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Abstract

We analyze the internal symmetries and their anomalies in the Kitaev spin-S models. Im-
portantly, these models have a lattice version of a Z2 1-form symmetry, denoted by Z[1]2 .

There is also an ordinary 0-form Z(x )2 ×Z
(y)
2 ×Z

T
2 symmetry, where Z(x )2 ×Z

(y)
2 are π spin

rotations around two orthogonal axes, and ZT
2 is the time reversal symmetry. The anoma-

lies associated with the full Z(x )2 × Z
(y)
2 × Z

T
2 × Z

[1]
2 symmetry are classified by Z17

2 . We

find that for S ∈ Z the model is anomaly-free, while for S ∈ Z + 1
2 there is an anomaly

purely associated with the 1-form symmetry, but there is no anomaly purely associated
with the ordinary symmetry or mixed anomaly between the 0-form and 1-form symme-
tries. The consequences of these symmetries and anomalies apply to not only the Kitaev
spin-S models, but also any of their perturbed versions, assuming that the perturbations
are local and respect the symmetries. If these local perturbations are weak, generically
these consequences still apply even if the perturbations break the 1-form symmetry. A
notable consequence is that there should generically be a deconfined fermionic exci-
tation carrying no fractional quantum number under the Z(x )2 × Z

(y)
2 × Z

T
2 symmetry if

S ∈ Z+ 1
2 , which implies symmetry-enforced exotic quantum matter. We also discuss the

consequences for S ∈ Z.
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1 Introduction

A central goal of condensed matter physics is to realize interesting quantum phases of matter.
Kitaev’s solvable spin-1/2 model [1] provides a theoretical foundation for various quantum
spin liquid phases, such as Abelian or non-Abelian topological orders, and gapless quantum
spin liquids. It also attracts tremendous attention due to the discovery of candidate materials
[2–5]. More recently, the higher-spin generalizations of the Kitaev materials were proposed [6–
12] and have triggered extensive analytical and numerical studies [13–28].

Theoretically, it is important to first understand the higher-spin generalizations of the Ki-
taev spin-1/2 model. Unlike the spin-1/2 model, no analytic solution is known for the Kitaev
spin-S models, for S > 1/2. However, by using a carefully designed parton construction, one
of us proved the presence of an exact Z2 gauge structure in this model. Moreover, there is
an even-odd effect: If S ∈ Z + 1

2 then the gauge charge is fermionic and the Z2 gauge field
is deconfined, while if S ∈ Z the gauge charge is bosonic and the Z2 gauge field can be Hig-
gsed [28].

The observations in Ref. [28] raise some fundamental questions. First, that work focuses
on the Kitaev spin-S Hamiltonian, so a pertinent question is: To what extent is the even-odd
effect stable against perturbation, which can potentially be strong? Second, Ref. [28] employs
a parton construction to unveil the gauge structure. So another question is: Can the results
therein be obtained via a more elementary, direct approach, without searching for an exact
parton construction? A third question is: Can one obtain more results than those in Ref.
[28]? For example, that work predicts a deconfined fermionic excitation for S ∈ Z+ 1

2 , and a
natural question is: Can this fermion carry fractional quantum numbers under the symmetries
of the model? Similar questions were also raised in the Journal Club for Condensed Matter
Physics [29].
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Figure 1: (a) A honeycomb lattice with periodic boundary conditions along the two
directions. X , Y and Z label the bonds, A and B label the sublattices, and numbers
label the sites. Sites labeled by the same number are identified. (b) Examples of
closed loop operators, whose supports are in red.

In this paper, we address the above questions by studying the symmetries and anomalies of
the Kitaev spin-S models. Besides some ordinary 0-form symmetries, we find that the Kitaev
spin-S models have an exact 1-form symmetry [30] (see Refs. [31, 32] for reviews on 1-form
symmetries). Moreover, this 1-form symmetry is anomalous if S ∈ Z+ 1

2 , while it is anomaly-
free if S ∈ Z. We also show that, for all S, there is no anomaly solely associated with the
ordinary 0-form symmetries or mixed anomaly between the 0-form and 1-form symmetries.

These results sharpen and generalize the observations in Ref. [28]. We will discuss the
profound consequences of these symmetries and anomalies in detail in Sec. 5. For now, we
remark that our arguments apply to generic local Hamiltonian that respects the relevant sym-
metries, which can deviate significantly from the Kitaev spin-S models. Moreover, even if the
1-form symmetry is slightly broken by local perturbations, these consequences are still ro-
bust. One consequence that should be highlighted here is that if S ∈ Z+ 1

2 , then the system
should generically host deconfined fermionic excitations, which means that this system real-
izes symmetry-enforced exotic quantum matter, where the symmetry enforces the system to
be a quantum spin liquid.

2 Kitaev spin-S model and its symmetries

The Kitaev model is defined for spin-S moments living at the sites of a honeycomb lattice (see
Fig. 1), with the Hamiltonian

H = −
∑

µ

Jµ
∑

〈i, j〉∈µ

Sµi Sµj , (1)

where µ= x , y, z labels the bonds, and 〈i, j〉 ∈ µ represents the two sites connected by a bond
µ. For generic values of Jµ, this model enjoys many symmetries:

1. Lattice version of Z2 1-form symmetry, denoted by Z[1]2 . For each plaquette, there is a
generator of this symmetry, such as1

Wp = eiπS y
1 eiπSz

2 eiπSx
3 eiπS y

4 eiπSz
5 eiπSx

6 , (2)

1Depending on the eigenvalue of the ground state under Wp, there can be an additional −1 prefactor in the
definition of the generator. But this prefactor will not affect our discussion and will be ignored below (see Appendix
A for more details).
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where the subscripts are site labels (see Fig. 1(a)) [1, 13]. If the system is on a torus
(i.e., under periodic boundary conditions), there is one more generator along each non-
contractible cycle of the torus. In Fig. 1(a), these generators are

W1 = eiπSz
7 eiπSz

1 eiπSz
2 eiπSz

3 eiπSz
8 eiπSz

9 ,

W2 = eiπS y
10 eiπS y

5 eiπS y
4 eiπS y

3 eiπS y
8 eiπS y

11 .
(3)

All these generators commute. The presence of this symmetry is often phrased as the
conservation of Wp, but we regard it as a lattice version of a 1-form symmetry, because its
generators and their products are supported on all possible closed loops (see Fig. 1(b)),
just as a 1-form symmetry in a 2+1 dimensional continuum field theory [30]. Moreover,
since W 2

p = 1, this symmetry should be regarded as a Z2 symmetry. In Appendix A, we
present more discussion on the lattice version of a general Zn 1-form symmetry.

2. ZT
2 anti-unitary time reversal symmetry, whose action on each spin operator is Sµi →−Sµi .

3. Z(x)2 ×Z
(y)
2 , generated by π spin rotations around S x and S y . Namely, the generators of

Z(x)2 and Z(y)2 are
∏

i eiπSx
i and

∏

i eiπS y
i , respectively.

There is also a lattice translation symmetry and a 2-fold lattice rotation symmetry, but in
this paper we will focus on the above Z[1]2 ×Z

(x)
2 ×Z

(y)
2 ×Z

T
2 internal symmetry. In the isotropic

limit where Jx = Jy = Jz , there are additional 3-fold lattice rotation symmetry and reflection
symmetry. We leave a systematic study of the effects of lattice symmetries to future work.

3 1-form symmetry and its anomaly

The Z[1]2 symmetry is a notable feature of the Kitaev spin-S model, Eq. (1). Now we show that
this symmetry is anomalous (non-anomalous) for all half-odd-integer spins (integer spins),
i.e., S ∈ Z+ 1

2 (S ∈ Z). For certain specific values of S (e.g., 1/2), this anomaly was discussed
in Refs. [33–35].

3.1 Statistics of the end point excitations

To understand the anomaly of the 1-form symmetry, recall that an anomaly is an obstruction
to gauging this symmetry, i.e., coupling the system to a gauge field for this symmetry. We
will illustrate this obstruction in Sec. 3.2, and here we use a simpler and more illuminating
method to detect this anomaly. Specifically, we will cut open the loops on which the 1-form
symmetry generators are supported (e.g., the red loops in Fig. 1 (b)). Because the loop
operators are symmetries and the Hamiltonian is local, the resulting open string operators are
tensionless and they create deconfined point-like excitations around their end points (unless
these excitations are condensed). Next, we check the statistics of the end points of these open
strings. It is known that a 1-form symmetry is anomalous unless this statistics is bosonic,
because gauging a 1-form symmetry can be viewed as condensing these end points, but they
can condense only if they are bosons [36,37].

To check the statistics of these end points, we use the approach in Refs. [38, 39]. This
approach was originally designed for topologically ordered ground states, but we do not need
any assumption about the ground state. The general idea is illustrated in Fig. 2(a). Unitary
operators M1,2,3 in Fig. 2(a) can freely move the end points. Suppose we apply M1M2M3 to a
state with two end points, and denote the final state by |1〉. We can also apply M3M2M1 to the
same initial state, and denote the final state by |2〉. Comparing states |1〉 and |2〉, we see that
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Figure 2: Determination of the statistics of the end points. (a) The two black points
represent two end points, and M1, M2 and M3 are operators that move the end points.
(b) The red, blue and green strings represent the support of M1, M2 and M3, respec-
tively. The numbers label the sites.

they differ by a position exchange of the two end points. So the relative phase factor between
these two states, eiθ , gives the statistics of the end points. These sequences of operations are
carefully chosen so that in eiθ all non-universal details are canceled, and only the universal
information of the statistics is kept.

