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Abstract

Two-dimensional semiconductor-superconductor heterostructures form the foundation
of numerous nanoscale physical systems. However, measuring the properties of such
heterostructures, and characterizing the semiconductor in-situ is challenging. A recent
experimental study by [1] was able to probe the semiconductor within the heterostruc-
ture using microwave measurements of the superfluid density. This work revealed a
rapid depletion of superfluid density in semiconductor, caused by the in-plane magnetic
field which in presence of spin-orbit coupling creates so-called Bogoliubov Fermi sur-
faces. The experimental work used a simplified theoretical model that neglected the
presence of non-magnetic disorder in the semiconductor, hence describing the data only
qualitatively. Motivated by experiments, we introduce a theoretical model describing a
disordered semiconductor with strong spin-orbit coupling that is proximitized by a super-
conductor. Our model provides specific predictions for the density of states and super-
fluid density. Presence of disorder leads to the emergence of a gapless superconducting
phase, that may be viewed as a manifestation of Bogoliubov Fermi surface. When applied
to real experimental data, our model showcases excellent quantitative agreement, en-
abling the extraction of material parameters such as mean free path and mobility, and es-
timating g -tensor after taking into account the orbital contribution of magnetic field. Our
model can be used to probe in-situ parameters of other superconductor-semiconductor
heterostructures and can be further extended to give access to transport properties.
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1 Introduction

Two-dimensional superconductor-semiconductor heterostructures, where the semiconductor
possesses Rashba spin-orbit coupling (SOC) [2], have attracted a lot of attention recently due
to several promising applications. These include superconducting qubits [3,4], engineered p-
wave superconductivity [5,6], and, when subjected to a magnetic field, they present a promis-
ing platform for hosting Majorana zero-modes [7-10]. However, experimental investigations
of such heterostructures pose challenges. In transport measurements, for instance, the super-
conductor acts as a shunt. As a result, in order to study properties of the buried interface,
some additional experimental probes are required. To address this requirement, recent exper-
iments have probed superfluid density [1,11], vortex inductance [12], and terahertz cyclotron
resonance [13].

The measurement of the superfluid density in superconductor-semiconductor heterostruc-
ture made out of aluminum deposited on top of spin-orbit coupled two dimensional electron
gas (2DEG) using a resonant microwave circuit was implemented by some of the present au-
thors and collaborators [1]. The key insight used in the experiment [1] was the qualitatively
different response of superfluid density in the conventional superconductor (SC) and prox-
imitized 2DEG to in-plane magnetic field. Specifically, at a certain value of magnetic field
Bogoliubov bands in 2DEG touch the Fermi energy, causing an abrupt depletion of superfluid
density that was confirmed by the experiment.
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Although the superfluid density depletion observed in experiment confirmed the proximity-
induced order parameter in spin orbit coupled 2DEG, numerous questions remained open. In
particular, to extract specific parameters of 2DEG from experimental data, g-factor, mobility,
or carrier density, Ref. [1] relied on the simplified theoretical model that neglected disorder
in 2DEG. This model resulted only in a qualitative agreement with the data, thus calling for
more realistic theoretical model. Another outstanding question was the fate of the system in
the regime when Bogoliubov bands touch the Fermi energy. On the one hand, at this point
so-called Bogoliubov Fermi surfaces were predicted to emerge [6]. On the other hand, in
disorder-free theories the superfluid density contribution from 2DEG becomes negative in that
regime, signaling potential instability, that was previously considered in a number of differ-
ent contexts [14-16]. Thus, reliable theoretical description of the system in the regime with
Bogoliubov Fermi surfaces remains missing.

In this paper we develop a more realistic model for the proximitized 2DEG with strong spin-
orbit coupling that incorporates the presence of non-magnetic disorder and in-plane magnetic
field. To describe the proximitized 2DEG with disorder, we use a Green’s function formalism
and perform a self-consistent calculation of the self-energy in the 2DEG, that takes into account
impurity scattering. Using Green’s function, we calculate the density of states (DOS) in the
2DEG and its superfluid density. Our main finding is that disorder leads to a regime of stable
gapless superconductivity for a range of magnetic fields that expands with disorder strength.
Although in the presence of impurities momentum is not a good quantum number, the gapless
regime in presence of disorder may be viewed as a stable generalization of the state with
Bogoliubov Fermi surfaces to the case of a disordered material.

We note that the 2DEG with spin-orbit coupling and pairing was previously considered
in the literature. In particular, in early works [17, 18], the 2D superconductor with spin-
orbit coupling was studied. In these papers, in contrast to ours, superconductivity is an in-
ternal property of 2D layers and does not come from an external superconductor through
the proximity effect. Besides, in Ref. [17] the non-magnetic disorder was not incorporated.
Later works [5-8] studied the superconductor-2DEG heterostructure without incorporating
non-magnetic disorder and suppression of order parameter by magnetic field. Several studies
have incorporated the effects of disorder and band-bending to more realistically model the
superconductor-semiconductor interface [ 19-23]. Also, proximity induced triplet pairing was
considered in Ref. [24] but for low carrier concentrations when spin-orbit splitting and Fermi
energies are comparable.

In addition to 2DEG proximitized by conventional s-wave superconductors, the physics of
Bogoliubov Fermi surfaces and interplay between disorder, spin-orbit coupling and supercon-
ductivity is actively studied in other material systems. In particular, Bogoliubov Fermi surfaces
in presence of in-plane magnetic field were probed by the scanning tunneling microscopy ex-
periments performed on the proximitized surface states of topological insulator [25]. Also,
Bogoliubov Fermi surfaces were studied in the multiband superconductors with broken time-
reversal symmetry [26-30]. However, typically in such systems the pairing has higher angular
momentum and is expected to be rapidly suppressed by disorder. In a different direction,
Refs. [31-35] considered the phase diagram and effect of disorder and magnetic field on the
so-called Ising superconductivity, where strong spin-orbit coupling locks spin to a particular
direction.

Application of our theoretical framework to the real experimental data from Ref. [1] re-
sults in a much better quantitative agreement with the data, compared to the oversimplified
theoretical model in [1]. Using simultaneous multi-fitting of the model parameters, we ex-
tract the values of scattering time, mobility, and carrier density of the 2DEG, and estimate
values of the g-tensor anisotropy and g-factor. The mobility is qualitatively consistent with
Hall measurements [1], and extracted scattering time suggests that semiconductor has disor-



https://scipost.org
https://scipost.org/SciPostPhys.16.5.115

Scil SciPost Phys. 16, 115 (2024)

der strength that puts it in between clean and dirty regimes. Moreover, we identify the fairly
broad range of magnetic fields where the 2DEG realizes gapless proximity-induced supercon-
ductivity, and predict the shape of the density of states that could be potentially probed in
tunneling experiments.

Although our model results in a quantitative agreement with experimental data, it still has
a number of limitations that are related to our treatment of proximity effect. Specifically, we
ignore an inverse proximity effect, and also treat the orbital effect of the magnetic field related
to the motion of carriers between superconductor and 2DEG only qualitatively. Incorporation
of these effects is important for understanding the ground state of the heterostructure from
Ref. [1] for magnetic fields larger than 0.75 T, where our model still predicts that the superfluid
turns negative signaling a potential instability. Also, self-consistent treatment of orbital effect
of magnetic field is required for a more reliable extraction of the g-factor, that is currently
done using phenomenological considerations. We hope that these shortcomings of our model
can be addressed in the future work. The present theoretical model may be used as a guide
for the values of magnetic field required for realizing the potential instability of the gapless
superconducting state and studying it in future experiments.

More broadly, our theoretical model with some modifications will be applicable to a much
broader family of materials, such as hybrid semiconductor [36] and topological insulator
[37, 38] nanowires or proximitized surface states [25], Germanium based 2DEGs [39], fer-
romagnetic hybrids [11], and two-dimensional materials with strong spin orbit coupling such
as transition metal dichalcogenides. Also, it can be extended to predict the dissipative elec-
tromagnetic response, spin susceptibility and other characteristics accessible in the future ex-
periments. Such extension of our work could allow a comprehensive in-situ characterization
of heterostructures before fabrication of more complicated devices that i.e. attempts to realize
Majorana physics [9,10].

The rest of the paper is structured as follows: In Section 2 we introduce a theoretical model
based on the Green’s function formalism. This section covers the calculation of the density of
states (DOS) and superfluid density using Green functions. We also discuss how the mag-
netic field affects the order parameter and extend our model to consider cases with magnetic
anisotropy. Next, in Section 3 we discuss theoretical predictions for the DOS and superfluid
density, both with and without suppression of the order parameter by the magnetic field. In
addition, we identify the parameter range of magnetic field where the semiconductor has gap-
less proximity-induced superconductivity as a function of disorder strengths. In Section 4 we
introduce and implement a fitting procedure for experimental data for Al-InAs heterostruc-
ture [1], discuss the resulting material parameters and show predictions for the density of
states. Finally, we conclude in Section 5 with the summary of our results and outstanding
open questions.

2 Theoretical model

In this section we introduce the main theoretical model for describing the 2DEG proximitized
with a conventional superconductor. We begin by describing the physical system and the ap-
proximations used in our theoretical treatment, covered in Sec. 2.1 and Sec. 2.2. Following
this, the Green’s function formalism is introduced in Sec. 2.3, where we also discuss self-
consistency conditions. The derivation of physical properties, such as the density of states and
superfluid density, is detailed in Sec. 2.4. Then in Sec. 2.5 we discuss the generalization of
our calculations to the case of anisotropic g-factor. Finally, we conclude this section with the
review of the depairing theory of the conventional superconductor in Sec. 2.6 required for the
realistic modeling of the heterostructure.
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Figure 1: (a) Sketch showing 2D-heterostructure, where the superconductor (SC)
with the s-wave pairing proximitizes the 2DEG. The 2DEG has strong Rashba spin-
orbit coupling (SOC), and the entire heterostructure is subject to the in-plane mag-
netic field pointing in y-direction. (b) Rashba-split bands of 2DEG spectrum without
magnetic field lead to two spin-momentum locked Fermi surfaces (red and blue)
shown on the left. The right part of panel (b) shows the red Fermi surface gapped
due to proximity effect without (top right) and with (bottom right) the magnetic
field. The presence of a magnetic field tilts the spectrum in an anisotropic manner
with gapped bands touching the Fermi level first along the x-direction. (c) Cut of the
band structure in presence of induced gap and weak magnetic field V < A along the
x-axis and (d) associated DOS that shows the decreased gap, the discontinuous jump
in DOS at the gap edge, followed by the logarithmic Van Hove singularity. Panels (e)-
(f) show similar data for larger value of magnetic field V > A, when Bogoliubov’s
Fermi surfaces form and DOS becomes gapless. Panels (c) and (e) use chemical po-
tential u = 20A and spin orbit coupling A, kr = 5A in units of proximity-induced
gap, A.

2.1 System and physical assumptions

We study 2D heterostructure which consists of superconducting and semiconducting layers
schematically depicted in Fig. 1(a). The superconductor is assumed to be isotropic material
with a conventional s-wave order parameter. Moreover, motivated by the common use of alu-
minum, we assume that superconductor is strongly disordered. The 2DEG layer, in contrast
is generally anisotropic and has a strong spin-orbit coupling. For simplicity, we choose the
spin-orbit coupling to be of the Rashba form with potential generalizations discussed in Ap-
pendix D. Moreover, we also neglect the anisotropy in most of 2DEG parameters, and take into
account only anisotropic g-factor that controls the coupling to the external in-plane magnetic
field of varying direction and magnitude, see Fig. 1(a). Finally, the new crucial ingredient
incorporated in the present work is the presence of disorder of arbitrary strength in the 2DEG
layer.

Simultaneous presence of spin orbit coupling and magnetic field breaks both spin-rotation
symmetry and time-reversal symmetries of the system. The effect of the in-plane magnetic
field on the conventional superconductor is the suppression of the order parameter, that can
be described by the conventional depairing theory [40,41] and will be reviewed in Sec. 2.6.
Likewise, we incorporate the coupling of the in-plane magnetic field to the charge carriers
in the 2DEG. However, assuming the small thickness of the 2DEG, we take into account only
Zeeman term [42].
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The crucial assumption that underlies our treatment is that the 2DEG gets the supercon-
ducting order parameter by proximity effect but is not affecting the order parameter in the
superconductor. Such absence of inverse proximity effect from the 2DEG onto superconduc-
tor (that would result in additional suppression of the order parameter in the superconductor)
is justified if the density of carriers is much higher in the superconducting material. The ab-
sence of inverse proximity effect along with the assumption of transparent interface between
semiconductor and superconductor (we note that our model can be easily extended to in-
clude suppression of the induced order parameter due to imperfect interface transparency, in
practice it is also possible to characterize induced order parameter in the 2DEG via tunneling
measurements) allows us to treat the 2DEG with the induced order parameter that is entirely
determined by depairing intrinsic to superconductor. This approximation distinguishes our
model from earlier Ref. [ 18], where the pairing mechanism was assumed to be intrinsic to the
2DEG.

