss the generalization to fermionic theories. Finally, we construct non-invertible lat-
tice translation symmetries by gauging internal symmetries with a Lieb-Schultz-Mattis
anomaly.
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1 Introduction

Global symmetry, and its generalizations, can impose powerful constraints on the dynamics
of strongly coupled quantum systems, both in the continuum and on the lattice. The prime
example in the continuum is the 't Hooft anomaly matching condition [2], and one of the
earliest examples on the lattice is the Lieb-Schultz-Mattis (LSM) theorem [3]. Building upon
recent progress, we establish a direct connection between such constraints on the lattice and
in the continuum. Specifically, we consider the following three types of constraints and will
phrase them in a unified framework.

I. ’t Hooft anomalies: A ’t Hooft anomaly of a global symmetry is defined as the obstruction
to gauging the symmetry; see [4] for a recent review. The powerful constraint on the dynamics
arises from the ’t Hooft anomaly matching condition stating that the anomaly is invariant
under the renormalization group (RG) flow [2]. In particulay, it implies that a theory with an
't Hooft anomaly cannot flow to the trivial theory in the infrared (IR), which has no anomaly.
Some of the early applications of anomaly matching appeared in the study of strongly coupled
supersymmetric field theories [5]. Recently, 't Hooft anomalies of generalized symmetries
[4,6-10] have constrained the dynamics of strongly coupled gauge theories in 3+1 [11] and
1+1 dimensions [12].

II. The boundary of SPTs: On the lattice, there exist similar constraints arising from “anoma-
lies” of global symmetries. However, the definition of anomalies on the lattice differs from the
continuum. The anomaly on the lattice is usually defined through the “bulk-boundary corre-
spondence”! stating that anomalous theories correspond to boundaries of symmetry-protected
topological (SPT) phases [17-19].2

!The continuum version of this correspondence is the anomaly inflow picture [13]. In modern terminology, it
states that the ’t Hooft anomaly of symmetry can be canceled by adding an invertible field theory [14] in the bulk.
The combined bulk-boundary system is anomaly free and can be consistently coupled to background gauge fields.
See [15,16] for reviews.

2There also exist anomalies on boundaries of “invertible” topological phases that are not protected by any
symmetry. In the continuum, these anomalies correspond to gravitational ’t Hooft anomalies. See [20] for a
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A symmetry-protected topological (SPT) phase is a gapped phase with a symmetry where
the non-triviality of the phase only depends on the symmetry [21-24]. More specifically, a non-
trivial SPT has a unique gapped ground state that can be deformed into a trivial product state
by a local Hamiltonian evolution that necessarily breaks the symmetry. Important examples
of SPT phases are 2+1d and 3+1d topological insulators® [27-29], and odd-spin Haldane
chain [30-32].

The lattice analog of 't Hooft anomaly matching condition is the fact that SPT phases have
non-trivial symmetry-protected edge modes (see e.g. [33,34]). For instance, topological in-
sulators have gapless edges protected by time-reversal and U(1) symmetries. Generally, the
boundary of an SPT is either gapless, breaks the symmetry spontaneously, or has topological
order.

III. LSM anomalies: A related powerful constraint on the lattice is the Lieb-Schultz-Mattis
theorem [3,35] and its higher-dimensional generalizations [36,37]. The original LSM theorem
states that translation-invariant 14+1d quantum spin chains with SO(3) symmetry, and half-
integer spins per site, cannot have a unique gapped ground state; see [38] for a review. The
LSM theorem has been further generalized to any translation-invariant system such that the
internal symmetry acts projectively on each site [39-42]. For generalizations to fermionic
systems see [43-46]; for other generalizations see [47,48].

Recently, it has been argued that the LSM-type theorems should be thought of as a con-
sequence of a mixed anomaly between the internal symmetry and lattice translation [49-58].
For instance, the condition of having a projective representation of the internal symmetry per
site was claimed to be an anomaly. We will refer to such conditions leading to generalized
LSM theorems as LSM anomalies.

The relation between I, II, and III

There are two types of arguments in the literature relating LSM-type theorems with notions
of anomalies described in I and II above. Related to the bulk-boundary correspondence, it
has been argued that theories with LSM anomalies live on the boundary of crystalline SPT
phases [49, 53, 59-62] protected by the translation and an internal symmetry. Therefore, the
consequence of LSM-type theorems was phrased as the existence of anomalous edge modes of
crystalline SPTs.

In a second line of reasoning, [50, 52,57] argued that LSM anomalies lead to mixed ’t
Hooft anomalies between two internal symmetries after taking the continuum limit.* Note
that lattice translation by one site usually becomes trivial in the continuum limit since the
lattice spacing goes to zero in that limit. However, in some cases, such as when the result of
the LSM theorem applies, lattice translation by one site becomes an internal symmetry in the
continuum.

Building on [57], we provide a third perspective on the connection between the LSM theo-
rem and 't Hooft anomalies. We prove that when there is an LSM anomaly, there is an obstruc-
tion to gauging the internal symmetry on the lattice while preserving the translation symmetry.
This obstruction is the standard definition of 't Hooft anomaly.

In summary, recent developments have shown that various “lattice anomalies”, defined
in IT and III, become 't Hooft anomalies after taking the continuum limit. However, so far
there has not been a direct argument relating the definition of lattice anomalies to 't Hooft

discussion.

3In general, topological insulators/superconductors correspond to non-interacting fermionic SPT phases with/
without a U(1) symmetry, see [25,26] for a complete classification.

*See also [63] for a discussion of the anomalies of the low-energy continuum theory in 2+1d.
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anomalies. In this work, we show that even lattice anomalies are obstructions to gauging,
thereby identifying lattice anomalies as 't Hooft anomalies.

We consider 141d lattice Hamiltonian systems and study anomalies in internal symme-
tries as well as LSM anomalies involving lattice translation. We introduce a procedure for
gauging internal symmetries that may not act on-site on the lattice. Moreover, we present a
simple formula to compute the anomaly locally and identify the anomaly as the obstruction
to gauging. We demonstrate these results using topological defects that implement symmetry
twists in space and establish a one-to-one correspondence between (locality-preserving) global
symmetries and topological defects.

We mostly focus on bosonic systems and discuss the fermionic case in Section 4.4. Al-
though we do not discuss it here, our method can capture anomalies involving other spatial
symmetries, such as reflection and time-reversal symmetry.

This work is mainly inspired by the recent work of Cheng and Seiberg [57], where they
compute lattice anomalies as anomalous phases arising from coupling the theory to back-
ground gauge fields. Here, we take one step further and quantify these anomalies. Moreover,
our method for computing the anomaly is local and, therefore, insensitive to lattice details,
such as the number of sites and boundary conditions.

We quantify the anomaly as a U(1)-valued function F, which is subject to some conditions
and identifications. We refer to F as the anomaly cocycle for its relation to group cohomology
[64,65]. We provide a systematic method to locally compute the anomaly cocycle on the
lattice.> Our method does not assume prior knowledge of group cohomology; however, our
result can be nicely phrased in this language, as we explain in the main text. Specifically, we
identify the anomaly as an element of H*(G, U(1)) x H?(G,U(1)) = H3(G x Z,U(1)).

For the case of internal symmetries, our result is consistent with the proposed classifica-
tion of 24+1d SPTs [21] and 1+1d ’t Hooft anomalies in the continuum [19, 69].° For LSM
anomalies, our result matches with the prediction from the conjectural “crystalline equiva-
lence principle” of [59]. According to this conjecture, one can treat the lattice translation
symmetry as an internal Z symmetry to classify possible anomalies.

Now we comment on the relation between our method and previous works on the com-
putation of the anomaly cocycle on the lattice. For the case of internal symmetries in 141d,
methods for computing the H® anomaly on the lattice were given in [1,33,78].” Chen, Liu,
and Wen [33] provided a method to compute the anomaly when the symmetry is presented
by a matrix product unitary operator [82]. Else and Nayak [1] computed the anomaly by con-
sidering truncated symmetry operators acting on subregions with boundaries. Their method
applies to unitary symmetries that are representable as finite-depth quantum circuits (see,
e.g., [83,84] for the definition of finite-depth circuits). Finally, Kawagoe and Levin [ 78] intro-
duced a method to compute the anomaly of arbitrary internal symmetries, including antiuni-
tary symmetries. In their approach, they first choose a Hamiltonian that spontaneously breaks
the symmetry, and then find the anomaly via the fusion of domain walls.

None of the methods mentioned above apply to LSM anomalies involving lattice transla-
tion. Our way of computing the anomaly is advantageous since it captures LSM anomalies. We
find the LSM anomaly valued in H2(G, U(1)) for arbitrary internal symmetry G, which does

5In general, there is no systematic method to compute arbitrary 't Hooft anomalies in the continuum. However,
see [8,66,67] for the case of discrete symmetries of 1+1d CFTs, and see [68] for a method to detect certain global
anomalies on the torus Hilbert space.

®More generally, anomalies are conjecturally classified by generalized cohomology theory on the lattice [70-72]
(which is related to the decorated domain-wall construction [73]), and by cobordism groups in the continuum
[74-77].

’A method to compute the H®> anomaly was developed long ago in the context of algebraic quantum field
theory [79-81]. Although stated in a different language, this method is the same as the one in [1]. We thank Yuji
Tachikawa for pointing out these references to us.
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not necessarily act on-site. Therefore, our results further generalize the LSM theorem beyond
on-site symmetries [39-42]. Our results apply to locality-preserving symmetries, which are
not necessarily finite-depth circuits.

Finally, let us point out that there are extensions of the original LSM theorem concern-
ing translation-invariant systems with only a U(1) symmetry instead of the SO(3) symmetry.
In particular, [85] found that certain translation-invariant spin chains cannot have a unique
gapped ground state given that the ground state has a fractional U(1) charge per unit cell,
see also [86]. More specifically, [85] studied the XXZ chain with a non-zero magnetic field.
Such extensions are not associated with the standard notion of 't Hooft anomaly, that is, the
obstruction to gauging. Instead, [57] phrase them as anomalies in the system with a fixed
charge. Our formalism does not apply to such cases. This is mainly because U(1) does not
have a genuine projective representation. Thus the notion of having a fractional U(1) charge
per unit cell is an extra constraint (known as the filling constraint) rather than being a prop-
erty of the microscopic system. See [87] for interesting results in systems with a continuously
tunable filling.

We will summarize our results below, starting with a short overview of topological defects.

1.1 Topological defects

The ’t Hooft anomaly is a microscopic property of the theory, independent of lattice details.
To compute it locally, it is useful to consider symmetry defects that impose a symmetry action
across space instead of symmetry operators that impose a symmetry action across time. Sym-
metries are traditionally defined by unitary operators that commute with the Hamiltonian.
However, not every unitary operator that commutes with the Hamiltonian qualifies as a global
symmetry. One further requires that the symmetry operator maps local operators to local op-
erators. To manifest this locality property, it will be extremely useful to consider symmetry
defects implementing symmetry twists in space.

Consider a 1+1d theory with a global symmetry. We can either put the system on a chain
with periodic boundary conditions or impose twisted boundary conditions with respect to var-
ious elements of the symmetry group. For internal symmetries, twisted boundary conditions
can be imposed locally by inserting symmetry defects. Defects generally correspond to the
modification of the system locally near some point in space. Symmetry defects are, however,
topological in the sense that we can move them locally without changing the physics. The
crucial point is that we can capture all aspects of symmetries by the corresponding topological
defects.®

For example, consider the transfers-field Ising model Hamiltonian

_ z -z x
H= Zajcer hZaj . 1)
j i

The model has a global Z, symmetry that flips the spins, denoted by 1. The symmetry oper-
ator is given by U, = I i o"j.(, which imposes a twist in time when inserted inside correlation
functions. On the other hand, the symmetry defect inserted on link (0, 1) is given by the defect

Hamiltonian
H == 2, (0705) + g0t —h D o7, @
J#0 J
and implements a twist in space.
Topological defects capture all the properties of a global symmetry and its anomaly. For
instance, the fact that U, generates a Z, symmetry translates to a Z, fusion rule for the defect,

8In a relativistic theory, topological defects extending in time are related to symmetry operators extending in
space by Lorentz transformations. Even though there is no relativistic invariance in lattice Hamiltonian systems,
topological defects are still related to symmetry operators, as we explain in Section 2.


https://scipost.org
https://scipost.org/SciPostPhys.16.4.098

Scil SciPost Phys. 16, 098 (2024)

i.e., n x n = 1. This means that the insertion of two defects is trivial. Consider two defects
at links (0,1) and link (j,j + 1); we can annihilate/create these defects by conjugating the
Hamiltonian with the unitary operator o073 ... a;.‘ .

In Section 2.4, we show that any internal symmetry G can be represented by topological
defects corresponding to a local modification of the Hamiltonian (and possibly the Hilbert
space). We denote the defect Hamiltonian for the insertion of a symmetry defect for g € G on

link (j, j + 1) by

gUi+) — ____, o g}é o .~ .. 3)
& ji—1 j j+1 j+2
The group multiplication of symmetry operators corresponds to the fusion of these defects.
Consider two defects g € G and h € G on links (j —1, ) and (j, j + 1), and denote the corre-
sponding defect Hamiltonian by Hg ;Lj U | Thege topological defects obey a G fusion rule
in the sense that there exist local unitary (fusion) operators

g g
such that , : ( y ) 1
jJj+1 j i—1,7);(j,j+1 i -
ngh] = lj(g,h)HgJ;h PRRTI (M (g,h)) . (5)

1.2 Microscopic formula for the anomaly

As we will argue in Section 3, the 't Hooft anomaly is given by the relation

818283 818283
——-———0 — & X o — - - -—-—— — 0o —X 0o — — -
---—= ° ° ° -- -—————— ¢ — 90— — -
= F(gla 82, g3) ) (6)
TN ST T TN T
&1 &2 &3 &1 &2 &3
which in equation is
(81,8280 (g1, DA (g2, 83) = F(81, 82, 83) M (8182, 83)A (g1, 82)- (7)

Here, F(g;, &2, g3) is just a phase and it is independent of j due to the translation symmetry
T that satisfies T A/(g,h) T~! = AJ™!(g,h). In Section 3.1, we discuss the general case that
applies to systems without translation symmetry. We identify the anomaly as the function
F : G x G x G — U(1) that is subject to the following two essential conditions:
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I. Cocycle condition: F satisfies a modified cocycle/pentagon equation

F(g2,83,84)F(81,8283,84)F (81,82, 83)
F(g182,83,84)F(81,82,8384)

:F(glagZJ 1) (8)

This is the analog of the Wess-Zumino consistency conditions appearing in the classification of
perturbative anomalies in the continuum.

II. Phase ambiguity: Fusion operators A/(g,h), defined by equation (5), have phase ambi-
guity that propagate into F and lead to the identification

7/ (82, 8307 (g1, 1Y/ (g1, 8283)
Y7181, 82)77 (8182, 83)

F(g1,82,83) ~ F(g1,82,83) )

for y/ : G x G — U(1). These phase ambiguities correspond to local counterterms in the
continuum that can be added into the action to cancel some anomalous phases.
Let us unpack these conditions into several comments:

1. The function F defines the anomaly cocycles

F(g1,82,83)
F(g]_, g2: ]-) ’

satisfying the standard 3-cocycle and 2-cocycle conditions, respectively.

w(g1,82,83) = and a(g1,82) = F(g1,82,1), (10)

2. Modding out by j-independent phase ambiguities, which do not spoil the condition
T A(g,h) T~! = A7*1(g,h), we get the cohomology classes of w and a denoted by

[w] € H3(G,U1)), and [a]l € H*(G,U(1)). (11)

If we further mod out by j-dependent phases, we completely trivialize a and are left
with only [w].

3. [w] € H3(G,U(1)) is the ’t Hooft anomaly in G.
4. [a] € H%(G,U(1)) is the (generalized) LSM anomaly, which is given by

8182 8182

- = ° ° ° ° - - = o ° o ° -

-—e—eo o o — — -

= a(gb gZ) . (12)

5. Without a translation symmetry w and a might be j-dependent. However, the cohomol-
ogy class [w] is always j-independent and thus meaningful in systems without transla-
tion symmetry.