Now we apply this approach to the Kitaev spin-S model. Suppose initially there are two
end points at sites 0 and 8 in Fig. 2(b). The operators M1,2,3 can be chosen as

M1 = U4eiπ(S y
3+S y

2+S y
1 )U (1)0 ,

M2 = U (2)0 eiπ(Sx
5+Sx

6+Sx
7 )U8 ,

M3 = U12eiπ(Sz
11+Sz

10+Sz
9)U (3)0 ,

(4)

where the subscript of each operator is its site index. To ensure the absence of energy cost
when moving the end points, these operators are chosen so that in the interior of each string
the operators are simply the part of a closed loop operator in this region, but at the end points
of the strings we can put more general unitary operators, such as U (1,2,3)

0 . In order for these
strings to seamlessly connect to become longer strings, we demand

U (1)0 U (2)0 = λ1eiπSx
0 , U (3)0 U (2)0 = λ2eiπSz

0 , (5)

where λ1,2 are some phase factors.
Now we show M1M2M3 = (−1)2S M3M2M1. To this end, it suffices to show

that U (1)0 U (2)0 U (3)0 = (−1)2SU (3)0 U (2)0 U (1)0 , which simply follows from Eq. (5) (using
eiπSx

0 eiπSz
0 = (−1)2SeiπSz

0 eiπSx
0 ). One can check that if we deform the shapes of the strings

or change the positions of their end points, as long as the strings connect in a way as in
Fig. 2(a), the relation M1M2M3 = (−1)2S M3M2M1 always holds. Namely, the statistics phase
eiθ = (−1)2S .

Therefore, we conclude that the end points of the strings related to the Z[1]2 symmetry
have fermionic (bosonic) statistics if S ∈ Z+ 1

2 (S ∈ Z), so this symmetry is anomalous (non-
anomalous).
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In passing, we note this anomaly can also be seen from the anisotropic limit of Eq. (1),
where |Jx | ≫ |Jy,z|. In this limit, the model realizes a Z2 topological order if S ∈ Z+ 1

2 , such
that the closed loop operators are precisely the Wilson loops of some fermionic excitations. If
S ∈ Z, the model realizes a short-range entangled ground state [28]. These again imply that
the Z[1]2 symmetry is anomalous (non-anomalous) if S ∈ Z+ 1

2 (S ∈ Z). The advantage of the
method illustrated in Fig. 2 is its generality, since it only uses the symmetry properties and
does not rely on any solvable limit of any Hamiltonian.

3.2 Gauging the Z[1]2 symmetry

Now we gauge the Z[1]2 symmetry in the Kitaev spin-S model, and we will see an obstruction to
this gauging if S ∈ Z+ 1

2 , while this obstruction does not show up if S ∈ Z, which confirms the

presence (absence) of the Z[1]2 symmetry anomaly for S ∈ Z+ 1
2 (S ∈ Z). We remark that the

Z[1]2 symmetry action here appears to be “on-site”, but this obstruction to gauging still exists
for S ∈ Z + 1

2 . This is in sharp contrast to 0-form unitary symmetries, which can always be
gauged if their actions are on-site in a tensor-product Hilbert space. Readers less familiar with
gauging on lattices can skip this subsection for the first reading.

Given a generator defined on a loop γ on the lattice, the global Z[1]2 symmetry action is

Sµi → λ
µ
i Sµi , (6)

where

λ
µ
i =

¨

−1 , i, µ ∈ γ ,

1 , otherwise.
(7)

Here i,µ ∈ γ means that the site i is on γ and the µ-bond adjacent to the site i is also on γ.
The above condition should be thought of as a lattice version of the closedness condition in a
gauge theory, δλ= 0.

To couple the system to a background field of the Z[1]2 symmetry, we remove the closedness
condition Eq. (7). So the gauge transformation for spins are

Sµi → λ
µ
i Sµi , λ

µ
i = ±1 . (8)

The gauge invariance of the gauged Hamiltonian requires us to include a gauge field Ai j defined
on each link, with gauge transformation

Ai j → λ
µ
i Ai jλ

µ
j , 〈i, j〉= µ . (9)

The gauge field on each link can be viewed as a two-state system, and A can be represented
by the Pauli operator σ3. The minimally coupled Hamiltonian is then

H ′ = −
∑

µ

Jµ
∑

〈i, j〉=µ

Sµi Ai jS
µ
j . (10)

Below we will show that the above gauging procedure is actually problematic if S ∈ Z+ 1
2 ,

by showing that the Gauss law constraints cannot be simultaneously satisfied. On the other
hand, the above gauging procedure is valid if S ∈ Z.

Given a lattice site k, it belongs to 3 different hexagons in the honeycomb lattice. There
are 3 Gauss law constraints, but only 2 of them are independent. These Gauss laws are related
to the following operators that generate the gauge transformations in Eqs. (8) and (9):

G(1)k = exp(iπS x
k )E

y
k Ez

k ,

G(2)k = exp(iπS y
k )E

x
k Ez

k ,

G(3)k = G(1)k G(2)k ,

(11)
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Figure 3: Independent Gauss law constraints from hexagons 1 and 2.

where E is the conjugate momentum of A defined on each link, i.e., EAE−1 = −A. For example,
E x

k means the conjugate variable on x-link adjacent to site k. If the gauge field on a link is
represented as a two-state system, then E can be represented by the Pauli operator σ1. The
superscripts in G(1,2,3)

k label which hexagon we are working on. It is easy to check that Eq. (11)
generates the correct gauge transformation, given by Eqs. (8) and (9).

After gauging, the physical Hilbert space is spanned by gauge invariant states |phy〉 satis-
fying

G(i)k |phy〉= |phy〉 . (12)

Notably, the Gauss law operators obey an algebra depending on the spin S

G(1)k G(2)k = (−1)2SG(2)k G(1)k . (13)

When S ∈ Z, these operators commute, so they can be simultaneously diagonalized and the
physical Hilbert space is non-empty. In contrast, when S ∈ Z+ 1

2 , these Gauss law operators
do not commute so the Gauss law constraints Eq. (12) cannot be simultaneously satisfied, i.e.,
the physical Hilbert space is actually empty. This signifies the obstruction to gauging the 1-
form symmetry when S ∈ Z+ 1

2 , i.e., the anomaly associated with the Z[1]2 symmetry. Such an

obstruction exists although the action of Z[1]2 appears to be “on-site”.

4 Full internal symmetry anomaly

After identifying the anomaly associated with the Z[1]2 symmetry, in this section we discuss the

full anomaly associated with the internal Z(x)2 × Z
(y)
2 × Z

T
2 × Z

[1]
2 symmetry. We will see that

for all S, there is no anomaly purely associated with the 0-form Z(x)2 ×Z
(y)
2 ×Z

T
2 symmetry or

mixed anomaly between the 0-form Z(x)2 ×Z
(y)
2 ×Z

T
2 symmetry and the Z[1]2 symmetry, and all

anomalies are purely associated with the Z[1]2 symmetry, which is discussed in Sec. 3.

The classification of all anomalies associated with the Z(x)2 ×Z
(y)
2 ×Z

T
2 ×Z

[1]
2 symmetry is

Z17
2 , with the details given in Appendix B. Here we give a more physics-oriented explanation of

this classification. It turns out that for this purpose it is convenient to view Z17
2 = Z

10
2 ×Z2×Z6

2,
then each piece has a simple interpretation.

• Z10
2 piece, containing anomalies solely associated with the 0-form Z(x)2 ×Z

(y)
2 ×Z

T
2 sym-

metry, which have been classified in the condensed matter literature. The group coho-
mology theory gives a H4(Z(x)2 × Z

(y)
2 × Z

T
2 , U(1)) = Z9

2 classification [40], and there is
another “beyond-cohomology” anomaly [41], which together give Z10

2 .

• Z2 piece, containing anomalies solely associated with the Z[1]2 1-form symmetry. As
mentioned before, such anomalies are simply classified by eiθ , the statistics of the end

7
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points of the strings related to this symmetry. In general, this statistics can be anyonic.
But time reversal symmetry requires eiθ = e−iθ , or eiθ = ±1, which means this statistics
is either bosonic or fermionic, and it contributes a Z2 classification to the full anomaly.

• Z6
2 piece, containing mixed anomalies between the 0-form and 1-form symmetries. As

explained in Appendix C (see also Refs. [42, 43]), these anomalies are in one-to-one
correspondence with different fractionalization patterns of the Z(x)2 ×Z

(y)
2 ×Z

T
2 symmetry

on the end points of the strings associated with theZ[1]2 symmetry. Indeed, these patterns

are classified by H2(Z(x)2 ×Z
(y)
2 ×Z

T
2 ,Z2) = Z6

2 [44], and they can be organized as follows.

1. The end points carry half charge under Z(x)2 .

2. The end points carry half charge under Z(y)2 .

3. Z(x)2 and Z(y)2 anti-commute when they act on the end points.

4. The end points are Kramers doublets.

5. Z(x)2 and ZT
2 anti-commute when they act on the end points.

6. Z(y)2 and ZT
2 anti-commute when they act on the end points.

With this understanding, we can fully pin down the anomaly of the Kitaev spin-S model.
Clearly, there cannot be any anomaly solely associated with the ordinary 0-form symmetries,
because they are on-site and necessarily anomaly-free. On the other hand, by checking the
end point statistics, we have found a nontrivial (trivial) anomaly solely associated with the
Z[1]2 symmetry if S ∈ Z+ 1

2 (S ∈ Z). All we need to do is to understand whether there is any

mixed anomaly between the 0-formZ(x)2 ×Z
(y)
2 ×Z

T
2 symmetry and the 1-formZ[1]2 symmetry. As

argued above, this mixed anomaly is nontrivial if the Z(x)2 ×Z
(y)
2 ×Z

T
2 symmetry is fractionalized

at the end points of the strings associated with the Z[1]2 symmetry.

4.1 The case with S = 1/2

Below we show that the Z(x)2 × Z
(y)
2 × Z

T
2 is not fractionalized for S = 1/2, and later we will

see that this is enough to determine the mixed anomaly for all S. When S = 1/2, the Kitaev
model can be exactly solved [1]. The solution is based on a parton construction, where at each
site one introduces 4 species of Majorana fermions, γ0,x ,y,z , such that the spin operator can be
written as Sµ = iγµγ0. In this case, the strings associated with the Z[1]2 symmetry are precisely
the Wilson lines of these Majorana fermions, so these Majorana fermions should be identified
as the end points of the strings. Then we only need to examine whether the Z(x)2 ×Z

(y)
2 ×Z

T
2

symmetry is fractionalized on these Majorana fermions. The action of the Z(x)2 × Z
(y)
2 × Z

T
2

symmetry on the Majorana fermions are given by Table 1 [45]. By comparing Table 1 against
the 6 distinct fractionalization patterns, we see that the Z(x)2 ×Z

(y)
2 ×Z

T
2 is not fractionalized.