2.2 Hamiltonian and band structure

In order to construct the Green’s function, we first consider the system in the absence of dis-
order in the momentum space. To this end, we use the enlarged space that includes spin and
Nambu (particle-hole) degrees of freedom, with operators c,I (c) that are Fourier transforma-
tion of real space creation (annihilation) operators, 1 7(r)(2(r)), Cli = [c;iT, cZ L Skt C—k e
We write the Hamiltonian as:

d’k .
Ho= J tho (k) Cy, €))
ho (k) = T%&x + Ay kp[T°07 cos o — 0¥ sinpy ] — 0’V — 1Y 0V A, (2)

where the function &; = k?/(2m)—u encodes the parabolic band structure with effective mass
m and chemical potential u. Parameter A, determines the strength of the Rashba spin-orbit
coupling, and we used approximation A, k ~ A, kr (ky is a Fermi momentum), that assumes
that spin orbit splitting is much smaller than the Fermi energy. Set of Pauli matrices c** acts
in the spin space and Pauli matrices 7*** operate in the particle-hole space. We introduced
¢y as the angle of momentum direction with respect to x-axis, cos ¢y = k, /k. Finally, terms
in the second line of Eq. (2) describe the Zeeman energy and the proximity-induced isotropic
order parameter.

In the definition of Hamiltonian (2) we fix the direction of magnetic field to point along
y-axis as in Fig. 1(a). This results in the Zeeman energy —o >V with

1
V= Egu«BH , 3)

where g is the isotropic g-factor (generalization to anisotropic g-tensor is presented in Sec. 2.5
below) and ujp is the Bohr magneton. We emphasize the presence of a factor 1/2 in Eq. (3)
that was omitted in Refs. [1, 6] but is essential for comparing the values of g-factor with
the previous literature. Another consequence of the in-plane magnetic field, not included in
Eq. (2), is its orbital effect, which is known to introduce an additional phase between carriers
in the superconductor and 2DEG [43]. While incorporating this effect into our self-consistent
treatment is beyond the scope of the present work, we take it into account phenomenologically
in Sec. 4.3 in order to extract the realistic values of g-factor.

The left panel of Figure 1(b) shows a sketch of the spin-orbit locked Fermi surfaces corre-
sponding to the Hamiltonian (2) without pairing and magnetic field. Non-zero induced order
parameter, A, without magnetic field V = 0 results in the isotropic gap opening for each of the
two spin-momentum locked Fermi surfaces, see the sketch in Fig 1(b) on the right. Non-zero

6
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magnetic field, V > 0, results in the tilting of the Bogoliubov’s bands. Although formally the
distance between top and bottom of quasiparticle band remains 2A (for now we neglect the
depairing effect of magnetic field on superconductor), the separation from the hole branch
and Fermi level decreases for k, > 0 and increases for the negative k, < 0, see Fig 1(b). At
the special value of the field, when V = gugH /2 = A, the Bogoliubov’s bands touch the Fermi
level, signaling emergence of Bogoliubov’s Fermi surfaces [6].

The qualitatively different form of the band structure and associated density of states
(DOS) is illustrated in Fig. 1(c)-(d) for V < A and in panels (e)-(f) when V > A. In the
latter case, the DOS has no gap anymore — a direct manifestation of the emergence of Bogoli-
ubov’s Fermi surfaces. We note, that although the analytic expression for the band structure
resulting from Eq. (2) was obtained in the previous literature [6], the associated DOS was
studied only numerically. In the Appendix A we present the analytic derivation of the DOS for
this band structure. We show that the standard square-root singularity in the DOS at A is split
due to presence of magnetic-field and spin-orbit coupling into two Van Hove singularities: at
the band bottom the DOS has a discontinuous jump at energies +|A — V| rather than square
root divergence as in BCS case. In addition, at energies =|A + V| the band structure develops
a logarithmic Van Hove singularity, see Fig. 1(d) and (f).

We are interested in the case when the energy scale associated with the spin-orbit coupling
much larger compared to Zeeman energy, A, kr > V. In this case, the band-splitting due to
spin-orbit coupling is much larger compared to the Zeeman-induced anisotropic shift of energy
bands. This allows us to neglect the inter-band terms induced by the magnetic field, as they
are suppressed by the small parameter [V /(A4 kz)]?. More details on this approximation are
presented in the Appendix A.

2.3 Green function formalism in presence of disorder

We incorporate the non-magnetic disorder using the self-energy in the Green’s function formal-
ism. The matrix form of disorder potential in coordinate representation reads hgy;s (r)=7°U (1),
where U(r) = >, uo6(r —r;) and u, and r; are the impurity strength and coordinate loca-
tion respectively. We calculate the average self-energy . due to scattering of electrons by the
impurity potential,

% = Rymplig T f G (i€, k)72, 4
k
here and in what follows we use the following notation: fk . = f %..., and denote by

nimp the concentration of non-magnetic impurities. The average self-energy enters into the
expression for the Greens function in presence of disorder,

G l=ie,—hy(k)—%, (5)

where the first two terms correspond to the inverse of the Green’s function without disorder
defined with Hamiltonian (2), and €, = 2nT(n + 1/2) correspond to fermionic Matsubara
frequencies.

The equations (4)-(5) should be solved in a self-consistent manner which leads to the
renormalization of parameters in Green’s function [44-46]. Specifically, this results in the
following form for self-energy:

s=i(e,—eMN+Y(V-VD) =YY (A—AD) 4 7 AP (6)

Physically, this equation implies that disorder scattering renormalizes all parameters present in
the original Green’s function, such as gap, quasiparticle residue [44,45], and Zeeman energy.
Moreover, in addition to singlet pairing, the disorder scattering induces the odd-frequency
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triplet component of the order parameter encoded by the function A [46]. Substituting
self-energy (6) into Eq. (5) we set the explicit expression for the Green function,

Gl =ieW —17E, — Aokp[1°07 cos oy — 0 sin P ]+ oY VI + 1707 AW — 2y AP - (7)

where original parameters are replaced by their renormalized versions and also induced triplet-
paring order parameter component, A, appears. In what follows we neglect interband terms
in the Green function which amounts to neglecting contributions of the order of [V() /(A kf)]?
and [A®) /(A kr)]?, see Appendix B. Finally, we emphasize that all four renormalized param-
eters are non-trivial functions of frequency, €,, unlike their bare counterparts.

Substituting self-energy (6) into the self-consistent equation (4) yields four self-consistent
conditions for each of the renormalized parameters,

ieM —ie, = (ie(l) — v cos q§k>k,

AW —A = (AW + AP cos ¢y ), ,
V—v® ={(cospy (ie —vDcos¢y) ), ,
AP = < COS Py (A(l) + A® cos ¢k) )k s

(8

where we introduced the following notation:

2r
d
(o)k—i dif P 9 ©)
0

C2nT 21 &2+ (AM + A@ cos ¢ )2 — (ieW — VD cos ¢y )2’

for the integral over momentum magnitude and direction. Here the mean scattering time 7 is
defined as 7 = (Znnimpu(z) vo) ! with v, being the density of states per spin projection.

The solutions to the self-consistent system of equations (8) generally cannot be found
analytically. In the Section 3 we discuss the details of numerical scheme that is used for solving
such equations. Below, we assume that the equations are solved and discuss the calculation of
the physical observables from the resulting self-consistent parameters eW v AM AR that
completely determine the Green’s function of 2DEG in presence of disorder.

2.4 Density of states and superfluid density

The DOS can be calculated using its expression via Green function and explicit parametrization
of the latter in Eq. (7):

1
p(e)= ~an J ImTr G(e +1i0,k) =27 vy Im eM(e), (10)
T
k

where 7 is the mean scattering time and v, is the density of states at each of the spin-orbit
split Fermi surfaces. Here we used the retarded Green function which is analytical continua-
tion of Matsubara Green function G from imaginary frequencies to real ones: i€, — € + i0.
Analogously, in all calculations pertaining to the DOS below, we also redefine the parameter
ie 5 1)

The second relevant observable — superfluid density n, — is calculated using the electro-
magnetic response kernel. The response kernel Q.4 (q,iw,) where w,, = 2nTn (we use units
with kg = 1) determines the current in response to the applied electromagnetic field Ag,

Ja(q,iw,) = Qup (q,iw,)Ag (q,iw,) , (11)
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where a and 3 are two-dimensional spatial indices. Superfluid density is obtained as a zero
frequency and zero momentum limit of the response kernel [47,48]:

m .
Ngap = _e_ZQa/S (@ =0,iw, =0). (12)

In the Appendix C we derive the expression for the response kernel using Green functions,

2
Qqp(0,0) = —%ZJ (Tr[f/aG(k,ien)f/ﬁG(k,ien)]—Tr[f/aG(k,ien)f/ﬁG(k,ien)]Azo),
€n "

(13)
where the velocity tensors v, (a = x, y) are defined as ¥, = k,./m and ¥, = k,,/m. Note, that
here we neglected the contribution from spin-orbit coupling to velocity operator, since it is
suppressed by the parameter Afo / vg, where vy is the Fermi velocity. Substituting the Eq. (13)
into (12) and using the explicit form of the Green’s function (7) we get that the tensor of
superfluid densities is diagonal, with two non-zero components n; ,., and n ,,,. The superfluid
density xx-component is denoted as n; ; (since magnetic field points in y-direction) is given
by the following expression

AD 4 FAQ 2oz (Wyiry@ 2
ns,¢=nTZJd€fmC052¢k Z ( AP cosgy ) +E2—(eW +if v cos ¢y ) a4
o 2n 25 [(AD + £ A cos ¢y )2 + E2 + (€M) + i f VD cos ¢y )]

The expression for the y y-component denoted as n; | can be obtained by replacing the cos? ¢y
with sin? ¢y.

We note, that the spin-orbit interaction strength Ay, does not explicitly enter the expres-
sions for superfluid density and DOS due to change of variables of integration. We use & that
is the relative energy difference to the respective spin-orbit split Fermi surfaces and neglect
the difference in DOS between two Fermi surfaces assuming that spin-orbit splitting is much
smaller compared to the Fermi energy. At the same time, presence of spin-orbit energy splitting
that is much larger than induced pairing and Zeeman term (we assume that renormalization
due to disorder does not change the order of magnitude of parameters V", A1)y is important
for our treatment, since this allows to neglect inter-band terms.

2.5 Arbitrary magnetic field direction and anisotropic g-tensor

Until now we considered the magnetic field pointing along y-direction and did not take into
account possible g-tensor anisotropy. However, g-tensor anisotropy is generically expected in
the presence of spin-orbit coupling. Indeed, in the relevant case of spin-orbit coupled asym-
metric quantum wells, in-plane g-factor anisotropy is known to be a large effect [49-51].
Here we generalize our previous results to include both of these additional ingredients.

Assuming general in-plane magnetic field and arbitrary g-tensor, § = ( g"x gxy ), the Zee-
yx 8yy
man contribution to energy is given by the convolution of Pauli matrices and magnetic field,

upo®84pHg /2. Explicit convolution gives the expression —o*V, — o'V, for the Zeeman en-
ergy that was previously given by —o”V in Eq. (2). However, now the parameters V, , are
defined as:

1 .

V, = §MBH (gxx CoS ¥ + &xy sm)() 5 (15)
1 .

v, = EMBH (gyx cosy +8yy smx) R (16)
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where y is the angle between magnetic field H and x-axis. Using these notations, we obtain
the more general form of the Hamiltonian (2) in momentum representation,

ho (k) = T%&x + Agokp[ 1707 cos g — 0" sin py ] — 07V, — 0"V, — 1V 0V A. a7)
We can reduce this Hamiltonian to the situation considered previously by unitary transfor-
mation acting in the spin and Nambu spaces. To this end, we define the angle 6 as
V.

. _ VX _ Yy _ 2 2
smG——V, COSG_V’ V—1/Vx+Vy. (18)

Rotating the Hamiltonian using unitary matrix Uy, Uy = cos % —sin %TZO'Z as Ugho(k)Ue we
bring it to the same form as before, Eq. (2), however with the shifted angle ¢, and redefined
Vg — d—0, .