6. According to the Kiinneth formula H2(G, U(1))xH3(G,U(1)) = H3(Z x G, U(1)). There-
fore, we can identify [F] = ([a],[w]) as an element of the third group cohomology of
Z x G. This is consistent with the crystalline equivalence principle [59] stating that the
translation symmetry can be treated as an internal Z symmetry to classify anomalies.
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1.3 Anomaly as the obstruction to gauging

At least in the continuum, it is well-known that twisted boundary conditions for a symmetry G
correspond to coupling the theory to flat background G gauge fields. The spatial component
of the gauge field determines the twist in space or, equivalently, the insertion of a topological
defect. Therefore, we can view the insertion of topological defects as coupling the system
to background gauge fields and view the unitary fusion operators in equation (4) as gauge
transformations.’

We will make the connection between topological defects and gauge fields even more con-
crete by explicitly gauging the symmetry on the lattice using topological defects. We develop
a systematic way to gauge arbitrary internal symmetries without assuming that the symmetry
is on-site or going to a presentation where the symmetry is on-site. This allows us to identify
the anomaly cocycle as an obstruction to gauging even on the lattice.

More precisely, we will show that [ew] € H3(G, U(1)) is the complete obstruction to gauging
G on the lattice. Therefore, it justifies calling [w] the 't Hooft anomaly in G. This observation
proves that the classification of 14+1d anomalies on the lattice and continuum are the same. In
addition, we show that the (generalized) LSM anomaly [a] € H?(G, U(1)) is the obstruction
to gauging G while preserving the lattice translation symmetry. Before ending this subsection,
let us briefly sketch our gauging procedure and explain how the anomaly comes about as the
obstruction.

To perform the gauging, we will first enlarge the Hilbert space by adding all possible G-
defects on all links. This corresponds to making the gauge fields dynamical [6]. The next step
is to impose Gauss’s law locally at all sites. Roughly speaking, Gauss’s law at site j is given by
the following projection operator

g h’
1 h
PJ~— @ ———o—.———*—g—o-———_ (13)
6l 2,
j—1 j j+1
8 h

See equations (101) and (104) for details.

However, we can consistently impose Gauss’s law constraints if they commute with each
other. In other words, if P; commutes with P;, ;. As we show in Section 3.2, this holds if and
only if the anomaly cocycles w and a vanish. However, since the anomaly cocycles have phase
ambiguities, the true obstruction is given by their cohomology classes [w] and [a].

Without a translation symmetry, we can redefine the fusion operators by j-dependent
phases to eliminate the 2-cocycle a. Thus we establish that [w] is the complete obstruction to
gauging G.

With a translation symmetry, however, we cannot redefine the fusion operators with j-
dependent phases, as that would violate the relation TP, Tl = ;+1. Breaking such a relation
means that T is not gauge invariant, and we lose the translation symmetry by one site. There-
fore, if we insist on preserving the translation symmetry, the obstruction to gauging G is given
by both [w] and [a]. Therefore, we identify the LSM anomaly [a] as the mixed ’t Hooft
anomaly between G and the translation symmetry.

°This point was emphasized in [6], and [57] used this approach to detect anomalies.
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Anomaly matching on the lattice

The 't Hooft anomaly matching states that the anomaly of the Ultraviolet (UV) physics should
match with the anomaly of the Infrared (IR) low-energy physics. In the continuum, this follows
from the fact that the ’t Hooft anomaly is invariant under continuous deformations, and in
particular, under the renormalization group (RG) flow. Therefore, a theory with an ’t Hooft
anomaly in the UV cannot flow to a trivial theory in the IR since the trivial theory has no
anomaly.

There are usually three options for the low-energy physics when there is a non-trivial ’t
Hooft anomaly. Either we have a gapless theory, ground state degeneracy, or topological order.
However, there is no topological order in 14+1d. We will prove an ’t Hooft anomaly matching
on the lattice by showing the following. We will show that a 1+1d lattice Hamiltonian model
with a non-trivial ’t Hooft anomaly, i.e., [w] # 1 or [a] # 1, cannot have a unique gapped
ground state. This statement generalizes the LSM theorem and can be viewed as a lattice
version of the 't Hooft anomaly matching conditions.

Anomaly matching in the continuum

Now we discuss the ’t Hooft anomaly matching between the UV lattice model and the IR
theory in the continuum. As usual, there is a homomorphism from the symmetry of the UV
into the symmetry group in the IR. However, the generator of the translation symmetry, T,
either becomes trivial in the continuum or becomes an internal symmetry of the IR. See [57]
for a detailed discussion and examples. Therefore to discuss this homomorphism, we only
need to consider the internal symmetries of the IR.

If we denote the internal global symmetry of the IR theory by Gz, we get a homomorphism

f:ZXG—)GIR. (14)

This homomorphism captures the continuum limit of translation by one site, which is an in-
ternal symmetry in the continuum. Specifically, we consider translation by one site and then
take the continuum limit. If, on the other hand, we consider translations by n sites and take
the number of lattice sites L to infinity such that n/L is constant, we find translations of the
continuum theory.'°
We claim that the UV anomaly is given by the pullback of the IR anomaly via the homo-
morphism f. If we denote the ’t Hooft anomaly of the IR theory by [wr] € H3(G, U(1)), in
equations, we get
F*[wr]) = ([al,[w]) € H*(Z x G,U(1)). (15)

Equation (15) is a precise mathematical statement of the anomaly matching. In partic-
ular, it implies that when the UV anomaly is non-trivial, the IR anomaly [wz] must also be
non-trivial. Moreover, as emphasized in [57], the LSM anomaly [a] becomes a mixed 't Hooft
anomaly between the symmetry G and the emanant symmetry of the IR. The emanant sym-
metry is the symmetry generated by the continuum limit of translation by one site.

1.4 Outline

In Section 2, we discuss the connection between symmetry operators and topological defects.
In particular, we prove a one-to-one correspondence between locality-preserving global sym-
metries and topological defects in 14-1d lattice Hamiltonian systems. This correspondence will
be essential for the results we prove in Section 3.

10We thank Nati Seiberg for a discussion on this point.
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Section 3.1 presents our microscopic formula for 't Hooft anomalies and discusses its re-
lation to the group cohomology classification of anomalies. Moving on to Section 3.2, we
introduce a method to gauge non-on-site internal symmetries on the lattice. We identify the
anomaly as the obstruction to this gauging procedure. In Section 3.3, we discuss a general-
ized LSM-type constraint stating that when the anomaly is non-trivial, there is no symmetric
deformation to a gapped phase with a unique ground state.

Section 4 contains several examples illustrating our general results. In Section 4.1, we
discuss LSM anomalies for on-site symmetries, particularly the spin-half Heisenberg chain ex-
ample. In Section 4.2, we study the XYZ chain and its Z, x Z, symmetry, which has an LSM
anomaly. We construct a non-invertible lattice translation symmetry by gauging the Z, x Z,
symmetry of the XYZ model. In Section 4.3, we consider the modified Villain theory that ex-
hibits anomalous U(1) chiral symmetries on the lattice. We use this theory to construct Abelian
chiral gauge theories on the lattice. In Section 4.4, we discuss the fermionic generalization of
the results from Section 3 and demonstrate it by considering the example of a chain of N free
Majorana fermions.

Finally, Appendix A provides a single formula to extract the 't Hooft anomaly in internal Z,
symmetries. In Appendix B, we compare our results with Else-Nayak [1]. We show that our
formula of the H®> anomaly matches Else-Nayak in cases where their method is applicable. In
Appendix C, we construct topological defects for antiunitary symmetries.

2 Symmetry operators vs. topological defects

In this section, we discuss the precise relation between topological defects and global sym-
metries of 1+1d lattice Hamiltonians. In particular, we construct topological defects from
internal symmetry operators and, conversely, construct symmetry operators from topological
defects. More generally, we show a one-to-one correspondence between topological defects
and locality-preserving symmetry operators, which include lattice translation and antiunitary
symimetries.

2.1 Symmetry operators

Symmetries of quantum systems are traditionally defined by unitary operators that act on
the Hilbert space and commute with the Hamiltonian. This is a complete characterization of
symmetries in quantum mechanics. In lattice models with spatial dimensions, there is a notion
of locality and one requires symmetries to act locally. More precisely, the symmetry operator
must map local operators into local operators.!!

The simplest way to satisfy the locality requirement is to consider symmetries that act on-
site. Consider a system with a tensor product Hilbert space H = ); H; where #; is the Hilbert
space at site j. An on-site symmetry operator takes the form

U:l_-[U‘, (16)
J

where U; is a unitary operator that acts non-trivially only on site j. Such an operator respects
locality since it maps a local operator O; supported on site j to UO; Ul=U ;0; Uj_l, which is
also supported on site j. The operators O; and U;0; U]._1 are considered local operators since
they are supported on a single site.

"1n the continuum such an operator is called a line operator. Its locality is manifest if it is defined by a local

~i§, £I¢]

action U(y) =e , such as Wilson lines in gauge theories.
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More generally, we require symmetries to act locally in the following sense. For a symmetry
operator U, there should exist an integer k — independent of the number of lattice sites — such
that U maps operators supported on [ consecutive sites to operators that have support on at
most [ + k consecutive sites.!? According to this definition reflection across site J acts locally,
with k = 0, since it maps an operator supported on site j to an operator supported on site
J — j. However, the reflection symmetry is not locality preserving. A unitary operator is said to
be locality preserving if it maps a local operator around site j to a local operator which also
has support around site j.'2

In this work, we consider finite-range/local Hamiltonian systems in the sense that the
Hamiltonian is written as a sum of local terms. Specifically, we assume the Hamiltonian is

written as
H= ZHJ , 17)
j

where H; is a local operator with support on at most sites j,j+1,---,j+, for some integer
independent of the system size. We assume the Hilbert space is constructed as a tensor prod-
uct of local factors plus additional local constraints. For instance, there are local Gauss’s law
constraints in gauge theories. The list of local operators in such theories is given by operators
that commute with local constraints. The locality is encoded in the algebra of local opera-
tors instead of the Hilbert space. More precisely, there exists a well-defined algebra of local
operators such that each operator has a support consisting of a finite number of lattice sites.
Operators with disjoint support necessarily commute with each other.'*

It is the locality requirement that makes global symmetries powerful. The goal of this
section is to give an alternative definition of global symmetries that makes the locality property
manifest. This alternative definition is the notion of topological defects.

2.2 Topological defects

Symmetry operators when inserted inside correlation functions impose a symmetry action
across a point in time, whereas symmetry defects impose a symmetry twist across space. Sym-
metry operators/defects are said to be topological in the sense that the correlation functions are
independent of their exact location [6,88]. Let us explain this terminology in the continuum
setting, where it is more natural.

In the continuum, one can insert symmetry operators/defects on arbitrary loops, i.e.
codimension-one submanifolds, inside the 14+1d spacetime. The correlation functions only
depend on the topology of the loop and are insensitive to local deformations of the loop. More
precisely, consider the symmetry operator U(y) supported on the loop y. One can deform the
loop 7 slightly and the correlation functions do not change unless we cross a local operator
insertion O(x). In that case, swiping y across the local operator insertion at x implements the
symmetry action on that local operator. Therefore, we have the following relation character-
izing the symmetry through the correlation functions of topological operators/defects:

< o) >:< o > as)

U(y) Uy’

12In the case of a tensor product Hilbert space it is enough to check this condition only for [ = 1. In other
cases like gauge theories with Gauss’s constraints, the gauge invariant operators supported on a single site do not
necessarily generate all local operators.

13Locality-preserving unitary operators acting on lattices are called quantum cellular automata (QCAs).

14For fermionic theories, there exists a Z, automorphism of the algebra of local operators given by the fermion
parity. In that case, fermionic operators with disjoint support anti-commute each other.
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Here, deforming the loop 7 into y’ implements the symmetry action: O(x) — O’(x).

In a lattice Hamiltonian system, there are two important cases. When y is located at a fixed
time and extends in space, U(y) is the unitary operator that commutes with the Hamiltonian.
However, when y is located at a point in space and extends in time, it defines a topological
defect. As we will show later, topological defects are still related to symmetry operators even
in non-relativistic lattice Hamiltonian systems.

Since symmetry defects impose symmetry twists across the space, their insertion corre-
sponds to twisted boundary conditions on a closed lattice. Consider a 1+1d system with an
internal Z, symmetry. We can put the system on a closed chain with a periodic boundary
condition or anti-periodic boundary condition for the Z, symmetry. Imposing an anti-periodic
boundary condition usually corresponds to changing the sign of a single term in the Hamilto-
nian. This local modification of the Hamiltonian near a single site is an example of a topological
defect.

For example, consider the transfers-field Ising model (TFIM) Hamiltonian

] J

This model has a Z, spin-flip symmetry that we denote by 7. It is generated by the unitary
operator U, = ]_[j o7 that flips all the spins, i.e. U, conjugates 0? to —0? for all j. We can
introduce a Z, twist at link (0, 1) by acting with the symmetry only on sites j > 1. By doing
such, we find the twisted/defect Hamiltonian

H%O’l) =—Z Ufojﬂ +oéa§ —hZO';C. (20)
j#0 j
By identifying o; = 0, we find the model with an anti-periodic boundary condition on the
chain with L sites.
Note that by doing a change of basis (i.e. a similarity transformation), we can move the
location of the defect from link (0, 1) to any other link of the chain. For instance, by conjugating
the Hamiltonian with o{ or o; we can move the defect, respectively, to the right or left

HM =otHOVoy,  HSW) =o3H" oy . (21)

Therefore, the defect can be moved locally (i.e. with a local unitary operator) without costing
any energy. Because of this property, we say that 7 is a topological defect.'®> Mathematically
speaking, the twisted boundary condition corresponds to the non-trivial Z, bundle over the
circle, and moving the topological defect is a gauge transformation.

The important property of topological defects is that we can use them to reconstruct the
symmetry operators. To do such, let us begin with the untwisted Hamiltonian H on a periodic
chain. Conjugating H with o7 creates a pair of defects on links (L, 1) and (1,2)

(L,1);(1,2) — ~x x _ z % z __z z 2 x
Hnm =ojHoy = E 00 +010]+070, h E o; .
J#L,1 j

(22)

Now we can apply the movement operators 0}, 03, ..., 0] _; respectively to move the defect on
link (1, 2) along the chain to link (L —1, L). Finally, we apply o to annihilate the two defects
on links (L —1,L) and (L, 1), and return to the untwisted Hamiltonian. Putting everything
together, we find that the product of all these unitaries conjugates H back to itself and thus is
a symmetry operator. Indeed this unitary operator is the original Z, symmetry operator U,,.

15A classical example of this is the Mobius band. We can take a tape and cut it at some point and glue it back
to itself with a 7 rotation. The resulting Mobius band is translationally invariant; therefore, we cannot detect the
location of the cut/defect.

12


https://scipost.org
https://scipost.org/SciPostPhys.16.4.098

Scil SciPost Phys. 16, 098 (2024)

The Ising chain and its Z, symmetry explain the basic idea behind the relation between
topological defects and symmetry operator. We will now define the notion of topological de-
fects more abstractly and later show the relation between topological defects and symmetry
operators in general.

General definition of topological defects

Generally, a defect corresponds to a modification of the theory only near some region. Phys-
ically, it corresponds to modifying a material locally by adding impurities, removing atoms,
etc. In this work, we are interested in defects that are localized near a point in space.'® We
model such defects by modifying the Hamiltonian and the Hilbert space only in a local neigh-
borhood of some sites. We refer to such a modified Hamiltonian and Hilbert space as the defect
Hamiltonian and the defect Hilbert space.