So there is no mixed anomaly between the 0-form Z(x)2 ×Z
(y)
2 ×Z

T
2 symmetry and 1-form Z[1]2

symmetry.
Therefore, the Kitaev spin-1/2 model has an anomaly purely associated with the Z[1]2

1-form symmetry, but there is no anomaly associated with the 0-form symmetry or mixed
anomaly between the 0-form and 1-form symmetries.

4.2 Even-odd effect

Next, we discuss the anomaly for general S. First, because the anomalies are classified by
Z17

2 , an even number of copies of Kitaev spin-1/2 model is non-anomalous. Below, we will

8
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Table 1: Action of the Z(x)2 × Z
(y)
2 × Z

T
2 symmetry on the Majorana fermions in the

Kitaev spin-1/2 model. Here A and B label the sublattices (see Fig. 1 (a)).

Z(x)2 Z(y)2 ZT
2

γx
A → γx

A −γx
A γx

A

γx
B → γx

B −γx
B −γx

B

γ
y
A → −γy

A γ
y
A γ

y
A

γ
y
B → −γy

B γ
y
B −γy

B

γz
A→ −γz

A −γz
A γz

A

γz
B → −γz

B −γz
B −γz

B

γ0
A→ γ0

A γ0
A γ0

A

γ0
B → γ0

B γ0
B −γ0

B

construct an interpolation between 2S decoupled copies of the Kitaev spin-1/2 model and a
Kitaev spin-S model, such that all symmetries of the Kitaev spin-S model are preserved along
the entire interpolation. This means that the anomaly of the Kitaev spin-S model is equivalent
to the anomaly of 2S copies of the Kitaev spin-1/2 model. Therefore, we get an even-odd
effect: Models for all S ∈ Z + 1

2 have the same anomaly as the Kitaev spin-1/2 model, and
models for all S ∈ Z are non-anomalous.

To construct this interpolation, consider a honeycomb lattice system, where at each site
there are 2S species of spin-1/2 moments. The interpolation of the Hamiltonians is given by

H(ξ) = (1− ξ)H1 + ξH2 , ξ ∈ [0,1] , (14)

with

H1 = −
2S
∑

α=1

∑

〈i, j〉∈µ

Jµ1 sµα,is
µ
α, j ,

H2 = −J2

∑

i

� 2S
∑

α=1

sαi

�

 

2S
∑

β=1

sβ i

!

−
∑

〈i, j〉∈µ

Jµ3

� 2S
∑

α=1

sµαi

�

 

2S
∑

β=1

sµ
β j

!

,

(15)

where sµαi is a spin-1/2 operator at site i for species α, and J2≫ |J
x ,y,z
3 |. It is straightforward

to check that i) H(0) is the Hamiltonian of 2S decoupled copies of the Kitaev spin-1/2 model,
ii) H(1) is effectively the Hamiltonian of the Kitaev spin-S model, Eq. (1), where the spin
operator in Eq. (1) is identified as Sµi =

∑2S
α=1 sµαi ,

2 and iii) all symmetries of the Kitaev spin-S
model are preserved for any ξ ∈ [0, 1]. Therefore, this interpolation fulfills our purpose.

5 Consequences of the symmetries and anomalies

Having determined the anomaly associated with the Z[1]2 ×Z
(x)
2 ×Z

(y)
2 ×Z

T
2 symmetry in the Ki-

taev spin-S models, in this section we discuss the consequences of the symmetry and anomaly.
These consequences apply to not only the Kitaev spin-S model in Eq. (1), but also any of its
perturbed versions, as long as the perturbations are local and preserve the relevant symmetry.

2Because J2≫ |J
x ,y,z
3 |, we can first ignore J x ,y,z

3 and consider only the J2 term. The J2 term forces all 2S species
of spin-1/2’s to form a spin-S moment. Within the low-energy Hilbert space made of these spin-S moments, the
J x ,y,z

3 term precisely gives the Kitaev model.
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An example of such perturbations is the single-ion anisotropy, with δH = D
∑

i(S
z
i )

2. In this
context, the consequences we discuss below apply to arbitrarily large D. In fact, in Sec. 5.3
we will further argue that these consequences are robust even if the local perturbations break
the Z[1]2 symmetry, as long as these perturbations are weak.

5.1 S ∈ Z+ 1
2

Let us start with the case where S ∈ Z+ 1
2 . First, due to the nontrivial anomaly, the ground state

cannot be short-range entangled. Moreover, the anomaly of the Z[1]2 symmetry implies that
at low energies there are generically deconfined fermionic excitations, such that the bound
state of two such fermions is an ordinary local excitation. These fermions can be created by
applying open string operators to the ground state. In the field theoretic language, this means
that the low-energy effective field theory contains a one dimensional topological defect with
topological spin −1. In addition, due to the absence of mixed anomaly between the 1-form
and 0-form symmetries, this fermion carries no fractional quantum number under the 0-form
symmetry.

Put in short, the symmetries and anomalies in this case imply that the system realizes
symmetry-enforced exotic quantum matter.

Examples of quantum phases satisfying the above constraints are familiar in the Kitaev
spin-1/2 model, which include a gapless phase described by Majorana fermions coupled to a
dynamical Z2 gauge field, and a Z2 topological order. If the ZT

2 symmetry is broken, a non-
Abelian Ising topological order can also emerge, where the fermionic excitation carries no
fractional quantum number under the Z(x)2 ×Z

(y)
2 symmetry [1]. An example of perturbation

that breaks ZT
2 but preserves Z(x)2 × Z

(y)
2 × Z

[1]
2 is the 3-spin interaction in Ref. [1] (also see

Appendix B). In all these quantum phases, the low-energy effective field theory contains an
anomalous Z2 1-form symmetry, coming from the microscopic Z[1]2 symmetry. Since for all
S ∈ Z+ 1

2 , the models have the same anomaly, the hypothesis of emergibility [46,47] suggests
that all these examples of quantum phases can emerge either in the Kitaev spin-S model, or
by perturbing it in a symmetry-preserving manner.

Besides the above quantum phases that are known to arise in the Kitaev spin-1/2 model,
there can be additional ones which can be obtained by appropriate symmetric perturbations to
the model. For example, one interesting quantum phase is where the ordinary Z(x)2 ×Z

(y)
2 ×Z

T
2

symmetry is spontaneously broken, so that the corresponding model realizes coexistence of de-
confined fractional fermionic excitations and conventional spontaneous symmetry breaking.
It is also possible to realize a low-energy theory where the deconfined fermionic excitations
undergo a Gross-Neveu-Yukawa type quantum phase transition, while being coupled to a dy-
namical Z2 gauge field. This quantum phase transition may connect a quantum phase where
the ordinary Z(x)2 ×Z

(y)
2 ×Z

T
2 symmetry is spontaneously broken and another quantum phase

where it is not. To pin down which microscopic models give rise to these quantum phases and
phase transitions requires extensive numerical studies, and it is beyond the scope of this paper.

5.2 S ∈ Z

Next, we turn to the case where S ∈ Z. To simplify the discussion and to be physically relevant,
we will focus on the case without fine tuning, which rules out scenarios like those, for exam-
ple, discussed in Ref. [48]. One of the implications of the absence of fine tuning is that the
symmetry generated by each individual Wp operator (such as Eq. (2)) is not spontaneously
broken.3 Namely, no matter whether the system is defined on an infinite disk or torus, the

3This type of spontaneous symmetry breaking requires fine tuning because a symmetric local perturbation pro-
portional to Wp can lift the ground state degeneracy.
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ground state is an eigenstate of the Wp operator defined for each plaquette. However, when
the system is defined on a torus, we do not assume that the ground state must be unique, and
it is possible that the symmetry generated by the operators in Eq. (3) is spontaneously broken.

In this case, first of all, the absence of any anomaly implies that a Z[1]2 ×Z
(x)
2 ×Z

(y)
2 ×Z

T
2

symmetric short-range entangled ground state is possible. But how is such a ground state com-
patible with the fact that applying open string operators to it creates a pair of excitations that
seem to be fractional and deconfined, because these strings are tensionless? The resolution is
that the end points of these strings are bosons, as required by the (absence of) Z[1]2 anomaly,
and in such a symmetric short-range entangled ground state these bosons are condensed and
give rise to no deconfined fractional excitation.4

There are further consequences if it is known that the Z[1]2 symmetry is spontaneously
broken, which means there are multiple degenerate ground states if the system is defined on
a torus, such that these ground states are eigenstates of the operators in Eq. (3) with different
eigenvalues. In this case, there will be two types of deconfined excitations. One of them
are bosonic excitations that can be created by applying to the ground states the open string
operators associated with the Z[1]2 symmetry. These bosonic excitations are not themselves
ordinary local excitations, but the bound state of a pair of them is. Moreover, these bosonic
excitations should carry no fractional quantum number under the 0-form Z(x)2 × Z

(y)
2 × Z

T
2

symmetry, because of the absence of mixed anomaly between the Z[1]2 and Z(x)2 × Z
(y)
2 × Z

T
2

symmetries. Why are these bosons not condensed in this case? This is because the spontaneous
breaking of the Z[1]2 symmetry implies the presence of the other deconfined excitation, which
is gapped and has π mutual braiding statistics with these bosonic excitations [30–32]. In the
lattice, states with this other type of excitations are eigenstates of some Wp operators that
have different eigenvalues as the ground state. An example of such a quantum phase is a Z2
topological order.

5.3 Robustness of the consequences

Because the above reasoning is purely based on symmetries and anomalies, the consequences
we obtain are clearly generally applicable even if we perturb the Kitaev spin-S model by lo-
cal perturbations that respect the Z[1]2 × Z

(x)
2 × Z

(y)
2 × Z

T
2 symmetry. We remark that these

consequences still generically apply even if the Z[1]2 symmetry is weakly broken by local per-
turbations [31, 49–53]. A simple way to see it is to consider the effective field theory for the
underlying quantum phase. In the effective field theory, all operators transforming nontriv-
ially under the 1-form symmetry are supported on 1-dimensional manifolds, i.e., they are not
local operators in the field theory [30]. So the perturbed theory still has an emergent 1-form
symmetry at low energies since no local perturbation can break it, and all the aforementioned
constraints still apply. Only when the perturbation is strong enough so that the original effec-
tive field theory fails to describe the lattice system, these constraints will cease to apply.