V(H,x)= Eg(X)MBH, (19)

where we introduced

g(1) = 1/(8xx COS 1 + gy Sin )2 + (g2 COS 1 + gy Sin 1 ). (20)

Using this insight, we reexamine our calculation of physical quantities in Sec. 2.4. The
angle rotation does not affect the calculation of DOS, since the shift of angle ¢, does not
change the integral over ¢,. Hence, the DOS in presence of g-factor anisotropy and general
direction of magnetic field can be obtained from Eq. (10) using the generalized expression for
V from Eq. (19).

The extension of the calculation of the superfluid density is more involved, since the shift
of the angle ¢, affects Green’s functions, but does not affect velocity operators in Eq. (13).
Careful incorporation of such shift in Eq. (14) gives the following expression for the xx-
component of the superfluid density that relies on the expressions n; (H) and n) (H) intro-
duced in Eq. (14),

. 2
(gxx Ccos y +gxy Sll‘l)()
g2(x)

. 2
(gyx cosy +8yy sm)()
g2 (x)

Nex (H, x) = ny (V(H, x)+ n (V(H, x)). (2D
Note, that in the case of anisotropic g-tensor, the tensor n,g is not diagonal anymore. Its
remaining components can be calculated in the same way as n,, by incorporation of the shift
of angle ¢ in the Green function. In detail, for xx-component we performed the shift of
the angle ¢, in the Eq. (14) everywhere except the factor cos ¢, which corresponds to the
velocity operators. For the yy and xy-components one may use the same equation with
cos? ¢y replaced by sin? ¢ and sin ¢y cos ¢y, respectively. This gives non-vanishing Ny, =n
component of the superfluid density,

yx

(gxx cosy + &y sinx) (gyx cosy +8&yy sinx)

Ny (H, 2) = [ (V (H, ) —n, (V (H, x))] > . (22)
§*(x)
In particular, for two orthogonal orientations of magnetic field, H||x and H L x we get
gyx Exx
Tlxy(H,O): ?5HHL$ (23)
yx
U Exy&
Ny (H, 2) = —>=0-8n, (24)

27 g, ted,

upH upH
ony,L=my (—2 V8t gﬁx) —ny (T\/&%x + g§x) : (25)

10
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Figure 2: (a-c) Superfluid density normalized by the total electron density, n,/n as a
function of magnetic field for three progressively increasing values of disorder. With
increasing disorder the purple areas, representing the regions of magnetic field where
there is a gapless regime, expand, and the decline of the superfluid density with
magnetic field becomes smoother. In addition, the point where superfluid density
becomes negative, so that our treatment is not applicable anymore (shown as dashed
lines) is close to the clean case value V = A in panel (a) and is shifted to progressively
larger values of magnetic field. (d-e) DOS normalized by its value in the normal
state, p /v, for the two different values of magnetic field indicated by vertical lines
in the upper panels. The larger value of the magnetic field puts the 2DEG into the
gapless regime, as is clear from the non-zero value of the DOS at zero energy. For
the calculation of superfluid density, the temperature was set to T /A = 0.0564, and
suppression of the order parameter by magnetic field is ignored in all plots.

From here we see that off-diagonal terms of g-tensor induce off-diagonal contributions to the
superfluid density. Such non-diagonal g-tensors naturally arise in the anisotropic quantum
wells of interest here [50]. In spin-3/2 hole systems within low-symmetry quantum wells
(e.g., GaAs), the g-tensor can exhibit asymmetry due to the interaction between the p-like
character of hole wave functions and asymmetric bandedge profiles, alongside specific crys-
tallographic orientations [52]. Equations (23)-(24) suggest that measurements of the off-
diagonal components of the superfluid density for different orientations of the magnetic field
can be used to probe asymmetry between off-diagonal elements of the g-tensor. In particu-
lar, the extremely non-symmetric form of the g-tensor, with i.e. g,,, > g, would lead to the
signature n,, (H,0) > n,, (H, 7/2) potentially observable without quantitative fitting.

2.6 Review of depairing theory in conventional superconductor

One of the main approximations of the current theoretical model is the assumption that the
order parameter A in the 2DEG is the same as in the superconductor. Thus although the
main focus of our work is the theory of 2DEG, we need to know the superconducting order
parameter at non-zero field and temperature. The in-plane magnetic field suppresses the order
parameter in the superconductor according to the conventional depairing theory [40,41] that
is reviewed below for the sake of completeness.

To find the dependence of the superconductor order parameter on the magnetic field (still
parametrized by V) and temperature, A(V, T) we assume that the superconducting layer is
thick enough (unlike the semiconducting one) to neglect Zeeman contribution and leave only
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the orbital contribution of an in-plane magnetic field [42]. At the same time we note that the
thickness of the superconducting layer still has to be much smaller than the London penetration
depth since we neglect the Meissner effect. In this case, the general approach of pair-breaking
treatment in dirty superconductors is applicable [40-42]. This approach establishes the fol-
lowing connection between the critical temperature in absence of pair-breaking, T.,, and the
critical strength of pair-breaking a at fixed temperature T:

n() o Gz ) v (3) &

Here 1) — is the digamma function, and the parameter a can incorporate contributions from
various pair-breaking mechanisms, such as magnetic impurities, magnetic field, electric cur-
rent, etc.

Using the Eq. (26) for a fixed temperature T, we can find the value a.(T) - the value of
pair-breaking parameter at which order parameter becomes equal to zero at temperature T.
Recalling that in our case the physical nature of pair-breaking parameter a is magnetic field
and that orbital contribution from in-plane magnetic field in thin film (the thickness of film is
much smaller than coherence length) results in quadratic contribution [40]: a o< V2, we can
express the dependence of a on magnetic field in the following way:

V2
a= ac(T)ﬁ, (27)
C
where V, is the critical magnetic field for the given temperature T and is determined by in-
trinsic properties of specific superconductor. We notice that at zero temperature a.(T = 0)
has the following form: a.(0) = Agy/2 = 2mkgT.oe? /2, where A, — order parameter at
zero temperature and zero magnetic field, T, - critical temperature at zero magnetic field and
we used the well-known from BCS theory relation [53]. In the next Section we will consider
a finite but very small temperature, T = 0.0564A, so that a.(T) = 0.49A is very close
to zero-temperature critical field, but at the same time small finite temperature provides a
natural regularization for numerical calculations. Knowing the explicit dependence (27) of
pair-breaking parameter a on magnetic field, we can find the order parameter A(T,V) from
the following equations [41],

V1-f2(A—fa)=2nT (n+1/2)f,, (28)
T ( 2nT 1
ln(ﬂ):;)(A(T,V)f"_nﬂ/z)' (29)

Here f, is the Eilenberger Green’s function determined using numerical solution of Eq. (28)
and substituted into Eq. (29) to obtain the self-consistent value of the gap at non-zero temper-
ature and magnetic field.

Knowing the self-consistent gap value and Eilenberger Green’s function f,, also allows for
calculation of the superfluid density as [1,41]

2
n(T,V) _ S Ja
T—z’ITTTSCZW (30)

I

n=0 % ,

where T is a mean free path in superconductor that is assumed to satisfy T5cA < 1, and n
is the density of electrons in superconductor. The last equation for superfluid density n; of SC
is not used in the next Section, because we analyze only superfluid density in the proximitized
2DEG. However, this expression will be used in the Section 4 where fit the experimental data,
since experiment is probing the total superfluid density of 2DEG and SC.
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3 Results for proximity-induced superconductivity in disordered
2DEG

In this section we study the influence of disorder on the proximity effect in the 2DEG using
methods introduces in the previous section. First, we describe the numerical procedure used
for the calculation of the self-consistent Green’s function. Then we present our results for DOS
and superfluid density. Finally, we focus on the region of gapless superconductivity and discuss
the range of magnetic fields and disorder strengths where it occurs. We note that in the first
two subsections we do not consider the suppression of order parameter A due to the magnetic
field, and include it only in Sec. 3.3.

3.1 Numerical solution for Green’s function

In order to find the renormalized parameters and DOS we numerically solve the system of
self-consistent equations (8) using iterations: we substitute an iteration n — 1 in the right
side of an equation to obtain the value of the corresponding renormalized parameter at the
next iteration, n, on the left side. For the calculation of DOS we need Green’s function for real
values of energies, which is why we make the analytic continuation in Egs. (8) ie,, — €+i0 and
ie — €M) in the same way we did in Eq. (10). As an initialization of the iterative procedure,

we use the following values of parameters: 6E03 =e+i/(27), V((Ol)) v, AE(% A, and A% 0

[imaginary part of e(o) is motivated by the fact that it reproduces DOS in normal state after
substitution into Eq. (10)]. We use from 100 to 200 iterations in order to get convergent
results, the stronger the disorder is, the more iterations were required. We note that iterative
procedure can be performed independently at each energy separately. As a maximum value of
the considered energy we use: €, = 6A, S0, € € [—€ax> EmaxJ> SiNce no additional feature
were observed beyond this range. In addition, we discretize the values of € and V using the
grid with the step of 6 = 0.1A, and obtain functions at intermediate values of these parameters
by interpolation.

For the calculation of superfluid density, we need to find Green function for imaginary
frequencies i€, using the Egs. (8) and the same iterative procedure. In that case, we use

the following values of parameters to seed the iteration procedure: 168)3 Ag(l)% A,

V((Ol)) =V and A(Z; = 0. For imaginary energies, numerical calculations converge faster hence
we use from 20 to 50 iterations. The temperature at which calculations are performed is
T = 0.0564A. Since temperature is finite, Matsubara energies are discrete, so, discretization
is introduced only for the Zeeman energy V with the step 6 = 0.1A. The maximal value for

the considered energy is €,,,, = 40-27T.

3.2 DOS and superfluid density

Using the iteration procedure described above, we calculate the self-consistent Green’s func-
tion across a range of disorder strengths. Figure 2 illustrates how the superfluid density is
suppressed by magnetic field for three different values of disorder (zero-field values of super-
fluid density are in agreement with well-known analytical results [47]). At the same time,
bottom panels of this figure illustrate the behavior of DOS for two typical values of magnetic
field, the first being in the regular and second in the gapless regime (see discussion below).
At the smallest value of disorder, shown in Fig. 2(a) and (d), it has a weak effect on the
superfluid density and behavior of DOS. Indeed, comparing Fig. 2(d) with Fig. 1(d) and (f) for
the DOS in clean case we see qualitatively similar behavior. Moreover, the superfluid density
n inFig. 2(a) shows a sharp decline to zero near the value of magnetic field that is only slightly
larger then V = A, predicted to give rise to Bogoliubov’s Fermi surfaces in the clean case [6].
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Figure 3: The span of magnetic fields where gapless superconductivity is realized
(filled region between solid and dashed violet lines) expands with increasing disor-
der strength. The solid violet line corresponds to the onset of the gapless regime,
dashed violet line marks the point when superfluid density turns negative, signal-
ing that our model becomes inapplicable. Data shown in panel (a) assumes that the
order parameter is not suppressed by magnetic field, panel (b) takes the depairing
into account assuming critical magnetic field: V, = 2.5A, orange dotted line cor-
responds to this critical field V..

We note that nearly at the same time as the DOS becomes non-zero at € = 0, the n; component
of the superfluid density turns negative. This makes the theory used here inapplicable, as is
shown by dashed lines in Fig. 2(a). Thus, the gapless regime — situation where 2DEG has
non-zero proximity-induced order parameter, but no gap exists in the density of states — may
be realized only in the extremely narrow range of magnetic fields at weak disorder. This will
be discussed in more details in Sec. 3.3 below.

When disorder strength is increased so that scattering time becomes twice shorter than
inverse gap, its effect becomes more pronounced. Figure 2(b) and (e) reveal that even at zero
magnetic field, V = 0 the superfluid density is already suppressed by about 50% compared to
the total carrier density. In addition, the decline of the superfluid density becomes more grad-
ual and peaks in the DOS at energies where clean system has Van Hove singularities become
much smoother. Most importantly, the gapless superconductivity is now realized in a narrow
window of magnetic field near the value of V ~ 1.5A. Remarkably, the disorder not only
“smears” all the singularities in the energy space, but also pushes the onset of rapid decline of
superfluid density to significantly larger values of magnetic field and creates a gapless regime.

Finally, increasing disorder by additional factor of five in Fig. 2(c) and (f) results in a broad
gapless regime that occurs for V g 2.5A and extends beyond the maximal value of V = 3A
considered in this work. DOS in Fig. 2(f) has extremely broadened peaks at the energy of Van
Hove singularities in the clean case and develops a broad dip at zero energy upon entering
the gapless regime. Remarkably, the onset of negative superfluid density is pushed beyond the
considered range of magnetic fields. This may be understood as an effect of renormalization
of effective magnetic field by disorder as we discuss in Appendix F.