Consider a general 1+1d lattice Hamiltonian system. We represent a defect by a list of
defect Hamiltonians and defect Hilbert spaces representing the insertion of the defect on var-
ious links of the chain. For the system with a defect D on link (j, j + 1), we denote the defect
Hilbert space and defect Hamiltonian as ’H%’] ™ and H%’J +1), and represent it pictorially by

(.j+1) D
H = ---———@ X—e—0— - — -,
P i—1 j j+1 j+2 (23)

J+1) J+1)

The defect D is local in the sense that ’Hg and Hg
space H and Hamiltonian H near link (j,j + 1).!7
We say that a defect is topological if moving it does not change the physics. More precisely,

only differ by the original Hilbert

: sl s : : j . qyG-L5) G.J+D)
the defect D is topological if there exist local unitary operators Uz, : H, - Hy such
that
Gg+D) _ 77 17G=11) 7 -1
Hpy'" "/ =UpHp > (Up) . (24)
The movement operator U{) is local in the sense that it has support on at most k + 1 sites
near site j. More precisely, we assume UZJ) has support on sites J —k/2 < j < J+ (k+1)/2.
Moreover, k > 0 is independent of the system size, and the smallest such integer is denoted as
the width of the defect. In the Ising example, we have Uf7 = U;F , 7—[5{ JHD - ‘H, and k = 0.
Importantly, the presentation of the defect in terms of defect Hamiltonians and defect
Hilbert spaces is not unique. One can conjugate the defect Hamiltonians by local unitary
(.j+1)
o)
D

operators to find another presentation of the defect

G.i+1) _ AGJ+D 150G+ ( AU+
Hy =0 HLTT (0277 (25)

The support of the local operator Og’J 1) determines the width of the defect in the new pre-
sentation. The movement operators in the new presentation are given by

. .. . 1y —1
ul, =0yl (oY) . (26)

In other words, we say that two defects D and D’ are equivalent if the corresponding defect
Hamiltonians are related by local unitary operators. In practice, we fix a particular presenta-
tion of the defects and keep in mind that physically meaningful quantities should be indepen-
dent of this choice.

16From the space point of view they may be called point defects, but correspond to line defects in spacetime.

7More precisely, the algebra of local operators supported on sites J < j —k/2 and J > j + k/2 of the system
with and without the defect are isomorphic for a fixed integer k related to the width of the defect defined below.
This isomorphism identifies the local terms in the Hamiltonians H%’J *1 with those in H on sites J < j—k/2 and
J=j+k/2.
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Fusion of topological defects

By applying a sequence of movement operators, one can move topological defects arbitrarily
around the chain. In particular, consider a system with two topological defects that are far
away from each other. Using the movement operator, we can bring one of the defects next to
the other one, thus defining a fusion between topological defects. In particular, for a symmetry
G, inserting two symmetry twists associated with group elements g € G and h € G is equivalent
to a single gh € G twist. In general, the fusion of symmetry defects corresponds to the group
structure of symmetry transformations.

However, the fusion operation between arbitrary topological defects is not always group-
like. In particular, while the fusion operation is associative, it is not necessarily invertible. In
this work, we will only consider invertible topological defects with a group-like fusion rule. But
let us point out that there exist non-invertible topological defects even in the transverse-field
Ising model [89,90].1® For general construction of 1+1d lattice systems with non-invertible
topological defects see [95-98].

To describe the fusion operation concretely, we want to consider a system with two defects
located at nearby links. However, we do not want to introduce a new ambiguity in defining the
defect Hamiltonian for two defects. In other words, starting from single-defect Hamiltonians,
we want to unambiguously construct the defect Hamiltonian for the system with two defects.
We will now argue that this is possible if the distance between the defects is larger than the
width of each defect.

Consider two topological defects g and h of width at most k. The key property is that U;

commutes with Uf{ +k+1 in the sense that

g h g h
———o X o --—o——o X o o X o --—o— 0% o
> - ——— T — O OO ————@— 27
———%—o—— o - ———X—— o -
J +k+1 J 1+k+1
g h g h

In this case, it is unambiguous to insert the defects at links (j,j+ 1) and (j+k,j+k+1). We
first insert them very far away from each other, say at links (—J,—J + 1) and (J, J + 1) for
J > |j|+ k. This is unambiguous since the defects are localized. We denote the corresponding
defect Hamiltonian as Hé_hj DD Now we apply the movement operators

- - - j+k+1y— —1N— _
ul - UuJPu, and W whY wh, (28)
to bring them on links (j, j+1) and (j +k, j + k+1). There can be an ambiguity in doing such
if the two movement operators do not commute with each other. However, since the defects

have width k the two movement operators commute with each other and thereby there is no
JH1;(+k,j+k+1)

sh )
From now on we assume that all the defects have width k = 1 such that we can always

insert them, unambiguously, on adjacent links. However, everything that follows can be gen-
eralized to the case of k > 1. We consider general invertible topological defects whose fusion
rule is governed by a group G and label the defects by the group elements g,h,k,--- € G. We

ambiguity in defining H é]

8Topological defects with a non-invertible fusion rule first appeared in the context of 1+1d rational conformal
field theories [91-93], and later interpreted as generalized symmetries in [7,8]; see [4,10,94] for reviews.
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construct the defect Hamiltonian for the system with two defects g and h on links (j — 1, j)
and (j, j + 1) and denote it as

G-L0.+1D) _ g§ . h
Hg;h = e —eX—eX—e— - . (29)

Fusion  operators: The fusion is implemented by unitary  operators
AM(g,h) : ”Hg,;l’J HOHD Hgﬁ] H), which are represented by the following spacetime dia-

gram?’
gh
e — ok o ___
AM(g,h) = :Hggl,ﬂ;(],ﬁrl) — H;;JH). (30)
il i+
8 h
The local unitaries A/(g, h) are called fusion operators and they satisfy
Hg};ﬁl) =M(g,h) H;];h Li)0,j+1) (Mg, ). 31)

The movement operators of equation (24), are special cases of the fusion operators in the
sense that Ué = A(g,1). Here, the identity element 1 € G corresponds to the trivial defect.

Simple defects:  The fusion operators satisfying (31) are well-defined up to phases. This is
because we assume there is no non-trivial local unitary operator that commutes with defect
Hamiltonians. If this had not been the case, we could have diagonalized the defect Hamiltonian
with respect to such local unitaries and thereby decompose the defect into simpler ones. In
such cases, the defect is said to be a non-simple, or reducible, defect. We will only consider
simple topological defects in this work. Since the defects are invertible, the assumption that
the defects are simple is equivalent to assuming that no local operator commutes with the
untwisted Hamiltonian, i.e. the trivial defect is simple.°
Changing the presentation of the defects, given by (25), transforms the fusion operator

. ;s . L - -1
M(g,h), into  0UTV (g, h)(0UTNOUID) (32)

It is important to work with a fixed presentation of the defect Hamiltonians. At the end of the
day, the only physically meaningful quantities are those independent of the defect’s presenta-
tion and the phase ambiguities mentioned above.

Let us summarize the key properties of invertible topological defects (of width k = 1):

1) There is a list of defect Hamiltonians Hg I for every g € G and link (j,j + 1).

2) There exist fusion operators A/(g,h) : Hggl’j WG ngj )

3) A(g,h) are well-defined up to a phase.

4) A(gy,g2) commutes with AJ2(g5, g4).

1We always use the notation ‘—’ to denote conjugation, i.e. U : O — UOU .

20We only consider simple defects since the classification of anomalies is different for non-simple defects. In
the continuum, this corresponds to the fact that non-simple defects lead to 1-form symmetries, and anomalies of
0-form symmetries depend on 1-form symmetries. See [99,100] for related discussions on 1-form symmetries.
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Internal symmetries vs. spatial symmetries

So far, we have described the most general notion of invertible topological defects whose fusion
is governed by a group G. To ensure that these topological defects correspond to internal
symmetries, as opposed to spatial symmetries such as translation and reflection, we need to
consider a further constraint on these defects. Let us first recall the definition of internal
symmetries.

Global symmetries map local operators to local operators. If the symmetry is internal, it
should map local operators supported around site j to local operators that are also supported
near site j. This criterion, however, is not sharp enough to distinguish between approximately
internal symmetries, such as translation by one site, and true internal symmetries. A sharper
definition is as follows.

We say that a symmetry U is internal if for all integers n, U" maps a local operator near
site j to a local operator near site j. More precisely, U generates an internal symmetry if there
exists a non-negative integer k independent of n such that U™ maps an operator supported on
sites J; < j < J, to an operator that has support on at most sites J; —k < j < J, + k. Here, k
is independent of the system size, and we refer to the smallest such integer as the width of the
symmetry.>! The case of k = 0, corresponds to an on-site symmetry (which may or may not
act projectively on local Hilbert spaces at each site).

Below, we will argue that a topological defect of width k corresponds to a symmetry oper-
ator of width at most 2k and vice versa. Therefore, a topological defect D corresponds to an
internal symmetry if there is an integer k such that the width of D" is at most k for all n € Z.

2.3 Defects — operators

Here we will construct symmetry operators from invertible topological defects.

We start with the untwisted Hamiltonian H for the periodic chain with L sites. We first
conjugate the untwisted Hamiltonian with (Al(g_l, g))_1 to create a pair of g~! and g defects
onlinks (L,1) and (1, 2). Then we apply the movement operator AX (g, 1)---A3(g,1) A%(g, 1)
to bring the defect g around the chain to the other side of the defect g~!. Finally, we fuse the
two defects to get back the untwisted Hamiltonian. In summary, we find the line operator

Uy = 2AMg, g DA (g, 1)+ 23(g, DAY, 1) (A (g™ ) (33)

which commutes with the untwisted Hamiltonian H. Diagrammatically, we have

=1

fox
S S

— . (£,1);(1,2) (L—-1,L)5(L,1)
U, = tH-H e s Ho —H. (34

L—-1 L 1 2 3 4

We now argue that the symmetry operator U, constructed above is unique up to a phase,
and does not depend on various choices that were made in defining it. First of all, changing

21The width of a unitary operator defined here is closely related to the ‘range’ of that operator defined in the
quantum cellular automata literature, see e.g. [84].
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the presentation of the defect, as described in equation (32), does not affect U,. Secondly, we
show that U, does not depend on the choice of origin. In other words, we want to show that
U, up to a phase, is equal to

Mg, g ) AM(g, 1) A%g, DA%, 1) (A2(e 1, 9)) . (35)

We first note that we have the following relation

gt g g ! g
_ (36)
TS .- - *« = al(g 1, g) TS .- - -,
L 1 2 L 1 2
where
al(g, ) =2%g LA g L DA ) (A (e 9) (37)

Here, a'(g™!, g) is a local unitary operator that commutes with the Hamiltonian, therefore by
our assumption, it should be just a U(1) phase.

Using the relation above, we can commute A! pass through A2 in the right-hand side of
equation (33). Moreover, assuming that the defect has width k = 1, we can commute A! pass
through other terms and bring it to the right of AL. Finally, we define

al(g,g) =g, g HAL (g, DA e 1) (Mg, gh) (38)

which is also a phase similar to a!. This allows us to commute A' through A to get

o —1 o =1
S S

S S

— _ale™hg) —
al(g,g71)

(39)

L-1 [ 1 2 3 4 L—-1 L 1 2 3 4

Therefore, we see that changing the origin in the definition of U, multiplies it by a phase. Thus
the topological defect determines U, up to a phase. Now we show U, has the same width as
the defect.

Assume that the defect g has width k, so that A’(g,h) has support on, at most, sites
J—k/2 <j< J+(k+1)/2. We show that in this case the width of the unitary symme-
try operator U,, constructed above, is at most k. Recall that a symmetry operator has width
k, if it maps an operator Oy, ;1 that has support on sites J; < j < J, into an operator that has
support on, at most, sites J; —k < j < Jy + k.

We notice that most of the terms in (33), besides those that are near sites J; and J,,
commute with Oy, ;1. Therefore, to find the action of U, on Oy, 5,1, we only need to conjugate
Oy4,.J,] by the unitary operator

)LJerLk/ZJ(g, g—l))ﬂz—lﬂk/zj(g’ 1) --- xJ1+1—l(k+1)/2J(g’ 1))LJ1—L(k+1)/2J(g’ 1). (40)

17


https://scipost.org
https://scipost.org/SciPostPhys.16.4.098

Scil SciPost Phys. 16, 098 (2024)

Here, | x| is the greatest integer less than or equal to x. Using the assumption that
the defect has width k, we find that the above unitary operator has support only on sites
J1—k < j < J,+ k. We conclude that the width of the symmetry operator U, is at most k.

2.4 Operators — defects

Now we establish the more difficult side of the correspondence. Namely, we construct an
invertible topological defect of width at most 2k from a unitary symmetry operator U, of
width k.

The basic idea is to truncate the symmetry operator U, to an operator that implements the
symmetry in only half of the chain. More precisely, we want to find a unitary operator UgSJ
such that for a local operator O; supported on site j we have

U, 0;(Ug) ", forj<J—k,

0; forj>J+k.

<J <Jy-1 _
us’ 0; (US) _{ (41)
If such a truncated symmetry operator?? exists, we claim that a defect Hamiltonian is given by
conjugating the untwisted Hamiltonian by this operator. Namely,

-1
HUI =us/ g (Us) . (42)

Below, we first demonstrate that this equation does indeed define a localized defect, which is
topological. Next, we will discuss the existence and construction of the truncated symmetry
operator.

Before going to the next discussion, we want to emphasize that we only consider systems
with a finite, but large, number of sites. For instance, in a more precise version of equation
(42), we consider a truncated symmetry operator U;’J " that acts on a finite region between
sites J' and J, where J’ < J —2k. In that case, by conjugating the untwisted Hamiltonian with
this truncated operator we in fact create a pair of topological defects. The additional defect is
the inverse defect g~! and is localized around site J'. However, since the defects are localized,
we can only focus on the region around J to find the expression for a single defect. In what
follows, in order to simplify the discussion, we will not specify the details of the system far
away from the region of interest.

Proof of locality: To see that H g »J+1) defines a defect that is localized near link (J, J+1), we
need to show that it differs from the untwisted Hamiltonian only near that link. Equivalently,
we need to show that the difference, Hg J+1) _H, is a local operator supported near link
(J, J +1). The untwisted Hamiltonian is written as a sum of local terms, i.e.

H= ZHJ (43)
J

where H; has support on at most sites j,j + 1,---,j + [ for some integer [. We claim that
Héj’”l) — H has support on at most sites J —k —1 < j < J + k + 1. Using (43) we find

HEgJ,J'+1)_H: Z (UgSJH]_ (Uggj)_l_Hj)_'_ Z (UgSJHj (Ugﬁj)_l_Hj)- (44)
i<T+k j>J+k

Since the truncated symmetry operator commutes with operators supported on sites j > J +k,
we find that the second term in the equation above vanishes. Therefore HéJ J+1) _ H has

22Such a non-local operator, when it is not necessarily unitary, is called a ‘disorder’ operator [101], or a ‘twist’
field [102] in the continuum.
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support on at most sites j < J + k + . Using the fact that U, commutes with the untwisted
Hamiltonian we find

-1
HéJ,J+1) — (U;J) H Ug>J ) (45)

where Ug>J =U, (UgSJ )~! is also a truncated symmetry operator that, because of (41), has
support at most on sites J > J — k. Therefore we find that the operator

HéJ,J+1)_H= Z ((U;J)_lHjU;J_Hj)_i_ Z ((U;J)_lHjU;J—Hj)’ (46)

j>J—k—1 j<J—k—1

is at most supported on sites j > J — k —[. Thus we have proven that (42) defines a localized
defect.

Proof of the topological property: To show that the defect is topological we construct the
movement operators as

vl =Us (UgSH)_1 : (47)

This operator is local and has support on at most sites J —k < j < J + k. This can be shown
by using (41) and noting that the operator commutes with any local operator O; supported on
site j > J + k or j > J — k. Thus we find that the defect has a width of at most 2k.

Above, we constructed a defect from the truncated symmetry operator. But does the trun-
cated symmetry operator always exist? If we insist on keeping the Hilbert space of the defect
the same as the untwisted Hilbert space, then such a truncated symmetry operator might not
exist in general. However, a truncated symmetry operator always exists if we add local ancillas
representing the defect degrees of freedom. Such a truncated operator is constructed in the
context of quantum cellular automata (QCA) [103] (see also [84]). We review this construc-
tion below and use it to construct a defect Hamiltonian and defect Hilbert space. Moreover,
we comment on when the truncated symmetry exists without having to add ancillas.

Construction of the truncated symmetry

To construct a truncated symmetry operator, first, we add a decoupled copy B of the origi-
nal system A that has trivial dynamics. Namely, we consider the extended Hilbert space and
Hamiltonian

H=HeH, and H=Hel. (48)

The first factor describes the original system A, and the second factor is system B.
Next, we extend the original symmetry operator U, to

U, = UsUg ", (49)

where Uy = U, ® 1 is the original symmetry operator acting on system A, and Ug = 1 ® U,.
We will show below that U ¢ can be truncated by using the swap operator

S= nsp (50)
J

which exchanges system A and B. The swap operator itself can be truncated since it is written
as a product of local unitaries. The local swap operator s; is supported on site j and satisfies

S; (Oj®]l) sj_1 =1®0;, and s?zl. (5D
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Using the swap operator, we rewrite the extended symmetry operator as

U, =U,Ug" = SURSU,"
(52)
— -1
= l_[ Sj l_[ UB Sj UB .
J J
This operator can be truncated to the unitary operator
o= =( 1) (s vt ) e
j<J+k j<J

which we now show is indeed a truncated symmetry in the sense of equation (41).
Using the fact that the symmetry operator U, has width k we find

O;(Ug) " e1, forj<J,

7=/ (0,01)(07)  ={1e0,, forj=J+1,---,J +k, (54)
0;®1, forj>J+k,
and
1 1®(U,)'o;U,, forj<J—k,
7= (180))(T7) " = (U 70Uy fors (55)
§ § 1®0;, forj>J+k.
Therefore, =7 satisfy the truncated condition of equation (41).