The above consideration holds when the excited states that have different Wp eigenvalues
compared to the ground states have a finite energy gap. The critical local perturbation that
makes the original effective field theory fail is of the order of this gap. If this gap happens to
be vanishing in the absence of perturbation, the consequences of the Z[1]2 symmetry are not
necessarily stable against an infinitesimal local perturbation, and the existence of deconfined
fermionic excitations should also be more carefully justified. However, generically this gap is
finite unless the Hamiltonian is fine tuned, so all our conclusions are valid for almost all local
Hamiltonians with the symmetries and anomalies discussed above.

4Here an excitation is condensed if the long open string operators creating them have nonzero expectation
values in the ground states.
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To make this discussion less abstract, let us consider a concrete and familiar example,
i.e., the Kitaev spin-1/2 model in the isotropic limit, where Jx = Jy = Jz . For simplicity,

we will ignore the Z(x)2 × Z
(y)
2 × Z

T
2 symmetry, and focus on the consequence due to the Z[1]2

symmetry, i.e., the presence of deconfined fermionic excitations. This model has an exact Z[1]2
symmetry. The low-energy effective theory is described by Majorana fermions coupled to a
gapped dynamical Z2 gauge field, where the fermions are gapless [1]. In this field theory,
the presence of a Z2 1-form symmetry can be attributed to the gap of flux excitations of the
dynamical Z2 gauge field.

Now suppose we perturb the model by a weak magnetic field, then the same effective
field theory still applies, despite it is in a different regime where the Majorana fermions are
gapped [1]. In this case, although the lattice system no longer has an exact Z[1]2 symmetry,
the effective field theory still has an emergent Z2 1-form symmetry because the gap of the
Z2 gauge flux cannot close by an infinitesimal perturbation, and the consequence of the Z[1]2
symmetry, i.e., the presence of the deconfined fermionic excitations, still applies. When this
perturbation theory is strong enough to close the gap of the Z2 gauge flux, the effective field
theory is no longer described by Majorana fermions coupled to aZ2 gauge field, and in this case
the consequences discussed above do not apply any more. In fact, if the magnetic field is very
strong, the ground state is simply a fully polarized state, which indeed hosts no deconfined
fermionic excitations.

6 Discussion

In this paper, we have analyzed the symmetries and anomalies of the Kitaev spin-S models,
and discussed their profound physical consequences. In short, the Kitaev spin-S models have
a Z[1]2 ×Z

(x)
2 ×Z

(y)
2 ×Z

T
2 symmetry, and a nontrivial anomaly occurs only if S ∈ Z+ 1

2 , which

is purely associated with the Z[1]2 symmetry. The symmetry and anomaly have various con-
sequences in the ground state and the low-energy excitations, as discussed in Sec. 5. In
particular, if S ∈ Z + 1

2 the system realizes symmetry-enforced exotic quantum matter with
emergent fermions.

On one hand, our results can be viewed as constraints on the ground states of the Kitaev
spin-S models from their symmetries and anomalies. To fully understand their ground states,
however, one has to go beyond our analysis, and most likely numerical studies are needed.
On the other hand, if one is interested in the phase diagram containing all models with these
symmetries and anomalies, which include the Kitaev model as a special example, our results
provide the basis to classify all quantum phases that can emerge on this phase diagram. The
hypothesis of emergibility in Ref. [46] conjectures that all quantum phases that can match the
anomaly can emerge somewhere on the phase diagram, and based on this idea classifications
of various exotic quantum phases have been performed [47,54]. It is of interest to apply this
idea to the Kitaev models and their perturbed versions.

Also, in this paper we focus on the internal symmetries, and it is interesting to incorpo-
rate lattice symmetries into the analysis. Furthermore, when determining the mixed anomaly
between the 0-form and 1-form symmetries, we referred to the solvable Kitaev model. It is
useful to develop a method that can determine the anomaly without using any Hamiltonian.
In addition, it is important to identify numerical and experimental probes for the emergent
fractional excitations in these systems. Finally, since our idea of inferring the existence of frac-
tional excitations from symmetries and anomalies is quite general, applying it to other setups
may also lead to profound insights. We leave these to future work.
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We also remark that the present work is not only of conceptual importance, but also of prac-
tical interest. One lesson from this work (and also Refs. [33–35]) is that certain symmetries of
a system can enforce this system to realize an exotic quantum phase of matter, which features,
for example, fractional excitations. Therefore, to experimentally realize such exotic quantum
phases of matter, it is helpful to first identify experimental setups where such symmetries are
present, at least approximately.
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A General discussion of the lattice version of a Zn 1-form symme-
try in two spatial dimensions

In this appendix, we will discuss some general aspects of the lattice version of a Zn 1-form
symmetry. Specifically, in Appendix A.1 we discuss the important algebraic relations the oper-
ators defining a 1-form symmetry must satisfy, in Appendix A.2 we elaborate on the statistical
phase factor of the end points of strings associated with a 1-form symmetry, in Appendix A.3
we show that such a nontrivial statistical phase factor implies an obstruction to gauging the
1-form symmetry, and in Appendix A.4 we illustrate a Zn 1-form symmetry in a model dis-
cussed in Ref. [55]. To be concrete and to be related to the Kitaev models, we focus on a
honeycomb lattice where at each of its vertex there is a localized spin-S degree of freedom.
But our discussions can be generalized to other types of lattice systems.

A.1 General algebraic relations

In the field theoretic context, the generators of a 1-form symmetry in 2+ 1 spacetime dimen-
sions should be supported on closed loops. These generators should commute with each other,
and the closed loops supporting them can be arbitrarily deformed. As discussed in the main
text, the lattice versions of these two conditions are satisfied by the Z[1]2 1-form symmetry of
the Kitaev spin-S model. Below, we discuss the constraints these two conditions impose in the
context of a general Zn 1-form symmetry on a honeycomb lattice spin-S system.

Suppose the generator of the Zn 1-form symmetry supported on the plaquette labeled by p
in Fig. 4 is

Wp = ηp O(1)p,1 O(2)p,2 O(3)p,3 O(4)p,4 O(5)p,5 O(6)p,6 . (A.1)

In the above, O( j)p,i is a unitary operator supported at the i-th vertex of the plaquette p, and the

superscript j labels a specific unitary operator at this vertex. For example, O(3)p,1 denotes the

operator obtained by translating O(3)p,3 from vertex 3 to vertex 1. Also note that in this notation,
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Figure 4: A plaquette labeled by p is surrounded by 6 other plaquettes, labeled by
p1, p2, · · · , and p6, respectively. The 6 vertices of the plaquette p are labeled by
numbers 1, 2, · · · , and 6, respectively. The vertices of other plaquettes are ordered
and indexed in the same way as those of plaquette p.

a single vertex may have multiple labels. For example, “p, 1”, “p1, 5” and “p6, 3” label the same
vertex. The U(1) phase factor ηp in the definition of Wp is the eigenvalue of the ground states
with respect to (Wp/ηp)†.5 It is introduced in the definition so that Wp acts as the identity
operator on the ground states. The Zn nature of the 1-form symmetry demands that (Wp)n be
a U(1) phase factor, which then implies that

�

O( j)
�n
= eiφ j . Without loss of generality, we can

set
�

O( j)
�n
= 1 by redefining O( j) into e−iφ j/nO( j). This redefinition may change the value of

ηp. But later we will see that all important aspects of the 1-form symmetry do not depend on
the value of ηp. In fact, ηp will not show up at all in the discussion below.

Now we discuss the constraints on these operators O’s. Because each plaquette is adjacent
to 6 other plaquettes, and each pair of adjacent plaquettes share two common vertices, for
Wp ’s on different plaquettes to commute with each other, we demand

O(1)p,1 O(2)p,2O(4)p,2O(5)p,1 = O(4)p,2O(5)p,1 O(1)p,1 O(2)p,2 ,

O(2)p,2 O(3)p,3O(5)p,3O(6)p,2 = O(5)p,3O(6)p,2 O(2)p,2 O(3)p,3 ,

O(3)p,3 O(4)p,4O(6)p,4O(1)p,3 = O(6)p,4O(1)p,3 O(3)p,3 O(4)p,4 .

(A.2)

In the above, equations such as O( j)p,1 = O( j)p1,5 and O( j)p,2 = O( j)p2,6 have been used.
The above equations impose strong constraints on these operators. For example, the first

equation can be written as

O(1)p,1 O(5)p,1 O(1)†p,1 O(5)†p,1 = O(4)p,2 O(2)p,2 O(4)†p,2 O(2)†p,2 . (A.3)

Because the unitary operators on the two sides of the above equation are supported at different
vertices, both operators must be a U(1) phase factor. We denote this U(1) phase factor by α1.
Now we can remove the subscripts indexing the plaquette and vertex, and we get the follow
operator identities valid at each vertex of the lattice

O(1)O(5)O(1)† O(5)† = O(4)O(2)O(4)† O(2)† = α1 . (A.4)

5There can be fine-tuned cases where the Hamiltonian has degenerate ground states that are eigenstates of Wp ’s
with different eigenvalues. Such cases are fine-tuned because local perturbations proportional to Wp ’s can lift the
degeneracy. In these fine-tuned cases, our conclusion applies to each ground state, which has its own set of ηp ’s.
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Similarly, we obtain

O(2)O(6)O(2)† O(6)† = O(5)O(3)O(5)† O(3)† = α2 ,

O(3)O(1)O(3)† O(1)† = O(6)O(4)O(6)† O(4)† = α3 ,
(A.5)

where α2,3 are also some U(1) phase factors.
Next, we turn to the condition that the closed loops supporting these generators can be de-

formed. On a honeycomb lattice, this condition means that, when the three operators coming
from three plaquettes that share a common vertex are multiplied, the product of the operators
at this common vertex should be a U(1) phase factor. Following similar reasoning as before,
from this condition we get

O(1)O(3)O(5) = β1 , O(2)O(4)O(6) = β2 , (A.6)

where β1,2 are U(1) phase factors. Because of Eqs. (A.4) and (A.5), the orders of the operators
in Eq. (A.6) are unimportant, in the sense that changing their orders will just change β1,2 into
some other U(1) phase factors.