The effect of disorder on the system is encoded in the self-consistent solution for the Green’s
function. In Appendix F we consider the results for renormalized singlet and triplet compo-
nents of the order parameter, A and A®, that become now non-trivial functions of energy.
In particular, we show that the disorder-induced triplet component has real part that is odd
in frequency [54]. In addition, we also calculate the data for superfluid density and DOS in-
cluding the order parameter suppression in superconductor in Appendix G. Upon comparing
Fig. 10 from this appendix with the data in Fig. 2, we conclude that while the order param-
eter’s suppression does not introduce new qualitative features, it does result in the expected
vanishing of the superfluid density at the superconductor’s critical field.
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3.3 Region of the gapless superconductivity and potential instability

It is clear from the Fig. 2 that the extent of the gapless regime increases with disorder strength.
In order to quantify this phenomenon, we numerically calculated DOS p(e) at € = 0 for vari-
ous values of disorder and magnetic field using the discrete grid with the step of 6 = 0.02A (or
6 = 0.02A,, when we incorporate the order parameter suppression) for magnetic field. For
a specific value of disorder strength, with the increase of the magnetic field from 0, initially,
p(0) takes values much smaller than 1. At a certain (discrete) value of the magnetic field, p(0)
abruptly increases and becomes of the order of 1. We identify this value as the magnetic field
at which a gapless regime emerges. For the numerical calculation we use the same approach dis-
cussed in Sec. 3.1. However, at the boundary between gapless and standard proximity induced
superconducting regime more iteration — from 100 to 10000 — are required for convergence.

In Fig. 3(a) and (b) we present the area of parameters (in 1/7 and V axes) which corre-
sponds to the gapless region. In Fig. 3(a) the suppression of order parameter by magnetic field
is not taken into account while in Fig. 3(b) we apply the standard depairing theory reviewed
in Sec. 2.6 for fixed low temperature T = 0.0564A, and critical field of superconductor be-
ing V. = 2.5A,, where A is the order parameter in superconductor at zero field and zero
temperature. The solid purple line on the bottom of the region represents the values of T and
V at which the superconducting gap disappears, the dashed line on the top of the region —
values of T and V beyond which superfluid density becomes negative. As we discuss below
in greater detail, the negative superfluid density signals that the current theoretical model is
inapplicable. Nevertheless, the region of gapless superconductivity is vastly expanding with
increasing disorder.

The prediction of the negative superfluid density may be viewed as a results of oversimpli-
fication that neglects inverse proximity effect while assuming perfectly transparent interface
between 2DEG and superconductor. A more complete model should account for the inverse
proximity effect, possibly leading to a reduction in critical magnetic field and change of order
parameter suppression, thereby addressing the issue of negative superfluid density. To this
end, incorporation of the free energy stemming from both 2DEG and superconductor is nec-
essary. The self-consistent equations for the order parameter resulting from such total free
energy would incorporate the inverse proximity effect. In addition, it would also allow to
check if the state with spatially modulated order parameter of the form A (r) = A, + Ae'dT
with |A;| > |A| is more favorable compared to the uniform state. We should specify, that the
leading contribution to the order parameter cannot depend on coordinate because it comes
from the superconducting layer which is strongly disordered, therefore, FFLO [55, 56] phase
is suppressed [18], besides, there is no spin-orbit coupling in the superconducting layer, thus,
long-wave helical phase [18] also is not expected to appear. Meanwhile, the small correction
comes from the 2DEG due to an inversed proximity effect and can depend on the spatial coor-
dinate because the disorder is not assumed to be strong and, in addition, spin-orbit coupling
is present. This model significantly differs from the model in Ref. [57] where the dependence
of order parameter on coordinate was defined entirely by the 2DEG properties and as a result,
there was no constant contribution from the superconducting layer.

The development of a more comprehensive theory discussed above is beyond the scope of
this paper and could be an avenue for future research. At present, it is unclear if developing
more realistic model will just quantitatively alter the predictions in vicinity of point where su-
perfluid density turns negative, or if a non-uniform superconducting state may emerge above
the dashed line in Fig. 3. Nevertheless, the prevalence of negative superfluid density dimin-
ishes with increasing disorder (as is seen on Fig. 3), making the current model applicable in
a wider range of magnetic field. Moreover, despite the mentioned limitation, the current the-
ory offers significant predictive power, as will be demonstrated in the next section by fitting
experimental data.
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Figure 4: Fitting the theoretical model (solid line) to the experimental dependence
(dots) of critical temperature on a magnetic field gives an excellent agreement for
the value of fitting parameter {; = 0.207. The dashed line corresponds to the fit
in the absence of linear contribution from magnetic field to pair-braking parameter
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Figure 5: The theoretical model that incorporates disorder (solid lines) results in a
much better agreement with the experimental data (dots), compared to the model [1]
that does not incorporate non-magnetic disorder (dashed line). The data in panel (a)
corresponds to the resonance frequency suppression with field H, at fixed T = 0.1K.
Panel (b) shows the temperature dependence of the resonant frequency at H =0T.

4 Fitting experimental data

In this section, we apply the theoretical model described above to the experimental data on
Al-InAs heterostructure reported in Ref. [1]. Since the experiment probes the total superfluid
density, first in Sec. 4.1 we fit the dependence of pair breaking parameter in aluminum. Next,
in Sec. 4.2 we discuss the fitting procedure that we use to fit the experimental data and extract
material parameters. Finally, in Sec. 4.3 we discuss the extracted values of parameters and
show predictions for the DOS that can be checked in future experiments.

4.1 Pair-breaking effects in Al

In order to understand the dependence of the order parameter A in Al on temperature T and
magnetic field H we apply the depairing theory reviewed in Sec. 2.6. Specifically, we use the
dependence of the critical temperature on magnetic field measured in Ref. [1] to determine
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the pair-breaking parameter a as a function of magnetic field. In contrast to Ref. [1] that
extracted the depairing parameter as a phenomenological function of magnetic field, here we
aim to capture the dependence of depairing parameter by a simple function thereby providing
insights into depairing mechanisms in aluminum. Moreover, we emphasize that although ex-
perimental data from Ref. [1] measures the critical temperature of the 2DEG-superconductor
heterostructure, we ignore the effect of the 2DEG onto superconductor. This is consistent with
the approximation of neglecting the inverse proximity effect adopted in this work.

In Sec. 2.6 we discussed that the orbital contribution from in-plane magnetic field results
in the quadratic dependence a o< H2. However, assuming purely quadratic dependence of
depairing on the field does not result in a good quantitative agreement with the experimental
data (see dashed line in the Fig. 4). This discrepancy may be consistent with the tiny out-
of-plane component of magnetic field that, despite careful alignment may be present in the
experiment, see Appendix E. Alternatively it may potentially emerge from the influence of
magnetic field on the inverse proximity effect that is not considered in the present work. The
out of plane component of magnetic field contributes linearly to the depairing parameter a [42,
58,59]. Thus we use the following ansatz for the depairing parameter

H H?
a(H)ZZWTcoew(l/z)(Cl—+§2—) ) (31)
HCI‘ HC2r
where two dimensionless constants  , parametrize the entire dependence. Here, T, is the
critical temperature in the absence of the field, and H, is the zero-temperature critical mag-
netic field.

We can establish additional relation between constants {; 5 introduced above. For this we
consider the vicinity of critical field H — H,. For such values of magnetic field, the critical
temperature tends to zero T. — 0 and we can simplify the relation (26) from Sec. 2.6 by
expanding it assuming that T, — 0. This expansion gives us the following relation

a(Hy) = 2nT,0e¥ M2 = Ay /2. (32)

Comparing this with Eq. (31) we derive relation between {; and {5: {; + {5, = 1. Therefore,
we set {5, = 1 —{; and keep {; as the only fitting parameter, that intuitively encodes the
relative weight of the linear-in-field contribution to the depairing parameter.

Using specific dependence of a on magnetic field in Eq. (31), we calculate the dependence
of T, on applied magnetic field according to Eq. (26). The resulting curve is fitted to experi-
mental data on the dependence of critical temperature on magnetic field using the least square
method to determine the best value of {;. The fit has excellent agreement with experimental
data, as shown in Fig. 4, yielding the following value of {;,

¢1 = 0.207 £0.002. (33)

Knowledge of the explicit dependence of pair-breaking parameter a on magnetic field H allows
us to find the order parameter A (T, H) and superfluid density in Al using Eq. (28)-(30). Note,
that we take TgcAgyy = 0.001 for Al, which corresponds to the dirty limit, but the functional
form of all dependences is not affected by specific value of T4 as soon as it is sufficiently small.

4.2 Fitting procedure

After determining the depairing in Al, we turn to fitting the data on the superfluid density
measured by the experiment [1]. The experiment probes the Al-InAs heterostructure by plac-
ing it in resonator and sensitively measuring the resonance frequency f,. This frequency has
a constant “geometric” contribution denoted as fq.,, and also receives a contribution from
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Figure 6: Polar plot for the dependence of resonance frequency on the angle between
a magnetic field and x-axis, radial divisions start at f, = 4.8 GHz and are in 0.2 GHz
increments. Different colors encode the values of the magnetic field, with dots corre-
sponding to experimental data and solid lines showing the best fit of the theoretical
model.

superconducting condensate in aluminum and 2DEG, denoted as f;;,- The total resonance
frequency measured in experiment reads [1]:

1_ 1,1
2 F2 g2
f; geo  Jiin
Assuming the distributed circuit model, Ref. [1] suggested that the kinetic contribution to
inductance may be viewed as a sum of 2DEG and superconductor contributions,

(34)

;2 A, ) nA(H,T)
T =C C .
kin P n(IrLAS) S n‘gAl)(O, O)

(35)

Here we wrote a combination of two individual contributions from 2DEG and superconductor
in a slightly different form, and emphasized the magnetic field and temperature dependence.
Both contributions depend on the constants ¢, ; that have dimension of squared frequency and
will be our fitting parameters. For the 2DEG the constant ¢, multiplies the dimensionless ratio
between the superfluid density in 2DEG and normal carrier density. In contrast, for super-
conductor, the constant ¢, multiplies the superfluid density at a given field and temperature,
normalized by the superfluid density at zero temperature and field, ngAD(O, 0) = n(tgcA)NAY,
that is suppressed by a small factor T3cA compared to the full carrier density nV in the dirty
limit. In both cases, the normalized superfluid densities will be provided by the theoretical
model developed above.

After we obtain the value of parameters c, and ¢, from fitting, we may use them to extract
material parameters. To this end we use on the following relation between these constants
and material parameters, developed in Ref. [1]:

o = 1 nlinas)e? o = 1 mAg
PTarECy mia 0 5T 2120y gD

(36)

Here [ denotes the resonator length, C is the resonator capacitance, y is a geometric factor
characterizing the resonator and given in Eq. (S4) in the supplement of Ref. [1], m(™4%) is
the effective mass of a quasiparticle in InAs, e is the electron charge, A is zero-field zero-
temperature order parameter in Al, and R(E/]“) is the aluminum sheet resistance in normal state.

From here it is clear that knowledge of constants c,; will yield an estimate of the carrier
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Table 1: Result of the fitting procedure. Magnetic anisotropy is significant since gif)f

differs from g;f}f, The disorder is intermediate meaning that dirty-limit and clean-
limit approximations are not applicable to the specific Al-InAs heterostructure.

Parameter Fit value Error
Cp 286 GHz* 27 GHz?
Cq 72 GHz? 4 GHz?
fgeo 6.08 GHz 0.01 GHz
geff 30.8 0.8
g 17.8 0.8
TApo 0.23 0.05

density in 2DEG and sheet resistance of superconductor in the normal state, provided we rely
on independent estimates of remaining parameters in Eq. (36).

The fitting procedure used to match experimental data relies on Egs. (34)-(35). These
equations explicitly contain three fit parameters, c,, c;, and fg,. The theoretical model for
the ratio nEAD(H ,T)/ nEAD(O, 0) is entirely fixed by Egs. (31) and (33) in previous section and
contains no additional free parameters. In contrast, the normalized superfluid density of 2DEG
additionally depends on the scattering time 7 intrinsic to 2DEG and components of g-tensor,

gif; and g;f)f, (remaining components are assumed to be zero). Thus in total the fit between

theoretical model and experimental data is performed over six parameters c, ¢s, fgeo» 7> gfcf)f ,

and gif)f, Note, that we denote the g-factors in the fitting as effective ones, since in what
follows we phenomenologically incorporate the orbital effect to estimate their physical values.