8

Defect Hilbert space: As shown above, we can construct a defect Hamiltonian of width at
most 2k as

~ ~ -1
HUI D =05 (He1) (TF7) . (56)

However, the underlying Hilbert space ‘H ® # is too large. To find the true defect Hilbert
space, we need to get rid of the decoupled degrees of freedom associated with system B. To
do such, we project system B into one of its states. We choose a product state |0) € H, where
|0){(0| = ]_[ 7; and 7; is a hermitian projection operator at site j. 23 The projector into this

state is given by
J

For the system without a defect, imposing 1 ® IT = 1 decouples system B and gives us back the
original system.
Now for the system with the defect, we consider the projection operator

n ) =g’ (Lem) (T5). (58)

Note that ITV-/*1 commutes with the defect Hamiltonian Héj J+1) and is still written as a
product of local commuting projectors. We define the defect Hilbert space ’HEO,J J+D a5 the

1I¢Y>7*1 = 1 subspace of H®?#.>* We emphasize that the defect Hilbert space only differs from
the untwisted Hilbert space around site J. This is because the algebra of local operators away

A product state exists in theories with a tenor product Hilbert space. In systems with additional local con-
straints, we can still consider such a product state by relaxing the local constraints of system B.

%The defect system is a local lattice system since ITV-/*1 is a product of local commuting projectors. In
other words, there is a local operator algebra generated by operators that commute with the local constraints
fJgSJ (e nj)(f]gsj )~! = 1. These local constraints are the analog of Gauss’s law constraints in gauge theories.
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from site J is isomorphic for both the system with and without the defect. An isomorphism is
given by the unitary operator U3".
In summary, we have constructed the defect Hamiltonian

(J,J+1) _ p7<J < -1
HYD = G50 (He 1) (057)7, (59)
and defect Hilbert space
. p e 1
’Hg’”l) = <|\I/) EHOH ’ U3’ (1e1m) (UgSJ) W) = |\p)> ) (60)

To make sure there are no remaining decoupled degrees of freedom, we should check that
there is no local operator commuting with H¥>/*1 and the constraint IIV>/+D_ A defect sat-
isfying this condition is called a simple defect. If such a local operator exists, by conjugating
it with Ugsj , we find a local operator that commutes with both H ® 1 and 1 ® I1. However,
such an operator cannot exist because we are assuming that the original Hamiltonian does
not commute with any local operator (see the paragraph about simple defects in Section 2.2).
More generally, even if there are local operators that commute with the Hamiltonian, we con-
sider a symmetric deformation of the Hamiltonian to eliminate such operators. This is always
possible if the algebra of local operators has a trivial center or, equivalently, if there is no exact
1-form symmetry on the lattice.?®

Let us consider an example that demonstrates the generality of the construction above.
Below, we construct a topological defect for the lattice translation symmetry. This is an im-
portant example since the translation symmetry (in bosonic theories) can never be truncated
in the original Hilbert space and we necessarily need to construct a non-trivial defect Hilbert
space. In Appendix C, we discuss the case of antiunitary symmetries.

Topological defect for translation: Take the lattice translation operator T acting as
TO;T™'=0j,. (61)

We consider a translation invariant Hamiltonian, and without loss of generality, we assume
that it has the following form
_ 07y1
H= Y}, (62)
j

Here, H](.) and H} are local operators supported on site j, where TH;.)’1 T71= H;.);ll. We double

the system and extend the translation operator to T = T ® T~!. Note that the translation
symmetry has width k = 1. Following our general construction, we truncate this symmetry
operator to find

== []s|[[laemsaen]. (63)
j<J+1 j<J

The subscript + here indicates that we are considering the translation to the right.
The action of the truncated symmetry on local operators is given by

Oj+1®:[]" fOI'jSJ,
=/ (0;@1) (=) ={100;, forj=J+1, (64)
0;®1, forj>J+2,

25An exact 1-form symmetry is defined by a local operator that is topological in spacetime [6]. This topological
condition means that the operator commutes with any other local operator. Conversely, any operator in the center
of the algebra of local operators commutes with any finite-range Hamiltonian, making it topological in spacetime.
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and

]1®Oj—1, fOf]SJ"‘].,

. (65)
1®0;j, forj>J+2.

7 (100)(17)” - |

Using these relations, we find the defect Hamiltonian

(,J+1) _ 07y1 0 1 1 0 0771
HY D = (HOH) @ 1)+ HY), @ H) + H}, 0 HO  + > (HOHL ®1). (g6

j<J j=J+2

The defect Hilbert space is given by considering the projection operator

J,J+1) _
JAI+1

This projection operator, projects out all the degrees of freedom of system B, besides its degree
of freedom at site J + 1. Doing this projection and denoting Hg’l =1® H?fl, we can rewrite
the defect Hamiltonian as

(J,J+1) _ 0771 0 1 0771 07yl
HEP =% (H0H}, ) + Y, Hy + HRH , + > (HOH], ). (68)
j<J j>T+2

This is almost the same as the untwisted system, except it has one extra site between sites .J + 1
and J + 2.

Similarly, we can consider a defect for the inverse translation symmetry T_ = T~!. The
corresponding truncated symmetry operator acts as

Oj1®1, forj<J,
</ (0;®1) (<)) ={100;, forj=J+1, (69)

0;®1, forj>J+2,

and
180;,,, forj<J—1,
</ (100;)(T</) " ={ 0,81, forj=J,J+1, (70)
1®0;, forj>J+2.

The projection operator is

H(J’J+1):(TCJ7TJ+1®]]_) l_[ ]].®7TJ (71)
JAEI+1

Imposing ITV>/*1 = 1, effectively, projects out system B completely and also the site J of the
original system. More precisely, it also exchanges the site J + 1 of the two systems. We undo
the latter by conjugation with the local unitary s;, ;. In the end, we find the defect Hamiltonian

H(TJ_’JH) = Z (H](')Hjl+1)+H5)—1H}+1 + Z (HJ(')H}H)' (72)
j<J—2 j=J+1

In summary, we find that the defect for translation symmetries T and T~! correspond, respec-
tively, to adding an extra site and removing one site of the chain. These topological defects
are inverse of each other and fuse to the trivial defect.
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Finite-depth quantum circuits: The problem of whether a symmetry operator of finite width
can be truncated or not is a well-known problem in the context of QCA. This problem is
completely settled in 1+1d systems with a Hilbert space that is a tensor product of finite-
dimensional local Hilbert spaces [104]. In that case, a symmetry operator of finite width is
truncatable, i.e. it is a finite-depth quantum circuit, if it corresponds to an internal symmetry.
In particular, the translation symmetry operator cannot be truncated.?®

Another example where the symmetry operator might not be truncatable, is when the
Hilbert space does not have a tensor product structure. For instance, in gauge theories, the
Hilbert space is given by imposing local Gauss’s law constraints. The simplest example is the
1+1d lattice Z, gauge theory. The Hamiltonian is identically zero. The Hilbert space is given
by a tensor product of local two-dimensional Hilbert spaces with the Gauss’s law constraints

ofo

fof,, =1, for all j. (73)

This theory has two ground states that are related by a Z, symmetry generated by the Wilson
line operator
— X
W= I_[ ;- (74)
j

Because of Gauss’s law constraint, the truncated symmetry operator is not gauge invariant and
does not act on the untwisted Hilbert space. However, we can create a defect at link (J, J + 1)
by changing Gauss’s law at that link to 0507, ; = —1. We want to point out that this defect is
not simple since there exists a local operator a? that commutes with the Hamiltonian. An open
question is whether, with the extra assumption of simplicity, all internal symmetry operators
are truncatable in 1+1d even in systems without a tensor product Hilbert space.

We end this section by remarking that the truncatability of symmetry operators has also
been discussed in the context of continuum field theory. In particular, the authors of [105] de-
fine global symmetry as splittable if the corresponding symmetry operator can be truncated.
Note that even when the symmetry operator is not splittable, there still exist movement op-
erators that move the defect in space and map one defect Hilbert space to another one. We
conclude that any global symmetry has a generalized split property, where the movement op-
erator is considered a generalization of the truncated symmetry operator.

3 Anomalies and gauging on the lattice

In this section, we derive our formula for 1+1d ’t Hooft anomalies on the lattice. We introduce
a method for gauging arbitrary internal symmetries on the lattice and show the anomaly is
the obstruction to gauging. By imposing spatial symmetries, we find mixed anomalies that
capture the obstruction to gauging while preserving the spatial symmetries. In particular, we
compute the LSM anomaly capturing the mixed anomaly between an internal symmetry and
lattice translation.

3.1 The anomaly

We compute the anomaly locally using the unitary fusion operators, defined in equation (30),
which describes the fusion of topological defects. The basic idea is to perform F-moves that
probe the associativity of the fusion operation.?” We consider three defects g1, g5, g3 on three

26We thank Wilbur Shirley for the discussions on this and related points.

2The notion of F-move in physics goes back to the study of 1+1d rational conformal field theory [106]. It was
originally introduced in the context of the representation theory of SU(2), where it was called Racah coefficients
or the 6j-symbols.
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consecutive links and fuse them in two different orders. The result must differ by a phase
F/(g1,89,89) € U(1) that captures the anomaly (as we show later) and is given by

818283 818283
-—-————— X0 — — - -————— o — 0 X0 — - -
--—e ° ° *— - - -————— o — 0o 1o — - -
= F’(g1,82,83) . (75)
IR el i
&1 &2 &3 &1 &2 &3

The spacetime diagram on the left and right-hand sides correspond to unitary local operators
conjugating the Hamiltonian of three defects g, g,, g3 to the one with a single defect g;g,¢3
on link (j,j + 1). Therefore their ratio, F/(g;, g, g3), commutes with the defect Hamilto-
nian Hz(;Jfg;s)' Since we assume the defects are simple,?® there is no non-trivial local operator
commuting with the defect Hamiltonian. Thereby, we find that F/(g;, g4, g3) is just a phase
factor.

The F-moves define a map F/ : G x G x G — U(1), which in terms of the fusion operators
is written as

M(g1,8283) Mg, DA (g2, 85) = F/ (81,82, 83) M (8182, 83) AV (g1, 82) - (76)

Since the fusion operators are well-defined up to a phase, F/ has some ambiguities that we
discuss below. Moreover, the map F’ satisfies a modified pentagon identity. These two facts
are the defining properties of the map F’, which we show to be the 't Hooft anomaly.

I. Modified pentagon identity: We insert four defects g1, g5, g3, g4 on consecutive links and
consider the fusion operators that fuse them in two different orders: g; x (g, x (g3 x g4)) and
((g1 x g2) % g3) x g4. F-moves relate these fusion operators in two different ways, which leads
to a constraint on the map F/.

28 According to this assumption, either there is no local operator that commutes with the Hamiltonian, or the
Hamiltonian can be symmetrically deformed to eliminate such operators. This assumption is equivalent to assum-
ing that the algebra of local operators has a trivial center, or in other words, there is no exact 1-form symmetry.
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The first series of E-moves is

[ ] [ ]
|_I | |
—
1 ] _Il_ —
_Il_ = __ =h — ] = f1fe |
—
[ [ [ I
j—2 jl j+2 [ [ 81 82 & &4
&1 82 83 &4 &1 82 83 84 &1 82 83 84
—
| |
= fifa | = fifafs | 5
= =
81 82 83 84 81 8 83 84

(77)
where f; = Fj+1(g1,g2,g3g4), fo = FI(g1,82,1), and f3 = Fj+1(g1g2,g3,g4). The first and
fourth equalities above follow from the assumption that the defects have width k = 1. Namely,
A1(g1,1) commutes with A7} (g,, g584), and AV"1(gy, g,) commutes with AV (g3, g4).

The other sequence of F-moves is

] |
_Il_ :f4 — :f4 ]
[ [ [
j=2l T T jaa ' ' (78)
&1 & 83 &4 & 82 83 &4 & 82 83 &4
— —
= fafs — = fafsfe | >
B B
&1 82 83 &4 &1 82 83 &4

where f;, = F/*'(g2,83,84), fs = F/*'(21,8283,84), and fg = F/(g1,82,83). The second
equality above holds since A/ "(g, 1) commutes with AV*!(g,g3, g4).

We find f; f5f3 = fafs5fe, which is equivalent to

Modified pentagon equation

FI(g2,83,84) F/(81,8283,84) F/71(&1, 82, 83)
Fi(g182,83,84) FI(&1,82,8384)

:Fj_l(glﬁgZJ]-)' (79)
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This is the lattice version of the pentagon equation in the continuum where the term on
the right-hand side is absent.?’

II. Phase ambiguity: Consider a phase redefinition of the fusion operators given by a map
y) : G x G — U(1), which changes

2 (g1, 82) into v (81, 82) M (g1, 82)- (80)

Such a phase ambiguity leads to the identification

/(82,8377 (81, 8283)Y" (81, 1)

: . (81)
77(8182,83)7 (&1, 82)

FI(g1,82,83) ~ F(g1,82,83)

Relation to group cohomology

We denote the equivalence class of the map F/ under the identification (81) by [F/]. In the
next subsection, we will show that [F/] is the obstruction to gauging G and thus is the ’t
Hooft anomaly in G. Before doing that, we want to show that our result is consistent with
the proposed group cohomology classification of anomalies. Specifically, we identify [F/] as
an element of H3(G,U(1)). Moreover, imposing additional (spatial) symmetries restricts the
possible phase ambiguities in (80). As a result, we find less identification on F/ and thus
more possibilities for the anomaly, specifically the mixed t Hooft anomaly between G and the
additional imposed symmetry. In particular, imposing lattice translation symmetry identifies
[F/] as an element of H3(G, U(1)) x H%(G, U(1)).

Anomaly cocycles: We decompose FJ:GxGxG — U(1) into the 3-cocycle «w’ and 2-cocycle
o’ % which are denoted by

Fj(gl’gZ:gB)
Fj(glﬁ g2: 1) ’

Below, we rewrite equations (79) and (81) in terms of these cocycles and phrase them in the
language of group cohomology. See [21] for a physicist review of group cohomology theory.

The modified pentagon equation (79) is equivalent to the following two conditions on the
cocycles. We find w’ satisfies the 3-cocycle condition

wj(81,82>83)5 and aj(gl,gz)EFj(gl,gz,l). (82)

a)j(gz, 835 84)60j(81, 8283 84)0)j(g1; 82,83) _

(6307)(81,82,83,84) = : . 1,  (83)
(8182, 83, 84)w (81,82, 8384)
and o satisfies the condition
. j J j
(85,07)(g1, 82, 85) = o’ (g2, 83)’ (81, 8283) _ W (81,82, 83) (84)

a/(g182,83)(g1,82) B wi71(g1,82,83) ’

which reduces to the standard 2-cocycle condition if w/ = w/~!. Note that equation (84) is
given by setting g, = 1 in equation (79), and (83) is given by taking the ratio of (79) with

2The appearance of the extra term on the right-hand side is due to the fusion operations occurring at different
sites. It is possible to implement the fusions at a single site and find the standard pentagon equation, as described
in [78]. The advantage of the current method is that our F-symbols capture both the anomaly in G and the mixed
anomaly between G and lattice translation.

30The 2-cochain o/ satisfies the 2-cocycle condition when there is a translation symmetry. We loosely use the
term “2-cocycle” to refer to it, even without a translation symmetry.
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respect to (84). Therefore, the two conditions above are equivalent to the modified pentagon
equation.

