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Abstract

It was demonstrated in [1] that the anticipation pattern displayed by a dense crowd
crossed by an intruder can be successfully described by a minimal Mean-Field Games
model. However, experiments show that changes in the pedestrian knowledge signifi-
cantly modify the dynamics of the crowd. Here, we show that the addition of a single
parameter, the discount factor γ, which gives a lower weight to events distant in time,
is sufficient to observe the whole variety of behaviors observed in the experiments. We
present a comparison between the discounted MFG and the experimental data, also pro-
viding new analytic results and insight about how the introduction of γ modifies the
model.
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1 Introduction

As discussed by Hoogendorn et al. [2], pedestrian motion is a multi-scale endeavour that needs
to be described at different levels, and one typically distinguishes the strategic level (what are
the goals of the travel and the general timing), the tactical level (which route to take) and
the operational level (how to move on that route). If the strategic and tactical levels naturally
assume some form of long term optimisation, it is on the other hand quite generally expected
that the operational level, especially for dense crowds, could be described by dynamical models
involving physical and social forces [3], and possibly a short term (up to the next collision)
anticipation [4–6]. However, the comparison of experimental data from a control experiment
involving a static dense crowd [7] with various simulation models showed that [1], in such
cases, it appears necessary to include long term anticipation in order to reproduce the observed
experimental features. This could be achieved with a very simple Mean-Field Game model.

Mean-Field Games, introduced by Lasry and Lions [8, 9] as well as Huang et al. [10] is a
mathematical formalism in which both anticipation and competitive optimization between the
agents, here pedestrians, are accounted for at the mean field level. The fact that it may provide
a good description of human behaviour is a priori non trivial for at least two reasons. The first
one is that the agents clearly cannot compute the predictions of the Mean-Field Games model,
the second is that they usually do not have the perfect information assumed in the model.

The answer to this first concern is, as in many game theoretical context, that we expect the
behaviour of the agents to be learnt rather than computed. In the same way that we do not
need to use the laws of dynamics to know where a ball thrown in the air will land, there are
in daily life many circumstances which are familiar enough that we can, by instinct, predict
the behavior of the crowd and act accordingly. It is clearly in these circumstances that we
can expect a Mean-Field-Game description to apply, and this was the case in the experimental
context of [7]. The second of these concerns, which will be the main focus of this paper, was
actually addressed experimentally in [7]. The experimental setup studied there consisted in
the crossing of a dense static crowd by a cylindrical intruder. However, the experiments have
been performed in three configurations: with pedestrian facing the obstacle, being randomly
oriented, or giving their back to it. Moreover, in the latter case pedestrians were asked not to
anticipate, while no such instruction was given in the first two cases. Clearly, if, in this simple
context, we can consider that in the first configuration, participants have perfect information
about the incoming cylinder, this is not the case for the other two, and indeed, as seen on
Fig. 1, the observed density maps, obtained by an average over repeated realizations of the
experiment, clearly differ significantly in the three cases.

In [1], we focused only on the case where pedestrians were facing the obstacle (for an
average density of 2.5ped/m2, slightly lower than the one shown in Fig. 1(a), but displaying
the same features). Observing Figure 1(a), we see that in the frontal configuration, individ-
uals move in advance, temporarily accepting a higher local density in order to get rid of the
obstacle sooner, showing evidence of a trade-off dynamics. The crowd’s density increases on
the sides and depletes in front of and behind the cylinder, with pedestrians moving outward
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Figure 1: Experimental results of the passage of a cylindrical intruder (blue disc)
through a static dense crowd for an average density of ∼ 3.5ped/m2 for three differ-
ent configurations. In (a) pedestrians were all facing the obstacle, in (b) they were
randomly oriented and in (c) participants were asked to give their back to it and not
to anticipate. Data from [7].

to avoid its arrival and inward to regain a less congested position, always perpendicularly to
the obstacle’s motion. This clearly is an anticipatory dynamics. Indeed even pedestrians far
from the cylinder know that it will arrive and, depending on its speed, they will start moving
accordingly. However, when individuals are placed randomly, as in the second panel of Fig-
ure 1, we notice a shorter corridor of anticipation in front of the obstacles, but with similar
accumulation patterns on its sides. When pedestrians in the experiment were asked not to
anticipate and to give their back to the incoming intruder, effectively looking away from it, as
the third panels of Figure 1 shows, we observe that the accumulation of the individuals moves
from the sides to the front of the obstacle, similarly to what happens in analog configurations
with granular matter [1].