Eq. (A.6) can be used to show that α1 = α2 = α3. To see it, note

α1 = O(1)O(5)O(1)† O(5)† = β∗1 O(1)O(5)O(3) = β∗1α2 O(1)O(3)O(5) = α2 ,

α2 = O(2)O(6)O(2)† O(6)† = β∗2 O(2)O(6)O(4) = β∗2α3 O(2)O(4)O(6) = α3 .
(A.7)

For this reason, we denote α1 = α2 = α3 = α. Later we will see that α is the statistics of the end
points of the strings associated with this 1-form symmetry, and it characterizes the anomaly
associated with the Zn 1-form symmetry. Because

�

O( j)
�n
= 1 for any j = 1, 2, · · · , 6, we have

O(5) =
�

O(1)
�n

O(5) = αnO(5)
�

O(1)
�n
= αnO(5). Therefore, in our setup αn = 1, i.e., α = e2πi m

n .
Suppose the dimension of the Hilbert space at each site is N . By taking the determinants of
both sides of Eq. (A.4), we get αN = e2πi m

n N = 1. So for a given dimension of the local Hilbert
space, the types of 1-form symmetry anomalies that can be realized are restricted, namely m
is an integer multiple of n

gcd(n,N) .
Putting the above discussions together, the two conditions (i.e., (i) the generators of the Zn

1-form symmetry commute with each other and (ii) the closed loops supporting these genera-
tors can be arbitrarily deformed) impose general algebraic relations among the operators O’s
that define each generator as in Eq. (A.1), and these relations are given by Eqs. (A.4), (A.5)
and (A.6). Moreover, the U(1) phase factors in Eqs. (A.4) and (A.5) satisfy α1 = α2 = α3 = α,
with αn = 1. In addition, if the Hilbert space dimension at each site is N , then αN = 1. For
the Kitaev spin-S model, it is straightforward to verify that α= (−1)2S .

So far we have been focusing on the generators of the Zn 1-form symmetry defined on each
plaquette. If the system is defined on a torus, there are additional generators supported on the
non-contractible loops of the torus, just like Eq. (3). These generators also lead to a constraint
on the dimension of the local Hilbert space. The argument below is independent of the details
of the lattice, unlike the constraint derived above, which holds only on a honeycomb lattice.
For the Zn 1-form symmetry discussed here, the generalizations of W1 and W2 in Eq. (3) are

W1 = O(2)7 O(5)†1 O(2)2 O(5)†3 O(2)8 O(5)†9 ,

W2 = O(4)†10 O(1)5 O(4)†4 O(1)3 O(4)†8 O(1)11 .
(A.8)

It is straitghforward to check that W1 and W2 commute with Wp for each plaquette, but they
do not commute with each other. Instead, they satisfy W1W2W−1

1 W−1
2 = α2, which is a general

consequence of the 1-form symmetry anomaly as W1W2W−1
1 W−1

2 measures the full braiding of
the 1-form symmetry end points. Suppose α = e2πi m

n with m ∈ Z, then the Hamiltonian on a
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torus will have at least a degeneracy n
gcd(n,2m) for each energy level, where gcd(n, 2m) denotes

the greatest common divisor of n and 2m. So the dimension of the total Hilbert space must
be an integer multiple of n

gcd(n,2m) . On other other hand, if the dimension of the local Hilbert

space at each site is N , the dimension of the total Hilbert space is NA, where A is the number
of sites of the system. For these two conditions to be compatible, N cannot be coprime with

n
gcd(n,2m) .

A.2 Statistical phase factor of the end points

In the main text, using the approach depicted in Fig. 2, we have verified that the end points
of the strings associated with the Z[1]2 symmetry of the Kitaev spin-S model have a self sta-
tistical phase factor (−1)2S . Furthermore, we have verified that this phase factor remains the
same if we change the locations of the end points or deform the shapes of the strings. In
this subsection, using the algebraic relations among the operators defining a general Zn 1-
form symmetry discussed in Appendix A.1, we will show that i) The self statistics from this
approach always gives a U(1) phase factor, rather than a more nontrivial unitary operation,
and ii) This U(1) phase factor is unambiguous, i.e., it remains the same if we deform the
shapes of the strings.6 In fact, this statistical phase factor is precisely α. These results imply
that the self statistics determined from this approach is indeed well-defined for a general Zn
1-form symmetry satisfying the conditions in Appendix A.1. Again, we remark that although
this approach was originally designed for topological orders, in our context we do not need to
make any assumption about the quantum phase realized by our Hamiltonian. For the Kitaev
spin-S model, α= (−1)2S , so the corresponding end points have fermionic (bosonic) statistics
if S ∈ Z+ 1

2 (S ∈ Z).
As in the main text, let us first write down the operators M1,2,3. In general, they take

the form

M1 = U4O(1)3 O(4)†2 O(1)1 U (1)0 ,

M2 = U (2)0 O(3)†5 O(6)6 O(3)†7 U8 ,

M3 = U12O(5)11 O(2)†10 O(5)9 U (3)0 ,

(A.9)

where U (1,2,3)
0 are unitary operators supported at the vertex 0, and U4, U8 and U12 are uni-

tary operators supported at the vertex 4, 8 and 12, respectively. In writing down the above
operators, Eq. (A.6) has been used.

We would like to evaluate M1M2M3(M3M2M1)† = U (1)0 U (2)0 U (3)0 (U
(3)
0 U (2)0 U (1)0 )

†. Again, in
order for the strings to seamlessly connect to become longer strings, we demand

U (1)0 U (2)0 = λ1O(6)0 , U (3)0 U (2)0 = λ2O(2)†0 , (A.10)

where λ1,2 are some U(1) phase factors. In writing down the second equation, Eq. (A.6) has
been used. Now we see that

U (1)0 U (2)0 U (3)0 (U
(3)
0 U (2)0 U (1)0 )

† = λ1λ
∗
2O(6)0 U (3)0 U (1)†0 O(2)0 = O(6)0 O(2)†0 O(6)†0 O(2)0 = α . (A.11)

It is straightforward to check if the shapes of the strings are deformed in a way that preserves
their relative positions as in Fig. 2 (a), the statistical phase factor we obtain is always α, which
shows that self statistics via this approach is indeed well-defined, for any Zn 1-form symmetry
obeying the conditions in Appendix A.1. By deforming the shapes of the strings, here we
include the deformations that retain the operators in the interiors of the strings, but change

6It obviously remains the same if we simply change the locations of the end points.
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the operators at their ends, such as the operators U (1,2,3)
0 , into operators that are supported

on multiple sites in disk-like regions, which have linear sizes much smaller than the lengths of
the strings themselves.

A.3 Gauging the Zn 1-form symmetry

In this subsection, we discuss how to gauge the Zn 1-form symmetry. We will find an obstruc-
tion to this gauging procedure when α ̸= 1, which confirms that the nontrivial self statistics
yields the anomaly of the Zn 1-form symmetry.

It is straightforward to extend the gauging procedure in Sec. 3.2 to a general Zn 1-form
symmetry. The key in the gauging procedure is to identify the Gauss law. For a general Zn
1-form symmetry, the analog of Eq. (11) is

G(1)k = O(3)k E x
k Ez

k ,

G(2)k = O(1)k E y
k Ez

k ,

G(3)k = G(1)k G(2)k ,

(A.12)

where now the operators E are generalized Pauli matrices for an n dimensional Hilbert space
defined on a link, which represents the Zn gauge field. Again, because O(3)k and O(1)k do
not commute unless α = 1, there is an obstruction to gauging this Zn 1-form symmetry un-
less α= 1.

A.4 The Zn 1-form symmetry in the generalized Kitaev model

In this subsection, we illustrate a Zn 1-form symmetry in the generalized Kitaev model pro-
posed in Ref. [55]. This 1-form symmetry and its anomaly were not discussed in Ref. [55], but
were discussed in Ref. [34]. Here we discuss them in the framework introduced above.

This model is defined on a honeycomb lattice spin-S system with n= 2S+1. At each site, we
can define a set of basis states of the local Hilbert space, denoted by | j〉, where j = 1, 2, · · · , n.
We further define operators T x , T y and T z such that T x | j〉= | j+1 (mod n)〉, T z| j〉= e

2πi
n j| j〉,

and T y = −iT z†T x†.
In the definition of the Zn 1-form symmetry generator, Eq. (A.1), we take O(1) = O(4) = T y ,

O(2) = O(5) = T z and O(3) = O(6) = T x . It is straightforward to check that (Wp/ηp)n = 1, and

the conditions Eqs. (A.4), (A.5) and (A.6) are all satisfied, with α = e
2πi
n . According to the

discussion above, this Zn 1-form symmetry is anomalous, and the end points of the strings
associated with this 1-form symmetry have self statistical phase factor e

2πi
n .

The Hamiltonian with this Zn 1-form symmetry can be taken as

H =
∑

〈i, j〉∈µ

�

JµTµi Tµj + h.c.
�

, (A.13)

where µ = x , y, z labels the three types of bonds, just like the standard Kitaev model, and Jµ
is a bond-dependent parameter.

When n= 2, the model becomes the Kitaev spin-1/2 model, and the Zn 1-form symmetry
is precisely the Z[1]2 symmetry in the present paper.

B Bordism classification of anomalies

In this appendix, we compute the classification of the anomalies associated with the internal
Z(x)2 ×Z

(y)
2 ×Z

[1]
2 symmetry and ZT

2 time reversal symmetry, where G[p] with group G stands
for a p-form symmetry. If a symmetry is 0-form, we do not explicitly write this superscript.
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It is known that for a bosonic theory in d spacetime dimensions, the relevant anomalies
are classified by following (dual) bordism group7 (see below for the definition) [56–58]

hom(ΩO
d+1(BZ

(x)
2 × BZ(y)2 × B2Z2); U(1)) , (B.1)

where Bp+1G is the classifying space associated to p-form symmetry G[p], and the unoriented-
ness is the background field for ZT

2 . Given the spacetime manifold M d , it can be shown that
(p+1)-form background gauge fields for G[p] are in one-to-one correspondence to the homo-
topy class of maps f : M d → Bp+1G. These maps are called classifying maps.8

Let us recall the definition of bordism group ΩO
d+1(X ), where X is a CW-complex. All

manifolds will be unoriented in the following. An element in this group is a (d+1)-dimensional
manifold N d+1 equipped with a map f : N d+1 → X modding out the following equivalence
relation: Given that N d+1 and N ′d+1 are two manifolds defined above equipped with maps
f , f ′ respectively, if there is a (d + 2)-dimensional manifold W d+2 with a map F : W d+2→ X
such that ∂W d+2 = N d+1

∐

N ′d+1 and F extends both f , f ′, then we define N d+1 ∼ N ′d+1. In
short,

ΩO
d+1(X ) :=

(d + 1)-manifolds with f : N d+1→ X
∼

. (B.4)

The bordism class can be made into an abelian group where the group multiplication is given
by disjoint union of manifolds. The group identity is the empty manifold.