Let us also decompose the map y/ : G x G — U(1), that redefines the phase of fusion
operators, into

Yj(gl,gz)
ri(g1,1)°

In terms of these maps, the identification (81) is equivalent to the following identifications.
We find that w’ is well-defined up to

v (g1,82) = and  yl(g1)=7/(g1,1). (85)

75(82,83)15(81, 8283)
75(182,83)75(81, 82)

(81,82, 83) ~ (1,82, 83) (86)

The extra term on the right-hand side is known as a coboundary/exact term and is denoted by
(6 zyjz)(gl, 82, &3)- This identifies the equivalence class of «w’, denoted by [w’], as an element
of H3(G,U(1)). For the 2-cocycle o/ we find

Yi(g2)7i(g1) 1i(g1,82)

@’(g1,82) ~ (g1, 82) 7 1 , (87)
Yl(glgz) Yy (g1,82)
which is equivalent to [a/] € H?(G, U(1)) when )/é = yé_l.
Putting everything together we find the constraints
O30’ =1, and 5,0 = ——, (88)
wl1
and identifications
. . - . , : }fj
w! ~ ! (8,573, and al ~a (87} J—El (89)
1P

Depending on whether we impose a lattice translation symmetry or not we find the following
classification for the anomaly:

a. No translation symmetry: If we do not impose any other symmetry besides G, the
phase redefinitions given by y/ are arbitrary. As a result, by doing the phase redefinition

4 ol gl _1, forj>1,
Y= (0 -1 ‘+1) ] (90)
a’o ol forj <0,
the identification (89) becomes
w ~ and ad~1, 91)

for all j. Here we have used the fact that 6,0/ = w//w/™ and a/(g,1) = 1. This means
that when there are no other symmetries we can completely eliminate the 2-cocycle o’.
Thus, the anomaly involving only G is given by [w] = [w®] € H3(G, U(1)).

b. With translation symmetry: Imposing a lattice translation symmetry T satisfying
TA/T™! = M*!, restricts the phase redefinitions and the cocycles to be j independent.
Therefore, we can drop the superscript j on these cocycles and find the constraints

O3w=1, and o,a=1, (92)
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and identifications

w~w(byr), and  a~a(bir). (93)
This means that the anomaly involving G and the translation symmetry is given by

[w] € H3(G,U(1)), and [a] € H%(G,U(1)). (94)

We end the discussion here by remarking that for continuous symmetries, the cocycles that
appeared above are restricted and should satisfy some continuity constraints. Since anomalies
in the continuous case are conjecturally classified by the Borel cohomology group [21], a
conjecture is that one only uses Borel measurable cocycles.

Our working assumption, which may or may not lead to Borel measurable cocycles, is the
following. Consider a connected Lie group G and divide the group manifold of G into a finite
number of patches. We assume that there exists a choice of patches such that the defect Hilbert
spaces inside each patch are constant and the defect Hamiltonian is a continuous function of
the group parameters inside each patch. For the case of G = U(1) that is discussed in Section
4.3, we choose a fundamental domain [0,27) to parametrize the group elements. This is
equivalent to covering U(1) by two patches where the defect Hamiltonian is continuous inside
each patch.

Reflection symmetry: Let us briefly comment on the mixed-anomaly involving G and a re-
flection symmetry R acting as RO; R1= O_;. For simplicity, we assume the reflection symme-
try commute with the internal symmetry G. Analogous to the case of translation symmetry,
preserving reflection symmetry requires imposing the relation

RA (g1, 82)RT =2177(g5%, g7 h). (95)

Moreover, one must consider only those phase redefinitions, y/, that respect this relation.
Then, a mixed-anomaly in R and G corresponds to the impossibility of satisfying the above
relation while also having F/ = 1. From the discussion below, it becomes clear that these
conditions are required to gauge G while keeping the reflection symmetry operator, R, gauge-
invariant.

3.2 Gauging (non-on-site) symmetries

Here, we describe a method for gauging internal symmetries, which may not be on-site, using
topological defects. We show that the anomalies discussed above are the only obstructions to
this gauging procedure. Our method generalizes the standard gauging of on-site symmetries
and consists of two steps: adding dynamical gauge “fields” and imposing Gauss’s law. In the
first step, we enlarge the Hilbert space by adding all possible defects on links. In the second
step, we impose Gauss’s law constraints on sites and find that it is consistent to do so only if
the anomaly vanishes.

1) Adding dynamical gauge fields: Consider an internal symmetry G and sum over the
insertion of G topological defects on each link. Concretely, consider a periodic chain with L
sites and extend its Hilbert space H to

H= @ Heysepig ™ @ M --- —Mo ) (96)
g1,--8.€G 21,008,661 2 3 L—-1 L 1
where Hy .o.. .. is the defect Hilbert space for the system with g; defect on link (j,j + 1).

When G is a discrete group, this corresponds to adding |G|-dimensional Hilbert spaces on links,
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and for continuous symmetries we add scalar fields on links for each generator of G. We extend
the Hamiltonian H to
H= Z Hgl;gz;n-;gL

®II

81,825++8L 7 97)
g1,--.81.€G
where Hy. ... ., is the defect Hamiltonian for the system with g; defect on link (j, j + 1), and
I, o, is the projection operator into Hg .q.. .o -

For simplicity, we consider the case where G is discrete and each defect Hilbert space is an
identical copy of the untwisted Hilbert space. In that case, we find the extended Hilbert space
and Hamiltonian

L
H:H®C|GI: and H= Z Hgl;...;gL®|g1)'",gL><g1,""nglinks‘ (98)

Here, [g1,...,81)(81,- > 8L iinks = ®JL-:1 ’gjxgj{(j,jﬂ) where {g] g1|(1 i+1) is a projection op-
erator acting on link (j, j + 1) that fixes the value of the defect on that link to be g; € G.

2) Imposing Gauss’s law: Now we extend the fusion operators A’(g, h) into
(g, n)=2"(g,0) @ (11)(gly_1y ® Igh) (Rl s41)) #® 141 (99)
JAI—1,J

which acts non-trivially only on sites J and J +1 and links (J—1,J)and (J, J+1). Crucially, the
extended fusion operator A’ (g,h) commutes with the extended Hamiltonian H. This follows

from the defining property of the fusion operators, that is
2’ (8j-1,8)Hgy;.50, = Hys. 58j-25138j-1873& 415005 A (8j-1,8&;)- (100)

We note that A’ (g,h) is similar to a gauge transformation, except that it is not unitary.
We construct unitary operators out of the fusion operators by considering

ag™? gb
. ~. _ -['N
G@)= D, (Wlag™gb) V(@ b)~ D) ——eie, (101)
a,beG a,beG
j:1 ; j-IA-l

a b

which acts unitarily on both the degrees of freedom on sites and links. The unitary operators
G’(g) generate a local G symmetry of the extended Hamiltonian since we have

()G =¢'(gh), and G('=G/(g™h, (102)
for g,h € G. The global part of this symmetry is
U, =6"(g)G" (g)--- G*(2)G"(g). (103)

By restricting to the untwisted sector, we recover the global symmetry of the unextended sys-
tem, i.e. Uy = jinks(1, 1|U |1,...,1)jinks - This can be seen by comparing equations (33) and
(34) with (101).

Finally, to gauge this local symmetry we need to impose the Gauss’s law constraints
G/(g) =1 at all sites. The Gauss’s law constraint at site j is given by

P = Gl Zgl(g)—l (104)

geiG
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where P; is a local projection operator.

All in all, the gauged theory is described by the lattice Hamiltonian H and Hilbert space H
that is subject to the Gauss’s law constraints (104). However, it is consistent to impose Gauss’s
law constraints if they commute with each other at different sites. As we will show below, this
is the case if and only if F/(g;, g, g3) =1 for all g;, 85,83 € G.

Since we are assuming that the defects have a width of k = 1, the Gauss’s law constraints
that are at least two sites apart necessarily commute with each other. Hence, we only need to
check whether P; commutes with P;_; or not, which is equivalent to

/ / / / / /

8 & &3 81 & &3 818585 818585
[ [
|
/ / /
] 81| &1 &3
2z = | 2 [ , (105)
g [ 183 ]|
j—21j—-1 j j+1 j—2|j—1 j j+1 | |
& & &3 g& 82 83 81 82 &3 81 & &3

for all g1, g5,83,87,85,85 € G such that g,8,¢; = g7g,8;. The two equations above are
related by a unitary operator implementing the fusion g; x (g5 x g5) on the top. Now we use
F-moves to simplify the equation on the right. First, we use the following to eliminate the
“bubbles”

= e Mg h) (Mg h) =1.

(106)
J J
gh gh
Next, we perform F-moves on both sides of the equation to get
818583
818585 —
J(o! ol ol o1 2 it 0oy & 85

F (glagzgggg :g3) =F (glagzygg) (107)

j=21j=1 j |j+1
& 8 &3

j=2j—-11 j lj+1
& 82 &3

Finally, by applying two additional F-moves on the right-hand side, we simplify the equation
further and find that

Fl(g],858585,83)  FI(g},85,83%)
Fi(g1,82,83)  Fi(g1,87'8,85,85)

P; commutes with P, < (108)

By setting g7 = 1, g5 = &1, and g5 = g,83 the equation above reduces to Fi(g1,85,83) = 1.
This is because F/(1,g,h) = F/(g,1,h) = 1, which follows from A/(1, g) = 1.
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In summary, we find that Gauss’s law constraints commute with each other at different sites
if and only if F/ = 1. However, even if F/ is not trivial, we might be able to trivialize it using
the phase redefinition of the fusion operators reflected in the identification (81). Therefore,
we justify that [F/] is the ’t Hooft anomaly since it is the obstruction to gauging.

As mentioned before, when we allow arbitrary phase redefinition, the anomaly [F/] is
identified with the cohomology class [w] € H3(G,U(1)). By imposing additional symme-
tries, we have less freedom in phase redefinitions. For instance, by imposing a lattice transla-
tion symmetry T, we only allow for j-independent phase redefinition that respect the relation
TAT™! = AT, The latter relation leads to the condition TP; T7!= i+1, that is the statement
that the translation operator is gauge invariant. Therefore, the (generalized) LSM anomaly
[a] € H?(G,U(1)), which we find by restricting to j-independent phase redefinitions, is the
obstruction to gauging G while preserving the translation symmetry. Thus, we justify that the
LSM anomaly is the mixed ’t Hooft anomaly between G and lattice translation symmetry.>!

Throughout the discussion in this section, we assumed that the defects have width k = 1.
The discussion can be generalized for k > 1 to compute the H> and LSM anomalies involving
T! for any I > k. To do such, we simply insert the defects so they are always [ sites apart.
In this way, we can compute the LSM anomaly involving subgroups of translation generated
by T!. Consider the subgroups generated by T* and T**!. These two subgroups generate
all the translations; therefore, knowing the anomaly for these two subgroups is enough to
determine the anomaly in the full translation symmetry group Z. Therefore, our method can
be generalized to compute the anomaly for defects of arbitrary finite width.

Relatedly, we can consider defects for lattice translations and “almost” compute a 3-cocycle
in Z x G.>> As mentioned before, defects for lattice translations correspond to adding or
removing a site. Removing k sites is a topological defect of width k, and adding k sites is a
defect of width 1. Thus we can consider defects for adding an arbitrary number of sites. This
way, we compute a 3-cocycle in the semi-group G x Z=°. By doing the computation, we find
that this 3-cocycle is equal to

w(ngnl: ngnz, gSTng) = w(gl: g2) g3) (a(gla gZ))n3 > for nl’ le, n3 € ZZO . (109)

However, knowing the 3-cocycle for non-negative integers is as good as knowing the full 3-
cocycle.

3.3 LSM-type constraints

Here, we discuss generalized LSM-type constraints that can be viewed as a version of 't Hooft
anomaly matching on the lattice. We argue that a theory with a non-trivial anomaly cannot
have a unique gapped ground state. Below, we do not attempt to provide a rigorous proof and
only outline an idea for one.>?

Since the anomaly takes discrete values, it cannot change under continuous deformations.
Specifically, the anomaly is an element of the group cohomology H3(G, U(1)) x H3(G, U(1)),
which is a discrete group. Therefore, a theory with a non-trivial anomaly does not have a
symmetric deformation to a gapped phase with a unique ground state. This statement on the
lattice simply follows from the fact that the anomaly is a property of the symmetry operator
rather than the Hamiltonian.

To demonstrate that [F/] # 1 forbids a unique gapped ground state, we first need the
following lemma: If the untwisted Hamiltonian has a unique gapped ground state, then the

31Since translation symmetry does not act internally, we do not know how to gauge translation symmetry and
identify the mixed anomaly as the obstruction to gauging translation while preserving G.

32Because of the Kiinneth formula H2(G,U(1)) x H*(G,U(1)) = H3(Z x G,U(1)), the anomalies that we have
computed can be packaged as a 3-cocycle in Z x G.

33A rigorous proof was recently presented in [107].
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defect Hamiltonians must also have a unique gapped ground state. Specifically, for a gapped
Hamiltonian, the ground states of the Hamiltonian with and without a defect are related by
a local unitary operator. To show this, let us consider the unitary operation of creating a pair
of defects, g and g~!, and separating them far apart using the movement operator. Assume
we create them at site 1 and move one of them to site J > 1. This process is described by a
sequence of unitary operators that implements the symmetry action on the interval [1,J]. In
a gapped system, the action of such a unitary operator on the ground state |2) is equivalent
to acting with a unitary operator with support only around sites 1 and J. In other words

(g, 1) A%(g, 1) (A (g™ ) 19) = uyu |9, (110)

where u; and u; are localized around sites 1 and J, respectively. This follows from the split
property®* of the gapped ground state |2).3>3¢ Therefore, we conclude that for a gapped state,
the topological defect of g can be created locally by the action of local unitary operator u;.
We note that this is strictly true in the infinite volume limit. In finite volume, the operator u;
only approximately creates the defect. Therefore, we find that the ground states of the system
with and without a defect are related by local unitary operators. In particular, if the untwisted
problem has a unique gapped ground state then the twisted problem must also have a unique
gapped ground state.

A+ by Q(gj’j+1)> and call it a

We denote the ground state of the defect Hamiltonian Hi,]

defect state. Crucially, the defect states only differ from each other around the location of the
defect. In other words, the expectation value of a local operator inserted far away from the
defect should be the same for two different defect states. This follows from the split property
QU Ik of

of the ground state |Q2), which allows us to construct the ground state

>

the system with two defects, that are separated by k > 1 sites, from the ground state of the
system with one defect. We take k to be much larger than the correlation length of the system
which specifies the characteristic width of the defect in defect states.

By acting with the fusion operators, we map these ground states to each other and find

AJ(g h)AJ 1(g 1)-- A]—k+1(g’1)‘9(] k,j—k+1); (J,J+1)> J(g,h)‘ﬂ(l,ﬁ'l) ’ (111)

for some phase factors (/(g,h) € U(1). Here, we take k to be large enough such that the
phase ¢/(g,h) is independent of other defects inserted k sites away from the interval [ j—k, j].

The idea is to compute the anomaly in terms of these phases and show that it is trivial in

(j—zk,j—2k+1);(j—k,j—k+1);(j,j+1)>

cohomology. Consider the defect state ‘le;gz;gs

find

and apply F-moves to

07 (82, 83)9 (81, 8283) 9’ (81,1
©1(8182,83)97 (81, 82)
This implies that the anomaly «’ is trivial in cohomology.

Now let us consider the case with a lattice translation symmetry. We impose a translation
symmetry T and choose the defect states such that

= wj(gbgz,gs)(aj(gbgz))k . (112)

Tk‘ﬂ(gj,j+1)> _ ‘Qt(gj+k,j+k+1)>. (113)

34The split property, proven in [108], follows from the area law of entanglement entropy, which holds for the
ground states of gapped Hamiltonians in 1+1d [109].

35The split property states that the Hilbert space of a gapped system in infinite volume is factorized. Therefore,
cutting the space into halves and considering the action of the symmetry on one half of the space must be realized
as a local unitary u, on the state. See, for instance, [107, Lemma 4.1].

36The split property was used in [40,41] to prove a generalized LSM theorem rigorously for on-site symmetries.
See also [110,111] for rigorous results on the classification of 1+1d and 2+1d SPTs.
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This implies the phases that appear in equation (111) are j-independent, i.e. ¢/ = @Itk
Therefore, we find that the anomaly (a/(g7, g,))X is trivial in cohomology. Repeating the same
argument for k+1 we find that both (a)* and (a)**! are trivial, and therefore the LSM anomaly
[a] must be trivial. This is a generalized LSM theorem stating that a non-trivial generalized
LSM anomaly [a] € H?(G, U(1)) forbids a unique gapped ground state.