The main goal of this paper is to demonstrate that at least in the experimental setup cor-
responding to Fig.1, this lack of information can be taken into account simply by introducing
a discount factor, i.e. a term discounting the cost of actions in a future further than a certain
cutoff, to the model already used in [1] to simulate the frontal case. Such discount factors
are, for example, usually introduced in optimization problem spanning a long time period
(typically in economic context) to express the unwillingness of agents to wait too long for a
reward. Here however we use it as a way to simulate the shortsightedness of pedestrians. We
shall in section 2 introduce the corresponding Mean-Field-Game model and give some discus-
sion about its generic behavior. Then, section 4 will feature the comparison with the three
experimental cases discussed above. We will first come back on the case where pedestrians
were facing the obstacle, providing more details about the results presented in [1]. Then, the
other experimental setups will be considered, and we will show how the introduction of the
discount factor helps in modeling these configurations.

2 The mean-field games model

Mean-Field Games (MFG) constitutes a relatively new field of research. Its foundations are
in the works of J.-M. Lasry and P.-L. Lions [8, 9], and of M. Huang, R. P. Malhamé and P. E.
Caines [10]. During the years, many works have been focused on the mathematical properties
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of MFG [11–15]. Although there are applications of MFG to pedestrian dynamics [16], to the
best of our knowledge comparisons of crowds simulated with MFG to experimental data [1]
are rare. A general and mathematically rigorous discussion of the foundations of MFG being
found in the book [14], and a physicist-friendly version being exposed in [17], here we will
limit ourselves to essentials.

2.1 The discounted equations

In the specific settings of our MFG model, each agent’s state variable X⃗ (t) ∈ R2, representing
their position, evolves following the Langevin equation

˙⃗X = a⃗(t) +σξ⃗(t) , (1)

where ξ⃗(t) is a two dimensional Gaussian white noise of variance one, and a⃗ is the drift
velocity, the control parameter that represents the strategy players choose by minimizing the
discounted cost functional defined, in this case, as

c[a⃗]( x⃗ , t) = E

¨

∫ T

t
L( x⃗ ,τ)[m]eγ(t−τ)dτ+ eγ(t−T )cT ( x⃗T )

«

, (2)

where cT is a terminal cost, that could be used to represent a target for pedestrians, as for
instance an exit, but which here is simply taken as cT = 0. In this equation, γ is the discount
factor, and its inverse 1/γ defines an anticipatory time scale determining how far into the
future agents will look while optimizing. Finally

L( x⃗ ,τ)[m] =
µ

2
(a⃗(τ))2 − V [m] ( x⃗ ,τ) , (3)

can be seen as the term describing the agents’ preferences. In fact, the squared velocity tells
that going too fast is detrimental, and that the best would be to stand still, but the presence
of the external world, represented by the potential term

V [m]( x⃗ , t) = gm( x⃗ , t) + U0( x⃗ , t) , (4)

describing the interaction with the others and with the environment, cause agents to actually
move. The main assumptions of MFG are that all agents are equal and the interaction with
others is of mean-field type, determined only through the average density

m( x⃗ , t) = E

�

1
N

N
∑

i=1

δ( x⃗ − X⃗ i(t))

�

.

For g < 0, the first term in the right hand side of Eqs. (4), gm( x⃗ , t), expresses the agents’
desire to stay away from densely packed areas. On the other hand, the term U0( x⃗ , t) describes
the interaction with the environment, and in the case of the crossing cylinder reads

U0( x⃗ , t) =

¨

+∞ , ∥ x⃗ − s⃗ t∥< R ,

0 , otherwise,
(5)

where s⃗ is the velocity and R the radius of the cylinder. A quantity of interest of the MFG is
then the value function

u( x⃗ , t) = inf
a⃗

c[a⃗]( x⃗ , t) , (6)
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that, as shown in appendix A, can be obtained solving the Hamilton-Jacobi-Bellman equation

¨

∂tu= −
σ2

2 ∆u+ 1
2µ(∇⃗u)2 + γu+ V [m] ,

u( x⃗ , t = T ) = cT ( x⃗) .
(HJB)

This is a backward equation, that is solved starting from the terminal condition expressed by
the terminal cost cT ( x⃗). The optimal choice of the control parameter is a⃗∗ = −∇⃗u/µ. Given the
stochastic evolution of each player’s state variable, the corresponding average density evolves
following the Kolmogorov-Fokker-Plank equation

¨

∂t m=
σ2

2 ∆m+ 1
µ∇⃗ · (m∇⃗u) ,

m( x⃗ , t = 0) = m0( x⃗) ,
(KFP)

a forward equation solved starting from an initial density profile.
As discussed extensively in [1,17], in the γ = 0 limit the sytem of equations (HJB)-(KFP)

can be cast in a form analog to the non-linear Schrödinger equation through the combination of
a Cole-Hopf transformation and of an hermitization of the KFP equation. We show in appendix
B how this formulation evolves for a general γ.