In practice, to achieve such six-parameter fit we simultaneously fit three experimental de-
pendencies as illustrated in Fig. 5 and Fig. 6. the dependence of f. on T at H = 0 T, the
dependence of f. on H at T = 0.1 K and the dependence of f, on the angle between mag-
netic field and x-axis for six different values of magnetic field listed in Fig. 6. The simulta-
neous fit was conducted in the following manner: we constructed the cost function for each

2
observable F, as S, = Y. (F éth)(xi)—FéeXp)(xi)) , where F O(‘th)(x) is theoretical prediction

for the observable F, and {FéeXp)(x),x} represents the experimental data. Specifically, we
encode three experimental datasets as {Fl(eXp)(x),x} = {f,(H),H} for low-temperature mag-

netic field sweep shown in Fig. 5(a), {Fz(eXp)(x),x} = {f.(T), T} for zero-field temperature

sweep in Fig. 5(b), and {FéexP)(x),x} ={f,.(H, x),(H, x)} for magnetic field and its direction
sweep in Fig. 6. Then, to derive the total cost function, we sum these functions with spe-
cific weights w,. The weights are selected in such a way that at the minimum of the total
cost function, contributions from different cost functions were approximately of the same or-
der: Si(Cp, Cs5 faeor &xx> &yy» T) = W1S1 + WSy + w3S3. By minimizing this cost function, we
extracted the best values of fitting parameters.

To estimate errors for these fitting parameters, we use a procedure similar to bootstrap-
ping [60]. Specifically, we construct a set of cost functions {ng} in the following way: for
each observable, we select only a portion of the experimental points in a random manner
{FP(x), x}U) and then proceeded with the fitting in the same way as described above. This
yields a set of different values for the fitting parameters {c,, c;, fgeo. gfcf)ﬁ, g;fyf, 7}0). We check
the resulting distribution of fit parameters and estimate error bars from its variance.
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Figure 7: The material parameters extracted from the best fits to experimental data
are used to generate predictions for superfluid density of 2DEG and DOS for two
different orientations of magnetic field. Purple areas correspond to the regions of
the magnetic field where the gapless regime is realized. Vertical lines on the plots for
superfluid densities in (a)-(b) show the values of the magnetic field at which DOS is
plotted on the respective panels (c)-(d), with green line illustrating the regime with
a gap, while the blue line corresponding to the field when system is in the gapless
regime.

4.3 Material parameters and prediction for DOS and gapless regime

The fitting of the theoretical model to experiment using the procedure described above gives
the value of parameters that are summarized in Table 1. Figures 5-6 demonstrate the good
quantitative agreement of best fits from the theory model with the experimental data. In
particular, the agreement is much better compared to the model where disorder is not incor-
porated from Ref. [1], compare dashed and solid lines in Fig. 5. Also, due to presence of 1/2
in the definition of V, Eq. (3), the values of g-factor are now approximately two times larger.

Out of six fit parameters in Table 1, g-factors have the most immediate physical interpre-
tation. However, the g-factors values of gfcf)f = 30.8 £ 0.8 and gf,f}f, = 17.8 £ 0.8 are con-
siderably larger compared to the ones used in the literature, where a range of values 3-11
was reported [61-64]. We note, that comparable values of g-factor can be obtained from
the qualitative model in Ref. [1] that ignores disorder, provided one uses definition Eq. (3)
for Zeeman energy. Such overestimation of g-factor points out that the orbital effect of the
in-plane field cannot be neglected. For instance, recent work [43] reported similar overestima-
tion of g-factor due to ignorance of orbital effects in a Josephson junction made out of similar
superconductor-2DEG heterostructures.

While rigorous incorporation of the orbital effect of the magnetic field is reserved for the
future work, we take this effect into account phenomenologically. Specifically, we assume
that 2DEG is separated by a distance d,ppg from the superconducting layer. Then taking into
account the phase accumulated to in-plane magnetic field results in the following induced
order parameter in InAs, Apas(r) = Ay - €29® where ¢(r) = q - r, with |q| = THdja/ P,
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where & is the magnetic flux quantum [57]. Proceeding in the same way as in Ref. [57], we
derive that effect of such non-zero momentum q can be incorporated by changing the value
of the parameter V into V¢ with

vED =y 4y q= (lg‘uB:I: 7TdInASvF)H, (37)
2 @,
where =+ sign corresponds to different Rashba-split bands and we neglect the contribution A¢,q
since Ay, < vy is assumed throughout this work. We can refine our estimate of the g-factor by
using the right hand side of Eq. (37). Equating expression in parenthesis to the fitted value of
g-factor, we can extract its physical value according to expression:

eff ZTEdInASVF
up®o

The extraction of g-factor in such phenomenological way strongly depends on the distance
between 2DEG and superconductor. For instance, assuming distance d,ppg ~ 0.2 nm we obtain
40% smaller value of g, ~ 18 and even more suppressed value of g, ~ 5. Larger distance of
dopgg ~ 0.5 nm would result in a nearly vanishing value of g,.,.. While these values of thickness
are approximately an order of magnitude smaller compared to the estimated distance between
aluminum and 2DEG layer, the band bending can decrease the effective distance. Also, our
phenomenological considerations do not treat the orbital effect self-consistently, thus overes-
timating its magnitude. Although orbital effect for such thickness is (within our phenomenol-
ogy) nearly equivalent to the Zeeman energy contribution, it does not involve the electron
spin and hence is expected to be isotropic. Thus, we expect that quantitative incorporation of
the orbital effect may allow for extraction of effective thickness as well as g-factors using the
fitting of the data rather than phenomenological considerations.

We note that treatment discussed above is phenomenological, and proper incorporation
of such orbital effect and disorder requires revisiting our self-consistent treatment presented
above. In particular, we expect the renormalization due to disorder to suppress the orbital
effect. Additional subtlety is related to the sign of the g-factor that is know to be negative in
InAs, and to the relative + sign in Eq. (37). Since our treatment is not sensitive to the relative
sign of the g-factor, in order to obtain Eq. (38), we assume g > 0 and also choose the plus
sign in Eq. (37) corresponding to the Fermi surface where gap closes earlier.

Next, we discuss the scattering time in 2DEG that is also extracted from the fitting. The
value TAy, = 0.23 suggests that InAs heterostructure is in intermediate between clean and
dirty regimes, with its mean free path being of the order of 1.3 um, assuming Ay = 10 nm.
Estimating mobility from the scattering time we obtain

&§=¢g (38)

2
u= mg:As) —(3.1%0.7)-10* % (39)
where for the effective mass of electron in InAs we used m™9) = 0.04m, [64], m, is electron
mass, and e is the charge of electron. The InAs mobility, measured in the absence of Al is
1.3-10% ecm?/(V - s) [1], suggesting that the presence of Al does not drastically alter the InAs
carrier mobility.

Finally, the parameters c;, ¢, and f,, provide consistency check. Parameter fg, is consis-
tent with the expected value based on electromagnetic simulations in the Ref. [1]. Knowing
the parameters c; and ¢, we can calculate the aluminum sheet resistance R(E/]“) and carrier

density in InAs, n™), using Eq. (36):

R® = (73+04)0, (40)
nnAs) = (8.0 £0.8)- 10" em 2. (41)
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The resulting value of the aluminum sheet resistance is approximately the same as in Ref. [1].
However, the InAs carrier density is twice as large. The different estimate arises due to sup-
pression of superfluid density by disorder that was not incorporated in the theoretical model
used in Ref. [1]. This omission resulted in a lower value of ¢, compared to ours, which in turn
led to lower values of the carrier density. Comparing the fit carrier density with the Hall value
n(mAs) = 1.06-10'2 cm™2, measured in the absence of Al, we find that the InAs carrier density
is dramatically increased by the presence of Al.

Using the material parameters from the Table 1 we generate predictions for the DOS and
superfluid density in proximitized InAs and check whether gapless regime is accessible. Fig. 7
shows our predictions for two orientations of magnetic field. When magnetic field is parallel
to the x-axis we see that the system is predicted to have a wide gapless regime. In contrast,
for the field aligned with y-axis we see the sharper decline of the superfluid density, gapless
regime occurs at larger values of magnetic field, and has smaller extent. This is explained by
the anisotropic response of superfluid density in 2DEG due to presence of spin orbit coupling.
In principle, the dependence of DOS on energy can be studied experimentally using a scanning
tunneling microscope. Thus, the predictions presented in Fig. 7 can be experimentally verified.

Finally, let us discuss the uncertainties in determining the parameters. We note, that al-
though error bars estimated by bootstrapping in Table 1 are relatively small, the systematic
uncertainties that come from potential further simplifications present in the model, such as
phenomenological treatment of orbital effect, assumption of perfectly isotropic mass, consid-
eration of only Rashba spin orbit coupling, diagonal form of g-tensor, and assumption of fully
transparent interface between 2DEG and superconductor are potentially much larger. While
relaxing these assumptions is straightforward, additional data is needed to prevent overfitting
and enable reliable extraction of additional material parameters.

5 Summary and Outlook

To conclude, we examined a heterostructure consisting of 2DEG with strong spin-orbit coupling
proximitized by superconductor and subjected to an in-plane magnetic field. Our theoretical
model incorporates non-magnetic disorder of arbitrary strength in the semiconducting layer,
a feature that was not addressed in previous studies. Our model gives predictions for the
density of states and the superfluid density as a function of the magnetic field and varying
disorder strength. We observe that increasing disorder stabilizes a gapless superconducting
phase within a progressively increasing range of magnetic fields. This regime may be viewed
as an extension of the phase with Bogoliubov Fermi surfaces that incorporates disorder in the
system.

We applied our theoretical model to experimental data for an Al-InAs heterostructure ob-
tained in Ref. [1]. Our model that incorporates disorder was able to quantitatively describe the
data, also enabling us to extract parameters of the InAs layer, such as the anisotropic g-tensor,
scattering time due to disorder, and mobility. Using extracted parameters of the heterostruc-
ture, we identified the range of magnetic fields, where the gapless regime of superconductivity
is realized and generated predictions for the density of states that may be tested in future ex-
periments.

Although our model was able to describe the experimental data and generate predictions,
a number of questions remains open. First, while our theoretical model incorporates disorder
compared to earlier theoretical studies, it still relies on a number of approximations. In partic-
ular, it may be desirable to relax the assumption of the perfectly transparent interface between
2DEG and superconductor, incorporate orbital effect of the magnetic field and inverse proxim-
ity effect — phenomena related to more realistic description of the motion of electrons between
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2DEG and superconductor.! Incorporation of orbital effects may be particularly important for
Germanium that has small value of g-factor and also for surface states of topological insula-
tor proximitized by the bulk superconductor [25] where orbital contribution dominates the
physics. In addition, to make the model of 2DEG more realistic, one may incorporate the
Dresselhaus spin-orbit coupling along with Rashba spin-orbit considered here, and take into
account more realistic band structure of 2DEG. These ingredients may be particularly impor-
tant for treatment of heterostructures beyond Al-InAs, such as Al-Ge [39], Al-InSbAs [65], and
other materials.

Bringing additional ingredients into our theoretical model, that already relied on a six-
parameter fitting for describing experimental data, would most likely require additional ex-
perimental probes. In particular, it is easy to relax the assumption that the induced order
parameter in the 2DEG is equal to its value in the superconductor, and relying on the tun-
neling measurements use more accurate relation. Using the framework for Green’s function
calculation set up in this work, one can easily calculate other experimental observables such
as spin susceptibility and finite-frequency electromagnetic response kernel. Including more
observables measured in situ, such as spin susceptibility [66], optical conductivity [48], den-
sity of states, or noise spectra [67] would enable even more detailed material characterization
and allow for independent verification of our model.

Another set of questions that remain open is the eventual fate of the gapless proximity-
induced superconducting state in 2DEG at sufficiently weak disorder and in the clean limit [1].
While the presence of superconducting film suggests that this instability will not destroy pair-
ing in the system, it may cause reconstruction of the low energy band structure leading to
reduced density of states. Understanding the instability requires incorporation of the inverse
proximity effect and self-consistent treatment of the superconductor that takes into account
the 2DEG, that are beyond the present work. Construction of such model may assist the future
experiments in the identification and characterization of the phase diagram.