The continuum limit and emanant symmetries

Here, following [57], we explain how the anomaly of the UV lattice system is matched with
the continuum theory in the IR. We give a geometric argument that F-move, and therefore
Fi(gy, g5, g3), captures the anomaly in the continuum theory. For lattice translation symmetry,
the anomaly is matched by an emanant symmetry in the IR as explained in [57]. The emanant
symmetry is an internal symmetry of the IR theory that is generated by the continuum limit of
the lattice translation by one site.

The basic idea is the following relation between topological defects and background gauge
fields. Coupling a quantum field theory to flat background gauge fields for an internal sym-
metry G corresponds to inserting G-symmetry defects across various cycles in both the time
direction and space [6]. Given a configuration of topological defects, we can compute the
holonomy of the gauge fields as follows. Note that the holonomies around various 1-cycles
capture all the gauge invariant information of flat background gauge fields. For a 1-cycle v,
each time it intersects with a g-symmetry defect, it contributes a g-holonomy. Thus the total
holonomy is given by the product of the group elements associated with the defects that the
1-cycle intersects. This determines a flat G connection given a network of topological defects
inserted in the spacetime manifolds. The opposite procedure, however, is not unique and this
is where anomalies appear.

An internal symmetry G is anomaly free if one can unambiguously assign a configuration of
topological defects for a given flat G connection (see e.g. [6]). To describe a G connection, we
divide the spacetime manifold into different patches and assign G transition functions across
different patches. We insert topological defects on the interface between different patches that
match the transition functions. In this way, we have coupled the theory to flat background
gauge fields. However, dividing the manifold into patches is not unique and different choices
are related by gauge transformations. Any two configurations that describe the same flat G
connection are related by a sequence of F-moves (75). Another ambiguity in describing flat
connections in terms of topological defects is the phase ambiguity associated with junctions in
the triple intersection of topological defects, i.e. the fusion operators. Therefore, the theory is
anomaly-free if one can redefine the fusion operators’ phases such that F/ = 1.

The argument above explains why the anomaly F’ involving an internal symmetry G
matches with the IR theory in the continuum. This is because the phases F/ have a discrete
classification and thereby cannot change under taking the continuum limit. The argument
applies to mixed anomalies between G and any other symmetry H, such as lattice translations.
We note that imposing H restricts the possible phase redefinition of the junction operators.
We require that the configuration of G-defects transform covariantly with respect to H. Phase
redefinition of the junctions corresponds to local counterterms in the continuum. A mixed
anomaly between G and H arises if one cannot trivialize the anomalous phase F/ by adding
counterterms that respect the symmetry H. When H is a translation symmetry, the mixed
anomaly is captured by a 2-cocycle [a] € H2(G, U(1)).
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4 Examples and other spacetime symmetries

Here, we will study four examples demonstrating the general results in the previous sections.
In Section 4.4, we generalize our results to the case of fermionic theories and consider a
fermionic example.

4.1 LSM for on-site symmetries — The Heisenberg chain

Here we consider internal symmetries that act, either linearly or projectively, on-site. Specifi-
cally, we consider systems with a G internal symmetry such that the symmetry operators are

written as _
— j
Ug = l_[ Ug> (114)
j

where Ué is a unitary operator that acts nontrivially only on site j. Moreover, these local
operators form a representation of G in the sense that

Uju, o< UL, (115)

The symmetry is realized linearly on-site if there exists a phase redefinition of the operators
J J _] _ J . . . . . .
Ug such that U, U, = Ugh. Otherwise, the symmetry is realized projectively on-site.
We also assume that there exists a translation symmetry T satisfying

T Ué T = Ué” i (116)

This condition implies that the internal symmetry G commutes with the translation symmetry,
i.e. TU; =U,T. Later, we comment on the case where this is not the case.

Heisenberg chain: An example is the anti-ferromagnetic spin-half Heisenberg chain, which
appears in the original LSM theorem. The Hilbert space is a tensor product of spin-% degrees
of freedom per each site of the chain. The Hamiltonian is

— X X y Y Zz 2
=52, (0f o+ ool +o505n), (117)
J
where G; = (0}‘ ,o07, a? ) are the Pauli matrices acting on site j. This model has an internal

SO(3) symmetry that is realized projectively on-site. Each symmetry operator is written as a
product of local factors

j § 6]'
Ué.—exp i ? s (118)

where 6 = (6, 0,,0,) parametrizes the SO(3) transformations. The spin-half degrees of free-
dom on each site form a projective representation of SO(3). The system also has a translation
symmetry T satisfying

TG T =54. (119)

We now show that in such systems, there is no anomaly in the internal symmetry but
there is a generalized LSM anomaly. The case where the internal symmetry commutes with
translation symmetry has been considered in [41].
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The anomaly

Since the symmetry operators are written as a product of local factors, the fusion operators
are given as . .
M(g,h) = Ué . (120)

This relation is independent of the Hamiltonian. Now, recall that the anomaly is given by the
relation

(g1, 8283) M 181, 1A (g2, 83) = F/ (g1, 82, 83) M (8182, 83) AV (g1, 82) - (121)

Using this we find Uél Uéz =Fl(g1, 8, g3)Uélg2.

We find that F/(g, g5, g3) is independent of g5, therefore w/(g;,g2,g3) = 1 and hence
there is no anomaly involving only G. Furthermore, because of the translation symmetry
Fi(gy, 85, g3) is j-independent. Therefore a(g;,g,) = F/(g1, g5, 1) where

Jr7l — j
Uy Ug, = a(g1,82) Ug e, - (122)

Thus we see that the LSM anomaly [a] € H?(G, U(1)) determines the projective representation
of the symmetry on each site.

Dipole-type symmetries: Above, we only considered the cases where the internal symmetry
commutes with lattice translation. Let us now consider the case that there is a semidirect
product structure between the internal and translation symmetry. In such cases, there exists
an automorphism ¢ : G — G such that
jor—1 _ i+l
TUlT Ulp)- (123)

An example of this is the dipole symmetry [112].

We claim that even in such cases the projective phases above correspond to an anomaly.
We note that o’ is no longer j-independent. Instead, we have the relation

a’(g1,82) = " (p(g1), P(g2))- (124)

In such cases, [a!] can be identified as the anomaly in the following sense. We can gauge G
while preserving the translation symmetry only if [a'] = 1.

We note that preserving the translation symmetry means that after gauging G the trans-
lation operator T must be gauge invariant and hence commutes with the Gauss’s law con-
straints. Moreover, the relation (123), leads to the fact that T P; T != i+1- Thus we preserve
the translation symmetry if we only consider j-independent phase redefinitions of the fusion
operators that do not violate the relation (123). Therefore, we see that F J can be trivialized
by j-independent phase redefinitions if and only if [a'] = 1. Therefore [a!] € H?(G,U(1)) is
the anomaly involving G and lattice translation.

4.2 Non-invertible lattice translation — A gauged XYZ chain

As shown above, if an internal symmetry G is realized projectively on-site, it can be gauged, but
it has a mixed anomaly with the lattice translation symmetry. What happens to the translation
symmetry if we gauge the internal symmetry with an LSM anomaly? As we have argued,
gauging the internal symmetry necessarily violates the original translation symmetry since
it is no longer gauge invariant. We claim that the translation symmetry does not disappear
completely after gauging G; instead, it appears as a non-invertible lattice translation symmetry.
Here we demonstrate this in the case of the XYZ chain. We left the discussion of the more
general cases elsewhere.
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The XYZ chain

Consider a deformation of the Heisenberg chain such that it preserves the Z, x Z, subgroup
of the SO(3) symmetry. The Hamiltonian is
1 Y Y
H=§Z(Jxofaf+l+Jyaj O'j+1+JZO'?O'?+1), (125)
J

for coupling constants J,.,J,,J, € R. There is a Z)Z( X Zg symmetry generated by

— X — y
j j
We note that the Z)zf X Zg has an LSM anomaly since it is realized projectively on-site.
The projective phase can be seen from the commutation relation G;F 0';, = —0?’ G;F . The fusion

operators are given by
(e14+ €9, v+ 7))

— @& — ) — 00—

M XY™, X2y”) = (o)1 (o))" = : (127)

-1 j Tij+1

(€1, 1) (€2, 75)

where €1, 71, €5, v, € {0, 1} parametrize the group Z)Z( X Zg ={1,X,Y,XY}. Using the formula
for the anomaly, we find the anomaly cocycles:

a(XY",X2y”)=(—=1)"%, and (w=1. (128)

Gauging ZX x ZY

The phases given by a cannot be trivialized by j-independent phase redefinitions and thus is
a true mixed anomaly between Z§ X Zg and lattice translation. However, we can trivialize it
by using j-dependent phases at the expense of violating the translation symmetry.

We consider the j-dependent phase redefinition y/(X€1Y "1, X¢Y "2) = (—1)/"12, and find
the new fusion operators

M (XY XeY ) = (=1)"12(07) (o)) (129)

Using equation (81), we find that the above phase redefinition indeed trivializes the anomalous
phase a, i.e.

(_1)1V2€3 (_1)1V1(62+€3)

=1. 130
(—1)i(ntvades(—1)G—Dne, 1 ( )

Fj (X€1YV1’X€2YV2’X€3YV3) — (_1)V1€2
Now we perform the gauging explicitly, following the procedure outlined in Section 3.2.

Adding gauge fields: First, we extend the system by adding dynamical gauge fields on links.
We put the system on a periodic chain with an even number of sites L to ensure that the phase
redefinition denoted above is well-defined, i.e. A/** = A/, We add two qubits on each link
associated with the Z}Z( and Zg symmetries, and denote them by

IXY?)(jj+1) = |6>XUJ_+1) ® |v)y(j’j+l) , for e, ve {0,1}. (131)
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Here € =1 (and v = 1) corresponds to a non-trivial ZX (and ZY) defect on link (j,j + 1) We
define the corresponding Pauli operators by X} ; +1,Xj' ; +17X§ i1 and Y7, +1,Yy’ T Y .
The extended Hamiltonian is given by

L
~ 1
_ Y y
H= EZ (JXO-;C Y§J+1 O-;'c+1 +J}’Gj X?,jﬂ 01+1 +J;0; X§]+1Y§,]+1 O-?+1) > (132)
j=1
where L = 2[. To see this, we note that the defect Hamiltonian for a Z’z( defect on link

y y . . .
(j,j+1) corresponds to changing the sign of the terms o] i1 and UZ f ,1 in the Hamiltonian.

Similarly, for the Zg defect we change the sign of oj Y., and cr g%

Jj j+1

Gauss’s law: Next, we find the Gauss’s law constraints. Using equation (101), we find

g] (Xeyv) — Z A{] (Xel—GYvl—V’X€2+€YV2+V)T A{] (Xelyvl’Xézsz)
€1,71,€2,72
® |X€1_6le_v,X62+6Y V2+V><X61lejxf2Yv2 |(]_1’])’(]’]+1)
Z (=10 )eate)t] Vlez(o-;')vl_v(o-;_f)el_f(o-}()el (Uj')vl
€1,7V1,€2,72

® |Xel—eYv1—v><X61Yv1 |(j—1,j) ® |X62+6Yv2+v><X62YV2|(j,j+1) ]

(133)

The term that acts on sites can be simplified to (—1)/(*16+€2 ”+6”)(—1)6(”1_”)(0}‘)6(0j’)”. There-
fore, we find

G (XYY = (09 (01) 8 ) ler—e)enly, , , ® D~ DOy — sy,
€1 "1

L)

® Z(—l)j62v|€2 +e)(ealy,,,, ® Z [v2 + ) (v2ly, o)

Va2

(om0 (K )Y DY YR, O )
— Z Jt+lyrx orxX* X y X Z J
= (v Xy o ) (Y07 Y (X0 ))

In summary, the generators of the local Z)é X Zg symmetry of the extended Hamiltonian
(132) are given by:

Jj+1 yx oXxx
g(X)_(YZ 1]) X 1] ]X]]"Fl,

Gi(Y) =Yy, ij(J+1 (X5 1)
The terms with explicit j-dependence correspond to the j-dependent phase redefinition de-
fined above. Their purpose is to make these local symmetries commute with each other at
different sites. Finally, the Gauss’s law at site j is given by G;(X) =1 and G;(Y) = 1.
After gauging and imposing Gauss’s law constraints, the lattice translation symmetry T is
violated since it is not gauge invariant, i.e. TG; T 1 # Gjt1- However, translation by two sites
is preserved since ng T2 = Gjto-

(134)

Gauge fixing: We can perform local unitary transformations to find a presentation where
the Hilbert space is a tensor product of local factors with no Gauss’s constraints. First, we use
the unitary operators G;(Y) to rotate the spins at sites such that o7 = 1 for all j. Next, we use
G;(X) to set YX ;=1 for even j, and set Xj i1 = 1 for odd j. Doing these transformations
amount to the following choice of gauge:

o¥=1, Y

j s =1, X5 9 =1. (135)

37
Specifically, X2, = [0){0ly . —[1){1ly, ., and ¥¢ ., =[0)(0ly, ., — 1)Ll .-
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The remaining degrees of freedom reside on even links. More precisely, the list of gauge-
invariant operators are>®

z _ Y w2z Y X _ yX

W =05 X5 214109141 > U =Xy 01415 (136)
z __ X X X X

T = 00 Y5 1419 3141 > T = Yo 0141-

In terms of these operators, we view the lattice as a chain with [ = /2 sites. Using the Gauss’s
law constraints G;(X) = G;(Y) = 1, we write the Hamiltonian (132) of the gauged theory in
terms of the new variables as

L

D 5 ) +0y (0 + 7w = (7 + i) (4 + 7)), A37)
=1

H=

N~

where the Hilbert space consists of two qubits per site that are acted upon by fi; and 7;.

Non-invertible translation symmetry

As mentioned above, the original lattice translation operator T is violated since it is not gauge
invariant. However, it appears as a non-invertible lattice translation symmetry. The continuum
version of this phenomenon is discussed in [113,114].3° To find this non-invertible symmetry,
it is useful to first discuss another symmetry of the system. Gauging the Z)g X Zg symmetry,

leads to a dual Z§ X Zg symmetry generated by the Wilson line operators

X=[]w, ad 7=[]s. (138)
j j

The translation symmetry T is not gauge invariant since it does not preserve Gauss’s
law constraints. We notice that violations of Gauss’s law correspond to the insertion of the
dual symmetry defects. Specifically, the defects G,(X) = —1 and Gy(Y) = —1, respec-
tively, correspond to Z)Z( and Zg symmetry twists at site [ of the new chain. This is because
X 2141%0151,2042 = Yo1m1,0 (Y5140 2142 0D Y5 51 Y 0 o140 = X)261—1,21(T'zz)~szcz+1:21+2 are the
movement operators for these defects, and at the same time, generate the Z)zf X Zg symmetry.

Therefore, the translation symmetry T can be extended to an operator that acts on an
extended Hilbert space with four sectors corresponding to the various Z§ X Zg twists. This is
the hallmark of non-invertible symmetries; see [117] for a discussion in the continuum, and
see [118] for an alternative perspective. Putting the theory on a closed chain and projecting
onto the untwisted sector we find a non-invertible translation T satisfying the algebra

TxT=T?21+X)1+7). (139)

Another way to see the non-invertible symmetry in this model is the following. By setting
J, = 0, we identify the system after gauging as the stack of two transverse-field Ising models.
The ti; and 7; degrees of freedom, respectively, correspond to Ising models with magnetic
field strengths given by J, /J, and J,/J,. The Hamiltonian (137) is self-dual under gauging
Z}Z{ X Zg since gauging inverts the coupling constants J, /J, and J,./J,,, which can be undone by
swapping fi; with 7;. Because of the self-duality under gauging, the model has a non-invertible
symmetry generated by the corresponding “duality defect” [8, 88].