2.2 The ergodic state

2.2.1 Without discount factor

When γ = 0, i.e. when the anticipation time 1/γ is not bounded, we know from [18], that
under certain hypothesis, among which a large optimisation time T and the time independence
of the potential V , and for times far from the beginning and the end, an ergodic or stationary
state exists. Such state is characterised by the fact that its observable quantities, i.e. the
optimal velocity field and the density field, do not depend on time anymore. In particular, for
the velocity this means that

∂t a⃗
∗
e( x⃗ , t) = −

1
µ
∂t∇⃗ue( x⃗ , t) = 0 =⇒ ue( x⃗ , t) = ue( x⃗) + ue(t) , (7)

where the superscript e refers to the ergodic state. Moreover, again from [18] we also know
that for γ = 0, u⃗(t)e = −λt, where λ is a parameter to be estimated. In the settings of our
experiment, in the frontal case, so that we can use γ = 0, we can determine the value of λ
by looking at what happens far enough from the cylinder for the density to be unaffected by
its presence. In fact, away from the obstacle we expect me( x⃗ , t) ≃ m0, ∀t ∈ [0, T] and the
optimal strategy is just to stay at rest, meaning a⃗∗ = 0. Therefore, using definition (2) with
γ= 0 we have

u( x⃗ , t) = −
∫ T

t
(gm0)dτ= −gm0T
︸ ︷︷ ︸

ue( x⃗)

+ gm0
︸︷︷︸

−λ

t , (8)

and thus λ= −gm0.

2.2.2 With discount factor

Here we make the rather natural hypothesis that, for large T , such a stationary state exists also
when γ ̸= 0, i.e. for a finite anticipation time 1/γ. We therefore assume that for intermediate
times, there exists a state of the discounted system whose observables are independent on
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time. If that is the case, (7) should still hold, and we can as before determine the time depen-
dent part of ue by considering what happens far from the cylinder where the density remains
homogeneous and the optimal strategy is simply to stand still. In this case (2) becomes

u( x⃗ , t) = −
∫ T

t
(gm0)e

−γ(τ−t)dτ=
gm0

γ

�

e−γ(T−t) − 1
�

. (9)

We observe that if we fix T and let γ→0, the right hand side of Eq. (9) becomes−gm0T+gm0 t,
recovering Eq. (8) and the γ= 0 case. On the other hand, if we fix γ and let T →∞, we have
that ue(t)≡ 0, and since ue(t) does not depend on the position, this must be true everywhere,
meaning that when γ ̸= 0

ue( x⃗ , t) = ue( x⃗) , (10)

and we can write both (HJB) and (KFP) in their stationary form as

0=
σ2

2
∆ue −

1
2µ
(∇⃗ue)2 − γue(x)− V [me] , (11)

0=
σ2

2
∆me +

1
µ
∇ · (me∇ue) . (12)

2.3 Passing to the moving frame

When we introduced the ergodic state in subsection 2.2 we stressed the necessity of the absence
of any explicit time dependence in the cost functional (2) for Eqs. (11)-(12) to be possible,
which conflicts with the fact that we simulate the presence of the intruder by using a cylindrical
potential whose position evolves with time. We thus change the reference frame in which we
describe the experimental setting by passing from the point of view of the laboratory to the
point of view of the cylinder, and define

û( x⃗ − s⃗ t, t) = u( x⃗ , t) , m̂( x⃗ − s⃗ t, t) = m( x⃗ , t) .