Finally, the experimental control available in the microwave cavity setups akin to Refs. [1]
call for the theoretical development of nonequilibrium probes of 2DEG-superconductor het-
erostructures. In particular, the cavity enables to excite the system in the regime beyond liner
response, and potentially probe it in the time-resolved fashion. In addition, electric contacts
may enable to use current as an alternative pair-breaking mechanism to the in-plane magnetic
field. These capabilities invite the theory of such 2DEG-superconducting system subject to
nonequilibrium effects and currents, that would allow to gain further insights into the mate-
rial properties and potentially uncover new phases.
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INote, that we assume the homogeneous penetration of magnetic field into superconducting film, implying the
absence of vortices. This is a crucial ingredient for the applicability of our model, and it may be verified in the
control experiment where the response of superconducting film without 2DEG is compared to standard depairing
theory.
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A DOS in the clean case

In this Appendix we derive an analytic expression for the DOS of semiconductor in the ab-
sence of disorder. We use expression of Hamiltonian h (k) in momentum representation, Egs.
(1) and (2) and make rotation in spin and particle-hole spaces, flo (k) = U'hg (k) U with the
following unitary matrix:

1 0 1 0
1| ie 0 —iei 0 A1
=751 o 1 0 1 ' &1
0 e 0 —iei%x

This rotation results in the following simplified form of the Hamiltonian,

Hy (k)
Ex + Agokp — V cos ¢y iAe 1Pk iV sin ¢y 0
_ —iAelPx —&x — Asokr — V cos ¢y 0 —iV sin ¢y
- —iV sin ¢y 0 Ex — Asokp + V cos ¢y —iAe %k
0 iV sin ¢y iAel®x —&x + Agokp + V cos ¢y

(A.2)

Using the fact that A, kz > V we can neglect top right and lower left 2 x 2 blocks that corre-
spond to interband coupling that connects different Rashba-split bands. This is equivalent to
neglecting terms of the order V2/ (Asokp)z, and is justified for strong spin-orbit coupling. This
allows us to calculate the Green function by inverting individual two by two matrix blocks,
resulting in following two contributions labeled by f = £1,

G (k) = Z (1+f0'2)TZ(gk+ko7Lso)+fA(TXsin¢k—Tycos¢k)+(a)+fVCOS¢k).

f==1 2 —A2— (& + fhpAg) 2+ (w + fV cos ¢y ) 2
(A.3)
Substituting this into expression for DOS results in the following integral,
2n o0
v Vecosop +w
plw)=Z5im | d¢ | d& : —. (A4)
21 £2+A2—(Vcos¢p + w+1i0)
0 —00

In order to calculate this integral we proceed as follows: first, we introduce complex variable
z = e!® and transform the integral over ¢ into the integral of complex variables over the cycle
|z| = 1. Then, making a change of variables £ = Asinharccoshx and using formula 3.148.6
from Ref. [68] we integrate over x. As a result, after introducing the following short-hand
notation,

Qun=1+uw+Anv, u,n ==, (A.5)
for V < A we obtain,
0, 0<w<A-V,
plw)= 22| A=[o (G T )+ 0 -0 oK (FRe)], a-v<os<ary,
\/—Q:m, (K (A=) - n(&4e 248-)). A+V<aw.

(A.6)
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The DOS is even function, p(w) = p(—w) so we defined it only for positive values of energy.
For V > A we have,

\/QinH [ZH (_Qﬂj:’ g:g: ) —K (g:g: )] .

_ Yo +\/n+‘:n__ [21’[(_&?,&:&:)—1{(%)]’ 0<w<—-A+V,
e \/\f/_A [Q——H(;\?—/_&’ _szn_f/%_) +(1 —Q__)'K(_S:“f/i*‘)] , " A+V<w<A+V,
K () —on (55 )] A+V<o.
(A.7)

In these equations K(n) is the complete elliptic integral of the first kind and II(n, m) is the com-
plete elliptic integral of the third kind. These results for DOS are presented in the Fig. 1. We
note, that these expressions have logarithmic singularities at energies w = +(A + V) and dis-
continuous jumps at w = (A —V), that replace the conventional square-root BCS divergence
in the DOS at w = £A.

B Approximations in Green function

In matrix form, Green function from the Eq. (7) can be rewritten in the following way,

G 1=ieW
Ex —idg ke Pk 4 iy (D) —iA® Al
idg kelPe — iy Ex A —iA®
N in® AW —Ex idgokel®k + iy [ (B.1)
AD in® —iAg ke Pk — iy —x

In order to separate interband and intraband terms, we make the rotation with the same matrix
U as defined in Eq. (A.1), G = U'GU,

G l=ieD
Ek + Aok —VDcospy,  ieT%x (A(l) —A®@cos ¢k) iV(l‘) sin ¢y A®e1bisin ¢y
—ielx (AD — AP cos ¢ ) —&— Asok — Vv cos ¢y, APei?isin ¢y 4 —ivVWsin ¢y,
—ivWsin ¢y AP Pisin ¢y Aok + VD cos g,  —ie 1%k (A(U + A®cos (j)k)
A®@ei®igin ¢y iV sin ¢y ielPx (A(l) +A@ cos qbk) —E 4 Aok + VD cos Py

(B.2)

Now, interband terms are in off-diagonal blocks 2 by 2. Assuming the strong spin-orbit cou-
pling: A,k > VD and A,k > AP we can neglect interband terms which is equivalent to
neglecting terms contributions of the order of [V() /(A k)] and [A®) /(A kr)]?.

C Derivation of a response kernel Q,p
In this appendix we present the derivation of the electromagnetic response kernel Q5. To

construct the kernel, we use the explicit expression for current operator that is given by the
sum of three terms when written in the real space,

j — j-(grad) _|_j3(so) +j3(dia) , (C.l)
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Figure 8: Dependence of the normalized superfluid density n; ,, /n on the angle be-
tween the magnetic field and x-axis for different forms of g-tensor. Dashed blue
line in both panels serves as a reference and corresponds to isotropic and diagonal
g-tensor with g, = g,, =10 and g,,, = g,, = 0. Panel (a) shows the effect of the
anisotropy in the diagonal terms of g-tensor, when off-diagonal terms are vanish-
ing. Panel (b) demonstrates that the off-diagonal terms in the g-tensor tilt principal
symmetry axes. Radial divisions start at n, ,,/n = 0 and are in increments of 0.2;
ugH =0.13Ayp and TA =0.5.

that represent the standard gradient contribution, spin-orbit contribution, and, finally the dia-
magnetic term,

j&rad = 2l—e (B =) ™ (¢, 7)Y (1, 7) (C.2)
m

3 =200y (x, r)[ o ]w (r,7), (C3)
2

ji = —%w‘f t, DAENY (r,7) . (C.4)

Separating the diamagnetic contribution, that results in the term proportional to the total
carrier density, n, the kernel Qg (q,1w,) can be expressed as follows

B
ne? 1 ; .
, . =——5 + = dre tar dretenT
Qa[j (q lwn) m af 2 re e
—p
. . . d .
x (G2 (1, 1) + 789 (1 DG 0,0+ 5 (0,00))

(C.5)

where we indicated the coordinate and time dependence of operators. Substituting explicit
expressions for electric current, rewriting the correlator using Green’s function, and expressing
the diamagnetic contribution as the product of Green’s functions with A set to zero we obtain
Eqg. (13) in the main text. We note, that there is no vertex correction from disorder due to
the following facts: 1) scattering potential is local; 2) the Green function G(p) is an even
function of p. As a result, the vertex correction vanishes because it is proportional to the
following integral: f ) P.G(p)G(p), which is equal to O since the integrand is an odd function
of p. More details on how vertex correction is calculated can be found in Refs. [44,45], where
disorder potential is not assumed to be local and as a result, the vertex correction is non-trivial.
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D Anisotropic effects

D.1 Superfluid density in the presence of magnetic anisotropy

In this Appendix we examine the different effects of magnetic anisotropy, encoded into g-
tensor on the superfluid density, n, ,, (in the absence of order parameter suppression). In
particular, we show the effect of the off-diagonal g-tensor and discuss potential for observing
its effect experimentally.

We use Eq. (21) to plot the dependence of the superfluid density, n; ., on the angle be-
tween a magnetic field and x-axis for different forms of g-tensor. First, we consider the case
when off-diagonal elements of g-tensor are absent, g,, = g,, = 0 and diagonal terms are
different, see Fig. 8(a). Note, that even in this case the superfluid density depends on the di-
rection of the magnetic field — a property that stems from the spin-momentum locking. Upon
including the anisotropy g, # g, the dependence of n; ,., on the angle of the field becomes
either more symmetric when g,, > g,,. In the opposite case, g,, < gy, the dependence
of ng ., on the field angle develops more pronounced asymmetry and assumes an hourglass
shape, with the smallest superfluid density corresponding to the case when magnetic field is
parallel to the y-axis. Next, we explore the case when off-diagonal elements of g-tensor are
present and diagonal are equal, see Fig.8(b). This type of anisotropy gives the dependence
also an hourglass shape, and tilts its principal symmetry axes away from x and y directions.

The qualitative difference in the shape of n; ., as a function of the angle may be used to
detect and quantify the g-tensor anisotropy in the experiment. At the same time, addition of
the off-diagonal elements in the g-tensor as fitting parameters may potentially result in the
overfitting, especially if other six fitting parameters used in the main text are still present.
Hence, in order to unambiguously determine the form of the g-tensor using this framework,
it is desirable to fix at least some of the other material properties using different or additional
experimental data, or directly measure off-diagonal components of the superfluid density as
discussed in the main text.

D.2 Generalization of spin-orbit coupling

In the main text we assumed that spin-orbit coupling is of a Rashba type. In this Appendix we
show that our results are applicable not only to Rashba spin-orbit coupled system and can be
generalized by a simple redefinition of the g-tensor. In particular, they can be also applied to
the system that has only Dresselhaus spin-orbit coupling.

Rashba spin-orbit coupling has the following contribution to the Hamiltonian in momen-
tum representation,

W (k) =2A[ 0% 0¥ ]( ? _01 )[ I,z" ] (D.1)
Yy

Instead of 2 x 2 antisymmetric tensor above, we consider more general case — an arbitrary
orthogonal matrix U. Any orthogonal matrix U can be expressed as:

s (0 =1\(d o
om0 (4 9). o2

cos —sin6
sinf cosf
reflections. Then, we make the changes of variables,

el o) TR ]G0
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that corresponds to rotation in the spin space and potentially reflection in the momentum
space. After this transformation, the Hamiltonian takes the same form as for the case of Rashba
spin-orbit coupling in Eq. (D.1).

Let us now analyze how this change of variables affects other terms in the Hamiltonian.
To begin with, we consider the Zeeman contribution,

1 - . 1 > 74
Hy; = _EHBUTgH - _EMB(O')TgH, (D.4)

here, § = U,,.$. It is clear that the reflection in momentum space does not affect the kinetic
term H; because it is quadratic in momentum, the same applies to the calculation of diagonal
components of superfluid density tensor; off-diagonal components are multiplied by factor d
since they are proportional to k,k,. Thus, we have reduced the problem to the original one
and all results for Rashba spin-orbit coupling are applicable to this generalization of spin-orbit
coupling, the only change is the redefinition of g-tensor: § — U, &. In particular, if we put
0 = n/2in U,y and d = —1 in reflection matrix, we get the Dresselhaus spin-orbit coupling.

E An effect of out-of-plane component of magnetic field on pair-
breaking parameter

In Sec. 4.1 we studied pair-breaking in Al and found a linear contribution from the magnetic
field to the pair-breaking parameter a. Assuming that this linear contribution appears because
of a small out-of-plane component of a magnetic field in the experimental measurements, let
us estimate this component. The pair-breaking parameter for the case when a magnetic field
is perpendicular to the layer is expressed as follows: a,(H) = DeH [58,59], while for the
magnetic field parallel to the layer, it reads: aj(H) = D (eH d)? /6, where D is the diffusion
constant, d is the thickness of the superconducting layer, e is the charge of the electron, and
H is a magnetic field.