38We thank Nati Seiberg for a discussion related to this point.
%9See [58, 115, 116], for a discussion of detecting mixed anomalies on the lattice by gauging anomaly-free
subgroups.
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Finally, the non-invertible symmetry T acts on operators as

z X

pe pe Z 2 Z Z Z
" — T T > TS TS " g REE
M 1757 M; iV Y2734 ’ (140)
% - yX x ™% — u® u? z z z .
-1 My R S U Lo L B R

The action above is only a formal, but practically useful, expression on infinite chains. On a
closed chain, T annihilate any state which is not invariant under the Z3 x Z} symmetry. The

commutation relations between T and Z)g X Zg invariant operators are given by

= XX T, and T,uj.c,uj.cﬂ = Tjﬂ T. (141)

4.3 Lattice chiral gauge theories — The modified Villain model

Here we discuss the modified Villain model of compact boson theory [119-121], which realizes
anomalous chiral U(1);, and U(1)y symmetries of the compact boson theory on the lattice. We
study the Hamiltonian description of this model that was presented in [57,122]. At the end
of this section, we explain how to construct Abelian chiral gauge theories on the lattice using
the modified Villain theory.

The modified Villain XY-model

The Hilbert space consists of non-compact fields ¢; at site j, and Z-valued gauge fields n; j,;
on link (j,j + 1). We also have the conjugate momenta p; and compact electric-fields E; ;4
that satisfy the commutation relations

[¢j:pj’]:[nj,j+1:Ej’,j’+1]:iéj,j" (142)

The Hamiltonian is

2
1 , R [(¢jm1—9;
Hm\/' = Z (ﬁpl + E (T —Njit , (143)

where the physical Hilbert space is given by imposing Gauss’s law constraints
G = e (Ejjn1—Ejm ) =2mip; — 1 (144)

at each site j.
This model has a U(1),,, x U(1),, symmetry generated by the conserved charges

Qu=2.p; and Q== njj.. (145)
j j

One interesting feature of this model is its exact T-duality exchanging the degrees of freedom
on sites with the degrees of freedom on links. The T-duality transformation maps gauge-
invariant operators into gauge-invariant operators and hence respects Gauss’s laws. However,
the duality transformation does not commute with the gauge transformation generated by G;.
It only maps the gauge-invariant states |1}, with G;|vy) = [¢), to themselves. But it does not
preserve other eigenvalues of G;.

We note that other eigenvalues of G; correspond to the insertion of winding-symmetry
defects at site j. Moreover, since the duality transformation exchanges the momentum and
winding symmetry, it should also exchange the corresponding topological defects. We slightly
change the presentation of the model to make the T-duality more manifest.
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Alternative presentation

In a slight rewriting of the model, we make the electric fields E; ;,; non-compact and impose
their compactness by extra Gauss’s-law type constraint that is e2™™.i+1 = 1. We emphasize
that this rewriting does not change the system. We interpret the new Gauss’s law as coming
from “magnetic” Z gauge transformations. This formulation has the advantage that different
eigenvalues of the new Gauss’s law correspond to the insertion of momentum-symmetry de-
fects. We will see that in this formulation, T-duality manifestly exchanges the momentum and
winding defects. In particular, the Hilbert space without any defect (i.e. the gauge invariant
Hilbert space), is mapped into itself under the action of T-duality.

In the new presentation, we have a chain with non-compact fields ¢; and é j,j+1 respec-
tively at site j and link (j,j + 1). The conjugate momenta are p; and p; ;,; that satisfy the
commutation relations

[¢j,py]= [¢;j,j+1’f)j’,j’+1] =16 . (146)
The Hamiltonian is*
2
1, R*> (. ¢j+1 - ¢j
H,v= Z (ﬁp] + ? (pj,j+1 + T . (147)
j
We have electric Gauss’s law constraints at sites and magnetic ones on links:
G =e’™8i =1, Gjjp =¥ M8im =1, (148)
h — ¢Sj,j+1_¢gj—l,j d ~ — ~ d
where g] = —p] + G T a— an gj,j+1 = _pj,j+1’ an
. . —i
(g,&j+1]=1[8&j-1,8]1= o (149)

Defects: The eigenspaces G; = e™ and (N?j’jﬂ = e respectively, correspond to insertion
of winding-symmetry and momentum-symmetry defects. The defects are topological since
the unitary operators e =8 and e~"&i.i+1 move them by one site. These unitary operators
permute different eigenspaces of G; and Gj’ j+1 While commuting with the Hamiltonian. More
precisely, we define a (n,,,n,,) € U(1),, x U(1),, defect at link (j, j + 1) by modifying the

Gauss’s law to

. ; ; j (N> M)
Gig=em, G =etv: HOD = o AJmlh) 150
j,j+1 j+1 (Nm>Nw) ] 1 ] ] 11 ] P ( )

In this presentation, the insertion of defects corresponds to a modification of the Hilbert space
instead of the Hamiltonian, i.e.

i1 a1 . . _
HO D = Hyy,  HETL = {1) 1 G jaal) = eM1), Gy lp) =™ [y)} . (151)
Fusion operators: The fusion operators are given by

(Nm+1510+ 1)

A ((nm: ﬂw), (’T];n, ﬂiv)) = e—i[ﬂm]gj e_i[nw]gj,jﬂ . s (152)
i-r ] G T+r

M>1w) (051M)

“0The relation with the previous presentation is: ¢ 41 = Ejjy and Pj i =~ 4.

40


https://scipost.org
https://scipost.org/SciPostPhys.16.4.098

Scil SciPost Phys. 16, 098 (2024)

where 0 < [n] < 27 such that [n] =1 (mod 27). Note that the choice of fundamental domain
[0,27) fixes the phase of the fusion operators. For instance, changing [7),,] to [1,] + 27
multiplies the fusion operator above by e*27&i

Let us verify that the fusion operators above indeed implement the fusion correctly. First,
note that the fusion operator A’ ((nm, Mw)> (M) n;/)) commutes with all the Gauss’s law con-

=e M,

straints, except for Gj—l, i»Gj, Gj’ i+1>Gjr1- The unitary operator e~ {wl&j+1 jmplements the
fusion of the winding-symmetry defects:

e+i[nw]§j,j+1 Gj e_i[nw]gj,j+1 — e—ile Gj , e+i[nw]gj,j+1 Gj+1 e_i[nw]gj,j+1 — e+inw Gj+1 . (153)

Thus, a state [y) satisfying G;|) = e |1p) and Gimly) = elv|1p) gets map to

[9') = 29 (s 1), (1 ,,)) 1), which satisfies G [1p') = [49") and Gy [4') = e+ [y)
Similarly for e ["]¢; we have the commutation relations:

etilnmle; éj—l ; e~ Mmlg; = o=l G

1 +l[77m:|gj G 1 e l[nm]g) = Nm Gj,j+1 . (154)

The anomaly: Using the formula for the anomaly (76), we find

L ftzninl . fizniv] y f[m;wml f[nv;mw] *[Zn o] (155)
i Y X s X s X . m ™ J— F T T m ™
GJ J,j+1 GJ—l GJ—LJ GJ GJ,J+1 (s, g 8 )G GJ,J+1 G GJ L~
—[T)m] _["w] . . ~
where we have used the shorthand notations G; G ]211 = e mlseminlgiin ¢ = (n,,1,),

g =(n,,n,),and g’ = (07, n). S1mphfy1ng the equation above, we find

{nwsm),} G—{T)mﬁlm ,H(J Jj+1) H(] ,j+1) (156)

F(g, g g//) = el{Mws TIW}(T)m-HIm)G e : galgh gg'g" 2

where

(157)

(.= I+ 1=In+n] {o, for [n]+[n'] <2,

27 1, for[n]+[n']>2m.

In the expression (156), F(g,g’, g”") acts on the defect Hilbert space 7—[(] ],+,}) where G; =1

and GJ’ 1= el iy Therefore, we find the anomaly cocycles

w(g, g’ g")=exp(—i{n,,n,In"), and a(g,g)=1. (158)

Since the 2-cocycle a is trivial, there is no LSM anomaly. The 3-cocycle w describes a
mixed anomaly between U(1),, and U(1),, in the sense that the anomaly trivializes by set-
ting n,, =1, =7, =0orn, =7, =mn, =0.

By setting n,, = *n,, we find the anomaly in the chiral U(1); and U(1)g subgroups
of U(1),, x U(1), symmetry.*' In other words, the chiral anomalies are computed as

wi(n,m’,m") = exp(—i{n,m"}n") and wg(n,n’,n") = exp(+i{n, n'}n").

Charge conjugation symmetry: Besides U(1),, x U(1),, symmetry, there is also a charge
conjugation symmetry C that anti-commutes with the momentum and winding charges. To
find the defect, we conjugate the Hamiltonian and Gauss’s law operators by the truncated
charge conjugation operator C=’ = ¢/ ¢/~1¢’=2... acting as

<7 ¢, (CS/) T = {—¢j , forj<J,
J

b, forj>J,

p : (159)
CSJ ¢; i1 (CSJ)—l — _~¢j’j+1 5 fOI‘] <J,
B $jj+1, forj>J.

. UxU(
“IMore precisely, we have % =U(1),, x U(1),.
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We now consider topological defects for (U(1),, x U(1),,) % Zg. We parametrize the symmetry
group by (1,,,, M., €) with the “multiplication” rule

N> s €) - (0,15, €)= (M + €n) 1y, + €M), €€7), (160)

with the identification 7n,, ~ n,, + 27 and 1,, ~ n,, + 27, and where €,¢’ = +1.
The defects are given by

2 2 2
v +1) _ R €Pri1— s 1, R” (. ¢ — ;)
H(nm,nw,e) T 9 (pUH + I +Z 2R2Pj + Z D) Djjr1t——F——— o s

Py
Ei}::}'i)e) {GJ i1 =e Nm e —2miepy 1 +Hied i rra—iPr i1 — = elfw Gj,j+1 — Gj =1 fOI‘j 7& J} _
(161)
The fusion operator for these defects are given by
. =Inml _ —[nwl
2 ((Nns M €, (MM, €)= G177 G, 771 (G, (162)

where € = (—=1)°, and C; = e 1507 +0]) g1 3(9]11+D] 1) implements a charge conjugation trans-
formation only at site j and link (j,j+ 1).
The anomaly is given by

L i 1 I ) —[anl f[znm o
T T T s T T
Gj Gj,j+1 Cj Gj—l Gj—LJ Ci— G GJ Jj+1 C (163)
. “lomtni] | —Inwtng) ete! “[om] _ =lnw] R
21 21 2m 2m
=F(g,¢',¢")G, Gt GG GACL,

where g = (0, My,€), & = (),,1.,,€), and g” = (17, 7!, €"”). Simplifying the equation
above, we find

[y J+elnd, J-Tnw+en’y] [nwltelny, -Inwreny,]  _ [nmI+elnf -lam+enp,]

F(g,g,g")=e" 7= Umtem)G T G, = . e

i+l - . SN
Here, F(g,g’,g") acts on Hgg],g,,) where G; =1 and Gj j1 = e * €M Thus

+e€ +en’
L] [nW; il nw]ee’n;) , and a(g,g)=1. (165)
m

w(g,8',8 )—exp(—l

Chiral gauge theories on the lattice: We end the discussion by pointing out an application
of the gauging procedure described in Section 3.2. Taking multiple copies of the modified
Villain theory, there exist chiral U(1) subgroups free of anomalies. Specifically, consider N
copies of the modified-Villain model and the conserved charge

N
Q=Y (Mm%, +waQ) (166)
a=1

We take m, and w, to be integers to ensure that Q generates a U(1) symmetry. The 't Hooft
anomaly in this U(1) symmetry is given by

N
> mw, €. (167)

We can choose the integers m, and w, such that the anomaly vanishes while m,w, # 0. An ex-
ample is (the bosonization of) the 34-50 model [123-127], where Q/ 2=4Q,111—Q3V+2Q§1+2Q‘2M.
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In such cases, Q generates a chiral U(1) symmetry that is free of 't Hooft anomalies. By
gauging such symmetries, we obtain (the bosonization of) chiral gauge theories on the lat-
tice [128-132].%> We leave the details and explicit Hamiltonian of such theories for a future
work.

4.4 Fermionic theories — N Majorana fermions

Here we discuss anomalies of fermionic theories. In such theories, there is a Zg fermion-
parity symmetry, or more precisely, a Zg automorphism of the operator algebra. Usually, this
automorphism is an inner automorphism and is denoted by (—1)F. The notion of locality
in fermionic theories differs from bosonic ones since two fermionic operators with disjoint
support anti-commute with each other. Below, we consider systems with a lattice translation
symmetry that we denote by Zt, and an internal symmetry group G. We denote the bosonic
“part” of the symmetry by G, = G/Z}.

Following the ideas from [59] and [68], we claim that there are three ‘layers’ of anomalies
in 14+1d fermionic systems:

1. The first layer is classified by H' (G, x Zr, ZA™) = HY(Gy, Z5™) x H'(Z1, Z5™) and is
measured by the number of Majorana zero modes modulo 2 localized on the defects. It
is sometimes referred to as the Arf layer since it corresponds to the 0+1d anomaly of
(—1)F whose bulk 1+1d SPT realization is given by the Arf invariant of 2-dimensional
spin manifolds.

2. The second later is classified by H(G}, X Zr, Zg). This layer captures the mixed-anomaly
between Gy, x Z7 and Zi, which has a term valued in H 2(Gb,ZE) capturing the mixed
anomaly between G}, and Z5, and another term valued in H!(Gy, Z,) capturing the cubic
mixed-anomaly between all three symmetries. The latter is a fermionic generalization
of the LSM anomaly. This anomaly is given by the fermion parity of the fusion operators.
Let us define the fermion parity of the fusion operators by K(g;, g&,) = £1, where

(—D A (g1, 82)(—1)" = K(g1,82)A (g1, 82)- (168)
Acting with (—1)F on equation (76), we find that K satisfies a modified cocycle condition

K(g2,83)K(g1,8283)
K(g182,83)K(g1,82)

=K(g1,1). (169)

Moreover, by conjugating the defect Hamiltonian Héj I+ by a local unitary operator of
fermion parity y(g) = £1, we find the identification*?

)r(g2)
K(g1,82) ~ K(glng)M~ (171)
7(8182)
These leads to standard cocycle conditions for
K(g,
Blongn) = 818 g p(g)=K(g,1). (172)
K(gl) 1)

“2We thank Edward Witten and Nati Seiberg for discussions on this point.
“Without a translation symmetry we have

Kj(Sz: 83)Kj(gl: 2283)

Y (g)v'(8,)
Ki(g182,83)K'71(g1, 82)

. (170)
7(8182)

=K'"'(gy,1), and K'(g1,8)~K'(g1,8&)
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Here, f : G — Z, is a group homomorphism that measures whether the movement
operator for a g-defect is bosonic or fermionic. We note that by conjugating defect
Hamiltonian by fermionic local operators the 2-cocycle 8 is shifted by an exact term.
To get the anomaly we mod out the cocycles by the freedom of redefining the defect
Hamiltonians by local unitaries and find the cohomology classes

[B1€H*(Gy,Z5), and  f €H' Gy, Z}). (173)

Here, [3] is a mixed anomaly between Gy, and Zg. The homomorphism f is a fermionic
generalization of LSM anomaly that involves translation, Gy, and Zg.

3. The third layer is just the bosonic layer that has been discussed in length before. It is
classified by H3(G,, x Zy, U(1)) = H3(G,, U(1)) x H2(Gy,, U(1)).
Putting everything together the anomaly in G}, x Zy x Zg is classified by
H'(Gy, 25 x H'(Zr, Z5") x HX(Gy, Z5) x H' (Gy, Z5) x H(Gy,, U(1)) x H(Gy,, U(1)).
(174)
Forgetting the translation symmetry, this classification is compatible with [133]. See [45],

for a discussion of fermionic LSM anomalies for on-site internal symmetries. As a concrete
example, below we consider the chain of N free Majorana fermions.

Free Majorana fermions
Consider a chain of N flavor of free Majorana fermions with the Hamiltonian
N
H=i) > i, (175)
j a=1

where {1/)?,1#?,} =28; 64, and a is a flavor index. The model has a Zr lattice translation
symmetry T acting as
T:yf =i, . (176)

There is also a global O(N) symmetry that rotates 1/);‘ at a given site among each other, i.e.

N
Ug = ZRabw? ; (177)
b=1

for an N x N orthonormal matrix R. Here, Zg € O(N) is generated by the central element
(=1)f = U_; that acts as Y§ = —y. The bosonic symmetry group is given by the quotient
G, = O(N)/Zk.