In the framework of the cylinder the potential becomes V̂ [m̂] = gm̂+ Û0( x⃗), not depending
explicitly on time anymore, and with

Û0( x⃗) =

¨

+∞ , x < R ,

0 , otherwise,
(13)

where R is the radius of the cylinder. For all other quantities we observe that, in general,

∂t f ( x⃗ , t) =
d
dt

f ( x⃗ , t) =
d
dt

f̂ ( x⃗ − s⃗ t, t) = ∂t f̂ − s⃗ · ∇⃗ f̂ , (14)

where the total derivative is taken in the lab’s reference frame. Using (14) in (HJB) and (KFP)
gives us the time dependent version of the MFG equation in û and m̂ variables in the moving
frame

∂t û− s⃗ · ∇⃗û= −
σ2

2
∆û+

1
2µ
(∇⃗û)2 + γû+ V̂ [m̂] , (15)

∂t m̂− s⃗ · ∇⃗m̂=
σ2

2
∆m̂+

1
µ
∇ · (m̂∇û) , (16)

whereas the corresponding equations for the ergodic state are

0= −
σ2

2
∆ûe +

1
2µ
(∇⃗ûe)2 + s⃗ · ∇⃗ûe + γûe(x) + V̂ [m̂e] , (17)

0=
σ2

2
∆m̂e +

1
µ
∇ · (m̂e∇ûe) + s⃗ · ∇⃗m̂ . (18)
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3 Parameter space of the model

In [1], it was shown that when γ = 0, the agents’ dynamics is entirely characterized by two
parameters, a length scale

ξ=

√

√ µσ4

2gm0
,

that by analogy with the non-linear Schrödinger context we refer to as the healing length, and
a velocity scale

cs =
√

√ gm0

2µ
,

that, for the same reason, we refer to as the sound velocity. Their physical meaning can be
understood by imagining that the pedestrian crowd is subjected to a local perturbation. The
healing length would then be the distance up to which the density would deform, and the
sound velocity the speed at which the density would return to its initial unperturbed state
when the perturbation is removed. If we then include the parameters R and s characterizing
the intruding cylinder, we see that when γ = 0, our MFG model is entirely characterized by
two dimensionless quantities, R̃≡ R/ξ and s̃ = s/cs.

As shown in Appendix D, the inclusion of a non-zero discount factor γ, which has the
dimension of the inverse of a time, implies that the MFG model is now characterized by three
dimensionless quantities, R̃, s̃ and a third one that we can take as either γ̃(1) ≡ (ξ/cs)γ or
γ̃(2) ≡ (R/s)γ (Note γ̃(2) = (R̃/s̃)γ̃(1)). The first option, γ̃(1), compares the time scale associated
with anticipation to the one of the crowd dynamics, while γ̃(2) measures it in terms of the time
scale characterizing the cylinder.

Fig. 2 shows the numerical solution of the stationary equations (17) and (18) (see ap-
pendix C for a brief description of the numerical implementation) for four choices of (R̃, s̃) and
different values of γ. Note that in the (R̃≫ 1, s̃≫ 1) and (R̃≪ 1, s̃≪ 1) quadrants, we have
assumed R̃ ∼ s̃, so that γ̃(1) ∼ γ̃(2), and both of them are therefore either large together or
small together. However in the quadrant (R̃≫ 1, s̃≪ 1), we have γ̃(2) = (R̃/s̃)γ̃(1) ≫ γ(1), so
we have distinguished the three possible cases (γ̃(1) ≪ 1, γ̃(2) ≪ 1), (γ̃(1) ≪ 1, γ̃(2) ≫ 1), and
(γ̃(1)≫ 1, γ̃(2)≫ 1); and in the same way in the quadrant (R̃≪ 1, s̃≫ 1) where γ̃(2)≪ γ(1) we
distinguish the three cases (γ̃(1)≪ 1, γ̃(2)≪ 1), (γ̃(1)≫ 1, γ̃(2)≪ 1), and (γ̃(1)≫ 1, γ̃(2)≫ 1).

Let us consider for instance the III quadrant, where both s̃ and R̃ are small. The fact that
s̃ is small means that from the point of view of the crowd the cylinder is perceived as nearly
immobile, which explains the rotational invariant shape of the solution. For small values of γ,
the distance at which an immobile perturbation is felt by the crowd is, as mentioned above,
given by the healing length ξ. As γ increases this length should be compared to dcs

= cs/γ, the
length scale related to the finitude of the anticipation horizon. Hence, from figure 3 we see
that the scale of the density perturbation around the obstacle is given by the smallest between
the dcs

and ξ. In this case, a large γ does not, however, modify the qualitative aspect of the
density distribution, which remains rotationally invariant.