Assuming that pair-breaking is weak, a/Aj, < 1, we can make the following approxima-
tion for resulting pair-braking parameter: a(H) ~ a;(H))+ a (H ) where H| = H sin¢ and
H) = Hcos ¢ are out-of-plane and in-plane components of magnetic field and ¢ is an angle
between a magnetic field and the plane. Then, taking into account Eq. (31) we obtain that

2
ﬂgl (i + 1 gl H_
2 Hcr Cl HCZr

)NDGHJ_'F%(GHHCI)Z . (E.1)

Matching linear and quadratic in H terms with each other separately we get,

Ao, H
X, — ~DeH,, E.2
2 i, N DL (E2)
Ago H?> D 2
2 (1-)—~—(eHyd)" . E.3

Taking the ratio of these equations we obtain

&y 6 & sing

1-¢, m & cost¢’

(E.4)

where &, is the magnetic flux quantum, ® = H,, - d? is the flux of the critical field through the
area of d2. Using the value of the fitting parameter a; = 0.207 obtained in the main text and
values H,, = 0.93 T and d = 15 nm from Ref. [1] we estimate the misalignment angle ¢ as

H,
¢ ~—L~0.01. (E.5)
Hy
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Figure 9: Results for renormalized parameters AD (the first line), A2 (the second
line) and V(Y (the third line) in the absence of order parameter supression: A = Ag.
Plots (a-c) correspond to the real parts, plots (d-f) — to the imaginary part. The green
color represents the magnetic field at which the system is in the regime with a gap,
while the blue one represents the gapless regime.
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Figure 10: Results for superfluid density (top) and DOS (bottom) in the presence of
order parameter suppression. For the calculation of superfluid density and order pa-
rameter suppression, the following temperature and critical magnetic field are used:
T/Agg = 0.0564, V., = 2.5A,. Dashed lines correspond to the areas of magnetic
field where current theory is not applicable (superfluid density becomes negative).
Purple areas represent the regions of magnetic field where there is a gapless regime.
Vertical lines in the plots from the upper panel show the magnetic field at which the
DOS is plotted in the lower panel; the green line represents the magnetic field at
which the system is in the regime with a gap, while the blue one represents the gap-
less regime.

We should notice that this estimate is applicable only when pair-breaking is weak which cor-
responds to the small magnetic fields: H/H,., < 1. Experimentally Ref. [1] performed very
careful field alignment with the out of plane component being constrained to less than 0.1% at
considerable values of the magnetic field, that is an order of magnitude smaller compared to
our estimate above. This discrepancy may be attributed to the fact that our estimate is applica-
ble only at very small fields, also the systematic contributions that are beyond our theoretical
model, such as field-dependence of inverse proximity effect, may play a role here.

F Renormalization of the order parameter and magnetic field by
disorder

In this Appendix, we present the dependencies of real and imaginary parts of parameters A1,
A® and VD on energy. The data is shown for three values of disorder strength: TA = 0.1,
TA = 0.5, and TA =5, with each plot comparing the renormalized functions for two values
of magnetic field that put the system into regime with the gap, and gapless regime.

Figure 9 demonstrates that for energies far away from zero, real part of gaps, A(b? and
renormalized magnetic field V(1 tend to their true values, and imaginary parts approach zero.
At the same time, for energies of order V and A, renormalized functions strongly depend on
the energy. In particular, all renormalized functions have features at the energies of the order
+|V + A|. For small disorder (large 7) these features are sharp, and they smoothen out with
increasing disorder strength.
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Another notable feature is the symmetry properties of the real and imaginary part of the
renormalized functions. First, for small values of V when DOS has the gap, the ImA(D(e) =0
for € that is sufficiently small. The same property also holds for imaginary parts of the
Im A®(e) and Im VY (e). Second, the renormalized s-wave gap component, A1)(¢e) has even
in energy real and odd in energy imaginary parts.

In contrast, the induced triplet component has odd in energy real and even in energy imag-
inary parts, highlighting that the presence of disorder induces odd frequency triplet component
of the order parameter [69]. The magnitude of the triplet component is increasing with dis-
order strength, and for large disorder it becomes in some energy intervals even larger that
the order parameter in the superconductor. At the same time, in this regime both real and
imaginary contributions to A®)(¢) are of comparable magnitude, intuitively suggesting that
disorder-induced triplet pairs are short lived.

G Superfluid density and DOS in the presence of order parameter
suppression

In this Appendix, we present the plots for superfluid density and DOS in the presence of order
parameter suppression. Taking values of the temperature T = 0.0564A, and critical field
V., = 2.5A, we show resulting superfluid density and DOS in Fig. 10. Data in this figure
is qualitatively similar to the case where the order parameter suppression is not taken into
account, see Fig. 2 in the main text. The only differences are that the superfluid density
vanishes at the critical field of superconductor, as expected and the boundaries of the gapless
regimes move to smaller values of magnetic field, which can also be observed in the plots in
Fig. 3.

References

[1] D. Phan, J. Senior, A. Ghazaryan, M. Hatefipour, W. Strickland, J. Shabani, M.
Serbyn and A. Higginbotham, Detecting induced p £ip pairing at the Al-InAs in-
terface with a quantum microwave circuit, Phys. Rev. Lett. 128, 107701 (2022),
doi:10.1103/PhysRevLett.128.107701.

[2] Y. A. Bychkov and E. I. Rashba, Properties of a 2D electron gas with lifted spectral degen-
eracy, J. Exp. Theor. Phys. Letters 39, 66 (1984).

[3] T. W. Larsen, K. D. Petersson, E Kuemmeth, T. S. Jespersen, P Krogstrup, J. Nygard and
C. M. Marcus, Semiconductor-nanowire-based superconducting qubit, Phys. Rev. Lett. 115,
127001 (2015), doi:10.1103/physrevlett.115.127001.

[4] L. Casparis et al., Superconducting gatemon qubit based on a proximitized two-dimensional
electron gas, Nat. Nanotechnol. 13, 915 (2018), doi:10.1038/s41565-018-0207-y.

[5] J. Alicea, Majorana fermions in a tunable semiconductor device, Phys. Rev. B 81, 125318
(2010), doi:10.1103/physrevb.81.125318.

[6] N. E Q. Yuan and L. Fu, Zeeman-induced gapless superconductivity with a partial Fermi
surface, Phys. Rev. B 97, 115139 (2018), doi:10.1103/physrevb.97.115139.

[7] M. Sato and S. Fujimoto, Topological phases of noncentrosymmetric superconductors: Edge
states, Majorana fermions, and non-Abelian statistics, Phys. Rev. B 79, 094504 (2009),
doi:10.1103/PhysRevB.79.094504.

31


https://scipost.org
https://scipost.org/SciPostPhys.16.5.115
https://doi.org/10.1103/PhysRevLett.128.107701
https://doi.org/10.1103/physrevlett.115.127001
https://doi.org/10.1038/s41565-018-0207-y
https://doi.org/10.1103/physrevb.81.125318
https://doi.org/10.1103/physrevb.97.115139
https://doi.org/10.1103/PhysRevB.79.094504

Scil SciPost Phys. 16, 115 (2024)

[8] J.D. Sau, R. M. Lutchyn, S. Tewari and S. D. Sarma, Generic new platform for topological
quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104, 040502
(2010), doi:10.1103/PhysRevLett.104.040502.

[9] R. M. Lutchyn, E. P A. M. Bakkers, L. P Kouwenhoven, P Krogstrup, C. M. Marcus and
Y. Oreg, Majorana zero modes in superconductor-semiconductor heterostructures, Nat. Rev.
Mater. 3, 52 (2018), d0i:10.1038/s41578-018-0003-1.

[10] K. Flensberg, E von Oppen and A. Stern, Engineered platforms for topological supercon-
ductivity and Majorana zero modes, Nat. Rev. Mater. 6, 944 (2021), doi:10.1038/s41578-
021-00336-6.

[11] C.G. L. Bgttcher, N. R. Poniatowski, A. Grankin, M. E. Wesson, Z. Yan, U. Vool, V. M. Galit-
ski and A. Yacoby, Circuit QED detection of induced two-fold anisotropic pairing in a hybrid
superconductor-ferromagnet bilayer, (arXiv preprint) doi:10.48550/arXiv.2306.08043.

[12] L. Fuchs et al.,, Anisotropic vortex squeeging in synthetic Rashba superconduc-
tors: A manifestation of Lifshitz invariants, Phys. Rev. X 12, 041020 (2022),
doi:10.1103/PhysRevX.12.041020.

[13] P Chauhan, C. Thomas, T. Lindemann, G. C. Gardner, J. Gukelberger, M. J. Manfra and
N. P Armitage, Measurements of cyclotron resonance of the interfacial states in strong spin-
orbit coupled 2D electron gases proximitized with aluminum, Appl. Phys. Lett. 120, 142105
(2022), doi:10.1063/5.0087401.

[14] W. V. Liu and E Wilczek, Interior gap superfluidity, Phys. Rev. Lett. 90, 047002 (2003),
doi:10.1103/physrevlett.90.047002.

[15] S.-T. Wu and S. Yip, Superfluidity in the interior-gap states, Phys. Rev. A 67, 053603
(2003), doi:10.1103/physreva.67.053603.

[16] M. McNeil Forbes, E. Gubankova, W. V. Liu and E Wilczek, Stability cri-
teria for breached-pair superfluidity, Phys. Rev. Lett. 94, 017001 (2005),
doi:10.1103/physrevlett.94.017001.

[17] V. Barzykin and L. P Gor’kov, Inhomogeneous stripe phase revisited for surface supercon-
ductivity, Phys. Rev. Lett. 89, 227002 (2002), doi:10.1103/physrevlett.89.227002.

[18] O. Dimitrova and M. V. Feige'man, Theory of a two-dimensional supercon-
ductor with broken inversion symmetry, Phys. Rev. B 76, 014522 (2007),
doi:10.1103/PhysRevB.76.014522.

[19] C. Reeg, D. Loss and J. Klinovaja, Metallization of a Rashba wire by a super-
conducting layer in the strong-proximity regime, Phys. Rev. B 97, 165425 (2018),
doi:10.1103/PhysRevB.97.165425.

[20] A. E. Antipov, A. Bargerbos, G. W. Winkler, B. Bauer, E. Rossi and R. M. Lutchyn, Effects of
gate-induced electric fields on semiconductor Majorana nanowires, Phys. Rev. X 8, 031041
(2018), do0i:10.1103/PhysRevX.8.031041.

[21] A. E. G. Mikkelsen, P Kotetes, P Krogstrup and K. Flensberg, Hybridization
at superconductor-semiconductor interfaces, Phys. Rev. X 8, 031040 (2018),
doi:10.1103/PhysRevX.8.031040.

32


https://scipost.org
https://scipost.org/SciPostPhys.16.5.115
https://doi.org/10.1103/PhysRevLett.104.040502
https://doi.org/10.1038/s41578-018-0003-1
https://doi.org/10.1038/s41578-021-00336-6
https://doi.org/10.1038/s41578-021-00336-6
https://doi.org/10.48550/arXiv.2306.08043
https://doi.org/10.1103/PhysRevX.12.041020
https://doi.org/10.1063/5.0087401
https://doi.org/10.1103/physrevlett.90.047002
https://doi.org/10.1103/physreva.67.053603
https://doi.org/10.1103/physrevlett.94.017001
https://doi.org/10.1103/physrevlett.89.227002
https://doi.org/10.1103/PhysRevB.76.014522
https://doi.org/10.1103/PhysRevB.97.165425
https://doi.org/10.1103/PhysRevX.8.031041
https://doi.org/10.1103/PhysRevX.8.031040

Scil SciPost Phys. 16, 115 (2024)

[22] T Kiendl, E von Oppen and P W. Brouwer, Proximity-induced gap in
nanowires with a thin superconducting shell, Phys. Rev. B 100, 035426 (2019),
doi:10.1103/PhysRevB.100.035426.

[23] S. Ahn, H. Pan, B. Woods, T. D. Stanescu and S. Das Sarma, Estimating disorder and its
adverse effects in semiconductor Majorana nanowires, Phys. Rev. Mater. 5, 124602 (2021),
doi:10.1103/PhysRevMaterials.5.124602.

[24] C. R. Reeg and D. L. Maslov, Proximity-induced triplet superconductivity in Rashba mate-
rials, Phys. Rev. B 92, 134512 (2015), do0i:10.1103/physrevb.92.134512.

[25] Z. Zhu et al., Discovery of segmented Fermi surface induced by Cooper pair momentum,
Science 374, 1381 (2021), doi:10.1126/science.abf1077.

[26] D. E Agterberg, P M. R. Brydon and C. Timm, Bogoliubov Fermi surfaces in super-
conductors with broken time-reversal symmetry, Phys. Rev. Lett. 118, 127001 (2017),
doi:10.1103/PhysRevLett.118.127001.

[27] P M. R. Brydon, D. E Agterberg, H. Menke and C. Timm, Bogoliubov Fermi sur-
faces: General theory, magnetic order, and topology, Phys. Rev. B 98, 224509 (2018),
doi:10.1103/PhysRevB.98.2245009.

[28] A. Pal, A. Saha and P Dutta, Transport signatures of Bogoliubov Fermi surfaces in normal
metal /time-reversal symmetry broken d-wave superconductor junctions, (arXiv preprint)
doi:10.48550/arXiv.2308.07376.