We note that every element of O(N) is a product of at most N “reflections”. Therefore, we
can generate the O(N) global symmetry by reflections. Reflection along the plane perpendic-
ular to a vector ¥ € RV, up to an overall sign, is generated by the unitary operator

N N
U; = l_[ (Z Vail)?) ,  where va =1. (178)
j a=1 a=1

More precisely,
Us () Uyt = (=1 (g% — 203 - Pveyp?) , (179)

where L is the number of sites. Therefore, up to the action of (—1)F, the global O(N) symmetry
is generated by Uy. In another words, the quotient symmetry G, = O(N)/ Zg is generated by

Ug = UnUsz - Usn, (180)
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for n < N. Here, R € O(N) correspond to an N x N matrix given by the product of n reflec-
tions along the planes perpendicular to the vectors ¥* for k = 1,2,---,n. This system also
has reflection and time-reversal symmetries that we do not discuss here; see [43, 46] for a
discussion.**

We can construct the defects by conjugating the system with the truncated symmetry op-
erator. However, since the symmetry is a product of “local” factors, the fusion operators take

the simple form
n N
Aj(vl‘—}»Z,..vn’Wlwz...wm):H(Zv;{w?) s (181)

k=1 \a=1

k _ 3k
where v; = (V5),.

Anomalies

Now let us find the anomalies involving the O(N) x Z; symmetry. Specifically, we discuss the
three layers of anomaly involving O(N)/ Zg X L.

Firstlayer: The firstlayer corresponds to the number of Majorana zero modes on the symme-
try defects. For the internal symmetry G, = O(N)/Z, the defect Hilbert space is the same as
the original Hilbert space since the symmetry is written as a product of local terms. Therefore,
there are no extra degrees of freedom and no Majorana zero modes on the internal symmetry
defects. Therefore, there is no H(Gy, Z5™) anomaly.

The other anomaly is classified by H!(Zr, Zgrf) = Z,. This counts the number of Majorana
zero modes per site which is equal to the number of flavors N (mod 2). To see this, we note
that at each site we have a Clifford algebra of rank N which has a center for odd N. When N is
odd, the central element, 1,[1111[)]2 ‘e ;V , is the Majorana zero mode at site j. Therefore, there
is an anomaly involving fermion parity Zg and lattice translation when N is odd.

Second layer: The anomaly in the second layer corresponds to the fermion parity of the
fusion operators. We find that when n is odd and the internal symmetry is a product of an odd
number of reflections (i.e. det(R) = —1), then the fusion operator is fermionic and otherwise
it is bosonic — see equation (181). This means that K(R;,R,) = det(R;) in equation (168).
Therefore, # = 1 and f(R) = det(R). Thus, we conclude that there is no anomaly involving
O(N)/ Zg and Zg. However, there is a cubic mixed anomaly involving O(N)/ZE, Zg, and lattice
translation which is given by det(R). This anomaly gets trivialized if we consider the SO(N)
subgroup of O(N).

Third layer: The third layer is the bosonic layer of the anomaly we discussed earlier. Since
the internal symmetry acts “on-site”, this anomaly is captured by the projectivity of the ac-
tion of the symmetry on each site. We note that the Clifford algebra at site j generates the
group Pin*(N) which is a double cover of O(N). Specifically, the faithful symmetry group is
O(N) =Pin*(N)/{£1}. When N > 3, Pin*(N) is a non-trivial Z, extension of O(N) and there-
fore the symmetry is realized projectively per site. This leads to an LSM-type anomaly for the
O(N) x Zr symmetry when N > 3.

We note that our anomaly detection method is local; hence, we do not specify the chain
details, such as the number of sites and the boundary conditions. Relatedly, we do not specify
the Hilbert space of the theory and instead focus on the algebra of local operators. However, for
a finite chain, we construct the Hilbert space as an irreducible representation of the operator
algebra. In some cases, the operator algebra has a center which leads to different irreducible

44See also [134] for a discussion of the lattice translation symmetry in the Schwinger model.
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representations. The eigenvalue of a central element should be viewed as a theta parameter.
Alternatively, one can sum over such theta parameters (which corresponds to gauging a (—1)-
form symmetry). For instance, in a system with an odd number of Majorana fermions, there is
a central element given by the product of all Majorana operators. This central element leads
to a Z, valued theta parameter which is odd under the fermion parity automorphism (—1)F.
Thus, the theta parameter breaks Zg. Alternatively, we can consider a larger Hilbert space by
summing over the two values of the theta parameter and restoring the ZE global symmetry.
For a detailed discussion of such issues see [43,46].

Gauging and bosonization

As discussed above, the O(N) internal symmetry has no pure anomaly and can be gauged.
However, there can be a mixed anomaly involving O(N) and lattice translation. Therefore, the
original lattice translation symmetry is violated upon gauging anomalous subgroups of O(N).
However, the lattice translation symmetry in such cases appears as a non-invertible symmetry
in the theory after gauging. For instance, consider the Z, symmetry generated by a single
O(N) reflection. Gauging such a symmetry must violate the original translation symmetry.

Here, we consider the case of N = 1 and gauge the (—1)" symmetry following our
gauging procedure. We add Z, gauge variables on links represented by Pauli matrices
o¥. o). ., 0F and find the extended Hamiltonian

i+ 9+ 91
H= izwjo-}(,j+1¢j+1 : (182)
j
Using the fusion operators (181), we find the Gauss’s law constraints
051,/ ¥i05 =1 (183)

However, due to the anomaly, these Gauss’s law constraints do not commute with each other
at different sites. However, we modify Gauss’s law constraints such that they commute with
each other at the expense of violating the translation symmetry. To do such, we first need to
make the fusion operators bosonic.

The trick is to add a Majorana fermion yx; at each site, and then project them out by
considering the constraints

X Xa+1=1. (184)

We assume the anti-commutation relation {v;, xj/} =0 and {yx;, xj/} =28; . The Majorana
fermions x; have trivial bulk dynamics and define an invertible fermionic theory known as the
Kitaev chain [135]. This invertible theory serves as a choice of discrete torsion for gauging Zg.

Using the added Majorana fermions, we find the modified Gauss’s law constraints*®

— sz z _ . _ X
gj = lUj_l,jil’ijUj,jH =1, and LYot Xol+1 = 0-21’21+1 . (185)

These local constraints commute with each other. However, they break lattice translation
symmetry by one site and only preserve translations by an even number of sites. Below, we do
gauge fixing and simplify the gauged theory.

By performing gauge transformations, we rotate the Majorana fermions such that

Yo 1Yy =—1. (186)

Using this choice of gauge, we find the Hamiltonian of the theory after gauging to be

T X Z z
H= _Z (021—1,21 + 021—1,21021+1,21+2) . (187)
1

#The auxiliary Majorana fermions x; allow us to gauge any subgroup of the O(N) flavor symmetry.
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We identify this as the familiar transverse-field Ising model on a chain with half the num-
ber of sites compared to the Majorana chain. We have done the microscopic version of the
bosonization on the lattice. This prescription is more general than the Jordan-Wigner trans-
formation and can be applied to any fermionic lattice Hamiltonian system with an anomaly
free Z, internal symmetry.

Finally, the translation symmetry operator T of the Majorana chain does not commute
with the Gauss’s law constraints (185) and therefore is not gauge invariant. By taking its
gauge-invariant matrix elements, we find a non-invertible lattice translation symmetry.*® For
a detailed discussion of this non-invertible symmetry see [46,137].

Acknowledgments

I am grateful to M. Cheng, A. Cherman, I. Cirac, T. Dumitrescu, D. V. Else, P Gorantla, Z.
Komargodski, M. Levin, Y.-M. Lu, A. P Polychronakos, A. Prem, T. Senthil, S.-H. Shao, N.
Sopenko, Y. Tachikawa, and E. Witten for discussions. I especially thank Nati Seiberg and
Wilbur Shirley for numerous illuminating discussions. I thank Michael Levin, Nati Seiberg,
and Yuji Tachikawa for their comments on the draft.

Funding information The author gratefully acknowledges support from U.S. Department of
Energy grant DE-SC0009988.

A Anomaly in Z, — Frobenius-Schur indicator

In this appendix, we provide a simple anomaly indicator for internal Z, symmetries. Consider
a topological defect a with a Z, fusion rules, i.e. a~! = a. Here we can find its anomaly with a
single equation. Specifically, we compute the Frobenius-Schur (FS) indicator of the topological
defect on the lattice (see e.g. [138] for the definition of FS indicator).

The anomaly of a Z, symmetry a is given by an invariant y, = £1 (i.e. its Frobenius-Schur
indicator), which is given by*’

4For the continuum analog of this non-invertible symmetry see [136].
47This relation is the lattice analog of equation (187) of [138].
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In equation, we have

M(a, OV a, DA (a, DA (a, 1) (Aj(a, a))_1 = ¥ M@, DV (a, DV (a,1). (A2)

From this equation, we see that y, is “gauge invariant” in the sense that it does not change
under phase redefinition of the fusion operators. Therefore y, is identified with the anomaly
of the Z, symmetry inside H>(Z,, U(1)) = Z,.

For our choice the anomaly 3-cocycle we have y, = w(a,a,a), which can be seen using
the fact that A commute with A7*2. Note that in our construction, the anomaly 3-cocycle
satisfies the relation w(1,83,83) = w(g1,1,83) = w(g1,82,1) = 1. Hence, for a Z; sym-
metry w(a,a,a) captures the anomaly since it is the only non-trivial element of the anomaly
3-cocycle.

B Comparison with Else-Nayak [1]

In this appendix, we show when the anomaly detection method of Else and Nayak [1] works,
our method gives the same result as theirs.*® The Else-Nayak method works for internal sym-
metries that are realized by finite-depth local unitaries. Our method can capture the anomaly
in any locality-preserving symmetry that is not necessarily realized by a finite-depth quantum
circuit. Moreover, we can also detect mixed anomalies involving internal symmetries and any
other symmetry, such as reflection that is not even locality-preserving.

Here, we consider an internal symmetry G, where each symmetry operator is written as a
product of local terms. Specifically, we have

— i+277j+177i pri—1y7i—2
U, =---UPuttulutul 2 (B.1)

where Ué is a local operator with finite support around site j. For simplicity, we assume that
Ué has support on at most sites j and j + 1. However, the conclusion of this section holds

for the more general case where Ué has support at most on sites j,j+1,---,j+ k, for a fixed
integer k. _
The local factors Ué above are the movement operators of symmetry defects. In terms of

. . . n—1
the truncated symmetry operators, they are given by Ué = UgS g (UgS g 1) ; see equation (47).

The defect Hamiltonian for two defects is given by

S . ) ~N—1 RN |
(G=17)0,j+1) — 77<j—177=<] <j <j—1
Hgl;gz - Ug1 ng H (ng ) (Ug1 ) : (B.2)

Therefore, the fusion operators are given by
- . -1 CN—1
J — 175 <j <j—1
A (gl’ gZ) o Uglgz (ng ) (Ug1 ) ' (B.3)

In [1], the anomaly cocycle is found by considering restricted symmetry operators that act
on a finite region in space. In other words, they consider the truncated operators

yli) = g (UgSJl)‘l , (B.4)

that act on the interval [J;,J, ], where J; < J,. Such a restricted symmetry operator represents
a G action up to corrections localized around site J; and J,

J J -1
Ugl’JZ]UgI’JZJ = (QLl(gl:gz)QRZ(glagZ)) Uglg’f] . (B.5)

“We thank Wilbur Shirley for motivating us to write this appendix.
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Here, Qf(gl, g-) and Qé(gl, g-) are unitary operators that have support around site J. Note

-1
that (Qil(gl, gz)Qij(gl, gz)) here is the same as Q,,(g;,g>) in [1].
We can write Q{{ in terms of the truncated symmetry operators as

» . \—1 N—1
j _ 1< < <
QR(gl’ 82) = Ugljgz (ngj) (Uglj) ’ (B.6)
Comparing this equation with (B.3), we find
j j - -1
Qr(81,82) =2 (g1,82) (M (g1, 1)) . (B.7)

Now we will find a formula for the anomaly in terms of Q{{.
Using equation (76), we find

. . . . -1
M (g1,8283)N 1(g1, 1A (g2, 83) (A](gz, 1))

a)j(gl,gz,gg) = - 5 - s (B.8)
(8182, 83) (M(g182, 1)) (g1, 82)A71(g1, 1)
which in terms of Q{,\ can be written as
. (81, 8283)M (g1, DA (g1, 1) (82, 83)
w’(g1,82,83) = R B (B.9)

QL(8182, 8302 (81, €)M (g1, DA (g1, 1)

Since Ui; = AJ(g, 1) has support on at most sites j and j + 1

o \—1 ) . ; . . -1
U;]Qﬁ(gz,gg)(UzJ) =M (g, DA 1(g1,1)Q£(g2,g3)(lj(g1,1)kl 1(81:1)) , (B.10)

thus we find
) ) ) . o N—1
Q%{(gngJgS)Q%{(gl;gZ) = w](gl,82,gs)ﬂf{(gl,gzgs)U;JQ{Q(gz,gs) (Ugslj) . (B.11)

The equation above is the same as equation (5) of [1]. Therefore, our 3-cocycle «’ coincides
with the one computed by Else and Nayak. Equation (B.11) for the anomaly 3-cocycle has also
appeared in the context of AQFT; see, for instance, [80, Section 4.2].

C Defects for antiunitary symmetries

As shown in Section 2.4, any locality-preserving symmetry operator is representable by a topo-

logical defect. In particular, we showed that defects for lattice translation correspond to adding

or removing a site. Here, we construct topological defects for antiunitary symmetries.
Consider a system where the Hilbert space is a tensor product of local Hilbert spaces

H:H1®CH2®C"'®CHL' (Cl)

We have used the subscript C in ® to emphasize that the tensor product is taken over the
complex numbers. In other words, phase factors (or more generally C-numbers) acting on H;
are identified with those acting on H ;.

Equivalently, we can consider the tensor product over real numbers and identify the phases
at different sites by additional local constraints. Namely, we take the real vector space*’

HREH1®RH2®R“'®RHL, (CZ)

“IFor tensor product over real numbers, we identify the operator r0; ®x O]f with O ®g rO’ only for real numbers
r € R, and not for an imaginary number r.
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and impose the local constraints u;(6) = u;,;(0) to get back H. Here, u;(6) implements a
U(1) “phase” rotation at site j. In other words, u;(0)|y); = €% y) j,.50

Consider the antiunitary symmetry operator U = K, where K is complex conjugation in
a fixed basis. A defect for this symmetry at link (j, j + 1) is given by changing the constraint
uj(0) =u;;1(0) tou;(0) = uj+1(9)_1. The movement operator U; = K; that moves the defect
from link (j —1,j) to (j,j+ 1) acts as

and IC]-uj/(O)(le)_1 = u;/(0) for j’ # j. Thus, K; acts antiunitarily only on site j. We now
explain how this is derived from our general construction in Section 2.4.

To find the defect for general antiunitary symmetries, we want to extend the unitary oper-
ators to UyUy !, where U, acts only on system A and Uy only acts on system B. In other words,
we want Uy to act antiunitarily only on system A. To do this, we consider the extended Hilbert
space and Hamiltonian

H=HR oy HE, and H=H®yl, (C.4
and the extended symmetry operator
U=Ueg U . (C.5)
The local constraints for the untwisted system are
1egrm;=1, uj(9)®Ruj(9)_1 =1, and uj(O)ujH(G)_l Qrl=1. (C.6)

The first constraint just projects out system B to one of its states. The second and third con-
straints reproduce the tensor product over complex numbers.

The system with a defect at link (J, J + 1) is described by the defect Hamiltonian (59), and
the defect Hilbert space is given by imposing the constraints U=/(1 &g 7;)(T=/)" =1,

=7 (uj(0) ®g u;(0) 1) (0=/)' =1, and U=’ (u;(0)ujs,(0) ' @x1)(T=/) =1,
(C.7)
Now let us apply this to the case of an antiunitary symmetry acting on-site, that is

U=’Cn Uj, (C.8)
J

where Uj; acts unitarily on site j. Since U; is a complex operator, it commutes with u;(0).
Thus, we find the local constraints

w(0) @ u;(0) =1, and u;(0)u;,(0) V7 @p1=1, (C.9

among other constraints. Hence, the movement operator U; act antiunitarily only at site J.
Using this prescription, we can compute the anomaly of antiunitary symmetries and identify
the anomaly as the obstruction to gauging. However, gauging an antiunitary symmetry leads
to a theory whose Hilbert space is a real vector space!

%0The dimension of ¥ is 2!7! times larger than that of H{ and there exist L — 1 independent constraints.
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