Figure 4 then focuses on the I quadrant where both R̃ and s̃ are large. Because s̃ is large,
the agents feel that the cylinder moves significantly more rapidly than the speed they can
themselves maintain comfortably within the crowd. For low γ, they would therefore tend to
anticipate the obstacle arrival by moving sideways quite early, which explains the low density
corridor extending rather far in front of the cylinder in that case, typically at a distance of order
ls = sξ/cs. The density profile is in this case essentially symmetric, as for γ = 0 the system is
invariant under the symmetry (t 7→ −t, y 7→ −y). When γ increases, ls should be compared
with ds = s/γ, which measure how far from the cylinder agents can foresee its motion. As
illustrated on Figure 4 , we see that when ds < ls, the size of the perturbation in front of the
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Figure 2: Exploration of parameter space of the MFG model. Each sub-figure repre-
sents the discounted stationary MFG density obtained solving (18) and (17). The
axis represent the dimensionless quantities R̃ ≡ R/ξ and s̃ = s/cs. Each quad-
rant shows different values of γ̃(1) ≡ (ξ/cs)γ (or γ̃(2) ≡ (R/s)γ). We note that
the choice of parameters best representing the experimental conditions lies in quad-
rant I, except for the case of Fig. 1c which lies at the boundary between quadrants
I and II. Parameters of the sub-figures in each quadrant in format

�

s̃, R̃; [γ̃(1)]
�

[with
γ̃(2) = (R̃/s̃)γ̃(1)]: quadrant I (3,3; [.25, 5]), quadrant II (3,0.3; [0.5, 5,40]), quad-
rant III (0.3, 0.3; [0.25, 5]), quadrant IV (0.3,3; [0, 0.45,1.8]).

cylinder is given by ls. Contrarily to what happens in the third quadrant however, this change
of scale qualitatively alters the solution, with a density blob forming in front of the cylinder
and on the other hand a density profile behind the cylinder which is much less affected.

The variations of the density plots seen on quadrant II and IV are somewhat more complex
since the four length scales (ξ, ls, dcs

, ds) are involved, but the mechanisms observed in Figure
3 and Figure 4 can be seen to be at work there too.

4 Comparisons with experiment

We now turn to the analysis of the experimental settings previously discussed. We will deal
with the three different experimental configurations showed in Figure 1 separately. Our claim
is that we can describe the three scenarios as the stationary state of our MFG model. This is
already true for the frontal configuration, as was shown in [1]. Our goal is therefore to demon-
strate that this is also true for the other two configurations. We will compare the experimental
data to the density field m̂e and to the velocity field v( x⃗) = −[µ−1∇ûe + σ2(∇m̂e)/(2m̂e)]
derived from the system Eqs. (18)-(17). For completeness, we have also solved the time de-
pendent MFG equations (HJB)-(KFP) and in appendix C we compare their solution at interme-
diate times t ≃ T/2 to m̂e, and verify that they are as expected identical, the ergodic approach
being however significantly faster and more precise.

4.1 Pedestrians facing the obstacle

In [1] we studied the case where pedestrians were facing the arriving cylinder. Under these
circumstances, people could efficiently estimate the cylinder’s size and velocity, thus the time
it would take for the obstacle to reach them. We model such scenario by taking γ= 0, and the
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Figure 3: Focus on the quadrant III of Figure 2 with details about the size of the
perturbation. The white circle has radius R+ ξ whereas the black circle has radius
R + dcs

, with dcs
≡ cs/γ (note that the left panel’s black circle is not visible since

dcs
= 4). We observe how the smallest of the circles is the one governing the distance

at which the perturbation due to the cylinder is felt.

simulation is shown on the left column of Figure 5. Here we see how striking the resemblance
to the experiment is. Starting from the density plot, we clearly see the vertically symmetric dis-
tribution of pedestrians, with a depletion prior and posterior to the obstacle passage and with
an increase on the sides. Moreover, the velocity field obtained from the MFG model correctly
displays the lateral motion of pedestrians stepping aside to make room for the intruder. We
believe MFG good performances should be attributed to an element that, as already discussed
in [1], many pedestrian dynamics models, such as granular and social force models, strug-
gle accounting for. This is the long term anticipatory behavior of individuals clearly captured
in the experiment and naturally present in the very structure of MFG, namely by means of
the backward-solved HJB equation (HJB). The back-propagation of information allows MFG
agents to optimally anticipate the obstacle’s arrival, and most notably without prescribing an
anticipation time, contrarily to many models for crowds motion. Indeed, solving the MFG
equations gives the Nash equilibrium velocity an agent should adopt for any given point in the
simulated space, i.e. the strategy of motion which, in the spirit of (2), is best suited to avoid
the obstacle and high density areas.