[29] H. Oh, D. E Agterberg and E.-G. Moon, Using disorder to identify Bogoliubov Fermi-surface
states, Phys. Rev. Lett. 127, 257002 (2021), doi:10.1103/physrevlett.127.257002.

[30] P Dutta, E Parhizgar and A. M. Black-Schaffer, Superconductivity in spin-3/2 systems:
Symmetry classification, odd-frequency pairs, and Bogoliubov Fermi surfaces, Phys. Rev.
Res. 3, 033255 (2021), doi:10.1103/physrevresearch.3.033255.

[31] G. Tang, C. Bruder and W. Belzig, Magnetic field-induced “mirage” gap in an Ising super-
conductor, Phys. Rev. Lett. 126, 237001 (2021), doi:10.1103/PhysRevLett.126.237001.

[32] S. 1li¢, J. S. Meyer and M. Houzet, Enhancement of the upper critical field in disor-
dered transition metal dichalcogenide monolayers, Phys. Rev. Lett. 119, 117001 (2017),
doi:10.1103/PhysRevLett.119.117001.

[33] D. Mockli and M. Khodas, Magnetic-field induced s + if pairing in Ising superconductors,
Phys. Rev. B 99, 180505 (2019), doi:10.1103/physrevb.99.180505.

[34] D. Mockli and M. Khodas, Robust parity-mixed superconductivity in disordered
monolayer transition metal dichalcogenides, Phys. Rev. B 98, 144518 (2018),
doi:10.1103/physrevb.98.144518.

[35] M. Haim, D. Mockli and M. Khodas, Signatures of triplet correlations in den-
sity of states of Ising superconductors, Phys. Rev. B 102, 214513 (2020),
doi:10.1103/physrevb.102.214513.

[36] L.J. Splitthoff, A. Bargerbos, L. Griinhaupt, M. Pita-Vidal, J. J. Wesdorp, Y. Liu, A. Kou, C.
K. Andersen and B. van Heck, Gate-tunable kinetic inductance in proximitized nanowires,
Phys. Rev. Appl. 18, 024074 (2022), doi:10.1103/PhysRevApplied.18.024074.

33


https://scipost.org
https://scipost.org/SciPostPhys.16.5.115
https://doi.org/10.1103/PhysRevB.100.035426
https://doi.org/10.1103/PhysRevMaterials.5.124602
https://doi.org/10.1103/physrevb.92.134512
https://doi.org/10.1126/science.abf1077
https://doi.org/10.1103/PhysRevLett.118.127001
https://doi.org/10.1103/PhysRevB.98.224509
https://doi.org/10.48550/arXiv.2308.07376
https://doi.org/10.1103/physrevlett.127.257002
https://doi.org/10.1103/physrevresearch.3.033255
https://doi.org/10.1103/PhysRevLett.126.237001
https://doi.org/10.1103/PhysRevLett.119.117001
https://doi.org/10.1103/physrevb.99.180505
https://doi.org/10.1103/physrevb.98.144518
https://doi.org/10.1103/physrevb.102.214513
https://doi.org/10.1103/PhysRevApplied.18.024074

Scil SciPost Phys. 16, 115 (2024)

[37] P Schiiffelgen et al., Selective area growth and stencil lithography for in situ fabricated
quantum devices, Nat. Nanotechnol. 14, 825 (2019), doi:10.1038/s41565-019-0506-y.

[38] O. Breunig and Y. Ando, Opportunities in topological insulator devices, Nat.Rev. Phys. 4,
184 (2021), doi:10.1038/s42254-021-00402-6.

[39] M. Valentini et al., Parity-conserving Cooper-pair transport and ideal superconducting diode
in planar germanium, Nat. Commun. 15, 169 (2024), doi:10.1038/s41467-023-44114-
0.

[40] K. Maki, The behavior of superconducting thin films in the presence of magnetic fields and
currents, Prog. Theor. Phys. 31, 731 (1964), doi:10.1143/ptp.31.731.

[41] V. G. Kogan, R. Prozorov and V. Mishra, London penetration depth and pair breaking, Phys.
Rev. B 88, 224508 (2013), doi:10.1103/PhysRevB.88.224508.

[42] K. Maki, Pauli paramagnetism and superconducting state. II, Prog. Theor. Phys. 32, 29
(1964), doi:10.1143/ptp.32.29.

[43] A. Banerjee, M. Geier, M. A. Rahman, C. Thomas, T. Wang, M. J. Manfra, K. Flensberg
and C. M. Marcus, Phase asymmetry of Andreev spectra from Cooper-pair momentum, Phys.
Rev. Lett. 131, 196301 (2023), doi:10.1103/PhysRevLett.131.196301.

[44] A. A. Abrikosov and L. P Gork’ov, On the theory of superconducting alloys I. The electrody-
namics of alloys at absolute zero, Sov. J. Exp. Theor. Phys. 8, 1090 (1959).

[45] A. A. Abrikosov and L. P Gork'ov, Superconducting alloys at finite temperatures, Sov. J.
Exp. Theor. Phys. 9, 220 (1959).

[46] K. Maki and T. Tsuneto, Pauli paramagnetism and superconducting state, Prog. Theor.
Phys. 31, 945 (1964), doi:10.1143/ptp.31.945.

[47] A. A. Abrikosov, I. Dzyaloshinskii, L. P Gorkov and R. A. Silverman, Methods of quantum
field theory in statistical physics, Dover, New York, USA, ISBN 9780486140155 (1975).

[48] S. B. Nam, Theory of electromagnetic properties of superconducting and normal systems. I,
Phys. Rev. 156, 470 (1967), doi:10.1103/physrev.156.470.

[49] V. Kalevich and V. Korenev, Anisotropy of the electron g-factor in GaAs/AlGaAs quantum
wells, J. Exp. Theor. Phys. Letters 56, 257 (1992).

[50] V. K. Kalevich and V. L. Koreney, Electron g-factor anisotropy in asymmetric GaAs/AlGaAs
quantum well, J. Exp. Theor. Phys. Letters 57, 557 (1993).

[51] P S. Eldridge, J. Hiibner, S. Oertel, R. T. Harley, M. Henini and M. Oestreich, Spin-
orbit fields in asymmetric (001)-oriented GaAs/AL.Ga;_,As quantum wells, Phys. Rev. B
83, 041301 (2011), doi:10.1103/PhysRevB.83.041301.

[52] C. Gradl et al., Asymmetric g tensor in low-symmetry two-dimensional hole systems, Phys.
Rev. X 8, 021068 (2018), doi:10.1103/PhysRevX.8.021068.

[53] P G. de Gennes, Superconductivity of metals and alloys, W. A. Benjamin, New York, USA,
ISBN 9780367091682 (1966).

[54] J. Linder and A. V. Balatsky, Odd-frequency superconductivity, Rev. Mod. Phys. 91, 045005
(2019), doi:10.1103/RevModPhys.91.045005.

34


https://scipost.org
https://scipost.org/SciPostPhys.16.5.115
https://doi.org/10.1038/s41565-019-0506-y
https://doi.org/10.1038/s42254-021-00402-6
https://doi.org/10.1038/s41467-023-44114-0
https://doi.org/10.1038/s41467-023-44114-0
https://doi.org/10.1143/ptp.31.731
https://doi.org/10.1103/PhysRevB.88.224508
https://doi.org/10.1143/ptp.32.29
https://doi.org/10.1103/PhysRevLett.131.196301
https://doi.org/10.1143/ptp.31.945
https://doi.org/10.1103/physrev.156.470
https://doi.org/10.1103/PhysRevB.83.041301
https://doi.org/10.1103/PhysRevX.8.021068
https://doi.org/10.1103/RevModPhys.91.045005

Scil SciPost Phys. 16, 115 (2024)

[55] A.I Larkin and Y. N. Ovchinnikov, Nonuniform state of superconductors, Sov. J. Exp. Theor.
Phys. 20, 762 (1965).

[56] P Fulde and R. A. Ferrell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135,
A550 (1964), doi:10.1103/PhysRev.135.A550.

[57] N. E Q. Yuan and L. Fu, Supercurrent diode effect and finite-momentum superconductors,
Proc. Natl. Acad. Sci. 119, €2119548119 (2022), doi:10.1073/pnas.2119548119.

[58] M. Tinkham, Introduction to superconductivity, Dover Publications, New York, USA, ISBN
9780486435039 (2004).

[59] R.D. Parks, Superconductivity, Routledge, New York, USA, ISBN 9780203737958 (2018),
d0i:10.1201/9780203737958.

[60] B. Efron and R. J. Tibshirani, An introduction to the bootstrap, Chapman and Hall/CRC,
New York, USA, ISBN 9780429246593 (1994), doi:10.1201/9780429246593.

[61] C. H. Moller, C. Heyn and D. Grundler, Spin splitting in narrow InAs quantum wells with
Iny »5Gay 55As barrier layers, Appl. Phys. Lett. 83, 2181 (2003), doi:10.1063/1.1610790.

[62] J.Nitta, Y. Lin, T. Akazaki and T. Koga, Gate-controlled electron g factor in an InAs-inserted-
channel In 55Gay 47As/Ing 50Al, 4gAs heterostructure, Appl. Phys. Lett. 83, 4565 (2003),
doi:10.1063/1.1631082.

[63] Y. V. Terent’ev, S. N. Danilov, M. V. Durnev, J. Loher, D. Schuh, D. Bougeard, S. V.
Ivanov and S. D. Ganichev, Determination of hole g-factor in InAs/InGaAs/InAlAs quan-
tum wells by magneto-photoluminescence studies, J. Appl. Phys. 121, 053904 (2017),
doi:10.1063/1.4975353.

[64] J. Yuan et al., Experimental measurements of effective mass in near-surface InAs quantum
wells, Phys. Rev. B 101, 205310 (2020), doi:10.1103/PhysRevB.101.205310.

[65] C. M. Moehle et al., InSbAs two-dimensional electron gases as a platform for topological
superconductivity, Nano Lett. 21, 9990 (2021), doi:10.1021/acs.nanolett.1c03520.

[66] L. P Gorkov and E. I. Rashba, Superconducting 2D system with lifted spin
degeneracy:  Mixed singlet-triplet state, Phys. Rev. Lett. 87, 037004 (2001),
doi:10.1103/PhysRevLett.87.037004.

[67] S. Banerjee, S. Ikegaya and A. P Schnyder, Anomalous Fano factor as a sig-
nature of Bogoliubov Fermi surfaces, Phys. Rev. Res. 4, 1042049 (2022),
doi:10.1103/PhysRevResearch.4.1.042049.

[68] 1. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press,
Oxford, UK, ISBN 9780123736376 (2007).

[69] P Burset, B. Lu, G. Tkachov, Y. Tanaka, E. M. Hankiewicz and B. Trauzettel, Superconduct-
ing proximity effect in three-dimensional topological insulators in the presence of a magnetic
field, Phys. Rev. B 92, 205424 (2015), doi:10.1103/physrevb.92.205424.

35


https://scipost.org
https://scipost.org/SciPostPhys.16.5.115
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1073/pnas.2119548119
https://doi.org/10.1201/9780203737958
https://doi.org/10.1201/9780429246593
https://doi.org/10.1063/1.1610790
https://doi.org/10.1063/1.1631082
https://doi.org/10.1063/1.4975353
https://doi.org/10.1103/PhysRevB.101.205310
https://doi.org/10.1021/acs.nanolett.1c03520
https://doi.org/10.1103/PhysRevLett.87.037004
https://doi.org/10.1103/PhysRevResearch.4.L042049
https://doi.org/10.1103/physrevb.92.205424

	Introduction
	Theoretical model
	System and physical assumptions
	Hamiltonian and band structure
	Green function formalism in presence of disorder
	Density of states and superfluid density
	Arbitrary magnetic field direction and anisotropic g-tensor
	Review of depairing theory in conventional superconductor

	Results for proximity-induced superconductivity in disordered 2DEG
	Numerical solution for Green's function
	DOS and superfluid density
	Region of the gapless superconductivity and potential instability

	Fitting experimental data
	Pair-breaking effects in Al
	Fitting procedure
	Material parameters and prediction for DOS and gapless regime

	Summary and Outlook
	DOS in the clean case
	Approximations in Green function
	Derivation of a response kernel Q
	Anisotropic effects
	Superfluid density in the presence of magnetic anisotropy
	Generalization of spin-orbit coupling

	An effect of out-of-plane component of magnetic field on pair-breaking parameter
	Renormalization of the order parameter and magnetic field by disorder
	Superfluid density and DOS in the presence of order parameter suppression
	References