If there are local fermions (in the UV), in order to classify the anomalies, one should replace
unoriented manifolds with spin manifolds or Pin± manifolds.

It is also worth mentioning that for the unoriented case, all elements of ΩO
∗ (X ) are of order

2. This is because N × [0,1] gives a bordism N
∐

N → ;.
Now we are ready to compute the bordism group (with d = 3 for Kitaev model). The

main tool will be Atiyah-Hirzebruch spectral sequence (AHSS) [62]. The input (or E2-page)
of AHSS is given by

E2
p,q := Hp(BZ

(x)
2 × BZ(y)2 × B2Z2, ΩO

q (pt)) , (B.5)

where ΩO
q (pt) is the unoriented bordism group of a point (see Ref. [63] for a detailed compu-

tation for it). We list the relevant ones below:

ΩO
q (pt) =



























Z2 , q = 0 ,

0 , q = 1 ,

Z2 , q = 2 ,

0 , q = 3 ,

Z2
2 , q = 4 .

(B.6)

Substituting Eq. (B.6) into Eq. (B.5), we get the E2-page as Fig. 5.

7For a group G, hom(G; U(1)) is another group called the Pontryagin dual of G, denoted as G∨.
8Similar construction of the classifying spaces also applies to more general higher-group symmetries [59], where

gauge transformation of background fields is modified by Green-Schwarz shift. There it also makes sense to talk
about higher bundles and related classifying spaces [60,61]. For the special case of 2-group symmetryG, we define
G = π1(BG) and A = π2(BG), where πk denotes k-th homotopy group. In physical terms, πk+1(BG) is called k-
form symmetry group. A 2-group symmetry is a mixing of 0-form symmetry and 1-form symmetry. Mathematically,
we have a Postnikov decomposition

B2A→ BG→ BG , (B.2)

which is characterized by a Postnikov class β ∈ H3(BG, A). In our case, the 2-group splits, which means there is
no mixing (i.e., Postnikov class β = 0). Hence

BG≃ B2Z2 × B
�

Z(x)2 ×Z
y
2

�

. (B.3)

Note RHS is homotopically equivalent to B2Z2 × BZ(x)2 × BZ(y)2 , as claimed earlier.
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0 Z2 Z2
2 Z4

2 Z7
2 Z11

2

0 1 2 3 4

Figure 5: The E2-page of AHSS in the unoriented case. The differential indicated in
the figure vanishes.

In our case, since the Thom spectrum MO is a graded Eilenberg-Maclane spectrum [64],
the spectral sequence collapses at the E2-page and there is no extension problem. As a result

ΩO
4 (BZ

(x)
2 × BZ(y)2 × B2Z2) =

⊕

p+q=4

E2
p,q = Z

17
2 . (B.7)

In summary, the anomalies associated with the Z(x)2 ×Z
(y)
2 ×Z

T
2 ×Z

[1]
2 symmetry are clas-

sified by
ΩO

4 (BZ
(x)
2 × BZ(y)2 × B2Z2)

∨ = Z17
2 . (B.8)

Generators of the Z17
2 group are given by

w4
1 , w2

2 , a4
1 , a4

2 , w2
1a2

1 , w2
1a2

2 , a3
1a2 , a2

1a2
2 , a1a3

2 , w2
1a1a2,

x2
2 , a2

1 x2 , a2
2 x2 , a1a2 x2 , w2

1 x2 , a1w1 x2 , a2w1 x2 .
(B.9)

In terms of the standard bulk-boundary correspondence for anomalies, the above 17 generators
can be viewed as 17 topological actions of the 3+1 dimensional bulks, whose 2+1 dimensional
boundaries have the 17 types of anomalies. Here wi is the i-th Stiefel-Whitney class of the
tangent bundle of the spacetime manifold where the 3 + 1 dimensional bulk lives on, x2 is
the background 2-form gauge field of Z[1]2 , and a1 and a2 are 1-form background gauge fields

for Z(x)2 and Z(y)2 , respectively. Notice that the first 10 of them are purely associated with

the Z(x)2 × Z
(y)
2 × Z

T
2 0-form symmetry, the 11th of them is purely associated with the Z[1]2 1-

form symmetry, and the last 6 of them are mixed anomalies between the 0-form and 1-form
symmetries.

It is also of interest to obtain the classification of the anomalies associated with the
Z(x)2 × Z

(y)
2 × Z

[1]
2 symmetry. One way to get a model with such a symmetry is to add the

following 3-spin interaction to the Kitaev spin-S model:

H3-spin = −h
∑

j,k,l

S x
j S y

k Sz
l + (symmetry related terms) , (B.10)
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Figure 6: The 3-spin interaction Eq. (B.10) on sites j, k and l.

4 Z Z2
2 Z2

2 Z5
2 Z5

2 ×Z4 Z11
2

3 0 0 0 0 0 0

2 0 0 0 0 0 0

1 0 0 0 0 0 0

0 Z Z2
2 Z2

2 Z5
2 Z5

2 ×Z4 Z11
2

0 1 2 3 4 5

Figure 7: The E2-page of AHSS without time reversal symmetry.

where i, j, k are lattice sites arranged as in Fig. 6.
These anomalies are classified by the bordism group ΩSO

4 (BZ
(x)
2 × BZ(y)2 × B2Z2)tor, where

“tor” means taking the torsion part. The E2-page in this case is given by Fig. 7.
For degree reasons, we can readily read the desired result in E2-page:

ΩSO
4 (BZ

(x)
2 × BZ(y)2 × B2Z2)tor = Z5

2 ×Z4 , (B.11)

so
(ΩSO

4 (BZ
(x)
2 × BZ(y)2 × B2Z2)

∨
tor = Z

5
2 ×Z4 . (B.12)

With the same notations in (B.9), generators of Z5
2 are respectively

a2
1 x2, a2

2 x2, a1a2 x2, a3
1a2, a1a3

2 , (B.13)

and P(x2) generates the Z4, where P is Pontryagin square.
Note that there is a natural map induced by inclusion i : SO(n) ,→ O(n),

i∗ : ΩO
d+1(X )

∨→ ΩSO
d+1(X )

∨ , (B.14)

for any X . Physically, this map tells us which Z(x)2 × Z
(y)
2 × Z

[1]
2 anomaly a theory (e.g., the

Kitaev spin-S model perturbed by the 3-spin interaction in Eq. (B.10)) has, if this theory is
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obtained by breaking the ZT
2 symmetry of another theory (e.g., the Kitaev spin-S model) that

has a Z(x)2 ×Z
(y)
2 ×Z

[1]
2 ×Z

T
2 symmetry. In our situation,

i∗(x2
2) = 2P(x2) (mod4) , (B.15)

and i∗ acts as the identity map on generators appearing in Eq. (B.13). All other terms that
appear in Eq. (B.9) but not in Eq. (B.13) (such as w4

1) vanish under i∗.

C Mixed anomalies between 0-form and 1-form symmetries from
symmetry fractionalization

In this appendix, we explain the connection between symmetry fractionalization and the mixed
anomaly between 0-form and 1-form symmetries. As discussed in Appendix B, these mixed
anomalies are captured by the following topological actions of the 3 + 1 dimensional bulk
theories, whose boundaries realize the anomalies:

a2
1 x2, a2

2 x2, a1a2 x2, w2
1 x2, a1w1 x2, a2w1 x2 . (C.1)

We start with the first one, a2
1 x2. In the 3+1 dimensional spacetime manifold where the

bulk theory lives, consider inserting a one-form symmetry defect on a two-dimensional sub-
manifold X , ending on the boundary at a one dimensional submanifold Y = ∂ X . It has the
effect of turning on 2-form gauge field x2 that is Poincaré dual to X , i.e., x2 = δ(X2). The
topological action a2

1 x2 then contributes to the total action by
∫

X a2
1 =

∫

X
1
2δa1 =

∫

Y
1
2 a1,

where the Bockstein homomorphism is used. This action means that the boundary one-form
symmetry line carries a half charge under the Z(x)2 symmetry, i.e., this mixed anomaly is related

to the fractionalization of the Z(x)2 symmetry on the excitations living on the end points of the
one-form symmetry line. Similar argument shows that the mixed anomaly a2

2 x2 is related to

the fractionalization of the Z(y)2 symmetry on the end points.
Next, we turn to a1a2 x2, using an argument similar to the one in Ref. [65]. Again, consider

inserting a one-form symmetry defect of the x2 gauge field on a two-dimensional submanifold
X . The contribution from the topological action a1a2 x2 now becomes

∫

X a1a2, which means

the surface X in this case is decorated with a 1+1 dimensional Z(x)2 ×Z
(y)
2 symmetry-protected

topological (SPT) state described by this topological action [40]. It is well known that the
boundaries of this SPT carry a fractionalized projective representation of the Z(x)2 ×Z

(y)
2 sym-

metry, such that Z(x)2 and Z(y)2 anti-commute when they act on the boundaries [66]. Therefore,
the mixed anomaly described by a1a2 x2 implies this particular fractionalization pattern of the
Z(x)2 × Z

(y)
2 symmetry on the end point excitations of the Z[1]2 one-form symmetry line. Simi-

lar analysis shows that the anomalies described by the other 3 topological actions are related
to the other fractionalization patterns of the Z(x)2 × Z

(y)
2 × Z

T
2 symmetry on these end point

excitations, as presented in the main text.

References

[1] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006),
doi:10.1016/j.aop.2005.10.005.

[2] G. Jackeli and G. Khaliullin, Mott insulators in the strong spin-orbit coupling limit: From
Heisenberg to a quantum compass and Kitaev models, Phys. Rev. Lett. 102, 017205 (2009),
doi:10.1103/PhysRevLett.102.017205.