4.2 Pedestrians randomly oriented

In the experimental configuration where participants were asked to orient themselves ran-
domly we see, from the right column of Figure 6, that the main difference with the frontal
case is in the decrease of the depletion in front of the obstacle, meaning that participants an-
ticipate less. We can imagine that, when participants were placed randomly, only some of
them could gather information about the obstacle visually, whereas the rest had to resort to all
their other senses to decide how to react. This impacts the global anticipatory behavior and
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Figure 4: Focus on the quadrant I of Figure 2 with details about the size of the
perturbation. The purple arrow’s length is R + ls, with ls ≡ sξ/cs the scale of the
length at which agents should start moving to optimally avoid impact, whereas the
blue arrow’s length is R+ ds, where ds = s/γ represents how far the cylinder travels
during time 1/γ. It is apparent how a congestion in front of the cylinder appears when
ds < ls, because the agents optimize only on a small portion of cylinder’s trajectory.

causes a later reaction to the obstacle arrival. The inclusion of the discount factor γ in our
MFG is enough to describe the change in the crowd’s avoidance strategy. The left column of
Figure 6 shows the numerical solution of the MFG system for ξ and cs as for the frontal case
and with γ = 0.5. We can indeed observe that turning on the discount factor produces the
desired effects, by reducing the crowd’s displacement in front of the obstacle but still conserv-
ing the accumulation on the sides and the density depletion after its passage. Moreover, the
simulated velocity field shows an increase in escaping dynamics in front of the cylinder and
slight circulation around it.

4.3 Pedestrians giving their back to the obstacle

Finally, when participants in the experiment had to give their back to the obstacle and were
asked not to anticipate, the observed behavior changed decisively. As the right panel of Figure
7 shows, having lost the visual information, it was harder to estimate the obstacle’s velocity and
direction of motion, resulting in pedestrians being pushed along by the intruder, and behaving
like granular material [1]. Behind the cylinder, on the other hand, no significant depletion is
shown, and this we believe is due to the diffusivity of the crowd, given the pedestrians’ inten-
tion to have as much space as possible. The left column of Figure 7 shows the MFG simulation
for ξ= 0.4, cs = 0.2 and γ= 6. Here we recover the accumulation in front of the obstacle and
the smaller depletion behind it. By looking at the velocity plots we clearly see that pedestrians
in front of the cylinder are pushed by the intruder along the direction of its motion. Then,
we also remark the agreement with the rotational motion around the obstacle, analogously to
what would happen for granular inert matter, under purely mechanical forces. We managed to
recover the experimental behavior mainly by means of the discount factor, slightly modifying
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Figure 5: Qualitative comparison between density, first row, and velocity plots, sec-
ond row, between the experiment, right column, and the ergodic state of the MFG
model, with parameters ξ= 0.2, cs = 0.1 and γ= 0, left column, for the case where
all pedestrians were facing the incoming intruder. The green segment and the red
arrow are a scale for distance and velocity respectively.

ξ and cs to better fit the data, placing the solution at the boundary between quadrants I and
II. This means that the discounting term correctly reproduces losses in anticipatory abilities.

5 Conclusion

In the present work we have provided a detailed description of the consequences of adding
to the Mean-Field Games model used in [1] a term representing agents anticipation’s hori-
zon. Moreover, we have shown that such term helps modulating the simulated anticipatory
behavior, making it possible to reproduce a wider range of crowd dynamic scenarios, as the
comparison with the different experimental configurations has shown. This is all the more re-
markable since we used the most simple and first ever proposed Mean-Field Game model [8],
to which we just added a parameter, the discount factor. By using our MFG to describe, both
quantitatively and qualitatively, the human behavior observed in this particular experiment,
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Figure 6: Qualitative comparison between density, first row, and velocity plots, sec-
ond row, between the experiment, right column, and the ergodic state of the MFG
model, with parameters ξ = 0.2, cs = 0.1 and γ = 0.5, left column, for the case
where pedestrians were oriented randomly.

we do not wish to imply that pedestrians solve a system of coupled differential equations while
walking, but we highlight that at least in simple cases, individuals have internalized some ba-
sic anticipation mechanisms allowing them to rapidly coordinate with others and efficiently
avoid eventual obstacles.
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Figure 7: Qualitative comparison between density, first row, and velocity plots, sec-
ond row, between the experiment, right column, and the ergodic state of the MFG
model, with parameters ξ= 0.4, cs = 0.2 and γ= 6, left column, for the case where
pedestrians were giving their back to the incoming cylinder and were asked not to
anticipate.
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A Derivation of the discounted HJB

Starting from the definition of the cost functional (2) we have

u( x⃗ , t) = inf
a⃗
E

¨

∫ T

t
L( x⃗ ,τ)[m]eγ(t−τ)dτ+ eγ(t−T )cT ( x⃗T )

«

= inf
a⃗
E

¨

∫ t+d t

t
L( x⃗ ,τ)[m]eγ(t−τ)dτ+ e−γd t

×

�

∫ T

t+d t
L( x⃗ ,τ)[m]eγ(t+d t−τ)dτ+ eγ(t+d t−T )cT ( x⃗T )

�«

.

Making use of the dynamic programming principle [19], this can be written as

u( x⃗ , t) = inf
a⃗

�

L( x⃗ , t)[m]d t + e−γd tu( x⃗ + d x⃗ , t + d t)
�

Ito
= inf

a⃗

�

L( x⃗ , t)[m]d t + (1− γd t)

�

u( x⃗ , t) + d t

�

∂tu+ a⃗ · ∇⃗u+
σ2

2
∆u

���

,

where in the last passage the Ito chain rule has been used to calculate the total time derivative
of the value function. Then, by keeping only terms of order one in d t we obtain

0= ∂tu− V [m] +
σ2

2
∆u− γu+ inf

a⃗

nµ

2
a⃗2 + a⃗ · ∇⃗u
o

. (A.1)

At this point, by minimizing the term in the curly brackets with respect to a⃗ we find that the
optimal velocity is given by

a⃗∗ = −
∇⃗u
µ

. (A.2)

Finally, (A.2) is plugged back in (A.1) to obtain (HJB).

B Alternative formulation of MFG

In [1], we took advantage of the fact that by applying the Cole-Hopf transformation

u( x⃗ , t) = −µσ2 logΦ( x⃗ , t) , (B.1)

one can cast the MFG equation in a form more familiar to physicists. Now, substituting (B.1)
into equation (HJB) we obtain

µσ2∂tΦ= −
µσ4

2
∆Φ− V [m]Φ+ γµσ2Φ logΦ . (B.2)

The second part of this transformation amounts to defining Γ ( x⃗ , t) = m( x⃗ ,t)
Φ(x ,t) which, when

plugged inside the KFP equation (KFP) yields

µσ2∂tΓ =
µσ4

2
∆Γ + V [m]Γ − γµσ2Γ log m+ γµσ2Γ log Γ . (B.3)

The stationary equations are

−
µσ4

2
∆Φe − V [me]Φe + γµσ2Φe logΦe = 0 , (B.4)

µσ4

2
∆Γ e + V [me]Γ e − γµσ2Γ e logΦeΓ e + γµσ2Γ e log Γ e = 0 . (B.5)
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When passing to the moving frame, as in 2.3, the time dependent MFG in the Cole-Hopf settings
becomes

µσ2∂t Φ̂−µσ2s⃗ · ∇⃗Φ̂= −
µσ4

2
∆Φ̂− V [m]Φ̂+ γµσ2Φ̂ log Φ̂ , (B.6)

µσ2∂t Γ̂ −µσ2s⃗ · ∇⃗Γ̂ =
µσ4

2
∆Γ̂ + V [m]Γ̂ − γµσ2Γ̂ log m+ γµσ2Γ̂ log Γ̂ , (B.7)

whereas from (B.4) and (B.5) we get the corresponding equations for the stationary state

−
µσ4

2
∆Φ̂e − V [m0]Φ̂

e + γµσ2Φ̂e log Φ̂e +µσ2s⃗ · ∇⃗Φ̂e = 0 , (B.8)

µσ4

2
∆Γ̂ e + V [m0]Γ̂

e − γµσ2Γ̂ e log m+ γµσ2Γ̂ e log Γ̂ e +µσ2s⃗ · ∇⃗Γ̂ e = 0 . (B.9)

Now, if γ= 0, we see that these equations are similar to the Non-linear Schrödinger equation in
a moving frame, and in [1] we explain that casting the problem in this form is beneficial to the
development of efficient numerical schemes, especially for the stationary state of MFG. Unfor-
tunately the presence of the logarithmic term does pose significant problems for the numerical
implementation when γ > 0, if one tries to solve for the stationary state in this formulation.
However, as explained in appendix C, this form of the MFG equations is instrumental in cur-
ing the divergences occurring near the obstacle in the original (m, u) formulation of the MFG
equations.