21

https://scipost.org
https://scipost.org/SciPostPhys.16.4.100
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.102.017205


SciPost Phys. 16, 100 (2024)

[3] J. G. Rau, E. K.-H. Lee and H.-Y. Kee, Spin-orbit physics giving rise to novel phases in
correlated systems: Iridates and related materials, Annu. Rev. Condens. Matter Phys. 7,
195 (2016), doi:10.1146/annurev-conmatphys-031115-011319.

[4] S. Trebst, Kitaev materials, Phys. Rep. 950, 1 (2022),
doi:10.1016/j.physrep.2021.11.003.

[5] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart and R.
Valentí, Models and materials for generalized Kitaev magnetism, J. Phys.: Condens. Matter
29, 493002 (2017), doi:10.1088/1361-648X/aa8cf5.

[6] C. Xu, J. Feng, H. Xiang and L. Bellaiche, Interplay between Kitaev interaction and single
ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers, npj Comput. Mater. 4, 57
(2018), doi:10.1038/s41524-018-0115-6.

[7] P. P. Stavropoulos, D. Pereira and H.-Y. Kee, Microscopic mechanism for a higher-spin Kitaev
model, Phys. Rev. Lett. 123, 037203 (2019), doi:10.1103/PhysRevLett.123.037203.

[8] C. Xu, J. Feng, M. Kawamura, Y. Yamaji, Y. Nahas, S. Prokhorenko, Y. Qi, H. Xiang and
L. Bellaiche, Possible Kitaev quantum spin liquid state in 2D materials with S= 3/2, Phys.
Rev. Lett. 124, 087205 (2020), doi:10.1103/PhysRevLett.124.087205.

[9] P. P. Stavropoulos, X. Liu and H.-Y. Kee, Magnetic anisotropy in spin-3/2 with heavy ligand
in honeycomb Mott insulators: Application to CrI3, Phys. Rev. Res. 3, 013216 (2021),
doi:10.1103/PhysRevResearch.3.013216.

[10] A. M. Samarakoon, Q. Chen, H. Zhou and V. O. Garlea, Static and dynamic magnetic
properties of honeycomb lattice antiferromagnets Na2M2TeO6, M = Co and Ni, Phys. Rev.
B 104, 184415 (2021), doi:10.1103/PhysRevB.104.184415.

[11] J. Cen and H.-Y. Kee, Determining Kitaev interaction in spin-S honeycomb Mott insulators,
Phys. Rev. B 107, 014411 (2023), doi:10.1103/PhysRevB.107.014411.

[12] K. Fukui, Y. Kato, J. Nasu and Y. Motome, Ground-state phase diagram
of spin-S Kitaev-Heisenberg models, Phys. Rev. B 106, 174416 (2022),
doi:10.1103/PhysRevB.106.174416.

[13] G. Baskaran, D. Sen and R. Shankar, Spin-S Kitaev model: Classical ground states, or-
der from disorder, and exact correlation functions, Phys. Rev. B 78, 115116 (2008),
doi:10.1103/PhysRevB.78.115116.

[14] J. Oitmaa, A. Koga and R. R. P. Singh, Incipient and well-developed entropy plateaus in spin-
S Kitaev models, Phys. Rev. B 98, 214404 (2018), doi:10.1103/PhysRevB.98.214404.

[15] A. Koga, H. Tomishige and J. Nasu, Ground-state and thermodynamic properties of an
S= 1 Kitaev model, J. Phys. Soc. Jpn. 87, 063703 (2018), doi:10.7566/JPSJ.87.063703.

[16] T. Minakawa, J. Nasu and A. Koga, Quantum and classical behavior of spin-
S Kitaev models in the anisotropic limit, Phys. Rev. B 99, 104408 (2019),
doi:10.1103/PhysRevB.99.104408.

[17] Z. Zhu, Z.-Y. Weng and D. N. Sheng, Magnetic field induced spin liq-
uids in S= 1 Kitaev honeycomb model, Phys. Rev. Res. 2, 022047 (2020),
doi:10.1103/PhysRevResearch.2.022047.

22

https://scipost.org
https://scipost.org/SciPostPhys.16.4.100
https://doi.org/10.1146/annurev-conmatphys-031115-011319
https://doi.org/10.1016/j.physrep.2021.11.003
https://doi.org/10.1088/1361-648X/aa8cf5
https://doi.org/10.1038/s41524-018-0115-6
https://doi.org/10.1103/PhysRevLett.123.037203
https://doi.org/10.1103/PhysRevLett.124.087205
https://doi.org/10.1103/PhysRevResearch.3.013216
https://doi.org/10.1103/PhysRevB.104.184415
https://doi.org/10.1103/PhysRevB.107.014411
https://doi.org/10.1103/PhysRevB.106.174416
https://doi.org/10.1103/PhysRevB.78.115116
https://doi.org/10.1103/PhysRevB.98.214404
https://doi.org/10.7566/JPSJ.87.063703
https://doi.org/10.1103/PhysRevB.99.104408
https://doi.org/10.1103/PhysRevResearch.2.022047


SciPost Phys. 16, 100 (2024)

[18] C. Hickey, C. Berke, P. P. Stavropoulos, H.-Y. Kee and S. Trebst, Field-driven gapless
spin liquid in the spin-1 Kitaev honeycomb model, Phys. Rev. Res. 2, 023361 (2020),
doi:10.1103/PhysRevResearch.2.023361.

[19] X.-Y. Dong and D. N. Sheng, Spin-1 Kitaev-Heisenberg model on a honeycomb lattice, Phys.
Rev. B 102, 121102 (2020), doi:10.1103/PhysRevB.102.121102.

[20] H.-Y. Lee, N. Kawashima and Y. B. Kim, Tensor network wave function of S= 1 Kitaev spin
liquids, Phys. Rev. Res. 2, 033318 (2020), doi:10.1103/PhysRevResearch.2.033318.

[21] H.-Y. Lee, T. Suzuki, Y. B. Kim and N. Kawashima, Anisotropy as a diagnostic test for distinct
tensor-network wave functions of integer- and half-integer-spin Kitaev quantum spin liquids,
Phys. Rev. B 104, 024417 (2021), doi:10.1103/PhysRevB.104.024417.

[22] I. Khait, P. P. Stavropoulos, H.-Y. Kee and Y. B. Kim, Characterizing spin-one Kitaev quantum
spin liquids, Phys. Rev. Res. 3, 013160 (2021), doi:10.1103/PhysRevResearch.3.013160.

[23] H.-K. Jin, W. M. H. Natori, F. Pollmann and J. Knolle, Unveiling the S= 3/2 Kitaev honey-
comb spin liquids, Nat. Commun. 13, 3813 (2022), doi:10.1038/s41467-022-31503-0.

[24] Y.-H. Chen, J. Genzor, Y. B. Kim and Y.-J. Kao, Excitation spectrum of spin-1 Kitaev spin
liquids, Phys. Rev. B 105, L060403 (2022), doi:10.1103/PhysRevB.105.L060403.

[25] O. Bradley and R. R. P. Singh, Instabilities of spin-1 Kitaev spin liquid phase
in presence of single-ion anisotropies, Phys. Rev. B 105, L060405 (2022),
doi:10.1103/PhysRevB.105.L060405.

[26] J. S. Gordon and H.-Y. Kee, Insights into the anisotropic spin-S Kitaev chain, Phys. Rev.
Res. 4, 013205 (2022), doi:10.1103/PhysRevResearch.4.013205.

[27] Y. Chen, Y.-C. He and A. Szasz, Phase diagrams of spin-S Kitaev ladders, Phys. Rev. B 108,
045124 (2023), doi:10.1103/PhysRevB.108.045124.

[28] H. Ma, Z2 spin liquids in the higher spin-S Kitaev Honeycomb model: An exact decon-
fined Z2 gauge structure in a nonintegrable model, Phys. Rev. Lett. 130, 156701 (2023),
doi:10.1103/PhysRevLett.130.156701.

[29] M. Oshikawa, Oddness in the spin-S Kitaev honeycomb model, J. Club Condens. Matter
Phys. (2023), doi:10.36471/JCCM_September_2023_02.

[30] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, J. High
Energy Phys. 02, 172 (2015), doi:10.1007/JHEP02(2015)172.

[31] J. McGreevy, Generalized symmetries in condensed matter, Annu. Rev. Condens. Matter
Phys. 14, 57 (2023), doi:10.1146/annurev-conmatphys-040721-021029.

[32] C. Córdova, T. T. Dumitrescu, K. Intriligator and S.-H. Shao, Snowmass white pa-
per: Generalized symmetries in quantum field theory and beyond, (arXiv preprint)
doi:10.48550/arXiv.2205.09545.

[33] R. Verresen and A. Vishwanath, Unifying Kitaev magnets, Kagomé dimer models, and ruby
Rydberg spin liquids, Phys. Rev. X 12, 041029 (2022), doi:10.1103/PhysRevX.12.041029.

[34] T. D. Ellison, Y.-A. Chen, A. Dua, W. Shirley, N. Tantivasadakarn and D. J. Williamson,
Pauli topological subsystem codes from Abelian anyon theories, Quantum 7, 1137 (2023),
doi:10.22331/q-2023-10-12-1137.

23

https://scipost.org
https://scipost.org/SciPostPhys.16.4.100
https://doi.org/10.1103/PhysRevResearch.2.023361
https://doi.org/10.1103/PhysRevB.102.121102
https://doi.org/10.1103/PhysRevResearch.2.033318
https://doi.org/10.1103/PhysRevB.104.024417
https://doi.org/10.1103/PhysRevResearch.3.013160
https://doi.org/10.1038/s41467-022-31503-0
https://doi.org/10.1103/PhysRevB.105.L060403
https://doi.org/10.1103/PhysRevB.105.L060405
https://doi.org/10.1103/PhysRevResearch.4.013205
https://doi.org/10.1103/PhysRevB.108.045124
https://doi.org/10.1103/PhysRevLett.130.156701
https://doi.org/10.36471/JCCM_September_2023_02
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1146/annurev-conmatphys-040721-021029
https://doi.org/10.48550/arXiv.2205.09545
https://doi.org/10.1103/PhysRevX.12.041029
https://doi.org/10.22331/q-2023-10-12-1137


SciPost Phys. 16, 100 (2024)

[35] K. Inamura and K. Ohmori, Fusion surface models: 2+ 1d lattice models from fusion 2-
categories, (arXiv preprint) doi:10.48550/arXiv.2305.05774.