C Brief description of the numerical scheme

Figures 5, 6 and 7 compare the stationary state of our MFG model to the experimental data
collected in [7]. The stationary states shown there, as well as in Fig. 2, are obtained solving
directly equations (17) and (18), using an algorithm which at its core is related to the one
used in [1] for the stationary state. This consists in choosing a grid representing the space, in
this case the 2d area where the experiment took place. Then, for each site i, both m̂e

i and ûe
i

are expressed as functions of neighboring sites. By starting from an initial guess, the values of
ûe and m̂e are updated until convergence.

Within the (ûe, m̂e) variables, this approach fails however near hard walls, or here near
the cylinder, where the value function u shows a logarithmic divergence. This is why in [1]
we applied this method to the equations in their NLS form (i.e. with the variables (Φ̂e, Γ̂ e)).
Unfortunately, as explained in appendix B, when γ ̸= 0 the MFG equations in the (Φ̂e, Γ̂ e)
variables imply a logarithm, and this logarithm makes this approach unfeasible.

For finite γ, it is therefore necessary to mix the solution of the equations in both formula-
tions, and more specifically to solve the problem expressed in the (Φ̂e, Γ̂ e) variables near the
obstacles, and in its original (ûe, m̂e) form away from it. This has proven to be a very reliable
and fast algorithm, allowing us to directly compute the solution of the ergodic state. More
details on this method will be provided in a future publication.

As a check of coherence, we also have solved the time dependent MFG system, to verify that
the solution we obtain solving (18) is the same to what we get by taking the solution of (16)
at t = T/2. We solved the time dependent problem using the Matlab routine ode45. Figures
8 and 9 show the results of this comparison for the choice of parameters used in Figs. 6 and
7 demonstrating that the two approaches indeed give the same result. The ergodic approach
is, however, significantly faster and more precise, in particular because the time-dependent
approach, being performed in the lab reference frame, requires a large system.
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Figure 8: Middle and right panels: density profiles of the discounted MFG stationary
state along a vertical (middle) and horizontal (right) cut passing through the center
of the cylinder. The curves compare the solution obtained solving directly Eqs. (18)-
(17) (blue line) and the one obtained from the time dependent Eqs. (HJB)-(KFP) and
taking the solution at T/2 (orange line). Left panel: density plot obtained from the
time dependent Eqs. (HJB)-(KFP). The parameters of the simulations are the same
as in Fig. 6 (corresponding to γ= 0.5).

Figure 9: Same as in Fig. 8, but for the parameters of Fig. 7(corresponding to γ= 6).

D Dimensionless equations

In section 3 we have introduced the length scale ξ and velocity scale cs, which are such that at
γ = 0, the solution of the MFG equations are entirely determined by the dimensionless ratio
R̃= R/ξ, and s̃ = s/cs.

Considering now γ ̸= 0, let us introduce the scaled variables x̃ = x/ξ, and t̃ = t/τ, where
τ is the characteristic time scale of the system obtained as τ= ξ/cs. Substituting these in (15)
we get

∂ t̃u
τ
= −

σ2

2ξ2
∆ x̃ x̃u+

(∇⃗ x̃u)2

2µξ2
+ γu+

cs

ξ
⃗̃s · ∇⃗ x̃u+ gm+ U0( x̃ξ, R̃ξ) . (D.1)

Introducing now ã∗ = a∗/cs the scaled optimal velocity, we see that if we want to define it
as ã∗ = −∂ x̃ ũ this implies to define the scaled value function as ũ = u/(µξcs) = 2u/(µσ2).
Noting furthermore than the definition Eq. (13) of U0 implies U0( x̃ξ, R̃ξ) = U0( x̃ , R̃), Eq. (D.1)

16

https://scipost.org
https://scipost.org/SciPostPhys.16.4.104


SciPost Phys. 16, 104 (2024)

reads

∂ t̃ ũ= −∆2
x̃ x̃ ũ+

(∆⃗ x̃ ũ)2

2
+ γ̃(1)ũ+ ⃗̃s · ∇⃗ x̃ ũ+

m
m0
+ U0( x̃ , R̃) , (D.2)

with γ̃(1) = γτ is the scaled discount ratio. Applying the same scaling to Eq. (16) we obtain
the dimensionless KFP equation

∂ t̃ m=∆ x̃ x̃ m+ ∇⃗ x̃ · (m∇⃗ x̃ ũ) + ⃗̃s · ∇⃗ x̃ m . (D.3)

Up to a scaling, the solution of our model is therefore entirely determined by the scaled quan-
tities
�

R̃, s̃, γ̃(1)
�

, or equivalently
�

R̃, s̃, γ̃(2)
�

where γ̃(2) = (R̃/s̃)γ̃(1).
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