[36] P.-S. Hsin, H. T. Lam and N. Seiberg, Comments on one-form global symmetries and their
gauging in 3d and 4d, SciPost Phys. 6, 039 (2019), doi:10.21468/SciPostPhys.6.3.039.

[37] X.-G. Wen, Emergent anomalous higher symmetries from topological order and from dynam-
ical electromagnetic field in condensed matter systems, Phys. Rev. B 99, 205139 (2019),
doi:10.1103/PhysRevB.99.205139.

[38] M. Levin and X.-G. Wen, Fermions, strings, and gauge fields in lattice spin models, Phys.
Rev. B 67, 245316 (2003), doi:10.1103/PhysRevB.67.245316.

[39] K. Kawagoe and M. Levin, Microscopic definitions of anyon data, Phys. Rev. B 101, 115113
(2020), doi:10.1103/PhysRevB.101.115113.

[40] X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders
and the group cohomology of their symmetry group, Phys. Rev. B 87, 155114 (2013),
doi:10.1103/PhysRevB.87.155114.

[41] A. Vishwanath and T. Senthil, Physics of three-dimensional bosonic topological insulators:
Surface-deconfined criticality and quantized magnetoelectric effect, Phys. Rev. X 3, 011016
(2013), doi:10.1103/PhysRevX.3.011016.

[42] D. G. Delmastro, J. Gomis, P.-S. Hsin and Z. Komargodski, Anomalies and symmetry frac-
tionalization, SciPost Phys. 15, 079 (2023), doi:10.21468/SciPostPhys.15.3.079.

[43] T. D. Brennan, C. Córdova and T. T. Dumitrescu, Line defect quantum numbers & anomalies,
(arXiv preprint) doi:10.48550/arXiv.2206.15401.

[44] A. M. Essin and M. Hermele, Classifying fractionalization: Symmetry classification
of gapped Z2 spin liquids in two dimensions, Phys. Rev. B 87, 104406 (2013),
doi:10.1103/PhysRevB.87.104406.

[45] Y.-Z. You, I. Kimchi and A. Vishwanath, Doping a spin-orbit Mott insulator: Topo-
logical superconductivity from the Kitaev-Heisenberg model and possible application to
(Na2/Li2)IrO3, Phys. Rev. B 86, 085145 (2012), doi:10.1103/PhysRevB.86.085145.

[46] L. Zou, Y.-C. He and C. Wang, Stiefel liquids: Possible non-Lagrangian quan-
tum criticality from intertwined orders, Phys. Rev. X 11, 031043 (2021),
doi:10.1103/PhysRevX.11.031043.

[47] W. Ye, M. Guo, Y.-C. He, C. Wang and L. Zou, Topological characterization of Lieb-Schultz-
Mattis constraints and applications to symmetry-enriched quantum criticality, SciPost Phys.
13, 066 (2022), doi:10.21468/SciPostPhys.13.3.066.

[48] J. Huxford, D. Nguyen and Y. B. Kim, Gaining insights on anyon condensation and 1-form
symmetry breaking across a topological phase transition in a deformed toric code model,
SciPost Phys. 15, 253 (2023), doi:10.21468/SciPostPhys.15.6.253.

[49] M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability
of topological ground-state degeneracy and emergent gauge invariance, Phys. Rev. B 72,
045141 (2005), doi:10.1103/PhysRevB.72.045141.

[50] N. Iqbal and J. McGreevy, Mean string field theory: Landau-Ginzburg theory for 1-form
symmetries, SciPost Phys. 13, 114 (2022), doi:10.21468/SciPostPhys.13.5.114.

24

https://scipost.org
https://scipost.org/SciPostPhys.16.4.100
https://doi.org/10.48550/arXiv.2305.05774
https://doi.org/10.21468/SciPostPhys.6.3.039
https://doi.org/10.1103/PhysRevB.99.205139
https://doi.org/10.1103/PhysRevB.67.245316
https://doi.org/10.1103/PhysRevB.101.115113
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevX.3.011016
https://doi.org/10.21468/SciPostPhys.15.3.079
https://doi.org/10.48550/arXiv.2206.15401
https://doi.org/10.1103/PhysRevB.87.104406
https://doi.org/10.1103/PhysRevB.86.085145
https://doi.org/10.1103/PhysRevX.11.031043
https://doi.org/10.21468/SciPostPhys.13.3.066
https://doi.org/10.21468/SciPostPhys.15.6.253
https://doi.org/10.1103/PhysRevB.72.045141
https://doi.org/10.21468/SciPostPhys.13.5.114


SciPost Phys. 16, 100 (2024)

[51] T.-C. Lu and S. Vijay, Characterizing long-range entanglement in a mixed state through
an emergent order on the entangling surface, Phys. Rev. Res. 5, 033031 (2023),
doi:10.1103/PhysRevResearch.5.033031.

[52] S. D. Pace and X.-G. Wen, Exact emergent higher-form symmetries in bosonic lattice models,
Phys. Rev. B 108, 195147 (2023), doi:10.1103/PhysRevB.108.195147.

[53] A. Cherman and T. Jacobson, Emergent 1-form symmetries, (arXiv preprint)
doi:10.48550/arXiv.2304.13751.

[54] W. Ye and L. Zou, Classification of symmetry-enriched topological quantum spin liquids,
(arXiv preprint) doi:10.48550/arXiv.2309.15118.

[55] M. Barkeshli, H.-C. Jiang, R. Thomale and X.-L. Qi, Generalized Kitaev mod-
els and extrinsic non-Abelian twist defects, Phys. Rev. Lett. 114, 026401 (2015),
doi:10.1103/PhysRevLett.114.026401.

[56] D. S. Freed and M. J. Hopkins, Reflection positivity and invertible topological phases, Geom.
Topol. 25, 1165 (2021), doi:10.2140/gt.2021.25.1165.

[57] A. Kapustin, Symmetry protected topological phases, anomalies, and cobordisms: Beyond
group cohomology, (arXiv preprint) doi:10.48550/arXiv.1403.1467.

[58] K. Yonekura, On the cobordism classification of symmetry protected topological phases,
Commun. Math. Phys. 368, 1121 (2019), doi:10.1007/s00220-019-03439-y.

[59] C. Córdova, T. T. Dumitrescu and K. Intriligator, Exploring 2-group global symmetries, J.
High Energy Phys. 02, 184 (2019), doi:10.1007/jhep02(2019)184.

[60] J. C. Baez and D. Stevenson, The classifying space of a topological 2-group, Springer,
Berlin, Heidelberg, Germany, ISBN 9783642011993 (2009), doi:10.1007/978-3-642-
01200-6_1.

[61] A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, in
Algebra, geometry, and physics in the 21st century, Birkhäuser, Cham, Switzerland, ISBN
9783319599380 (2017), doi:10.1007/978-3-319-59939-7_5.

[62] A. Fomenko and D. Fuchs, Chapter 6: K-theory and other extraordinary cohomology
theories, in Homotopical topology, Springer, Cham, Switzerland, ISBN 9783319234878
(2016), doi:10.1007/978-3-319-23488-5_6.

[63] Z. Wan and J. Wang, Higher anomalies, higher symmetries, and cobordisms I: Classifica-
tion of higher-symmetry-protected topological states and their boundary fermionic/bosonic
anomalies via a generalized cobordism theory, Ann. Math. Sci. Appl. 4, 107 (2019),
doi:10.4310/amsa.2019.v4.n2.a2.

[64] Y. Rudyak, On Thom spectra, orientability, and cobordism, Springer, Berlin, Heidelberg,
Germany, ISBN 9783540620433 (1998), doi:10.1007/978-3-540-77751-9.

[65] S.-Q. Ning, L. Zou and M. Cheng, Fractionalization and anomalies in
symmetry-enriched U(1) gauge theories, Phys. Rev. Res. 2, 043043 (2020),
doi:10.1103/PhysRevResearch.2.043043.

[66] X. Chen, Z.-C. Gu and X.-G. Wen, Classification of gapped symmetric
phases in one-dimensional spin systems, Phys. Rev. B 83, 035107 (2011),
doi:10.1103/PhysRevB.83.035107.

25

https://scipost.org
https://scipost.org/SciPostPhys.16.4.100
https://doi.org/10.1103/PhysRevResearch.5.033031
https://doi.org/10.1103/PhysRevB.108.195147
https://doi.org/10.48550/arXiv.2304.13751
https://doi.org/10.48550/arXiv.2309.15118
https://doi.org/10.1103/PhysRevLett.114.026401
https://doi.org/10.2140/gt.2021.25.1165
https://doi.org/10.48550/arXiv.1403.1467
https://doi.org/10.1007/s00220-019-03439-y
https://doi.org/10.1007/jhep02(2019)184
https://doi.org/10.1007/978-3-642-01200-6_1
https://doi.org/10.1007/978-3-642-01200-6_1
https://doi.org/10.1007/978-3-319-59939-7_5
https://doi.org/10.1007/978-3-319-23488-5_6
https://doi.org/10.4310/amsa.2019.v4.n2.a2
https://doi.org/10.1007/978-3-540-77751-9
https://doi.org/10.1103/PhysRevResearch.2.043043
https://doi.org/10.1103/PhysRevB.83.035107

	Introduction
	Kitaev spin-S model and its symmetries
	1-form symmetry and its anomaly
	Statistics of the end point excitations
	Gauging the Z2[1] symmetry

	Full internal symmetry anomaly
	The case with S=1/2
	Even-odd effect

	Consequences of the symmetries and anomalies
	SZ+12
	SZ
	Robustness of the consequences

	Discussion
	General discussion of the lattice version of a Zn 1-form symmetry in two spatial dimensions
	General algebraic relations
	Statistical phase factor of the end points
	Gauging the Zn 1-form symmetry
	The Zn 1-form symmetry in the generalized Kitaev model

	Bordism classification of anomalies
	Mixed anomalies between 0-form and 1-form symmetries from symmetry fractionalization
	References

